Sample records for ranger spacecraft electrical

  1. Electrical Power Subsystem for the Euclid Spacecraft


    Ciancetta Ezio; Cimino Marco; Cuzzocrea Giuseppe; Gervasio Giuseppe; Maiorano Elena; Martinez Ignacio; Sanchez Luc


    European Space Agency in the frame of Cosmic Vision 2015-2025 program [ 1 ]. It is a cosmology mission whose prime objective is to study the geometry and the nature of the dark matter and the dark energy with unprecedented accuracy. The spacecraft will be launched in 2020 by a Soyuz launcher, to perform a six-year survey of the extragalactic sky from a large-amplitude orbit around Lagrange point L2 of the Sun-Earth system. This paper outlines the Euclid Electrical Power Subsystem (EPS) ...

  2. Spacecraft Electrical Connector Selection and Application Processes (United States)

    Iannello, Chris; Davis, Mitchell I; Kichak, Robert A.; Slenski, George


    This assessment was initiated by the NASA Engineering & Safety Center (NESC) after a number of recent "high profile" connector problems, the most visible and publicized of these being the problem with the Space Shuttle's Engine Cut-Off System cryogenic feed-thru connector. The NESC commissioned a review of NASA's connector selection and application processes for space flight applications, including how lessons learned and past problem records are fed back into the processes to avoid recurring issues. Team members were primarily from the various NASA Centers and included connector and electrical parts specialists. The commissioned study was conducted on spacecraft connector selection and application processes at NASA Centers. The team also compared the NASA spacecraft connector selection and application process to the military process, identified recent high profile connector failures, and analyzed problem report data looking for trends and common occurrences. The team characterized NASA's connector problem experience into a list of top connector issues based on anecdotal evidence of a system's impact and commonality between Centers. These top issues are as follows, in no particular rank order: electrically shorted, bent and/or recessed contact pins, contact pin/socket contamination leading to electrically open or intermittencies, connector plating corrosion or corrosion of connector components, low or inadequate contact pin retention forces, contact crimp failures, unmated connectors and mis-wiring due to workmanship errors during installation or maintenance, loose connectors due to manufacturing defects such as wavy washer and worn bayonet retention, damaged connector elastomeric seals and cryogenic connector failure. A survey was also conducted of SAE Connector AE-8C1 committee members regarding their experience relative to the NASA concerns on connectors. The most common responses in order of occurrence were contact retention, plating issues, worn-out or damaged

  3. Spacecraft Charge as a Source of Electrical Power for Spacecraft (United States)


    Limitations ............ . . 7.2 Appendix : MATHCAD 2.0 Document for Solving Spacecraft Charging Equations . . . APP.1 Bibliography...The charging model is solved using the equation solver routines in MATHCAD 2.0: an engineering computer software package by MathSoft Inc. The Appendix...lists the problem formulated as a MATHCAD document. The 3 output data from MATHCAD 2.0 has been graphed using the spreadsheet QUATTRO by Borland. 3

  4. Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft, and they exhibit a rich variety of failure modes. This paper discusses electrical power...

  5. Electrical Power Subsystem for the Euclid Spacecraft

    Directory of Open Access Journals (Sweden)

    Ciancetta Ezio


    This paper outlines the Euclid Electrical Power Subsystem (EPS design, providing a description of the major design drivers and resulting configuration, with a view to highlight aspects that could be considered for future designs.

  6. Operationally Responsive Spacecraft Using Electric Propulsion (United States)


    OH, 1996 (ADA). Vallado, D. Fundamentals of Astrodynamics and Applications (2nd Edition). El Segundo CA: Microcosm Press, 2001. Vaughan, C. E...detailing the possible applications of the proposed responsive electric propulsion (EP) space system; however, none address the responsiveness achieved...5-37 5.8 Application ................................................................................................ 5-39 5.9 Conclusion

  7. Remote Electric Power Transfer Between Spacecrafts by Infrared Beamed Energy (United States)

    Chertok, Boris E.; Evdokimov, Roman A.; Legostaev, Victor P.; Lopota, Vitaliy A.; Sokolov, Boris A.; Tugaenko, Vjacheslav Yu.


    High efficient wireless electric energy transmission (WET) technology between spacecrafts by laser channel is proposed. WET systems could be used for remote power supplying of different consumers in space. First of all, there are autonomous technology modules for microgravity experiments, micro and nano satellites, different equipment for explorations of planetary surfaces, space transport vehicles with electric rocket propulsion systems. The main components of the WET technology consist of radiation sources on the base of semiconductor IR laser diodes; systems for narrow laser beam creation; special photovoltaic receivers for conversion of monochromatic IR radiation with high energy density to electric power. The multistage space experiment for WET technology testing is described. During this experiment energy will be transmitted from International Space Station to another spacecrafts like cargo transport vehicles (Progress or/and ATV) and micro satellites.

  8. System engineering of a nuclear electric propulsion testbed spacecraft (United States)

    Cameron, G. E.; Herbert, G. A.


    A mission concept aimed at evaluating performance of a Russian Space Nuclear Power System (SNPS) and electric thrusters to be consistent with U.S. safety standards is discussed. Solutions of unique nuclear electric propulsion (NEP) problems optimized for the Nuclear Electric Propulsion Test Program (NEPSTP) are considered. The problems include radiation, thermal management, safety, ground processing concerns of a nuclear payload, the launch of an NEP payload, orbital operations, electromagnetic compatibility, contamination, guidance and control, and a power system. Attention is also given to preliminary spacecraft and mission design developed taking into account all aforementioned problems.

  9. Testing and Optimization of Electrically Conductive Spacecraft Coatings (United States)

    Mell, R. J.; Wertz, G. E.; Edwards, D. L. (Technical Monitor)


    This is the final report discussing the work done for the Space Environments and Effects (SEE) Program. It discusses test chamber design, coating research, and test results on electrically thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude higher electrical conductivity than most available thermal control coatings. Most current coatings tend to have a range in surface resistivity from 1,011 to 1,013 ohms/sq. Historically, spacecraft have had thermal control surfaces composed of dielectric materials of either polymers (paints and metalized films) or glasses (ceramic paints and optical solar reflectors). Very seldom has the thermal control surface of a spacecraft been a metal where the surface would be intrinsically electrically conductive. The poor thermal optical properties of most metals have, in most cases, stopped them from being used as a thermal control surface. Metals low infrared emittance (generally considered poor for thermal control surfaces) and/or solar absorptance, have resulted in the use of various dielectric coatings or films being applied over the substrate materials in order to obtain the required optical properties.

  10. Instrumentation Requirements for the Engineering Evaluation of Nuclear-Electric Spacecraft (United States)

    Apel, W. C.


    Spacecraft employing nuclear-electric propulsion are being proposed for missions to Venus and distances beyond. These spacecraft utilize a nuclear reactor to provide thermal energy to a turboalternator which generates electric power for an ion motor and the other spacecraft systems. This Report discusses the instrumentation and communications system needed to evaluate a nuclear-electric spacecraft in flight, along with the problems expected. A representative spacecraft design is presented, which leads to a discussion of the instrumentation needed to evaluate such a spacecraft. A basic communications system is considered for transmitting the spacecraft data to Earth. The instrumentation and communications system, as well as all electronic systems on a nuclear-electric spacecraft, will be operating in high temperature and nuclear-radiation environments. The problems caused by these environments are discussed, and possible solutions are offered.

  11. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft (United States)

    Wiegmann, Bruce M.


    There is great interest in examining the outer planets of our solar system and Heliopause region (edge of Solar System) and beyond regions of interstellar space by both the Planetary and Heliophysics communities. These needs are well docu-mented in the recent National Academy of Sciences Decadal Surveys. There is significant interest in developing revolutionary propulsion techniques that will enable such Heliopause scientific missions to be completed within 10 to15 years of the launch date. One such enabling propulsion technique commonly known as Electric Sail (E-Sail) propulsion employs positively charged bare wire tethers that extend radially outward from a rotating spacecraft spinning at a rate of one revolution per hour. Around the positively charged bare-wire tethers, a Debye Sheath is created once positive voltage is applied. This sheath stands off of the bare wire tether at a sheath diameter that is proportional to the voltage in the wire coupled with the flux density of solar wind ions within the solar system (or the location of spacecraft in the solar system. The protons that are expended from the sun (solar wind) at 400 to 800 km/sec are electrostatically repelled away from these positively charged Debye sheaths and propulsive thrust is produced via the resulting momentum transfer. The amount of thrust produced is directly proportional to the total wire length. The Marshall Space Flight Center (MSFC) Electric Sail team is currently funded via a two year Phase II NASA Innovative Advanced Concepts (NIAC) awarded in July 2015. The team's current activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers and tethers to enable successful de-ployment of multiple, multi km length bare tethers

  12. Study of reactor Brayton power systems for nuclear electric spacecraft (United States)


    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  13. Radioisotope Electric Propulsion Centaur Orbiter Spacecraft Design Overview (United States)

    Oleson, Steve; McGuire, Melissa; Sarver-Verhey, Tim; Juergens, Jeff; Parkey, Tom; Dankanich, John; Fiehler, Doug; Gyekenyesi, John; Hemminger, Joseph; Gilland, Jim; hide


    Radioisotope electric propulsion (REP) has been shown in past studies to enable missions to outerplanetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass radioisotope power systems (RPS) and light spacecraft (S/C) components. In order to determine what are the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers cost cap. The design shows that an orbiter using several long lived (approximately 200 kg Xenon throughput), low power (approximately 700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the New Frontiers cost cap. Optimal specific impulses for the Hall thrusters were found to be around 2000 sec with thruster efficiencies over 40%. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be reused to enhance science and simplify communications.

  14. Allegheny County Park Rangers Outreach (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Launched in June 2015, the Allegheny County Park Rangers program reached over 48,000 people in its first year. Park Rangers interact with residents of all ages and...

  15. Reactor/Brayton power systems for nuclear electric spacecraft (United States)

    Layton, J. P.


    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  16. Electrical design for origami solar panels and a small spacecraft test mission (United States)

    Drewelow, James; Straub, Jeremy


    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  17. Multipurpose Electric Potential Sensor for Spacecraft Applications Project (United States)

    National Aeronautics and Space Administration — The original goal of Phase I was to study the feasibility of developing an electric sensor that can be used for as many NASA sensing applications as possible. During...

  18. Multipurpose Electric Potential Sensor for Spacecraft Applications Project (United States)

    National Aeronautics and Space Administration — This proposal is based on a new, compact, solid-state electric potential sensor that has over an order of magnitude lower voltage noise than the prior...

  19. Power quality load management for large spacecraft electrical power systems (United States)

    Lollar, Louis F.


    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  20. Influence of the Ambient Electric Field on Measurements of the Actively Controlled Spacecraft Potential by MMS (United States)

    Torkar, K.; Nakamura, R.; Andriopoulou, M.; Giles, B. L.; Jeszenszky, H.; Khotyaintsev, Y. V.; Lindqvist, P.-A.; Torbert, R. B.


    Space missions with sophisticated plasma instrumentation such as Magnetospheric Multiscale, which employs four satellites to explore near-Earth space benefit from a low electric potential of the spacecraft, to improve the plasma measurements and therefore carry instruments to actively control the potential by means of ion beams. Without control, the potential varies in anticorrelation with plasma density and temperature to maintain an equilibrium between the plasma current and the one of photoelectrons produced at the surface and overcoming the potential barrier. A drawback of the controlled, almost constant potential is the difficulty to use it as convenient estimator for plasma density. This paper identifies a correlation between the spacecraft potential and the ambient electric field, both measured by double probes mounted at the end of wire booms, as the main responsible for artifacts in the potential data besides the known effect of the variable photoelectron production due to changing illumination of the surface. It is shown that the effect of density variations is too weak to explain the observed correlation with the electric field and that a correction of the artifacts can be achieved to enable the reconstruction of the uncontrolled potential and plasma density in turn. Two possible mechanisms are discussed: the asymmetry of the current-voltage characteristic determining the probe to plasma potential and the fact that a large equipotential structure embedded in an electric field results in asymmetries of both the emission and spatial distribution of photoelectrons, which results in an increase of the spacecraft potential.

  1. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions (United States)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide


    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  2. Multi-label spacecraft electrical signal classification method based on DBN and random forest. (United States)

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng


    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data.

  3. Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft (United States)

    Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.


    The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.

  4. Electrically conductive, black thermal control coatings for spacecraft application. I - Silicate matrix formulation (United States)

    Bauer, J. L.; Odonnell, T. P.; Hribar, V. F.


    The formulation of the graphite silicate paints MH-11 and MH-11Z, which will serve as electrically conductive, heat-resistant thermal control coatings for the Galileo spacecraft's 400 Newton engine plume shield, 10 Newton thruster plume shields, and external shunt radiators, is described, and performance results for these paints are reported. The MH-11 is produced by combining a certain grade of graphite powder with a silicate base to produce a black, inorganic, electrically conductive, room temperature cure thermal control paint having high temperature capability. Zinc oxide is added to the MH-11 formulation to produce the blister resistant painta MH-11Z. The mechanical, chemical, thermal, optical, and radiation characteristics of the coatings are reported. The formulation, mixing, application, and surface preparation of the substrates are described, and a method of determining the electrical resistance of the coatings is demonstrated.

  5. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions (United States)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin


    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  6. The electrical power subsystem design for the high energy solar physics spacecraft concepts (United States)

    Kulkarni, Milind


    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  7. Touch Temperature Coating for Off-the-Shelf Electrical Equipment Used on Spacecraft (United States)

    Ungar, Eugene K.; Brady, Timothy K.


    Off-the-shelf electrical equipment is frequently used in space-based applications to control costs. However, the reduced heat transfer in the spacecraft microgravity environment causes the equipment to operate at significantly higher temperatures than it would in terrestrial applications. This creates touch temperature issues where items particularly metallic ones become too hot for the crew to handle safely. A touch temperature coating layup has been developed that can be added to spacebased electrically powered hardware. The coating allows the crew to safely handle the hardware, but only slightly impedes the heat transfer from the component during normal operation. In the present work, the coating generic requirements are developed and a layup is described that meets these specifications. Analytical and experimental results are presented that demonstrate the ability of the coating layup to increase the allowable limits of touch temperature while only marginally degrading heat transfer to the environment. This allows the spacecraft crew to handle objects that, if not coated, would be hot enough to cause pain or skin damage.

  8. Formulation of advanced consumables management models: Executive summary. [modeling spacecraft environmental control, life support, and electric power supply systems (United States)

    Daly, J. K.; Torian, J. G.


    An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed.

  9. Particle-in-cell modeling of spacecraft-plasma interaction effects on double-probe electric field measurements (United States)

    Miyake, Y.; Usui, H.


    The double-probe technique, commonly used for electric field measurements in magnetospheric plasmas, is susceptible to environmental perturbations caused by spacecraft-plasma interactions. To better model the interactions, we have extended the existing particle-in-cell simulation technique so that it accepts very small spacecraft structures, such as thin wire booms, by incorporating an accurate potential field solution calculated based on the boundary element method. This immersed boundary element approach is effective for quantifying the impact of geometrically small but electrically large spacecraft elements on the formation of sheaths or wakes. The developed model is applied to the wake environment near a Cluster satellite for three distinctive plasma conditions: the solar wind, the tail lobe, and just outside the plasmapause. The simulations predict the magnitudes and waveforms of wake-derived spurious electric fields, and these are in good agreement with in situ observations. The results also reveal the detailed structure of potential around the double probes. It shows that any probes hardly experience a negative wake potential in their orbit, and instead, they experience an unbalanced drop rate of a large potential hill that is created by the spacecraft and boom bodies. As a by-product of the simulations, we also found a photoelectron short-circuiting effect that is analogous to the well-known short-circuiting effect due to the booms of a double-probe instrument. The effect is sustained by asymmetric photoelectron distributions that cancel out the external electric field.

  10. A Research on the Electrical Test Fault Diagnostic and Data Mining of a Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Yang Feng


    Full Text Available The paper introduces the modeling method and modeling tool for the fault diagnosis of manned spacecraft, the multi-signal flow graph model of a manned space equipment was established using this method; the framework of the fault detection and diagnosis system of manned spacecraft is proposed, the function of ground system and function of the spacecraft are clearly defined. The structure of the functional module is given separately; finally, the tool builds the fault detection and diagnosis system, the application of fault diagnosis method for manned spacecraft is used for reference.

  11. Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft (United States)

    Winglee, R. M.


    The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.

  12. The History of the 2nd Ranger Company

    National Research Council Canada - National Science Library

    Bond, Victor


    The purpose of this research project is to uncover the history of the 2nd Ranger Company and to determine the impact segregation had on the selection, training, and combat operations of the 2nd Ranger Company...

  13. 75th Ranger Regiment Nutrition Program (United States)


    Siple Medical Training Culinary Advisor Warfighter Nutrition Conference USUHS, Bethesda, MD 15 JULY 2008 Report Documentation Page Form...Performance Nutrition ◘ Sports Medicine ◘ Mental Toughness The RAW Program Team Approach: Commander’s Program! • Ranger Leaders • Culinary Overweight Fitness screening, staged training Previous Heat Injury Medical history and record screening Contributory Medical Issues Medical

  14. Of Power Rangers and V-Chips. (United States)

    Boyatzis, Chris J.


    Describes a study of the effects of violence on elementary students which used the television program Mighty Morphin Power Rangers, and found increased aggression which parents should be concerned about. Offers suggestions for parents and teachers, including taking action against violent programming, utilizing technology which bans unwanted…

  15. Spacecraft vehicle design considerations and trades utilizing solar and nuclear reactor electric power systems (United States)

    Bailey, Patrick G.


    The status of the reviews and the work performed to evaluate the capabilities and limitations of various nuclear power systems for space mission applications in the 5-20 kWe range. The study found that, out of nine nuclear power systems studied, three could be used to replace a 10 kWe solar array power system on a representative surveillance satellite. Each of these systems could be incorporated using a boom without major specific modifications to a baseline spacecraft design.

  16. Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body

    Directory of Open Access Journals (Sweden)

    P. Janhunen


    Full Text Available An electric solar wind sail is a recently introduced propellantless space propulsion method whose technical development has also started. The electric sail consists of a set of long, thin, centrifugally stretched and conducting tethers which are charged positively and kept in a high positive potential of order 20 kV by an onboard electron gun. The positively charged tethers deflect solar wind protons, thus tapping momentum from the solar wind stream and producing thrust. The amount of obtained propulsive thrust depends on how many electrons are trapped by the potential structures of the tethers, because the trapped electrons tend to shield the charged tether and reduce its effect on the solar wind. Here we present physical arguments and test particle calculations indicating that in a realistic three-dimensional electric sail spacecraft there exist a natural mechanism which tends to remove the trapped electrons by chaotising their orbits and causing them to eventually collide with the conducting tethers. We present calculations which indicate that if these mechanisms were able to remove trapped electrons nearly completely, the electric sail performance could be about five times higher than previously estimated, about 500 nN/m, corresponding to 1 N thrust for a baseline construction with 2000 km total tether length.

  17. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga


    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  18. 150 kW Class Solar Electric Propulsion Spacecraft Power Architecture Model (United States)

    Csank, Jeffrey T.; Aulisio, Michael V.; Loop, Benjamin


    The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits.

  19. A Survey of Xenon Ion Sputter Yield Data and Fits Relevant to Electric Propulsion Spacecraft Integration (United States)

    Yim, John T.


    A survey of low energy xenon ion impact sputter yields was conducted to provide a more coherent baseline set of sputter yield data and accompanying fits for electric propulsion integration. Data uncertainties are discussed and different available curve fit formulas are assessed for their general suitability. A Bayesian parameter fitting approach is used with a Markov chain Monte Carlo method to provide estimates for the fitting parameters while characterizing the uncertainties for the resulting yield curves.

  20. Spacecraft Charging at Geosynchronous Orbit and Large Scale Electric Fields in the High Latitude Ionosphere. (United States)


    parameters [rom E!fs. Sb._ 2, 297-387, 1962. geomagnetic records, Solar Phs., 42, 259, Link, F., Observations et catalogue des aurores 1975. boreales ...ionosphere- magnetosphere interactions in the polar cap and auroral zone. Air Force measurements of S3-2 electric and magnetic fields and electron and thermal...plasma fluxes were used as well as DMSP auroral imagery. I S~cUITYCLASIFIATIO OFTH SPAG(W~. Soa 3a.,i 9 i Scientific Personnel Principal Investigators

  1. Control of Spacecraft Formations Around the Libration Points Using Electric Motors with One Bit of Resolution (United States)

    Serpelloni, Edoardo; Maggiore, Manfredi; Damaren, Christopher J.


    This paper investigates a formation control problem for two space vehicles in the vicinity of the L 2 libration point of the Sun-Earth/Moon system. The objective is to accurately regulate the relative position vector between the vehicles to a desired configuration, under tight tolerances. It is shown that the formation control problem is solvable using six constant thrust electric actuators requiring only one bit of resolution, and bounded switching frequency. The proposed control law is hybrid, and it coordinates the sequence of on-off switches of the thrusters so as to achieve the control objective and, at the same time, avoid high-frequency switching.

  2. Lightweight Integrated Solar Array and Transceiver. [Improving Electrical Power and Communication Capabilities in Small Spacecraft (United States)

    Carr, John; Martinez, Andres; Petro, Andrew


    The Lightweight Integrated Solar Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting solar energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art solar arrays, while simultaneously enabling deployable antenna concepts.

  3. The Mighty Morphin Power Rangers: Teachers Voice Concern. (United States)

    Levin, Diane E.; Carlsson-Paige, Nancy


    Presents the results of a study exploring teachers' concerns and observations of how the "Power Rangers" television series affects children in their classrooms. Teachers' concerns focus on violence, aggressive play, confusion about fantasy and reality, obsessive involvement with the Power Rangers, and use of them as role models for…

  4. Learning about Real-Life Heroes: Forest Rangers. (United States)

    Afflerbach, Susan; Fonville, Beth


    Suggests that when children show interest in television superheroes, build on that interest in the classroom by introducing them to real-life heroes in the community. Using forest rangers as an example, offers a variety of activities, books, and resources that can introduce children to forest rangers and the work they do to protect forest…

  5. Factors Affecting Job Satisfaction Of Rangers In Yankari Game ...

    African Journals Online (AJOL)

    The study was conducted to identify the various factors affecting the job satisfaction level of rangers in Yankari Game Reserve, Bauchi, Nigeria. Data were collected using structured questionnaire comprising four facets: personal characteristics of the rangers, job satisfaction, motivation, and work environment. Data were ...

  6. Inductively coupled TI-MPD spacecraft electric propulsion. [thermionic magnetoplasma dynamic thruster design (United States)

    Britt, E. J.; Clark, K. E.; Pawlik, E. V.


    A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasma-dynamic (MPD) accelerator is described and the results of preliminary analyses are presented. In this system, the thermionic generating unit operates continuously at a power level of approximately 0.4 MW, while the MPD thruster operates intermittently at higher voltages and power levels. Energy storage is provided by building up a large current in an inductor. Periodically, the charging current is interrupted and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. A typical thrust pulse is characterized by a power level of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. Results of the preliminary analysis show that approximately 85 to 90% of the power available from the thermionic converter array can be delivered to the MPD thruster for a nominal 400 kWe system with an inductive unit suitable for a flight vehicle. Optimized values of the total specific mass of the system including the thermionic reactor, the inductor, and the MPD thruster are estimated in the range of 23 to 24 kg/kWe.

  7. Mars Observer spacecraft (United States)

    Potts, Dennis L.


    The technical aspects of the spacecraft for the Mars Observer mission are discussed. The spacecraft development focuses on using existing flight subsystem designs and production techniques to offer a low-cost, reliable, production-type spacecraft. The scientific objectives of the mission and the scientific payloads of the spacecraft are considered. The spacecraft system and its performance are discussed. The subsystems are described in detail, including attitude and articulation control, electrical power supply, propulsion, structure, thermal control, command and data handling, telecommunications, mechanics, and flight software.

  8. Spacecraft Power Monitor Project (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Spacecraft Power Monitor (SPM) which will use non-intrusive electrical monitoring (NEMO). NEMO transforms the power...

  9. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment... (United States)


    ... Forest Service Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment... Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and Old Dry Creek. The.... ADDRESSES: Send written comments to Bill Queen, District Ranger, Lookout Mountain District, Ochoco National...

  10. The most intense electrical currents in the solar wind: Comparisons between single-spacecraft measurements and plasma turbulence simulations (United States)

    Podesta, John J.; Roytershteyn, Vadim


    Three-dimensional hybrid simulations of solar wind turbulence near the orbit of the Earth are used to investigate the plasma current density over the range of scales from 0.5 proton inertial lengths to hundreds of proton inertial lengths. The data are analyzed along a simulated spacecraft trajectory in order to directly compare the results against single-spacecraft measurements. The most intense current densities are identified using an amplitude threshold technique and the properties of 5σ events identified in the true current density are compared to the properties of 5σ events identified using a proxy for the current density designed for studies of single-spacecraft solar wind measurements. The proxy is proportional to the magnitude of the directional derivative of the magnetic field along the spacecraft trajectory. The results from the simulation show that the average properties of 5σ events observed in the proxy are quantitatively similar to those observed in the true current density, properties such as the spatial size of the events, the nearest neighbor distance, and the peak current density of the events. This provides some justification for the use of the proxy for the statistical analysis of solar wind data even though the simulation indicates that the occurrence times of large-amplitude events in the proxy are not always a reliable indicator of the occurrence times of large-amplitude events in the true current density. The physical properties of 5σ events in simulated spacecraft data show remarkable quantitative agreement with the properties of 5σ events observed in solar wind data.

  11. 75 FR 71666 - Bend/Ft. Rock Ranger District; Deschutes National Forest; Deschutes County, OR; West Bend... (United States)


    ... Forest Service Bend/Ft. Rock Ranger District; Deschutes National Forest; Deschutes County, OR; West Bend... Jeffries, District Ranger, Bend-Fort Rock Ranger District, Red Oaks Square, 1230 NE. Third Street, Suite A...-Fort Rock Ranger District, Red Oaks Square, 1230 NE. Third Street, Suite A-262, Bend, Oregon 97701...

  12. Mighty Morphin Power Ranger Play: Research and Reality. (United States)

    Crosser, Sandra


    Explores the question of whether or not Mighty Morphin Power Rangers-type aggressive play is developmentally appropriate for the early childhood classroom. Compares results from research in child development to the reality of television programming, highlighting the relationship between television violence and children's aggressive behavior. (AA)

  13. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga


    This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.

  14. Natural resources youth training program (NRYTP), resource rangers 2010

    Energy Technology Data Exchange (ETDEWEB)



    In 2010, for a second year, the natural resources youth training program (NRYTP) was developed in northern Manitoba thanks to Manitoba Keewatinowi Okimakanak Inc. (MKO) and the collaboration of 42 sponsors. 16 aboriginal youth representing six northern communities took part in the five-week program located at the Egg Lake camp. The objective was to provide these resources rangers with knowledge and training in the most widespread resource sectors in northern Manitoba, including mining, forestry and hydropower. Trainers and experts provided by industry partners offered training sessions, hands-on work experience and other activities to help resource rangers to acquire a better understanding of the employability in this field in the northern region and the knowledge and skills the resource-based careers require. Life and professional skills training was given by the camp staff and local professionals. On-site elders and cultural events also allowed the integration of a northern Cree cultural component. Three staff members, a cook and elders assisted daily the resource rangers. Many improvements and refinements have been made since the success of the 2009 program, including the involvement of a larger number of communities, program contributors and program graduates. The program length has doubled and the number of jobs created has increased, important cultural aspects were introduced and the overall expenses were reduced.

  15. Low Thrust Cis-Lunar Transfers Using a 40 kW-Class Solar Electric Propulsion Spacecraft (United States)

    Mcguire, Melissa L.; Burke, Laura M.; Mccarty, Steven L.; Hack, Kurt J.; Whitley, Ryan J.; Davis, Diane C.; Ocampo, Cesar


    This paper captures trajectory analysis of a representative low thrust, high power Solar Electric Propulsion (SEP) vehicle to move a mass around cis-lunar space in the range of 20 to 40 kW power to the Electric Propulsion (EP) system. These cis-lunar transfers depart from a selected Near Rectilinear Halo Orbit (NRHO) and target other cis-lunar orbits. The NRHO cannot be characterized in the classical two-body dynamics more familiar in the human spaceflight community, and the use of low thrust orbit transfers provides unique analysis challenges. Among the target orbit destinations documented in this paper are transfers between a Southern and Northern NRHO, transfers between the NRHO and a Distant Retrograde Orbit (DRO) and a transfer between the NRHO and two different Earth Moon Lagrange Point 2 (EML2) Halo orbits. Because many different NRHOs and EML2 halo orbits exist, simplifying assumptions rely on previous analysis of orbits that meet current abort and communication requirements for human mission planning. Investigation is done into the sensitivities of these low thrust transfers to EP system power. Additionally, the impact of the Thrust to Weight ratio of these low thrust SEP systems and the ability to transit between these unique orbits are investigated.

  16. PeakRanger: A cloud-enabled peak caller for ChIP-seq data

    Directory of Open Access Journals (Sweden)

    Grossman Robert


    Full Text Available Abstract Background Chromatin immunoprecipitation (ChIP, coupled with massively parallel short-read sequencing (seq is used to probe chromatin dynamics. Although there are many algorithms to call peaks from ChIP-seq datasets, most are tuned either to handle punctate sites, such as transcriptional factor binding sites, or broad regions, such as histone modification marks; few can do both. Other algorithms are limited in their configurability, performance on large data sets, and ability to distinguish closely-spaced peaks. Results In this paper, we introduce PeakRanger, a peak caller software package that works equally well on punctate and broad sites, can resolve closely-spaced peaks, has excellent performance, and is easily customized. In addition, PeakRanger can be run in a parallel cloud computing environment to obtain extremely high performance on very large data sets. We present a series of benchmarks to evaluate PeakRanger against 10 other peak callers, and demonstrate the performance of PeakRanger on both real and synthetic data sets. We also present real world usages of PeakRanger, including peak-calling in the modENCODE project. Conclusions Compared to other peak callers tested, PeakRanger offers improved resolution in distinguishing extremely closely-spaced peaks. PeakRanger has above-average spatial accuracy in terms of identifying the precise location of binding events. PeakRanger also has excellent sensitivity and specificity in all benchmarks evaluated. In addition, PeakRanger offers significant improvements in run time when running on a single processor system, and very marked improvements when allowed to take advantage of the MapReduce parallel environment offered by a cloud computing resource. PeakRanger can be downloaded at the official site of modENCODE project:

  17. Spacecraft sterilization. (United States)

    Kalfayan, S. H.


    Spacecraft sterilization is a vital factor in projects for the successful biological exploration of other planets. The microorganisms of major concern are the fungi and bacteria. Sterilization procedures are oriented toward the destruction of bacterial spores. Gaseous sterilants are examined, giving attention to formaldehyde, beta-propiolactone, ethylene oxide, and the chemistry of the bactericidal action of sterilants. Radiation has been seriously considered as another method for spacecraft sterilization. Dry heat sterilization is discussed together with the effects of ethylene oxide decontamination and dry heat sterilization on materials.

  18. 78 FR 38287 - Bitterroot National Forest, Darby Ranger District, Como Forest Health Project (United States)


    ... Forest Service Bitterroot National Forest, Darby Ranger District, Como Forest Health Project AGENCY: Forest Service. ACTION: Notice; Correction. SUMMARY: The Department of Agriculture (USDA), Forest Service, Bitterroot National Forest, Darby Ranger District published a document in the Federal Register of June 17...

  19. 78 FR 24717 - Crescent Ranger District; Deschutes National Forest; Klamath County, Oregon; Marsh Project... (United States)


    ... Forest Service Crescent Ranger District; Deschutes National Forest; Klamath County, Oregon; Marsh Project... statement (EIS) for a project called Marsh, in the southwestern portion of the Crescent Ranger District just... areas such as the Marsh project area provide to people. The focal point of the planning area is Big...

  20. 76 FR 315 - Sisters Ranger District; Deschutes National Forest; Oregon; Popper Vegetation Management Project (United States)


    ... Leader, Sisters Ranger District, Pine Street and Highway 20, POB 249, Sisters, Oregon 97759, or submit to... INFORMATION CONTACT: Michael Keown, Team Leader, Sisters Ranger District, Pine Street and Highway 20, POB 249... wildlife species and other ecological processes. These no treatment areas include nesting, roosting, and...

  1. Elimination of 1994 Gender Restriction: Will Earning the Ranger Tab Achieve Full Career Potential for Women? (United States)


    45 Excerpts from the Kotter Model...implementation of DADT and the DADT Repeal Act. The implementation guidance was delivered by the National Leadership to the forces through the Service Chiefs...enter the Regiment either through the Ranger Training Battlaion or after completion of Ranger School and serving in a key leadership position in a

  2. 75 FR 43138 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Howard Elliot Johnson Fuels and... (United States)


    ... Forest Service Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Howard Elliot Johnson...-acre Howard Elliot Johnson project area, which is approximately 23 miles east of Prineville, Oregon... Maurice Evans, Acting District Ranger, Lookout Mountain District, Ochoco National Forest, 3160 NE. Third...

  3. 77 FR 58354 - Bend-Fort Rock Ranger District; Oregon; Withdrawal of Notice for Preparation of an Environmental... (United States)


    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Bend-Fort Rock Ranger District; Oregon; Withdrawal of Notice for... Bend-Fort Rock Ranger District and FHWA are withdrawing their intent to prepare an Environmental Impact... FURTHER INFORMATION CONTACT: Amy Tinderholt, Project Leader, Bend- Fort Rock Ranger District, 63095...

  4. 76 FR 23273 - Bend/Ft. Rock Ranger District; Deschutes National Forest; Deschutes County, Oregon; Mt. Bachelor... (United States)


    ... Forest Service Bend/Ft. Rock Ranger District; Deschutes National Forest; Deschutes County, Oregon; Mt... Federal Register. ADDRESSES: Send written comments to Shane Jeffries, District Ranger, Bend-Fort Rock..., Recreation Team Leader, Bend-Fort Rock Ranger District, Red Oaks Square, 1230 NE Third Street Suite A-262...

  5. 77 FR 49775 - Beaverhead-Deerlodge National Forest, Wisdom and Wise River Ranger Districts; Montana; North and... (United States)


    ... Forest Service Beaverhead-Deerlodge National Forest, Wisdom and Wise River Ranger Districts; Montana..., Wisdom/Wise River District Ranger at (406) 689-3243 or via email at [email protected] . Individuals who... Official The Wisdom/Wise River District Ranger will be the responsible official. Nature of Decision To Be...

  6. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 3 - The electrically Scanning Microwave Radiometer and the Special Sensor Microwave/Imager (United States)

    Wilheit, Thomas T.; Yamasaki, Hiromichi


    The two microwave radiometers for TRMM are designed to measure thermal microwave radiation upwelling from the earth. The Electrically Scanning Microwave Radiometer (ESMR) scans from 50 deg to the left through nadir to 50 deg to the right in 78 steps with no moving mechanical parts in a band centered at 19.35 GHz. The TRMM concept uses the radar to develop a climatology of rain-layer thickness which can be used for the interpretation of the radiometer data over a swath wider than the radar. The ESMR data are useful for estimating rain intensity only over an ocean background. The Special Sensor Microwave/Imager (SSM/I), which scans conically with three dual polarized channels at 19, 37, and 85 GHz and a single polarized channel at 22 GHz, provides a wider range of rainfall intensities. The SSM/I spins about an axis parallel to the local spacecraft vector and 128 uniformly spaced samples of the 85 GHz data are taken on each scan over a 112-deg scan region simultaneously with 64 samples of the other frequencies.

  7. Is that Gun for the Bears? The National Park Service Ranger as a Historically Contradictory Figure

    Directory of Open Access Journals (Sweden)

    Alice B Kelly Pennaz


    Full Text Available The “Yellowstone Model” of exclusionary, or fortress conservation, has spread widely across the globe since 1872. While in many other countries there has been a concomitant ever-increasing militarisation of park guards, the history of the United States (US Park Ranger offers an alternative narrative. This paper traces the complex history of the US Park ranger through time to show how the Ranger as an outward embodiment of state power has been contradicted by administrative and practical logics directing rangers to educate, welcome, and guide park visitors. Rangers' work as territorial enforcers, and as strong-arms of the state has been tempered and defined by multiple disciplining forces over time. Using a political ecology approach, this paper examines how shifting political economic contexts, shifts in park use and park visitors, and a changing national law enforcement milieu influenced how and in what ways National Park Rangers have performed law enforcement in US parks over the past 100 years. The paper concludes by laying out why comparisons between US National Park Rangers and park guards in other parts of the world may be troubled by a number of socioeconomic and political factors.

  8. Conductive spacecraft materials development program (United States)

    Lehn, W. L.


    The objectives of this program are to provide design criteria, techniques, materials, and test methods to ensure control of absolute and differential charging of spacecraft surfaces. The control of absolute and differential charging of spacecraft cannot be effected without the development of new and improved or modified materials or techniques that will provide electrical continuity over the surface of the spacecraft. The materials' photoemission, secondary emission, thermooptical, physical, and electrical properties in the space vacuum environment both in the presence and absence of electrical stress and ultraviolet, electron, and particulate radiation, are important to the achievement of charge control. The materials must be stable or have predictable response to exposure to the space environment for long periods of time. The materials of interest include conductive polymers, paints, transparent films and coatings as well as fabric coating interweaves.

  9. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.


    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  10. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.


    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  11. 75 FR 48927 - Sierra National Forest, Bass Lake Ranger District, California, Fish Camp Project (United States)


    ... INFORMATION CONTACT: Mark Lemon, Interdisciplinary Team Leader, at Sierra National Forest, Bass Lake Ranger... sustain a fire) wildland urban intermix area, (3) increase the vigor and health of mixed conifer stands...

  12. Are ranger patrols effective in reducing poaching-related threats within protected areas? (United States)

    Moore, Jennnifer F.; Mulindahabi, Felix; Masozera, Michel K.; Nichols, James; Hines, James; Turikunkiko, Ezechiel; Oli, Madan K.


    Poaching is one of the greatest threats to wildlife conservation world-wide. However, the spatial and temporal patterns of poaching activities within protected areas, and the effectiveness of ranger patrols and ranger posts in mitigating these threats, are relatively unknown.We used 10 years (2006–2015) of ranger-based monitoring data and dynamic multi-season occupancy models to quantify poaching-related threats, to examine factors influencing the spatio-temporal dynamics of these threats and to test the efficiency of management actions to combat poaching in Nyungwe National Park (NNP), Rwanda.The probability of occurrence of poaching-related threats was highest at lower elevations (1,801–2,200 m), especially in areas that were close to roads and tourist trails; conversely, occurrence probability was lowest at high elevation sites (2,601–3,000 m), and near the park boundary and ranger posts. The number of ranger patrols substantially increased the probability that poaching-related threats disappear at a site if threats were originally present (i.e. probability of extinction of threats). Without ranger visits, the annual probability of extinction of poaching-related threats was an estimated 7%; this probability would increase to 20% and 57% with 20 and 50 ranger visits per year, respectively.Our results suggest that poaching-related threats can be effectively reduced in NNP by adding ranger posts in areas where they do not currently exist, and by increasing the number of patrols to sites where the probability of poaching activities is high.Synthesis and applications. Our application of dynamic occupancy models to predict the probability of presence of poaching-related threats is novel, and explicitly considers imperfect detection of illegal activities. Based on the modelled relationships, we identify areas that are most vulnerable to poaching, and offer insights regarding how ranger patrols can be optimally deployed to reduce poaching-related threats and

  13. Conservation′s Ambiguities: Rangers on the Periphery of the W Park, Burkina Faso


    Julie Poppe


    This article demonstrates the central role of ambiguity in the (re)production process of conservation practice. It argues that some current political economy as well as environmentality approaches to research conservation practice fail to capture the complexity of the lived experience of local conservationists. The article focuses on the multiple identities of rangers in interaction with other residents at the periphery of the W Park in Burkina Faso, as rangers are local conservationists who ...

  14. Very Small Interstellar Spacecraft (United States)

    Peck, Mason A.


    This paper considers lower limits of length scale in spacecraft: interstellar vehicles consisting of little more material than found in a typical integrated-circuit chip. Some fundamental scaling principles are introduced to show how the dynamics of the very small can be used to realize interstellar travel with minimal advancements in technology. Our recent study for the NASA Institute for Advanced Concepts provides an example: the use of the Lorentz force that acts on electrically charged spacecraft traveling through planetary and stellar magnetospheres. Schaffer and Burns, among others, have used Cassini and Voyager imagery to show that this interaction is responsible for some of the resonances in the orbital dynamics of dust in Jupiter's and Saturn's rings. The Lorentz force turns out to vary in inverse proportion to the square of this characteristic length scale, making it a more effective means of propelling tiny spacecraft than solar sailing. Performance estimates, some insight into plasma interactions, and some hardware concepts are offered. The mission architectures considered here involve the use of these propellantless propulsion techniques for acceleration within our solar system and deceleration near the destination. Performance estimates, some insight into plasma interactions, and some hardware concepts are offered. The mission architectures considered here involve the use of these propellantless propulsion techniques for acceleration within our solar system and deceleration near the destination. We might envision a large number of such satellites with intermittent, bursty communications set up as a one-dimensional network to relay signals across great distances using only the power likely from such small spacecraft. Conveying imagery in this fashion may require a long time because of limited power, but the prospect of imaging another star system close-up ought to be worth the wait.

  15. Park Rangers' Behaviors and Their Effects on Tourists and Tibetan Macaques (Macaca thibetana) at Mt. Huangshan, China. (United States)

    Usui, Rie; Sheeran, Lori K; Li, Jin-Hua; Sun, Lixing; Wang, Xi; Pritchard, Alexander J; DuVall-Lash, Alexander S; Wagner, R Steve


    Previous studies have reported the negative impacts of tourism on nonhuman primates (NHPs) and tourists and advocated the improvement of tourism management, yet what constitutes good quality management remains unclear. We explored whether rates of macaque aggression and self-directed behaviors (SDBs) differed under the supervision of two park ranger teams at the Valley of the Wild Monkeys (VWM) in Mt. Huangshan, Anhui Province, China. The two ranger teams provisioned and managed a group of macaques on an alternating monthly basis. Monkey, tourist and ranger behaviors were collected from August 16-September 30, 2012. Macaque aggression and SDB rates did not differ significantly under the management of the two teams. Overall, there was little intervention in tourist-macaque interactions by park rangers, and even when rangers discouraged tourists' undesirable behaviors, tourist interactions with monkeys persisted. Furthermore, only one or sometimes two park rangers managed monkeys and tourists, and rangers established dominance over the monkeys to control them. In order to effectively manage tourists and monkeys by a single park ranger, we recommend that rangers: (1) prohibit tourists from feeding; (2) move around the viewing platform more frequently; and (3) limit the number of tourists each visiting session.

  16. The Cossack Ranger II Seismograph, Research And Outreach Efforts. (United States)

    Husebye, E. S.; Fedorenko, Y. V.; Pilgaev, S. V.; Matveeva, T. S.


    geoscience disciplines. Another project novelety is that the seismographs (Cossack Ranger II) would be assembled in Bulgaria thus ensuring low prices and local maintenance skills. SENSES will also introduce electronic learning modules for instructions at school levels on earthquake risks and hazard mitigations. This appears to be a most efficient way of informing the public at large about various types of natural hazards. In this presentations, we give details on the geophoned based seismograph Codssack Ranger II, record analysis, seismic processing scheme in a high school environment and the most difficult part promote geoscience for high school students.

  17. Autonomous Navigation with Constrained Consistency for C-Ranger

    Directory of Open Access Journals (Sweden)

    Shujing Zhang


    Full Text Available Autonomous underwater vehicles (AUVs have become the most widely used tools for undertaking complex exploration tasks in marine environments. Their synthetic ability to carry out localization autonomously and build an environmental map concurrently, in other words, simultaneous localization and mapping (SLAM, are considered to be pivotal requirements for AUVs to have truly autonomous navigation. However, the consistency problem of the SLAM system has been greatly ignored during the past decades. In this paper, a consistency constrained extended Kalman filter (EKF SLAM algorithm, applying the idea of local consistency, is proposed and applied to the autonomous navigation of the C-Ranger AUV, which is developed as our experimental platform. The concept of local consistency (LC is introduced after an explicit theoretical derivation of the EKF-SLAM system. Then, we present a locally consistency-constrained EKF-SLAM design, LC-EKF, in which the landmark estimates used for linearization are fixed at the beginning of each local time period, rather than evaluated at the latest landmark estimates. Finally, our proposed LC-EKF algorithm is experimentally verified, both in simulations and sea trials. The experimental results show that the LC-EKF performs well with regard to consistency, accuracy and computational efficiency.

  18. 75 FR 14419 - Camp Tatiyee Land Exchange on the Lakeside Ranger District of the Apache-Sitgreaves National... (United States)


    ... National Forest (CNF); one 11.15 parcel to the Prescott National Forest (PNF); and five parcels totaling..., Safford, and Douglas Ranger Districts of the CNF; Bradshaw Ranger District of the PNF; Cave Creek, Tonto... the PNF, ASNFs and TNF and presented the ASNFs with their proposal for the Camp Tatiyee Land Exchange...

  19. Microprocessor realizations of range and range-rate filters in radar systems (United States)

    Fleischer, D.; Aronhime, P.


    This paper describes the implementation of digital radar range-rate filters on a microprocessor-based system. A range-rate filter processes a digitized noisy range signal to recover smoothed range data and its derivative, range rate. Two filter designs are implemented. Considerations aiding their efficient operation on an 8-bit microprocessor are discussed. The filters are subjected to a noisy range input signal of known variance, and the associated output signals are statistically analysed to determine noise-rejection characteristics. These results are compared to analytical predictions.

  20. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest... (United States)


    ... the project area by managing for early development (post disturbance), mid development closed, mid... Forest Service Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest... disclose the effects of ] managing forest vegetation in a manner that increases resiliency of the Beaver...

  1. 78 FR 36163 - Bitterroot National Forest, Darby Ranger District, Como Forest Health Project (United States)


    ... Forest Service Bitterroot National Forest, Darby Ranger District, Como Forest Health Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The USDA Forest Service, Bitterroot National Forest will prepare an environmental impact statement (EIS) to...

  2. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger... (United States)


    ...] [FR Doc No: 2012-7527] DEPARTMENT OF AGRICULTURE Forest Service Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger District, Coconino County, AZ AGENCY: Forest.... Forest Service (FS) will prepare an environmental impact statement (EIS) on a proposed action to conduct...

  3. Conservation′s Ambiguities: Rangers on the Periphery of the W Park, Burkina Faso

    Directory of Open Access Journals (Sweden)

    Julie Poppe


    Full Text Available This article demonstrates the central role of ambiguity in the (reproduction process of conservation practice. It argues that some current political economy as well as environmentality approaches to research conservation practice fail to capture the complexity of the lived experience of local conservationists. The article focuses on the multiple identities of rangers in interaction with other residents at the periphery of the W Park in Burkina Faso, as rangers are local conservationists who simultaneously submit to and produce conservation practices. Park rangers are village men who are recruited under the banner of community participation in conservation projects and state forestry. On a day-to-day basis, these rangers help the foresters with the management of the natural resources on the one hand, and guide tourists, especially in the hunting concessions, on the other. They occupy ambiguous positions at the crossroads of conservationist, state, political, economic, spiritual, social, and cultural practices, inherent to their conservation occupations at the lowest echelon, where residents have to transform conservation policies into practices. It is precisely this ambiguity that turns out to ensure the conservation implementation.

  4. 75 FR 10457 - Andrew Pickens Ranger District; South Carolina; AP Loblolly Pine Removal and Restoration Project (United States)


    ... The Andrew Pickens Ranger District proposes the following treatments: Regeneration Harvest, With... species (sprouts and seedlings) within 1-2 years after the initial post-harvest prescribed burn. These... manual and mechanical treatment. Woodlands are forests with relatively low tree densities of 25-60...

  5. Reassessment of Loblolly Pine Decline on the Oakmulgee Ranger District, Talladega National Forest, Alabama (United States)

    Nolan J. Hess; William J. Otroana; John P. Jones; Arthur J. Goddard; Charles H. Walkinshaw


    Loblolly pine (Pinus taeda L.) decline has been a management concern on the Oakmulgee Ranger District since the 1960's. The symptoms include sparse crowns, reduced radial growth, deterioration of fine roots, decline, and mortality of loblolly pine by age 50.

  6. 78 FR 3879 - Ochoco National Forest, Paulina Ranger District; Oregon; Fox Canyon Cluster Allotment Management... (United States)


    ... Forest Service Ochoco National Forest, Paulina Ranger District; Oregon; Fox Canyon Cluster Allotment Management Plan Project EIS AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an... Resource Management Plan (Forest Plan), as amended, and other applicable legal requirements within the...

  7. 75 FR 54085 - Divide Ranger District, Rio Grande National Forest; Colorado; Big Moose Vegetation Management... (United States)


    ... Doc No: 2010-22037] DEPARTMENT OF AGRICULTURE Forest Service Divide Ranger District, Rio Grande National Forest; Colorado; Big Moose Vegetation Management Project AGENCY: Forest Service, Rio Grande National Forest, USDA. ACTION: Corrected Notice of Intent to prepare an environmental impact statement...

  8. 75 FR 9388 - Prescott National Forest, Bradshaw Ranger District; Arizona; Bradshaw Vegetation Management Project (United States)


    ... Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: This project is a proposal to improve the health of fire adapted ecosystems while simultaneously reducing hazardous fuels on the Bradshaw Ranger District. The project area encompasses about 55...

  9. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest... (United States)


    ... Forest Service Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest... Environmental Impact Statement for the Beaver Creek Landscape Management Project in the Federal Register (75 FR... Creek Landscape Management Project was published in the Federal Register on October 15, 2010 (75 FR...

  10. 76 FR 76689 - Cibola National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling (United States)


    ... project area. The exploratory drilling in this area would be phased over the course of six years; 51 holes... drilling on the Cibola National Forest, Mount Taylor Ranger District. There are two areas identified for exploration; the Bajillos project area is approximately 2,894 acres and is located in T. 12 N, R. 8 W...

  11. 76 FR 67130 - Bridger-Teton National Forest; Big Piney Ranger District; Wyoming; Environmental Impact Statement... (United States)


    .... Approximately five percent of the project area is within the DFC 12 (Backcountry Big-game Hunting, Dispersed... Forest Service Bridger-Teton National Forest; Big Piney Ranger District; Wyoming; Environmental Impact... miles northwest of Big Piney, Wyoming, and is situated on the east side of the northern end of the...

  12. View invariant gesture recognition using the CSEMSwissRanger SR-2 camera

    DEFF Research Database (Denmark)

    Holte, Michael Boelstoft; Moeslund, Thomas B.; Fihl, Preben


    This paper introduces the use of range information acquired by a CSEM SwissRanger SR-2 camera for view invariant recognition of one and two arms gestures. The range data enables motion detection and 3D representation of gestures. Motion is detected by double difference range images and filtered...

  13. 75 FR 71668 - Cibota National Forest, Mount Taylor Ranger District, NM, Roca Honda Mine (United States)


    ... uranium mine at the Roca Honda claims. The purpose of the EIS is to evaluate the environmental impacts of... Forest Service Cibota National Forest, Mount Taylor Ranger District, NM, Roca Honda Mine AGENCY: Forest Service, USDA. ACTION: Notice of Intent to prepare an Environmental Impact Statement. SUMMARY: Roca Honda...

  14. 76 FR 22363 - Kaibab National Forest, Williams Ranger District; Arizona; Bill Williams Mountain Restoration... (United States)


    ... best available science, the Forest Supervisor will decide: Whether to select the proposed action or one... Forest Service Kaibab National Forest, Williams Ranger District; Arizona; Bill Williams Mountain Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact...

  15. 75 FR 44936 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Howard Elliot Johnson Fuels and... (United States)


    ... [Federal Register Volume 75, Number 146 (Friday, July 30, 2010)] [Notices] [Page 44936] [FR Doc No: C1-2010-17803] DEPARTMENT OF AGRICULTURE Forest Service Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Howard Elliot Johnson Fuels and Vegetation Management Project EIS Correction In...

  16. Spacecraft Spin Test Facility (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  17. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium (United States)

    Hoang, Thiem; Loeb, Abraham


    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ˜0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  18. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli


    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  19. Current LISA Spacecraft Design (United States)

    Merkowitz, S. M.; Castellucci, K. E.; Depalo, S. V.; Generie, J. A.; Maghami, P. G.; Peabody, H. L.


    The Laser Interferometer Space Antenna (LISA) mission. a space based gravitational wave detector. uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that the three spacecraft and their associated operations form one distributed science instrument. unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LISA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." Here we describe some of the unique features of the LISA spacecraft design that help create the quiet environment necessary for gravitational wave observations.

  20. Current LISA spacecraft design

    Energy Technology Data Exchange (ETDEWEB)

    Merkowitz, S M; Castellucci, K E; Depalo, S V; Generie, J A; Maghami, P G; Peabody, H L, E-mail: Stephen.M.Merkowitz@nasa.go [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    The Laser Interferometer Space Antenna (LISA) mission, a space based gravitational wave detector, uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that the three spacecraft and their associated operations form one distributed science instrument, unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LISA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a 'sciencecraft'. Here we describe some of the unique features of the LISA spacecraft design that help create the quiet environment necessary for gravitational wave observations.

  1. Experiments On Transparent Conductive Films For Spacecraft (United States)

    Perez-Davis, Marla E.; Rutledge, Sharon K.; De Groh, Kim K.; Hung, Ching-Cheh; Malave-Sanabria, Tania; Hambourger, Paul; Roig, David


    Report describes experiments on thin, transparent, electrically conductive films made, variously, of indium tin oxide covered by magnesium fluoride (ITO/MgF2), aluminum-doped zinc oxide (AZO), or pure zinc oxide (ZnO). Films are candidates for application to such spacecraft components, including various optoelectronic devices and window surfaces that must be protected against buildup of static electric charge. On Earth, such films useful on heat mirrors, optoelectronic devices, gas sensors, and automotive and aircraft windows.

  2. Spacecraft Charging Sensitivity to Material Properties (United States)

    Minow, Joseph I.; Edwards, David L.


    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  3. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo


    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  4. Spacecraft Material Outgassing Data (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  5. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A


    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  6. RangerMaster{trademark}: Real-time pattern recognition software for in-field analysis of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Murray, W.S. [Los Alamos National Lab., NM (United States); Ziemba, F.; Szluk, N. [Quantrad Sensor, Inc., Santa Clara, CA (United States)


    RangerMaster{trademark} is the embedded firmware for Quantrad Sensor`s integrated nuclear instrument package, the Ranger{trademark}. The Ranger{trademark}, which is both a gamma-ray and neutron detection system, was originally developed at Los Alamos National Laboratory for in situ surveys at the Plutonium Facility to confirm the presence of nuclear materials. The new RangerMaster{trademark} software expands the library of isotopes and simplifies the operation of the instrument by providing an easy mode suitable for untrained operators. The expanded library of the Ranger{trademark} now includes medical isotopes {sup 99}Tc, {sup 201}Tl, {sup 111}In, {sup 67}Ga, {sup 133}Xe, {sup 103}Pa, and {sup 131}I; industrial isotopes {sup 241}Am, {sup 57}Co, {sup 133}Ba, {sup 137}Cs, {sup 40}K, {sup 60}Co, {sup 232}Th, {sup 226}Ra, and {sup 207}Bi; and nuclear materials {sup 235}U, {sup 238}U, {sup 233}U, and {sup 239}Pu. To accomplish isotopic identification, a simulated spectrum for each of the isotopes was generated using SYNTH. The SYNTH spectra formed the basis for the knowledge-based expert system and selection of the regions of interest that are used in the pattern recognition system. The knowledge-based pattern recognition system was tested against actual spectra under field conditions.

  7. World manned spacecraft characteristics (United States)

    Wade, M.


    Statistical data on manned spacecraft that have flown or will fly in the immediate future are presented. It is thought that this information has not been brought together before. Gemini is described as being the most spacecraft in the smallest package. In discussing Soyuz, special attention is given to the role played by the orbital module concept. Descriptions are also given of the Voskhod, Dynosaurs, and the Mercury-type capsule that will be used by Chinese astronauts.

  8. Internet Access to Spacecraft (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Jackson, Chris; Price, Harold; Powers, Edward I. (Technical Monitor)


    The Operating Missions as Nodes on the Internet (OMNI) project at NASA's Goddard Space flight Center (GSFC), is demonstrating the use of standard Internet protocols for spacecraft communication systems. This year, demonstrations of Internet access to a flying spacecraft have been performed with the UoSAT-12 spacecraft owned and operated by Surrey Satellite Technology Ltd. (SSTL). Previously, demonstrations were performed using a ground satellite simulator and NASA's Tracking and Data Relay Satellite System (TDRSS). These activities are part of NASA's Space Operations Management Office (SOMO) Technology Program, The work is focused on defining the communication architecture for future NASA missions to support both NASA's "faster, better, cheaper" concept and to enable new types of collaborative science. The use of standard Internet communication technology for spacecraft simplifies design, supports initial integration and test across an IP based network, and enables direct communication between scientists and instruments as well as between different spacecraft, The most recent demonstrations consisted of uploading an Internet Protocol (IP) software stack to the UoSAT- 12 spacecraft, simple modifications to the SSTL ground station, and a series of tests to measure performance of various Internet applications. The spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 3 months. The tests included basic network connectivity (PING), automated clock synchronization (NTP), and reliable file transfers (FTP). Future tests are planned to include additional protocols such as Mobile IP, e-mail, and virtual private networks (VPN) to enable automated, operational spacecraft communication networks. The work performed and results of the initial phase of tests are summarized in this paper. This work is funded and directed by NASA/GSFC with technical leadership by CSC in arrangement with SSTL, and Vytek Wireless.

  9. Operational Analysis of Time-Optimal Maneuvering for Imaging Spacecraft (United States)


    Earth orbit EOS Earth Observing Satellite EPS Electrical Power System AOI Area of Interest ROI Return on Investment AHP Analytic Hierarchy Process...absorption to reduce spacecraft systems’ reliance on internal Electrical Power System (EPS). d. Targeting imaging equipment and sensor systems at AOIs for...image collection. Instead of sweeping the imaging sensors from side to side (whisk- broom or push- broom mode3), the entire spacecraft body is able to

  10. Automated Fault Diagnostics, Prognostics, and Recovery in Spacecraft Power Systems Project (United States)

    National Aeronautics and Space Administration — Fault detection and isolation (FDI) in spacecraft's electrical power system (EPS) has always received special attention. However, the power systems health management...

  11. Spacecraft environments interactions: Protecting against the effects of spacecraft charging (United States)

    Herr, J. L.; Mccollum, M. B.


    The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer, second in the series, describes the interactions between a spacecraft and the natural space plasma. Under certain environmental/spacecraft conditions, these interactions result in the phenomenon known as spacecraft charging. It is the focus of this publication to describe the phenomenon of spacecraft charging and its possible adverse effects on spacecraft and to present the key elements of a Spacecraft Charging Effects Protection Plan.

  12. Spatiotemporal trends of illegal activities from ranger-collected data in a Ugandan national park. (United States)

    Critchlow, R; Plumptre, A J; Driciru, M; Rwetsiba, A; Stokes, E J; Tumwesigye, C; Wanyama, F; Beale, C M


    Within protected areas, biodiversity loss is often a consequence of illegal resource use. Understanding the patterns and extent of illegal activities is therefore essential for effective law enforcement and prevention of biodiversity declines. We used extensive data, commonly collected by ranger patrols in many protected areas, and Bayesian hierarchical models to identify drivers, trends, and distribution of multiple illegal activities within the Queen Elizabeth Conservation Area (QECA), Uganda. Encroachment (e.g., by pastoralists with cattle) and poaching of noncommercial animals (e.g., snaring bushmeat) were the most prevalent illegal activities within the QECA. Illegal activities occurred in different areas of the QECA. Poaching of noncommercial animals was most widely distributed within the national park. Overall, ecological covariates, although significant, were not useful predictors for occurrence of illegal activities. Instead, the location of illegal activities in previous years was more important. There were significant increases in encroachment and noncommercial plant harvesting (nontimber products) during the study period (1999-2012). We also found significant spatiotemporal variation in the occurrence of all activities. Our results show the need to explicitly model ranger patrol effort to reduce biases from existing uncorrected or capture per unit effort analyses. Prioritization of ranger patrol strategies is needed to target illegal activities; these strategies are determined by protected area managers, and therefore changes at a site-level can be implemented quickly. These strategies should also be informed by the location of past occurrences of illegal activity: the most useful predictor of future events. However, because spatial and temporal changes in illegal activities occurred, regular patrols throughout the protected area, even in areas of low occurrence, are also required. © 2015 Society for Conservation Biology.

  13. Internet Technology on Spacecraft (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)


    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  14. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude......This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  15. Revamping Spacecraft Operational Intelligence (United States)

    Hwang, Victor


    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  16. Analysis of GRACE Range-rate Residuals with Emphasis on Reprocessed Star-Camera Datasets (United States)

    Goswami, S.; Flury, J.; Naeimi, M.; Bandikova, T.; Guerr, T. M.; Klinger, B.


    Since March 2002 the two GRACE satellites orbit the Earth at rela-tively low altitude. Determination of the gravity field of the Earth including itstemporal variations from the satellites' orbits and the inter-satellite measure-ments is the goal of the mission. Yet, the time-variable gravity signal has notbeen fully exploited. This can be seen better in the computed post-fit range-rateresiduals. The errors reflected in the range-rate residuals are due to the differ-ent sources as systematic errors, mismodelling errors and tone errors. Here, weanalyse the effect of three different star-camera data sets on the post-fit range-rate residuals. On the one hand, we consider the available attitude data andon other hand we take the two different data sets which has been reprocessedat Institute of Geodesy, Hannover and Institute of Theoretical Geodesy andSatellite Geodesy, TU Graz Austria respectively. Then the differences in therange-rate residuals computed from different attitude dataset are analyzed inthis study. Details will be given and results will be discussed.

  17. Nanocomposites in Multifuntional Structures for Spacecraft Platforms (United States)

    Marcos, J.; Mendizabal, M.; Elizetxea, C.; Florez, S.; Atxaga, G.; Del Olmo, E.


    The integration of functionalities as electrical, thermal, power or radiation shielding inside carrier electronic boxes, solar panels or platform structures allows reducing weight, volume, and harness for spacecraft. The multifunctional structures represent an advanced design approach for space components and subsystems. The development of such multifunctional structures aims the re-engineering traditional metallic structures by composites in space, which request to provide specific solutions for thermal conductivity, EMI-EMC, radiation shielding and integration. The use of nanomaterials as CNF and nano-adds to reinforce composite structures allows obtaining local solutions for improving electrical conductivity, thermal conductivity and radiation shielding. The paper summarises the results obtained in of three investigations conducted by Tecnalia based on carbon nanofillers for improving electro-thermal characteristics of spacecraft platform, electronic substrates and electronics boxes respectively.

  18. Landscape-scale fire restoration on the big piney ranger district in the Ozark highlands of Arkansas (United States)

    John Andre; McRee Anderson; Douglas Zollner; Marie Melnechuk; Theo Witsell


    The Ozark-St. Francis National Forest, The Nature Conservancy (TNC), the Arkansas Natural Heritage Commission, Arkansas Forestry Commission, private landowners, and others are currently engaged in a collaborative project to restore the oak-hickory and pine-oak ecosystems of the Ozark Highlands on 60,000 acres of the Big Piney Ranger District. Frequent historical fires...

  19. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar (United States)

    Stedronsky, Richard


    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  20. 78 FR 33047 - Humboldt-Toiyabe National Forest, Carson Ranger District Mt. Rose Ski Tahoe-Atoma Area... (United States)


    ... Forest Service Humboldt-Toiyabe National Forest, Carson Ranger District Mt. Rose Ski Tahoe--Atoma Area... Ski Tahoe (Mt. Rose) to expand its lift and terrain network. The project is located approximately 12.... Fax to 775-355-5399. Please use a fax cover sheet and include ``Mt. Rose Ski Tahoe--Atoma Area EIS...

  1. 75 FR 71414 - Questa Ranger District, Carson National Forest; Taos County, NM; Taos Ski Valley's 2010 Master... (United States)


    ... Forest Service Questa Ranger District, Carson National Forest; Taos County, NM; Taos Ski Valley's 2010... prepare an environmental impact statement. SUMMARY: Taos Ski Valley (TSV) is a downhill ski area located... (Phase I) projects included in the Taos Ski Valley (TSV) 2010 Master Development Plan (MDP). These...

  2. 75 FR 21577 - Rogue River-Siskiyou National Forest, Powers Ranger District, Coos County, OR; Eden Ridge Timber... (United States)


    ... natural succession processes. The residual trees would have less competition for sunlight, water and soil... DEPARTMENT OF AGRICULTURE Forest Service Rogue River-Siskiyou National Forest, Powers Ranger... growth, crown development, vigor and overall stand health, improved root strength on residual trees...

  3. 76 FR 60451 - Questa Ranger District, Carson National Forest; Taos County, NM; Taos Ski Valley's 2010 Master... (United States)


    ... Forest Service Questa Ranger District, Carson National Forest; Taos County, NM; Taos Ski Valley's 2010... authorize several (Phase 1) projects included in the Taos Ski Valley (TSV) 2010 Master Development Plan (MDP... Service proposes to authorize under a separate SUP to John Cottam, the relocation of the Alpine Village...

  4. Snag densities in old-growth stands on the Gasquet Ranger District, Six Rivers National Forest, California (United States)

    Thomas M. Jimerson


    Baseline levels for densities of snags (standing dead trees) wered etermined in undisturbed old-growth stands on the Gasquet Ranger District. Six Riven National Forest, California. Snag species, number, diameter at breast height (d.b.h.), height, cavity type, cavity use, decay class, and snag origin were recorded on 317 plots over a 2-year period. The 2121 snags...


    Fedor, J. V.


    The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD

  6. Spacecraft crew escape (United States)

    Miller, B. A.

    Safe crew escape from spacecraft is extremely difficult to engineer and has large cost and vehicle payload penalties. Because of these factors calculated risks have apparently been taken and only the most rudimentary means of crew protecion have been provided for space programs. Although designed for maximum reliability and safety a calculated risk is taken that on-balance it is more acceptable to risk the loss of possibly some or all occupants than introduce the mass, cost and complexity of an escape system. This philosophy was accepted until the Challenger tragedy. It is now clear that the use of this previously acceptable logic is invalid and that provisions must be made for spacecraft crew escape in the event of a catastrophic accident. This paper reviews the funded studies and subsequent proposals undertaken by Martin-Baker for the use of both encapsullated and open ejection seats for the Hermes Spaceplane. The technical difficulties, special innovations and future applications are also discussed.

  7. Spacecraft Collision Avoidance (United States)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed

  8. Spacecraft Thermal Management (United States)

    Hurlbert, Kathryn Miller


    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  9. Artificial Intelligence Techniques for Controlling Spacecraft Power System


    Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah


    Advancements in the field of artificial intelligence (AI) made during this decade have forever changed the way we look at automating spacecraft subsystems including the electrical power system. AI have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. In this paper, a mathematical modeling and MATLAB–SIMULINK model for the different components of the spacecraft power system is presented. Also, a control sys...

  10. Vibroacoustic Analysis of Large Heat Rejection Radiators for Future Spacecraft (United States)

    Larko, Jeffrey M.; McNelis, Mark E.; Hughes, William O.


    Spacecraft structures such as antennas, solar arrays and radiator panels significantly respond to high acoustic levels seen at lift-off. Some future spacecraft may utilize nuclear electric propulsion that require large radiator panels to reject waste heat. A vibroacoustic assessment was performed for two different radiator panel designs. Results from the analysis of the two designs using different analytical approaches are presented and discussed.

  11. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Andy Walker


    The mobile PV/generator hybrid system deployed at Bechler Meadows provides a number of advantages. It reduces on-site air emissions from the generator. Batteries allow the generator to operate only at its rated power, reducing run-time and fuel consumption. Energy provided by the solar array reduces fuel consumption and run-time of the generator. The generator is off for most hours providing peace and quiet at the site. Maintenance trips from Mammoth Hot Springs to the remote site are reduced. The frequency of intrusive fuel deliveries to the pristine site is reduced. And the system gives rangers a chance to interpret Green Park values to the visiting public. As an added bonus, the system provides all these benefits at a lower cost than the basecase of using only a propane-fueled generator, reducing life cycle cost by about 26%.

  12. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    The mobile PV/generator hybrid system deployed at Bechler Meadows provides a number of advantages. It reduces on-site air emissions from the generator. Batteries allow the generator to operate only at its rated power, reducing run-time and fuel consumption. Energy provided by the solar array reduces fuel consumption and run-time of the generator. The generator is off for most hours providing peace and quiet at the site. Maintenance trips from Mammoth Hot Springs to the remote site are reduced. The frequency of intrusive fuel deliveries to the pristine site is reduced. And the system gives rangers a chance to interpret Green Park values to the visiting public. As an added bonus, the system provides all these benefits at a lower cost than the basecase of using only a propane-fueled generator, reducing life cycle cost by about 26%.

  13. Spacecraft Modularity for Serviceable Satellites (United States)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert


    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  14. Low noise spacecraft attitude control systems (United States)

    Gondhalekar, Vijay; Downer, James R.; Eisenhaure, David B.; Hockney, Richard L.; Johnson, Bruce G.


    The authors describe two ongoing research efforts directed at developing advanced spacecraft momentum control flywheels. The first effort is directed at developing low-noise momentum wheels through the use of magnetic bearings. The second effort is directed at demonstrating critical subcomponents of an integrated power and attitude control system (IPACS) that stores energy as kinetic energy in mechanical rotors with the accompanying angular momentum available for attitude control of the spacecraft. The authors describe a ground experiment that was designed to demonstrate an energy storage capability of 1 kWh at a 40 Wh/kg energy density and a 1 kW electrical generation capacity at 85 percent round-trip efficiency and that will allow single-degree-of-freedom gimballing to quantify experimentally the bearing power requirements for processing the flywheel.

  15. Six-Month Results From the Initial Randomized Study of the Ranger Paclitaxel-Coated Balloon in the Femoropopliteal Segment. (United States)

    Bausback, Yvonne; Willfort-Ehringer, Andrea; Sievert, Horst; Geist, Volker; Lichtenberg, Michael; Del Giudice, Costantino; Sauguet, Antoine; Diaz-Cartelle, Juan; Marx, Claudia; Ströbel, Armin; Schult, Ingolf; Scheinert, Dierk


    To evaluate the performance of the Ranger paclitaxel-coated balloon vs uncoated balloon angioplasty for femoropopliteal lesions. Between January 2014 and October 2015, the prospective, randomized RANGER SFA study ( identifier NCT02013193) enrolled 105 patients with symptomatic lower limb ischemia (Rutherford category 2-4) and stenotic lesions in the nonstented femoropopliteal segment at 10 European centers. Seventy-one patients (mean age 68±8 years; 53 men) were enrolled in the Ranger drug-coated balloon (DCB) arm and 34 patients (mean age 67±9 years; 23 men) were assigned to the control group. Six-month analysis included angiographic late lumen loss and safety and clinical outcomes assessments. Baseline characteristics of the DCB and control groups were similar, as were lesion lengths (68±46 vs 60±48 mm; p=0.731), severity of calcification (p=0.236), and the prevalence of occlusions (34% vs 34%; p>0.999). At 6 months, late lumen loss was significantly less for the DCB group vs controls (-0.16±0.99 vs 0.76±1.4; p=0.002). The DCB group had significantly greater freedom from binary restenosis (92% vs 64%; p=0.005) and primary patency rates (87% vs 60%; p=0.014). Target lesion revascularization rates were 5.6% in the DCB group and 12% in the control group (p=0.475). No target limb amputations or device-related deaths occurred in either group. Six-month results suggest that Ranger DCB treatment effectively inhibited restenosis in symptomatic femoropopliteal disease, resulting in improved vessel patency and a low revascularization rate in the short term compared with uncoated balloon angioplasty.

  16. Monitoring species of mammals using track collection by rangers in the Tilarán mountain range, Costa Rica


    Arévalo, J. Edgardo; Méndez, Yoryineth; Vargas, Sergio


    Although monitoring of animal populations for informed decision making is fundamental for the conservation and management of biodiversity, monitoring programs are not widely implemented. In addition, monitoring plans often represent an economic burden for many conservation organizations. Here we report on the monitoring of five focal species of mammals in the Tilarán mountain range, Costa Rica. We used a participatory approach in which trained rangers of four institutions conducted trail surv...

  17. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif


    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...... relative pose information to assist the human operator during the docking phase. The closed loop and operator assistance performance of the system have been assessed using a test bench including human operator, navigation module and high fidelity visualization module. The tests performed verified...

  18. Human Spacecraft Structures Internship (United States)

    Bhakta, Kush


    DSG will be placed in halo orbit around themoon- Platform for international/commercialpartners to explore lunar surface- Testbed for technologies needed toexplore Mars• Habitat module used to house up to 4crew members aboard the DSG- Launched on EM-3- Placed inside SLS fairing Habitat Module - Task Habitat Finite Element Model Re-modeled entire structure in NX2) Used Beam and Shell elements torepresent the pressure vessel structure3) Created a point cloud of centers of massfor mass components- Can now inspect local moments andinertias for thrust ring application8/ Habitat Structure – Docking Analysis Problem: Artificial Gravity may be necessary forastronaut health in deep spaceGoal: develop concepts that show how artificialgravity might be incorporated into a spacecraft inthe near term Orion Window Radiant Heat Testing.

  19. Operationally Responsive Spacecraft Subsystem Project (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  20. Spacecraft telecommunications system mass estimates (United States)

    Yuen, J. H.; Sakamoto, L. L.


    Mass is the most important limiting parameter for present-day planetary spacecraft design, In fact, the entire design can be characterized by mass. The more efficient the design of the spacecraft, the less mass will be required. The communications system is an essential and integral part of planetary spacecraft. A study is presented of the mass attributable to the communications system for spacecraft designs used in recent missions in an attempt to help guide future design considerations and research and development efforts. The basic approach is to examine the spacecraft by subsystem and allocate a portion of each subsystem to telecommunications. Conceptually, this is to divide the spacecraft into two parts, telecommunications and nontelecommunications. In this way, it is clear what the mass attributable to the communications system is. The percentage of mass is calculated using the actual masses of the spacecraft parts, except in the case of CRAF. In that case, estimated masses are used since the spacecraft was not yet built. The results show that the portion of the spacecraft attributable to telecommunications is substantial. The mass fraction for Voyager, Galileo, and CRAF (Mariner Mark 2) is 34, 19, and 18 percent, respectively. The large reduction of telecommunications mass from Voyager to Galileo is mainly due to the use of a deployable antenna instead of the solid antenna on Voyager.

  1. Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods

    Directory of Open Access Journals (Sweden)

    S. E. Haaland


    Full Text Available In this paper, we use Cluster data from one magnetopause event on 5 July 2001 to compare predictions from various methods for determination of the velocity, orientation, and thickness of the magnetopause current layer. We employ established as well as new multi-spacecraft techniques, in which time differences between the crossings by the four spacecraft, along with the duration of each crossing, are used to calculate magnetopause speed, normal vector, and width. The timing is based on data from either the Cluster Magnetic Field Experiment (FGM or the Electric Field Experiment (EFW instruments. The multi-spacecraft results are compared with those derived from various single-spacecraft techniques, including minimum-variance analysis of the magnetic field and deHoffmann-Teller, as well as Minimum-Faraday-Residue analysis of plasma velocities and magnetic fields measured during the crossings. In order to improve the overall consistency between multi- and single-spacecraft results, we have also explored the use of hybrid techniques, in which timing information from the four spacecraft is combined with certain limited results from single-spacecraft methods, the remaining results being left for consistency checks. The results show good agreement between magnetopause orientations derived from appropriately chosen single-spacecraft techniques and those obtained from multi-spacecraft timing. The agreement between magnetopause speeds derived from single- and multi-spacecraft methods is quantitatively somewhat less good but it is evident that the speed can change substantially from one crossing to the next within an event. The magnetopause thickness varied substantially from one crossing to the next, within an event. It ranged from 5 to 10 ion gyroradii. The density profile was sharper than the magnetic profile: most of the density change occured in the earthward half of the magnetopause.

    Key words. Magnetospheric physics (magnetopause, cusp and

  2. Alternative solution of power supply for new spacecraft generation (United States)

    Bourgasov, Michail P.; Tchuyan, Rostislav K.; Tolyarenko, Nikolai V.


    The power supply for new generation of the long life spacecraft is one of the complicated problem staying in front of designers within practically all the space vehicle life phases. Up to day the most widespread solution consists of the own on board power supply system for each spacecraft including main (usually solar arrays or radioisotope thermal electric units) and redundant (usually chemical accumulating batteries) power sources. The technical and cost efficiency aspects of an advanced scheme of spacecraft power supply by the directional power beams from board of several Space Power Plants is analyzed. Practically all possible spacecraft types are included into the study: systems of communication satellites in the LEO and GEO, navigation and remote sensing satellites operated in the orbits with altitudes to 25000 km, surveillance and technology space platforms into LEO, as well as orbital maneuvering vehicle equipped with electrical propulsion to transport payloads from LEO into operational orbit. The preliminary evaluation of PowerSat's and servicing spacecraft systems orbital configuration is presented. Side by side with some characteristics of the power generation units (on base of solar arrays, solar thermal dynamics facilities, nuclear power plants) the brief discussion of electric thrusters and power transmission system is provided. The perspectives and ways of the further studies for all of main PowerSat's subsystems are nominated.

  3. Autonomous Navigation Based on SEIF with Consistency Constraint for C-Ranger AUV

    Directory of Open Access Journals (Sweden)

    Yue Shen


    Full Text Available An autonomous underwater vehicle (AUV has to solve two essential problems in underwater environment, namely, localization and mapping. SLAM is one novel solution to estimate locations and maps simultaneously based on motion models and sensor measurements. Sparse extended information filter (SEIF is an effective algorithm to reduce storage and computational costs of large-scale maps in the SLAM problem. However, there exists the inconsistency in the SEIF since the rank of the observability matrix of linearized error-state model in SLAM system is higher than that of the nonlinear SLAM system. By analyzing the consistency of the SEIF-based SLAM from the perspective of observability, a SLAM based on SEIF with consistency constraint (SEIF-CC SLAM is developed to improve the estimator’s consistency. The proposed algorithm uses the first-ever available estimates to calculate SEIF Jacobians for each of the state variables, called the First Estimates Jacobian (FEJ. Then, the linearized error-state model can keep the same observability as the underlying nonlinear SLAM system. The capability of autonomous navigation with the proposed algorithm is validated through simulations experiments and sea trials for a C-Ranger AUV. Experimental results show that the proposed SEIF-CC SLAM algorithm yields more consistent and accurate estimates compared with the SEIF-based SLAM.

  4. Analyzing Spacecraft Telecommunication Systems (United States)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric


    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  5. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation


    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  6. Spacecraft thermal modelling (United States)

    Chin, J. H.; Panczak, T. D.; Fried, L.


    Thermal modeling of spacecraft requires approaches which can handle dominant radiative heat transfers and many special thermal control components. Present network-type thermal analyzers allow simulation, especially for components with rectangular geometries, but at the expense of considerable awkwardness and much error-prone manual input. The user interfaces for pre- and postprocessing for these analyzers are also very deficient. Finite element thermal analyzers solve some of the analytical difficulties, but are not widely used because they lack the flexibility to simulate special operations. The Galerkin finite element method (GFEM) distributes the contributions within an element to the element nodal points. The assembly of the contributions from all elements yields a system of energy balance equations for the nodal points of the system. Monte Carlo raytracing, in conjunction with a GFEM energy distribution to element nodal points, yields a procedure of consistent nonisothermal surface radiation exchange. This procedure reduces a source of simulation error caused by nonuniform element illumination and shading. Orbital heating, fluid flow and special analysis features are discussed. The main analysis program is interfaced to the preprocessing and postprocessing modules.

  7. Submarines, spacecraft and exhaled breath. (United States)

    Pleil, Joachim D; Hansel, Armin


    extend the underwater endurance to 2-3 weeks. These propulsion engineering changes also reduce periodic ventilation of the submarine's interior and thus put a greater burden on the various maintenance systems. We note that the spaceflight community has similar issues; their energy production mechanisms are essentially air independent in that they rely almost entirely on photovoltaic arrays for electricity generation, with only emergency back-up power from alcohol fuel cells. In response to prolonged underwater submarine AIP operations, months-long spaceflight operations onboard the ISS and planning for future years-long missions to Mars, there has been an increasing awareness that bio-monitoring is an important factor for assessing the health and awareness states of the crewmembers. SAMAP researchers have been proposing various air and bio-monitoring instruments and methods in response to these needs. One of the most promising new methodologies is the non-invasive monitoring of exhaled breath. So, what do the IABR and SAMAP communities have in common? Inhalation toxicology. We are both concerned with contamination from the environment, either as a direct health threat or as a confounder for diagnostic assessments. For example, the exhaled breath from subjects in a contaminated and enclosed artificial environment (submarine or spacecraft) can serve as a model system and a source of contamination for their peers in a cleaner environment. In a similar way, exhaled anaesthetics can serve as a source of contamination in hospital/clinical settings, or exhalation of occupational exposures to tetrachloroethylene can impact family members at home. Instrumentation development. Both communities have similar needs for better, more specific and more sensitive instruments. Certainly, the analytical instruments to be used onboard submarines and spacecraft have severe restrictions on energy use, physical size and ease of operation. The medical and clinical communities have similar long

  8. Evaluation of a Conductive Elastomer Seal for Spacecraft (United States)

    Daniels, Christopher C.; Mather, Janice L.; Oravec, Heather A.; Dunlap, Patrick H., Jr.


    An electrically conductive elastomer was evaluated as a material candidate for a spacecraft seal. The elastomer used electrically conductive constituents as a means to reduce the resistance between mating interfaces of a sealed joint to meet spacecraft electrical bonding requirements. The compound's outgassing levels were compared against published NASA requirements. The compound was formed into a hollow O-ring seal and its compression set was measured. The O-ring seal was placed into an interface and the electrical resistance and leak rate were quantified. The amount of force required to fully compress the test article in the sealing interface and the force needed to separate the joint were also measured. The outgassing and resistance measurements were below the maximum allowable levels. The room temperature compression set and leak rates were fairly high when compared against other typical spacecraft seal materials, but were not excessive. The compression and adhesion forces were desirably low. Overall, the performance of the elastomer compound was sufficient to be considered for future spacecraft seal applications.

  9. Spacecraft Power. America in Space: The First Decade. (United States)

    Corliss, William R.

    The various electric power sources suitable for use aboard spacecraft are described in this booklet. These power sources include batteries, fuel cells, solar cells, RTGs (radioisotope thermoelectric generator), and nuclear fission power plants. The introductory sections include a discussion of power requirements and the anatomy of a space power…

  10. A Microwave Thruster for Spacecraft Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chiravalle, Vincent P [Los Alamos National Laboratory


    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  11. Electrodeless plasma thrusters for spacecraft: A review (United States)

    Bathgate, S. N.; Bilek, M. M. M.; McKenzie, D. R.


    The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion, Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.

  12. Probabilistic Fault Diagnosis in Electrical Power Systems (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power...

  13. Automated Break-Out Box for use with Low Cost Spacecraft Integration and Test Project (United States)

    National Aeronautics and Space Administration — Electrical checkout and testing is a critical part of the overall spacecraft integration and test flow. Verifying proper harness and connector signal interfaces is...

  14. Intelligent spacecraft module (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana


    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  15. Advanced Spacecraft Thermal Modeling Project (United States)

    National Aeronautics and Space Administration — For spacecraft developers who spend millions to billions of dollars per unit and require 3 to 7 years to deploy, the LoadPath reduced-order (RO) modeling thermal...

  16. Spacecraft Cabin Particulate Monitor Project (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  17. Spacecraft Cabin Particulate Monitor Project (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  18. Spacecraft design applications of QUICK (United States)

    Skinner, David L.


    The interactive space mission trajectory design environment software QUICK, which is currently available on 14 different machine architectures, furnishes a programmable FORTRAN-like interface for a wide range of both built-in and user-defined functions. Since its inception at JPL in 1971, QUICK has evolved from a specialized calculator into a general-purpose engineering tool which also facilitates spacecraft conceptual design by treating spacecraft as collections of data records describing individual components of instruments.

  19. Artist's drawing of Viking spacecraft (United States)


    The National Aeronautics and Space Administration is developing an unmanned spacecraft called Viking to continue the exploration of Mars in the mid-1970s. Two Viking spacecraft, each including an orbiter and a lander will be launched by TitanIII/Centaur launch vehicles in August and September 1975 from Cape Kennedy to reach Mars in mid-1976. They will perform scientific investigations both from orbit and on the surface of Mars, including a search for life form on the planet.

  20. A quantum inspired model of radar range and range-rate measurements with applications to weak value measurements (United States)

    Escalante, George


    Weak Value Measurements (WVMs) with pre- and post-selected quantum mechanical ensembles were proposed by Aharonov, Albert, and Vaidman in 1988 and have found numerous applications in both theoretical and applied physics. In the field of precision metrology, WVM techniques have been demonstrated and proven valuable as a means to shift, amplify, and detect signals and to make precise measurements of small effects in both quantum and classical systems, including: particle spin, the Spin-Hall effect of light, optical beam deflections, frequency shifts, field gradients, and many others. In principal, WVM amplification techniques are also possible in radar and could be a valuable tool for precision measurements. However, relatively limited research has been done in this area. This article presents a quantum-inspired model of radar range and range-rate measurements of arbitrary strength, including standard and pre- and post-selected measurements. The model is used to extend WVM amplification theory to radar, with the receive filter performing the post-selection role. It is shown that the description of range and range-rate measurements based on the quantum-mechanical measurement model and formalism produces the same results as the conventional approach used in radar based on signal processing and filtering of the reflected signal at the radar receiver. Numerical simulation results using simple point scatterrer configurations are presented, applying the quantum-inspired model of radar range and range-rate measurements that occur in the weak measurement regime. Potential applications and benefits of the quantum inspired approach to radar measurements are presented, including improved range and Doppler measurement resolution.

  1. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: San Juan National Forest - Dolores Ranger District, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, Alicen J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kiatreungwattana, Kosol [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This report summarizes the results from an energy efficiency, water efficiency, and renewable energy site assessment of the Dolores Ranger District in the San Juan National Forest in Colorado. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the assessment with United States Forest Service (USFS) personnel on August 16-17, 2016, as part of ongoing efforts by USFS to reduce energy and water use and implement renewable energy technologies. The assessment is approximately an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements.

  2. An Investigation of the Ranger V-770-8 Engine Installation for the Edo XOSE-1 Airplane I : Cooling (United States)

    Emmons, M. Arnold; Conway, Robert N.


    Engine temperature data and cooling correlating analyses of the engine and oil cooler are presented in connection with an investigation of the cowling and cooling of the ranger V-770-8 engine installation in the Edo XOSE-1 airplane. Three types of baffles were installed in the course of the tests: the conventional, the turbulent-flow, and the NACA diffuser baffles. Each of the types was of merit in cooling a different region on the cylinder. Incorporation of the best features of the three types into one baffle, a method which appears to be feasible, would provide improvements in cylinder cooling.

  3. Quadrinhos nacionais no ciberespaço: uma análise de Combo Ranger nos âmbitos digital e impresso


    SANTOS, Roberto Elísio dos; Corrêa,Victor Wanderley


    O presente artigo trata das estratégias adotadas para a criação das histórias em quadrinhos para a internet, e tem como objeto de estudo Combo Rangers. As semelhanças e diferenças entre sua versão impressa e a virtual são analisadas neste texto. A escolha dessa história se deve por Combo Rangers ter sido a história em quadrinhos brasileira pioneira a ser realizada em ambas as maneiras, impressa, e vendida em bancas e livrarias, e disponibilizada no ambiente virtual, com acesso gratuito. Th...

  4. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft (United States)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  5. Coupling Between Dust Impact Charge Recollection and Spacecraft Potential on STEREO with Application to Solar Probe Plus. (United States)

    Thayer, F.; Collette, A.; Malaspina, D.; Sternovsky, Z.


    Interstellar and interplanetary micrometer sized cosmic dust particles can be observed in-situ by spacecraft with electric field antennas through impact-generated charge recollection. When dedicated dust instruments are unavailable, detecting dust with electric field antennas can increase a mission's total scientific return. This study explores the relationship between charge recollection and antenna-to-spacecraft potential determined using data from the STEREO spacecraft in the solar wind. The results of this study can be helpful for predicting the amplitude and shape of dust impacts measured by spacecraft in diverse plasma environments, including the future Solar Probe Plus mission.

  6. Adaptive System Modeling for Spacecraft Simulation (United States)

    Thomas, Justin


    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  7. Spacecraft Crew Cabin Condensation Control (United States)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.


    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  8. How to feed a spacecraft (United States)

    Mclaughlin, William


    The uplink process between ground computers and the spacecraft computer is examined. Data is uplinked to a spacecraft by a load (a sequence of preplanned commands) or by real-time commands; the differences between these two types of uplinks are discussed. The sequencing of a load involves: (1) request generation, (2) request integration, (3) reference generation, and (4) transmitting the load. The functions of each of the sequencing steps are described. The development of new sequencing methods using expert systems and AI is being studied. A symbolic processing software which has the ability to transmit data typed into a computer in English was developed. Consideration is given to the composition, capabilities of the parser, and application of the symbolic processing software to the Comet Renedezvous Asteroid Flyby spacecraft.

  9. Evaluation of Charge Storage and Decay in Spacecraft Insulators (United States)

    Frederickson, Arthur; Benson, Charles; Bockman, James


    Two reports discuss methods for evaluating the magnitude of electrostatic charging that occurs in spacecraft dielectric materials (in particular, polyimides) during prolonged exposure to radiation in outer space. The reports describe experiments on the electrical resistivities and charge-storage properties of polyimide specimens in a dark, evacuated environment, both before and after 5-megarad exposures to rays from cobalt-60. The experiments were designed to measure these properties not under standard conditions prescribed for testing dielectrics in air but, rather, under conditions approximating those in the intended spacecraft applications. The results of the experiments showed that the electrical resistivities of the insulations as determined under these conditions are greater, by a factor of roughly a thousand, than those determined under the standard conditions and that the gamma irradiation reduced resistivities marginally.

  10. Radiation Environment Effects on Spacecraft (United States)

    Ladbury, Ray.


    Space poses a variety of radiation hazards. These hazards pose different risks for different missions depending on the mission environment, duration and requirements. This presentation presents a brief look at several radiation related hazards, including destructive and nondestructive Single-Event Effect, Total Ionizing Dose, Displacement Damage and Spacecraft Charging. The temporal and spatial characteristics for the environments of concern for each are considered.

  11. Optimal Reorientation Of Spacecraft Orbit

    Directory of Open Access Journals (Sweden)

    Chelnokov Yuriy Nikolaevich


    Full Text Available The problem of optimal reorientation of the spacecraft orbit is considered. For solving the problem we used quaternion equations of motion written in rotating coordinate system. The use of quaternion variables makes this consideration more efficient. The problem of optimal control is solved on the basis of the maximum principle. An example of numerical solution of the problem is given.

  12. SEMMS - Understanding the solar electric multimission concept. (United States)

    Irace, W. R.; Atkins, K. L.


    The feasibility of developing a solar electric multimission spacecraft (SEMMS) is examined with emphasis on understanding the effect of solar electric propulsion elements on a spacecraft system design. The applicability of Mariner, Viking, and thermoelectric outer planet spacecraft (TOPS) technologies to postulated mission/science objectives is investigated. A Mariner/Viking-based, modular spacecraft evolves which, with minimum modifications, is capable of performing a variety of interplanetary missions, including comet and asteroid rendezvous and orbit of Mercury, Jupiter, and Saturn. An early technology-evaluation flight is recommended to minimize the risk in subsequent missions.

  13. Materials for Spacecraft. Chapter 6 (United States)

    Finckenor, Miria M.


    The general knowledge in this chapter is intended for a broad variety of spacecraft: manned or unmanned, low Earth to geosynchronous orbit, cis-lunar, lunar, planetary, or deep space exploration. Materials for launch vehicles are covered in chapter 7. Materials used in the fabrication of spacecraft hardware should be selected by considering the operational requirements for the particular application and the design engineering properties of the candidate materials. The information provided in this chapter is not intended to replace an in-depth materials study but rather to make the spacecraft designer aware of the challenges for various types of materials and some lessons learned from more than 50 years of spaceflight. This chapter discusses the damaging effects of the space environment on various materials and what has been successfully used in the past or what may be used for a more robust design. The material categories covered are structural, thermal control for on-orbit and re-entry, shielding against radiation and meteoroid/space debris impact, optics, solar arrays, lubricants, seals, and adhesives. Spacecraft components not directly exposed to space must still meet certain requirements, particularly for manned spacecraft where toxicity and flammability are concerns. Requirements such as fracture control and contamination control are examined, with additional suggestions for manufacturability. It is important to remember that the actual hardware must be tested to understand the real, "as-built" performance, as it could vary from the design intent. Early material trades can overestimate benefits and underestimate costs. An example of this was using graphite/epoxy composite in the International Space Station science racks to save weight. By the time the requirements for vibration isolation, Space Shuttle frequencies, and experiment operations were included, the weight savings had evaporated.

  14. Diagnostic pitfalls in a young Romanian ranger with an acute psychotic episode

    Directory of Open Access Journals (Sweden)

    Nagy EE


    Full Text Available Elöd Ernö Nagy,1,2 Attila Rácz,3 Edit Urbán,4 Gabriella Terhes,4 Timea Berki,5 Emöke Horváth,6 Anca M Georgescu,7 Iringó E Zaharia-Kézdi71Department of Pharmaceutical Biochemistry, University of Medicine and Pharmacy of Târgu-Mureş, 2Laboratory of Medical Analysis, Mures Clinical County Hospital, 3II. Psychiatry Clinic, Mures Clinical County Hospital, Târgu Mureş, Romania; 4Faculty of Medicine, Institute of Clinical Microbiology, University of Szeged, Szeged, 5Faculty of Medicine, Institute of Immunology and Biotechnology, University of Pécs, Pécs, Hungary; 6Department of Pathology, 7I. Clinic of Infectious Disease, University of Medicine and Pharmacy, Târgu Mureş, RomaniaAbstract: The identification and distinction of the pathological conditions underlying acute psychosis are often challenging. We present the case of a 35-year-old ranger who had no history of acute or chronic infectious disease or any previous neuropsychiatric symptoms. He arrived at the Psychiatry Clinic and was admitted as an emergency case, displaying bizarre behavior, hallucinations, paranoid ideation, and delusional faults. These symptoms had first appeared 7 days earlier. An objective examination revealed abnormalities of behavior, anxiety, visual hallucinations, choreiform, and tic-like facial movements. After the administration of neuroleptic and antidepressant treatment, he showed an initial improvement, but on day 10 entered into a severe catatonic state with signs of meningeal irritation and was transferred to the intensive care unit. An electroencephalogram showed diffuse irritative changes, raising the possibility of encephalitis. Taking into consideration the overt occupational risk, Borrelia antibody tests were prescribed and highly positive immunoglobulin (IgM and IgG titers were obtained from serum, along with IgG and antibody index positivity in cerebrospinal fluid. In parallel, anti-N-methyl-D-aspartate receptor antibodies and a whole

  15. Quick Spacecraft Thermal Analysis Tool Project (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  16. Service Oriented Spacecraft Modeling Environment Project (United States)

    National Aeronautics and Space Administration — The I-Logix team proposes development of the Service Oriented Spacecraft Modeling Environment (SOSME) to allow faster and more effective spacecraft system design...

  17. Spacecraft Tests of General Relativity (United States)

    Anderson, John D.


    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  18. Energy Storage Flywheels on Spacecraft (United States)

    Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)


    With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.

  19. Spacecraft and their Boosters. Aerospace Education I. (United States)

    Coard, E. A.

    This book, one in the series on Aerospace Education I, provides a description of some of the discoveries that spacecraft have made possible and of the experience that American astronauts have had in piloting spacecraft. The basic principles behind the operation of spacecraft and their boosters are explained. Descriptions are also included on…

  20. Defect-Driven Dynamic Model of Electrostatic Discharge and Endurance Time Measurements of Polymeric Spacecraft Materials


    Sim, Charles; Sim, Alec; Dennison, JR; Stormo, Matthew


    Measurements of the electrostatic field strength of thin film insulating materials due to interactions with the space plasma environment are one of the most important concepts to understand for the effective design of spacecraft. It is therefore critical to understand how electrostatic field strength (FESD) of spacecraft materials varies due to environmental conditions such as temperature, duration of applied electric field, rate of field changes, and history of exposure to high fields. This ...

  1. Sputter-Resistant Materials for Electric Propulsion Project (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  2. MESSENGER Spacecraft and Payload Performance (United States)

    Gold, R. E.; Solomon, S. C.; McNutt, J. R., Jr.; Leary, J. C.; MESSENGER Team

    The Mercury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, launched in May of this year, will be the first spacecraft to orbit the planet Mercury. The >14 kWm-2 solar thermal input and the large velocity change required to reach Mercury orbit make this a very challenging mission from thermal and mass perspectives. MESSENGER overcomes these challenges with innovative applications of existing technologies and materials. The spacecraft uses ordinary space electronics, has minimal moving parts, and has extensive redundancy and cross strapping to enhance its robustness. The major innovations are a ceramic-cloth thermal shade, an integrated lightweight structure, a high-performance propulsion system, and a solar array incorporating optical solar reflectors to prevent overheating. Seven miniaturized instruments, along with the spacecraft telecommunications system, satisfy all scientific objectives of the mission. The payload includes a dual imaging system with wide-angle and narrow-angle cameras; an integrated ultraviolet, visible, and infrared spectrometer that is sensitive enough to detect atmospheric emissions and robust enough to map mineralogical absorption features on the sun-lit surface; gamma-ray, X-ray, and neutron spectrometers for remote geochemical mapping; a vector magnetometer; a laser altimeter to determine the topography of surface features and determine whether Mercury has a fluid core; and an energetic particle and plasma spectrometer to characterize ionized species in the magnetosphere. The payload was fully calibrated before launch, and an additional series of calibration measurements are planned during the 5-year cruise to Mercury. The first of the three Venus flybys and two Mercury flybys during the cruise phase of the mission will occur in November 2004

  3. Satellite Spacecraft Charging Control Materials. (United States)


    MAAG, private comunication (3) A. PAILLOUS, Mise au point de matdriaux combinant la qualitf de rdflecteurs solaires et une bonne conductibilit...AD-A087 675 OFFICE NATIONAL D’EUDES ET DE RECHERCHES AEROSPATIALE--ETC F/G 22/2 SATELLITE SPACECRAFT CHARGING CONTROL MATERIALS*(U) APR 80 8 BENAISSA...this problem of outgassing (6)* The composite is obtained by lamin- ating at 280 C the quartz fabric with a FEP film and an aluminum (6) A.E. EAGLES et

  4. Spacecraft entry into an atmosphere (United States)

    Iaroshevskii, Vasilii A.

    Problems related to the safe entry of spacecraft into the earth or other planetary atmospheres are discussed in a general manner. Attention is given to restrictions imposed on dynamical and thermal overloads, and an analysis is made of the aerodynamic characteristics of space vehicles of different types. Analytical and semianalytical methods for calculating entry trajectories are compared, and the applicability regions of approximate solutions are determined. The discussion also covers reentry trajectory optimization problems and the principal types of perturbations and navigation and control techniques.

  5. Spacecraft reliability/maintainability optimization. (United States)

    Sharmahd, J. N.


    Description of a procedure to develop a methodology to optimize man-serviced systems for reliability and maintainability. The spacecraft systems are analyzed using failure modes and effects analysis and maintenance analysis, component mean-time-between failure, duty cycle, type of redundancy, and cost information to develop parametric data on various time intervals. Included are crew time-to-repair, cost, weight, and volume effects of increasing subsystem reliability above the baseline. Results are presented for space systems using the existing data from a research and applications module. These results show the minimum cost of sustaining mission operations.

  6. Electrolysis Propulsion for Spacecraft Applications (United States)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.


    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  7. Iodine Plasma (Electric Propulsion) Interaction with Spacecraft Materials (United States)


    Electron Microscope will be accomplished in the Central Analytical Facility. The Department of Metallurgy and Materials acquired these instruments...Forum and Aerospace Exposition , Orlando, Florida, Jan. 4-7, 2011. 3 Dankanich, J., Polzin, K., Calvert, D., Kamhawi, H., “The Iodine Satellite (iSAT...Supplies Total Report Document Report Document - Text Analysis Report Document - Text Analysis Appendix Documents 2. Thank You E-mail user Dec

  8. PHOBOS Exploration using Two Small Solar Electric Propulsion (SEP) Spacecraft (United States)

    Lang, J. J.; Baker, J. D.; McElrath, T. P.; Piacentine, J. S.; Snyder, J. S.


    Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.

  9. Benefits of Spacecraft Level Vibration Testing (United States)

    Gordon, Scott; Kern, Dennis L.


    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  10. SCL: An off-the-shelf system for spacecraft control (United States)

    Buckley, Brian; Vangaasbeck, James


    In this age of shrinking military, civil, and commercial space budgets, an off-the-shelf solution is needed to provide a multimission approach to spacecraft control. A standard operational interface which can be applied to multiple spacecraft allows a common approach to ground and space operations. A trend for many space programs has been to reduce operational staff by applying autonomy to the spacecraft and to the ground stations. The Spacecraft Command Language (SCL) system developed by Interface and Control Systems, Inc. (ICS) provides an off-the-shelf solution for spacecraft operations. The SCL system is designed to provide a hyper-scripting interface which remains standard from program to program. The spacecraft and ground station hardware specifics are isolated to provide the maximum amount of portability from system to system. Uplink and downlink interfaces are also isolated to allow the system to perform independent of the communications protocols chosen. The SCL system can be used for both the ground stations and the spacecraft, or as a value added package for existing ground station environments. The SCL system provides an expanded stored commanding capability as well as a rule-based expert system on-board. The expert system allows reactive control on-board the spacecraft for functions such as electrical power systems (EPS), thermal control, etc. which have traditionally been performed on the ground. The SCL rule and scripting capability share a common syntax allowing control of scripts from rules and rules from scripts. Rather than telemeter over sampled data to the ground, the SCL system maintains a database on-board which is available for interrogation by the scripts and rules. The SCL knowledge base is constructed on the ground and uploaded to the spacecraft. The SCL system follows an open-systems approach allowing other tasks to communicate with SCL on the ground and in space. The SCL system was used on the Clementine program (launched January 25

  11. Estimating Torque Imparted on Spacecraft Using Telemetry (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.


    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  12. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V


    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  13. Neptune aerocapture mission and spacecraft design overview (United States)

    Bailey, Robert W.; Hall, Jeff L.; Spliker, Tom R.; O'Kongo, Nora


    A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.

  14. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    areas such as highly miniaturized analog and digital electronics, instrument space qualification, test and validation procedures, sensor fusion techniques and optimized software implementations to reach a successful conclusion. The content of the project thus represents cutting edge aerospace technology...... due to the extreme performance that must be ascertained on all fronts whilst harnessing only a minimum of resources. Considering the physical limitations imposed by the μASC instrument as well as the next generation of smaller and more agile satellites, the main design drivers of the IRU......Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...

  15. Rosetta spacecraft meets asteroid Steins (United States)


    Steins is Rosetta’s first nominal scientific target. The spacecraft will rendezvous with the asteroid in the course of its first incursion into the asteroid belt located between the orbits of Mars and Jupiter, while on its way to comet 67/P Churyumov-Gerasimenko. The study of asteroids is extremely important as they represent a sample of Solar System material at different stages of evolution - key to understanding the origin of our own planet and of our planetary neighbourhood. The closest approach to Steins is due to take place on 5 September at 20:58 CEST (Central European Summer Time), from a distance of 800 km, during which the spacecraft will not be communicating with Earth. First ground contact with the spacecraft and announcement of successful fly-by will take place at 22:23 CEST. The first data and images collected by Rosetta will be sent to Earth throughout the night of 5 to 6 September and will undergo preliminary processing in the morning of 6 September. The first images will be made available for broadcasters via a special satellite feed on Saturday 6 September (details will be given on To register for the events, please use the attached form. The press conference on 6 September will also be streamed on the ESA web: at Rosetta Steins Fly-By Doors open to the media 5 September 2008, 18:00, Building K ESA-ESOC Robert-Bosch Strasse 5, 64293 Darmstadt, Germany 18:00 - Doors open 18:00 - 19:00 Interview opportunities 19:00 - 20:15 Buffet dinner 20:15 - 20:30 The Steins Fly-By, Introduction by Paolo Ferri, Head of Solar and Planetary Missions Division (Mission Operations Dept.), ESA The crucial role of Flight Dynamics, by Trevor Morley, Rosetta Flight Dynamics Team, ESA 20:30 - 21:00 Live from Rosetta’s control room (loss of telemetry signal at 20:47) 22:23 - First telemetry on ground: signal of successful fly-by 23:00 - End of event Rosetta Steins Fly-By Press Conference 6 September 2008, 12

  16. Spacecraft sails through comet's tail (United States)

    Katzoff, Judith A.

    Comet Giacobini-Zinner may not have a conventional bow shock, but the “interaction region” where the comet's sheath collides with the solar wind is a far more turbulent plasma than had been anticipated. On September 13, 2 days after the International Cometary Explorer (ICE) became the first spacecraft ever to pass through a comet's tail (Eos, September 3, 1985, p. 625), mission scientists gathered at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC) to review their preliminary results. One scientist attending the news conference said he understood the interaction region to be “the most turbulent region that we have seen in the solar system to date.”

  17. Spacecraft Mission Design for the Mitigation of the 2017 PDC Hypothetical Asteroid Threat (United States)

    Barbee, Brent W.; Sarli, Bruno V.; Lyzhoft, Josh; Chodas, Paul W.; Englander, Jacob A.


    This paper presents a detailed mission design analysis results for the 2017 Planetary Defense Conference (PDC) Hypothetical Asteroid Impact Scenario, documented at https:cneos.jpl.nasa.govpdcspdc17. The mission design includes campaigns for both reconnaissance (flyby or rendezvous) of the asteroid (to characterize it and the nature of the threat it poses to Earth) and mitigation of the asteroid, via kinetic impactor deflection, nuclear explosive device (NED) deflection, or NED disruption. Relevant scenario parameters are varied to assess the sensitivity of the design outcome, such as asteroid bulk density, asteroid diameter, momentum enhancement factor, spacecraft launch vehicle, and mitigation system type. Different trajectory types are evaluated in the mission design process from purely ballistic to those involving optimal midcourse maneuvers, planetary gravity assists, and/or low-thrust solar electric propulsion. The trajectory optimization is targeted around peak deflection points that were found through a novel linear numerical technique method. The optimization process includes constrain parameters, such as Earth departure date, launch declination, spacecraft, asteroid relative velocity and solar phase angle, spacecraft dry mass, minimum/maximum spacecraft distances from Sun and Earth, and Earth-spacecraft communications line of sight. Results show that one of the best options for the 2017 PDC deflection is solar electric propelled rendezvous mission with a single spacecraft using NED for the deflection.

  18. Experimental comparison of performances of Mega Acer Kit, Ranger and ThermoSens according to flow rates and distances. (United States)

    Seo, Hong Ju; Kim, Sang Hun; An, Tae Hun; Kim, Dong Joon


    We experimentally investigated the fluid warming performances of three warmers with different technology, according to flow rates and distances. We used the following intravenous fluid warmers: Mega Acer Kit (Group M, n = 8), Ranger (group R, n = 8), and ThermoSens (group T, n = 8). Fluids that had been stored in the operating room over the previous 24 h were delivered at sequent flow rates of from 440 mL/h up to 2500 mL/h through preheated warming devices. The fluid temperatures were recorded at the inlet point, 76-cm proximal (Pout1) and 166-cm distal outlet points (Pout2) every 1 min for 10 min. We repeated each test eight times. The delivered fluid temperature [mean (95% confidence interval)] was significantly higher in group M than group R and T at flow rates up to 650 mL/h with the highest value at 440 mL/h [34.30 (33.35-35.24)°C] (P flow rates over 1140 mL/h at Pout1 [36.67 (36.62-36.73)°C and 37.85 (37.52-38.17)°C at 2500 mL/h, respectively] (P flow rates for each device (P flow rates. Furthermore, the device performance is more effective with shorter extension lines.

  19. FPGA Implementation of an Amplitude-Modulated Continuous-Wave Ultrasonic Ranger Using Restructured Phase-Locking Scheme

    Directory of Open Access Journals (Sweden)

    P. Sumathi


    Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.

  20. Electromagnetic compatibility fundamentals applied to spacecraft radio communication systems (United States)

    Haber, F.; Celebiler, M.; Weil-Malherbe, C.


    A design guide for minimizing electromagnetic interference in aerospace communication equipment for ground stations is presented. Specifically treated are the mechanisms of generating unwanted radio emissions that may affect station operations as well as other communications services, the mechanisms by which sensitive receivers become susceptible to interference, means for reducing interference, standard methods of measurement, and the problems of site selection. The sources of interference are viewed primarily as originating from communications transmitters aboard spacecraft and aircraft, ground transmitters within and outside the ground stations, and other electrical sources on the ground that are not intended to radiate.

  1. Spacecraft-generated plasma interaction with high voltage solar array (United States)

    Parks, D. E.; Katz, I.


    Calculations are made of the effect of interactions of spacecraft-generated plasmas and high voltage solar array components on an advanced Solar Electric Propulsion system. The plasma consists of mercury ions and electrons resulting from the operation of ion thrusters and associated hollow cathode neutralizers. Because large areas of the solar array are at high potential and not completely insulated from the surrounding plasma, the array can, under some conditions, collect excessive electron currents. Results are given for the parasitic currents collected by the solar arrays and means for reducing these currents are considered.

  2. Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO) (United States)

    Herr, Joel L.; Hwang, K. S.; Wu, S. T.


    Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.

  3. Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft (United States)

    Englander, Jacob A.; Vavrina, Matthew; Merrill, Raymond G.; Qu, Min; Naasz, Bo J.


    The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.

  4. TTEthernet for Integrated Spacecraft Networks (United States)

    Loveless, Andrew


    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  5. Tethered spacecraft in asteroid gravitational environment (United States)

    Burov, Alexander A.; Guerman, Anna D.; Kosenko, Ivan I.; Nikonov, Vasily I.


    Relative equilibria of a pendulum attached to the surface of a uniformly rotating celestial body are considered. The locations of the tether anchor that correspond to a given spacecraft position are defined. The domains, where the spacecraft can be held with the help of such a pendulum, are also described. Stability of the found relative equilibria is studied.

  6. Spacecraft command and control using expert systems (United States)

    Norcross, Scott; Grieser, William H.


    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  7. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project (United States)

    National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent characteristics....

  8. Detection of hypervelocity dust impacts on the Earth orbiting Cluster and MMS spacecraft and problems with signal interpretation (United States)

    Vaverka, Jakub; Pellinen-Wannberg, Asta; Kero, Johan; Mann, Ingrid; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkänen, Timo


    Detection of hypervelocity dust impacts on a spacecraft body by electric field instruments have been reported by several missions such as Voyager, WIND, Cassini, STEREO. The mechanism of this detection is still not completely understood and is under intensive laboratory investigation. A commonly accepted theory is based on re-collection of plasma cloud particles generated by a hypervelocity dust impact by a spacecraft surface and an electric field antenna resulting in a fast change in the potential of the spacecraft body and antenna. These changes can be detected as a short pulse measured by the electric field instrument. We present the first detection of dust impacts on the Earth-orbiting MMS and Cluster satellites. Each of the four MMS spacecraft provide probe-to-spacecraft potential measurements for their respective the six electric field antennas. This gives a unique view on signals generated by dust impacts and allow their reliable identification which is not possible for example on the Cluster spacecraft. We discuss various instrumental effects and solitary waves, commonly present in the Earth's magnetosphere, which can be easily misinterpreted as dust impacts. We show the influence of local plasma environment on dust impact detection for satellites crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly.

  9. MarcoPolo-R: Mission and Spacecraft Design (United States)

    Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.


    The MarcoPolo-R mission is a candidate for the European Space Agency's medium-class Cosmic Vision programme, with the aim to obtain a 100 g sample of asteroid surface material and return it safely to the Earth. Astrium is one of two industrial contractors currently studying the mission to Phase A level, and the team has been working on the mission and spacecraft design since January 2012. Asteroids are some of the most primitive bodies in our solar system and are key to understanding the formation of the Earth, Sun and other planetary bodies. A returned sample would allow extensive analyses in the large laboratory-sized instruments here on Earth that are not possible with in-situ instruments. This analysis would also increase our understanding of the composition and structure of asteroids, and aid in plans for asteroid deflection techniques. In addition, the mission would be a valuable precursor for missions such as Mars Sample Return, demonstrating a high speed Earth re-entry and hard landing of an entry capsule. Following extensive mission analysis of both the baseline asteroid target 1996 FG3 and alternatives, a particularly favourable trajectory was found to the asteroid 2008 EV5 resulting in a mission duration of 4.5 to 6 years. In October 2012, the MarcoPolo-R baseline target was changed to 2008 EV5 due to its extremely primitive nature, which may pre-date the Sun. This change has a number of advantages: reduced DeltaV requirements, an orbit with a more benign thermal environment, reduced communications distances, and a reduced complexity propulsion system - all of which simplify the spacecraft design significantly. The single spacecraft would launch between 2022 and 2024 on a Soyuz-Fregat launch vehicle from Kourou. Solar electric propulsion is necessary for the outward and return transfers due to the DeltaV requirements, to minimise propellant mass. Once rendezvous with the asteroid is achieved, an observation campaign will begin to characterise the

  10. Electrolysis Propulsion Provides High-Performance, Inexpensive, Clean Spacecraft Propulsion (United States)

    deGroot, Wim A.


    An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (>85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.

  11. Low power arcjet system spacecraft impacts (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.


    Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.

  12. Foot Pedals for Spacecraft Manual Control (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary


    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  13. Spacecraft exploration of Phobos and Deimos


    Duxbury, Thomas C.; Zakharov, Alexander V.; Hoffmann, Harald; Edward A. Guinness


    We review the previous exploration of Phobos and Deimos by spacecraft. The first close-up images of Phobos and Deimos were obtained by the Mariner 9 spacecraft in 1971, followed by much image data from the two Viking orbiters at the end of the 70s, which formed the basis for early Phobos and Deimos shape and dynamic models. The Soviet Phobos 2 spacecraft came within 100 km of landing on Phobos in 1988. Mars Global Surveyor (1996–2006) and Mars Reconnaissance Orbiter (since 2005) made close-up...

  14. A Ross-Stirling spacecraft refrigerator (United States)

    Walker, G.; Scott, M.; Zylstra, S.

    A spacecraft refrigerator was investigated capable of providing cooling for storage of food and biological samples in the temperature range 0-20 F with cooling capacity in the range of 1 to 2 kW, operating for long periods with great reliability. The system operated on the Stirling refrigeration cycle using the spacecraft life-support gases as the working fluid. A prototype spacecraft Stirling refrigerator was designed, built, and tested with air as the working fluid. The system performance was satisfactory, meeting the requirements specified above. Potential applications for the prototype unit are mentioned.

  15. Observations of interplanetary plasma waves, spacecraft noise, and sheath phenomena on Imp 7 (United States)

    Scarf, F. L.; Fredricks, R. W.; Green, I. M.; Crook, G. M.


    The Imp 7 plasma wave instrument measures electric and magnetic wave components of plasma oscillations over the frequency range from 10 Hz to 100 kHz. The instrumentation and relevant external characteristics of the spacecraft that appear to be responsible for some in-flight disturbance effects are briefly described. It is shown that as each one of the 16 solar panel flats rotates into shadow or sunlight, the array transients produce fluctuating magnetic fields that are detected on the magnetic loop mounted 3.4 m from the spacecraft. These transients occur 16 times per spin period, and the corresponding magnetic noise has a high frequency on the rapidly spinning Imp 7 spacecraft. The analysis suggests that some Imp magnetic threshold levels measured 3-4 m from the spacecraft are determined by the solar array current transient effects associated with the discrete 16-sided geometry of the spacecraft. The geometry also influences the response of the electric dipole antenna by modulating the sheath.

  16. Electrically Conductive White Thermal-Control Paint (United States)

    Hsieh, Cheng-Hsien; Forsberg, Gustaf A.; O'Donnell, Timothy P.


    Report describes development of white thermal-control paint intended for use on spacecraft. Paint required to exhibit combination of high emittance (equal to or greater than 0.90), low absorptance (equal to or less than 0.20), and electrical conductivity sufficient to prevent charging with static electricity to potentials beyond range of plus or minus 10 V.

  17. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft (United States)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.


    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  18. Passive Wireless Sensors for Spacecraft Applications Project (United States)

    National Aeronautics and Space Administration — New classes of sensors are needed on spacecraft that can be interrogated remotely using RF signals and respond with the sensor's identity as well as the...

  19. Space Robotics: What is a Robotic Spacecraft?

    Directory of Open Access Journals (Sweden)

    Alex Ellery


    Full Text Available In this first of three short papers, I introduce some of the basic concepts of space engineering with an emphasis on some specific challenging areas of research that are peculiar to the application of robotics to space development and exploration. The style of these short papers is pedagogical and this paper stresses the unique constraints that space application imposes. This first paper is thus a general introduction to the nature of spacecraft engineering and its application to robotic spacecraft. I consider the constraints and metrics used by spacecraft engineers in the design of spacecraft and how these constraints impose challenges to the roboticist. The following two papers consider specific robotics issues in more detail.

  20. A Sustainable Spacecraft Component Database Solution Project (United States)

    National Aeronautics and Space Administration — Numerous spacecraft component databases have been developed to support NASA, DoD, and contractor design centers and design tools. Despite the clear utility of...

  1. Odor Control in Spacecraft Waste Management Project (United States)

    National Aeronautics and Space Administration — Spacecraft and lunar bases generate a variety of wastes containing water, including food wastes, feces, and brines. Disposal of these wastes, as well as recovery of...

  2. Fermi FT2 Spacecraft Pointing Files (United States)

    National Aeronautics and Space Administration — This utility permits you to download the most current version of the spacecraft (FT2) file predicting the LAT's pointing for a given mission week. The FT2 file is a...

  3. Participation of women in spacecraft science teams (United States)

    Rathbun, Julie


    There is an ongoing discussion about the participation of women in science and particularly astronomy. Demographic data from NASA's robotic planetary spacecraft missions show women scientists to be consistently under-represented.

  4. Computer failure caused loss of Mars spacecraft

    National Research Council Canada - National Science Library

    Zielinski, Sarah


    A computer error that occurred 5 months before NASA lost contact with the Mars Global Surveyor on 2 November 2006 led to the spacecraft's eventual battery failure and subsequent loss of orientation...

  5. Mirage Fire Sensor for Spacecraft Project (United States)

    National Aeronautics and Space Administration — Spacecraft fires create exception risks to crew members. There is usually no place to escape. Even small amounts of hardware damage can compromise a mission. The...

  6. SMART-1: the first spacecraft of the future (United States)


    This is the first of a series of missions designed to test key technologies for future spacecraft —SMART stands for 'Small Missions for Advanced Research and Technology'. In the case of SMART-1, the two main new technologies to be tested are a new 'solar-electric propulsion' system and miniaturised spacecraft and instrumentation. Together, these technologies make up a spacecraft with revolutionary qualities: smaller, lighter, capable of carrying more scientific instruments, greater fuel efficiency. All of which also considerably reduces the cost of the mission. So, the idea behind SMART-1 is to pioneer a futuristic philosophy, the motto of which could be: 'more science for less money'. Even though it is the first of a kind, SMART-1 has been developed in less than four years, and at about a fifth of the cost of a major science mission for ESA: only 110 million euros. That includes the launch, the operations and a dozen scientific experiments. This was achieved partly by using new management methods — such as working with smaller teams both within ESA and in the industry — and partly because of some of the new features inherent in SMART-1, such as the miniaturisation and novel design. Giuseppe Racca, SMART-1 Project Manager, explains: "What has been our trick? First, a short development period in itself means less money. But also, with its small size — which was a requirement of the mission because we are testing miniaturised hardware — the spacecraft is able to 'share' a commercial Ariane flight with two other passengers. Besides, since we were not constrained by any existing design or heritage, we could be more innovative and elegant in our architecture. For example, the new SMART-1 electrical architecture has enabled us to simplify the system tests considerably." SMART-1 could almost be a toy spacecraft — it weighs only 367 kilograms and fits into a cube just one metre across (the solar panel wings extend about 14 metres) — although one able to

  7. Model of coupling discharges into spacecraft structures (United States)

    Woods, A. J.; Treadway, M. J.; Grismore, R.; Leadon, R. E.; Flanagan, T.; Wenaas, E. P.


    The calculated results of a semiempirical model for electron-caused electromagnetic pulse (ECEMP) are compared to the experimental data for three spacecraft geometries. The appropriateness of certain model assumptions which have been employed in the absence of a microscopic theory for dielectric breakdown and associated electron blowoff is discussed. Results are limited to the exterior response of spacecraft structures, although neither the model nor the experiments were limited to the outside problem. Rationales for model assumptions are provided.

  8. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle (United States)

    Bosset, M.

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  9. Underactuated Spacecraft Control with Disturbance Compensation (United States)


    permission to manufacture, use, or sell any patented invention that may relate to them. This report is the result of contracted fundamental research...utilizes Solar Radiation Pressure (SRP) to restore linear controllability to a spacecraft with only two functional Reaction Wheels (RWs). The second...The failure of Reaction Wheels (RWs) in an array can impair the spacecraft’s ability to perform imaging missions, during which a prescribed inertial

  10. Standard user data services for spacecraft applications (United States)

    Smith, J. F.; Hwang, C.; Fowell, S.; Plummer, C.


    The Consultative Committee for Space Data Systems is an international organization of national space agencies that is branching out to provide new standards to enhanced reuse of spacecraft equiptment and software. These Spacecraft Onboard Interface (SOIF) standards will be based on the well-known Internet protocols. this paper will review the SOIF standards by looking at the services that are being proposed for SOIF.

  11. Engineered spacecraft deployables influenced by nature (United States)

    Pohl, David; Wolpert, W. D.


    Northrop Grumman has been a leader in the space industry for over 50 years, and in fact was the first in the industry to produce a contractor-built spacecraft. Since the dawn of the Space Age and that Pioneer-1 spacecraft, every sub-system that makes up a spacecraft has grown in capability. One of the most visible changes to a spacecraft that enables these enhanced capabilities is the variety of appendages called deployable systems. These systems include solar arrays, antenna reflectors, telescopes and a current design for a tennis court sized sunshield. While the end product may look very different and perform different functions, all deployable systems share certain common attributes. Among these are: a latch mechanism for the deployable restraining it to the spacecraft for launch, an unlatching or release mechanism once orbit is achieved, an energy storage device or driving mechanism for deployment and a re-latching, or sometimes a repositioning device for orientation of the system during the mission. This paper describes these space-based systems and draws some comparisons with various natural analogs. While it may not be the case that the aerospace engineer is attempting to duplicate natural systems, it is almost certain that spacecraft deployable systems have been influenced by nature.

  12. Standardizing the information architecture for spacecraft operations (United States)

    Easton, C. R.


    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.


    Directory of Open Access Journals (Sweden)

    A. I. Altukhov


    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  14. Autonomously managed electrical power systems (United States)

    Callis, Charles P.


    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  15. Electrically Conductive Paints for Satellites (United States)

    Gilligan, J. E.; Wolf, R. E.; Ray, C.


    A program was conducted to develop and test electrically conductive paint coatings for spacecraft. A wide variety of organic and inorganic coatings were formulated using conductive binders, conductive pigments, and similar approaches. Z-93, IITRI's standard specification inorganic thermal control coating, exhibits good electrical properties and is a very space-stable coating system. Several coatings based on a conductive pigment (antimony-doped tin oxide) in silicone and silicate binders offer considerable promise. Paint systems using commercially available conductive polymers also appear to be of interest, but will require substantial development. Evaluations were made based on electrical conductivity, paint physical properties, and the stability of spectral reflectance in space environment testing.

  16. Modeling the fundamental characteristics and processes of the spacecraft functioning (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.


    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  17. Spacecraft Attitude Maneuver Planning Using Genetic Algorithms (United States)

    Kornfeld, Richard P.


    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

  18. The Status of Spacecraft Bus and Platform Technology Development under the NASA In-Space Propulsion Technology Program (United States)

    Anderson, David; Pencil, Eric J.; Glaab, Louis; Falck, Robert D.; Dankanich, John


    NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

  19. Analysis of the passage of a spacecraft between the Van Allen belts considering a low and high solar activity (United States)

    da Silva, M. R.; Rocco, E. M.


    The radiation in the Van Allen belts, produced by electrically charged particles, can cause damages to the electrical equipments of a satellite in orbit of Earth. In this paper, the Van Allen belts are modeled using the data from the space mission Van Allen Probes Mission. With this model, a study was made taking into account the passage of a spacecraft through the Van Allen belts estimating the absorbed radiation dose and the time that spacecraft remained in the radiation zones, considering the effects of a low and high solar activity.

  20. A design for a reusable water-based spacecraft known as the spacecoach

    CERN Document Server

    McConnell, Brian


     Based on components already in existence, this manual details a reference design for an interplanetary spacecraft that is simple, durable, fully reusable and comprised mostly of water. Using such an accessible material leads to a spacecraft architecture that is radically simpler, safer and cheaper than conventional capsule based designs. If developed, the potential affordability of the design will substantially open all of the inner solar system to human exploration. A spacecraft that is comprised mostly of water will be much more like a living cell or a terrarium than a conventional rocket and capsule design. It will use water for many purposes before it is superheated in electric engines for propulsion, purposes which include radiation shielding, heat management, basic life support, crew consumption and comfort. The authors coined the term "spacecoaches" to describe them, as an allusion to the Prairie Schooners of the Old West, which were simple, rugged, and could live off the land.

  1. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities (United States)

    Kauffman, B.; Hardage, D.; Minor, J.


    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-Shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  2. Singular control in minimum time spacecraft reorientation (United States)

    Seywald, Hans; Kumar, Renjith R.


    Spacecraft reorientation is investigated numerically for an inertially symmetric rigid spacecraft with three bounded independent control torques aligned with the principal axes. The dynamical system of the spacecraft and the framework of the optimal-control problem are established in order to identify all of the potential strategies. The investigation lists bang-bang solutions and finite-order and infinite-order singular arcs, and the conditions for the finite-order singular arcs are given. Numerical examples are developed for all of the control-logic systems, and the suboptimality of the rest-to-rest maneuvers is proven for principal-axis rotations. The most efficient control technique is the singular control of infinite order, and the vector-valued singular control can be utilized in a derivative of the switching function.

  3. Motion of a spacecraft with magnetic damper (United States)

    Roithmayr, Carlos M.; Hu, Anren; Chipman, Richard


    Three methods of numerically simulating the motion of a spacecraft with a magnetic damper are compared. Simulations of motion of the initial assembly stage of Space Station Freedom show that results obtained with the first approach are in general agreement with those based on the second approach, while results from the third method are incorrect unless the spacecraft is nearly at rest in a local-vertical-local-horizontal reference frame. Simulations based on the second method proceed much more quickly than simulations based on the first. An integral of equations of motion governing the behavior of a spacecraft, and a sphere, which is part of the damper is presented. The integral can be used to test the results of numerical integrations performed in connection with the first and second approaches.

  4. Developing Sustainable Spacecraft Water Management Systems (United States)

    Thomas, Evan A.; Klaus, David M.


    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  5. Mars Science Laboratory Spacecraft Assembled for Testing (United States)


    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions. These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011. This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  6. Flexible spacecraft dynamics, control and guidance technologies by giovanni campolo

    CERN Document Server

    Mazzini, Leonardo


    This book is an up-to-date compendium on spacecraft attitude and orbit control (AOC) that offers a systematic and complete treatment of the subject with the aim of imparting the theoretical and practical knowledge that is required by designers, engineers, and researchers. After an introduction on the kinematics of the flexible and agile space vehicles, the modern architecture and functions of an AOC system are described and the main AOC modes reviewed with possible design solutions and examples. The dynamics of the flexible body in space are then considered using an original Lagrangian approach suitable for the control applications of large space flexible structures. Subsequent chapters address optimal control theory, attitude control methods, and orbit control applications, including the optimal orbital transfer with finite and infinite thrust. The theory is integrated with a description of current propulsion systems, with the focus especially on the new electric propulsion systems and state of the art senso...

  7. Design and performance test of spacecraft test and operation software (United States)

    Wang, Guohua; Cui, Yan; Wang, Shuo; Meng, Xiaofeng


    Main test processor (MTP) software is the key element of Electrical Ground Support Equipment (EGSE) for spacecraft test and operation used in the Chinese Academy of Space Technology (CAST) for years without innovation. With the increasing demand for a more efficient and agile MTP software, the new MTP software was developed. It adopts layered and plug-in based software architecture, whose core runtime server provides message queue management, share memory management and process management services and forms the framework for a configurable and open architecture system. To investigate the MTP software's performance, the test case of network response time, test sequence management capability and data-processing capability was introduced in detail. Test results show that the MTP software is common and has higher performance than the legacy one.

  8. Electrostatic charging of spacecraft in response to electron beam injection (United States)

    Singh, Nagendra; Hwang, K. S.


    Electron beam injections from spacecraft now constitute a major activity in space research. Here, the charging level of a conducting surface when an electron beam is injected from it is investigated. Injections into both vacuum and an ambient plasma are considered. When a Maxwellian beam is injected into vacuum, the surface changes to a potential much greater than the average beam energy. The dependence of this excess is examined by considering beams with water-bag types of velocity distribution functions in which no electron has a velocity V(max) above a certain value. The electric field distribution in the electron sheath near the surface is determined by the pressure distribution. Thus, the surface potential is determined not only by V(max) but by all the beam parameters. The ambient plasma reduces the charging level and causes an oscillation in the surface potential. The oscillation frequency is the electron-plasma frequency associated with the ambient plasma.

  9. The MSAT spacecraft of Telesat Mobile Inc. (United States)

    Bertenyi, E.

    The MSAT spacecraft of the Canadian mobile satellite operator, Telesat Mobile Inc. (TMI) is described. When launched in 1994, the large geostationary MSAT spacecraft which is currently under construction by Hughes Aircraft Co. and Spar Aerospace Ltd. will enable TMI to provide mobile and transportable communications services to its customers even in the most remote parts of the North American continent. The main elements of TMI's mobile satellite system (described in a companion paper) are the space segment and the ground segment. TMI's space segment will employ one of two nearly identical satellites, one of which will be owned and operated by TMI, the other by the U.S. mobile satellite operator, American Mobile Satellite Corporation (AMSC). The two companies are participating in a joint spacecraft procurement in order to reduce the nonrecurring costs and to ensure system compatibility between the two systems; and they have also agreed to provide in-orbit backup to each other in the event of a catastrophic satellite failure. The program status, performance requirements, main parameters, and configuration of the MSAT spacecraft are reviewed. The major features of the communications subsystem are discussed in some detail, and a brief summary is presented of the spacecraft service module. Key technology items include the L-band RF power amplifier, which must operate with a high DC to RF power efficiency and generate low intermodulation when loaded with multi-carrier signals; and the large diameter deployable L-band antenna. The development status and expected performance of these spacecraft components is examined.

  10. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks (United States)

    DeSimpelaere, Edward


    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  11. Solar Array Structures for 300 kW-Class Spacecraft (United States)

    Pappa, Richard; Rose, Geoff; Mann, Troy O.; Warren, Jerry E.; Mikulas, Martin M., Jr.; Kerslake, Tom; Kraft, Tom; Banik, Jeremy


    State-of-the-art solar arrays for spacecraft provide on the order of 20 kW of electrical power, and they usually consist of 3J solar cells bonded to hinged rigid panels about 1 inch in thickness. This structural construction allows specific mass and packaging volumes of up to approximately 70 W/kg and 15 kW/m3 to be achieved. Significant advances in solar array structures are required for future very-high-power spacecraft (300+ kW), such as those proposed for pre-positioning heavy cargo on or near the Moon, Mars, or asteroids using solar electric propulsion. These applications will require considerable increases in both W/kg and kW/m3, and will undoubtedly require the use of flexible-substrate designs. This presentation summarizes work sponsored by NASA's Game Changing Development Program since Oct. 2011 to address the challenge of developing 300+ kW solar arrays. The work is primarily being done at NASA Langley, NASA Glenn, and two contractor teams (ATK and DSS), with technical collaboration from AFRL/Kirtland. The near-tem objective of the project is design, analysis, and testing of 30-50 kW solar array designs that are extensible to the far-term objective of 300+ kW. The work is currently focused on three designs: the MegaFlex concept by ATK, the Mega-ROSA concept by DSS, and an in-house 300-kW Government Reference Array concept. Each of these designs will be described in the presentation. Results obtained to date by the team, as well as future work plans, for the design, analysis, and testing of these large solar array structures will be summarized.

  12. Electrically conductive black optical paint (United States)

    Birnbaum, M. M.; Metzler, E. C.; Cleland, E. L.


    An electrically conductive flat black paint has been developed for use on the Galileo spacecraft which will orbit Jupiter in the late 1980s. The paint, designed for equipment operating in high-energy radiation fields, has multipurpose functions. Its electrical conductivity keeps differential charging of the spacecraft external surfaces and equipment to a minimum, preventing the buildup of electrostatic fields and arcing. Its flat black aspect minimizes the effects of stray light and unwanted reflectances, when used in optical instruments and on sunshades. Its blackness is suitable, also, for thermal control, when the paint is put on spacecraft surfaces. The paint has good adherence properties, as measured by tape tests, when applied properly to a surface. The electrically conductive paint which was developed has the following characteristics: an electrical resistivity of 5 x 10 to the 7th ohms per square; a visual light total reflectance of approximately 5 percent; an infrared reflectance of 0.13 measured over a spectrum from 10 to the (-5.5) power to 0.001 meter; a solar absorptivity, alpha-s, of 0.93, and a thermal emissivity, epsilon, of 0.87, resulting in an alpha-s/epsilon of 1.07. The formula for making the paint and the process for applying it are described.

  13. Partial reconstruction of the rotational motion of Philae spacecraft during its landing on comet 67P/Churyumov-Gerasimenko

    CERN Document Server

    Baranyai, Tamás; Várkonyi, Péter L


    This paper presents a partial reconstruction of the rotational dynamics of the Philae spacecraft upon landing on comet 67P/Churyumov-Gerasimenko as part of ESA's Rosetta mission. We analyze the motion and the events triggered by the failure to fix the spacecraft to the comet surface at the time of the first touchdown. Dynamic trajectories obtained by numerical simulation of a 7 degree-of-freedom mechanical model of the spacecraft are fitted to directions of incoming solar radiation inferred from in-situ measurements of the electric power provided by the solar panels. The results include a lower bound of the angular velocity of the lander immediately after its first touchdown. Our study also gives insight into the effect of the programmed turn-off of the stabilizing gyroscope after touchdown; the important dynamical consequences of a small collision during Philae's journey; and the probability that a similar landing scenario harms the operability of this type of spacecraft.

  14. Earth Observing System (EOS) Terra Spacecraft 120 Volt Power Subsystem: Requirements, Development and Implementation (United States)

    Keys, Denney J.


    Built by the Lockheed-Martin Corporation, the Earth Observing System (EOS) TERRA spacecraft represents the first orbiting application of a 120 Vdc high voltage spacecraft electrical power system implemented by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The EOS TERRA spacecraft's launch provided a major contribution to the NASA Mission to Planet Earth program while incorporating many state of the art electrical power system technologies to achieve its mission goals. The EOS TERRA spacecraft was designed around five state-of-the-art scientific instrument packages designed to monitor key parameters associated with the earth's climate. The development focus of the TERRA electrical power system (EPS) resulted from a need for high power distribution to the EOS TERRA spacecraft subsystems and instruments and minimizing mass and parasitic losses. Also important as a design goal of the EPS was maintaining tight regulation on voltage and achieving low conducted bus noise characteristics. This paper outlines the major requirements for the EPS as well as the resulting hardware implementation approach adopted to meet the demands of the EOS TERRA low earth orbit mission. The selected orbit, based on scientific needs, to achieve the EOS TERRA mission goals is a sun-synchronous circular 98.2degree inclination Low Earth Orbit (LEO) with a near circular average altitude of 705 kilometers. The nominal spacecraft orbit is approximately 99 minutes with an average eclipse period of about 34 minutes. The scientific goal of the selected orbit is to maintain a repeated 10:30 a.m. +/- 15 minute descending equatorial crossing which provides a fairly clear view of the earth's surface and relatively low cloud interference for the instrument observation measurements. The major EOS TERRA EPS design requirements are single fault tolerant, average orbit power delivery of 2, 530 watts with a defined minimum lifetime of five years (EOL). To meet

  15. Modeling and simulation of spacecraft power systems (United States)

    Lee, J. R.; Cho, B. H.; Kim, S. J.; Lee, F. C.


    EASY5 modeling of a complete spacecraft power processing system is presented. Component models are developed, and several system models including a solar array switching system, a partially-shunted solar array system and COBE system are simulated. The power system's modes of operation, such as shunt mode, battery-charge mode, and battery-discharge mode, are simulated for a complete orbit cycle.

  16. Spacecraft potential control for Double Star

    Directory of Open Access Journals (Sweden)

    K. Torkar


    Full Text Available The spacecraft potential of Double Star TC-1 is positive in large parts of the orbits due to the photo-effect from solar EUV irradiation. These positive potentials typically disturb low energy plasma measurements on board. The potential can be reduced, and thereby the particle measurements improved, by emitting a positive ion beam. This method has successfully been applied on several other spacecraft and it has also been chosen for TC-1. The instrument TC-1/ASPOC is a derivative of the Cluster/ASPOC instruments, from which it has inherited many features. The paper describes the adaptations and further developments made for the ion emitters and the electronics. The instrument performs very well and can support higher beam currents than on Cluster. The expected significant improvement of the low energy particle measurements on board was indeed observed. The modifications of the electron distributions are analysed for a one-time interval when the spacecraft was located in the magnetosheath. The change in the potential due to the ion beam was determined, and first studies of the 3-D electron distributions in response to the spacecraft potential control have been performed, which indicate that the method works as expected.

  17. Standardization activity for the spacecraft onboard interfaces (United States)

    Smith, J. F.; Plummer, C.; Plancke, P.


    The Consultative Committee for Space Data Systems (CCSDS) is an international organization of national space agencies that is organized to promote theinterchange of space related information. CCSDS is branching out to provide new standards to enhanced reuse of spacecraft equipment and software onboard of a spacecraft. This effort is know as Spacecraft Onboard Interface (SOIF). SOIF expects that these standards will be well used within the space community, and that they will be based on the well-known Internet protocols. This paper will provide a description of the SOIF work by reviewing this work with three orthogonal views. The Services View describes the data communications services that are provided to the users. The Interoperability view provides a description to users on how to use SOIF to interchange between different spacecraft data busses. And finally, the Protocol view, describes the protocols and services that are to be implemented in order to provide the users with the advantages of the SOIF architecture. This paper will give the reader an excellent introduction to the work of the international SOIF team.

  18. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham


    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  19. Integrated Thermal Insulation System for Spacecraft (United States)

    Kolodziej, Paul (Inventor); Bull, Jeff (Inventor); Kowalski, Thomas (Inventor); Switzer, Matthew (Inventor)


    An integrated thermal protection system (TPS) for a spacecraft includes a grid that is bonded to skin of the spacecraft, e.g., to support the structural loads of the spacecraft. A plurality of thermally insulative, relatively large panels are positioned on the grid to cover the skin of the spacecraft to which the grid has been bonded. Each panel includes a rounded front edge and a front flange depending downwardly from the front edge. Also, each panel includes a rear edge formed with a rounded socket for receiving the rounded front edge of another panel therein, and a respective rear flange depends downwardly from each rear edge. Pins are formed on the front flanges, and pin receptacles are formed on the rear flanges, such that the pins of a panel mechanically interlock with the receptacles of the immediately forward panel. To reduce the transfer to the skin of heat which happens to leak through the panels to the grid, the grid includes stringers that are chair-shaped in cross-section.

  20. Spacecraft 3D Augmented Reality Mobile App (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.


    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  1. Software for Engineering Simulations of a Spacecraft (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis


    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  2. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs


    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  3. Fabien Desage, David Guéranger, La politique confisquée. Sociologie des réformes et des institutions intercommunales

    Directory of Open Access Journals (Sweden)

    Hélène Reigner


    Full Text Available « L’intercommunalité comme la démocratie sont des affaires trop sérieuses pour être laissées aux seuls élus. » (p.229. Le ton est donné et c’est toute la thèse des auteurs, Fabien Desage et David Guéranger, qui est synthétisée là. Ces derniers se placent sur le registre de l’intervention pour dénoncer l’absence de publicité qui caractérise selon eux le fonctionnement politique de gouvernements intercommunaux « invisibles ». Pour ce faire, ils mutualisent dans cet ouvrage leurs travaux de rec...

  4. Alkaline Waterflooding Demonstration Project, Ranger Zone, Long Beach Unit, Wilmington Field, California. Fourth annual report, June 1979-May 1980. Volume 1. Body of report

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, J.D.


    Comparative core flood testing of preserved Ranger Zone core rock samples was completed; the past year's results were discouraging. In contrast, Ranger sand pack alkaline flood tests gave encouraging results. New insights were gained on in-situ alkaline consumption. Dehydration of sodium orthosilicate water-produced water-crude oil systems does not appear to create any operational problems. The alkaline injection facilities were completed and placed in operation on March 27, 1980. The preflush injection, which was composed of 11.5 million barrels of softened fresh water with an average 0.96% of salt, was completed at that time. The total preflush amounted to approximately 10 pore volume percent. The 0.4% sodium orthosilicate-1.0% salt-soft fresh water injection started at the end of the preflush. A loss of injectivity began at the same time as alkaline injection, which is attributed to divalent ions in the salt brine. Salt was removed temporarily from the system on May 30, 1980. No injection wells were redrilled during the year. Other than plug back of one injector and one producer because of bad liners and repair of one injection well with an inner liner, well work was routine and minor in nature. Dual injection strings were transferred from one well to another. One of the injection wells whose injectivity was damaged by the alkaline-salt injection was successfully stimulated. The pilot was self certified under the tertiary incentive program and cost recoupments obtained. Preparations are underway for making the alkaline flood simulator performance prediction for the pilot. Laboratory testing is actively underway in an attempt to quickly find a remedy for the floc formation that occurs on mixing the salt brine and dilute alkaline solution. Volume 1 describes the activities for this period. Volumes 2 and 3 contain appendices.

  5. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.


    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  6. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.


    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  7. Method of interplanetary trajectory optimization for the spacecraft with low thrust and swing-bys (United States)

    Konstantinov, M. S.; Thein, M.


    The method developed to avoid the complexity of solving the multipoint boundary value problem while optimizing interplanetary trajectories of the spacecraft with electric propulsion and a sequence of swing-bys is presented in the paper. This method is based on the use of the preliminary problem solutions for the impulsive trajectories. The preliminary problem analyzed at the first stage of the study is formulated so that the analysis and optimization of a particular flight path is considered as the unconstrained minimum in the space of the selectable parameters. The existing methods can effectively solve this problem and make it possible to identify rational flight paths (the sequence of swing-bys) to receive the initial approximation for the main characteristics of the flight path (dates, values of the hyperbolic excess velocity, etc.). These characteristics can be used to optimize the trajectory of the spacecraft with electric propulsion. The special feature of the work is the introduction of the second (intermediate) stage of the research. At this stage some characteristics of the analyzed flight path (e.g. dates of swing-bys) are fixed and the problem is formulated so that the trajectory of the spacecraft with electric propulsion is optimized on selected sites of the flight path. The end-to-end optimization is carried out at the third (final) stage of the research. The distinctive feature of this stage is the analysis of the full set of optimal conditions for the considered flight path. The analysis of the characteristics of the optimal flight trajectories to Jupiter with Earth, Venus and Mars swing-bys for the spacecraft with electric propulsion are presented. The paper shows that the spacecraft weighing more than 7150 kg can be delivered into the vicinity of Jupiter along the trajectory with two Earth swing-bys by use of the space transportation system based on the "Angara A5" rocket launcher, the chemical upper stage "KVTK" and the electric propulsion system

  8. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 1 - Spacecraft (United States)

    Keating, Thomas; Ihara, Toshio; Miida, Sumio


    A cooperative United States/Japan study was made for one year from 1987 to 1988 regarding the feasibility of the Tropical Rainfall Measuring Mission (TRMM). As part of this study a phase-A-level design of spacecraft for TRMM was developed by NASA/GSFC, and the result was documented in a feasibility study. The phase-A-level design is developed for the TRMM satellite utilizing a multimission spacecraft.

  9. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument (United States)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.


    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  10. Spacecraft Formation Orbit Estimation Using WLPS-Based Localization

    Directory of Open Access Journals (Sweden)

    Shu Ting Goh


    Full Text Available This paper studies the implementation of a novel wireless local positioning system (WLPS for spacecraft formation flying to maintain high-performance spacecraft relative and absolute position estimation. A WLPS equipped with antenna arrays allows each spacecraft to measure the relative range and coordinate angle(s of other spacecraft located in its coverage area. The dynamic base station and the transponder of WLPS enable spacecraft to localize each other in the formation. Because the signal travels roundtrip in WLPS, and due to the high spacecraft velocities, the signal transmission time delay reduces the localization performance. This work studies spacecraft formation positions estimation performance assuming that only WLPS is available onboard. The feasibility of estimating the spacecraft absolute position using only one-dimensional antenna array is also investigated. The effect of including GPS measurements in addition to WLPS is studied and compared to a GPS standalone system.

  11. High-Performance Fire Detector for Spacecraft Project (United States)

    National Aeronautics and Space Administration — The danger from fire aboard spacecraft is immediate with only moments for detection and suppression. Spacecraft are unique high-value systems where the cost of...

  12. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs


    spread, and thus also the modeling thereof, in realistic conditions is described. Some of the parameters governing the flame spread are also identified and their scaling against the dimensions of the test specimen is briefly questioned. Then several of the current and scheduled efforts are presented......-supply vehicle like the ATV or Orbital’s Cygnus, a series of supporting experiments are being planned and conducted by the team members. In order to answer the appropriate scientific and engineering problems relevant for spacecraft fire safety, a canonical scenario that can improve the understanding of flame...... in terms of their relevance for the flame spread problem. Further, it is explained how the results can be combined to enhance the understanding of fire spread in the real scale configuration and thus improve the fire safety onboard spacecrafts. The results and particularly the ones from the large scale...

  13. Technology Needs for Air Force Autonomous Spacecraft (United States)


    Jet Propulsion Laboratory’s (JPL) Autonomous Spacecraft Project (ASP). Accession For IT " .. . cation ;; 4b Dist-4 ! Aion / Avn ’l!ity Codes .,iml and/or...technologies in different major headings cannot be made. INDEX C.1 System Design, Programming, and Validation Technology C.1.1 Autonomy Methodology C.1.2...interfacou, raduw.LAncy and programming. There are some configurations which are both centralized and distributed and therefore have different characteristics

  14. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal


    is the sum of the gradient of the potential energy and the dissipative force. It is shown that this control law makes the system uniformly asymptotically stable to the desired reference point. Three problems were addressed in the paper: spacecraft stabilization in the inertial frame, libration damping...... with the use of electromagnetic coils and a slew maneuver with an additional objective of avoiding undesirable regions e.g. causing blindness of optical sensors...



    Jansen, Frank


    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  16. The Future of Spacecraft Nuclear Propulsion (United States)

    Jansen, F.


    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  17. Schema for Spacecraft-Command Dictionary (United States)

    Laubach, Sharon; Garcia, Celina; Maxwell, Scott; Wright, Jesse


    An Extensible Markup Language (XML) schema was developed as a means of defining and describing a structure for capturing spacecraft command- definition and tracking information in a single location in a form readable by both engineers and software used to generate software for flight and ground systems. A structure defined within this schema is then used as the basis for creating an XML file that contains command definitions.

  18. Building the Small Spacecraft Technology Pipeline


    Reuther, Dr. James


    Biography - Dr. Reuther currently serves as the Acting Director for Crosscutting Capability Demonstrations in the Office of Chief Technologist of the National Aeronautics and Space Administration (NASA) Headquarters. Previously, Dr. Reuther served as the Lead of the Test and Verification (T&V) Office for the Orion spacecraft development. After graduating from the University of California Davis with a Bachelors, Masters, and Ph.D. in mechanical and aeronautical engineering, Dr. Reuther perform...

  19. Additive Manufacturing: Ensuring Quality for Spacecraft Applications (United States)

    Swanson, Theodore; Stephenson, Timothy


    Reliable manufacturing requires that material properties and fabrication processes be well defined in order to insure that the manufactured parts meet specified requirements. While this issue is now relatively straightforward for traditional processes such as subtractive manufacturing and injection molding, this capability is still evolving for AM products. Hence, one of the principal challenges within AM is in qualifying and verifying source material properties and process control. This issue is particularly critical for applications in harsh environments and demanding applications, such as spacecraft.

  20. Artificial Intelligence and Spacecraft Power Systems (United States)

    Dugel-Whitehead, Norma R.


    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  1. Electricity Customers (United States)

    This page discusses key sectors and how they use electricity. Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity.

  2. Optimal autonomous spacecraft resiliency maneuvers using metaheuristics (United States)

    Showalter, Daniel J.

    The growing congestion in space has increased the need for spacecraft to develop resilience capabilities in response to natural and man-made hazards. Equipping satellites with increased maneuvering capability has the potential to enhance resilience by altering their arrival conditions as they enter potentially hazardous regions. The propellant expenditure corresponding to increased maneuverability requires these maneuvers be optimized to minimize fuel expenditure and to the extent which resiliency can be preserved. This research introduces maneuvers to enhance resiliency and investigates the viability of metaheuristics to enable their autonomous optimization. Techniques are developed to optimize impulsive and continuous-thrust resiliency maneuvers. The results demonstrate that impulsive and low-thrust resiliency maneuvers require only meters per second of delta-velocity. Additionally, bi-level evolutionary algorithms are explored in the optimization of resiliency maneuvers which require a maneuvering spacecraft to perform an inspection of one of several target satellites while en-route to geostationary orbit. The methods developed are shown to consistently produce optimal and near-optimal results for the problems investigated and can be applied to future classes of resiliency maneuvers yet to be defined. Results indicate that the inspection requires an increase of only five percent of the propellant needed to transfer from low Earth orbit to geostationary orbit. The maneuvers and optimization techniques developed throughout this dissertation demonstrate the viability of the autonomous optimization of spacecraft resiliency maneuvers and can be utilized to optimize future classes of resiliency maneuvers.

  3. Probing interferometric parallax with interplanetary spacecraft (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.


    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  4. Space Weathering Experiments on Spacecraft Materials (United States)

    Engelhart, D. P.; Cooper, R.; Cowardin, H.; Maxwell, J.; Plis, E.; Ferguson, D.; Barton, D.; Schiefer, S.; Hoffmann, R.


    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material's optical reflectance, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. It is shown that the spectral reflectance of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials.

  5. Internet Distribution of Spacecraft Telemetry Data (United States)

    Specht, Ted; Noble, David


    Remote Access Multi-mission Processing and Analysis Ground Environment (RAMPAGE) is a Java-language server computer program that enables near-real-time display of spacecraft telemetry data on any authorized client computer that has access to the Internet and is equipped with Web-browser software. In addition to providing a variety of displays of the latest available telemetry data, RAMPAGE can deliver notification of an alarm by electronic mail. Subscribers can then use RAMPAGE displays to determine the state of the spacecraft and formulate a response to the alarm, if necessary. A user can query spacecraft mission data in either binary or comma-separated-value format by use of a Web form or a Practical Extraction and Reporting Language (PERL) script to automate the query process. RAMPAGE runs on Linux and Solaris server computers in the Ground Data System (GDS) of NASA's Jet Propulsion Laboratory and includes components designed specifically to make it compatible with legacy GDS software. The client/server architecture of RAMPAGE and the use of the Java programming language make it possible to utilize a variety of competitive server and client computers, thereby also helping to minimize costs.

  6. Modeling Meteor Flares for Spacecraft Safety (United States)

    Ehlert, Steven


    NASA's Meteoroid Environment Office (MEO) is tasked with assisting spacecraft operators and engineers in quantifying the threat the meteoroid environment poses to their individual missions. A more complete understanding of the meteoroid environment for this application requires extensive observations. One manner by which the MEO observes meteors is with dedicated video camera systems that operate nightly. Connecting the observational data from these video cameras to the relevant physical properties of the ablating meteoroids, however, is subject to sizable observational and theoretical uncertainties. Arguably the most troublesome theoretical uncertainty in ablation is a model for the structure of meteoroids, as observations clearly show behaviors wholly inconsistent with meteoroids being homogeneous spheres. Further complicating the interpretation of the observations in the context of spacecraft risk is the ubiquitous process of fragmentation and the flares it can produce, which greatly muddles any attempts to estimating initial meteoroid masses. In this talk a method of estimating the mass distribution of fragments in flaring meteors using high resolution video observations will be dis- cussed. Such measurements provide an important step in better understanding of the structure and fragmentation process of the parent meteoroids producing these flares, which in turn may lead to better constraints on meteoroid masses and reduced uncertainties in spacecraft risk.

  7. Delamination Assessment Tool for Spacecraft Composite Structures (United States)

    Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert


    Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH

  8. Spacecraft charging requirements and engineering issues (United States)

    Garrett, Henry B.; Whittlesey, Albert C.


    An effort is currently underway to recast and combine two NASA guidelines for mitigating the effects of spacecraft charging and electrostatic discharge on spacecraft. The task has the goal of taking the existing NASA guidelines for preventing surface electrostatic charging, NASA-TP-2361 (Purvis et al., 1984), and internal electrostatic charging, NASAHDBK 4002 (Whittlesey, 1999), and bringing them up to date with recent laboratory and onorbit findings. This paper will describe the status of those on-going efforts to combine and update the two guidelines. Reasons for the upgrades will be presented, including new subject material for which there is now a greater understanding or a greater need which changes satellite design procedures, or both. There will be an emphasis on the proposed contents and on the differences and similarities between surface and internal charging mitigation techniques. In addition, the mitigation requirements that can be derived from the combined handbook will be discussed with emphasis on how they might affect the engineering design and testing of future spacecraft.

  9. Nuclear Electric Propulsion mission operations. (United States)

    Prickett, W. Z.; Spera, R. J.


    Mission operations are presented for comet rendezvous and outer planet exploration missions conducted by unmanned Nuclear Electric Propulsion (NEP) system employing in-core thermionic reactors for electric power generation. The selected reference mission are Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. Mission operations and options are defined from spacecraft assembly through mission completion. Pre-launch operations and related GSE requirements are identified. Shuttle launch and subsequent injection to earth escape by the Centaur d-1T are discussed, as well as power plant startup and heliocentric mission phases.

  10. Wireless Communication onboard Spacecraft : Draadloze Communicatie aan boord van Ruimtevaartuigen

    NARCIS (Netherlands)

    Amini, R.


    This dissertation focuses on intra-spacecraft wireless communication as a solution for reducing the spacecraft onboard harness. Despite outstanding advances in aerospace industry, the cost of accessing space is still very high and the amount of engineering work required for spacecraft design and

  11. Illustration of relative sizes of Mercury, Gemini and Apollo spacecraft (United States)


    Artist concept illustrating the relative sizes of the one-man Mercury spacecraft, the two-man Gemini spacecraft, and the three-man Apollo spacecraft. Also shows line drawing of launch vehichles to show their relative size in relation to each other.

  12. Wireless Intra-Spacecraft Communication: The Benefits and the Challenges (United States)

    Zheng, Will H.; Armstrong, John T.


    In this paper we present a systematic study of how intra-spacecraft wireless communication can be adopted to various subsystems of the spacecraft including C&DH (Command & Data Handling), Telecom, Power, Propulsion, and Payloads, and the interconnects between them. We discuss the advantages of intra-spacecraft wireless communication and the disadvantages and challenges and a proposal to address them.

  13. Space Environments and Spacecraft Effects Organization Concept (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael


    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  14. Antenna for Measuring Electric Fields Within the Inner Heliosphere (United States)

    Sittler, Edward Charles


    A document discusses concepts for the design of an antenna to be deployed from a spacecraft for measuring the ambient electric field associated with plasma waves at a location within 3 solar radii from the solar photosphere. The antenna must be long enough to extend beyond the photoelectron and plasma sheaths of the spacecraft (expected to be of the order of meters thick) and to enable measurements at frequencies from 20 Hz to 10 MHz without contamination by spacecraft electric-field noise. The antenna must, therefore, extend beyond the thermal protection system (TPS) of the main body of the spacecraft and must withstand solar heating to a temperature as high as 2,000 C while not conducting excessive heat to the interior of the spacecraft. The TPS would be conical and its axis would be pointed toward the Sun. The antenna would include monopole halves of dipoles that would be deployed from within the shadow of the TPS. The outer potion of each monopole would be composed of a carbon-carbon (C-C) composite surface exposed to direct sunlight (hot side) and a C-C side in shadow (cold side) with yttria-stabilized zirconia spacers in-between. The hot side cannot view the spacecraft bus, while the cold side can. The booms also can be tilted to minimize heat input to spacecraft bus. This design allows one to reduce heat input to the spacecraft bus to acceptable levels.

  15. Assessment of Capabilities for First-Principles Simulation of Spacecraft Electric Propulsion Systems and Plasma Spacecraft Environment (United States)


    Manuel  Torrilhon (DEU) None NOV 2015 – OCT 2016 RWS scheduled for 3rd week of June,  Neuilly, France Followon to AVT‐ET‐152 Objectives: • Continue AVT...technical  challenges  to first principles simulation of  partially ionized magnetized plasmas as well as potential  numerical methods / experimental...validation / theoretical  analysis avenues to address these  challenges • Downselect actions from this broad range of possibilities  will identify high

  16. The research and practice of spacecraft software engineering (United States)

    Chen, Chengxin; Wang, Jinghua; Xu, Xiaoguang


    In order to ensure the safety and reliability of spacecraft software products, it is necessary to execute engineering management. Firstly, the paper introduces the problems of unsystematic planning, uncertain classified management and uncontinuous improved mechanism in domestic and foreign spacecraft software engineering management. Then, it proposes a solution for software engineering management based on system-integrated ideology in the perspective of spacecraft system. Finally, a application result of spacecraft is given as an example. The research can provides a reference for executing spacecraft software engineering management and improving software product quality.

  17. Contemporary state of spacecraft/environment interaction research

    CERN Document Server

    Novikov, L S


    Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.

  18. 30-kW SEP Spacecraft as Secondary Payloads for Low-Cost Deep Space Science Missions (United States)

    Brophy, John R.; Larson, Tim


    The Solar Array System contracts awarded by NASA's Space Technology Mission Directorate are developing solar arrays in the 30 kW to 50 kW power range (beginning of life at 1 AU) that have significantly higher specific powers (W/kg) and much smaller stowed volumes than conventional rigid-panel arrays. The successful development of these solar array technologies has the potential to enable new types of solar electric propulsion (SEP) vehicles and missions. This paper describes a 30-kW electric propulsion vehicle built into an EELV Secondary Payload Adapter (ESPA) ring. The system uses an ESPA ring as the primary structure and packages two 15-kW Megaflex solar array wings, two 14-kW Hall thrusters, a hydrazine Reaction Control Subsystem (RCS), 220 kg of xenon, 26 kg of hydrazine, and an avionics module that contains all of the rest of the spacecraft bus functions and the instrument suite. Direct-drive is used to maximize the propulsion subsystem efficiency and minimize the resulting waste heat and required radiator area. This is critical for packaging a high-power spacecraft into a very small volume. The fully-margined system dry mass would be approximately 1120 kg. This is not a small dry mass for a Discovery-class spacecraft, for example, the Dawn spacecraft dry mass was only about 750 kg. But the Dawn electric propulsion subsystem could process a maximum input power of 2.5 kW, and this spacecraft would process 28 kW, an increase of more than a factor of ten. With direct-drive the specific impulse would be limited to about 2,000 s assuming a nominal solar array output voltage of 300 V. The resulting spacecraft would have a beginning of life acceleration that is more than an order of magnitude greater than the Dawn spacecraft. Since the spacecraft would be built into an ESPA ring it could be launched as a secondary payload to a geosynchronous transfer orbit significantly reducing the launch costs for a planetary spacecraft. The SEP system would perform the escape

  19. Multiple Spacecraft Study of the Impact of Turbulence on Reconnection Rates (United States)

    Wendel, Deirdre; Goldstein, Melvyn; Figueroa-Vinas, Adolfo; Adrian, Mark; Sahraoui, Fouad


    Magnetic turbulence and secondary island formation have reemerged as possible explanations for fast reconnection. Recent three-dimensional simulations reveal the formation of secondary islands that serve to shorten the current sheet and increase the accelerating electric field, while both simulations and observations witness electron holes whose collapse energizes electrons. However, few data studies have explicitly investigated the effect of turbulence and islands on the reconnection rate. We present a more comprehensive analysis of the effect of turbulence and islands on reconnection rates observed in space. Our approach takes advantage of multiple spacecraft to find the location of the spacecraft relative to the inflow and the outflow, to estimate the reconnection electric field, to indicate the presence and size of islands, and to determine wave vectors indicating turbulence. A superposed epoch analysis provides independent estimates of spatial scales and a reconnection electric field. We apply k-filtering and a new method adopted from seismological analyses to identify the wavevectors. From several case studies of reconnection events, we obtain preliminary estimates of the spectral scaling law, identify wave modes, and present a method for finding the reconnection electric field associated with the wave modes.

  20. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila


    The Space Weather Research Center (http://swrc. at NASA Goddard, part of the Community Coordinated Modeling Center (, is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (, enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  1. Plasma/Radio Wave Observations at Mercury by the Bepicolombo MMO Spacecraft (United States)

    Matsumoto, H.; Bougeret, J.-L.; Blomberg, L. G.; Kojima, H.; Yagitan, S.; Omura, Y.; Moncuquet, M.; Chanteur, G.; Kasaba, Y.; Trotignon, J.-G.; Kasahara, Y.; MMO Team; PWI Team; BepiColombo Team

    The BepiColombo Mercury Magnetospheric Orbiter (MMO) spacecraft comprises the plasma and radio wave observation system called Plasma Wave Investigation (PWI). The PWI is designed and developed in collaboration between Japanese and European scientists. Since plasma/radio wave receivers were not installed in the former spacecraft, Mariner 10, which observed the planet Mercury, the PWI onboard the MMO spacecraft will provide the first plasma/radio wave data from Mercury orbit. It will give important information for studies of energy exchange processes in the unique magnetosphere of Mercury characterized by the interaction between the relatively large planet without ionosphere and the solar wind with high dynamic pressure. The PWI consists of three sets of receivers (EWO, SORBET, and AM2P), connected to two sets of electric field sensors (MEFISTO and WPT) and two kinds of magnetic field sensors (LF-SC and DB-SC). The PWI will observe both waveforms and frequency spectra in the frequency range from DC to 10 MHz for the electric field and from 0.1 Hz to 640 kHz for the magnetic field. In the present paper, we demonstrate the scientific objectives of plasma/radio wave observation around Mercury. Further, we introduce the PWI system, which is designed to meet the scientific objectives in the BepiColombo MMO mission.

  2. Choosing an efficient option of the combined propulsion system and flight profile of the INTERHELIO-PROBE spacecraft (United States)

    Platov, I. V.; Simonov, A. V.; Konstantinov, M. S.


    The paper is devoted to the design features of the prospective Russian INTERHELIO-PROBE spacecraft using, depending on the configuration version, an electric or chemical propulsion system as a sustainer. The scientific goal of the mission is the study of near-solar space from close distances (60-70 solar radii). The paper presents the description of several versions of the spacecraft options depending on the installed propulsion system, as well as the main characteristics of the flight profile depending on the engine type.

  3. Electromagnetic Dissociation and Spacecraft Electronics Damage (United States)

    Norbury, John W.


    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  4. Spacecraft computer technology at Southwest Research Institute (United States)

    Shirley, D. J.


    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  5. Combined space environment on spacecraft engineering materials (United States)

    Workman, Gary L.; Smith, Guy A.; Kosten, Susan


    Spacecraft structures and surface materials exposed to the space environment for extended periods, up to thirty years, have increased potential for damage from long term exposure to the combined space environment including solar ultraviolet radiation, electrons, and protons and orbiting space debris. The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/cm(sup 2)/day and the proton integral fluence is above 1 x 10(exp 9) protons/cm(sup 2)/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of ultraviolet radiation, particularly in the vacuum ultraviolet (less than 200 nm wavelength) is more difficult to characterize at this time. Very little data is available in the literature which can be used for determining the life cycle of a material placed in space for extended durations of time. In order to obtain critical data for planning and designing of spacecraft systems, use of a small vacuum system at the Environmental Effects Facility at MSFC, which can be used for these purposes was used. A special effort was made to build up this capability during the course of this research effort and perform a variety of experiments on materials proposed for the Space Station. A description of the apparatus and the procedure devised to process potential spacecraft materials is included.

  6. Spacecraft Maximum Allowable Concentrations for Airborne Contaminants (United States)

    James, John T.


    The enclosed table lists official spacecraft maximum allowable concentrations (SMACs), which are guideline values set by the NASA/JSC Toxicology Group in cooperation with the National Research Council Committee on Toxicology (NRCCOT). These values should not be used for situations other than human space flight without careful consideration of the criteria used to set each value. The SMACs take into account a number of unique factors such as the effect of space-flight stress on human physiology, the uniform good health of the astronauts, and the absence of pregnant or very young individuals. Documentation of the values is given in a 5 volume series of books entitled "Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants" published by the National Academy Press, Washington, D.C. These books can be viewed electronically at Short-term (1 and 24 hour) SMACs are set to manage accidental releases aboard a spacecraft and permit risk of minor, reversible effects such as mild mucosal irritation. In contrast, the long-term SMACs are set to fully protect healthy crewmembers from adverse effects resulting from continuous exposure to specific air pollutants for up to 1000 days. Crewmembers with allergies or unusual sensitivity to trace pollutants may not be afforded complete protection, even when long-term SMACs are not exceeded. Crewmember exposures involve a mixture of contaminants, each at a specific concentration (C(sub n)). These contaminants could interact to elicit symptoms of toxicity even though individual contaminants do not exceed their respective SMACs. The air quality is considered acceptable when the toxicity index (T(sub grp)) for each toxicological group of compounds is less than 1, where T(sub grp), is calculated as follows: T(sub grp) = C(sub 1)/SMAC(sub 1) + C(sub 2/SMAC(sub 2) + ...+C(sub n)/SMAC(sub n).

  7. Spacecraft fabrication and test MODIL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.T.


    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  8. Introducing GV : The Spacecraft Geometry Visualizer (United States)

    Throop, Henry B.; Stern, S. A.; Parker, J. W.; Gladstone, G. R.; Weaver, H. A.


    GV (Geometry Visualizer) is a web-based program for planning spacecraft observations. GV is the primary planning tool used by the New Horizons science team to plan the encounter with Pluto. GV creates accurate 3D images and movies showing the position of planets, satellites, and stars as seen from an observer on a spacecraft or other body. NAIF SPICE routines are used throughout for accurate calculations of all geometry. GV includes 3D geometry rendering of all planetary bodies, lon/lat grids, ground tracks, albedo maps, stellar magnitudes, types and positions from HD and Tycho-2 catalogs, and spacecraft FOVs. It generates still images, animations, and geometric data tables. GV is accessed through an easy-to-use and flexible web interface. The web-based interface allows for uniform use from any computer and assures that all users are accessing up-to-date versions of the code and kernel libraries. Compared with existing planning tools, GV is often simpler, faster, lower-cost, and more flexible. GV was developed at SwRI to support the New Horizons mission to Pluto. It has been subsequently expanded to support multiple other missions in flight or under development, including Cassini, Messenger, Rosetta, LRO, and Juno. The system can be used to plan Earth-based observations such as occultations to high precision, and was used by the public to help plan 'Kodak Moment' observations of the Pluto system from New Horizons. Potential users of GV may contact the author for more information. Development of GV has been funded by the New Horizons, Rosetta, and LRO missions.

  9. Cluster PEACE observations of electrons of spacecraft origin

    Directory of Open Access Journals (Sweden)

    S. Szita

    Full Text Available The two PEACE (Plasma Electron And Current Experiment sensors on board each Cluster spacecraft sample the electron velocity distribution across the full 4 solid angle and the energy range 0.7 eV to 26 keV with a time resolution of 4 s. We present high energy and angular resolution 3D observations of electrons of spacecraft origin in the various environments encountered by the Cluster constellation, including a lunar eclipse interval where the spacecraft potential was reduced but remained positive, and periods of ASPOC (Active Spacecraft POtential Control operation which reduced the spacecraft potential. We demonstrate how the spacecraft potential may be found from a gradient change in the PEACE low energy spectrum, and show how the observed spacecraft electrons are confined by the spacecraft potential. We identify an intense component of the spacecraft electrons with energies equivalent to the spacecraft potential, the arrival direction of which is seen to change when ASPOC is switched on. Another spacecraft electron component, observed in the sunward direction, is reduced in the eclipse but unaffected by ASPOC, and we believe this component is produced in the analyser by solar UV. We find that PEACE anodes with a look direction along the spacecraft surfaces are more susceptible to spacecraft electron contamination than those which look perpendicular to the surface, which justifies the decision to mount PEACE with its field-of-view radially outward rather than tangentially.

    Key words. Magnetosheric physics (general or miscellaneous Space plasma physics (spacecraft sheaths, wakes, charging

  10. Cluster PEACE observations of electrons of spacecraft origin

    Directory of Open Access Journals (Sweden)

    S. Szita


    Full Text Available The two PEACE (Plasma Electron And Current Experiment sensors on board each Cluster spacecraft sample the electron velocity distribution across the full 4 solid angle and the energy range 0.7 eV to 26 keV with a time resolution of 4 s. We present high energy and angular resolution 3D observations of electrons of spacecraft origin in the various environments encountered by the Cluster constellation, including a lunar eclipse interval where the spacecraft potential was reduced but remained positive, and periods of ASPOC (Active Spacecraft POtential Control operation which reduced the spacecraft potential. We demonstrate how the spacecraft potential may be found from a gradient change in the PEACE low energy spectrum, and show how the observed spacecraft electrons are confined by the spacecraft potential. We identify an intense component of the spacecraft electrons with energies equivalent to the spacecraft potential, the arrival direction of which is seen to change when ASPOC is switched on. Another spacecraft electron component, observed in the sunward direction, is reduced in the eclipse but unaffected by ASPOC, and we believe this component is produced in the analyser by solar UV. We find that PEACE anodes with a look direction along the spacecraft surfaces are more susceptible to spacecraft electron contamination than those which look perpendicular to the surface, which justifies the decision to mount PEACE with its field-of-view radially outward rather than tangentially.Key words. Magnetosheric physics (general or miscellaneous Space plasma physics (spacecraft sheaths, wakes, charging

  11. Fault Detection and Isolation for Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal


    This article realizes nonlinear Fault Detection and Isolation for actuators, given there is no measurement of the states in the actuators. The Fault Detection and Isolation of the actuators is instead based on angular velocity measurement of the spacecraft and knowledge about the dynamics...... of the satellite. The algorithms presented in this paper are based on a geometric approach to achieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithms are discussed....

  12. Conducted Transients on Spacecraft Primary Power Lines (United States)

    Mc Closkey, John; Dimov, Jen


    One of the sources of potential interference on spacecraft primary power lines is that of conducted transients resulting from equipment being switched on and off of the bus. Susceptibility to such transients is addressed by some version of the CS06 requirement of MIL-STD-461462. This presentation provides a summary of the history of the CS06 requirement and test method, a basis for understanding of the sources of these transients, analysis techniques for determining their worst-case characteristics, and guidelines for minimizing their magnitudes and applying the requirement appropriately.

  13. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier


    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due......-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame...

  14. Concurrent rendezvous control of underactuated spacecraft (United States)

    Muralidharan, Vijay; Reza Emami, M.


    The concurrent control of spacecraft equipped with one-axis unilateral thruster and three-axis attitude actuator is considered in this paper. The proposed control law utilizes attitude control channels along with the single thrust force concurrently, for three-dimensional trajectory tracking and rendezvous with a target object. The concurrent controller also achieves orbital transfer to low Earth orbits with long range separation. To demonstrate the orbit transfer capabilities of the concurrent controller, a smooth elliptical orbit transfer trajectory for co-planar circular orbits is designed. The velocity change and energy consumption of the designed orbit transfer trajectory is observed to be equivalent to that of Hohmann transfer.

  15. Relativistic effects of spacecraft with circumnavigating observer (United States)

    Shanklin, Nathaniel; West, Joseph

    A variation of the recently introduced Trolley Paradox, itself is a variation of the Ehrenfest Paradox is presented. In the Trolley Paradox, a ``stationary'' set of observers tracking a wheel rolling with a constant velocity find that the wheel travels further than its rest length circumference during one revolution of the wheel, despite the fact that the Lorentz contracted circumference is less than its rest value. In the variation presented, a rectangular spacecraft with onboard observers moves with constant velocity and is circumnavigated by several small ``sloops'' forming teams of inertial observers. This whole precession moves relative to a set of ``stationary'' Earth observers. Two cases are presented, one in which the sloops are evenly spaced according to the spacecraft observers, and one in which the sloops are evenly spaced according to the Earth observes. These two cases, combined with the rectangular geometry and an emphasis on what is seen by, and what is measured by, each set of observers is very helpful in sorting out the apparent contradictions. To aid in the visualizations stationary representations in excel along with animation in Visual Python and Unity are presented. The analysis presented is suitable for undergraduate physics majors.

  16. Space Weathering Experiments on Spacecraft Materials (United States)

    Cooper, R.; Cowardin, H.; Engelhar, D.; Plis, Elena; Hoffman, R.


    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers and Mylar, specifically those found in multi-layered spacecraft insulation, due to electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons. Among other properties these chemical changes altered the optical reflectance as documented in laboratory analysis. This paper presents results of the initial experiment results focused on the exposure of materials to various fluences of high energy electrons, used to simulate a portion of the geosynchronous space environment. The paper illustrates how the spectral reflectance changes as a function of time on orbit with respect to GEO environmental factors and investigates the survivability of the material after multiple electron doses. These results provide a baseline for analysis of aging effects on satellite systems used for remote sensing. They also provide preliminary analysis on what materials are most likely to encompass the high area-to-mass population of space debris in the geosynchronous environment. Lastly, the paper provides the results of the initial experimentation as a proof of concept for space aging on polymers and Mylar for conducting more experiments with a larger subset of spacecraft materials.

  17. Processing Images of Craters for Spacecraft Navigation (United States)

    Cheng, Yang; Johnson, Andrew E.; Matthies, Larry H.


    A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate >93 percent, a false-alarm rate <5 percent, a geometric error <0.5 pixel, and a position error <0.3 pixel.

  18. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth


    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  19. Improved secondary oil recovery by controlled waterflooding-pilot demonstration: Ranger Zone, Fault Block VII, Wilmington Field. Phase IV. Quarterly report, April-June 1983

    Energy Technology Data Exchange (ETDEWEB)


    The project is an improved waterflood demonstration of alkaline water-flooding in a typical well flood pattern of the Ranger Zone of the Long Beach Unit portion of the Wilmington Field. A mixture of 0.4% sodium hydroxide and sodium silicate in fresh water containing 0.75 to 1.0% salt is being injected to improve oil recovery. The demonstration pattern in which D.O.E. participated involves the input of approximately 30,000 to 34,000 B/D water in 8 injection wells which surround 11 active producers in an area of 93 acres. Reservoir engineering studies have shown that the total area being affected by the injection in these 8 wells is much larger, being approximately 200 acres including areas situated both north and south. If the alkaline injection is successful, improved flood efficiency should occur as demonstrated by reduced water-oil ratios and increased oil recovery. Chemical injection continued in the quarter. A simple long term solution to the floc formed on mixing the dilute alkaline solution with the concentrated salt brine was not found. Alternating one week slug injection of soft water with alkali and then soft water with salt continued throughout the quarter. A four-hour soft water spacer with no chemicals was placed between the slugs. Injection and oil, water production data are presented. 7 figures, 1 table.

  20. Improved secondary oil recovery by controlled waterflooding-pilot demonstration: Ranger Zone, Fault Block VII, Wilmington Field. Phase IV. Quarterly report, January-March, 1983

    Energy Technology Data Exchange (ETDEWEB)


    The project is an improved waterflood demonstration of alkaline waterflooding in a typical well flood pattern of the Ranger Zone of the Long Beach Unit portion of the Wilmington Field. A mixture of 0.4% sodium hydroxide and sodium silicate in fresh water containing 0.75 to 1.0% salt is being injected to improve oil recovery. The demonstration pattern in which DOE participated involves the input of approximately 30,000 to 34,000 B/D water in 8 injection wells which surround 11 active producers in an area of 93 acres. Reservoir engineering studies have shown that the total area being affected by the injection in these 8 wells is much larger, being approximately 200 acres including areas situated both north and south. If the alkaline injection is successful, improved flood efficiency should occur as demonstrated by reduced water-oil ratios and increased oil recovery. Chemical injection continued in the quarter. A simple long term solution to the floc formed on mixing the dilute alkaline solution with the concentrated salt brine was not found. Alternating one week slug injection of soft water with alkali and then soft water with salt continued throughout the quarter. A four-hour soft water spacer with no chemicals was placed between the slugs. Injection data and graphs showing performance of the area are presented. 7 figures, 2 tables.

  1. Comparison of the McGrath® Series 5 and GlideScope® Ranger with the Macintosh laryngoscope by paramedics

    Directory of Open Access Journals (Sweden)

    Werner Christian


    Full Text Available Abstract Background Out-of-hospital endotracheal intubation performed by paramedics using the Macintosh blade for direct laryngoscopy is associated with a high incidence of complications. The novel technique of video laryngoscopy has been shown to improve glottic view and intubation success in the operating room. The aim of this study was to compare glottic view, time of intubation and success rate of the McGrath® Series 5 and GlideScope® Ranger video laryngoscopes with the Macintosh laryngoscope by paramedics. Methods Thirty paramedics performed six intubations in a randomised order with all three laryngoscopes in an airway simulator with a normal airway. Subsequently, every participant performed one intubation attempt with each device in the same manikin with simulated cervical spine rigidity using a cervical collar. Glottic view, time until visualisation of the glottis and time until first ventilation were evaluated. Results Time until first ventilation was equivalent after three intubations in the first scenario. In the scenario with decreased cervical motion, the time until first ventilation was longer using the McGrath® compared to the GlideScope® and AMacintosh (p ® device (p Conclusions The learning curve for video laryngoscopy in paramedics was steep in this study. However, these data do not support prehospital use of the McGrath® and GlideScope® devices by paramedics.

  2. Comparison of the McGrath® Series 5 and GlideScope® Ranger with the Macintosh laryngoscope by paramedics. (United States)

    Piepho, Tim; Weinert, Kathrin; Heid, Florian M; Werner, Christian; Noppens, Rüdiger R


    Out-of-hospital endotracheal intubation performed by paramedics using the Macintosh blade for direct laryngoscopy is associated with a high incidence of complications. The novel technique of video laryngoscopy has been shown to improve glottic view and intubation success in the operating room. The aim of this study was to compare glottic view, time of intubation and success rate of the McGrath® Series 5 and GlideScope® Ranger video laryngoscopes with the Macintosh laryngoscope by paramedics. Thirty paramedics performed six intubations in a randomised order with all three laryngoscopes in an airway simulator with a normal airway. Subsequently, every participant performed one intubation attempt with each device in the same manikin with simulated cervical spine rigidity using a cervical collar. Glottic view, time until visualisation of the glottis and time until first ventilation were evaluated. Time until first ventilation was equivalent after three intubations in the first scenario. In the scenario with decreased cervical motion, the time until first ventilation was longer using the McGrath® compared to the GlideScope® and AMacintosh (p success rate for endotracheal intubation was similar for all three devices. Glottic view was only improved using the McGrath® device (p < 0.001) compared to using the Macintosh blade. The learning curve for video laryngoscopy in paramedics was steep in this study. However, these data do not support prehospital use of the McGrath® and GlideScope® devices by paramedics.

  3. Electrically Conductive Anodized Aluminum Surfaces (United States)

    Nguyen, Trung Hung


    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In comparison with these competing finishes, the present nanocomposite finishes are expected to cost 50

  4. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation (United States)

    Yang, Yaguang; Zhou, Zhiqiang


    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  5. Relativistic Electrons in Electric Discharges

    DEFF Research Database (Denmark)

    Cinar, Deniz

    to these conditions, with exception of the electric _eld magnitude where the photon distribution becomes progressively more forward directed for increasing _eld magnitude. However, exploring photon transport to the top of the atmosphere, the angular beaming properties were found to wash out because of Compton...... breakdown _eld appears plausible for TGF generation, because it minimizes the electron avalanche time and length and the total electric potential required.......Thunderstorms generate bursts of X- and Gamma radiation. When observed from spacecraft, the bursts are referred to as “Terrestrial Gamma-ray Flashes” (TGFs). They are bremsstrahlung from energetic electrons accelerated in thunderstorm electric _elds. The TGFs were _rst observed in the 90ties...

  6. Plasma sheath structure surrounding a large powered spacecraft (United States)

    Mandell, M. J.; Jongeward, G. A.; Katz, I.


    Various factors determining the floating potential of a highly biased (about 4-kV) spacecraft in low earth orbit are discussed. While the common rule of thumb (90 percent negative; 10 percent positive) is usually a good guide, different biasing and grounding patterns can lead to high positive potentials. The NASCAP/LEO code can be used to predict spacecraft floating potential for complex three-dimensional spacecraft.

  7. 3D Display of Spacecraft Dynamics Using Real Telemetry

    Directory of Open Access Journals (Sweden)

    Sanguk Lee


    Full Text Available 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

  8. High temperature thrust chamber for spacecraft (United States)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)


    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  9. A corrector for spacecraft calculated electron moments

    Directory of Open Access Journals (Sweden)

    J. Geach


    Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.

  10. Human factors issues for interstellar spacecraft (United States)

    Cohen, Marc M.; Brody, Adam R.


    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  11. Expert system for spacecraft command and control (United States)

    Wagner, R. E.

    The application of AI techniques to the automation of ground control functions in the defense satellite communication system (DSCS) is described. The aim of this effort is to lower the vulnerability of the DSCS to attack; a first step is the design of software for spacecraft maintenance and control. The benefits of automation and the need for high-level implementation are reviewed. A knowledge-based or expert approach was chosen to automate telemetry-interpretation, trend-analysis, anomaly-resolution, and status-maintenance functions now performed solely by operators; and a design concept was developed to meet the requirements of extendability, simplicity, and explicitness. Rule-based and logic-based knowledge-representation schemes, and data-driven and goal-driven control strategies are compared. The programming tools developed by the different organizations participating in the AI effort are indicated in a table.

  12. Spacecraft Status Report: 2001 Mars Odyssey (United States)

    Boyles, Carole


    Fourth extension of Odyssey mission continues, with orbital science investigations and relay services for landed assets. Mitigation of aging IMU and UHF transceiver. ODY has responded to Program Office/board recommendations. All Stellar mode has been certified for flight operations and is now standard for nadir point operations on the A-side. Investigating options to mitigate aging Battery. Gradual transfer to a later LMST orbit node to shorten eclipse durations. Reduce spacecraft loads during the longer eclipses. Optimize battery performance. ODY is preparing for E5 Proposal and Planetary Science Division FY12 Senior Review activities. ODY is on track to support MSL EDL and surface operations. ODY is managing consumables in order to remain in operations until 2020.

  13. Dynamic interactions between ionospheric plasma and spacecraft (United States)

    Snyder, David B.


    Studies of the interactions between the Space Station Freedom and ionospheric plasma led to an improved understanding of the dynamics of these interactions. Some of the issues related to developing and sustaining arcs in ionospheric conditions are considered. A technique for the estimation of the amplitude and duration of arcs is presented. The technique uses the capacitance of the system to estimate the peak current and then uses the charge stored to estimate the arc duration. As new technologies are implemented on spacecraft, new environmental compatibility issues will arise. Some of the issues related to driving dielectric surfaces with alternating current voltages are considered. The steady state charging criteria is that over an oscillation, the ion charge collected is compensated for by the electron charge collected. This tends to drive the average potential negative so that the dielectric surface is positive for only a small portion of the cycle.

  14. Application of advanced electronics to a future spacecraft computer design (United States)

    Carney, P. C.


    Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.

  15. Magellan spacecraft and memory state tracking: Lessons learned, future thoughts (United States)

    Bucher, Allen W.


    Numerous studies have been dedicated to improving the two main elements of Spacecraft Mission Operations: Command and Telemetry. As a result, not much attention has been given to other tasks that can become tedious, repetitive, and error prone. One such task is Spacecraft and Memory State Tracking, the process by which the status of critical spacecraft components, parameters, and the contents of on-board memory are managed on the ground to maintain knowledge of spacecraft and memory states for future testing, anomaly investigation, and on-board memory reconstruction. The task of Spacecraft and Memory State Tracking has traditionally been a manual task allocated to Mission Operations Procedures. During nominal Mission Operations this job is tedious and error prone. Because the task is not complex and can be accomplished manually, the worth of a sophisticated software tool is often questioned. However, in the event of an anomaly which alters spacecraft components autonomously or a memory anomaly such as a corrupt memory or flight software error, an accurate ground image that can be reconstructed quickly is a priceless commodity. This study explores the process of Spacecraft and Memory State Tracking used by the Magellan Spacecraft Team highlighting its strengths as well as identifying lessons learned during the primary and extended missions, two memory anomalies, and other hardships encountered due to incomplete knowledge of spacecraft states. Ideas for future state tracking tools that require minimal user interaction and are integrated into the Ground Data System will also be discussed.

  16. Magellan spacecraft and memory state tracking: Lessons learned, future thoughts (United States)

    Bucher, Allen W.


    Numerous studies have been dedicated to improving the two main elements of Spacecraft Mission Operations: Command and Telemetry. As a result, not much attention has been given to other tasks that can become tedious, repetitive, and error prone. One such task is Spacecraft and Memory State Tracking, the process by which the status of critical spacecraft components, parameters, and the contents of on-board memory are managed on the ground to maintain knowledge of spacecraft and memory states for future testing, anomaly investigation, and on-board memory reconstruction. The task of Spacecraft and Memory State Tracking has traditionally been a manual task allocated to Mission Operations Procedures. During nominal Mission Operations this job is tedious and error prone. Because the task is not complex and can be accomplished manually, the worth of a sophisticated software tool is often questioned. However, in the event of an anomaly which alters spacecraft components autonomously or a memory anomaly such as a corrupt memory or flight software error, an accurate ground image that can be reconstructed quickly is a priceless commodity. This study explores the process of Spacecraft and Memory State Tracking used by the Magellan Spacecraft Team highlighting its strengths as well as identifying lessons learned during the primary and extended missions, two memory anomalies, and other hardships encountered due to incomplete knowledge of spacecraft states. Ideas for future state tracking tools that require minimal user interaction and are integrated into the Ground Data System will also be discussed.

  17. Electric drives

    CERN Document Server

    Boldea, Ion


    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  18. Electrical contracting

    CERN Document Server

    Neidle, Michael


    Electrical Contracting, Second Edition is a nine-chapter text guide for the greater efficiency in planning and completing installations for the design, installation and control of electrical contracts. This book starts with a general overview of the efficient cabling and techniques that must be employed for safe wiring design, as well as the cost estimation of the complete electrical contract. The subsequent chapters are devoted to other electrical contracting requirements, including electronic motor control, lighting, and electricity tariffs. A chapter focuses on the IEE Wiring Regulations an

  19. Calculation of sheath and wake structure about a pillbox-shaped spacecraft in a flowing plasma (United States)

    Parker, L. W.


    A computer program was used for studies of the disturbed zones around bodies in flowing plasmas, particularly spacecraft and their associated sheaths and wakes. The program solved a coupled Poisson-Vlasov system of nonlinear partial differential integral equations to obtain distributions of electric potential and ion and electron density about a finite length cylinder in a plasma flow at arbitrary ion Mach numbers. The approach was applicable to a larger range of parameters than other available approaches. In sample calculations, bodies up to 100 Debye lengths in radius were treated, that is, larger than any previously treated realistically. Applications were made to in-situ satellite experiments.

  20. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 2 (United States)


    The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various space-craft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee On Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMACs for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMACs for approximately 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the SMAC reports for 12 chemical contaminants that have been reviewed for

  1. Microbial diversity on spacecraft and in spacecraft assembly and testing facilities (United States)

    Rettberg, P.; Nellen, J.; Fritze, D.; Verbarg, S.; Stackebrandt, E.; Kminek, G.

    Planetary protection measures are necessary for all space flight missions involved with life detection and or sample return procedures to avoid the contamination of critical spacecraft hardware components with terrestrial organisms Spacecraft are assembled in clean rooms under defined and controlled environmental conditions These conditions might be considered as extreme with respect to controlled air circulation low relative humidity moderately high constant temperature and low nutrient conditions and represent a special artificial environment for microorganisms In the ESA-Project MiDiv the bioburden and the microbial diversity of three different spacecraft assembly and testing facilities has been investigated in periods where the facilities have been in full operation with the assembly and test of European satellites For the selected satellite missions SMART-1 and ROSETTA however no strict planetary protection measures like those required for a landing mission on Mars COSPAR Planetary Protection Category IV have been necessary and taken into consideration The result of this investigation therefore reflects the normal microbial conditions in standard class 100 000 clean rooms used by employees without any special training in planetary protection The investigation in the MiDiv project was restricted to so-called cultivable microorganisms in particular to those microorganisms that are able to grow under the selected conditions The analysis of the samples included cultivation on different media at different pH values and

  2. Application and optimization of input parameter spaces in mass flow modelling: a case study with r.randomwalk and r.ranger (United States)

    Krenn, Julia; Zangerl, Christian; Mergili, Martin


    r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This

  3. Modeling of the Lightning Plasma Channel Stroke to a Spacecraft during Ascent (United States)

    Tarditi, Alfonso; Norgard, John


    Lightning protection is an important aspect of modern aerospace design: the increased use of composite materials (vs. metals) reduces the shielding and robustness of the conducting path that the outer shell of a vehicle can present to a lightning discharge. A spacecraft during ascent becomes vulnerable to lightning strokes immediately after leaving the launch pad: in addition to natural lightning conditions, there is the possibility of triggered lightning events, caused by a perturbation of the atmospheric electric field [1]. The purpose of this study, in support of the NASA Constellation program, is to determine the evolution of the plasma current and its distribution on the spacecraft surface. Following earlier ``gas dynamic'' approaches [2], the model considers a plasma channel attached to the ascending spacecraft after a return stroke is established. The conductive exhaust plume [3] is an integral part of the model. The NIMROD 3D plasma fluid code [4] is used to model the plasma channel, reproducing the full transient due to the self-consistent magnetic field and the possibility of sweeping of the attachment point along the moving structure [5]. References: [1] M.A. Uman, Proc. IEEE, 76, 1548 (1988). [2] V. A. Rakov, M. A. Uman, IEEE Trans. EMC, EMC-2940, 403 (1998). [3] J. D. Norgard, G.S. Smith, IEEE Trans. EMC, EMC-29, 157 (1987) [4] C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004). [5] Larsson et al., J. Phys. D, 33, 1876 (2000)

  4. Estimation Model of Spacecraft Parameters and Cost Based on a Statistical Analysis of COMPASS Designs (United States)

    Gerberich, Matthew W.; Oleson, Steven R.


    The Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at Glenn Research Center has performed integrated system analysis of conceptual spacecraft mission designs since 2006 using a multidisciplinary concurrent engineering process. The set of completed designs was archived in a database, to allow for the study of relationships between design parameters. Although COMPASS uses a parametric spacecraft costing model, this research investigated the possibility of using a top-down approach to rapidly estimate the overall vehicle costs. This paper presents the relationships between significant design variables, including breakdowns of dry mass, wet mass, and cost. It also develops a model for a broad estimate of these parameters through basic mission characteristics, including the target location distance, the payload mass, the duration, the delta-v requirement, and the type of mission, propulsion, and electrical power. Finally, this paper examines the accuracy of this model in regards to past COMPASS designs, with an assessment of outlying spacecraft, and compares the results to historical data of completed NASA missions.

  5. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program (United States)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.


    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  6. Rockets and spacecraft: Sine qua non of space science (United States)


    The evolution of the national launch vehicle stable is presented along with lists of launch vehicles used in NASA programs. A partial list of spacecraft used throughout the world is also given. Scientific spacecraft costs are presented along with an historial overview of project development and funding in NASA.

  7. Low-Impact Mating System for Docking Spacecraft (United States)

    Lewis, James L.; Robertson, Brandan; Carroll, Monty B.; Le, Thang; Morales, Ray


    A document describes a low-impact mating system suitable for both docking (mating of two free-flying spacecraft) and berthing (in which a robot arm in one spacecraft positions an object for mating with either spacecraft). The low-impact mating system is fully androgynous: it mates with a copy of itself, i.e., all spacecraft and other objects to be mated are to be equipped with identical copies of the system. This aspect of the design helps to minimize the number of unique parts and to standardize and facilitate mating operations. The system includes a closed-loop feedback control subsystem that actively accommodates misalignments between mating spacecraft, thereby attenuating spacecraft dynamics and mitigating the need for precise advance positioning of the spacecraft. The operational characteristics of the mating system can be easily configured in software, during operation, to enable mating of spacecraft having various masses, center-of-gravity offsets, and closing velocities. The system design provides multi-fault tolerance for critical operations: for example, to ensure unmating at a critical time, a redundant unlatching mechanism and two independent pyrotechnic release subsystems are included.

  8. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants, Volume 5

    National Research Council Canada - National Science Library

    Committee on Spacecraft Exposure Guidelines; Board on Environmental Studies and Toxicology; Committee on Toxicology


    ... requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants and to review SMACs for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the committee. In response to this...

  9. Spacecraft maximum allowable concentrations for selected airborne contaminants, volume 1 (United States)


    As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMAC's) for contaminants, and to review SMAC's for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee on Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMAC's for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMAC's for 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the first 11 SMAC reports that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee.

  10. Precise Relative Positioning of Formation Flying Spacecraft using GPS

    NARCIS (Netherlands)

    Kroes, R.


    Spacecraft formation flying is considered as a key technology for advanced space missions. Compared to large individual spacecraft, the distribution of sensor systems amongst multiple platforms offers improved flexibility, shorter times to mission, and the prospect of being more cost effective.

  11. A Comparison of Learning Technologies for Teaching Spacecraft Software Development (United States)

    Straub, Jeremy


    The development of software for spacecraft represents a particular challenge and is, in many ways, a worst case scenario from a design perspective. Spacecraft software must be "bulletproof" and operate for extended periods of time without user intervention. If the software fails, it cannot be manually serviced. Software failure may…

  12. Quaternion normalization in spacecraft attitude determination (United States)

    Deutschmann, J.; Markley, F. L.; Bar-Itzhack, Itzhack Y.


    Attitude determination of spacecraft usually utilizes vector measurements such as Sun, center of Earth, star, and magnetic field direction to update the quaternion which determines the spacecraft orientation with respect to some reference coordinates in the three dimensional space. These measurements are usually processed by an extended Kalman filter (EKF) which yields an estimate of the attitude quaternion. Two EKF versions for quaternion estimation were presented in the literature; namely, the multiplicative EKF (MEKF) and the additive EKF (AEKF). In the multiplicative EKF, it is assumed that the error between the correct quaternion and its a-priori estimate is, by itself, a quaternion that represents the rotation necessary to bring the attitude which corresponds to the a-priori estimate of the quaternion into coincidence with the correct attitude. The EKF basically estimates this quotient quaternion and then the updated quaternion estimate is obtained by the product of the a-priori quaternion estimate and the estimate of the difference quaternion. In the additive EKF, it is assumed that the error between the a-priori quaternion estimate and the correct one is an algebraic difference between two four-tuple elements and thus the EKF is set to estimate this difference. The updated quaternion is then computed by adding the estimate of the difference to the a-priori quaternion estimate. If the quaternion estimate converges to the correct quaternion, then, naturally, the quaternion estimate has unity norm. This fact was utilized in the past to obtain superior filter performance by applying normalization to the filter measurement update of the quaternion. It was observed for the AEKF that when the attitude changed very slowly between measurements, normalization merely resulted in a faster convergence; however, when the attitude changed considerably between measurements, without filter tuning or normalization, the quaternion estimate diverged. However, when the

  13. ranger en prison : « Mes fers sont prêts ; la liberté m’inspire ; Je vais chanter son hymne glorieux »


    Leterrier, Sophie-Anne


    Le célèbre chansonnier Béranger a fait deux séjours en prison sous la Restauration. L’article analyse comment ces épisodes ont servi sa popularité, dans le cadre d’une véritable stratégie, passant à la fois par la diffusion des textes et par l’image. Il analyse les chansons écrites en prison, et montre comment elles illustrent la position du chansonnier et son défi au pouvoir. The famous Beranger was sent to prison twice during Restoration. The contribution shows how theses incarcerations ...

  14. Spacecraft with gradual acceleration of solar panels (United States)

    Merhav, Tamir R. (Inventor); Festa, Michael T. (Inventor); Stetson, Jr., John B. (Inventor)


    A spacecraft (8) includes a movable appendage such as solar panels (12) operated by a stepping motor (28) driven by pulses (311). In order to reduce vibration andor attitude error, the drive pulses are generated by a clock down-counter (312) with variable count ratio. Predetermined desired clock ratios are stored in selectable memories (314a-d), and the selected ratio (R) is coupled to a comparator (330) together with the current ratio (C). An up-down counter (340) establishes the current count-down ratio by counting toward the desired ratio under the control of the comparator; thus, a step change of solar panel speed never occurs. When a direction change is commanded, a flag signal generator (350) disables the selectable memories, and enables a further store (360), which generates a count ratio representing a very slow solar panel rotational rate, so that the rotational rate always slows to a low value before direction is changed. The principles of the invention are applicable to any movable appendage.

  15. NASA Medical Response to Human Spacecraft Accidents (United States)

    Patlach, Robert


    This slide presentation reviews NASA's role in the response to spacecraft accidents that involve human fatalities or injuries. Particular attention is given to the work of the Mishap Investigation Team (MIT), the first response to the accidents and the interface to the accident investigation board. The MIT does not investigate the accident, but the objective of the MIT is to gather, guard, preserve and document the evidence. The primary medical objectives of the MIT is to receive, analyze, identify, and transport human remains, provide assistance in the recovery effort, and to provide family Casualty Coordinators with latest recovery information. The MIT while it does not determine the cause of the accident, it acts as the fact gathering arm of the Mishap Investigation Board (MIB), which when it is activated may chose to continue to use the MIT as its field investigation resource. The MIT membership and the specific responsibilities and tasks of the flight surgeon is reviewed. The current law establishing the process is also reviewed.

  16. Imaging of Titan from the Cassini spacecraft. (United States)

    Porco, Carolyn C; Baker, Emily; Barbara, John; Beurle, Kevin; Brahic, Andre; Burns, Joseph A; Charnoz, Sebastien; Cooper, Nick; Dawson, Douglas D; Del Genio, Anthony D; Denk, Tilmann; Dones, Luke; Dyudina, Ulyana; Evans, Michael W; Fussner, Stephanie; Giese, Bernd; Grazier, Kevin; Helfenstein, Paul; Ingersoll, Andrew P; Jacobson, Robert A; Johnson, Torrence V; McEwen, Alfred; Murray, Carl D; Neukum, Gerhard; Owen, William M; Perry, Jason; Roatsch, Thomas; Spitale, Joseph; Squyres, Steven; Thomas, Peter; Tiscareno, Matthew; Turtle, Elizabeth P; Vasavada, Ashwin R; Veverka, Joseph; Wagner, Roland; West, Robert


    Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titan's nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues. The images reveal intricate surface albedo features that suggest aeolian, tectonic and fluvial processes; they also show a few circular features that could be impact structures. These observations imply that substantial surface modification has occurred over Titan's history. We have not directly detected liquids on the surface to date. Convective clouds are found to be common near the south pole, and the motion of mid-latitude clouds consistently indicates eastward winds, from which we infer that the troposphere is rotating faster than the surface. A detached haze at an altitude of 500 km is 150-200 km higher than that observed by Voyager, and more tenuous haze layers are also resolved.

  17. Optimal attitude corrections for cylindrical spacecraft (United States)

    Zanardi, M. C.; Santos, R. M. K.; da Silva Fernandes, S.


    A first order analytical model for optimal small amplitude attitude maneuvers of spacecraft with cylindrical symmetry in an elliptical orbits is presented. The optimization problem is formulated as a Mayer problem with the control torques provided by a power limited propulsion system. The state is defined by Serret-Andoyer's variables and the control by the components of the propulsive torques. The Pontryagin Maximum Principle is applied to the problem and the optimal torques are given explicitly in Serret-Andoyer's variables and their adjoints. For small amplitude attitude maneuvers, the optimal Hamiltonian function is linearized around a reference attitude. A complete first order analytical solution is obtained by simple quadrature and is expressed through a linear algebraic system involving the initial values of the adjoint variables. A numerical solution is obtained by taking the Euler angles formulation of the problem, solving the two-point boundary problem through the shooting method, and, then, determining the Serret-Andoyer variables through Serret-Andoyer transformation. Numerical results show that the first order solution provides a good approximation to the optimal control law and also that is possible to establish an optimal control law for the artificial satellite's attitude.

  18. Kalman Filter for Spinning Spacecraft Attitude Estimation (United States)

    Markley, F. Landis; Sedlak, Joseph E.


    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  19. An AFDX Network for Spacecraft Data Handling (United States)

    Deredempt, Marie-Helene; Kollias, Vangelis; Sun, Zhili; Canamares, Ernest; Ricco, Philippe


    In aeronautical domain, ARINC-664 Part 7 specification (AFDX) [4] provides the enabling technology for interfacing equipment in Integrated Modular Avionics (IMA) architectures. The complementary part of AFDX for a complete interoperability - Time and Space Partitioning (ARINC 653) concepts [1]- was already studied as part of space domain ESA roadmap (i.e. IMA4Space project)Standardized IMA based architecture is already considered in aeronautical domain as more flexible, reliable and secure. Integration and validation become simple, using a common set of tools and data base and could be done by part on different means with the same definition (hardware and software test benches, flight control or alarm test benches, simulator and flight test installation).In some area, requirements in terms of data processing are quite similar in space domain and the concept could be applicable to take benefit of the technology itself and of the panel of hardware and software solutions and tools available on the market. The Mission project (Methodology and assessment for the applicability of ARINC-664 (AFDX) in Satellite/Spacecraft on-board communicatION networks), as an FP7 initiative for bringing terrestrial SME research into the space domain started to evaluate the applicability of the standard in space domain.

  20. Humidity Testing for Human Rated Spacecraft (United States)

    Johnson, Gary B.


    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  1. Correcting Spacecraft Jitter in Hirise Images (United States)

    Sutton, S. S.; Boyd, A. K.; Kirk, R. L.; Cook, D.; Backer, J. W.; Fennema, A.; Heyd, R.; McEwen, A. S.; Mirchandani, S. D.


    Mechanical oscillations or vibrations on spacecraft, also called pointing jitter, cause geometric distortions and/or smear in high resolution digital images acquired from orbit. Geometric distortion is especially a problem with pushbroom type sensors, such as the High Resolution Imaging Science Experiment (HiRISE) instrument on board the Mars Reconnaissance Orbiter (MRO). Geometric distortions occur at a range of frequencies that may not be obvious in the image products, but can cause problems with stereo image correlation in the production of digital elevation models, and in measuring surface changes over time in orthorectified images. The HiRISE focal plane comprises a staggered array of fourteen charge-coupled devices (CCDs) with pixel IFOV of 1 microradian. The high spatial resolution of HiRISE makes it both sensitive to, and an excellent recorder of jitter. We present an algorithm using Fourier analysis to resolve the jitter function for a HiRISE image that is then used to update instrument pointing information to remove geometric distortions from the image. Implementation of the jitter analysis and image correction is performed on selected HiRISE images. Resulting corrected images and updated pointing information are made available to the public. Results show marked reduction of geometric distortions. This work has applications to similar cameras operating now, and to the design of future instruments (such as the Europa Imaging System).


    Directory of Open Access Journals (Sweden)

    S. S. Sutton


    Full Text Available Mechanical oscillations or vibrations on spacecraft, also called pointing jitter, cause geometric distortions and/or smear in high resolution digital images acquired from orbit. Geometric distortion is especially a problem with pushbroom type sensors, such as the High Resolution Imaging Science Experiment (HiRISE instrument on board the Mars Reconnaissance Orbiter (MRO. Geometric distortions occur at a range of frequencies that may not be obvious in the image products, but can cause problems with stereo image correlation in the production of digital elevation models, and in measuring surface changes over time in orthorectified images. The HiRISE focal plane comprises a staggered array of fourteen charge-coupled devices (CCDs with pixel IFOV of 1 microradian. The high spatial resolution of HiRISE makes it both sensitive to, and an excellent recorder of jitter. We present an algorithm using Fourier analysis to resolve the jitter function for a HiRISE image that is then used to update instrument pointing information to remove geometric distortions from the image. Implementation of the jitter analysis and image correction is performed on selected HiRISE images. Resulting corrected images and updated pointing information are made available to the public. Results show marked reduction of geometric distortions. This work has applications to similar cameras operating now, and to the design of future instruments (such as the Europa Imaging System.

  3. THOR Electric Field Instrument - EFI (United States)

    Khotyaintsev, Yuri; Bale, Stuart D.; Rothkaehl, Hanna; Bonnell, John; Åhlen, Lennart; Vaivads, Andris; Lindqvist, Per-Arne; Ivchenko, Nickolay; Soucek, Jan


    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) is to measure the electric field vector in the frequency range 0-200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above 1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic

  4. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan


    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  5. Electric Substations (United States)

    Department of Homeland Security — Substations. Substations are facilities and equipment that switch, transform, or regulate electric voltage. The Substations feature class includes taps, a location...

  6. Trajectory Optimization for Spacecraft Collision Avoidance (United States)


    Control Systems Magazine, pp. 53-73, October 2009. [13] D. A. Vallado, Fundamentals of Astrodynamics and Applications Third Edition, of the maneuvering satellite. 1.2 Problem Statement The purpose of this research was to develop and test the application of pseudospectral...dissertation, Co [5] explored the differences between electric and chemical propulsion and their applications in generating a desired change in the

  7. Lunar shadow eclipse prediction models for the Earth orbiting spacecraft: Comparison and application to LEO and GEO spacecrafts (United States)

    Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.


    A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.

  8. Design, Fabrication, and Testing of a Hopper Spacecraft Simulator (United States)

    Mucasey, Evan Phillip Krell

    A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.

  9. The status of spacecraft bus and platform technology development under the NASA ISPT program (United States)

    Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to

  10. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program (United States)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.


    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently

  11. Science Plan for the Nuclear Electric Propulsion Space Test Program (NEPSTP) (United States)

    Mauk, B. H.; Bythrow, P. F.; Gatsonis, N. A.; McNutt, R. L., Jr.


    NEPSTP is an unclassified, international space mission sponsored by the Ballistic Missile Defense Organization (BMDO) as a testbed for the development of Nuclear Electric Propulsion (NEP) technologies. The mission will utilize the Russian manufactured Topaz II thermionic nuclear reactor and a variety of advanced experimental electric thrusters from international sources. The NEPSTP Spacecraft will be inserted into a nuclear safe circular orbit, and the electric thrusters will be utilized to drive the spacecraft in a spiral pattern to high earth orbit. This paper gives an overview of the Science Plan for the NEPSTP mission. The science activities discussed incude: (1) Evaluation of the performance of the Topaz II reactor in orbit; (2) Evaluation of the performances and degradations of the electric thrusters; (3) Evaluation of the so-called 'induced environment' around the NEPSTP Spacecraft; and, (4) Science of opportunity consistent with (1), (2), and (3). With regard to the third goal, the environment induced in the vicinity of an NEP driven spacecraft is unique, and its severity may degrade the performances of advanced sensors and some spacecraft subsystems. Thus, NEPSTP has an aggressive program to diagnose induced environment effects and develop predictive understanding of that environment for future systems. The Science Plan includes: (A) The utilization on the spacecraft of suite of science instruments, a science boom, and other spacecraft liens; (B) A data analysis and evaluation plan; (C) Various operational experiments; and, (D) The development of theoretical and empirical models.

  12. TOPEX electrical power system (United States)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest


    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  13. The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program (United States)

    Anderson, David; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd


    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPTs propulsion technologies include: 1) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; 2) a Hall-effect electric propulsion (HEP) system for sample return and low cost missions; 3) the Advanced Xenon Flow Control System (AXFS); ultra-lightweight propellant tank technologies (ULTT); and propulsion technologies for a Mars Ascent Vehicle (MAV). The AXFS and ULTT are two component technologies being developed with nearer-term flight infusion in mind, whereas NEXT and the HEP are being developed as EP systems. ISPTs entry vehicle technologies are: 1) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GNC) models of blunt-body rigid aeroshells; and aerothermal effect models; and 2) Multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions. The Systems Mission Analysis area is focused on developing tools and assessing the application of propulsion, entry vehicle, and spacecraft bus technologies to a wide variety of mission concepts. Several of the ISPT technologies are related to sample return missions and other spacecraft bus technology needs like: MAV propulsion, MMEEV, and electric propulsion. These technologies, as well as Aerocapture, are more vehicle and mission-focused, and present a different set of technology development challenges. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. This paper provides

  14. Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications (United States)

    Park, C.; Ounaies, Z.; Watson, K. A.; Pawlowski, K.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St.Clair, T. L.; Bushnell, Dennis M. (Technical Monitor)


    Polymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10(exp -8) S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.

  15. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates (United States)

    Wu, Zhangming; Li, Hao


    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  16. Electric machine (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI


    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  17. An Educational Multimedia Presentation on the Introduction to Spacecraft Charging (United States)

    Lin, E.; dePayrebrune, M.


    Over the last few decades, significant knowledge has been gained in how to protect spacecraft from charging; however, the continuing technical advancement in the design and build of satellites requires on-going effort in the study of spacecraft charging. A situation that we have encountered is that not all satellite designers and builders are familiar with the problem of spacecraft charging. The design of a satellite involves many talented people with diverse backgrounds, ranging from manufacturing and assembly to engineering and program management. The complex design and build of a satellite system requires people with highly specialized skills such that cross-specialization is often not achievable. As a result, designers and builders of satellites are not usually familiar with the problems outside their specialization. This is also true for spacecraft charging. Not everyone is familiar with the definition of spacecraft charging and the damage that spacecraft charging can cause. Understanding the problem is an important first step in getting everyone involved in addressing the appropriate spacecraft charging issues during the satellite design and build phases. To address this important first step, an educational multimedia presentation has been created to inform the general engineering community about the basics of spacecraft charging. The content of this educational presentation is based on relevant published technical papers. The presentation was developed using Macromedia Flash. This software produces a more dynamic learning environment than a typical slide show , resulting in a more effective learning experience. The end result is that the viewer will have learned about the basics of spacecraft charging. This presentation is available to the public through our website,, free of charge. Viewers are encouraged to pass this presentation to colleagues within their own work environment. This paper describes the content of the multimedia

  18. Analysis of Opportunities for Intercalibration Between Two Spacecraft. Chapter 1 (United States)

    Roithmayr, Carlos M.; Speth, Paul W.


    There is currently a strong interest in obtaining highly accurate measurements of solar radiation reflected by Earth. For example, the Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) satellite mission has been under consideration in Europe for several years, and planning is now under way for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) spacecraft in the United States. Such spacecraft will provide measurements whose high accuracy is traceable to SI standards; these measurements will be useful as a reference for calibrating similar instruments on board other spacecraft. Hence, analysis of opportunities for intercalibration between two spacecraft plays an important role in the planning of future missions. In order for intercalibration to take place, the measurements obtained from two spacecraft must have similar viewing geometry and be taken within a few minutes of one another. Viewing geometry is characterized in terms of viewing zenith angle, solar zenith angle, and relative azimuth angle. Opportunities for intercalibration are greater in number and longer in duration if the sensor with high accuracy can be aimed at points on the surface of the Earth other than the nadir or sub-satellite point. Analysis of intercalibration over long periods is rendered tractable by making several simplifying assumptions regarding orbital motions of the two spacecraft about Earth, as well as Earth s orbit about the Sun. The shape of the Earth is also considered. A geometric construction called a tent is introduced to facilitate analysis. It is helpful to think of an intercalibration opportunity as the passage of one spacecraft through a tent that has a fixed shape and moves with the spacecraft whose measurements are to be calibrated. Selection of points on Earth s surface as targets for measurement is discussed, as is aiming the boresight of a steerable instrument. Analysis results for a pair of spacecraft in typical low Earth orbits

  19. Application of DSN spacecraft tracking technology to experimental gravitation (United States)

    Anderson, J. D.; Estabrook, F. B.


    Spacecraft tracking technology of the Deep Space Net (DSN) has been used in the past to measure the general-relativistic increase in round-trip group delay between earth and a spacecraft. As the DSN technology continues to improve, other gravitational experiments will become possible. Two possibilities are discussed in this paper. The first concerns the application of solar-system dynamics to the testing of general relativity. The second involves the detection of VLF gravitational radiation (0.1 to 0.0001 Hz) by means of Doppler tracking of spacecraft.

  20. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  1. Cooper-Harper Experience Report for Spacecraft Handling Qualities Applications (United States)

    Bailey, Randall E.; Jackson, E. Bruce; Bilimoria, Karl D.; Mueller, Eric R.; Frost, Chad R.; Alderete, Thomas S.


    A synopsis of experience from the fixed-wing and rotary-wing aircraft communities in handling qualities development and the use of the Cooper-Harper pilot rating scale is presented as background for spacecraft handling qualities research, development, test, and evaluation (RDT&E). In addition, handling qualities experiences and lessons-learned from previous United States (US) spacecraft developments are reviewed. This report is intended to provide a central location for references, best practices, and lessons-learned to guide current and future spacecraft handling qualities RDT&E.

  2. Electronics speckle interferometry applications for NDE of spacecraft structural components (United States)

    Rao, M. V.; Samuel, R.; Ananthan, A.; Dasgupta, S.; Nair, P. S.


    The spacecraft components viz., central cylinder, deck plates, solar panel substrates, antenna reflectors are made of aluminium/composite honeycomb sandwich construction. Detection of these defects spacecraft structural components is important to assess the integrity of the spacecraft structure. Electronic Speckle Interferometry (ESI) techniques identify the defects as anomalous regions in the interferometric fringe patterns of the specklegram while the component is suitably stressed to give rise to differential displacement/strain around the defective region. Calibration studies, different phase shifting methods associated with ESI and the development of a prototype Twin Head ESSI System (THESSIS) and its use for the NDE of a typical satellite structural component are presented.

  3. Trajectory Design for the Phobos and Deimos & Mars Environment Spacecraft (United States)

    Genova, Anthony L.; Korsmeyer, David J.; Loucks, Michel E.; Yang, Fan Yang; Lee, Pascal


    The presented trajectory design and analysis was performed for the Phobos and Deimos & Mars Environment (PADME) mission concept as part of a NASA proposal submission managed by NASA Ames Research Center in the 2014-2015 timeframe. The PADME spacecraft would be a derivative of the successfully flown Lunar Atmosphere & Dust Environment Explorer (LADEE) spacecraft. While LADEE was designed to enter low-lunar orbit, the PADME spacecraft would instead enter an elliptical Mars orbit of 2-week period. This Mars orbit would pass by Phobos near periapsis on successive orbits and then raise periapsis to yield close approaches of Deimos every orbit thereafter.

  4. Revamping Spacecraft Operational Intelligence with Splunk (United States)

    Hwang, Victor


    So what is Splunk? Instead of giving the technical details, which you can find online, I'll tell you what it did for me. Splunk slapped everything into one place, with one uniform format, and gave me the ability to forget about all these annoying details of where it is, how to parse it, and all that. Instead, I only need to interact with Splunk to find the data I need. This sounds simple and obvious, but it's surprising what you can do once you all of your data is indexed in one place. By having your data organized, querying becomes much easier. Let's say that I want to search telemetry for a sensor_name gtemp_1 h and to return all data that is at most five minutes old. And because Splunk can hook into a real ]time stream, this data will always be up-to-date. Extending the previous example, I can now aggregate all types of data into one view based in time. In this picture, I've got transaction logs, telemetry, and downlinked files all in one page, organized by time. Even though the raw data looks completely than this, I've defined interfaces that transform it into this uniform format. This gives me a more complete picture for the question what was the spacecraft doing at this particular time? And because querying data is simple, I can start with a big block of data and whiddle it down to what I need, rather than hunting around for the individual pieces of data that I need. When we have all the data we need, we can begin widdling down the data with Splunk's Unix-like search syntax. These three examples highlights my trial-and-error attempts to find large temperature changes. I begin by showing the first 5 temperatures, only to find that they're sorted chronologically, rather than from highest temperatures to lowest temperatures. The next line shows sorting temperatures by their values, but I find that that fs not really what I want either. I want to know the delta temperatures between readings. Looking through Splunk's user manual, I find the delta function, which

  5. Spacecraft Environment May Reduce Resistance To Infection (United States)

    Pierson, Duane L.; Ott, C. Mark; Castro, V. A.; Leal, Melanie; Mehta, Satish K.


    Living and working in a spacecraft exposes the crew to a unique environment. This environment includes microgravity, increased radiation, chemical and biological contamination, and a variety of stressors. Disturbances in this balance are often manifested by diminished immunity in astronauts/cosmonauts. Reactivation of Epstein- Barr virus (EBV), cytomegalovirus (CMV), and varicella-zoster virus (VZV) has been used as an indicator of immune status. Reactivation of EBV and VZV were detected and quantified in saliva. CMV was measured in urine. The DNA was extracted using a Qiagen Inc. kit and viral DNA was detected by real time polymerase chain reaction (PCR) based assay with Taqman 7700 (PE Biosystems). Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected before, during, and after 10 space shuttle missions of 5 to 14 d duration. Of 1398 saliva specimens from 32 astronauts, 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies/mL from samples taken during the flights was 417, ten-fold greater (p < 0.05) than the copies from the preflight (40) and post flight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p < 0.05) greater than baseline levels. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight. Similarly, CMV and VZV reactivation increased in response to space flight

  6. The Near Earth Object Scout Spacecraft: A Low Cost Approach to in-situ Characterization of the NEO Population (United States)

    Koontz, Steven L.; Condon, Gerald; Graham, Lee; Bevilacqua, Ricardo


    to 420 days in duration and assuming chemical propulsion. Similar studies have been reported assuming high power electric propulsion for manned NEO rendezvous missions (11). The delta V requirement breakdown and mission profile data from references 10 and 11 are used as a basis for sizing the NEO Scout spacecraft and for conducting preliminary feasibility assessments using the Tsiokolvsky rocket equation, a (worst-case) delta V requirement of 10 km/sec, and a maximum spacecraft dry mass of 20 kg. Using chemical propellant for a 10 km/sec delta V drives spacecraft wet mass well above 300 kg so that chemical propulsion is a non-starter for the proposed mission profile and spacecraft wet mass limits. In contrast, a solar electric propulsion system needs only 8 kg of Xe propellant to accelerate the spacecraft to 10 km/sec in 163 days with 0.02 N of thrust and 500 W of power from1.6 sq m of 29% efficient solar panels. In a second example, accelerating a 4 kg payload to 7 km/sec over 180 days requires about 6.7 kg of propellant and 1.2 kg of solar panels (12 kg total spacecraft wet mass).

  7. A Data Abstraction Architecture for Spacecraft Autonomy Project (United States)

    National Aeronautics and Space Administration — Spacecraft generate huge amounts of data. A significant challenge for both human operators and autonomous control systems is ensuring that the right data (and...

  8. Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays Project (United States)

    National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...

  9. High-Performance Contaminant Monitor for Spacecraft Project (United States)

    National Aeronautics and Space Administration — The Vision for Space Exploration demands increasing reliance on real-time trace gas monitors onboard spacecraft. Present grab samples and badges will be inadequate...

  10. Autonomous Supervisory Engine for Multi-Spacecraft Formation Flying Project (United States)

    National Aeronautics and Space Administration — The overall goal of this project is to develop an onboard, autonomous Multi-spacecraft Supervisory Engine (MSE) for formation-flying guidance, navigation and control...

  11. High Throughput Hall Thruster for Small Spacecraft Project (United States)

    National Aeronautics and Space Administration — Busek is developing a high throughput nominal 100-W Hall Effect Thruster. This device is well sized for spacecraft ranging in size from several tens of kilograms to...

  12. High Throughput Hall Thruster for Small Spacecraft Project (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high throughput, nominal 100 W Hall Effect Thruster (HET). This HET will be sized for small spacecraft (< 180 kg), including...

  13. A Self-Regulating Freezable Heat Exchanger for Spacecraft Project (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the vehicle, avionics and atmosphere (if crewed) within a defined temperature range. Since water is non-toxic and good...

  14. A Self-Regulating Freezable Heat Exchanger for Spacecraft Project (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the cabin (both air and its structure if manned) and electronic equipment within a narrow temperature range even though...

  15. Conceptual definition of Automated Power Systems Management. [for planetary spacecraft (United States)

    Imamura, M. S.; Skelly, L.; Weiner, H.


    Automated Power Systems Management (APSM) is defined as the capability of a spacecraft power system to automatically perform monitoring, computational, command, and control functions without ground intervention. Power systems for future planetary spacecraft must have this capability because they must perform up to 10 years, and accommodate real-time changes in mission execution autonomously. Specific APSM functions include fault detection, isolation, and correction; system performance and load profile prediction; power system optimization; system checkout; and data storage and transmission control. This paper describes the basic method of implementing these specific functions. The APSM hardware includes a central power system computer and a processor dedicated to each major power system subassembly along with digital interface circuitry. The major payoffs anticipated are in enhancement of spacecraft reliability and life and reduction of overall spacecraft program cost.

  16. Passive Devices for Advanced Fluid Management aboard Spacecraft Project (United States)

    National Aeronautics and Space Administration — Acute challenges are faced by the designers of fluid systems for spacecraft because of the persistently unfamiliar and unforgiving low-g environment. For example,...

  17. Advanced Portable Fine Water Mist Fire Extinguisher for Spacecraft Project (United States)

    National Aeronautics and Space Administration — Fine water mist (FWM) is a promising replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in performance,...

  18. Charge Dissipating Transparent Conformal Coatings for Spacecraft Electronics Project (United States)

    National Aeronautics and Space Administration — The space environment poses significant challenges to spacecraft electronics in the form of electrostatic discharge (ESD) as a result of exposure to highly charged...

  19. Fractionated spacecraft : The new sprout in distributed space systems

    NARCIS (Netherlands)

    Guo, J.; Maessen, D.C.; Gill, E.K.A.


    This paper provides a survey of current state-of-the-art technologies of fractionated spacecraft, a new architecture for distributed space systems. The survey covers six aspects: architecture, networking, wireless communication, wireless power transfer, distributed computing, and planned missions

  20. A new environment for multiple spacecraft power subsystem mission operations (United States)

    Bahrami, K. A.


    The engineering analysis subsystem environment (EASE) is being developed to enable fewer controllers to monitor and control power and other spacecraft engineering subsystems. The EASE prototype has been developed to support simultaneous real-time monitoring of several spacecraft engineering subsystems. It is being designed to assist with offline analysis of telemetry data to determine trends, and to help formulate uplink commands to the spacecraft. An early version of the EASE prototype has been installed in the JPL Space Flight Operations Facility for online testing. The EASE prototype is installed in the Galileo Mission Support Area. The underlying concept, development, and testing of the EASE prototype and how it will aid in the ground operations of spacecraft power subsystems are discussed.

  1. Attitude control of Mariner Jupiter-Saturn spacecraft (United States)

    Bahrami, K. A.


    A major challenge of the Mariner Jupiter-Saturn '77 spacecraft was devising a suboptimal attitude controller that could meet the demanding mission requirements. The challenge was met by implementing a discrete stochastic controller for a specially designed onboard computer. The paper describes the design and operation of the controller, based on a simple model of spacecraft dynamics. Two types of cruising modes are considered: inertial cruise, where spacecraft attitude is determined from gyro position outputs, and celestial cruise, where position information is obtained from sun sensors and a star tracker. These two cruise modes under conditions of disturbances were simulated on computer, and the results showed that the controller maintained the spacecraft attitude with low rates. An appendix gives details on the single-step predictor.

  2. Novel Metal Organic Framework Synthesis for Spacecraft Oxygen Capture Project (United States)

    National Aeronautics and Space Administration — Busek and University of Utah propose to develop novel metal organic framework (MOF) material to efficiently capture oxygen in spacecraft cabin environment. The...

  3. Dynamics, Distributed Control and Autonomous Cluster Operations of Fractionated Spacecraft

    NARCIS (Netherlands)

    Chu, J.


    Fractionated spacecraft deploy satellites' functionalities, such as computation, communication, data storage, payload operations and even power generation, onboard several modules that share those functionalities through a wireless network. With the advent of such an innovative space architecture,

  4. Wireless Data and Power Transfer on Small Spacecraft Project (United States)

    National Aeronautics and Space Administration — Achieving low-cost space missions implies lowering all phases of mission development, including spacecraft design, assembly, integration and test. The concept of the...

  5. Foil Gas Bearing Supported Quiet Fan for Spacecraft Ventilation Project (United States)

    National Aeronautics and Space Administration — Developing a quiet fan for Environmental Control and Life Support systems to enhance the livable environment within the spacecraft has been a challenge. A Foil Gas...

  6. Spacecraft Water Regeneration by Catalytic Wet Air Oxidation Project (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop advanced catalysts for a volatile removal assembly used to purify spacecraft water. The innovation of the proposed...

  7. Internal Mass Motion for Spacecraft Dynamics and Control

    National Research Council Canada - National Science Library

    Hall, Christopher D


    We present a detailed description of the application of a noncanonical Hamiltonian formulation to the modeling, analysis, and simulation of the dynamics of gyrostat spacecraft with internal mass motion...

  8. Aerogel Insulation for the Thermal Protection of Venus Spacecraft Project (United States)

    National Aeronautics and Space Administration — One of NASA's primary goals for the next decade is the design, development and launch of a spacecraft aimed at the in-situ exploration of the deep atmosphere and...

  9. Effects of Knowledge Reuse on the Spacecraft Development Process (United States)

    Dutton, Esther S.


    The experimental objective was to assess the impact of knowledge reuse on spacecraft development time. A Secondary objective was to produce a comprehensive, flexible model other DNP teams could use to test their methodologies.

  10. Distributed Control Architectures for Precision Spacecraft Formations Project (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  11. Triple3 Redundant Spacecraft Subsystems (T3RSS) Project (United States)

    National Aeronautics and Space Administration — Redefine Technologies, along with researchers at the University of Colorado, will use three redundancy methods to decrease the susceptibility of a spacecraft, on a...

  12. Spacecraft Thermal Control System Not Requiring Power Project (United States)

    National Aeronautics and Space Administration — The thermal management of spacecraft would be enhanced by dynamic control over surface emissivity in the mid-infrared. In this SBIR program, Triton Systems proposes...

  13. A small spacecraft for multipoint measurement of ionospheric plasma (United States)

    Roberts, T. M.; Lynch, K. A.; Clayton, R. E.; Weiss, J.; Hampton, D. L.


    Measurement of ionospheric plasma is often performed by a single in situ device or remotely using cameras and radar. This article describes a small, low-resource, deployed spacecraft used as part of a local, multipoint measurement network. A B-field aligned sounding rocket ejects four of these spin-stabilized spacecraft in a cross pattern. In this application, each spacecraft carries two retarding potential analyzers which are used to determine plasma density, flow, and ion temperature. An inertial measurement unit and a light-emitting diode array are used to determine the position and orientation of the devices after deployment. The design of this spacecraft is first described, and then results from a recent test flight are discussed. This flight demonstrated the successful operation of the deployment mechanism and telemetry systems, provided some preliminary plasma measurements in a simple mid-latitude environment, and revealed several design issues.

  14. Miniature Quartz Crystal Microbalance for Spacecraft and Missile Applications

    National Research Council Canada - National Science Library

    Uy, O


    Quartz crystal microbalances (QCMs) have been used for over 20 years as contamination monitors in spacecraft to measure film deposition on sensitive surfaces such as optical mirrors, thermal radiators, and solar arrays...

  15. The Impact of Autonomy Technology on Spacecraft Software Architecture (United States)

    Gamble, E. B., Jr.


    Autonomy technology for high-level, closed-loop control of spacecraft offers considerable benefits to space-flight projects. Those benefits can enable whole new classes of missions; however, they are not without cost.

  16. Applicability of ISO 16697 Data to Spacecraft Fire Fighting Strategies (United States)

    Hirsch, David B.; Beeson, Harold D.


    Presentation Agenda: (1) Selected variables affecting oxygen consumption during spacecraft fires, (2) General overview of ISO 16697, (3) Estimated amounts of material consumed during combustion in typical ISS enclosures, (4) Discussion on potential applications.

  17. A multi-spacecraft formation approach to space debris surveillance (United States)

    Felicetti, Leonard; Emami, M. Reza


    This paper proposes a new mission concept devoted to the identification and tracking of space debris through observations made by multiple spacecraft. Specifically, a formation of spacecraft has been designed taking into account the characteristics and requirements of the utilized optical sensors as well as the constraints imposed by sun illumination and visibility conditions. The debris observations are then shared among the team of spacecraft, and processed onboard of a ;hosting leader; to estimate the debris motion by means of Kalman filtering techniques. The primary contribution of this paper resides on the application of a distributed coordination architecture, which provides an autonomous and robust ability to dynamically form spacecraft teams once the target has been detected, and to dynamically build a processing network for the orbit determination of space debris. The team performance, in terms of accuracy, readiness and number of the detected objects, is discussed through numerical simulations.

  18. Micro GC's for Contaminant Monitoring in Spacecraft Air Project (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to create new gas chromatographs (GCs) for contaminant monitoring in spacecraft air that do not require any reagents or special...

  19. Trace Contaminant Monitor for Air in Spacecraft Project (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  20. Project Overview of the Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment

    National Research Council Canada - National Science Library

    Reuer, Charles


    The Naval Postgraduate School's current attempt at getting another spacecraft into orbit is focusing on Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment (NPSAT1...

  1. Control System of a Three DOF Spacecraft Simulator by Vectorable Thrusters and Control Moment Gyros

    National Research Council Canada - National Science Library

    Price, William D


    ...) Spacecraft Simulator used in the Proximity Operations Simulator Facility, as part of the Naval Postgraduate School's Spacecraft Robotics Laboratory, to simulate autonomous guidance, navigation and control (GNC...

  2. Displaced Electric Sail Orbits Design and Transition Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Naiming Qi


    Full Text Available Displaced orbits for spacecraft propelled by electric sails are investigated as an alternative to the use of solar sails. The orbital dynamics of electric sails based spacecraft are studied within a spherical coordinate system, which permits finding the solutions of displaced electric sail orbits and optimize transfer trajectory. Transfer trajectories from Earth's orbit to displaced orbit are also studied in an optimal framework, by using genetic algorithm and Gauss pseudospectral method. The initial guesses for the state and control histories used in the Gauss pseudospectral method are interpolated from the best solution of a genetic algorithm. Numerical simulations show that the electric sail is able to perform the transfer from Earth’s orbit to displaced orbit in acceptable time, and the hybrid optimization method has the capability to search the feasible and optimal solution without any initial value guess.

  3. Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk (United States)

    Forgione, Joshua B.; Kojima, Gilbert K.; Hanel, Robert; Mallinson, Mark V.


    The end-to-end verification of a spacecraft photovoltaic power generation system requires light! Specifically, the standard practice for doing so is the Large Area Pulsed Solar Simulation (LAPSS). A LAPSS test can characterize a photovoltaic system's efficiency via its response to rapidly applied impulses of simulated sunlight. However, a Class D program on a constrained budget and schedule may not have the resources to ship an entire satellite for a LAPSS test alone. Such was the case with the Lunar Atmospheric and Dust Environment Explorer (LADEE) program, which was also averse to the risk of hardware damage during shipment. When the Electrical Power System (EPS) team was denied a spacecraft-level LAPSS test, the lack of an end-to-end power generation test elevated to a project-level technical risk. The team pulled together very limited resources to not only eliminate the risk, but build a process to monitor the health of the system through mission operations. We discuss a process for performing a low-cost, end-to-end test of the LADEE photovoltaic system. The approach combines system-level functional test, panel-level performance results, and periodic inspection (and repair) up until launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of data. The process starts in manufacturing at the subcontractor. The panel manufacturer provides functional test and LAPSS data on each individual panel. We apply an initial assumption that the per-panel performance is sufficient to meet the power generation requirements. The manufacturer's data is also carried as the performance allocation for each panel during EPS system modeling and initial mission operations. During integration and test, a high-power, professional theater lamp system provides simulated sunlight to each panel on the spacecraft, thereby permitting a true end-to-end system test. A passing test results in a step response to nearly full-rated current

  4. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility (United States)

    Williams, Jeffrey P.; Rallo, Rosemary A.


    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  5. Setpoint Weighted PID Controller for the Electromechanical Actuator in Spacecraft


    Sumathi, R.; Usha, M


    An intelligent control system for the rocket engine during electromechanical stage is designed and scrutinized in this paper. The rocket is the only vehicle that lift-offs the spacecraft in the space. But, the motion of the rocket can be influenced by internal and external disturbances. Furthermore, the rocket is a multi-input and multi-output nonlinear system whose dynamics are unstable and poorly understood. So the orientation of the spacecraft in precise position is so critical. Hence, att...

  6. Dynamics and control of Lorentz-augmented spacecraft relative motion

    CERN Document Server

    Yan, Ye; Yang, Yueneng


    This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

  7. An economy of scale system's mensuration of large spacecraft (United States)

    Deryder, L. J.


    The systems technology and cost particulars of using multipurpose platforms versus several sizes of bus type free flyer spacecraft to accomplish the same space experiment missions. Computer models of these spacecraft bus designs were created to obtain data relative to size, weight, power, performance, and cost. To answer the question of whether or not large scale does produce economy, the dominant cost factors were determined and the programmatic effect on individual experiment costs were evaluated.

  8. Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics (United States)


    NONLINEAR SPACECRAFT ATTITUDE DYNAMICS DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of...PhD Dean, Graduate School of Engineering and Management AFIT-ENY-DS-16-S-061 Abstract For spacecraft conducting on-orbit operations, changes to the...dynamics and typically require estimation. For systems with time-varying inertia parameters, multiple model adaptive estimation (MMAE) routines can be

  9. An assessment of spacecraft target mode selection methods (United States)

    Mercer, J. F.; Aglietti, G. S.; Remedia, M.; Kiley, A.


    Coupled Loads Analyses (CLAs), using finite element models (FEMs) of the spacecraft and launch vehicle to simulate critical flight events, are performed in order to determine the dynamic loadings that will be experienced by spacecraft during launch. A validation process is carried out on the spacecraft FEM beforehand to ensure that the dynamics of the analytical model sufficiently represent the behavior of the physical hardware. One aspect of concern is the containment of the FEM correlation and update effort to focus on the vibration modes which are most likely to be excited under test and CLA conditions. This study therefore provides new insight into the prioritization of spacecraft FEM modes for correlation to base-shake vibration test data. The work involved example application to large, unique, scientific spacecraft, with modern FEMs comprising over a million degrees of freedom. This comprehensive investigation explores: the modes inherently important to the spacecraft structures, irrespective of excitation; the particular 'critical modes' which produce peak responses to CLA level excitation; an assessment of several traditional target mode selection methods in terms of ability to predict these 'critical modes'; and an indication of the level of correlation these FEM modes achieve compared to corresponding test data. Findings indicate that, although the traditional methods of target mode selection have merit and are able to identify many of the modes of significance to the spacecraft, there are 'critical modes' which may be missed by conventional application of these methods. The use of different thresholds to select potential target modes from these parameters would enable identification of many of these missed modes. Ultimately, some consideration of the expected excitations is required to predict all modes likely to contribute to the response of the spacecraft in operation.

  10. Applications of holographic interferometry for spacecraft structural components (United States)

    Rao, M. V.; Samuel, R.; Nair, P. S.


    An overview of the applications of holographic interferometry for spacecraft structural components at ISRO Satellite Center, Bangalore, India, is presented. The details of the development of a dual vacuum stressing technique and its application for holographic nondestructive testing (HNDT) of honeycomb panels are presented. Results of some calibration studies conducted for HNDT of propellant tanks are also presented. It is found that holographic interferometry is quite useful, particularly for HNDT of honeycomb panels and propellant tanks used for spacecraft structural components.

  11. ESA unveils its big XMM spacecraft (United States)


    XMM, the X-ray Multi-Mirror mission, is due do be lanched in 1999. It is a European conception with innovative telescopes. XMM will revolutionize the study of X-rays coming from the Universe, by harvesting far more X-rays per hour than any previous mission. Its enormous capacity will enable astronomers to analyse many strong sources of cosmic X-rays very quickly, and to discover and characterize many faint sources previously beyond their reach. As the most popular and competitive branch of space astronomy, X-ray astronomy reveals special places in the Universe where very high temperatures or violent forces generate energetic radiation. These sources include black holes, exploding stars, paris of stars orbiting very close together, and the central region of clusters of galaxies. XMM's optical monitor, viewing the scenes by visible light, will help in the interpretations. The combination of X-ray telescopes and optical monitoring should be well-suited to tracking down gamma-ray bursters - extraordinary explosions in space that mystify the astronomers. Full descriptions of the X-ray sources will depend on precise spectral analysis of the relative intensities of X-rays of different energies, including the signatures of identifiable chemical elements. Such spectral analysis is XMM's task, using instruments of the highest quality fed by the remarkable telescopes. As seen at ESTEC today, the spacecraft stands upside down. Its front end, where the mirror modules of the X-ray telescopes pass through the satellite's service module, is closest to the ground. At the top is the section containing detectors at the focus of the X-ray telescopes. Surmounting the assembly, a pair of cones will carry heat away from the detectors. XMM's appearance is, though, dominated by the long tube that spans the telescope's focal length, and by the black thermal blanket that will protect the spacecraft from unequal heating on the sunny and shaded sides. A miracle of telescope engineering « You

  12. Electrical Injuries (United States)

    ... it can pass through your body and cause injuries. These electrical injuries can be external or internal. You may have one or both types. External injuries are skin burns. Internal injuries include damage to ...

  13. Electricity derivatives

    CERN Document Server

    Aïd, René


    Offering a concise but complete survey of the common features of the microstructure of electricity markets, this book describes the state of the art in the different proposed electricity price models for pricing derivatives and in the numerical methods used to price and hedge the most prominent derivatives in electricity markets, namely power plants and swings. The mathematical content of the book has intentionally been made light in order to concentrate on the main subject matter, avoiding fastidious computations. Wherever possible, the models are illustrated by diagrams. The book should allow prospective researchers in the field of electricity derivatives to focus on the actual difficulties associated with the subject. It should also offer a brief but exhaustive overview of the latest techniques used by financial engineers in energy utilities and energy trading desks.

  14. Outgassing study of spacecraft materials and contaminant transport simulations (United States)

    Wong, Chung M.; Labatete-Goeppinger, Aura C.; Fowler, Jesse D.; Easton, Myriam P.; Liu, De-Ling


    Contamination control plays an important role in sustaining spacecraft performance. One spacecraft degradation mechanism involves long-term on-orbit molecular outgassing from spacecraft materials. The outgassed molecules may accumulate on thermal control surfaces and/or optics, causing degradation. In this study, we performed outgassing measurements of multiple spacecraft materials, including adhesives, Nylon Velcro, and other assembly materials through a modified ASTM E595 test method. The modified ASTM E595 test had the source and receiver temperature remained at 125°C and 25°C, respectively, but with prolonged outgassing periods of two weeks. The condensable contaminants were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography/Mass Spectrometry (GC/MS) to determine their spectral transmission and chemical composition. The FTIR spectra showed several spacecraft materials, primarily adhesives and potting materials, exhibiting slight absorption from contaminants consisting of hydroxyl groups and carboxylic acids. To gain insight into molecular contaminant transport, simulations were conducted to characterize contaminant accumulation inside a hypothetical space system cavity. The simulation indicated that contaminant molecules bouncing inside the hypothetical payload cavity can lead to deposition on colder surfaces, even though large openings are available to provide venting pathways for escaping to space. The newly established molecular contaminant transport simulation capability holds the promise of providing quantitative guidance for future spacecraft and its venting design.

  15. Spacecraft Re-Entry Impact Point Targeting Using Aerodynamic Drag (United States)

    Omar, Sanny R.; Bevilacqua, Riccardo


    The ability to re-enter the atmosphere at a desired location is important for spacecraft containing components that may survive re-entry. While impact point targeting has traditionally been initiated through impulsive burns with chemical thrusters on large vehicles such as the Space Shuttle, and the Soyuz and Apollo capsules, many small spacecraft do not host thrusters and require an alternative means of impact point targeting to ensure that falling debris do not cause harm to persons or property. This paper discusses the use of solely aerodynamic drag force to perform this targeting. It is shown that by deploying and retracting a drag device to vary the ballistic coefficient of the spacecraft, any desired longitude and latitude on the ground can be targeted provided that the maneuvering begins early enough and the latitude is less than the inclination of the orbit. An analytical solution based on perturbations from a numerically propagated trajectory is developed to map the initial state and ballistic coefficient profile of a spacecraft to its impact point. This allows the ballistic coefficient profile necessary to reach a given target point to be rapidly calculated, making it feasible to generate the guidance for the decay trajectory onboard the spacecraft. The ability to target an impact point using aerodynamic drag will enhance the capabilities of small spacecraft and will enable larger space vehicles containing thrusters to save fuel by more effectively leveraging the available aerodynamic drag.

  16. Modeling, Simulation, and Parameter Estimation of Lateral Spacecraft Fuel Slosh (United States)

    Chatman, Yadira; Gangadharan, Sathya; Marsell, Brandon; Schlee, Keith; Sudermann, James; Walker, Charles; Ristow, James


    Predicting the effect of fuel slosh on a spacecraft and/or launch vehicle attitude control system is a very important and a challenging task. Whether the spacecraft is under spinning or lateral moving conditions, the dynamic effect of the fuel slosh will help determine whether the spacecraft will remain on its chosen trajectory. There are three categories of slosh that can be caused by launch vehicle and/or spacecraft maneuvers when the fuel is in the presence of an acceleration field. These include bulk fluid motion, subsurface wave motion, and free surface slosh. Each of these slosh types have a periodic component that is defined by either a spinning or lateral motion. For spinning spacecraft, all three types of slosh can play a major role in determining stability. Bulk fluid motion and free surface slosh can affect the lateral slosh characteristics. For either condition, the possibility for an unpredicted coupled resonance between the spacecraft and its on board fuel can have mission threatening affects. This on-going research effort aims at improving the accuracy and efficiency of modeling techniques used to predict these types of lateral fluid motions. In particular, efforts will focus on analyzing the effects of viscoelastic diaphragms on slosh dynamics.

  17. Mesh Network Architecture for Enabling Inter-Spacecraft Communication (United States)

    Becker, Christopher; Merrill, Garrick


    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  18. Multiple spacecraft formation reconfiguration using solar radiation pressure (United States)

    Shahid, Kamran; Kumar, Krishna Dev


    In this paper the use of solar radiation pressure for spacecraft formation reconfiguration at the L2 Sun-Earth/Moon collinear libration point is presented. The system consisting of a leader and three follower spacecraft is considered. The leader spacecraft is assumed to be in a fixed halo trajectory and the follower spacecraft position relative to the leader satellite is controlled using two angles and area; these are varied based on a variable structure model reference adaptive control technique to achieve the desired formation reconfiguration. This approach ensures that all follower spacecraft complete the required maneuver in the same time. An intertially fixed circular trajectory, which is suitable for interferometer missions, is used in this paper. The stability of the proposed controller is established using Lyapunov theory. The performance of the proposed controller is tested through numerical simulation of the governing nonlinear equations of motion and is applied for formation initialization, resizing, retargeting, and rotation. The numerical results demonstrate the effectiveness of the proposed control technique for spacecraft formation reconfiguration using solar radiation pressure at the L2 libration point. Furthermore, control inputs on the order of 15 degrees and 2 m2 for area change are sufficient to execute the maneuvers.

  19. Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission (United States)

    Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.


    An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial

  20. Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging (United States)

    Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.


    Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our

  1. Theoretical Investigation of the High-Altitude Cusp Region using Observations from Interball and ISTP Spacecraft (United States)

    Ashour-Abdalla, Maha


    A fundamental goal of magnetospheric physics is to understand the transport of plasma through the solar wind-magnetosphere-ionosphere system. To attain such an understanding, we must determine the sources of the plasma, the trajectories of the particles through the magnetospheric electric and magnetic fields to the point of observation, and the acceleration processes they undergo enroute. This study employed plasma distributions observed in the near-Earth plasma sheet by Interball and Geotail spacecraft together with theoretical techniques to investigate the ion sources and the transport of plasma. We used ion trajectory calculations in magnetic and electric fields from a global Magnetohydrodynamics (MHD) simulation to investigate the transport and to identify common ion sources for ions observed in the near-Earth magnetotail by the Interball and Geotail spacecraft. Our first step was to examine a number of distribution functions and identify distinct boundaries in both configuration and phase space that are indicative of different plasma sources and transport mechanisms. We examined events from October 26, 1995, November 29-30, 1996, and December 22, 1996. During the first event Interball and Geotail were separated by approximately 10 R(sub E) in z, and during the second event the spacecraft were separated by approximately 4(sub RE). Both of these events had a strong IMF By component pointing toward the dawnside. On October 26, 1995, the IMF B(sub Z) component was northward, and on November 1-9-30, 1996, the IMF B sub Z) component was near 0. During the first event, Geotail was located near the equator on the dawn flank, while Interball was for the most part in the lobe region. The distribution function from the Coral instrument on Interball showed less structure and resembled a drifting Maxwellian. The observed distribution on Geotail, on the other hand, included a great number of structures at both low and high energies. During the third event (December 22, 1996

  2. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)


    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  3. Nuclear electric propulsion mission engineering study. Volume 2: Final report (United States)


    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  4. Topology Optimization of Spacecraft Transfer Compartment

    Directory of Open Access Journals (Sweden)

    A. A. Borovikov


    Full Text Available IntroductionThe subject of this research is topology optimization of the adapter of a spacecraft transfer compartment. The finite element topology optimization [1] is widely used for simple structure elements [6, 7]. It is argued that using this method in conjunction with additive technology (3D - printing it is possible to create construction designs with the best weight characteristics. However, the paper shows that when applying this method to a complex construction design the optimization results are highly sensitive to optimization algorithm parameters. The goal of this research is to study parameters of the topology optimization algorithm and the influence of their variations on results.1.      Problem formulation   A commercial software Altair HyperWorks/OptiStruct (student’s license performed numerical calculations. The paper presents a detailed description of the finite element model.The main features of the proposed model are as follows:-          Simplicity with non-complicated geometry;-          Building a finite element model in terms of computing time minimization;-          Using the lumped mass elements to simulate the impacts of the conjugates on the adapter;-          A limit of material strength, decreased by an order of magnitude, to eliminate stress concentrators;-          The gravitational load applied corresponds to the loads for the Angara-A5 launcher [8]. 2.      Method of solutionA brief description of the SIMP-method realized in the Altair HyperWorks/OptiStruct software is given.3.      ResultsPerformed numerical calculations, and shown the influence of variations of algorithm parameters (DISCRETE, MATINIT, MINDIM, MAXDIM on construction design as well as the parameters SINGLE and SPLIT used to reveal restrictions on manufacturing.Shown that, depending on variations of parameters, an adapter construction strives to «truss» or «shell» type. Described

  5. Improved Spacecraft Materials for Radiation Protection (United States)

    Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Clowdsley, M. S.; Shinn, J. L.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann; Kim, M.-H. Y.; Heinbockel, John H.; Badhwar, Gautam D.


    Sv limit for the exposure of the blood forming organs (this limit is strictly for LEO but can be used as a guideline for the Mars mission analysis). The current estimates require aluminum shield thicknesses above 50 g/sq cm., which is impractical. In such a heavily shielded vehicle, the neutrons produced throughout the vehicle also contribute significantly to the exposure and this demands greater care in describing the angular dependence of secondary particle production processes. As such the continued testing of databases and transport procedures in laboratory and spaceflight experiments has continued. This has been the focus of much of the last year's activity and has resulted in improved neutron prediction capability. These new methods have also improved our understanding of the surface environment of Mars. The Mars 2003 NRA HEDS related surface science requirements were driven by the need to validate predictions on the upward flux of neutrons produced in the Martian regolith and bedrock made by the codes developed under this project. The codes used in the surface environment definition are also being used to look at in situ resources for the development of construction material for Martian surface facilities. For example, synthesis of polyimides and polyethylene as binders of regolith for developing basic structural elements has been studied and targets built for accelerator beam testing of radiation shielding properties. Preliminary mechanical tests have also been promising. Improved spacecraft materials have been identified (using the criteria reported by this project at the last conference) as potentially important for future shielding materials. These are liquid hydrogen, hydrogenated nanofibers, liquid methane, LiH, Polyethylene, Polysulfone, and Polyetherimide (in order of decreasing shield performance). Some of the materials are multifunctional and are required for other onboard systems. We are currently preparing software for trade studies with these materials

  6. Differential and Active Charging Results from the ATS Spacecraft. (United States)

    Olsen, Richard Christopher


    This study of spacecraft charging concentrates on the differential charging and artificial particle emission experiments on ATS-5 and ATS-6. It was found that differential charging of spacecraft surfaces generated large electrostatic barriers to spacecraft generated electrons, from photoemission, secondary emission, and thermal emitters. The electrostatic barrier is a potential minimum outside the charged spacecraft which causes low energy electrons to be trapped near the spacecraft. The large dish antenna on ATS-6 was identified as the source of the electrostatic barrier around the Environmental Measurements Experiment package. Daylight charging on ATS-6 was shown to have behavior suggesting the dominance of differential charging on the absolute potential of the mainframe. Electron emission experiments on ATS-5 in eclipse charging environments showed that the electron emitter could partially or totally discharge the satellite, but the mainframe recharged negatively in a few 10's of seconds. The equilibrium emitter current was found to be .3 microamps, substantially below the milliamp capability of the emitter. The limiting of the current and the time dependence seen in the ATS-5 potential during these operations were explained as the result of differential charging of the insulating surfaces on the spacecraft, and the creation of an electrostatic barrier by the differential potential. This barrier limited the artificially generated electron current to the point that the net flux to the spacecraft was again negative. Both the daylight charging events of ATS-6 and the eclipse electron emission experiments of ATS-5 were further analyzed with a simple time dependent model which showed that the barrier height quickly reached an equilibrium value which limited but did not completely stop electron emission. Average and differential potentials developed in time subject to the constraint that the barrier height remain constant. Ion engine operations and plasma emission

  7. Transparent conducting thin films for spacecraft applications (United States)

    Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh


    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  8. Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair

    Directory of Open Access Journals (Sweden)

    P. M. E. Décréau


    Full Text Available The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE. This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC waves in the 15–25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the

  9. Ephemeral Electric Potential and Electric Field Sensor (United States)

    Generazio, Edward R. (Inventor)


    Systems, methods, and devices of the various embodiments provide for the minimization of the effects of intrinsic and extrinsic leakage electrical currents enabling true measurements of electric potentials and electric fields. In an embodiment, an ephemeral electric potential and electric field sensor system may have at least one electric field sensor and a rotator coupled to the electric field sensor and be configured to rotate the electric field sensor at a quasi-static frequency. In an embodiment, ephemeral electric potential and electric field measurements may be taken by rotating at least one electric field sensor at a quasi-static frequency, receiving electrical potential measurements from the electric field sensor when the electric field sensor is rotating at the quasi-static frequency, and generating and outputting images based at least in part on the received electrical potential measurements.

  10. Model of spacecraft atomic oxygen and solar exposure microenvironments (United States)

    Bourassa, R. J.; Pippin, H. G.


    Computer models of environmental conditions in Earth orbit are needed for the following reasons: (1) derivation of material performance parameters from orbital test data, (2) evaluation of spacecraft hardware designs, (3) prediction of material service life, and (4) scheduling spacecraft maintenance. To meet these needs, Boeing has developed programs for modeling atomic oxygen (AO) and solar radiation exposures. The model allows determination of AO and solar ultraviolet (UV) radiation exposures for spacecraft surfaces (1) in arbitrary orientations with respect to the direction of spacecraft motion, (2) overall ranges of solar conditions, and (3) for any mission duration. The models have been successfully applied to prediction of experiment environments on the Long Duration Exposure Facility (LDEF) and for analysis of selected hardware designs for deployment on other spacecraft. The work on these models has been reported at previous LDEF conferences. Since publication of these reports, a revision has been made to the AO calculation for LDEF, and further work has been done on the microenvironments model for solar exposure.

  11. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior (United States)

    Havelund, Klaus; Joshi, Rajeev


    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  12. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.


    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  13. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft (United States)

    Johnson, Len; Fabisinski, Leo; Cunningham, Karen; Justice, Stefanie


    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  14. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft (United States)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh


    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  15. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft (United States)

    Malaspina, David M.; Wilson, Lynn B., III


    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  16. Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements

    Directory of Open Access Journals (Sweden)

    A. Pedersen


    Full Text Available Several satellites (GEOS-1, GEOS-2, ISEE-1, Viking and CRRES carried electric field experiments on which probes were driven by a current from the satellite to be close to the plasma potential. The potential difference between an electric field probe and its spacecraft (with conductive surfaces can be used to determine the ambient electron density and/or electron flux with limited accuracy but with high time resolution, of the order of 10-100 ms. It is necessary for the development of this diagnostic method to understand the photoemission characteristics of probes and satellites. According to the electric field experiments on the above-mentioned satellites, all materials develop very similar photoemission properties when they are beyond the influence of atmospheric oxygen. The photoelectron yield steadily increases over the first few months in space and reaches values well above those measured on clean surfaces in the laboratory. The method can be used for solar radiation levels corresponding to distances from 0.4 to 5 AU from the Sun.

  17. Using IoT Device Technology in Spacecraft Checkout Systems (United States)

    Plummer, Chris


    The Internet of Things (IoT) has become a common theme in both the technical and popular press in recent years because many of the enabling technologies that are required to make IoT a reality have now matured. Those technologies are revolutionising the way industrial systems and products are developed because they offer significant advantages over older technologies. This paper looks at how IoT device technology can be used in spacecraft checkout systems to achieve smaller, more capable, and more scalable solutions than are currently available. It covers the use of IoT device technology for classical spacecraft test systems as well as for hardware-in-the-loop simulation systems used to support spacecraft checkout.

  18. Art concept of Magellan spacecraft in cruise configuration (United States)


    Magellan spacecraft cruise configuration is illustrated in this artist concept. With solar panels deployed and having jettisoned the inertial upper stage (IUS), Magellan approaches the sun which it will orbit approximately 1.6 times before encountering Venus. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during the STS-30 mission.

  19. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 5 (United States)


    To protect space crews from air contaminants, NASA requested that the National Research Council (NRC) provide guidance for developing spacecraft maximum allowable concentrations (SMACs) and review NASA's development of exposure guidelines for specific chemicals. The NRC convened the Committee on Spacecraft Exposure Guidelines to address this task. The committee published Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants (NRC 1992). The reason for the review of chemicals in Volume 5 is that many of them have not been examined for more than 10 years, and new research necessitates examining the documents to ensure that they reflect current knowledge. New knowledge can be in the form of toxicologic data or in the application of new approaches for analysis of available data. In addition, because NASA anticipates longer space missions beyond low Earth orbit, SMACs for 1,000-d exposures have also been developed.

  20. Fire safety arrangement of inhabited pressurized compartments of manned spacecraft (United States)

    Bolodian, Ivan; Melikhov, Anatoliy; Tanklevskiy, Leonid


    The article deals with innovative technical solutions that provide fire safety in inhabited pressurized compartments of manned spacecraft by means of a fireproof device of inhabited pressurized compartments via application of engineering means of fire prevention and fire spreading prevention by lowering fire load in an inhabited pressurized module up to the point when the maximum possible levels of fire factors in an inhabited pressurized compartment of a manned spacecraft are prevented. Represented technical solutions are used at the present time according to stated recommendations during provision of fire safety of equipment created by a number of Russian organizations for equipage of inhabited pressurized compartments of spacecraft of the Russian segment of International space station.

  1. Kalman Filter Estimation of Spinning Spacecraft Attitude using Markley Variables (United States)

    Sedlak, Joseph E.; Harman, Richard


    There are several different ways to represent spacecraft attitude and its time rate of change. For spinning or momentum-biased spacecraft, one particular representation has been put forward as a superior parameterization for numerical integration. Markley has demonstrated that these new variables have fewer rapidly varying elements for spinning spacecraft than other commonly used representations and provide advantages when integrating the equations of motion. The current work demonstrates how a Kalman filter can be devised to estimate the attitude using these new variables. The seven Markley variables are subject to one constraint condition, making the error covariance matrix singular. The filter design presented here explicitly accounts for this constraint by using a six-component error state in the filter update step. The reduced dimension error state is unconstrained and its covariance matrix is nonsingular.

  2. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson


    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  3. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. (United States)

    Connerney, J E P; Adriani, A; Allegrini, F; Bagenal, F; Bolton, S J; Bonfond, B; Cowley, S W H; Gerard, J-C; Gladstone, G R; Grodent, D; Hospodarsky, G; Jorgensen, J L; Kurth, W S; Levin, S M; Mauk, B; McComas, D J; Mura, A; Paranicas, C; Smith, E J; Thorne, R M; Valek, P; Waite, J


    The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator. Copyright © 2017, American Association for the Advancement of Science.

  4. Apollo Spacecraft and Saturn V Launch Vehicle Pyrotechnics/Explosive Devices (United States)

    Interbartolo, Michael


    The Apollo Mission employs more than 210 pyrotechnic devices per mission.These devices are either automatic of commanded from the Apollo spacecraft systems. All devices require high reliability and safety and most are classified as either crew safety critical or mission critical. Pyrotechnic devices have a wide variety of applications including: launch escape tower separation, separation rocket ignition, parachute deployment and release and electrical circuit opening and closing. This viewgraph presentation identifies critical performance, design requirements and safety measures used to ensure quality, reliability and performance of Apollo pyrotechnic/explosive devices. The major components and functions of a typical Apollo pyrotechnic/explosive device are listed and described (initiators, cartridge assemblies, detonators, core charges). The presentation also identifies the major locations and uses for the devices on: the Command and Service Module, Lunar Module and all stages of the launch vehicle.

  5. Multi-Spacecraft Measurement of Turbulence within a Magnetic Reconnection Jet

    CERN Document Server

    Osman, K T; Matthaeus, W H; Hnat, B; Chapman, S C; Khotyaintsev, Yu V


    The relationship between magnetic reconnection and plasma turbulence is investigated using multipoint in-situ measurements from the Cluster spacecraft within a high-speed reconnection jet in the terrestrial magnetotail. We show explicitly that work done by electromagnetic fields on the particles, $\\mathbf{J}\\cdot\\mathbf{E}$, has a non-Gaussian distribution and is concentrated in regions of high electric current density. Hence, magnetic energy is converted to kinetic energy in an intermittent manner. Furthermore, we find the higher-order statistics of magnetic field fluctuations generated by reconnection are characterized by multifractal scaling on magnetofluid scales and non-Gaussian global scale invariance on kinetic scales. These observations suggest $\\mathbf{J}\\cdot\\mathbf{E}$ within the reconnection jet has an analogue in fluid-like turbulence theory in that it proceeds via coherent structures generated by an intermittent cascade. This supports the hypothesis that turbulent dissipation is highly nonunifor...

  6. ASPI experiment: measurements of fields and waves on board the INTERBALL-1 spacecraft

    Directory of Open Access Journals (Sweden)

    S. Klimov


    Full Text Available The plasma-wave experiment ASPI (analysis of spectra of plasma waves and instabilities on board the INTERBALL spacecraft is a combined wave diagnostics experiment. It performs measurements of the DC and AC magnetic field vector by flux-gate and search-coil sensors, the DC and AC electric field vector by Langmuir double probes and the plasma current by Langmuir split probe. Preliminary data analysis shows the low noise levels of the sensors and the compatibility of new data with the results of previous missions. During several months of in-orbit operation a rich collection of data was acquired, examples of which at the magnetopause and plasma sheet are presented in second part of the paper.

  7. Solar wind plasma interaction with solar probe plus spacecraft

    Directory of Open Access Journals (Sweden)

    S. Guillemant


    Full Text Available 3-D PIC (Particle In Cell simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface. We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a sensitivity study using generic SPIS capabilities, investigating the role of some physical phenomena and numerical models. It confirms that in the near- sun environment, the Solar Probe Plus spacecraft would rather be negatively charged, despite the high yield of photoemission. This negative potential is explained through the dense sheath of photoelectrons and secondary electrons both emitted with low energies (2–3 eV. Due to this low energy of emission, these particles are not ejected at an infinite distance of the spacecraft and would rather surround it. As involved densities of photoelectrons can reach 106 cm−3 (compared to ambient ions and electrons densities of about 7 × 103 cm−3, those populations affect the surrounding plasma potential generating potential barriers for low energy electrons, leading to high recollection. This charging could interfere with the low energy (up to a few tens of eV plasma sensors and particle detectors, by biasing the particle distribution functions measured by the instruments. Moreover, if the spacecraft charges to large negative potentials, the problem will be more severe as low energy electrons will not be seen at all. The importance of the modelling requirements in terms of precise prediction of spacecraft potential is also discussed.

  8. Spacecraft Fire Safety Research at NASA Glenn Research Center (United States)

    Meyer, Marit


    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  9. Deep Space Networking Experiments on the EPOXI Spacecraft (United States)

    Jones, Ross M.


    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  10. Digital image transformation and rectification of spacecraft and radar images (United States)

    Wu, S. S. C.


    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  11. Spacecraft-borne long life cryogenic refrigeration: Status and trends (United States)

    Johnson, A. L.


    The status of cryogenic refrigerator development intended for, or possibly applicable to, long life spacecraft-borne application is reviewed. Based on these efforts, the general development trends are identified. Using currently projected technology needs, the various trends are compared and evaluated. The linear drive, non-contacting bearing Stirling cycle refrigerator concept appears to be the best current approach that will meet the technology projection requirements for spacecraft-borne cryogenic refrigerators. However, a multiply redundant set of lightweight, moderate life, moderate reliability Stirling cycle cryogenic refrigerators using high-speed linear drive and sliding contact bearings may possibly suffice.

  12. Periodic H-2 Synthesis for Spacecraft Attitude Control with Magnetometers

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Stoustrup, Jakob


    A control synthesis for a spacecraft equipped with a set of magnetorquer coils is addressed. The electromagnetic actuation is particularly attractive for small low-cost spacecraft missions, due to their relatively low price, high reliability, light weight, and low power consumption. The interaction...... between the Earth´s magnetic field and an artificial magnetic field generated by the coils produces a control torque. The magnetic attitude control is intrinsically periodic due to cyclic variation of the geomagnetic field in orbit. The control performance is specified by the generalized H2 operator norm...

  13. Development of a Spacecraft Materials Selector Expert System (United States)

    Pippin, G.; Kauffman, W. (Technical Monitor)


    This report contains a description of the knowledge base tool and examples of its use. A downloadable version of the Spacecraft Materials Selector (SMS) knowledge base is available through the NASA Space Environments and Effects Program. The "Spacecraft Materials Selector" knowledge base is part of an electronic expert system. The expert system consists of an inference engine that contains the "decision-making" code and the knowledge base that contains the selected body of information. The inference engine is a software package previously developed at Boeing, called the Boeing Expert System Tool (BEST) kit.

  14. Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield (United States)

    Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell


    An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.

  15. Analysis of Roll Steering for Solar Electric Propulsion Missions (United States)

    Pederson, Dylan, M.; Hojnicki, Jeffrey, S.


    Nothing is more vital to a spacecraft than power. Solar Electric Propulsion (SEP) uses that power to provide a safe, reliable, and, most importantly, fuel efficient means to propel a spacecraft to its destination. The power performance of an SEP vehicle s solar arrays and electrical power system (EPS) is largely influenced by the environment in which the spacecraft is operating. One of the most important factors that determines solar array power performance is how directly the arrays are pointed to the sun. To get the most power from the solar arrays, the obvious solution is to point them directly at the sun at all times. Doing so is not a problem in deep space, as the environment and pointing conditions that a spacecraft faces are fairly constant and are easy to accommodate, if necessary. However, large and sometimes rapid variations in environmental and pointing conditions are experienced by Earth orbiting spacecraft. SEP spacecraft also have the additional constraint of needing to keep the thrust vector aligned with the velocity vector. Thus, it is important to analyze solar array power performance for any vehicle that spends an extended amount of time orbiting the Earth, and to determine how much off-pointing can be tolerated to produce the required power for a given spacecraft. This paper documents the benefits and drawbacks of perfectly pointing the solar arrays of an SEP spacecraft spiraling from Earth orbit, and how this might be accomplished. Benefits and drawbacks are defined in terms of vehicle mass, power, volume, complexity, and cost. This paper will also look at the application of various solar array pointing methods to future missions. One such pointing method of interest is called roll steering . Roll steering involves rolling the entire vehicle twice each orbit. Roll steering, combined with solar array gimbal tracking, is used to point the solar arrays perfectly towards the sun at all points in the orbit, while keeping the vehicle thrusters aligned

  16. Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion (United States)

    Fiehler, Douglas I.; Oleson, Steven R.


    In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.

  17. A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization (United States)

    Aziz, Jonathan; Scheeres, Daniel; Parker, Jeffrey; Englander, Jacob


    Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.

  18. Electricity unplugged (United States)

    Karalis, Aristeidis


    The judge was driving back late one cold winter night. Entering the garage, the battery-charging indicator in his wirelessly powered electric car came on. "Home at last," crossed his mind. He swiped his personal smartcard on the front-door detector to be let in. He heard a "charging" beep from his mobile phone. The blinking cursor on the half-finished e-mail on the laptop had been waiting all day on the side table. He picked the computer up and walked towards his desk. "Good evening, your honour. Your wirelessly heated robe," said the butler-robot as it approached from the kitchen. Putting on the electric garment, he sat on the medical desk chair. His artificial heart was now beating faster.

  19. Decentralized and Modular Electrical Architecture (United States)

    Elisabelar, Christian; Lebaratoux, Laurence


    This paper presents the studies made on the definition and design of a decentralized and modular electrical architecture that can be used for power distribution, active thermal control (ATC), standard inputs-outputs electrical interfaces.Traditionally implemented inside central unit like OBC or RTU, these interfaces can be dispatched in the satellite by using MicroRTU.CNES propose a similar approach of MicroRTU. The system is based on a bus called BRIO (Bus Réparti des IO), which is composed, by a power bus and a RS485 digital bus. BRIO architecture is made with several miniature terminals called BTCU (BRIO Terminal Control Unit) distributed in the spacecraft.The challenge was to design and develop the BTCU with very little volume, low consumption and low cost. The standard BTCU models are developed and qualified with a configuration dedicated to ATC, while the first flight model will fly on MICROSCOPE for PYRO actuations and analogue acquisitions. The design of the BTCU is made in order to be easily adaptable for all type of electric interface needs.Extension of this concept is envisaged for power conditioning and distribution unit, and a Modular PCDU based on BRIO concept is proposed.

  20. Development of Design Standards and Guidelines for Electromagnetic Compatibility and Lightning Protection for Spacecraft Utilizing Composite Materials (United States)


    Preliminary design guidelines necessary to assure electromagnetic compatibility (EMC) of spacecraft using composite materials, are presented. A database of electrical properties of composite materials which may have an effect on EMC is established. The guidelines concentrate on the composites that are conductive but may require enhancement to be adequate for EMC purposes. These composites are represented by graphite reinforced polymers. Methods for determining adequate conductivity levels for various EMC purposes are defined, along with the methods of design which increase conductivity of composite materials and joints to adequate levels.

  1. Potential applications of MMC and aluminum-lithium alloys in cameras for CRAF spacecraft. [Comet Rendezvous Asteroid Flyby Mission (United States)

    Lane, Marc; Hsieh, Cheng; Adams, Lloyd


    In undertaking the design of a 2000-mm focal length camera for the Mariner Mark II series of spacecraft, JPL sought novel materials with the requisite dimensional and thermal stability, outgassing and corrosion resistance, low mass, high stiffness, and moderate cost. Metal-matrix composites and Al-Li alloys have, in addition to excellent mechanical properties and low density, a suitably low coefficient of thermal expansion, high specific stiffness, and good electrical conductivity. The greatest single obstacle to application of these materials to camera structure design is noted to have been the lack of information regarding long-term dimensional stability.

  2. Electric Car (United States)


    NASA's Lewis Research Center undertook research toward a practical, economical battery with higher energy density. Borrowing from space satellite battery technology, Lewis came up with a nickel-zinc battery that promises longer life and twice the range of the lead-acid counterpart. Lewis researchers fabricated a prototype battery and installed it in an Otis P-500 electric utility van, using only the battery space already available and allowing battery weight equal to that of the va's conventional lead-acid battery

  3. Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft (United States)

    Medina, Alberto; Tomassini, Angelo; Suatoni, Matteo; Avilés, Marcos; Solway, Nick; Coxhill, Ian; Paraskevas, Iosif S.; Rekleitis, Georgios; Papadopoulos, Evangelos; Krenn, Rainer; Brito, André; Sabbatinelli, Beatrice; Wollenhaupt, Birk; Vidal, Christian; Aziz, Sarmad; Visentin, Gianfranco


    Exploitation of space must benefit from the latest advances in robotics. On-orbit servicing is a clear candidate for the application of autonomous rendezvous and docking mechanisms. However, during the last three decades most of the trials took place combining extravehicular activities (EVAs) with telemanipulated robotic arms. The European Space Agency (ESA) considers that grasping and refuelling are promising near-mid-term capabilities that could be performed by servicing spacecraft. Minimal add-ons on spacecraft to enhance their serviceability may protect them for a changing future in which satellite servicing may become mainstream. ESA aims to conceive and promote standard refuelling provisions that can be installed in present and future European commercial geostationary orbit (GEO) satellite platforms and scientific spacecraft. For this purpose ESA has started the ASSIST activity addressing the analysis, design and validation of internal provisions (such as modifications to fuel, gas, electrical and data architecture to allow servicing) and external provisions (such as integrated berthing fixtures with peripheral electrical, gas, liquid connectors, leak check systems and corresponding optical and radio markers for cooperative rendezvous and docking). This refuelling approach is being agreed with European industry (OHB, Thales Alenia Space) and expected to be consolidated with European commercial operators as a first step to become an international standard; this approach is also being considered for on-orbit servicing spacecraft, such as the SpaceTug, by Airbus DS. This paper describes in detail the operational means, structure, geometry and accommodation of the system. Internal and external provisions will be designed with the minimum possible impact on the current architecture of GEO satellites without introducing additional risks in the development and commissioning of the satellite. End-effector and berthing fixtures are being designed in the range of few

  4. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma (United States)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander


    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  5. Thermal observations of spacecraft target 1999 JU3 (United States)

    Campins, Humberto; Barucci, Antonella; Dotto, Elizabetta; Emery, Joshua; Fernandez, Yanga; Kelley, Michael; Licandro, Javier


    We propose a 1.4 hr program to observe, with IRS, the near-Earth asteroid 161273 (1999 JU3), the primary target of two proposed spacecraft missions: the European Space Agency (ESA) MARCO POLO sample return mission and the Japanese Aerospace Exploration Agency (JAXA) Hyabusa-2 mission. These observations will provide characterization of the composition and thermophysical properties of this distinctive asteroid.

  6. Deep Impact Spacecraft Collides With Comet Tempel 1-Video (United States)


    After 172 days and 268 million miles of deep space travel, the NASA Deep Impact spacecraft successfully reached out and touched comet Tempel 1. The collision between the coffee table-sized space probe and city-sized comet occurred July 4, 2005 at 12:52 a.m. CDT. The objects met at 23,000 miles per hour. The heat produced by the impact was at least several thousand degrees Kelvin and at that extreme temperature, just about any material begins to glow. This movie, made up of images taken by the medium resolution camera aboard the spacecraft, from May 1 to July 2, shows the Deep Impact approach to comet Tempel 1. The spacecraft detected 3 outbursts during this time period, on June 14th, June 22nd, and July 2nd. The movie ends during the final outburst. Mission scientists expect Deep Impact to provide answers to basic questions about the formation of the solar system. Principal investigator, Dr. Michael A'Hearn of the University of Maryland in College Park, is responsible for the mission, and project management is handled by the Jet Propulsion Laboratory in Pasadena, California. The program office at Marshall Space Flight Center MSFC) in Huntsville, Alabama, assisted the Science Mission Directorate at NASA Headquarters in Washington with program management, technology planning, systems assessment, flight assurance and public outreach. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation of Boulder, Colorado. (NASA/JPL-Caltech/UMD)

  7. Spacecraft and Their Boosters. Aerospace Education I. Instructor Handbook. (United States)

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the textbook entitled "Spacecraft and their Boosters," published in the Aerospace Education I series. Specific guidelines are provided for teachers on each chapter included in the textbook. The guidelines are organized in nine categories: objectives, behavioral objectives, textbook outline,…

  8. New Approach to Total Dose Specification for Spacecraft Electronics (United States)

    Xapsos, Michael


    Variability of the space radiation environment is investigated with regard to total dose specification for spacecraft electronics. It is shown to have a significant impact. A new approach is developed for total dose requirements that replaces the radiation design margin concept with failure probability during a mission.

  9. Computer Graphics Tools for the Visualization of Spacecraft Dynamics (United States)


    34Describing an Attitude", paper presented at the 16th Annual AAS Guidnace and Control Conference, Keystone, Colorado, Feb 6 - 10, 1993. 4. Halliday ...David, and Resnick , Robert, Fundamentals of Physics, John Wiley & Sons, 1988. 5. Agrawal, Brij, N., Design of Geosynchronous Spacecraft, Prentice

  10. Automated workstation for the operation of spacecraft engineering subsystems (United States)

    Bahrami, K. A.; Atkins, K. L.; Saxon, R.; Kaufman, N.


    This paper addresses the development of a workstation that exploits automated tools to enable an operator to monitor concurrently several engineering subsystems and/or several space missions. The use of artificial intelligence and advanced graphics capabilities to achieve fast prototypes is discussed. The monitoring of engineering telemetry data from the Power and Pyro Subsystem of the Galileo spacecraft is emphasized.

  11. Spacecraft VLBI and Doppler tracking : Algorithms and implementation

    NARCIS (Netherlands)

    Duev, D.A.; Molera Calvés, G.; Pogrebenko, S.V.; Gurvits, L.I.; Cimó, G.; Bocanegra Bahamon, T.


    Aims. We present the results of several multi-station Very Long Baseline Interferometry (VLBI) experiments conducted with the ESA spacecraft Venus Express as a target. To determine the true capabilities of VLBI tracking for future planetary missions in the solar system, it is necessary to

  12. Evolution and design characteristics of the microwave radiometer spacecraft (United States)

    Wright, R. L.


    The evolution of the design of the microwave radiometer spacecraft from conception to preliminary design is described. Alternatives and tradeoff rationale are described, and the configuration and structural design features that were developed and refined during the design processes are presented for the three structural configurations studied (two geodesic trusses and a flexible catenary).

  13. Spacecraft Rendevouz and Docking. An Autonomy assisted Human Operator Approach

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Thuesen, Gøsta


    The phenomena and problems encountered when a rendezvous maneuver, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies and details of a variety of scenarios has been analyzed. So far, all solutions that have been brought into realization have bee...

  14. Anomalous accelerations in spacecraft flybys of the Earth (United States)

    Acedo, L.


    The flyby anomaly is a persistent riddle in astrodynamics. Orbital analysis in several flybys of the Earth since the Galileo spacecraft flyby of the Earth in 1990 have shown that the asymptotic post-encounter velocity exhibits a difference with the initial velocity that cannot be attributed to conventional effects. To elucidate its origin, we have developed an orbital program for analyzing the trajectory of the spacecraft in the vicinity of the perigee, including both the Sun and the Moon's tidal perturbations and the geopotential zonal, tesseral and sectorial harmonics provided by the EGM96 model. The magnitude and direction of the anomalous acceleration acting upon the spacecraft can be estimated from the orbital determination program by comparing with the trajectories fitted to telemetry data as provided by the mission teams. This acceleration amounts to a fraction of a mm/s2 and decays very fast with altitude. The possibility of some new physics of gravity in the altitude range for spacecraft flybys is discussed.

  15. Video-Game-Like Engine for Depicting Spacecraft Trajectories (United States)

    Upchurch, Paul R.


    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  16. Optimization of spacecraft battery charger/discharger systems


    Sable, Daniel Mark


    This ,vork develops a methodology to facilitate the optimum design of spacecraft power processing systems. Em phasis is placed on the battery charge and discharge systems. A comparison of several battery charge and discharge topologies is presented. Characteristics \\vhich effect the overall system performance are addressed including size, weight, efficiency, dynamic performance, electromagnetic interference, and reliability. A detailed comparison, using nonlinear design opti...

  17. Spacecraft Orbit Determination with The B-spline Approximation Method (United States)

    Song, Ye-zhi; Huang, Yong; Hu, Xiao-gong; Li, Pei-jia; Cao, Jian-feng


    It is known that the dynamical orbit determination is the most common way to get the precise orbits of spacecraft. However, it is hard to build up the precise dynamical model of spacecraft sometimes. In order to solve this problem, the technique of the orbit determination with the B-spline approximation method based on the theory of function approximation is presented in this article. In order to verify the effectiveness of this method, simulative orbit determinations in the cases of LEO (Low Earth Orbit), MEO (Medium Earth Orbit), and HEO (Highly Eccentric Orbit) satellites are performed, and it is shown that this method has a reliable accuracy and stable solution. The approach can be performed in both the conventional celestial coordinate system and the conventional terrestrial coordinate system. The spacecraft's position and velocity can be calculated directly with the B-spline approximation method, it needs not to integrate the dynamical equations, nor to calculate the state transfer matrix, thus the burden of calculations in the orbit determination is reduced substantially relative to the dynamical orbit determination method. The technique not only has a certain theoretical significance, but also can serve as a conventional algorithm in the spacecraft orbit determination.

  18. Spacecraft Orbit Determination with B Spline Approximation Method (United States)

    Song, Y. Z.; Huang, Y.; Hu, X. G.; Li, P. J.; Cao, J. F.


    It is known that the dynamical orbit determination is the most common way to get the precise orbit of spacecraft. However, it is hard to describe the precise orbit of spacecraft sometimes. In order to solve this problem, the technique of the orbit determination with the B spline approximation method based on the theory of function approximation is presented in this article. Several simulation cases of the orbit determination including LEO (Low Earth Orbit), MEO (Medium Earth Orbit), and HEO (Highly Eccentric Orbit) satellites are performed, and it is shown that the accuracy of this method is reliable and stable.The approach can be performed in the conventional celestial coordinate system and conventional terrestrial coordinate system.The spacecraft's position and velocity can be calculated directly with the B spline approximation method, which means that it is unnecessary to integrate the dynamics equations and variational equations. In that case, it makes the calculation amount of orbit determination reduce substantially relative to the dynamical orbit determination method. The technique not only has a certain theoretical significance, but also can be as a conventional algorithm in the spacecraft orbit determination.

  19. Quaternion Feedback Control for Rigid-body Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal


    This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental...

  20. A Prototyping Effort for the Integrated Spacecraft Analysis System (United States)

    Wong, Raymond; Tung, Yu-Wen; Maldague, Pierre


    Computer modeling and simulation has recently become an essential technique for predicting and validating spacecraft performance. However, most computer models only examine spacecraft subsystems, and the independent nature of the models creates integration problems, which lowers the possibilities of simulating a spacecraft as an integrated unit despite a desire for this type of analysis. A new project called Integrated Spacecraft Analysis was proposed to serve as a framework for an integrated simulation environment. The project is still in its infancy, but a software prototype would help future developers assess design issues. The prototype explores a service oriented design paradigm that theoretically allows programs written in different languages to communicate with one another. It includes creating a uniform interface to the SPICE libraries such that different in-house tools like APGEN or SEQGEN can exchange information with it without much change. Service orientation may result in a slower system as compared to a single application, and more research needs to be done on the different available technologies, but a service oriented approach could increase long term maintainability and extensibility.