WorldWideScience

Sample records for rangeland plant responses

  1. Soil Properties and Plant Biomass Production in Natural Rangeland Management Systems

    Directory of Open Access Journals (Sweden)

    Romeu de Souza Werner

    Full Text Available ABSTRACT Improper management of rangelands can cause land degradation and reduce the economic efficiency of livestock activity. The aim of this study was to evaluate soil properties and quantify plant biomass production in four natural rangeland management systems in the Santa Catarina Plateau (Planalto Catarinense of Brazil. The treatments, which included mowed natural rangeland (NR, burned natural rangeland (BR, natural rangeland improved through the introduction of plant species after harrowing (IH, and natural rangeland improved through the introduction of plant species after chisel plowing (IC, were evaluated in a Nitossolo Bruno (Nitisol. In the improved treatments, soil acidity was corrected, phosphate fertilizer was applied, and intercropped annual ryegrass (Lolium multiflorum, velvet grass (Holcus lanatus, and white clover (Trifolium repens were sown. Management systems with harrowed or chisel plowed soil showed improved soil physical properties; however, the effect decreased over time and values approached those of burned and mowed natural rangelands. Natural rangeland systems in the establishment phase had little influence on soil organic C. The mowed natural rangeland and improved natural rangeland exhibited greater production of grazing material, while burning the field decreased production and increased the proportion of weeds. Improvement of the natural rangelands increased leguminous biomass for pasture.

  2. Plant/life form considerations in the rangeland hydrology and erosion model (RHEM)

    Science.gov (United States)

    Resilience of rangeland to erosion has largely been attributed to adequate plant cover; however, plant life/growth form, and individual species presence can have a dramatic effect on hydrologic and erosion dynamics on rangelands. Plant life/growth form refers to genetic tendency of a plant to grow i...

  3. Invasive Plants on Rangelands: a Global Threat

    Science.gov (United States)

    Invasive plant species are spreading and invading rangelands at an unprecedented rate costing ranchers billions of dollars to control invasive plants each year. In its simplest form, the invasion process has four primary stages, including introduction, establishment, spread and colonization. Th...

  4. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    Science.gov (United States)

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  5. Introducing cattle grazing to a noxious weed-dominated rangeland shifts plant communities

    Directory of Open Access Journals (Sweden)

    Josh S. Davy

    2015-10-01

    Full Text Available Invasive weed species in California's rangelands can reduce herbaceous diversity, forage quality and wildlife habitat. Small-scale studies (5 acres or fewer have shown reductions of medusahead and yellow starthistle using prescribed grazing on rangelands, but little is published on the effects of pasture-scale (greater than 80 acres prescribed grazing on weed control and plant community responses. We report the results of a 6-year collaborative study of manager-applied prescribed grazing implemented on rangeland that had not been grazed for 4 years. Grazing reduced medusahead but did not alter yellow starthistle cover. Medusahead reductions were only seen in years that did not have significant late spring rainfall, suggesting that it is able to recover from heavy grazing if soil moisture is present. Later season grazing appears to have the potential to suppress medusahead in all years. In practice, however, such grazing is constrained by livestock drinking water availability and forage quality, which were limited even in years with late spring rainfall. Thus, we expect that grazing treatments under real-world constraints would reduce medusahead only in years with little late spring rainfall. After 10 years of grazing exclusion, the ungrazed plant communities began to shift, replacing medusahead with species that have little value, such as ripgut and red brome.

  6. Comparison of LANDSAT-2 and field spectrometer reflectance signatures of south Texas rangeland plant communities

    Science.gov (United States)

    Richardson, A. J.; Escobar, D. E.; Gausman, H. W.; Everitt, J. H. (Principal Investigator)

    1982-01-01

    The accuracy was assessed for an atmospheric correction method that depends on clear water bodies to infer solar and atmospheric parameters for radiative transfer equations by measuring the reflectance signature of four prominent south Texas rangeland plants with the LANDSAT satellite multispectral scanner (MSS) and a ground based spectroradiometer. The rangeland plant reflectances produced by the two sensors were correlated with no significant deviation of the slope from unity or of the intercept from zero. These results indicated that the atmospheric correction produced LANDSAT MSS estimates of rangeland plant reflectances that are as accurate as the ground based spectroradiometer.

  7. Abandoned seasonal livestock migration reflected by plant functional traits: A case study in Kyrgyz rangelands

    Science.gov (United States)

    Hoppe, Franziska; Zhusui Kyzy, Taalaigul; Usupbaev, Adilet; Schickoff, Udo

    2017-04-01

    At least 30% of Kyrgyz pasture areas are considered to be subject to vegetation and soil degradation. Since animal husbandry is the economic basis to sustain people's livelihoods, rangeland degradation presents a threat for the majority of the population. Recently, the usage of plant functional traits as a powerful tool for the characterization of vegetation dynamics in response to anthropogenic and natural disturbances has been put forward. Grazing is one of the most severe disturbances on vegetation, which concerns equally the loss of area and biomass. Because grazing is both depending on and affecting plant functional traits, important insights can be generated, based on this codependency. We hypothesized that the contrasting grazing intensity of summer and winter pastures is reflected by the chosen traits. We used traits such as plant height, flowering start, growth form as well as SLA (Specific Leaf Area) and LMA (Leaf Mass per Area). Based on former phytosociological classification of the main pasture types (summer and winter pastures), community structure and the traits of dominant plant species were analyzed. Our results showed that on winter pastures grazing decreased plant height and SLA and favored plants with an earlier flowering start as well as rosette plants and ascending plants. We conclude that the study of trait composition in relation to anthropogenic disturbances can provide important insights into the mechanism of plant response to grazing in high-altitude rangelands.

  8. Climate impacts on agriculture: Implications for forage and rangeland production

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Thomson, Allison M.; Morgan, Jack; Fay, Philip; Polley, Wayne; Hatfield, Jerry L.

    2011-04-19

    Projections of temperature and precipitation patterns across the United States during the next 50 years anticipate a 1.5 to 2°C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change impacts on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on pastureland and rangeland species to rising CO2 and climate change (temperature, and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g., community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pasture species to increased [CO2] is consistent with the general response of C3 and C4 type vegetation, although significant exceptions exist. Both pastureland and rangeland species should exhibit an acceleration of metabolism and development due to earlier onset of spring green-up and longer growing seasons. However, in the studies reviewed here, C3 pasture species increased their photosynthetic rates by up to 40% while C4 species exhibited no increase in photosynthesis. In general, it is expected that increases in [CO2] and precipitation would enhance rangeland net primary production (NPP) while increased air temperatures would either increase or decrease NPP. Much of this uncertainty in response is due to uncertain future projections of precipitation, both globally and regionally. For example, if annual precipitation changes little or declines, rangeland plant response to warming temperatures and rising [CO2] may be neutral or may decline due to increased water stress. This review reveals the need for comprehensive studies of climate change impacts on the pasture ecosystem including grazing regimes, mutualistic relationships (e.g., plant roots-nematodes; N

  9. Moisture, plant-plant interactions and herbivory as drivers of rangeland restoration success in the western US

    Science.gov (United States)

    Restoration efforts in the western US occur across a diverse array of plant communities and climatic conditions. Restoration is likely constrained by different factors in different locations, but few efforts have compared the outcomes of rangeland restoration experiments across broad spatial scales....

  10. Infection of Melanoplus sanguinipes Grasshoppers following Ingestion of Rangeland Plant Species Harboring Vesicular Stomatitis Virus▿

    Science.gov (United States)

    Drolet, Barbara S.; Stuart, Melissa A.; Derner, Justin D.

    2009-01-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV. PMID:19286779

  11. Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus.

    Science.gov (United States)

    Drolet, Barbara S; Stuart, Melissa A; Derner, Justin D

    2009-05-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV.

  12. Measuring ecological function on California's rangelands

    Science.gov (United States)

    Porzig, E.

    2016-12-01

    There is a need for a better understanding of ecosystem processes on rangelands and how management decisions influence these processes on scales that are both ecologically and socially relevant. Point Blue Conservation Science's Rangeland Monitoring Network is a coordinated effort to collect standardized data on birds, vegetation, and soils on rangelands throughout California. We work with partners, including private landowners, land trusts, state and federal agencies, and others, to measure bird and plant abundance and diversity and three soil dynamic properties (water infiltration, bulk density, and organic carbon). Here, we present data from our first two years of monitoring on over 50 ranches in 17 counties. By collecting data on the scope and scale of variation in ecological function across rangelands and the relationship with management practices, we aim to advance rangeland management, restoration, and conservation.

  13. Grazing exclusion, substrate type, and drought frequency affect plant community structure in rangelands of the arid unpredictable Arabian Deserts

    Science.gov (United States)

    El-Keblawy, Ali; El-Sheikh, Mohamed

    2017-04-01

    Grazing and drought can adversely affect the ecology and management of rangeland ecosystems. Several management actions have been applied to restore species diversity and community structure in degraded rangelands of the unpredictable arid environment. Protection from grazing is considered as a proper approach for restoration of degraded rangelands, but this depends on substrate type and sometime is hindered with water deficiency (drought). In this study, the effect of protection from grazing animals on species diversity and plant community structure was assessed after a dry and wet periods in both sandy and gravelly substrates in the Dubai Desert Conservation reserve (DDCR), United Arab Emirates. Two sites were selected during November 2012 on the two substrate types (fixed sandy flat and gravel plain) in the arid DDCR. An enclosure was established in each site. Plant community attributes (plant cover, density, frequency, species composition, and diversity indices) were assessed in a number of permanent plots laid inside and outside each enclosure during November 2012, April 2014 and April 2016. The results showed that protection improved clay content, but decreased the organic matters. Interestingly, the protection reduced the concentrations of most estimated nutrients, which could be attributed to the high turnover rate of nutrients associated grazing and low decomposition of accumulated dry plants of non-protected sites. Protection significantly increased all plant community attributes, but the only significant effect was for plant density. Plant density was almost twice greater inside than outside the enclosures. During the dry period, protection resulted in significantly greater deterioration in cover, density and all diversity indices in gravel, compared to sandy sites. Most of the grasses and shrubby plants had died in the gravel plains. However, plant community of the gravel plains was significantly restored after receiving considerable rainfalls. The

  14. New Tools to Estimate Runoff, Soil Erosion, and Sustainability of Rangeland Plant Communities

    Science.gov (United States)

    Rangelands are the largest land cover type in the world. Degradation from mismanagement, desertification, and drought impact more than 50% of rangelands across the globe. The USDA Agricultural Research Service has been evaluating sustainability of rangeland for over 40-years by conducted rangeland r...

  15. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of

  16. IMPACT OF WOODY PLANTS SPECIES ON SOIL PHYSIO-CHEMICAL PROPERTIES ALONG GRAZING GRADIENTS IN RANGELANDS OF EASTERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Mohammed Mussa Abdulahi

    2016-12-01

    Full Text Available In the lowlands of arid and semiarid rangelands woody plants plays an important role in soil fertility maintenance, providing food, medicine, cosmetics, fodder, fuel wood and pesticides. A better understanding of the interaction of woody plants on their immediate environment is needed to guide optimum management of native vegetation in the production landscapes. However, the impact of woody plant species on soil properties remains poorly understood. This study evaluates the impact of two dominant woody plant species (A. senegal and B. aegyptica on soil physico-chemical properties along grazing gradients in rangelands of eastern Ethiopia. Six trees of each species were selected from light, moderate and heavy grazing sites.  Soil sample data at two depths (0-15 and 16-30 cm were collected from under and open areas of A. senegal and B. aegyptica from each grazing sites, and analysed for nutrient contents. The nutrient status of soil under both woody species was significantly higher especially with regard to soil organic matter (4.37%, total nitrogen (0.313%, and available phosphorus (11.62 than the open grassland with soil organic matter (3.82%, total nitrogen (0.246%, and available phosphorus (10.94 mg/Kg soil for A. Senegal. The soil organic matter (3.93%, total nitrogen (0.285%, available phosphorus (11.66 mg/Kg soil were significantly higher than open grassland with soil organic matter (3.52%, total nitrogen (0.218%, available phosphorus (10.73 mg/Kg soil for B. aegyptica. This was more pronounced in the top 15 cm of soil under A. senegal woody plant species and on the light and moderate grazing site. Therefore, this tree has a significant effect on soil fertility improvement in resource poor rangelands and as a result, it is important to retain scattered A. senegal and B. aegyptica plants in the lowlands of eastern Ethiopia.

  17. Rangeland -- Plant response to elevated CO{sub 2}. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    An experiment is being designed to examine the influence of elevating CO2 levels on tallgrass prairie rangeland. Changes in biomass production, photosynthesis rates, and species composition (C3 versus C4) over time are to be examined. This report covers the period from August 15, 1988 to January 1, 1989. During this period the authors have had planning meetings in Manhattan, KS, and Washington, DC, with various investigators of the measurement and modeling groups within the elevated CO{sub 2} program. During this period detailed discussions with regard to the methodology were carried out. In addition, short-term experiments and prototype constructions were completed to assess design and materials. Because of changes in the methodology and, to a certain degree, the scope, they are requesting changes in the funding cycle to implement the project at the beginning of the growing cycle of the tallgrass prairie.

  18. Using remotely sensed imagery to monitor savanna rangeland deterioration through woody plant proliferation: a case study from communal and biodiversity conservation rangeland sites in Mokopane, South Africa

    CSIR Research Space (South Africa)

    Munyati, C

    2011-05-01

    Full Text Available rangeland, whereas the communal rangelands were getting more opened up by livestock trampling. Rangeland management practices of fire utilisation, stocking levels and stock concentration account for the differing trends. Lightly grazed and heavily grazed...

  19. Response of aboveground carbon balance to long-term, experimental shifts in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    Science.gov (United States)

    Reinhardt, K.; McAbee, K.; Germino, M. J.; Bosworth, A.

    2016-12-01

    Semi-arid rangelands have been identified as potential carbon (C) sinks. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, climate models predict increases in wintertime precipitation and decreases in summertime precipitation. In theory, this should boost C storage in cold-desert ecosystems that have deep-rooted woody plants due to greater wintertime soil water storage that enhances summertime productivity. However, there are few long-term, manipulative field-based studies investigating how shrub- and grass-dominated rangelands will respond to changing precipitation patterns. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over the 2014 growing season on plots that had supplemental precipitation added in either winter or summer for 21 years, in shrub- and exotic-bunchgrass-dominated plots. We hypothesized that increased winter precipitation would stimulate aboveground C uptake and storage relative to ambient conditions, in our cold-desert-adapted plant species. We further hypothesized that long-term gains in aboveground C storage due to precipitation manipulations would be greater in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, provided that the ecosystems have resisted conversion to exotic grassland.

  20. Bush encroachment dynamics and rangeland management implications in the Horn of Africa

    Science.gov (United States)

    Rangelands in the Horn of Africa have been undergoing a rapid shift from herbaceous to woody plant dominance in the past decades, threatening subsistence livestock herding and pastoral food security. Despite of significant rangeland management implications, quantification of the spatial extent of en...

  1. RANGELAND DEGRADATION: EXTENT, IMPACTS, AND ALTERNATIVE RESTORATION TECHNIQUES IN THE RANGELANDS OF ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Mohammed Mussa Abdulahi

    2016-12-01

    Full Text Available Rangeland degradation remains a serious impediment to improve pastoral livelihoods in the lowlands of Ethiopia. This review paper presents an overview of the extent of rangeland degradation, explores its drivers, discusses the potential impacts of rangeland degradation and also suggests alternative rangeland restoration techniques. It is intended to serve as an exploratory tool for ensuing more detailed quantitative analyses to support policy and investment programs to address rangeland degradation in Ethiopia. The extent of rangeland degradation increases with time, and the productivity of rangelands are losing if not given due attention. The major drivers leading to rangeland degradation includes climate change, overgrazing, bush encroachment, population pressure, drought, and government policy, encroachment of rain fed agriculture and decline of traditional resource management institution. Degradation of rangeland has resulted in substantial declines in rangeland condition, water potential, soil status, and animal performance, livestock holding at the household level and community become destitute. Another consequence of rangeland degradation is linked to food insecurity, poverty to the extent of food aid, expansion of aridity and the need for alternative livelihood and income diversification. Moreover, it has increasingly become a threat to the pastoral production systems, and has contributed towards increases in poverty and tribal conflicts over grazing land and water resources. In spite of these impacts, the adoption of alternative restoration techniques in the country is highly insufficient. To address rangeland degradation problems, there is a strong need to substantially increase the investments and strengthen the policy support for sustainable land management.

  2. Applying a dryland degradation framework for rangelands: the case of Mongolia.

    Science.gov (United States)

    Jamsranjav, C; Reid, R S; Fernández-Giménez, M E; Tsevlee, A; Yadamsuren, B; Heiner, M

    2018-04-01

    Livestock-caused rangeland degradation remains a major policy concern globally and the subject of widespread scientific study. This concern persists in part because it is difficult to isolate the effects of livestock from climate and other factors that influence ecosystem conditions. Further, degradation studies seldom use multiple plant and soil indicators linked to a clear definition of and ecologically grounded framework for degradation assessment that distinguishes different levels of degradation. Here, we integrate two globally applicable rangeland degradation frameworks and apply them to a broad-scale empirical data set for the country of Mongolia. We compare our assessment results with two other recent national rangeland degradation assessments in Mongolia to gauge consistency of findings across assessments and evaluate the utility of our framework. We measured livestock-use impacts across Mongolia's major ecological zones: mountain and forest steppe, eastern steppe, steppe, and desert steppe. At 143 sites in 36 counties, we measured livestock-use and degradation indicators at increasing distances from livestock corrals in winter-grazed pastures. At each site, we measured multiple indicators linked to our degradation framework, including plant cover, standing biomass, palatability, species richness, forage quality, vegetation gaps, and soil surface characteristics. Livestock use had no effect on soils, plant species richness, or standing crop biomass in any ecological zone, but subtly affected plant cover and palatable plant abundance. Livestock effects were strongest in the steppe zone, moderate in the desert steppe, and limited in the mountain/forest and eastern steppes. Our results aligned closely with those of two other recent country-wide assessments, suggesting that our framework may have widespread application. All three assessments found that very severe and irreversible degradation is rare in Mongolia (1-18% of land area), with most rangelands

  3. Impact of Rangeland Degradation on Soil Physical, Chemical

    African Journals Online (AJOL)

    major threats to enhance a sustainable pastoral-livestock production in Ethiopia. ... overall negative impact on the soil physical and chemical characteristics, demanding ... chemical properties (Gemedo et al., 2006) as well as the rangeland .... parameters such as life forms (annuals and perennials), plant forms (woody plant,.

  4. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Hardegree, Stuart P.; Abatzoglou, John T.; Brunson, Mark W.; Germino, Matthew; Hegewisch, Katherine C.; Moffet, Corey A.; Pilliod, David S.; Roundy, Bruce A.; Boehm, Alex R.; Meredith, Gwendwr R.

    2018-01-01

    Invasive annual weeds negatively impact ecosystem services and pose a major conservation threat on semiarid rangelands throughout the western United States. Rehabilitation of these rangelands is challenging due to interannual climate and subseasonal weather variability that impacts seed germination, seedling survival and establishment, annual weed dynamics, wildfire frequency, and soil stability. Rehabilitation and restoration outcomes could be improved by adopting a weather-centric approach that uses the full spectrum of available site-specific weather information from historical observations, seasonal climate forecasts, and climate-change projections. Climate data can be used retrospectively to interpret success or failure of past seedings by describing seasonal and longer-term patterns of environmental variability subsequent to planting. A more detailed evaluation of weather impacts on site conditions may yield more flexible adaptive-management strategies for rangeland restoration and rehabilitation, as well as provide estimates of transition probabilities between desirable and undesirable vegetation states. Skillful seasonal climate forecasts could greatly improve the cost efficiency of management treatments by limiting revegetation activities to time periods where forecasts suggest higher probabilities of successful seedling establishment. Climate-change projections are key to the application of current environmental models for development of mitigation and adaptation strategies and for management practices that require a multidecadal planning horizon. Adoption of new weather technology will require collaboration between land managers and revegetation specialists and modifications to the way we currently plan and conduct rangeland rehabilitation and restoration in the Intermountain West.

  5. Application of the Rangeland Hydrology and Erosion Model to Ecological Site Descriptions and Management

    Science.gov (United States)

    The utility of Ecological Site Descriptions (ESDs) and State-and-Transition Models (STMs) concepts in guiding rangeland management hinges on their ability to accurately describe and predict community dynamics and the associated consequences. For many rangeland ecosystems, plant community dynamics ar...

  6. Bio solids Effects in Chihuahuan Desert Rangelands: A Ten-Year Study

    International Nuclear Information System (INIS)

    Wester, D.B; Sosebee, R.E; Fish, E.B; Villalobos, J.C; Zartman, R.E; Gonzalez, R.M; Jurado, P.; Moffet, C.A

    2011-01-01

    Arid and semiarid rangelands are suitable for responsible bio solids application. Topical application is critical to avoid soil and vegetation disturbance. Surface-applied bio solids have long-lasting effects in these ecosystems. We conducted a 10-year research program investigating effects of bio solids applied at rates from 0 to 90 dry Mg ha -1 on soil water infiltration; runoff and leachate water quality; soil erosion; forage production and quality; seedling establishment; plant physiological responses; nitrogen dynamics; bio solids decomposition; and grazing animal behavior and management. Bio solids increased soil water infiltration and reduced erosion. Effects on soil water quality were observed only at the highest application rates. Bio solids increased soil nitrate-nitrogen. Bio solids increased forage production and improved forage quality. Bio solids increased leaf area of grasses; photosynthetic rates were not necessarily increased by bio solids. Bio solids effects on plant establishment are expected only under moderately favorable conditions. Over an 82-mo exposure period, total organic carbon, nitrogen, and total and available phosphorus decreased and inorganic matter increased. Grazing animals spent more time grazing, ruminating, and resting in bio solids-treated areas; positive effects on average daily gain were observed during periods of higher rainfall. Our results suggest that annual bio solids application rates of up to 18 Mg ha -1 are appropriate for desert rangelands.

  7. Assessing Rangeland Attributes On Semi-Arid Zone Of North Darfur State Sudan

    Directory of Open Access Journals (Sweden)

    Mohamed Almontasir A. M. Mohamed

    2015-08-01

    Full Text Available Abstract The study was conducted over a two years period of 2012 and 2013 at three sites of Alfashir locality Ummarahik 25km north of Alfashir Fashar in eastern part of Alfashir about 5km and Berka 30km west of Alfashir Western Sudan in semi-arid zone. The aim of this study was to assess rangeland attributes. Measurements of plant density vegetation cover range production and carrying capacity were assessed. Results showed that total forage production was low and inadequate to satisfy requirements of livestock for inhabiting the area average range production all over the area was found to be 50.68 kgha and 59.21 kgha for the seasons 2012 and 2013 respectively. The average ground cover was about 34.71 and 42.41 for two seasons. The average plant density for the first season was 27.1 plantm2 while the average plant density for the second season was 29.4 plantm2. The study concluded that unwise utilization and exploitation of the rangelands particularly by man causes range deterioration and serious reduction in range production in both quantity and quality so the study suggested that improvement and rehabilitation such lands rangelands should be done. Further research work is needed to assess rangeland attributes across different ecological zones in North Darfur State.

  8. EVALUATION AND MAPPING OF RANGELANDS DEGRADATION USING REMOTELY SENSED DATA

    Directory of Open Access Journals (Sweden)

    Majid Ajorlo

    2005-05-01

    Full Text Available The empirical and scientifically documents prove that misuse of natural resource causes degradation in it. So natural resources conservation is important in approaching sustainable development aims. In current study, Landsat Thematic Mapper images and grazing gradient method have been used to map the extent and degree of rangeland degradation. In during ground-based data measuring, factors such as vegetation cover, litter, plant diversity, bare soil, and stone & gravels were estimated as biophysical indicators of degradation. The next stage, after geometric correction and doing some necessary pre-processing practices on the study area’s images; the best and suitable vegetation index has been selected to map rangeland degradation among the Normalized Difference Vegetation Index (NDVI, Soil Adjusted Vegetation Index (SAVI, and Perpendicular Vegetation Index (PVI. Then using suitable vegetation index and distance parameter was produced the rangelands degradation map. The results of ground-based data analysis reveal that there is a significant relation between increasing distance from critical points and plant diversity and also percentage of litter. Also there is significant relation between vegetation cover percent and distance from village, i.e. the vegetation cover percent increases by increasing distance from villages, while it wasn’t the same around the stock watering points. The result of analysis about bare soil and distance from critical point was the same to vegetation cover changes manner. Also there wasn’t significant relation between stones & gravels index and distance from critical points. The results of image processing show that, NDVI appears to be sensitive to vegetation changes along the grazing gradient and it can be suitable vegetation index to map rangeland degradation. The degradation map shows that there is high degradation around the critical points. These areas need urgent attention for soil conservation. Generally, it

  9. Yield Response of Mediterranean Rangelands under a Changing Climate

    NARCIS (Netherlands)

    Daliakopoulos, Ioannis N.; Panagea, Ioanna S.; Tsanis, Ioannis K.; Grillakis, Manolis G.; Koutroulis, Aristeidis G.; Hessel, Rudi; Mayor, Angeles G.; Ritsema, Coen J.

    2017-01-01

    Understanding the Mediterranean rangelands degradation trends is a key element of mitigating their vulnerability and enhancing their resilience. Climate change and its inherent effects on mean temperature and the precipitation variability can regulate the magnitude, frequency and duration of

  10. Seasonal food habits of swift fox (Vulpes velox) in cropland and rangeland landscapes in western Kansas

    Science.gov (United States)

    Sovada, M.A.; Roy, C.C.; Telesco, D.J.

    2001-01-01

    Food habits of swift foxes (Vulpes velox) occupying two distinct landscapes (dominated by cropland versus rangeland) in western Kansas were determined by analysis of scats collected in 1993 and 1996. Frequencies of occurrence of prey items in scats were compared between cropland and rangeland areas by season. Overall, the most frequently occurring foods of swift foxes were mammals (92% of all scats) and arthropods (87%), followed by birds (24%), carrion (23%), plants (15%) and reptiles (4%). No differences were detected between landscapes for occurrence of mammals, arthropods or carrion in any season (P ≥ 0.100). Plants, specifically commercial sunflower seeds, were consumed more frequently in cropland than in rangeland in spring (P = 0.004) and fall (P = 0.001). Birds were more common in the swift fox diet in cropland than in rangeland during the fall (P = 0.008), whereas reptiles occurred more frequently in the diet in rangeland than in cropland during spring (P = 0.042). Variation in the diet of the swift fox between areas was most likely due to its opportunistic foraging behavior, resulting in a diet that closely links prey use with availability.

  11. Exploring the invasion of rangelands by Acacia mearnsii (black ...

    African Journals Online (AJOL)

    Reducing A. mearnsii canopy could promote grass production while encouraging carbon sequestration. Given the high AGB and clearing costs, it may be prudent to adopt the 'novel ecosystems' approach in managing infested landscapes. Keywords: grassland, invasive plants, landscape ecology, rangeland condition ...

  12. Book title: Rangelands systems: Processes, management and challenges - Chapter title: Invasive plant species and novel ecosystems

    Science.gov (United States)

    Rangelands represent the dominant land use systems in many countries of the world and provide sociological and cultural benefits to millions of people in both rural and urban areas. The undesirable impacts of rangeland weeds have been recognized for well over 100 years and infest between 41 and 51 ...

  13. Introduced and invasive species in novel rangeland ecosystems: friends or foes?

    Science.gov (United States)

    Belnap, Jayne; Ludwig, John A.; Wilcox, Bradford P.; Betancourt, Julio L.; Dean, W. Richard J.; Hoffmann, Benjamin D.; Milton, Sue J.

    2012-01-01

    Globally, new combinations of introduced and native plant and animal species have changed rangelands into novel ecosystems. Whereas many rangeland stakeholders (people who use or have an interest in rangelands) view intentional species introductions to improve forage and control erosion as beneficial, others focus on unintended costs, such as increased fire risk, loss of rangeland biodiversity, and threats to conservation efforts, specifically in nature reserves and parks. These conflicting views challenge all rangeland stakeholders, especially those making decisions on how best to manage novel ecosystems. To formulate a conceptual framework for decision making, we examined a wide range of novel ecosystems, created by intentional and unintentional introductions of nonnative species and land-use–facilitated spread of native ones. This framework simply divides decision making into two types: 1) straightforward–certain, and 2) complex–uncertain. We argue that management decisions to retain novel ecosystems are certain when goods and services provided by the system far outweigh the costs of restoration, for example in the case of intensively managed Cenchrus pastures. Decisions to return novel ecosystems to natural systems are also certain when the value of the system is low and restoration is easy and inexpensive as in the case of biocontrol of Opuntia infestations. In contrast, decisions whether to retain or restore novel ecosystems become complex and uncertain in cases where benefits are low and costs of control are high as, for example, in the case of stopping the expansion of Prosopis and Juniperus into semiarid rangelands. Decisions to retain or restore novel ecosystems are also complex and uncertain when, for example, nonnative Eucalyptus trees expand along natural streams, negatively affecting biodiversity, but also providing timber and honey. When decision making is complex and uncertain, we suggest that rangeland managers utilize cost–benefit analyses

  14. Earth observation for rangeland monitoring

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available .kashan.co.za] INTRODUCTION Grass nitrogen (N), as an indicator of rangeland quality, plays a crucial role in understanding the distribution, densities and feeding patterns of both wild herbivores and livestock. Zebras and livestock in the grazing and agricultural lands... ? How can grass nitrogen be mapped for assessing and monitoring of rangeland quality at wider or regional scales? ? Conventional point-based techniques for assessing rangeland quality proved to be expensive, laborious and time consuming...

  15. Carbon fluxes on North American rangelands

    Science.gov (United States)

    Tony Svejcar; Raymond Angell; James A. Bradford; William Dugas; William Emmerich; Albert B. Frank; Tagir Gilmanov; Marshall Haferkamp; Douglas A. Johnson; Herman Mayeux; Pat Mielnick; Jack Morgan; Nicanor Z. Saliendra; Gerald E. Schuman; Phillip L. Sims; Kereith Snyder

    2008-01-01

    Rangelands account for almost half of the earth's land surface and may play an important role in the global carbon (C) cycle. We studied net ecosystem exchange (NEE) of C on eight North American rangeland sites over a 6-yr period. Management practices and disturbance regimes can influence NEE; for consistency, we compared ungrazed and undisturbed rangelands...

  16. Ecosystem water availability in juniper versus sagebrush snow-dominated rangelands

    Science.gov (United States)

    Western Juniper (J. occidentalis Hook.) now dominates over 3.6 million ha of rangeland in the Intermountain Western US. Critical ecological relationships among snow distribution, water budgets, plant community transitions, and habitat requirements for wildlife, such as sage grouse, remain poorly und...

  17. Criterion III: Maintenance of rangeland productive capacity [Chapter 4

    Science.gov (United States)

    G. R. Evans; R. A. Washmgton-Allen; R. D. Child; J. E. Mitchell; B. R. Bobowskl; R. V. Loper; B. H. Allen-Diaz; D. W. Thompson; G. R. Welling; T. B. Reuwsaat

    2010-01-01

    Maintenance of rangeland productive capacity is one of five criteria established by the Sustainable Rangelands Roundtable (SRR) to monitor and assess rangeland sustainable management. Within this criterion, six indicators were developed through the Delphi Process and the expert opinions of academicians, rangeland scientists, rangeland management agency personnel, non-...

  18. Emergence of native plant seeds in response to seed pelleting, planting depth, scarification, and soil anti-crusting treatment, 2009

    Science.gov (United States)

    Clint Shock; Erik Feibert; Lamont Saunders; Nancy Shaw

    2010-01-01

    Seed of native plants is needed to restore rangelands of the Intermountain West. Reliable commercial seed production is desirable to provide the quantity of seed needed for restoration efforts. Establishment of native seed crops has been difficult, because fall-planted seed is susceptible to bird damage, soil crusting, and soil erosion. Fall planting is important for...

  19. Rangeland monitoring using remote sensing: comparison of cover estimates from field measurements and image analysis

    Directory of Open Access Journals (Sweden)

    Ammon Boswell

    2017-01-01

    Full Text Available Rangeland monitoring is important for evaluating and assessing semi-arid plant communities. Remote sensing provides an effective tool for rapidly and accurately assessing rangeland vegetation and other surface attributes such as bare soil and rock. The purpose of this study was to evaluate the efficacy of remote sensing as a surrogate for field-based sampling techniques in detecting ground cover features (i.e., trees, shrubs, herbaceous cover, litter, surface, and comparing results with field-based measurements collected by the Utah Division of Wildlife Resources Range Trent Program. In the field, five 152 m long transects were used to sample plant, litter, rock, and bare-ground cover using the Daubenmire ocular estimate method. At the same location of each field plot, a 4-band (R,G,B,NIR, 25 cm pixel resolution, remotely sensed image was taken from a fixed-wing aircraft. Each image was spectrally classified producing 4 cover classes (tree, shrub, herbaceous, surface. No significant differences were detected between canopy cover collected remotely and in the field for tree (P = 0.652, shrub (P = 0.800, and herbaceous vegetation (P = 0.258. Surface cover was higher in field plots (P < 0.001, likely in response to the methods used to sample surface features by field crews. Accurately classifying vegetation and other features from remote sensed information can improve the efficiency of collecting vegetation and surface data. This information can also be used to improve data collection frequency for rangeland monitoring and to efficiently quantify ecological succession patterns.

  20. The Role of Rangelands in Diversified Farming Systems: Innovations, Obstacles, and Opportunities in the USA

    Directory of Open Access Journals (Sweden)

    Nathan F. Sayre

    2012-12-01

    Full Text Available Discussions of diversified farming systems (DFS rarely mention rangelands: the grasslands, shrublands, and savannas that make up roughly one-third of Earth's ice-free terrestrial area, including some 312 million ha of the United States. Although ranching has been criticized by environmentalists for decades, it is probably the most ecologically sustainable segment of the U.S. meat industry, and it exemplifies many of the defining characteristics of DFS: it relies on the functional diversity of natural ecological processes of plant and animal (reproduction at multiple scales, based on ecosystem services generated and regenerated on site rather than imported, often nonrenewable, inputs. Rangelands also provide other ecosystem services, including watershed, wildlife habitat, recreation, and tourism. Even where non-native or invasive plants have encroached on or replaced native species, rangelands retain unusually high levels of plant diversity compared with croplands or plantation forests. Innovations in management, marketing, incentives, and easement programs that augment ranch income, creative land tenure arrangements, and collaborations among ranchers all support diversification. Some obstacles include rapid landownership turnover, lack of accessible U.S. Department of Agriculture certified processing facilities, tenure uncertainty, fragmentation of rangelands, and low and variable income, especially relative to land costs. Taking advantage of rancher knowledge and stewardship, and aligning incentives with production of diverse goods and services, will support the sustainability of ranching and its associated public benefits. The creation of positive feedbacks between economic and ecological diversity should be the ultimate goal.

  1. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Semiarid rangelands in the western United States have been or are being invaded by introduced annual weeds that negatively impact ecosystem services and pose a major conservation threat. Rehabilitation and restoration of these rangelands are challenging due to inter-annual climate and sub-seasonal ...

  2. Rangelands: Where Anthromes Meet Their Limits

    Directory of Open Access Journals (Sweden)

    Nathan F. Sayre

    2017-05-01

    Full Text Available Defining rangelands as anthromes enabled Ellis and Ramankutty (2008 to conclude that more than three-quarters of Earth’s land is anthropogenic; without rangelands, this figure would have been less than half. They classified all lands grazed by domestic livestock as rangelands, provided that human population densities were low; similar areas without livestock were excluded and classified instead as ‘wildlands’. This paper examines the empirical basis and conceptual assumptions of defining and categorizing rangelands in this fashion. Empirically, we conclude that a large proportion of rangelands, although used to varying degrees by domesticated livestock, are not altered significantly by this use, especially in arid, highly variable environments and in settings with long evolutionary histories of herbivory by wild animals. Even where changes have occurred, the dynamics and components of many rangelands remain structurally and functionally equivalent to those that preceded domestic livestock grazing or would be found in its absence. In much of Africa and Asia, grazing is so longstanding as to be inextricable from ‘natural’ or reference conditions for those sites. Thus, the extent of anthropogenic biomes is significantly overstated. Conceptually, rangelands reveal the dependence of the anthromes thesis on outdated assumptions of ecological climax and equilibrium. Coming to terms with rangelands—how they can be classified, understood, and managed sustainably—thus offers important lessons for understanding anthromes and the Anthropocene as a whole. At the root of these lessons, we argue, is not the question of human impacts on ecosystems but property relations among humans.

  3. The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands

    Science.gov (United States)

    In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...

  4. Conserving biodiversity on native rangelands: Symposium proceedings

    Science.gov (United States)

    Daniel W. Uresk; Greg L. Schenbeck; James T. O' Rourke

    1997-01-01

    These proceedings are the result of a symposium, "Conserving biodiversity on native rangelands" held on August 17, 1995 in Fort Robinson State Park, NE. The purpose of this symposium was to provide a forum to discuss how elements of rangeland biodiversity are being conserved today. We asked, "How resilient and sustainable are rangeland systems to the...

  5. Rangelands Vegetation under Different Management Systems and Growth Stages in North Darfur State, Sudan (Range Attributes

    Directory of Open Access Journals (Sweden)

    Mohamed AAMA Mohamed

    2014-09-01

    Full Text Available This study was conducted at Um Kaddada, North Darfur State, Sudan, at two sites (closed and open for two consecutive seasons 2008 and 2009 during flowering and seed setting stages to evaluate range attributes at the locality. A split plot design was used to study vegetation attributes. Factors studied were management systems (closed and open and growth stages (flowering and seed setting. Vegetation cover, plant density, carrying capacity, and biomass production were assessed. Chemical analyses were done for selected plants to determine their nutritive values. The results showed high significant differences in vegetation attributes (density, cover and biomass production between closed and open areas. Closed areas had higher carrying capacity compared to open rangelands. Crude protein (CP and ash contents of range vegetation were found to decrease while Crude fiber (CF and Dry matter yield (DM had increased with growth. The study concluded that closed rangelands are better than open rangelands because it fenced and protected. Erosion index and vegetation degradation rate were very high. Future research work is needed to assess rangelands characteristics and habitat condition across different ecological zones in North Darfur State, Sudan.DOI: http://dx.doi.org/10.3126/ije.v3i3.11093 International Journal of Environment Vol.3(3 2014: 332-343

  6. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  7. A systematic review of US rangeland social science

    Science.gov (United States)

    Rangeland science aims to create knowledge to sustain rangeland social-ecological systems over the long term. Range science has made substantial progress on understanding ecological dynamics of rangeland systems and the management practices that sustain them, and these findings have been systematica...

  8. Valuation of rangeland ecosystem services

    Science.gov (United States)

    Gascoigne, W.R.

    2011-01-01

    Economic valuation lends itself well to the anthropocentric orientation of ecosystem services. An economic perspective on ecosystems portrays them as natural assets providing a flow of goods and services valuable to individuals and society collectively. A few examples include the purification of drinking water, reduced risk from flooding and other extreme events, pollination of agricultural crops, climate regulation, and recreation opportunities from plant and animal habitat maintenance, among many others. Once these goods and services are identified and quantified, they can be monetized to complete the valuation process. The monetization of ecosystem goods and services (in the form of dollars) provides a common metric that allows for cross-comparison of attributes and evaluation of differing ecological scenarios. Complicating the monetization process is the fact that most of these goods and services are public and non-market in nature; meaning they are non-rival and non-exclusive and are typically not sold in a traditional market setting where monetary values are revealed. Instead, one must employ non-market valuation techniques, with primary valuation methods typically being very time and resource consuming, intimidating to non-economists, and often impractical. For these reasons, benefit transfer methods have gained popularity. This methodology harnesses the primary collection results of existing studies to make inferences about the economic values of non-market goods and services at an alternative policy site (in place and/or in time). For instance, if a primary valuation study on oak reestablishment on rangelands in southern California yielded a value of $30 per-acre associated with water regulation, this result can be transferred, with some adjustments, to say something about the value of an acre of oaks on rangelands in northern portions of the state. The economic valuation of rangeland ecosystem services has many roles. Economic values may be used as input

  9. Rangeland monitoring and assessment: a review

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2018-04-01

    Full Text Available Rangelands provide vast landscapes for grazing and foraging for livestock and wildlife. Services of rangelands are diverse and generally provide food for millions of the world’s population, especially the rural and sometimes poor communities...

  10. A RANGELAND GRASSHOPPER INSURANCE PROGRAM

    OpenAIRE

    Skold, Melvin D.; Davis, Robert M.

    1995-01-01

    The incidence of benefits and costs from controlling rangeland grasshoppers on public grazing lands poses problems of economic efficiency and distributional equity. Public grasshopper control programs operate like public disaster assistance. However, grasshopper infestations are an insurable risk. This article proposes a rangeland grasshopper insurance program which reduces the economic inefficiencies and distributional inequities of the existing program.

  11. Developing an operational rangeland water requirement satisfaction index

    Science.gov (United States)

    Senay, Gabriel B.; Verdin, James P.; Rowland, James

    2011-01-01

    Developing an operational water requirement satisfaction index (WRSI) for rangeland monitoring is an important goal of the famine early warning systems network. An operational WRSI has been developed for crop monitoring, but until recently a comparable WRSI for rangeland was not successful because of the extremely poor performance of the index when based on published crop coefficients (K c) for rangelands. To improve the rangeland WRSI, we developed a simple calibration technique that adjusts the K c values for rangeland monitoring using long-term rainfall distribution and reference evapotranspiration data. The premise for adjusting the K c values is based on the assumption that a viable rangeland should exhibit above-average WRSI (values >80%) during a normal year. The normal year was represented by a median dekadal rainfall distribution (satellite rainfall estimate from 1996 to 2006). Similarly, a long-term average for potential evapotranspiration was used as input to the famine early warning systems network WRSI model in combination with soil-water-holding capacity data. A dekadal rangeland WRSI has been operational for east and west Africa since 2005. User feedback has been encouraging, especially with regard to the end-of-season WRSI anomaly products that compare the index's performance to ‘normal’ years. Currently, rangeland WRSI products are generated on a dekadal basis and posted for free distribution on the US Geological Survey early warning website at http://earlywarning.usgs.gov/adds/

  12. USDA internet tool to estimate runoff and soil loss on rangelands: rangelands hydrology and erosion model

    Science.gov (United States)

    Rangelands are the most dominant land cover type in the United States (770 million acres) with approximately 53% of the nation’s rangelands owned and managed by the private sector, while approximately 43% are managed by the federal government. Information on the type, extent, and spatial location of...

  13. Meeting wild bees' needs on rangelands

    Science.gov (United States)

    Some arid rangeland regions, notably those with warm dry climates of the temperate zones, host great diversities of native bees, primarily non-social species among which are many floral specialists. Rangeland bee faunas are threatened indirectly by invasive exotic weeds wherever these displace nat...

  14. Principles of optimizing animal production from rangeland

    International Nuclear Information System (INIS)

    Stubbendieck, J.; Waller, S.S.

    1983-01-01

    Increasing world population is one of the dominant factors escalating demands for the world's natural resources. Range and forage resources, which are used primarily for food and fibre, could be more efficiently used if management techniques were improved. The principles of managing forage resources are directly associated with both the growth and development of plants and the actions and needs of the grazing animal. An understanding of the effects of environmental factors and herbage removal (frequency, intensity and season of defoliation) on growth and regrowth of plants is the first step towards optimizing animal productivity from rangelands. Most potential changes will fit into three categories: (1) increase the quantity of forage, (2) improve the quality of forage, and (3) improve use of forage. The principles of grazing management can be separated into four intricately related categories: (1) proper degree of grazing, (2) proper season of grazing, (3) proper kind of livestock, and (4) proper distribution of grazing. Grazing management is affected by the manner in which both improvements and manipulation of vegetation affect forage yield and quality. The adaptation and application of existing knowledge to individual locations will be one step towards optimizing animal production from rangeland. Some of the problems may be solved through better dissemination of present knowledge through existing educational programmes, while others will require expanded programmes of information dissemination. A third group of problems may also be solved with present technology, but the solutions are not currently economical. Some of the problems will be solved only through expanded research. These research efforts need to be directed towards grazing or browsing animals, plant resources and the interaction between plants and animals. Application of nuclear techniques will be an integral part of this research. (author)

  15. Current situation of rangelands in Mexico

    Science.gov (United States)

    Alicia Melgoza-Castillo

    2006-01-01

    Rangelands are natural areas with certain characteristics that make them unsuitable for agriculture. They include several types of vegetation such as deserts, grasslands, shrubs, forests, and riparian areas. Cattle ranching, along with the products and services it engenders, is a prime activity that rangelands have traditionally supported.

  16. Opportunities and obstacles for rangeland conservation in San Diego County, California, USA

    Directory of Open Access Journals (Sweden)

    Kathleen A. Farley

    2017-03-01

    Full Text Available Working landscapes such as rangelands are increasingly recognized as having high conservation value, providing a variety of ecosystem services, including food, fiber, habitat, recreation, open space, carbon storage, and water, in addition to a broad range of social benefits. However, conversion of rangelands to other land uses has been prevalent throughout the western United States, leading to greater attention in the conservation community to the importance of collaborating with private landowners. The level of interest in collaborative conservation among private landowners and the types of conservation programs they choose to participate in depend on the social, economic, and environmental context. We used GIS analysis and interviews with ranchers to evaluate rangeland conversion and participation in conservation programs among ranchers in San Diego County, California, USA, which is part of a biodiversity hotspot with high plant species richness and a large number of endemic and rare species. We found that > 25% of rangelands were converted to other uses, primarily urbanization, over the past 25 years while the area of public rangeland increased by 9%. Interviews revealed that ranchers in San Diego County have had limited involvement with most conservation programs, and a critical factor for nonparticipation was providing programs access to private land, along with other issues related to trust and social values. Among ranchers who had participated in conservation programs, the payment level and the agency or organization administering the program were key factors. Our results provide insight into factors influencing whether and when ranchers are likely to participate in conservation initiatives and illustrate that private and public land conservation are strongly linked and would be more effective if the two strategies were better integrated.

  17. Assessing the impacts of livestock production on biodiversity in rangeland ecosystems

    Science.gov (United States)

    Alkemade, Rob; Reid, Robin S.; van den Berg, Maurits; de Leeuw, Jan; Jeuken, Michel

    2013-01-01

    Biodiversity in rangelands is decreasing, due to intense utilization for livestock production and conversion of rangeland into cropland; yet the outlook of rangeland biodiversity has not been considered in view of future global demand for food. Here we assess the impact of future livestock production on the global rangelands area and their biodiversity. First we formalized existing knowledge about livestock grazing impacts on biodiversity, expressed in mean species abundance (MSA) of the original rangeland native species assemblages, through metaanalysis of peer-reviewed literature. MSA values, ranging from 1 in natural rangelands to 0.3 in man-made grasslands, were entered in the IMAGE-GLOBIO model. This model was used to assess the impact of change in food demand and livestock production on future rangeland biodiversity. The model revealed remarkable regional variation in impact on rangeland area and MSA between two agricultural production scenarios. The area of used rangelands slightly increases globally between 2000 and 2050 in the baseline scenario and reduces under a scenario of enhanced uptake of resource-efficient production technologies increasing production [high levels of agricultural knowledge, science, and technology (high-AKST)], particularly in Africa. Both scenarios suggest a global decrease in MSA for rangelands until 2050. The contribution of livestock grazing to MSA loss is, however, expected to diminish after 2030, in particular in Africa under the high-AKST scenario. Policies fostering agricultural intensification can reduce the overall pressure on rangeland biodiversity, but additional measures, addressing factors such as climate change and infrastructural development, are necessary to totally halt biodiversity loss. PMID:22308313

  18. Robustness and management adaptability in tropical rangelands: a viability-based assessment under the non-equilibrium paradigm.

    Science.gov (United States)

    Accatino, F; Sabatier, R; De Michele, C; Ward, D; Wiegand, K; Meyer, K M

    2014-08-01

    Rangelands provide the main forage resource for livestock in many parts of the world, but maintaining long-term productivity and providing sufficient income for the rancher remains a challenge. One key issue is to maintain the rangeland in conditions where the rancher has the greatest possibility to adapt his/her management choices to a highly fluctuating and uncertain environment. In this study, we address management robustness and adaptability, which increase the resilience of a rangeland. After reviewing how the concept of resilience evolved in parallel to modelling views on rangelands, we present a dynamic model of rangelands to which we applied the mathematical framework of viability theory to quantify the management adaptability of the system in a stochastic environment. This quantification is based on an index that combines the robustness of the system to rainfall variability and the ability of the rancher to adjust his/her management through time. We evaluated the adaptability for four possible scenarios combining two rainfall regimes (high or low) with two herding strategies (grazers only or mixed herd). Results show that pure grazing is viable only for high-rainfall regimes, and that the use of mixed-feeder herds increases the adaptability of the management. The management is the most adaptive with mixed herds and in rangelands composed of an intermediate density of trees and grasses. In such situations, grass provides high quantities of biomass and woody plants ensure robustness to droughts. Beyond the implications for management, our results illustrate the relevance of viability theory for addressing the issue of robustness and adaptability in non-equilibrium environments.

  19. Maintaining ecosystem services through continued livestock production on California rangelands

    Science.gov (United States)

    Barry, S.; Becchetti, T.

    2015-12-01

    Nearly 40% of California is rangeland comprising the largest land type in California and providing forage for livestock, primarily beef cattle. In addition to forage, rangelands provide a host of ecosystem systems services, including habitat for common and endangered species, fire fuels management, pollination services, clean water, viewsheds, and carbon sequestration. Published research has documented that most of these ecosystem services are positively impacted by managed livestock grazing and rancher stewardship. Ranchers typically do not receive any monetary reimbursement for their stewardship in providing these ecosystem services to the public. Markets have been difficult to establish with limited ability to adequately monitor and measure services provided. At the same time, rangelands have been experiencing rapid conversion to urbanization and more profitable and intensive forms of agriculture such as almond and walnut orchards. To prevent further conversion of rangelands and the loss of the services they provide, there needs to be a mechanism to identify and compensate landowners for the value of all products and services being received from rangelands. This paper considers two methods (opportunity cost and avoided cost) to determine the value of Payment for Ecosystem Services (PES) for rangelands. PES can raise the value of rangelands, making them more competitive financially. Real estate values and University of California Cooperative Extension Cost Studies, were used to demonstrate the difference in value (lost opportunity cost) between the primary products of rangelands (livestock production) and the products of the converted rangelands (almond and walnut orchards). Avoided costs for vegetation management and habitat creation and maintenance were used to establish the value of managed grazing. If conversion is to be slowed or stopped and managed grazing promoted to protect the ecosystem services rangelands provide, this value could be compensated through

  20. Common garden comparisons of reproductive, forage and weed suppression potential of rangeland rehabilitation grasses of the Great Basin

    Science.gov (United States)

    Common garden experiments are a means to remove environmental effects. Using 8 species of perennial rangeland grasses, we established a common garden (3 reps x28 plants = 84 plants/species). We found that ‘Hycrest’ crested wheatgrass (Agropyron cristatum) and bluebunch wheatgrass (Pseudoroegneria sp...

  1. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  2. Session B1 Management for sustainable use — Rangeland auditing ...

    African Journals Online (AJOL)

    Social, economic and cultural needs, values and expectations will be examined together with the biophysical technologies and approaches which underlie auditing in rangeland science. Adaptive frameworks which enhance sustainable strategic responses, and the state of art in scale dilemmas will be addressed. A hybrid ...

  3. Conserving rangeland resources. | Mentis | African Journal of Range ...

    African Journals Online (AJOL)

    ... goal-attainment, (5) try to correct departures, and (6) align individual and societal interests by manipulating market-forces. Keywords: altruism; conservation; Conservation implementation; Conservation properties; human activity; Human values; philosophy; Range resources; rangeland; Rangelands; Science philosophy

  4. Sustainable rangeland management, economic growth, and a cautious role for the SRM

    Science.gov (United States)

    Interest in the art and science of rangeland management increased dramatically during the 20th century and it was out of this interest that the profession of rangeland management was born. As public interest in rangeland management grew, so did the number, breadth, and depth of rangeland management ...

  5. Pastoral Decision-Making: An Empirical Investigation of Rangeland Use

    International Nuclear Information System (INIS)

    MacPeak, J.

    1999-01-01

    Recent research in range ecology suggests that the process of resource degradation in African arid and semi-arid rangelands may be less reliant on how many animals are kept on the rangeland than on where these animals are kept. Analysis of pastoralist land use decisions indicated that rangeland condition influences livestock keeping. However, it was found that food and income production strategies, herd characteristics play critical roles in livestock keeping decisions

  6. A Dynamic Model of California's Hardwood Rangelands

    Science.gov (United States)

    Richard B. Standiford; Richard E. Howitt

    1991-01-01

    Low profitability of hardwood rangeland management, and oak tree harvesting for firewood markets and forage enhancement has led to concern about the long-term sustainability of the oak resource on rangelands. New markets for recreational hunting may give value to oaks for the habitat they provide for game species, and broaden the economic base for managers. A ranch...

  7. State-and-transition model archetypes: a global taxonomy of rangeland change

    Science.gov (United States)

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  8. Sustaining working rangelands: Insights from rancher decision making

    Science.gov (United States)

    Grazed rangeland ecosystems encompass diverse global land resources, and are complex social-ecological systems from which society demands both goods (e.g., livestock and forage production) and services (e.g., abundant and high quality water). In the dialogue on rangeland conservation and sustainable...

  9. Rangeland dynamics in South Omo Zone of Southern Ethiopia: Assessment of rangeland condition in relation to altitude and Grazing types

    NARCIS (Netherlands)

    Terefe, A.; Ebro, A.; Tessema, Z.K.

    2010-01-01

    A study was undertaken in Hamer and Benna-Tsemay districts of the Southern Ethiopia with the objective to determine the condition of the rangelands for grazing animals as influenced by altitude and grazing types. The rangelands in each of the study districts were stratified based on altitude and

  10. Effect of canopy cover and canopy background variables on spectral profiles of savanna rangeland bush encroachment species based on selected Acacia species (mellifera, tortilis, karroo) and Dichrostachys cinerea at Mokopane, South Africa

    CSIR Research Space (South Africa)

    Munyati, C

    2013-07-01

    Full Text Available The proliferation of woody plant species on savanna rangelands (i.e. bush encroachment) degrades rangeland quality, thereby threatening the biodiversity conservation effort as well as pastoral farming. Hyperspectral remote sensing offers...

  11. Adaptive management for complex communal rangelands in South ...

    African Journals Online (AJOL)

    Many of the intransigent problems facing the world arise in complex systems. In this paper, I propose that communal rangelands in South Africa be recognised as complex social–ecological systems and that one of the reasons that development initiatives have had little impact on improving livelihoods and rangeland ...

  12. Criterion IV: Social and economic indicators of rangeland sustainability (Chapter 5)

    Science.gov (United States)

    Daniel W. McCollum; Louis E. Swanson; John A. Tanaka; Mark W. Brunson; Aaron J. Harp; L. Allen Torell; H. Theodore Heintz

    2010-01-01

    Social and economic systems provide the context and rationale for rangeland management. Sustaining rangeland ecosystems requires attention to the social and economic conditions that accompany the functioning of those systems. We present and discuss economic and social indicators for rangeland sustainability. A brief conceptual basis for each indicator is offered,...

  13. An Integrated Social, Economic, and Ecologic Conceptual (ISEEC) framework for considering rangeland sustainability

    Science.gov (United States)

    William E. Fox; Daniel W. McCollum; John E. Mitchell; Louis E. Swanson; Urs P. Kreuter; John A. Tanaka; Gary R. Evans; H. Theodore Heintz; Robert P. Breckenridge; Paul H. Geissler

    2009-01-01

    Currently, there is no standard method to assess the complex systems in rangeland ecosystems. Decision makers need baselines to create a common language of current rangeland conditions and standards for continued rangeland assessment. The Sustainable Rangeland Roundtable (SRR), a group of private and public organizations and agencies, has created a forum to discuss...

  14. Water conservation for semi-arid rangelands

    International Nuclear Information System (INIS)

    Willis, W.O.

    1983-01-01

    Water deficiency is most often the cause for low forage production on rangelands in semi-arid and arid regions. Water conservation methods have been developed but additional research is needed to develop the best management practices for various climatic regions. Poor management is another major cause of low rangeland production. Better management, including the application of research findings, depends on attitudes, policies, adaptability of findings, resources for implementation and a good understanding of the governing biotic and abiotic factors. (author)

  15. Energy budgets and resistances to energy transport in sparsely vegetated rangeland

    Science.gov (United States)

    Nichols, W.D.

    1992-01-01

    Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.

  16. Improving dynamic global vegetation model (DGVM) simulation of western U.S. rangelands vegetation seasonal phenology and productivity

    Science.gov (United States)

    Kerns, B. K.; Kim, J. B.; Day, M. A.; Pitts, B.; Drapek, R. J.

    2017-12-01

    Ecosystem process models are increasingly being used in regional assessments to explore potential changes in future vegetation and NPP due to climate change. We use the dynamic global vegetation model MAPSS-Century 2 (MC2) as one line of evidence for regional climate change vulnerability assessments for the US Forest Service, focusing our fine tuning model calibration from observational sources related to forest vegetation. However, there is much interest in understanding projected changes for arid rangelands in the western US such as grasslands, shrublands, and woodlands. Rangelands provide many ecosystem service benefits and local rural human community sustainability, habitat for threatened and endangered species, and are threatened by annual grass invasion. Past work suggested MC2 performance related to arid rangeland plant functional types (PFT's) was poor, and the model has difficulty distinguishing annual versus perennial grasslands. Our objectives are to increase the model performance for rangeland simulations and explore the potential for splitting the grass plant functional type into annual and perennial. We used the tri-state Blue Mountain Ecoregion as our study area and maps of potential vegetation from interpolated ground data, the National Land Cover Data Database, and ancillary NPP data derived from the MODIS satellite. MC2 historical simulations for the area overestimated woodland occurrence and underestimated shrubland and grassland PFT's. The spatial location of the rangeland PFT's also often did not align well with observational data. While some disagreement may be due to differences in the respective classification rules, the errors are largely linked to MC2's tree and grass biogeography and physiology algorithms. Presently, only grass and forest productivity measures and carbon stocks are used to distinguish PFT's. MC2 grass and tree productivity simulation is problematic, in particular grass seasonal phenology in relation to seasonal patterns

  17. Future scenarios of impacts to ecosystem services on California rangelands

    Science.gov (United States)

    Byrd, Kristin; Alvarez, Pelayo; Flint, Lorraine; Flint, Alan

    2014-01-01

    The 18 million acres of rangelands in the Central Valley of California provide multiple benefits or “ecosystem services” to people—including wildlife habitat, water supply, open space, recreation, and cultural resources. Most of this land is privately owned and managed for livestock production. These rangelands are vulnerable to land-use conversion and climate change. To help resource managers assess the impacts of land-use change and climate change, U.S. Geological Survey scientists and their cooperators developed scenarios to quantify and map changes to three main rangeland ecosystem services—wildlife habitat, water supply, and carbon sequestration. Project results will help prioritize strategies to conserve these rangelands and the ecosystem services that they provide.

  18. PERSPECTIVES ON RANGELAND ECOLOGY AND MANAGEMENT

    OpenAIRE

    Heady, Harold F.

    2011-01-01

    This paper reviews changes in rangeland ecology and management in the U.S.A. over the last 65 years and speculates on future changes. Emphasis has shifted from livestock management to ecological and environmental concerns, hence "rangeland ecology." The term "range management" may have outlived its usefulness and may also be detrimental to our image. The vision that we have of ourselves is not the same as others have of us. Many members of the Society for Range Management (SRM) and most of ou...

  19. Basin wildrye (Leymus cinereus) pooled tetraploid accessions for U.S. Intermountain rangeland reclamation

    Science.gov (United States)

    Stanford A. Young; Jason Vernon; Nancy Shaw

    2013-01-01

    Basin wildrye (Leymus cinereus [Scribn. & Merr.] A. Love) is an important perennial, hardy, long-lived, cool season C3 native grass of rangeland plant communities throughout much of western United States and Canada. All classes of livestock and wildlife, including large and small birds and mammals, utilise the grass year round for food and protection due to its 2-3...

  20. Rangeland and water resources

    African Journals Online (AJOL)

    Session B3 Management for sustainable use — Rangeland and water resources. ... The theme of optimsing integrated catchment management will be treated ... land system, catchment, basin), with a focus on law, policy and implementation.

  1. Meeting wild bees' needs on Western US rangelands

    Science.gov (United States)

    James H. Cane

    2011-01-01

    Rangelands are areas that are too arid, or with soils too shallow, to support either forests or cultivated agriculture, but that nonetheless produce enough vegetation for livestock grazing. Some arid rangeland regions, notably those with warm, dry climates in temperate zones (e.g., the warm deserts of the United States and adjacent Mexico, parts of Australia, South...

  2. Ecologic, Economic, and Social Considerations for Rangeland Sustainability: An Integrated Conceptual Framework

    Science.gov (United States)

    Daniel W. McCollum; H. Theodore Jr. Heintz; Aaron J. Harp; John A. Tanaka; Gary R. Evans; David Radloff; Louis E. Swanson; William E. III Fox; Michael G. Sherm Karl; John E. Mitchell

    2006-01-01

    Use and sustainability of rangelands are inherently linked to the health and sustainability of the land. They are also inherently linked to the social and economic infrastructures that complement and support those rangelands and rangeland uses. Ecological systems and processes provide the biological interactions underlying ecosystem health and viability. Social and...

  3. Ecohydrologic impacts of rangeland fire on runoff and erosion: A literature synthesis

    Science.gov (United States)

    Frederick B. Pierson; C. Jason Williams

    2016-01-01

    Fire can dramatically influence rangeland hydrology and erosion by altering ecohydrologic relationships. This synthesis presents an ecohydrologic perspective on the effects of fire on rangeland runoff and erosion through a review of scientific literature spanning many decades. The objectives are: (1) to introduce rangeland hydrology and erosion concepts necessary for...

  4. A description of rangeland on commercial and communal land ...

    African Journals Online (AJOL)

    Analysis of a Landsat TM image from a rangeland near Peddie, Eastern Cape, revealed differences in two vegetation indices (normalised difference vegetation index, NDVI, and moving standard deviation index, MSDI) between communal and commercial rangeland. It was suggested that the difference in the MSDI reflected ...

  5. Managing the livestock– Wildlife interface on rangelands

    Science.gov (United States)

    du Toit, Johan T.; Cross, Paul C.; Valeix, Marion

    2017-01-01

    On rangelands the livestock–wildlife interface is mostly characterized by management actions aimed at controlling problems associated with competition, disease, and depredation. Wildlife communities (especially the large vertebrate species) are typically incompatible with agricultural development because the opportunity costs of wildlife conservation are unaffordable except in arid and semi-arid regions. Ecological factors including the provision of supplementary food and water for livestock, together with the persecution of large predators, result in livestock replacing wildlife at biomass densities far exceeding those of indigenous ungulates. Diseases are difficult to eradicate from free-ranging wildlife populations and so veterinary controls usually focus on separating commercial livestock herds from wildlife. Persecution of large carnivores due to their depredation of livestock has caused the virtual eradication of apex predators from most rangelands. However, recent research points to a broad range of solutions to reduce conflict at the livestock–wildlife interface. Conserving wildlife bolsters the adaptive capacity of a rangeland by providing stakeholders with options for dealing with environmental change. This is contingent upon local communities being empowered to benefit directly from their wildlife resources within a management framework that integrates land-use sectors at the landscape scale. As rangelands undergo irreversible changes caused by species invasions and climate forcings, the future perspective favors a proactive shift in attitude towards the livestock–wildlife interface, from problem control to asset management.

  6. Managing climate change risks in rangeland systems [Chapter 15

    Science.gov (United States)

    Linda A. Joyce; Nadine A. Marshall

    2017-01-01

    The management of rangelands has long involved adapting to climate variability to ensure that economic enterprises remain viable and ecosystems sustainable; climate change brings the potential for change that surpasses the experience of humans within rangeland systems. Adaptation will require an intentionality to address the effects of climate change. Knowledge of...

  7. The usefullness of ERTS-1 and supporting aircraft data for monitoring plant development in rangeland environments

    Science.gov (United States)

    Carneggie, D. M.; Degloria, S. D.

    1972-01-01

    The author has identified the following significant results. Preliminary analysis of ERTS-1 MSS imagery of annual and perennial rangeland in California yields the following observations: (1) Sufficient geomorphological detail can be resolved to differentiate upland and bottomland range sites in the foothill range areas. (2) Dry and green meadowland can be differentiated on MSS band 5. (3) Color composites prepared by NASA-Goddard were useful for locating perennial rangeland with varying amounts of herbaceous ground cover. (4) The ERTS-1 images received and interpreted cover nearly 50% of the state of California and show nearly two-thirds of the annual grassland type. (5) Satellite imagery obtained during the late summer season should be optimum for differentiating grassland from brushland and forested land. (6) The ERTS-1 imagery clearly shows areas which at one time were part of the annual grassland but which are now used for dry land farming (cropping of cereal grains). Similarly, the imagery show areas which have been converted from brushland to grassland.

  8. The Role of Rural Communities in Conservation of Rangelands in Mahneshan Township

    Directory of Open Access Journals (Sweden)

    Kobra Karimi

    2016-05-01

    Full Text Available The aim of this study was to investigate the action of rangeland-depended livestock holders regarding rangeland conservation, including protection and rehabilitation activities and to analyse relevant influencing factors, using a mixed method of survey and case study. The data were collected through analysing existing documents, focus groups, semi-structured and structured interviews using questionnaires submitted to 204 rural livestock holders in the Mahneshan Township. The quantitative data were analysed using SPSS and AMOS software. According to the results farmers’ knowledge regarding the role, importance and factors affecting rangeland degradation was relatively high, however they had a low level of knowledge and action about mechanical conservation techniques. The action of livestock holders in terms of biological conservation activities and grazing management showed a positive and signifincat corrletaion with variables such as implementing of rangeland projects, their interaction with external institutions, participating in extension training courses, education level and irrigated and rainfed agricultural land size. Moreover, based on a path analysis, 37% of the variance of the farmers’ actions regarding the rangeland conservation was explained by the variables such as rangeland rehabilitation actions, farmers’ conservation knowledge, farmers’ interaction with natural resources experts, beekeeping, and participating in extension training courses. Promotional and extension activities and farmers’ interaction with experts have a positive effect in enhancing farmers’ knowledge and actions for sustainable rangeland use and conservation.

  9. The GEOGLAM Rangelands and Pasture Productivity Activity: Recent Progress and Future Directions

    Science.gov (United States)

    Guerschman, J. P.; Held, A. A.; Donohue, R. J.; Renzullo, L. J.; Sims, N.; Kerblat, F.; Grundy, M.

    2015-12-01

    Rangelands and pastures cover about a third of the world's land area and support livestock production which represents ~40% of global agricultural gross domestic product. The global consumption of animal protein shows a clear increasing trend, driven by both total population and per capita income increases, putting a growing pressure on the sustainability of grazing lands worldwide. Despite their relevance, rangelands have received less attention than croplands regarding global monitoring of the resource productivity and condition. The Rangelands and Pasture Productivity (RaPP) activity is a component within the Global Agricultural Monitoring initiative established under the Group on Earth Observations (GEOGLAM) in 2013. GEOGLAM RaPP is aimed at providing the global community with the means to monitor the world's rangelands and pastures on a routine basis, and the capacity to produce animal protein in real-time, at global, regional and national levels. Since its launch two years ago GEOGLAM RAPP has made progress in the four implementation elements. These include: 1- the establishment of community of practice; 2- the development of a global monitoring system for rangeland condition; 3- the establishment of pilot sites in main rangeland systems for satellite data products validation and model testing; and 4- integration with livestock production models. Three international workshops have been held building the community of practice. A prototype monitoring system that provides global visualisations and querying capability of vegetation cover data and anomalies has been established. Pilot sites, mostly in areas with long records of field measurements of rangeland condition and productivity have been proposed for nine countries. The link to global livestock models, including physical and economic components, have been established. Future challenges for GEOGLAM RaPP have also been identified and include: better representation of the areas occupied by rangelands

  10. Evaluating new SMAP soil moisture for drought monitoring in the rangelands of the US High Plains

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Morisette, Jeffrey T.

    2016-01-01

    Level 3 soil moisture datasets from the recently launched Soil Moisture Active Passive (SMAP) satellite are evaluated for drought monitoring in rangelands.Validation of SMAP soil moisture (SSM) with in situ and modeled estimates showed high level of agreement.SSM showed the highest correlation with surface soil moisture (0-5 cm) and a strong correlation to depths up to 20 cm.SSM showed a reliable and expected response of capturing seasonal dynamics in relation to precipitation, land surface temperature, and evapotranspiration.Further evaluation using multi-year SMAP datasets is necessary to quantify the full benefits and limitations for drought monitoring in rangelands.

  11. Ecological evaluation of rangeland quality in dry subtropics of Azerbaijan

    Science.gov (United States)

    Gasanova, A. F.

    2014-12-01

    The results of ecological evaluation of soil-landscape complexes of winter rangelands of Gobustan with the use of energy criteria are discussed. The diagnostic characteristics of soil fertility and correction coefficients for the thickness of texture of soil horizons, soil salinization, soil erosion, and microelemental composition of soils have been used to separate the soils of winter rangelands into several quality groups. A larger part of the soils belongs to the medium quality group with the mean weighted quality factor (bonitet) of 52. Special assessment scales have been suggested for the differential ecological assessment and monitoring of the rangelands. In the past 40 years, the area of steppe landscapes has decreased from 22.7 to 12%, whereas the area of semideserts has increased up to 64%. The area of best-quality soils within the studied rangelands had decreased by three times, and their average quality factor has decreased from 92 to 86.

  12. Very High Resolution Panoramic Photography to Improve Conventional Rangeland Monitoring 1994

    Science.gov (United States)

    Rangeland monitoring often includes repeat photographs as a basis for documentation and although photographic equipment and electronics have been evolving rapidly, basic rangeland photo monitoring methods have changed little over time. Ground based digital photography is underutilized, especially s...

  13. Regional Standards for Rangeland Health and Guidelines for Livestock Grazing Management ... A Progress Report

    OpenAIRE

    1996-01-01

    In August 1995, new BLM regulations for rangeland administration went into effect. The new regulations require BLM to establish regional standards for rangeland health and guidelines for grazing management. This publication is a report on the alternatives being considered for the Montana/Dakotas Rangeland Health Standards and Guidelines process.

  14. Fodder Biomass Monitoring in Sahelian Rangelands Using Phenological Metrics from FAPAR Time Series

    Directory of Open Access Journals (Sweden)

    Abdoul Aziz Diouf

    2015-07-01

    Full Text Available Timely monitoring of plant biomass is critical for the management of forage resources in Sahelian rangelands. The estimation of annual biomass production in the Sahel is based on a simple relationship between satellite annual Normalized Difference Vegetation Index (NDVI and in situ biomass data. This study proposes a new methodology using multi-linear models between phenological metrics from the SPOT-VEGETATION time series of Fraction of Absorbed Photosynthetically Active Radiation (FAPAR and in situ biomass. A model with three variables—large seasonal integral (LINTG, length of growing season, and end of season decreasing rate—performed best (MAE = 605 kg·DM/ha; R2 = 0.68 across Sahelian ecosystems in Senegal (data for the period 1999–2013. A model with annual maximum (PEAK and start date of season showed similar performances (MAE = 625 kg·DM/ha; R2 = 0.64, allowing a timely estimation of forage availability. The subdivision of the study area in ecoregions increased overall accuracy (MAE = 489.21 kg·DM/ha; R2 = 0.77, indicating that a relation between metrics and ecosystem properties exists. LINTG was the main explanatory variable for woody rangelands with high leaf biomass, whereas for areas dominated by herbaceous vegetation, it was the PEAK metric. The proposed approach outperformed the established biomass NDVI-based product (MAE = 818 kg·DM/ha and R2 = 0.51 and should improve the operational monitoring of forage resources in Sahelian rangelands.

  15. Emerging issues and challenges in conservation of biodiversity in the rangelands of Tanzania

    Directory of Open Access Journals (Sweden)

    Jafari Kideghesho

    2013-11-01

    Full Text Available Tanzania rangelands are a stronghold for biodiversity harbouring a variety of animal and plant species of economic, ecological and socio-cultural importance. Efforts to protect these resources against destruction and loss have involved, among other things, setting aside some tracks of land as protected areas in the form of national parks, nature reserves, game reserves, game controlled and wildlife management areas. However, these areas and adjacent lands have long been subjected to a number of emerging issues and challenges, which complicate their management, thus putting the resources at risk of over exploitation and extinction. These issues and challenges include, among other things, government policies, failure of conservation (as a form of land use to compete effectively with alternative land uses, habitat degradation and blockage of wildlife corridors, overexploitation and illegal resource extraction, wildfires, human population growth, poverty, HIV/AIDS pandemic and human-wildlife conflicts. In this paper, we review the emerging issues and challenges in biodiversity conservation by drawing experience from different parts of Tanzania. The paper is based on the premise that, understanding of the issues and challenges underpinning the rangelands is a crucial step towards setting up of plausible objectives, strategies and plans that will improve and lead to effective management of these areas. We conclude by recommending some proactive measures that may enhance the sustainability of the rangeland resources for the benefit of the current and future generations.

  16. Earth stewardship on rangelands: Coping with ecological, economic, and political marginality

    Science.gov (United States)

    Rangelands encompass 30-40 percent of Earth's land surface and support 1-2 billion people. Their predominant use is extensive livestock production by pastoralists and ranchers. But rangelands are characterized by ecological, economic, and political marginality, and higher-value, more intensive land ...

  17. Discussion of submitted posters for Section 2.3 (Rangeland Germplasm Resources)

    Science.gov (United States)

    As part of the IX International Rangeland Congress held in Rosario, Argentina, a total of 70 posters from 17 countries were submitted to Section 2.3 (Rangeland Germplasm Resources). These posters documented research conducted in five major regions of the world: South America, North America, Africa...

  18. Asymmetric ecological and economic responses for rangeland restoration: A case study of tree thickening in Queensland, Australia

    Science.gov (United States)

    Ecological and economic thresholds are important considerations when making decisions about safeguarding or restoring degraded rangelands. When degradation levels have passed a threshold, most managers figure it is either time to take action or too late to take action depending on the particular c...

  19. Current stage of the restoration of Chernozems in rangeland ecosystems of the steppe zone

    Science.gov (United States)

    Rusanov, A. M.

    2015-06-01

    The results of two rounds of soil and geobotanic surveys of rangeland ecosystems in the steppe zone are presented. The same sites with southern chernozems (Calcic Chernozems) under steppe plant communities at different stages of pasture degradation were investigated at the end of the 1980s, when they suffered maximum anthropogenic loads, and in 2011-2013, after a long period of relative rest. In the 1980s, degradation of soil physical properties in rangeland ecosystems under the impact of long-term unsustainable management was noted. At the same time, it was found that the major qualitative and quantitative properties of humus in the chernozems were preserved independently from the level of pasture degradation. The following period of moderate grazing pressure had a favorable effect on the soil properties. Owing to the good characteristics of the soil humus, the restoration of the physical properties of chernozems-including their structural state, water permeability, and bulk density-took place in a relatively short period. It is argued that the soil bulk density is a natural regulator of the species composition of steppe vegetation, because true grasses (Poaceae)-typical representatives of the steppe flora-have a fibrous root system requiring the soils with low density values. The improvement of the properties of chernozems is related to the development of secondary ecosystems with a higher portion of grasses in place of damaged rangelands and to the increase in the area of nominal virgin phytocenoses.

  20. Climate change effects on rangelands and rangeland management: Affirming the need for monitoring

    Science.gov (United States)

    Daniel W. Mccollum; John A. Tanaka; Jack A. Morgan; John E. Mitchell; William E. Fox; Kristie A. Maczko; Lori Hidinger; Clifford S. Duke; Urs P. Kreuter

    2017-01-01

    Uncertainty as to the extent and magnitude of changes in conditions that might occur due to climate change poses a problem for land and resource managers as they seek to adapt to changes and mitigate effects of climate variability. We illustrate using scenarios of projected future conditions on rangelands in the Northern Great Plains and Desert Southwest of the United...

  1. Limitations to postfire seedling establishment: The role of seeding technology, water availability, and invasive plant abundance

    Science.gov (United States)

    Jeremy J. James; Tony Svejcar

    2010-01-01

    Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abundance, and seeding technology influence postfire seedling establishment...

  2. Management of communal rangelands - the dialogue between science and indigenous knowledge: the case of the Eastern Cape

    CSIR Research Space (South Africa)

    Dube, S

    2010-07-01

    Full Text Available Communal area rangeland resource users are an important part of the rangeland ecosystem; rangeland management policies and practice should, therefore, accommodate their socio-cultural practices and knowledge. Indigenous knowledge (IK) is often...

  3. Vegetation - Herbivory Dynamics in Rangeland Ecosystems: Geospatial Modeling for Savanna and Wildlife Conservation in California and Namibia

    OpenAIRE

    Tsalyuk, Miriam

    2014-01-01

    Rangelands cover about half of Earth's land surface, encompass considerable biodiversity, and provide pivotal ecosystem services. However, rangelands across the globe face degradation due to changes in climate, land use, and management. Moreover, since herbivory is fundamental to rangeland ecosystem dynamics, shifts in the distribution of herbivores lead to overgrazing and desertification. To better understand, predict, and prevent changes on rangelands it is important to monitor these landsc...

  4. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies

    Science.gov (United States)

    Linda A. Joyce; David D. Briske; Joel R. Brown; H. Wayne Polley; Bruce A. McCarl; Derek W. Bailey

    2013-01-01

    Recent climatic trends and climate model projections indicate that climate change will modify rangeland ecosystem functions and the services and livelihoods that they provision. Recent history has demonstrated that climatic variability has a strong influence on both ecological and social components of rangeland systems and that these systems possess substantial...

  5. The value of milk in rangelands in Mandera County, Kenya

    Science.gov (United States)

    Ngugi, Keziah; Ertsen, Maurits

    2015-04-01

    Lack of water over expansive regions in Greater Horn of Africa created the rangelands and rangelands created pastoralism. Pastoralism involve keeping of large livestock herds and movement in search of resources, mainly water, pasture, medicine and wild foods. Several studies have been done in the last century and findings pointed at pastoralism being primitive and unsustainable. It has been predicted it would die in the last century but in the rangelands, pastoralism lives on and it is resilient. This study is based in Mandera, a pastoralism county in Kenya that neighbors Ethiopia to the North and Somalia to the East. The study sought to investigate contribution of milk to pastoralism resilience. Interviews were conducted in the field among the pastoralists, women groups, transporters, traders, government officials and consumers of milk. These information was corroborated with actual field investigations in the expansive rangelands of Mandera County. Pastoralists rarely slaughter or sell their livestock even when the animals waste away during droughts. This is because they have been through such cycles before and observed livestock make tremendous recovery when the right conditions were restored. Rangelands lack infrastructure, there are no roads, schools, telephone or hospitals. Pastoralists diet is comprised of rice, wheat and milk. It was established milk was the main source of income among pastoralists in Mandera County. From milk, the pastoralists make income that is used to purchase the other foodstuffs. Milk is available on daily basis in large quantities owing to the large number of livestock. Unfortunately, every pastoralist household produce copious amounts of milk, thus no local demand and transport infrastructure is nonexistent, making sale of milk a near impossible task. The findings showed the pastoralists have established unique routes through which milk reach the markets in urban centers where demand is high. Urbanization sustain pastoralism. These

  6. Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Liu, H.; Jin, Y.; Devine, S.; Dahlgren, R. A.; Covello, S.; Larsen, R.; O'Geen, A. T.

    2017-12-01

    California rangelands cover 23 million hectares and support a $3.4 billion annual cattle industry. Rangeland forage production varies appreciably from year-to-year and across short distances on the landscape. Spatially explicit and near real-time information on forage production at a high resolution is critical for effective rangeland management, especially during an era of climatic extremes. We here integrated a multispectral MicaSense RedEdge camera with a 3DR solo quad-copter and acquired time-series images during the 2017 growing season over a topographically complex 10-hectare rangeland in San Luis Obispo County, CA. Soil moisture and temperature sensors were installed at 16 landscape positions, and vegetation clippings were collected at 36 plots to quantify forage dry biomass. We built four centimeter-level models for forage production mapping using time series of sUAS images and ground measurements of forage biomass and soil temperature and moisture. The biophysical model based on Monteith's eco-physiological plant growth theory estimated forage production reasonably well with a coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 424 kg/ha when the soil parameters were included, and a R2 of 0.79 and a RMSE of 510 kg/ha when only remote sensing and topographical variables were included. We built two empirical models of forage production using a stepwise variable selection technique, one with soil variables. Results showed that cumulative absorbed photosynthetically active radiation (APAR) and elevation were the most important variables in both models, explaining more than 40% of the spatio-temporal variance in forage production. Soil moisture accounted for an additional 29% of the variance. Illumination condition was selected as a proxy for soil moisture in the model without soil variables, and accounted for 18% of the variance. We applied the remote sensing-based models to map daily forage production at 30-cm resolution for the

  7. Revolutionary land use change in the 21st century: Is (rangeland) science relevant?

    Science.gov (United States)

    Herrick, J.E.; Brown, J.R.; Bestelmeyer, B.T.; Andrews, S.S.; Baldi, G.; Davies, J.; Duniway, M.; Havstad, K.M.; Karl, J.W.; Karlen, D.L.; Peters, Debra P.C.; Quinton, J.N.; Riginos, C.; Shaver, P.L.; Steinaker, D.; Twomlow, S.

    2012-01-01

    Rapidly increasing demand for food, fiber, and fuel together with new technologies and the mobility of global capital are driving revolutionary changes in land use throughout the world. Efforts to increase land productivity include conversion of millions of hectares of rangelands to crop production, including many marginal lands with low resistance and resilience to degradation. Sustaining the productivity of these lands requires careful land use planning and innovative management systems. Historically, this responsibility has been left to agronomists and others with expertise in crop production. In this article, we argue that the revolutionary land use changes necessary to support national and global food security potentially make rangeland science more relevant now than ever. Maintaining and increasing relevance will require a revolutionary change in range science from a discipline that focuses on a particular land use or land cover to one that addresses the challenge of managing all lands that, at one time, were considered to be marginal for crop production. We propose four strategies to increase the relevance of rangeland science to global land management: 1) expand our awareness and understanding of local to global economic, social, and technological trends in order to anticipate and identify drivers and patterns of conversion; 2) emphasize empirical studies and modeling that anticipate the biophysical (ecosystem services) and societal consequences of large-scale changes in land cover and use; 3) significantly increase communication and collaboration with the disciplines and sectors of society currently responsible for managing the new land uses; and 4) develop and adopt a dynamic and flexible resilience-based land classification system and data-supported conceptual models (e.g., state-and-transition models) that represent all lands, regardless of use and the consequences of land conversion to various uses instead of changes in state or condition that are

  8. Livestock-rangeland management practices and community perceptions towards rangeland degradation in South Omo zone of Southern Ethiopia

    NARCIS (Netherlands)

    Admasu, T.; Abule, E.; Tessema, Z.K.

    2010-01-01

    A survey was conducted in Hamer and Benna-Tsemay districts of the South Omo zone of Ethiopia, with the objectives of assessing the range-livestock management practices and perceptions of the different pastoral groups (Hamer, Benna, and Tsemay) towards rangeland degradation. This information is

  9. Restoring Degraded Rangelands in Jordan: Optimizing Mechanized Micro-Water Harvesting Technique Using Rangeland Hydrology and Erosion Model (RHEM)

    Science.gov (United States)

    Continuous population growth, recent refugee movement and migration as well as boundary restrictions and their implications on the nomadic lifestyle are additive pressure on rangelands throughout the Middle East. In particular, overgrazing through increased livestock herds threatens the Jordanian ra...

  10. Rangeland Use Rights Privatisation Based on the Tragedy of the Commons: A Case Study from Tibet

    Directory of Open Access Journals (Sweden)

    Yonten Nyima Yundannima

    2017-01-01

    Full Text Available Rangeland use rights privatisation based on a tragedy of the commons assumption has been the backbone of state policy on rangeland management and pastoralism in China. Through an empirical case study from Pelgon county, Tibet Autonomous Region in China, this paper provides an empirical analysis of rangeland use rights privatisation. It shows that the tragedy of the commons is not the correct model to apply to Tibetan pastoralism because pasture use in Tibet has never been an open-access institution. Thus, when the tragedy of the commons model is applied as a rationale for rangeland use rights privatisation, the result is not what is intended by the policy, but rather a misfit to features of pastoralism and thus disruption of the essence of pastoralism, i.e. mobility and flexibility. The paper further shows that a hybrid institution combining household rangeland tenure with community-based use with user fees is a restoration of the pastoralist institution. This demonstrates the capacity of pastoralists to create adaptive new institutions congruent with the interdependent and integrated nature of pastoralism consisting of three components: pastoralists, livestock, and rangeland.

  11. Global view of remote sensing of rangelands: Evolution, applications, future pathways [Chapter 10

    Science.gov (United States)

    Matt Reeves; Robert A. Washington-Allen; Jay Angerer; E. Raymond Hunt; Ranjani Wasantha Kulawardhana; Lalit Kumar; Tatiana Loboda; Thomas Loveland; Graciela Metternicht; R. Douglas. Ramsey

    2015-01-01

    The term "rangeland" is rather nebulous, and there is no single definition of rangeland that is universally accepted by land managers, scientists, or international bodies (Lund, 2007; Reeves and Mitchell, 2011). Dozens and possibly hundreds (Lund, 2007) of definitions and ideologies exist because various stakeholders often have unique objectives...

  12. Resource analysis of the Chinese society 1980-2002 based on exergy-Part 4: Fishery and rangeland

    International Nuclear Information System (INIS)

    Chen, B.; Chen, G.Q.

    2007-01-01

    This fourth part is the continuation of the third part on agricultural products. The major fishery and rangeland products entering the Chinese society from 1980 to 2002 are calculated and analyzed in detail in this paper. The aquatic production, mainly relying on freshwater and seawater breeding, Enhancement policy of fishery resources, including closed fishing season system, construction of artificial fish reefs and ecological fish breeding, etc., is discussed in detail. The degradation of the major rangeland areas, hay yields and intake rangeland resources by the livestock, are also described associated with the strategic adjustment and comprehensive program to protect rangeland resources during the study period

  13. Re-creating the commons and re-configuring Maasai women’s roles on the rangelands in the face of fragmentation

    Directory of Open Access Journals (Sweden)

    Caroline S Archambault

    2016-09-01

    Full Text Available Throughout the world pastoralists today face a particularly daunting challenge of intensified rangeland fragmentation combined with human population growth and climate change. In many pastoral settings, rangelands are undergoing processes of fragmentation due to tenure transformations, as previously communal lands are privatized into individual holdings. Such processes of enclosure have raised concerns over the long-term costs on pastoral communities and on rangeland eco-systems. This paper explores pastoral responses and adaptations to enclosure based on long-term ethnographic engagement in a Maasai community in Southern Kenya that has recently privatized. Detailed family case studies and herd tracking illuminate the ways in which families try to re-create the commons by relying on social networks for free access to resources. In particular, women’s social networks (for example, their kin, affines, friends, or religious associates seem to play an important role. This paper calls attention to the need to better understand women’s changing roles in pastoral governance and production and the implications these new roles have for women’s well-being and for pastoralism in the face of fragmentation.

  14. Heat dosage and oviposition depth influence egg mortality of two common rangeland grasshopper species

    Science.gov (United States)

    Rangeland fire is a common naturally occurring event and management tool, with the amount and structure of biomass controlling transfer of heat belowground. Temperatures grasshopper eggs are exposed to during rangeland fires are mediated by species specific oviposition traits. This experiment examin...

  15. Bayesian estimation of shrubs diversity in rangelands under two management systems in northern Syria

    NARCIS (Netherlands)

    Niane, A.A.; Singh, M.; Struik, P.C.

    2014-01-01

    The diversity of shrubs in rangelands of northern Syria is affected by the grazing management systems restricted by the increase in human and livestock populations. To describe and estimate diversity and compare the rangeland grazing management treatments, two popular indices for diversity, the

  16. Elevated carbon dioxide: impacts on soil and plant water relations

    National Research Council Canada - National Science Library

    Kirkham, M. B

    2011-01-01

    .... Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2...

  17. Management of Collective Rangelands in Rhamna (Morocco ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Management of Collective Rangelands in Rhamna (Morocco) ... reduce the pressure on natural resources and promote sustainable management. ... Project status ... IDRC congratulates first cohort of Women in Climate Change Science Fellows ... and adaptive water management: Innovative solutions from the Global South”.

  18. Integrating the Indigenous Knowledge of Borana Pastoralists into Rangeland Management Strategies in Southern Ethiopia

    OpenAIRE

    World Bank

    2005-01-01

    Pastoralists' indigenous knowledge (IK) about ecology and social organization led to rangeland-management strategies appropriate to deal with the erratic rainfall in African drylands. Herd mobility was traditionally practiced as the key strategy to make use of the scattered rangeland resources on a large scale.

  19. Botanical Criteria of Baharkish Rangeland in Quchan, Khorasan ...

    African Journals Online (AJOL)

    ADOWIE PERE

    University of Mashhad International Campus, Mashhad, I.R of IRAN ... ABSTRACT: Rangelands are natural ecosystems containing a range of resources of genetic ..... Ecology of world vegetation. .... Science Journal of Islamic Azad University,.

  20. Agricultural, Runoff, Erosion and Salinity (ARES) Database to Better Evaluate Rangeland State and Sustainability

    Science.gov (United States)

    Rangelands comprise approximately 40% of the earth’s surface and are the largest land cover type in the world. Degradation from mismanagement, desertification, and drought impact more than 50% of rangelands across the globe. The USDA Agricultural Research Service (ARS) has been evaluating means of r...

  1. Evaluation of environmental change in rangelands of Uzbekistan with application of nuclear techniques approach

    International Nuclear Information System (INIS)

    Nasyrov, M.G.; Safarov, A.N.; Osmanov, B.S.

    2004-01-01

    Full text: Desertification and land degradation are a problem of major importance in the arid and semi-arid regions of the world. Deterioration of soil and plant cover has adversely affected nearly 50% of land areas as a result of extended droughts and human mismanagement of cultivated and rangelands. Due to several factors such as soil erosion, overgrazing, collection of plants and other anthropogenic activities the most part of these biomes are under degradation. The problem of assessments of current status of rangelands becomes very important days after days. Therefore, it needs to work out and implement new time and labor saving methods of assessment of current status of natural biomes. Soil erosion is a natural process caused by water, wind, and ice that have affected the earth's surface since the beginning if time. Man's activities often accelerate soil erosion. Soil erosion and its off-site, downstream damages are major concerns around the world causing losses in soil productivity, degradation of landscape, degradation of water quality, and loss of soil organic carbon. Current techniques for assessing soil erosion are (1) long-term soil erosion plot monitoring, (2) field surveys, and (3) soil erosion models (Evans, 1995). Each of this techniques has strengths and weaknesses. Over the last 30 years, research has shown the potential of using radioactive fallout 137 Cs to provide timely and quantitative estimates of soil erosion and redeposition at point, field, and reconnaissance scales. Applications of 137 Cs o provide an independent measurement of soil erosion rates, patterns, and redepositions are well-documented (Ritchie and McHenry, 1990). The unique advantages of the 137 Cs technique to study soil erosion rates and patterns are that it (a) requires only one trip to the field; (b) provides results quickly; (c) allows retrospective assessment of soil erosion rates; (d) provides average losses for 35 to 40 year period thus is less influenced by extreme

  2. Rangeland resource trends in the United States: A technical document supporting the 2000 USDA Forest Service RPA Assessment

    Science.gov (United States)

    John E. Mitchell

    2000-01-01

    This report documents trends in America's rangelands as required by the Renewable Resources Planning Act of 1974. The Forest Service has conducted assessments of the rangeland situation for 30 years. Over this period, rangeland values and uses have gradually shifted from concentrating upon forage production and meeting increasing demand for red meat to a more...

  3. Rehabilitation of community-owned, mixed-use rangelands: Lessons from the Ewaso ecosystem in Kenya

    Science.gov (United States)

    Globally, 10-20% of arid and semi-arid rangelands have been classified as severely degraded (UNCCD 1994; MEA 2005), and in sub-Saharan Africa specifically, 70% of rangelands are considered moderately to severely degraded (Dregne 1992; UNCCD 1994). Given that these drylands make up 43% of Africa’s la...

  4. Recovery of rangelands : the functioning of soil seed banks in a semi-arid African savanna

    NARCIS (Netherlands)

    Tessema, Z.K.

    2011-01-01

    Rangelands in Africa provide important forage resources for herbivores; particularly perennial grasses provide grazing for domestic and wild herbivores. However, semi-arid African rangelands experience severe vegetation and soil degradation due to heavy grazing, causing negative impacts

  5. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and

  6. An overview of the rangelands atmosphere hydrosphere biosphere interaction study experiment in northeastern Asia (RAISE)

    Science.gov (United States)

    Sugita, Michiaki; Asanuma, Jun; Tsujimura, Maki; Mariko, Shigeru; Lu, Minjiao; Kimura, Fujio; Azzaya, Dolgorsuren; Adyasuren, Tsokhio

    2007-01-01

    SummaryIntensive observations, analysis and modeling within the framework of the rangelands atmosphere-hydrosphere-biosphere interaction study experiment in northeastern Asia (RAISE) project, have allowed investigations into the hydrologic cycle in the ecotone of forest-steppe, and its relation to atmosphere and ecosystem in the eastern part of Mongolia. In this region, changes in the climate have been reported and a market oriented economy was introduced recently, but their impact on the natural environment is still not well understood. In this RAISE special issue, the outcome is presented of the studies carried out by six groups within RAISE, namely: (1) Land-atmosphere interaction analysis, (2) ecosystem analysis and modeling, (3) hydrologic cycle analysis, (4) climatic modeling, (5) hydrologic modeling, and (6) integration. The results are organized in five relevant categories comprising (i) hydrologic cycle including precipitation, groundwater, and surface water, (ii) hydrologic cycle and ecosystem, (iii) surface-atmosphere interaction, (iv) effect of grazing activities on soils, plant ecosystem and surface fluxes, and (v) future prediction. Comparison with studies on rangelands in other parts of the world, and some future directions of studies still needed in this region are also summarized.

  7. Vegetation restoration on degraded rangelands through the use of microcatchment and brush packs in the communal areas of the Eastern Cape

    CSIR Research Space (South Africa)

    Lesoli, MS

    2010-07-01

    Full Text Available Rangeland degradation results in declining functional capacity, increased poverty, and food insecurity. Major changes in rangeland surface morphology and soil characteristics have a drastic effect on the primary productivity of the rangeland...

  8. Effects of climate change on rangeland vegetation in the Northern Rockies Region [Chapter 7

    Science.gov (United States)

    Matt C. Reeves; Mary E. Manning; Jeff P. DiBenedetto; Kyle A. Palmquist; William K. Lauenroth; John B. Bradford; Daniel R. Schlaepfer

    2018-01-01

    Rangelands are dominated by grass, forb, or shrub species, but are usually not modified by using agronomic improvements such as fertilization or irrigation (Lund 2007; Reeves and Mitchell 2011) as these lands would normally be considered pastures. Rangeland includes grassland, shrubland, and desert ecosystems, alpine areas, and some woodlands (box 7.1). This chapter...

  9. Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning

    Science.gov (United States)

    Berg, Matthew D.; Marcantonio, Franco; Allison, Mead A.; McAlister, Jason; Wilcox, Bradford P.; Fox, William E.

    2016-06-01

    Rangelands cover a large portion of the earth's land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using cesium-137 and lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall-runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work.

  10. Hydrologic ramifications of an increased role of wildland fire across the rangeland-dry forest continuum

    Science.gov (United States)

    The increased role of wildland fire across the rangeland-dry forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Much of the Intermountain West now exists in a state in which rangeland and woodland wildfires stimulated by invasive che...

  11. Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems.

    Science.gov (United States)

    Reed, M S; Stringer, L C; Dougill, A J; Perkins, J S; Atlhopheng, J R; Mulale, K; Favretto, N

    2015-03-15

    This paper identifies new ways of moving from land degradation towards sustainable land management through the development of economic mechanisms. It identifies new mechanisms to tackle land degradation based on retaining critical levels of natural capital whilst basing livelihoods on a wider range of ecosystem services. This is achieved through a case study analysis of the Kalahari rangelands in southwest Botswana. The paper first describes the socio-economic and ecological characteristics of the Kalahari rangelands and the types of land degradation taking place. It then focuses on bush encroachment as a way of exploring new economic instruments (e.g. Payments for Ecosystem Services) designed to enhance the flow of ecosystem services that support livelihoods in rangeland systems. It does this by evaluating the likely impacts of bush encroachment, one of the key forms of rangeland degradation, on a range of ecosystem services in three land tenure types (private fenced ranches, communal grazing areas and Wildlife Management Areas), before considering options for more sustainable land management in these systems. We argue that with adequate policy support, economic mechanisms could help reorient degraded rangelands towards more sustainable land management. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. A comparison of the effects of different rangeland management ...

    African Journals Online (AJOL)

    A comparison of the effects of different rangeland management systems on ... Three management systems exploit these areas: commercial livestock ranching, communal livestock ranching and game ranching. ... AJOL African Journals Online.

  13. Grazing intensity on the plant diversity of alpine meadow in the eastern Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Wu Ning

    2004-04-01

    Full Text Available Because ofthe remoteness and harsh conditions of the high-altitude rangelands on the eastern Tibetan Plateau, the relationship between yak grazing and plant diversity has not been so clear although livestock increase was thought as the main issue leading to the degradation of rangeland. In the debate of rangeland degradation, biodiversity loss has been assumed as one of the indicators in the last two decades. In this paper authors measured the effects of different grazing intensities on the plant diversity and the structure of Kobresia pygmaea community in the case-study area, northwestern Sichuan. The results indicated that plant diversity of alpine meadow has different changing trends respectively with the change of grazing intensity and seasons. In June the highest plant diversity occurred in the intensively grazed (HG plots, but in July and September species biodiversity index of slightly grazed (LG plots is higher than other experimental treatments. In August the intermediate grazed (IG plots has the highest biodiversity index. Moreover, it was found that intensively grazing always leads to the increase of plant density, but meanwhile the decrease of community height, coverage and biomass. Over-grazing can change the community structure and lead to the succession from Kobresia pygmaea dominated community to Poa pratensis dominated. Analyzing results comprehensively, it can be suggested that the relationship between grazing intensity and plant diversity is not linear, i.e. diversity index is not as good as other characteristics of community structure to evaluate rangeland degradation on the high altitude situation. The change of biodiversity is so complicated that it can not be explained with the simple corresponding causality.

  14. DEVELOPMENTS IN MONITORING RANGELANDS USING REMOTELY-SENSED CROSS-FENCE COMPARISONS

    Directory of Open Access Journals (Sweden)

    A. D. Kilpatrick

    2012-07-01

    Full Text Available This paper presents a new method for the use of earth-observation images to assess relative land condition over broad regions, using a cross-fence comparison methodology. It controls for natural spatial and temporal variables (e.g. rainfall, temperature soils, ecosystem so that we can objectively monitor rangelands and other areas for the effects of management. The method has been tested with small and large scale theoretical models, as well as a case study in South Australian rangelands. This method can also be applied in other systems and experiments such as field trials of crop varieties as a robust spatial statistic.

  15. China's Rangelands under Stress : A comparative study of pasture commons in the Ningxia Hui Autonomous Region

    NARCIS (Netherlands)

    Ho, P.P.S.

    2000-01-01

    China's economic reforms have exacerbated the problems of over-grazing and desertification in the country's pastoral areas. In order to deal with rangeland degradation, the Chinese government has resorted to nationalization, or semi-privatization. Since the implementation of rangeland policy has

  16. Forests, rangelands and climate change in Southern Africa

    CSIR Research Space (South Africa)

    Naidoo, Sasha

    2013-09-01

    Full Text Available This paper provides an analysis of the implications of climate change for forests and rangelands in southern Africa. The extent of the resources and their economic and social functions and drivers of change is outlined. The vulnerability...

  17. The challenge of integrated rangeland monitoring: synthesis address

    African Journals Online (AJOL)

    The utility of monitoring and its guiding principles will only work effectively where good environmental governance is practiced by users and producers affecting rangeland ecosystems. Keywords: adaptive management, complex, environmental governance, human impacts, multi-scale, socio-ecological. African Journal of ...

  18. Effect of management on rangeland phytomass, cover and condition ...

    African Journals Online (AJOL)

    similarity of management effects on rangeland condition and forage provision across major dryland biomes. Taking a macro-ecological perspective, we analysed if management effects differed between South Africa's central grassland and ...

  19. Transcending Landscapes: Working Across Scales and Levels in Pastoralist Rangeland Governance.

    Science.gov (United States)

    Robinson, Lance W; Ontiri, Enoch; Alemu, Tsegaye; Moiko, Stephen S

    2017-08-01

    Landscape approaches can be subjected to mistakenly targeting a single "best" level of governance, and paying too little attention to the role that cross-scale and cross-level interactions play in governance. In rangeland settings, resources, patterns of use of those resources, and the institutions for managing the resources exist at multiple levels and scales. While the scholarship on commons offers some guidance on how to conceptualize governance in rangeland landscapes, some elements of commons scholarship-notably the "design principles" for effective governance of commons-do not seem to apply neatly to governance in pastoralist rangeland settings. This paper examines three cases where attempts have been made to foster effective landscape governance in such settings to consider how the materiality of commons influences the nature of cross-scale and cross-level interactions, and how these interactions affect governance. In all three cases, although external actors seemed to work appropriately and effectively at community and landscape levels, landscape governance mechanisms have been facing great challenges arising from relationships beyond the landscape, both vertically to higher levels of decision-making and horizontally to communities normally residing in other landscapes. The cases demonstrate that fostering effective landscape-level governance cannot be accomplished only through action at the landscape level; it is a task that must be pursued at multiple levels and in relation to the connections across scales and levels. The paper suggests elements of a conceptual framework for understanding cross-level and cross-scale elements of landscape governance, and offers suggestions for governance design in pastoralist rangeland settings.

  20. Transcending Landscapes: Working Across Scales and Levels in Pastoralist Rangeland Governance

    Science.gov (United States)

    Robinson, Lance W.; Ontiri, Enoch; Alemu, Tsegaye; Moiko, Stephen S.

    2017-08-01

    Landscape approaches can be subjected to mistakenly targeting a single "best" level of governance, and paying too little attention to the role that cross-scale and cross-level interactions play in governance. In rangeland settings, resources, patterns of use of those resources, and the institutions for managing the resources exist at multiple levels and scales. While the scholarship on commons offers some guidance on how to conceptualize governance in rangeland landscapes, some elements of commons scholarship—notably the "design principles" for effective governance of commons—do not seem to apply neatly to governance in pastoralist rangeland settings. This paper examines three cases where attempts have been made to foster effective landscape governance in such settings to consider how the materiality of commons influences the nature of cross-scale and cross-level interactions, and how these interactions affect governance. In all three cases, although external actors seemed to work appropriately and effectively at community and landscape levels, landscape governance mechanisms have been facing great challenges arising from relationships beyond the landscape, both vertically to higher levels of decision-making and horizontally to communities normally residing in other landscapes. The cases demonstrate that fostering effective landscape-level governance cannot be accomplished only through action at the landscape level; it is a task that must be pursued at multiple levels and in relation to the connections across scales and levels. The paper suggests elements of a conceptual framework for understanding cross-level and cross-scale elements of landscape governance, and offers suggestions for governance design in pastoralist rangeland settings.

  1. Runoff and soil erosion from two rangeland sites

    Science.gov (United States)

    Historically over 50 years of rainfall/runoff research using rainfall simulators has been conducted at various rangeland sites in the West, however these sites rarely have consecutive yearly measurements. This limits the understanding of dynamic annual conditions and the interactions of grazing, pla...

  2. Grasshopper (Orthoptera: Acrididae) community composition in the rangeland of the northern slopes of The Qilian Mountains in northwestern China.

    Science.gov (United States)

    Sun, T; Liu, Z Y; Qin, L P; Long, R J

    2015-01-01

    In order to describe grasshopper (Orthoptera: Acrididae) species composition, diversity, abundance, and density of four rangelands types, we compared the grasshopper community composition and dynamics in the rangeland of the northern slopes of the Qilian Mountains. In total, 55 grasshopper species were collected from 2007 to 2009, representing three families and six subfamilies. The subfamily Oedipodinae was dominant, followed by Gomphocerinae and Catantopinae. Species abundance varied among rangeland types (RTs). The greatest abundance of grasshoppers was found in mountain rangeland, while the lowest abundance of grasshoppers was caught in alpine shrublands. Three species (Chorthippus cf. brunneus (Thunberg) (Acrididae), Chorthippus Dubius (Zubovski), and Gomphocerus licenti (Chang) were broadly distributed in the four RTs and constituted 7.5% of all grasshoppers collected. Ch. dubius was very abundant in desert rangeland and alpine shrubland. Bryodema dolichoptera Yin et Feng Eremippus qilianshanensis Lian and Zheng, and Filchnerella qilianshanensis Xi and Zheng (Pamphagidae) were endemic to the region of the Qilian Mountains. Species similarity between RTs ranged from 17.8 to 51.6 based on the Renkonen index. Similarly, the Sörensen index indicated a wide separation in species composition among RTs. The abundance of the eight most common species showed obvious differences among RTs and years. On average, mountain rangeland had the highest density values in 2007 and 2008, and alpine shrubland supported the smallest density. The densities in desert and mountain rangeland in 2007 were significantly higher than in 2008, while alpine rangeland and shrublands did not present obvious differences among years. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  3. Autecology of Astragalus arpilobus Kar. & Kir, a promised species for restoration of the winter rangelands in the northeast of Iran

    Directory of Open Access Journals (Sweden)

    M. Jankju

    2016-04-01

    Full Text Available Studying the autecology of range plants provides the basic information on their ecological requirements, cultivation methods and the interactions with the prevailing environment. Such information is necessary for a proper range management. Some ecological characteristics of Astragalus arpilobus Kar. & Kir., were studied in the winter rangelands of Northern Khorasan province. It was naturally growing in Jargalan, Bojnourd, where the altitudinal range varied 500-600 a.s.l, slope 20-100%, and the average annual rainfall 236.85 mm. Soil properties were: loamy texture, average organic matter, low fertility, pH 7.32 and EC 2.30 ds.m-1. A. aripilobus started vegetative growth at the early March, flowering during early May, seed production during June, and terminated its yearly growth at early July. The highest nutritive values and forage quality were at the beginning of growth, which was gradually decreased towards the end of growth season. Crude protein (CP, and ash were decreased whereas acid detergent fiber (ADF, natural detergent fiber (NDF, and dry matter (DM increased by the growing season. Seeds were easily established within pots; however, seed germination rate was low (24%, which by sand paper scarification was increased up to 51%. In conclusion, feasibility of seedling establishment, high nutritive value, and concurrence of plant phenology with the time of maximum need to fodder, by livestocks, propose A. arpilobus as a promising forage plant species for restoration of the winter rangelands in Northern Khorasan province.

  4. Hydrologic Impacts Associated with the Increased Role of Wildland Fire Across the Rangeland-Xeric Forest Continuum of the Great Basin and Intermountain West, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Boll, J.; Al-Hamdan, O. Z.

    2011-12-01

    The increased role of wildland fire across the rangeland-xeric forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Concomitant climate conditions and altered plant community transitions in recent decades along grassland-shrubland-woodland-xeric forest transitions have promoted frequent and large wildland fires, and the continuance of the trend appears likely if current or warming climate conditions prevail. Much of the Great Basin and Intermountain West in the US now exists in a state in which rangeland and woodland wildfires stimulated by invasive cheatgrass and dense, horizontal and vertical fuel layers have a greater likelihood of progressing upslope into xeric forests. Drier moisture conditions and warmer seasonal air temperatures, along with dense fuel loads, have lengthened fire seasons and facilitated an increase in the frequency, severity and area burned in mid-elevation western US forests. These changes potentially increase the overall hydrologic vulnerability across the rangeland-xeric forest continuum by spatially and temporally increasing soil surface exposure to runoff and erosion processes. Plot-to-hillslope scale studies demonstrate burning may increase event runoff and/or erosion by factors of 2-40 over small-plots scales and more than 100-fold over large-plot to hillslope scales. Anecdotal reports of large-scale flooding and debris-flow events from rangelands and xeric forests following burning document the potential risk to resources (soil loss, water quality, degraded aquatic habitat, etc.), property and infrastructure, and human life. Such risks are particularly concerning for urban centers near the urban-wildland interface. We do not yet know the long-term ramifications of frequent soil loss associated with commonly occurring runoff events on repeatedly burned sites. However, plot to landscape-scale post-fire erosion rate estimates suggest potential losses of biologically

  5. Rangeland Ecosystem Services: Nature's Supply and Humans' Demand

    Science.gov (United States)

    Ecosystem services are the benefits that society receives from nature and they include the regulation of climate, the pollination of crops, the provisioning of intellectual inspiration and recreational environment, as well as many essential goods such as food, fiber, and wood. Rangeland ecosystem se...

  6. Livestock systems and rangeland degradation in the new World Atlas of Desertification

    Science.gov (United States)

    Zucca, Claudio; Reynolds, James F.; Cherlet, Michael

    2015-04-01

    Livestock systems and rangeland degradation in the new World Atlas of Desertification Land degradation and desertification (LDD), which are widespread in global rangelands, are complex processes. They are caused by multiple (but limited) number of biophysical and socioeconomic drivers that lead to an unbalance in the capacity of the land to sustainably produce ecosystem services and economic value. Converging evidence indicates that the key biophysical and socioeconomic drivers include agricultural or pastoral land use and management practices, population growth, societal demands (e.g., urbanization), and climate change (e.g., increasing aridity and drought). The new World Atlas of Desertification (WAD) describes these global issues, documents their spatial change, and highlights the importance of these drivers in relation to land degradation processes. The impacts of LDD on the atmosphere, on water and on biodiversity are also covered. The WAD spatially illustrates relevant types of livestock and rangeland management systems, related (over-under) use of resources, various management activities, and some of the common features and transitions that contribute to LDD. For example, livestock grazing in marginal areas is increasing due to competition with agricultural encroachment and, hence, vulnerable lands are under threat. The integration of stratified global data layers facilitates identifying areas where stress on the land system can be linked to underlying causal issues. One of the objectives of the new WAD is to provide synthesis and tools for scientists and stakeholders to design sustainable solutions for efficient land use in global rangelands.

  7. A conceptual tool for improving rangeland management decision ...

    African Journals Online (AJOL)

    ... the LLM concept should be seen as a continuous and evolving learning process that will be updated over the long term through decision support to include several other components essential to implement effective and sustainable rangeland management practices by local land users. Keywords: desertification; indicators ...

  8. Interpreting and Correcting Cross-scale Mismatches in Resilience Analysis: a Procedure and Examples from Australia's Rangelands

    Directory of Open Access Journals (Sweden)

    John A. Ludwig

    2005-12-01

    Full Text Available Many rangelands around the globe are degraded because of mismatches between the goals and actions of managers operating at different spatial scales. In this paper, we focus on identifying, interpreting, and correcting cross-scale mismatches in rangeland management by building on an existing four-step resilience analysis procedure. Resilience analysis is an evaluation of the capacity of a system to persist in the face of disturbances. We provide three examples of cross-scale resilience analysis using a rangeland system located in northern Australia. The system was summarized in a diagram showing key interactions between three attributes (water quality, regional biodiversity, and beef quality, which can be used to indicate the degree of resilience of the system, and other components that affect these attributes at different scales. The strengths of cross-scale interactions were rated as strong or weak, and the likely causes of mismatches in strength were interpreted. Possible actions to correct cross-scale mismatches were suggested and evaluated. We found this four-step, cross-scale resilience analysis procedure very helpful because it reduced a complex problem down to manageable parts without losing sight of the larger-scale whole. To build rangeland resilience, many such cross-scale mismatches in management will need to be corrected, especially as the global use of rangelands increases over the coming decades.

  9. Scale effects on runoff and soil erosion in rangelands: observations and estimations with predictors of different availability

    Science.gov (United States)

    Runoff and erosion estimates are needed for rangeland management decisions and evaluation of ecosystem services derived from rangeland conservation practices. The information on the effect of scale on the runoff and erosion, and on the choice of runoff and erosion predictors, remains scarce. The obj...

  10. Presidential address - 1999 Towards a national rangeland policy ...

    African Journals Online (AJOL)

    There are some problems with the publication of the journal, but Council hopes to have our ... The first is that all agencies funded through DACST will be reviewed ... to improve our understanding of management issues in communal rangeland. ... All current programmes to rehabilitate degraded land contain budgets for the ...

  11. Monitoring Forage Production of California Rangeland Using Remote Sensing Observations

    Science.gov (United States)

    Liu, H.; Jin, Y.; Dahlgren, R. A.; O'Geen, A. T.; Roche, L. M.; Smith, A. M.; Flavell, D.

    2016-12-01

    Pastures and rangeland cover more than 10 million hectares in California's coastal and inland foothill regions, providing feeds to livestock and important ecosystem services. Forage production in California has a large year-to-year variation due to large inter-annual and seasonal variabilities in precipitation and temperature. It also varies spatially due to the variability in climate and soils. Our goal is to develop a robust and cost-effective tool to map the near-real-time and historical forage productivity in California using remote sensing observations from Landsat and MODIS satellites. We used a Monteith's eco-physiological plant growth theory: the aboveground net primary production (ANPP) is determined by (i) the absorbed photosynthetically active radiation (APAR) and the (ii) light use efficiency (LUE): ANPP = APAR * LUEmax * f(T) * f(SM), where LUEmax is the maximum LUE, and f(T) and f(SM) are the temperature and soil moisture constrains on LUE. APAR was estimated with Landsat and MODIS vegetation index (VI), and LUE was calibrated with a statewide point dataset of peak forage production measurements at 75 annual rangeland sites. A non-linear optimization was performed to derive maximum LUE and the parameters for temperature and soil moisture regulation on LUE by minimizing the differences between the estimated and measured ANPP. Our results showed the satellite-derived annual forage production estimates correlated well withcontemporaneous in-situ forage measurements and captured both the spatial and temporal productivity patterns of forage productivity well. This remote sensing algorithm can be further improved as new field measurements become available. This tool will have a great importance in maintaining a sustainable range industry by providing key knowledge for ranchers and the stakeholders to make managerial decisions.

  12. Management applicability of the intermediate disturbance hypothesis across Mongolian rangeland ecosystems.

    Science.gov (United States)

    Sasaki, Takehiro; Okubo, Satoru; Okayasu, Tomoo; Jamsran, Undarmaa; Ohkuro, Toshiya; Takeuchi, Kazuhiko

    2009-03-01

    The current growing body of evidence for diversity-disturbance relationships suggests that the peaked pattern predicted by the intermediate disturbance hypothesis (IDH) may not be the rule. Even if ecologists could quantify the diversity-disturbance relationship consistent with the IDH, the applicability of the IDH to land management has rarely been addressed. We examined two hypotheses related to the generality and management applicability of the IDH to Mongolian rangeland ecosystems: that the diversity-disturbance relationship varies as a function of landscape condition and that some intermediate scales of grazing can play an important role in terms of sustainable rangeland management through a grazing gradient approach. We quantified the landscape condition of each ecological site using an ordination technique and determined two types of landscape conditions: relatively benign and harsh environmental conditions. At the ecological sites characterized by relatively benign environmental conditions, diversity-disturbance relationships were generally consistent with the IDH, and maximum diversity was observed at some intermediate distance from the source of the grazing gradient. In contrast, the IDH was not supported at most (but not all) sites characterized by relatively harsh environmental conditions. The intermediate levels of grazing were generally located below the ecological threshold representing the points or zones at which disturbance should be limited to prevent drastic changes in ecological conditions, suggesting that there is little "conundrum" with regard to intermediate disturbance in the studied systems in terms of land management. We suggest that the landscape condition is one of the primary factors that cause inconsistencies in diversity-disturbance relationships. The ecological threshold can extend its utility in rangeland management because it also has the compatibility with the maintenance of species diversity. This study thus suggests that some

  13. Plant establishment and soil microenvironments in Utah juniper masticated woodlands

    Science.gov (United States)

    Kert R. Young

    2012-01-01

    Juniper (Juniperus spp.) encroachment into sagebrush (Artemisia spp.) and bunchgrass communities has reduced understory plant cover and allowed juniper trees to dominate millions of hectares of semiarid rangelands. Trees are mechanically masticated or shredded to decrease wildfire potential and increase desirable understory plant cover. When trees are masticated after...

  14. Multi-agency Oregon Pilot: Working towards a national inventory and assessment of rangelands using onsite data

    Science.gov (United States)

    Paul L. Patterson; James Alegria; Leonard Jolley; Doug Powell; J. Jeffery Goebel; Gregg M. Riegel; Kurt H. Riitters; Craig. Ducey

    2014-01-01

    Rangelands are lands dominated by grasses, forbs, and shrubs and are managed as a natural ecosystem. Although these lands comprise approximately 40 percent of the landmass of the continental United States, there is no coordinated effort designed to inventory, monitor, or assess rangeland conditions at the national scale. A pilot project in central Oregon with the U.S....

  15. Rangeland restoration for Hirola, the world's most endangered antelope

    Science.gov (United States)

    Rangeland restoration can improve habitat for threatened species such as the hirola antelope (Beatragus hunteri) that inhabit savannas of eastern Kenya. However, restoration success likely varies across soil types and target restoration species, as well as according to restoration approach. We teste...

  16. Rangeland -- plant response to elevated CO2

    International Nuclear Information System (INIS)

    Owensby, C.E.; Coyne, P.I.; Ham, J.M.; Parton, W.; Rice, C.; Auen, L.M.; Adam, N.

    1993-01-01

    Plots of a tallgrass prairie ecosystem were exposed to ambient and twice-ambient CO 2 concentrations in open-top chambers and compared to unchambered ambient CO 2 plots during the entire growing season from 1989 through 1992. Relative root production among treatments was estimated using root ingrowth bags which remained in place throughout the growing season. Latent heat flux was simulated with and without water stress. Botanical composition was estimated annuallyin all treatments. Open-top chambers appeared to reduce latent heat flux and increase water use efficiency similar to elevated CO 2 when water stress was not severe, but under severe water stress, chamber effect on water use efficiency was limited. In natural ecosystems with periodic moisture stress, increased water use efficiency under elevated CO 2 apparently would have a greater impact on productivity than photosynthetic pathway. Root ingrowth biomass was greater in 1990 and 1991 on elevated CO 2 plots compared to ambient or chambered-ambient plots. In 1992, there was no difference in root ingrowth biomass among treatments

  17. State and transition models: Theory, applications, and challenges. In: Briske, D.D. Rangeland Systems: Processes, Management and Challenges

    Science.gov (United States)

    State and transition models (STMs) are used for communicating about ecosystem change in rangelands and other ecosystems, especially the implications for management. The fundamental premise that rangelands can exhibit multiple states is now widely accepted. The current application of STMs for managem...

  18. Rangeland degradation in two watersheds of Lebanon

    International Nuclear Information System (INIS)

    Darwish, T; Faour, G.

    2008-01-01

    A complex and rugged nature characterizes the Lebanese mountains.The climatic pattern prevailing in the country, deforestation and man made erosion caused increased rangeland degradation. The purpose of this study was to monitor two contrasting watersheds, representing the Lebanese agro-ecological zones, to analyze the vegetation dynamics and trace the state of rangeland degradation. The Kfarselouane (205 km2) and Aarsal (316.7 km2) watersheds are located in the Lebanon and Anti-Lebanon mountain chain and characterized by sub humid and semi-arid climate respectively.Using multitemporal spot vegetation images between 1999 and 2005 to analyze the normalized differential vegetation index (NDVI) revealed some improvement of the vegetation cover over recent years in Kfaselouane with a steady state in Aarsal. The NDVI trend curve inclines in spring and declines in summer and fall. Judging by the time scale amplitude change and highest magnitude between the peak and lower NDVI level in Aarsal, an increased vulnerability to drought is observed in the dry Lebanese areas. Comparing land cover/use in Aarsal area between 1962 and 2000 using aerial photos and large resolution Indian satellite images (IRS) showed wood fragmentation and slight increase of the degenerated forest cover from 1108 ha to 1168 ha. Landuse change was accompanied by a simultaneous increase of cultivated lands (mostly fruit trees) from 932 ha to 4878 ha with absence of soil conservation and water harvesting practices. On the contrary, grasslands decreased from 29581 ha to 25000 ha. In Kfarselouane, the area of grassland was invaded by forestland where rangeland decreased from 8073 ha to 3568 ha and woodland increased from 5766 ha to 11800 ha. Forest expansion occurred even at the account of unproductive land which decreased from 2668 ha to 248 ha, while cultivated lands did not reveal any substantial change. Based on animals' seasonal feeding pattern, a mismatch between land carrying capacity and grazing

  19. Ecology and Conservation of Acacia senegal in the Rangelands ...

    African Journals Online (AJOL)

    Ecology and Conservation of Acacia senegal in the Rangelands ofLuwero and Nakasongola Districts. Jacob Godfrey Agea, Joseph Obua, Sara Namirembe, Mukadasi Buyinza, Daniel Waiswa. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  20. Advances in modeling soil erosion after disturbance on rangelands

    Science.gov (United States)

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  1. Ranch business planning and resource monitoring for rangeland sustainability

    Science.gov (United States)

    Kristie A. Maczko; John A. Tanaka; Michael Smith; Cindy Garretson-Weibel; Stanley F. Hamilton; John E. Mitchell; Gene Fults; Charles Stanley; Dick Loper; Larry D. Bryant; J. K. (Rooter) Brite

    2012-01-01

    Aligning a rancher's business plan goals with the capability of the ranch's rangeland resources improves the viability and sustainability of family ranches. Strategically monitoring the condition of soil, water, vegetation, wildlife, livestock production, and economics helps inform business plan goals. Business planning and resource monitoring help keep...

  2. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions?

    Science.gov (United States)

    Zogli, Prince; Libault, Marc

    2017-10-01

    Plants constantly interact with pathogenic and symbiotic microorganisms. Recent studies have revealed several regulatory mechanisms controlling these interactions. Among them, the plant defense system is activated not only in response to pathogenic, but also in response to symbiotic microbes. Interestingly, shortly after symbiotic microbial recognition, the plant defense system is suppressed to promote plant infection by symbionts. Research studies have demonstrated the influence of the plant epigenome in modulating both pathogenic and symbiotic plant-microbe interactions, thereby influencing plant survival, adaptation and evolution of the plant response to microbial infections. It is however unclear if plant pathogenic and symbiotic responses share similar epigenomic profiles or if epigenomic changes differentially regulate plant-microbe symbiosis and pathogenesis. In this mini-review, we provide an update of the current knowledge of epigenomic control on plant immune responses and symbiosis, with a special attention being paid to knowledge gap and potential strategies to fill-in the missing links. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phenomapping of rangelands in South Africa using time series of RapidEye data

    Science.gov (United States)

    Parplies, André; Dubovyk, Olena; Tewes, Andreas; Mund, Jan-Peter; Schellberg, Jürgen

    2016-12-01

    Phenomapping is an approach which allows the derivation of spatial patterns of vegetation phenology and rangeland productivity based on time series of vegetation indices. In our study, we propose a new spatial mapping approach which combines phenometrics derived from high resolution (HR) satellite time series with spatial logistic regression modeling to discriminate land management systems in rangelands. From the RapidEye time series for selected rangelands in South Africa, we calculated bi-weekly noise reduced Normalized Difference Vegetation Index (NDVI) images. For the growing season of 2011⿿2012, we further derived principal phenology metrics such as start, end and length of growing season and related phenological variables such as amplitude, left derivative and small integral of the NDVI curve. We then mapped these phenometrics across two different tenure systems, communal and commercial, at the very detailed spatial resolution of 5 m. The result of a binary logistic regression (BLR) has shown that the amplitude and the left derivative of the NDVI curve were statistically significant. These indicators are useful to discriminate commercial from communal rangeland systems. We conclude that phenomapping combined with spatial modeling is a powerful tool that allows efficient aggregation of phenology and productivity metrics for spatially explicit analysis of the relationships of crop phenology with site conditions and management. This approach has particular potential for disaggregated and patchy environments such as in farming systems in semi-arid South Africa, where phenology varies considerably among and within years. Further, we see a strong perspective for phenomapping to support spatially explicit modelling of vegetation.

  4. Responses of plants to air pollution

    National Research Council Canada - National Science Library

    Mudd, J. Brian; Kozlowski, T. T

    1975-01-01

    .... KOZLOWSKI Pollution, 1975 ELROY L. RICE. Allelopathy, (Eds.). Fire and Ecosystems, 1974 (Eds.). Responses of Plants to Air Responses of Plants to Air PollutionRESPONSES OF PLANTS TO AIR POLLUTION E...

  5. Ecology and utilization of desert shrub rangelands in Iraq

    NARCIS (Netherlands)

    Thalen, Derk Catharinus Peter

    1979-01-01

    When grazing is the accepted land use, vegetation is the key resource. The present study deals with the desert shrub rangelands of lraq, which contain the major characteristics of such an area, having been under grazing for many centuries. Emphasis is given to the ecology and utilization of the

  6. A synoptic review of U.S. rangelands: a technical document supporting the Forest Service 2010 RPA Assessment

    Science.gov (United States)

    Matthew Clark Reeves; John E. Mitchell

    2012-01-01

    The Renewable Resources Planning Act of 1974 requires the USDA Forest Service to conduct assessments of resource conditions. This report fulfills that need and focuses on quantifying extent, productivity, and health of U.S. rangelands. Since 1982, the area of U.S. rangelands has decreased at an average rate of 350,000 acres per year owed mostly to conversion to...

  7. Parameterization of erodibility in the Rangeland Hydrology and Erosion Model

    Science.gov (United States)

    The magnitude of erosion from a hillslope is governed by the availability of sediment and connectivity of runoff and erosion processes. For undisturbed rangelands, sediment is primarily detached and transported by rainsplash and sheetflow (splash-sheet) processes in isolated bare batches, but sedime...

  8. Assessment of Landsat multispectral scanner spectral indexes for monitoring arid rangeland

    Science.gov (United States)

    Musick, H. B.

    1984-01-01

    Correlations between spectral indices and vegetation parameters in south-central New Mexico were used to determine the utility of Landsat Multispectral Scanner (MSS) spectral indices in arid rangeland monitoring. In addition, spectral index change for 1976-1980 was calculated from retrospective MSS data and compared with qualitative ground truth in order to evaluate vegetation change detection by means of spectral indices. Brightness index change consistently differentiated between cover increase and decrease, but index change appears to have been offset from true cover change; this may at least partly be attributed to the failure of the methods used to standardize MSS scenes for differences in sensor response. Green vegetation indices, by contrast to brightness indices, failed to consistently differentiate between cover increase and decrease.

  9. Use of biosolids to enhance rangeland forage quality.

    Science.gov (United States)

    McFarland, Michael J; Vasquez, Issaak Romero; Vutran, MaiAnh; Schmitz, Mark; Brobst, Robert B

    2010-05-01

    Biosolids land application was demonstrated to be a potentially cost-effective means for restoring forage productivity and enhancing soil-moisture-holding capacity on disturbed rangelands. By land-applying aerobically digested, anaerobically digested, composted, and lime-stabilized biosolids on rangeland test plots at rates of up to 20 times (20X) the estimated nitrogen-based agronomic rate, forage yields were found to increase from 132.8 kg/ha (118.2 lb/ac) (control plots) to 1182.3 kg/ha (1052.8 lb/ac). Despite the environmental benefits associated with increased forage yield (e.g., reduced soil erosion, improved drainage, and enhanced terrestrial carbon sequestration), the type of forage generated both before and after biosolids land application was found to be dominated by invasive weeds, all of which were characterized as having fair to poor nutritional value. Opportunistic and shallow rooting invasive weeds not only have marginal nutritional value, they also limit the establishment of native perennial grasses and thus biodiversity. Many of the identified invasive species (e.g., Cheatgrass) mature early, a characteristic that significantly increases the fuel loads that support the increased frequency and extent of western wildfires.

  10. Linking ecosystem services with state-and-transition models to evaluate rangeland management decisions

    Science.gov (United States)

    Lohani, S.; Heilman, P.; deSteiguer, J. E.; Guertin, D. P.; Wissler, C.; McClaran, M. P.

    2014-12-01

    Quantifying ecosystem services is a crucial topic for land management decision making. However, market prices are usually not able to capture all the ecosystem services and disservices. Ecosystem services from rangelands, that cover 70% of the world's land area, are even less well-understood since knowledge of rangelands is limited. This study generated a management framework for rangelands that uses remote sensing to generate state and transition models (STMs) for a large area and a linear programming (LP) model that uses ecosystem services to evaluate natural and/or management induced transitions as described in the STM. The LP optimization model determines the best management plan for a plot of semi-arid land in the Empire Ranch in southeastern Arizona. The model allocated land among management activities (do nothing, grazing, fire, and brush removal) to optimize net benefits and determined the impact of monetizing environmental services and disservices on net benefits, acreage allocation and production output. The ecosystem services under study were forage production (AUM/ac/yr), sediment (lbs/ac/yr), water runoff (inches/yr), soil loss (lbs/ac/yr) and recreation (thousands of number of visitors/ac/yr). The optimization model was run for three different scenarios - private rancher, public rancher including environmental services and excluding disservices, and public rancher including both services and disservices. The net benefit was the highest for the public rancher excluding the disservices. A result from the study is a constrained optimization model that incorporates ecosystem services to analyze investments on conservation and management activities. Rangeland managers can use this model to understand and explain, not prescribe, the tradeoffs of management investments.

  11. Agroforestry potential of Acacia senegal in the rangelands of luwero ...

    African Journals Online (AJOL)

    Agroforestry potential of Acacia senegal in the rangelands of luwero and Nakasongola districts. Jacob Godfrey Agea, Joseph Obua, Sara Namirembe, Mukadasi Buyinza, Daniel Waiswa. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  12. Multi-scale wind erosion monitoring and assessment for US rangelands

    Science.gov (United States)

    Wind erosion is a major resource concern for rangeland managers. Although wind erosion is a naturally occurring process in many drylands, land use activities, and land management in particular, can accelerate wind-driven soil loss – impacting ecosystem dynamics and agricultural production, air quali...

  13. Session A6 Rangelands as dynamic systems — Fragmentation of ...

    African Journals Online (AJOL)

    Biological complexity in rangelands arises from spatially-linked ecological states and processes. Herbivores, humans and other agents integrate distinct spatial units into complex systems by moving among and exploiting these units. Spatial heterogeneity plays a central role in the structure and function of grazed ...

  14. A review of climate change effects on terrestrial rangeland birds

    Science.gov (United States)

    D. M. Finch; K. E. Bagne; M. M. Friggens; D. M. Smith; K. M. Brodhead

    2011-01-01

    We evaluated existing literature on predicted and known climate change effects on terrestrial rangeland birds. We asked the following questions: 1) How does climate change affect birds? 2) How will birds respond to climate change? 3) Are species already responding? 4) How will habitats be impacted?

  15. Determining termite diversity in arid Namibian rangelands – a ...

    African Journals Online (AJOL)

    Three methods of sampling termite diversity in arid rangelands were tested in Namibia during the wet (March) and dry (October) seasons of 1998. Six sites were chosen: one pair on each of three farms representing a gradient of land use intensity. At each site, two adjacent plots of 1 ha each were sampled: one plot by a ...

  16. Session B1 Management for sustainable use — Rangeland auditing ...

    African Journals Online (AJOL)

    We need to monitor the capacity of healthy rangeland to support a broad suite of ecosystem services for a wide range of stakeholders — in a fair, objective and representative way. ... A hybrid session structure will be utilised: distilling wisdom from relevant posters; formal presentations; and stimulating structured debate.

  17. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  18. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  19. Endemic shrubs in temperate arid and semiarid regions of northern China and their potentials for rangeland restoration.

    Science.gov (United States)

    Chu, Jianmin; Yang, Hongxiao; Lu, Qi; Zhang, Xiaoyan

    2015-06-03

    Some endemic shrubs in arid and semiarid ecosystems are in danger of extinction, and yet they can play useful roles in maintaining or restoring these ecosystems, thus practical efforts are needed to conserve them. The shrubs Amygdalus pedunculata Pall., Amygdalus mongolica (Maxim.) Ricker and Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. are endemic species in arid and semiarid regions of northern China, where rangeland desertification is pronounced due to chronic overgrazing. In this study, we tested the hypothesis that these endemic shrubs have developed adaptations to arid and semiarid environments and could play critical roles as nurse species to initiate the process of rangeland recovery. Based on careful vegetation surveys, we analysed the niches of these species in relation to precipitation, temperature and habitats. All sampling plots were categorized by these endemics and sorted by the non-metric multidimensional scaling method. Species ratios of each life form and species co-occurrence rates with the endemics were also evaluated. Annual average temperature and annual precipitation were found to be the key factors determining vegetation diversity and distributions. Amygdalus pedunculata prefers low hills and sandy land in temperate semiarid regions. Amygdalus mongolica prefers gravel deserts of temperate semiarid regions. Ammopiptanthus mongolicus prefers sandy land of temperate arid regions. Communities of A. pedunculata have the highest diversity and the largest ratios of long-lived grass species, whereas those of A. mongolicus have the lowest diversity but the largest ratios of shrub species. Communities of A. mongolica are a transition between the first two community types. These findings demonstrate that our focal endemic shrubs have evolved adaptations to arid and semiarid conditions, thus they can be nurse plants to stabilize sand ground for vegetation restoration. We suggest that land managers begin using these shrub species to restore

  20. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  1. Power and limitation of soil properties as predictors of rangeland health and ecosystem functioning in a Northern mixed-grass prairie[Abstract

    Science.gov (United States)

    Soil properties are thought to affect rangeland ecosystem functioning (e.g. primary productivity, hydrology), and thus soil variables that are consistently correlated with key ecosystem functions may be general indicators of rangeland health. We summarize results from several studies in mixed-grass...

  2. Session A5 Rangelands as dynamic systems Role of wildlife in ...

    African Journals Online (AJOL)

    Rangelands in southern Africa are increasingly being used for conservation, ecotourism, game farming and hunting. This impacts people's livelihoods and the state of natural resources. Complimentarity and competition between wildlife and domestic livestock can be explored. Theme: This session focuses on ecosystem ...

  3. Temperament affects rangeland use patterns and reproductive performance of beef cows

    Science.gov (United States)

    • The American beef industry is paying more attention to cattle temperament, but studies examining relationships between temperaments and grazing behavior or animal performance on rangelands are limited. • We studied range beef cow temperaments using the behavioral syndromes framework. Cows classifi...

  4. The importance of education in managing invasive plant species

    Science.gov (United States)

    Invasive plant species can establish in diverse environments and with the increase in human mobility, they are no longer restricted to isolated pockets in remote parts of the world. Cheat grass (Bromus tectorum L.) in rangelands, purple loosestrife (Lythrum salicaria L.) in wet lands and Canada this...

  5. Vulnerability of amphibians to climate change: implications for rangeland management

    Science.gov (United States)

    Karen E. Bagne; Deborah M. Finch; Megan M. Friggens

    2011-01-01

    Many amphibian populations have declined drastically in recent years due to a large number of factors including the emerging threat of climate change (Wake 2007). Rangelands provide important habitat for amphibians. In addition to natural wetlands, stock tanks and other artificial water catchments provide habitat for many amphibian species (Euliss et al. 2004).

  6. Analysis reveals potential rangeland impacts if Williamson Act eliminated

    Directory of Open Access Journals (Sweden)

    William C. Wetzel

    2012-10-01

    Full Text Available California budget cuts have resulted in dramatic reductions in state funding for the Williamson Act, a land protection program that reduces property taxes for the owners of 15 million acres of California farms and rangeland. With state reimbursements to counties eliminated, the decision to continue Williamson Act contracts lies with individual counties. We investigated the consequences of eliminating the Williamson Act, using a geospatial analysis and a mail questionnaire asking ranchers for plans under a hypothetical elimination scenario. The geospatial analysis revealed that 72% of rangeland parcels enrolled in Williamson Act contracts contained habitat important for statewide conservation goals. Presented with the elimination scenario, survey respondents reported an intention to sell 20% of their total 496,889 acres. The tendency of survey participants to respond that they would sell land was highest among full-time ranchers with low household incomes and without off-ranch employment. A majority (76% of the ranchers who reported that they would sell land predicted that the buyers would develop it for nonagricultural uses, suggesting substantial changes to California's landscape in a future without the Williamson Act.

  7. Fodder Biomass Monitoring in Sahelian Rangelands Using Phenological Metrics from FAPAR Time Series

    DEFF Research Database (Denmark)

    Diouf, Abdoul Aziz; Brandt, Martin Stefan; Verger, Aleixandre

    2015-01-01

    Timely monitoring of plant biomass is critical for the management of forage resources in Sahelian rangelands. The estimation of annual biomass production in the Sahel is based on a simple relationship between satellite annual Normalized Difference Vegetation Index (NDVI) and in situ biomass data....... This study proposes a new methodology using multi-linear models between phenological metrics from the SPOT-VEGETATION time series of Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and in situ biomass. A model with three variables—large seasonal integral (LINTG), length of growing season......, and end of season decreasing rate—performed best (MAE = 605 kg·DM/ha; R2 = 0.68) across Sahelian ecosystems in Senegal (data for the period 1999–2013). A model with annual maximum (PEAK) and start date of season showed similar performances (MAE = 625 kg·DM/ha; R2 = 0.64), allowing a timely estimation...

  8. 25 CFR 166.307 - Will the grazing capacity be increased if I graze adjacent trust or non-trust rangelands not...

    Science.gov (United States)

    2010-04-01

    ... § 166.307 Will the grazing capacity be increased if I graze adjacent trust or non-trust rangelands not... trust or non-trust rangeland in common with the permitted land. Grazing capacity will be established... 25 Indians 1 2010-04-01 2010-04-01 false Will the grazing capacity be increased if I graze...

  9. Reality of rangeland degradation mapping with remote sensing: the South African experience

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2008-09-01

    Full Text Available Globally there is an urgent need for standardized, quantitative measures rangeland degradation. Over the past 10 years in South Africa (SA), significant research efforts have been directed at this challenge, using diverse methods and data...

  10. Salinity mobilization and transport from rangelands: assessment, recommendations, and knowledge gaps

    Science.gov (United States)

    The purpose of the salinity project is to improve the understanding of sources and transport mechanisms in rangeland catchments that deliver dissolved solids (salts) to streams within the Upper Colorado River Basin (UCRB) through a review of relevant literature on what is known about the impact of r...

  11. Using faecal DNA to determine consumption by kangaroos of plants considered palatable to sheep.

    Science.gov (United States)

    Ho, K W; Krebs, G L; McCafferty, P; van Wyngaarden, S P; Addison, J

    2010-02-01

    Disagreement exists within the scientific community with regards to the level of competition for feed between sheep and kangaroos in the Australian rangelands. The greatest challenge to solving this debate is finding effective means of determining the composition of the diets of these potential grazing competitors. An option is to adopt a non-invasive approach that combines faecal collection and molecular techniques that focus on faecal DNA as the primary source of dietary information. As proof-of-concept, we show that a DNA reference data bank on plant species can be established. This DNA reference data bank was then used as a library to identify plant species in kangaroo faeces collected in the southern rangelands of Western Australia. To enhance the method development and to begin the investigation of competitive grazing between sheep and kangaroos, 16 plant species known to be palatable to sheep were initially targeted for collection. To ensure that only plant sequences were studied, PCR amplification was performed using a universal primer pair previously shown to be specific to the chloroplast transfer RNA leucine (trnL) UAA gene intron. Overall, genus-specific, single and differently sized amplicons were reliably and reproducibly generated; enabling the differentiation of reference plants by PCR product length heterogeneity. However, there were a few plants that could not be clearly differentiated on the basis of size alone. This prompted the adoption of a post-PCR step that enabled further differentiation according to base sequence variation. Restriction endonucleases make sequence-specific cleavages on DNA to produce discrete and reproducible fragments having unique sizes and base compositions. Their availability, affordability and simplicity-of-use put restriction enzyme sequence (RES) profiling as a logical post-PCR step for confirming plant species identity. We demonstrate that PCR-RES profiling of plant and faecal matter is useful for the identification

  12. Soil water repellency and ground cover effects on infiltration in response to prescribed burning of steeply-sloped sagebrush hillslopes

    Science.gov (United States)

    Rangeland managers and scientists are in need of predictive tools to accurately simulate post-fire hydrologic responses and provide hydrologic risk assessment. Rangeland hydrologic modeling has advanced in recent years; however, model advancements have largely been associated with data from gently ...

  13. Determining RUSLE P-factors for stonebunds and trenches in rangeland and cropland, Northern Ethiopia

    Science.gov (United States)

    Taye, Gebeyehu; Poesen, Jean; Vanmaercke, Matthias; Van Wesemael, Bas; Tesfay, Samuel; Teka, Daniel; Nyssen, Jan; Deckers, Jozef; Haregeweyn, Nigussie

    2017-04-01

    The implementation of soil and water conservation (SWC) measures in the Ethiopian highlands is a top priority to reduce soil erosion rates and to enhance the sustainability of agroecosystem. Nonetheless, the effectiveness of many of these measures for different hillslope and land use conditions remains currently poorly understood. As a result, the overall effects of these measures at regional or catchment scale remain hard to quantify. This study addresses this knowledge gap by determining the cover-management (C) and support practice (P) factors of the Revised Universal Soil Loss Equation (RUSLE), for commonly used SWC measures in semi-arid environments (i.e. stone bunds, trenches and a combination of both). Calculations were based on soil loss data collected with runoff plots in Tigray, northern Ethiopia (i.e. 21 runoff plots of 600 to 1000 m2, monitored during 2010, 2011 and 2012). The runoff plots were installed in rangeland and cropland sites corresponding to a gentle (5%), medium (12%) and steep (16%) slope gradients. The C and P factors of the RUSLE were calculated following the recommended standard procedures. Results show that the C-factor for rangeland ranges from 0.31 to 0.98 and from 0.06 to 0.39 for cropland. For rangeland, this large variability is due to variations in vegetation cover caused by grazing. In cropland, C-factors vary with tillage practices and crop types. The calculated P-factors ranged from 0.32 to 0.74 for stone bunds, from 0.07 to 0.65 for trenches and from 0.03 to 0.22 for a combination of both stone bunds and trenches. This variability is partly due to variations in the density of the implemented measures in relation to land use (cropland vs rangeland) and slope angles. However, also annual variations in P factor values are highly significant. Especially trenches showed a very significant decline of effectiveness over time, which is attributable to their reduced static storage capacity as a result of sediment deposition (e.g. for

  14. Towards a remote sensing based indicator of rangeland ecosystem resistance and resilience

    Science.gov (United States)

    Understanding ecosystem resistance and resilience to disturbance and invasive species is critical to the sustainable management of rangeland systems. In this context, resistance refers to the inherent ability of an ecosystem to resist disturbance, while resilience refers to the capacity of an ecosys...

  15. Grazing management, resilience and the dynamics of a fire driven rangeland system

    NARCIS (Netherlands)

    Anderies, J.M.; Janssen, M.A.; Walker, B.H.

    2002-01-01

    We developed a stylized mathematical model to explore the effects of physical, ecological, and economic factors on the resilience of a managed fire-driven rangeland system. Depending on grazing pressure, the model exhibits one of three distinct configurations: a fire-dominated, grazing-dominated, or

  16. Vulnerability of cattle production to climate change on U.S. rangelands

    Science.gov (United States)

    Matt C. Reeves; Karen E. Bagne

    2016-01-01

    We examined multiple climate change effects on cattle production for U.S. rangelands to estimate relative change and identify sources of vulnerability among seven regions. Climate change effects to 2100 were projected from published models for four elements: forage quantity, vegetation type trajectory, heat stress, and forage variability. Departure of projections from...

  17. Application of MODIS Land Products to Assessment of Land Degradation of Alpine Rangeland in Northern India with Limited Ground-Based Information

    Directory of Open Access Journals (Sweden)

    Masahiro Tasumi

    2014-09-01

    Full Text Available Land degradation of alpine rangeland in Dachigam National Park, Northern India, was evaluated in this study using MODerate resolution Imaging Spectroradiometer (MODIS land products. The park has been used by a variety of livestock holders. With increasing numbers of livestock, the managers and users of the park are apprehensive about degradation of the grazing land. However, owing to weak infrastructure for scientific and statistical data collection and sociopolitical restrictions in the region, a lack of quality ground-based weather, vegetation, and livestock statistical data had prevented scientific assessment. Under these circumstances, the present study aimed to assess the rangeland environment and its degradation using MODIS vegetation, snow, and evapotranspiration products as primary input data for assessment. The result of the analysis indicated that soil water content and the timing of snowmelt play an important role in grass production in the area. Additionally, the possibility of land degradation in heavily-grazed rangeland was indicated via a multiple regression analysis at a decadal timescale, whereas weather conditions, such as rainfall and snow cover, primarily explained year-by-year differences in grass production. Although statistical uncertainties remain in the results derived in this study, the satellite-based data and the analyses will promote understanding of the rangeland environment and suggest the potential for unsustainable land management based on statistical probability. This study provides an important initial evaluation of alpine rangeland, for which ground-based information is limited.

  18. Soil Moisture Variability and its Effects on Herbage Production in Semi-arid Rangelands of Kenya

    International Nuclear Information System (INIS)

    Too, D.K.; Trlica, M.J.; Swift, D.M.; Musembi, D.K.

    1999-01-01

    Results obtained from recent studies focused on rangelands potential as influenced by human activity and climatic factors in the semi-arid and arid pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document primary production in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory, field and numerical methods were employed over several seasons and years. Forb and grass production was more variable than that of the browse (dwarf shrub) layer. Compared to forbs and dwarf shrubs, the grass layer contributed less to the total production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variation in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal differences were very evident, with highest estimates in the long rainy and the lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential were identified to be moisture deficiency, resource-use conflicts, an increasing and partially sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can improve rangeland production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information Systems, GIS); (b) technical interventions (i.e. soil and water conservation, restoration of degraded areas, fodder production); (c) social-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development improvement of livestock marketing channels etc.) and (d) continued

  19. Forage seeding in rangelands increases production and prevents weed invasion

    Directory of Open Access Journals (Sweden)

    Josh Davy

    2017-07-01

    Full Text Available Increasing forage productivity in the Sierra foothill rangelands would help sustain the livestock industry as land availability shrinks and lease rates rise, but hardly any studies have been done on forage selections. From 2009 to 2014, in one of the first long-term and replicated studies of seeding Northern California's Mediterranean annual rangeland, we compared the cover of 22 diverse forages to determine their establishment and survivability over time. Among the annual herbs, forage brassica (Brassica napus L. and chicory (Cichorium intybus L. proved viable options. Among the annual grasses, soft brome (Bromus hordeaceus and annual ryegrass (Lolium multiflorum performed well. However, these species will likely require frequent reseeding to maintain dominance. Long-term goals of sustained dominant cover (> 3 years are best achieved with perennial grasses. Perennial grasses that persisted with greater than 50% cover were Berber orchardgrass (Dactylis glomerata, Flecha tall fescue (Lolium arundinaceum and several varieties of hardinggrass (Phalaris aquatica L., Perla koleagrass, Holdfast, Advanced AT. In 2014, these successful perennials produced over three times more dry matter (pounds per acre than the unseeded control and also suppressed annual grasses and yellow starthistle (Centaurea solstitialis L. cover.

  20. Stakeholder Theory and Rangeland Management: The Importance of Ranch Income Dependence

    Science.gov (United States)

    Elias, S.; Roche, L. M.; Elias, E.

    2016-12-01

    The California drought beginning in 2012 has been driven by reduced precipitation and record high temperatures. Hydrologic drought in the Southwest United States is projected to become the new climatology of the region. While ranchers are considered naturally adaptive, often adeptly altering management based upon conditions, the projected increased aridity may challenge rangeland management. Certain rancher characteristics are likely to impact how well ranchers adapt. Based on Stakeholder Theory (ST), we hypothesize that the extent to which ranchers are dependent on their ranches as a source of income would serve as a predictor of several key variables related to ranching adaptation and success. Data were obtained from 507 ranchers throughout the State of California via the Rangeland Decision-Making Survey implemented by University of California, Davis in 2010, just prior to the unprecedented California drought. Consistent with the ST urgency facet, results of linear regression analyses indicate the more dependent ranchers are on their ranches for their income, the more aware they are of USDA ranching initiatives (β = 0.19, p < .001) and state ranching initiatives (β = 0.10, p < .05). In addition, more dependent ranchers are more likely to use multiple and diverse sources of information about ranching (β = 0.18, p < .001), are more likely to realize the severity and extent of the most recent drought's impacts (β = 0.18, p < .001), and were more likely to have a drought management plan in place during the most recent drought (β = 0.18, p < .001). These findings are important in relation to both outreach/extension efforts and rangeland research. Outreach/extension efforts should take into account that people less dependent on their ranches are less aware of resources, as well as, less prepared to adapt to drought. Researchers should control for the extent to which ranchers are dependent on their ranches for income in order to ensure more accurate findings.

  1. Dairy cattle on Norwegian alpine rangelands – grazing preferences and milk quality

    NARCIS (Netherlands)

    Sickel, H; Abrahamsen, R K; Eldegard, K; Lunnan, T; Norderhaug, A; Petersen, M.A.; Sickel, M.; Steenhuisen, F.; Ohlson, M.

    2014-01-01

    The results from the study ‘Effects of vegetation and grazing preferences on the quality of alpine dairy products’ will be presented. The main objective of the project was to investigate the connections bet - ween alpine rangeland vegetation, landscape use and grazing preferences of free ranging

  2. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    Science.gov (United States)

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  3. The economic impact of global climate change on Mediterranean rangeland ecosystems. A Space-for-Time approach

    International Nuclear Information System (INIS)

    Fleischer, Aliza; Sternberg, Marcelo

    2006-01-01

    Global Climate Change (GCC) can bring about changes in ecosystems and consequently in their services value. Here we show that the urban population in Israel values the green landscape of rangelands in the mesic Mediterranean climate region and is willing to pay for preserving it in light of the expected increasing aridity conditions in this region. Their valuation of the landscape is higher than that of the grazing services these rangelands provide for livestock growers. These results stem from a Time-for-Space approach with which we were able to measure changes in biomass production and rainfall at four experimental sites along an aridity gradient. (author)

  4. Analytical approaches to quality assurance and quality control in rangeland monitoring data

    Science.gov (United States)

    Producing quality data to support land management decisions is the goal of every rangeland monitoring program. However, the results of quality assurance (QA) and quality control (QC) efforts to improve data quality are rarely reported. The purpose of QA and QC is to prevent and describe non-sampling...

  5. Rangeland Brush Estimation Toolbox (RaBET): An Approach for Evaluating Brush Management Conservation Efforts in Western Grazing Lands

    Science.gov (United States)

    Holifield Collins, C.; Kautz, M. A.; Skirvin, S. M.; Metz, L. J.

    2016-12-01

    There are over 180 million hectares of rangelands and grazed forests in the central and western United States. Due to the loss of perennial grasses and subsequent increased runoff and erosion that can degrade the system, woody cover species cannot be allowed to proliferate unchecked. The USDA-Natural Resources Conservation Service (NRCS) has allocated extensive resources to employ brush management (removal) as a conservation practice to control woody species encroachment. The Rangeland-Conservation Effects Assessment Project (CEAP) has been tasked with determining how effective the practice has been, however their land managers lack a cost-effective means to conduct these assessments at the necessary scale. An ArcGIS toolbox for generating large-scale, Landsat-based, spatial maps of woody cover on grazing lands in the western United States was developed through a collaboration with NRCS Rangeland-CEAP. The toolbox contains two main components of operation, image generation and temporal analysis, and utilizes simple interfaces requiring minimum user inputs. The image generation tool utilizes geographically specific algorithms developed from combining moderate-resolution (30-m) Landsat imagery and high-resolution (1-m) National Agricultural Imagery Program (NAIP) aerial photography to produce the woody cover scenes at the Major Land Resource (MLRA) scale. The temporal analysis tool can be used on these scenes to assess treatment effectiveness and monitor woody cover reemergence. RaBET provides rangeland managers an operational, inexpensive decision support tool to aid in the application of brush removal treatments and assessing their effectiveness.

  6. Resistance to toxic plants: The right animal in the right pasture at the right time

    Science.gov (United States)

    Neurotoxic poisonous plants negatively impact livestock on many western rangelands, which results in annual economic losses of millions of dollars from animal deaths, increased management and treatment costs, and if animals are deferred from grazing, the underutilization of otherwise highly nutritio...

  7. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability.

    Science.gov (United States)

    Reyer, Christopher P O; Leuzinger, Sebastian; Rammig, Anja; Wolf, Annett; Bartholomeus, Ruud P; Bonfante, Antonello; de Lorenzi, Francesca; Dury, Marie; Gloning, Philipp; Abou Jaoudé, Renée; Klein, Tamir; Kuster, Thomas M; Martins, Monica; Niedrist, Georg; Riccardi, Maria; Wohlfahrt, Georg; de Angelis, Paolo; de Dato, Giovanbattista; François, Louis; Menzel, Annette; Pereira, Marízia

    2013-01-01

    We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches. © 2012 Blackwell Publishing Ltd.

  8. Study on Rangeland production Potential and its Limitations in the Semi-Arid lands of Northern Kenya

    International Nuclear Information System (INIS)

    Keya, G.A.; Hornetz, B.

    1999-01-01

    Results obtained from recent studies focused on rangeland potential as influenced by human activity and climatic factors in the semi-arid and pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document the primary production potential in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory field and numeric methods were employed over several seasons and years. Forb and grass production was more viable than that of the brows (dwarf shrub) layer. Compared to forbs and dwarf shrubs, The grass layer contributed less to the total of production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variations in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal difference were very evident, with highest estimates in the long rainy and lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential and were identified to be moisture deficiency, resource-use conflicts, an increasing and partial sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can increase rangelands production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information systems, GIS); (b) technical interventions (i.e. soil and water conservation,restoration of degraded ares, fodder production); (c)socio-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development, improvement of livestock marketing channels, etc) and (d) continued

  9. Revolutionary land use change in the 21st century: Is (rangeland) science relevant?

    Science.gov (United States)

    Rapidly increasing demand for food, fiber and fuel together with new technologies and the mobility of global capital are driving revolutionary changes in land use throughout the world. Efforts to increase land productivity include conversion of millions of hectares of rangelands to crop production, ...

  10. WRKY transcription factors in plant responses to stresses.

    Science.gov (United States)

    Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua

    2017-02-01

    The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.

  11. Bridging Drought – Resilience in Rangeland Management in Times of Climate Change

    OpenAIRE

    Isele, Judith

    2014-01-01

    Organic livestock farming in semiarid regions greatly depends on the sustainable management of the natural rangeland as the resource for livestock sustenance. High stock density in combination with short grazing and long recovery periods achieve effective rainfall utilisation and considerably higher fodder production resulting in a high degree of resilience in drought situations.

  12. Human-modified landscapes: patterns of fine-scale woody vegetation structure in communal savannah rangelands

    CSIR Research Space (South Africa)

    Fisher, T

    2011-11-01

    Full Text Available structure in five communal rangelands around 12 settlements in Bushbuckridge, a municipality in the Kruger to Canyons Biosphere Reserve (South Africa). The importance of underlying abiotic factors was evaluated by measuring size class distributions across...

  13. Plant response to butterfly eggs

    NARCIS (Netherlands)

    Griese, Eddie; Dicke, Marcel; Hilker, Monika; Fatouros, Nina E.

    2017-01-01

    Plants employ various defences killing the insect attacker in an early stage. Oviposition by cabbage white butterflies (Pieris spp.) on brassicaceous plants, including Brassica nigra, induces a hypersensitive response (HR) - like leaf necrosis promoting desiccation of eggs. To gain a deeper insight

  14. The interconnectedness between landowner knowledge, value, belief, attitude, and willingness to act: policy implications for carbon sequestration on private rangelands.

    Science.gov (United States)

    Cook, Seth L; Ma, Zhao

    2014-02-15

    Rangelands can be managed to increase soil carbon and help mitigate emissions of carbon dioxide. This study assessed Utah rangeland owner's environmental values, beliefs about climate change, and awareness of and attitudes towards carbon sequestration, as well as their perceptions of potential policy strategies for promoting carbon sequestration on private rangelands. Data were collected from semi-structured interviews and a statewide survey of Utah rangeland owners, and were analyzed using descriptive and bivariate statistics. Over two-thirds of respondents reported some level of awareness of carbon sequestration and a generally positive attitude towards it, contrasting to their lack of interest in participating in a relevant program in the future. Having a positive attitude was statistically significantly associated with having more "biocentric" environmental values, believing the climate had been changing over the past 30 years, and having a stronger belief of human activities influencing the climate. Respondents valued the potential ecological benefits of carbon sequestration more than the potential financial or climate change benefits. Additionally, respondents indicated a preference for educational approaches over financial incentives. They also preferred to work with a private agricultural entity over a non-profit or government entity on improving land management practices to sequester carbon. These results suggest potential challenges for developing technically sound and socially acceptable policies and programs for promoting carbon sequestration on private rangelands. Potential strategies for overcoming these challenges include emphasizing the ecological benefits associated with sequestering carbon to appeal to landowners with ecologically oriented management objectives, enhancing the cooperation between private agricultural organizations and government agencies, and funneling resources for promoting carbon sequestration into existing land management and

  15. Investigation on the geographical distribution and life form of plant species in sub alpine zone Karsanak region, Shahrekord

    Directory of Open Access Journals (Sweden)

    Jahanbakhsh Pairanj

    2011-09-01

    Full Text Available This study was carried out in rangelands of Karsanak, Chaharmahal and Bakhtiari province, which is regarded as one of the rich rangelands. Phytogeographically, this region is located in Irano-Turanian (zone of sub alpine. Endemic and rare plants were identified and geographical distribution and life form of identified plant species were investigated as well. Overall, 100 species from 17 families were identified from which 20 percent of identified species was endemic element of Irano-Turanian region. Results indicated that 75.7 percent of identified plants belonged to the Irano-Turanian and only 3 and 2 percent belonged to Euro-Siberian and Mediterranean regions respectively. The reason of high percentage of Irano-Turanian elements is probably the long distance of this region from other regions. Similarities of Irano-Turanian and Mediterranean were included 6.1 percent of identified plants and Irano-Turanian and Euro-Siberian included 2 percent. Results of life forms showed hemichryptophytes including 60 percent of life forms which indicate the cold and mountainous weather.

  16. Land use and soil organic matter in South Africa 1: A review on spatial variability and the influence of rangeland stock production

    Directory of Open Access Journals (Sweden)

    Pearson N.S. Mnkeni

    2011-05-01

    Full Text Available Degradation of soil as a consequence of land use poses a threat to sustainable agriculture in South Africa, resulting in the need for a soil protection strategy and policy. Development of such a strategy and policy require cognisance of the extent and impact of soil degradation processes. One of the identified processes is the decline of soil organic matter, which also plays a central role in soil health or quality. The spatial variability of organic matter and the impact of grazing and burning under rangeland stock production are addressed in this first part of the review. Data from uncoordinated studies showed that South African soils have low organic matter levels. About 58% of soils contain less than 0.5% organic carbon and only 4% contain more than 2% organic carbon. Furthermore, there are large differences in organic matter content within and between soil forms, depending on climatic conditions, vegetative cover, topographical position and soil texture. A countrywide baseline study to quantify organic matter contents within and between soil forms is suggested for future reference. Degradation of rangeland because of overgrazing has resulted in significant losses of soil organic matter, mainly as a result of lower biomass production. The use of fire in rangeland management decreases soil organic matter because litter is destroyed by burning. Maintaining or increasing organic matter levels in degraded rangeland soils by preventing overgrazing and restricting burning could contribute to the restoration of degraded rangelands. This restoration is of the utmost importance because stock farming uses the majority of land in South Africa.

  17. Climate-change adaptation on rangelands: Linking regional exposure with diverse adaptive capacity

    Science.gov (United States)

    David D. Briske; Linda A. Joyce; H. Wayne Polley; Joel R. Brown; Klaus Wolter; Jack A. Morgan; Bruce A. McCarl; Derek W. Bailey

    2015-01-01

    The ecological consequences of climate change are predicted to vary greatly throughout US rangelands. Projections show warming and drying in the southern Great Plains and the Southwest, warmer and drier summers with reduced winter snowpack in the Northwest, and warmer and wetter conditions in the northern Great Plains. Primarily through their combined effects on soil...

  18. BITES RATE ON NATIVE VEGETATION BY TRASHUMANCE GOATS GRAZING IN MOUNTAIN RANGELAND IN NUDO MIXTECO, MEXICO

    Directory of Open Access Journals (Sweden)

    F.J. Franco-Guerra

    2014-08-01

    Full Text Available The objective of the present study was to determine the habits of grazing-browsing by the rate of bites and rate of consumption in the dry matter (MS of the diet of goats under transhumance grazing in mountain rangelands of Nudo Mixteco, being the natural vegetation in the different strata. Six animals of different age and sex were randomly chosen. Direct observation of grazing method was used to determine the rate of bites/min and the rate of consumption by layers. Analyzes of variance was performed and the Tukey test was used for mean comparison test was used (HSD Tukey (α, 0.05. The values of both variables were small, which may be due to the great diversity of plants and their varied morphology which induces the goat won on the one hand to spend more time in the choice of food becoming more selective and on the other, to carry out bites smaller in those plants whose leaf surface is of the type megafilia or in those woody whose leaves are very small (microphilia 2.25 cm2 to 20.25 cm2.

  19. Saltmarsh plant responses to eutrophication.

    Science.gov (United States)

    Johnson, David Samuel; Warren, R Scott; Deegan, Linda A; Mozdzer, Thomas J

    2016-12-01

    In saltmarsh plant communities, bottom-up pressure from nutrient enrichment is predicted to increase productivity, alter community structure, decrease biodiversity, and alter ecosystem functioning. Previous work supporting these predictions has been based largely on short-term, plot-level (e.g., 1-300 m 2 ) studies, which may miss landscape-level phenomena that drive ecosystem-level responses. We implemented an ecosystem-scale, nine-year nutrient experiment to examine how saltmarsh plants respond to simulated conditions of coastal eutrophication. Our study differed from previous saltmarsh enrichment studies in that we applied realistic concentrations of nitrate (70-100 μM NO 3 - ), the most common form of coastal nutrient enrichment, via tidal water at the ecosystem scale (~60,000 m 2 creeksheds). Our enrichments added a total of 1,700 kg N·creek -1 ·yr -1 , which increased N loading 10-fold vs. reference creeks (low-marsh, 171 g N·m -2 ·yr -1 ; high-marsh, 19 g N·m -2 ·yr -1 ). Nutrients increased the shoot mass and height of low marsh, tall Spartina alterniflora; however, declines in stem density resulted in no consistent increase in aboveground biomass. High-marsh plants S. patens and stunted S. alterniflora did not respond consistently to enrichment. Nutrient enrichment did not shift community structure, contrary to the prediction of nutrient-driven dominance of S. alterniflora and Distichlis spicata over S. patens. Our mild responses may differ from the results of previous studies for a number of reasons. First, the limited response of the high marsh may be explained by loading rates orders of magnitude lower than previous work. Low loading rates in the high marsh reflect infrequent inundation, arguing that inundation patterns must be considered when predicting responses to estuarine eutrophication. Additionally, we applied nitrate instead of the typically used ammonium, which is energetically favored over nitrate for plant uptake. Thus, the

  20. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  1. Plant responses to insect egg deposition

    NARCIS (Netherlands)

    Hilker, M.; Fatouros, N.E.

    2015-01-01

    Plants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect

  2. Movement and spatial proximity patterns of rangeland-raised Raramuri Criollo cow-calf pairs

    Science.gov (United States)

    The objective of this study was to compare movement patterns of nursing vs. nonnursing mature cows and to characterize cow-calf proximity patterns in two herds of Raramuri Criollo cattle. Herds grazed rangeland pastures in southern New Mexico (4355 ha) and west-central Chihuahua, Mexico (633 ha)'' A...

  3. Searls prairie clover (Dalea searlsiae) for rangeland revegetation: Phenotypic and genetic evaluations

    Science.gov (United States)

    Kishor Bhattarai; Shaun Bushman; Douglas A. Johnson; John G. Carman

    2011-01-01

    Few North American legumes are available for use in rangeland revegetation in the western USA, but Searls prairie clover [Dalea searlsiae (A. Gray) Barneby] is one that holds promise. Commercial-scale seed production of this species could address the issues of unreliable seed availability and high seed costs associated with its wildland seed collection. To evaluate its...

  4. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli.

    Science.gov (United States)

    Leonard, Simon; Hommais, Florence; Nasser, William; Reverchon, Sylvie

    2017-05-01

    Plant pathogenic bacteria attack numerous agricultural crops, causing devastating effects on plant productivity and yield. They survive in diverse environments, both in plants, as pathogens, and also outside their hosts as saprophytes. Hence, they are confronted with numerous changing environmental parameters. During infection, plant pathogens have to deal with stressful conditions, such as acidic, oxidative and osmotic stresses; anaerobiosis; plant defenses; and contact with antimicrobial compounds. These adverse conditions can reduce bacterial survival and compromise disease initiation and propagation. Successful bacterial plant pathogens must detect potential hosts and also coordinate their possibly conflicting programs for survival and virulence. Consequently, these bacteria have a strong and finely tuned capacity for sensing and responding to environmental and plant stimuli. This review summarizes our current knowledge of the signals and genetic circuits that affect survival and virulence factor expression in three important and well-studied plant pathogenic bacteria with wide host ranges and the capacity for long-term environmental survival. These are: Ralstonia solanacerarum, a vascular pathogen that causes wilt disease; Agrobacterium tumefaciens, a biotrophic tumorigenic pathogen responsible for crown gall disease and Dickeya, a brute force apoplastic pathogen responsible for soft-rot disease. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Guidelines for nuclear plant response to an earthquake

    International Nuclear Information System (INIS)

    1989-12-01

    Guidelines have been developed to assist nuclear plant personnel in the preparation of earthquake response procedures for nuclear power plants. The objectives of the earthquake response procedures are to determine (1) the immediate effects of an earthquake on the physical condition of the nuclear power plant, (2) if shutdown of the plant is appropriate based on the observed damage to the plant or because the OBE has been exceeded, and (3) the readiness of the plant to resume operation following shutdown due to an earthquake. Readiness of a nuclear power plant to restart is determined on the basis of visual inspections of nuclear plant equipment and structures, and the successful completion of surveillance tests which demonstrate that the limiting conditions for operation as defined in the plant Technical Specifications are met. The guidelines are based on information obtained from a review of earthquake response procedures from numerous US and foreign nuclear power plants, interviews with nuclear plant operations personnel, and a review of reports of damage to industrial equipment and structures in actual earthquakes. 7 refs., 4 figs., 4 tabs

  6. Emergency response training with the BNL plant analyzer

    International Nuclear Information System (INIS)

    Cheng, H.S.; Guppy, J.G.; Mallen, A.N.; Wulff, W.

    1987-01-01

    Presented is the experience in the use of the BNL Plant Analyzer for NRC emergency response training to simulated accidents in a BWR. The unique features of the BNL Plant Analyzer that are important for the emergency response training are summarized. A closed-loop simulation of all the key systems of a power plant in question was found essential to the realism of the emergency drills conducted at NRC. The faster than real-time simulation speeds afforded by the BNL Plant Analyzer have demonstrated its usefulness for the timely conduct of the emergency response training

  7. Evaluating Structural and Functional Characteristics of Various Ecological Patches in Different Range Conditions (Case Study: Semi -Steppe Rangeland of Aghche-Isfahan

    Directory of Open Access Journals (Sweden)

    F. Jafari

    2015-03-01

    Full Text Available Rangeland condition assessment plays an important role in determining range health and applying appropriate management programs. This study aimed to evaluate the structure and function of a semi-steppe rangeland using Landscape Function Analysis technique (LFA in different land conditions in western Isfahan province, Iran. For this purpose, 4, 3 and 7 sites in different rangeland condition classes including very poor, poor, and moderate were selected respectively. In each site, a 30-meter transect was established and all kinds of patches and inter patches were identified and their lengths and widths were recorded. Also, in each ecological patch, 11 indicators of soil surface characteristics with three replications were measured, and their status was scored according to LFA method. The functionality indices of all the sites including soil stability, infiltration and nutrient cycling were measured. According to the statistical analysis results, most of the structural characteristics (number of patches, patch length, patch area index, landscape organization index and functional indices (infiltration, stability and nutrient cycling status varied significantly (α= 5% between rangeland sites with moderate and very poor condition. The changes of these structural and functional characteristics were not significant between range sites with moderate and poor, and also poor and very poor range conditions. According to the findings of this study, patch types' functionalities did not vary significantly in both rangeland sites with moderate and very poor conditions. The nutrient cycling index in patches formed by ‘forb, shrub and grass’ with poor range condition was significantly more than ‘forb’ and ‘grass’ patches. The study of range site functionality can assist managers in identifying possible ecological thresholds and prioritizing the sub-catchments and vegetation types for implementing range improvement practices.

  8. A review of concentrated flow erosion processes on rangelands: fundamental understanding and knowledge gaps

    Science.gov (United States)

    Concentrated flow erosion processes are distinguished from splash and sheetflow processes in their enhanced ability to mobilize and transport large amounts of soil, water and dissolved elements. On rangelands, soil, nutrients and water are scarce and only narrow margins of resource losses are tolera...

  9. Composted manure application promotes long-term invasion of semi-arid rangeland by Bromus tectorum

    Science.gov (United States)

    Composted organic matter derived from sewage treatment facilities or livestock manure from feedlots is often applied to rangelands of western North America to increase soil fertility, forage production, forage quality, and soil carbon (C) storage. This practice can have a number of undesirable side ...

  10. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  11. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands.

    Science.gov (United States)

    Webb, Nicholas P; Herrick, Jeffrey E; Duniway, Michael C

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation, or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explored how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting, and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass–succulent states across the ecological sites at the plot scale (0.25 ha). We identified vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area could be effectively controlled when bare ground cover was 100 cm in length was less than ∼35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the

  12. Scales of snow depth variability in high elevation rangeland sagebrush

    Science.gov (United States)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  13. Success of seeding native compared with introduced perennial vegetation for revegetating medusahead-invaded sagebrush rangeland

    Science.gov (United States)

    Millions of hectares of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) rangeland have been invaded by medusahead (Taeniatherum caput-medusae [L.] Nevski), an exotic annual grass that degrades wildlife habitat, reduces forage production, and decreases biodiversity....

  14. Separating the cows from the trees: toward development of national definitions of forest and rangeland

    Science.gov (United States)

    H. Gyde Lund

    2007-01-01

    This paper introduces issues surrounding the need for national definitions of forest and rangeland, and it review types of definitions in use, reviews past agreements and their status, and finally gives recommendations as to what should be done next.

  15. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.

    Science.gov (United States)

    Carrera, Analía Lorena; Bertiller, Mónica Beatriz

    2013-01-15

    The objective of this study was to analyze the combined effects of leaf litter quality and soil properties on litter decomposition and soil nitrogen (N) mineralization at conserved (C) and disturbed by sheep grazing (D) vegetation states in arid rangelands of the Patagonian Monte. It was hypothesized that spatial differences in soil inorganic-N levels have larger impact on decomposition processes of non-recalcitrant than recalcitrant leaf litter (low and high concentration of secondary compounds, respectively). Leaf litter and upper soil were extracted from modal size plant patches (patch microsite) and the associated inter-patch area (inter-patch microsite) in C and D. Leaf litter was pooled per vegetation state and soil was pooled combining vegetation state and microsite. Concentrations of N and secondary compounds in leaf litter and total and inorganic-N in soil were assessed at each pooled sample. Leaf litter decay and soil N mineralization at microsites of C and D were estimated in 160 microcosms incubated at field capacity (16 month). C soils had higher total N than D soils (0.58 and 0.41 mg/g, respectively). Patch soil of C and inter-patch soil of D exhibited the highest values of inorganic-N (8.8 and 8.4 μg/g, respectively). Leaf litter of C was less recalcitrant and decomposed faster than that of D. Non-recalcitrant leaf litter decay and induced soil N mineralization had larger variation among microsites (coefficients of variation = 25 and 41%, respectively) than recalcitrant leaf litter (coefficients of variation = 12 and 32%, respectively). Changes in the canopy structure induced by grazing disturbance increased leaf litter recalcitrance, and reduced litter decay and soil N mineralization, independently of soil N levels. This highlights the importance of the combined effects of soil and leaf litter properties on N cycling probably with consequences for vegetation reestablishment and dynamics, rangeland resistance and resilience with implications

  16. Plants having modified response to ethylene

    Science.gov (United States)

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  17. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  18. Mother-Offspring Interactions in Raramuri Criollo Cattle on New Mexico and Chihuahua (Mexico) Rangelands

    Science.gov (United States)

    Rangeland beef cows spend approximately six months of a typical year raising their calf. This endeavor is known to significantly alter a dam’s grazing behavior and spatial distribution patterns. The objective of this study was to characterize cow-calf contact events in two herds of Raramuri Criollo ...

  19. Deforestation of "degraded" rangelands: The Argentine Chaco enters the next stage of the Anthropocene

    Science.gov (United States)

    Twenty years ago I completed my Master’s work in the Chaco forests of northern Argentina. The native forests are, in fact, rangelands. In addition to livestock grazing, there is timber extraction, wildlife harvest (think tegu lizard cowboy boots), and charcoal production. I took part in a project co...

  20. Mapping Erosion and Salinity Risk Categories Using GIS and the Rangeland Hydrology Erosion Model

    Science.gov (United States)

    Up to fifteen percent of rangelands in the state of Utah in the United States are classified as being in severely eroding condition. Some of these degraded lands are located on saline, erodible soils of the Mancos Shale formation. This results in a disproportionate contribution of sediment, salinity...

  1. Agrobacterium tumefaciens responses to plant-derived signaling molecules

    Science.gov (United States)

    Subramoni, Sujatha; Nathoo, Naeem; Klimov, Eugene; Yuan, Ze-Chun

    2014-01-01

    As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium–plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium–plant interactions. PMID:25071805

  2. Agrobacterium tumefaciens responses to plant-derived signaling molecules

    Directory of Open Access Journals (Sweden)

    Sujatha eSubramoni

    2014-07-01

    Full Text Available As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium-plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its T-DNA (Transferred DNA from its Tumour-inducing (Ti plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA, cytokinin (CK and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including -amino butyric acid (GABA and salicylic acid (SA to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene (ET to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium-plant interactions.

  3. Threats to Mediterranean rangelands: a case study based on the views of citizens in the Viotia prefecture, Greece.

    Science.gov (United States)

    Kyriazopoulos, Apostolos P; Arabatzis, Garyfallos; Abraham, Eleni M; Parissi, Zoi M

    2013-11-15

    Rangelands in Greece constitute a very important natural resource as they occupy 40% of the total surface. Not only is their forage production essential for the development of extensive livestock farming, but also they play a key role in outdoor recreational activities, protection from erosion, provision of water supplies and biodiversity conservation. However, land use changes, inappropriate management and wildfires threaten their existence. The research was conducted among the citizens of Viotia prefecture, an area close to Athens, Greece, using personal interviews with a structured questionnaire in 2008. The aim was to record citizens' opinions regarding the threats to rangelands. The results suggest that the main threats as perceived by the respondents, are land use changes especially for urban development, and wildfires. The application of cluster analysis highlighted the differentiation among the respondents in ranking these threats. The more ecologically aware citizens recognised that mismanagement, abandonment and agriculture also threaten rangelands. These threats can have a considerable impact on the lives of the local people. Policy makers and managers should take the opinions of local citizens into consideration, and engage them in decision making so that sustainable management policies could be applied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Reduction of seismic response in breeder plants

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Somes, N.F.; Todeschini, R.A.

    1984-01-01

    Thin-walled vessels to be used in the Nuclear Steam Supply Systems (NSSS) of future LMFBR's will be more sensitive to seismic excitation than their equivalents used in conventional LWR plants. Optimization studies of building arrangement have indicated that embedment of future plants may be one feasible strategy for reducing seismic response. This paper presents the results of a three-dimensional soil-structure interaction analysis using the computer program SASSI. Two types of embedded buildings are considered: full embedment of the nuclear island, and embedment of the reactor cavity alone. A comparison, between the response of the embedded structure with that of a plant supported on the surface, indicates that the seismic response at the reactor vessel support ledge can be lowered by embedment of either the entire nuclear island or the reactor cavity alone. This reduction is larger when the plant is embedded in a softer site due to the increased effect of soil-structure interaction

  5. Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?

    Science.gov (United States)

    Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.

    2015-12-01

    Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.

  6. Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age

    NARCIS (Netherlands)

    Wang, Minggang; Bezemer, T. Martijn; van der Putten, W.H.; Brinkman, Pella; Biere, Arjen

    2017-01-01

    Aims Plants use different types of responses such as tolerance and induced defense to mitigate the effects of herbivores. The direction and magnitude of both these plant responses can vary with plant age. However, most studies have focused on aboveground herbivory, whereas important feeding occurs

  7. A planning support system for rangeland allocation in Iran : case of Chadegan sub-region

    NARCIS (Netherlands)

    Farahpour, M.

    2002-01-01

    Rangelands, like other natural resources are subject to many changes. In Iran, one of the changes is the land tenure reform, that may have significant effects on both the land and the land user. Land tenure changes not only affect the life of the present, but also that of next generations,

  8. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    NARCIS (Netherlands)

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a

  9. Plant hydraulic diversity buffers forest ecosystem responses to drought

    Science.gov (United States)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  10. Physiological response of soybean genotypes to plant density

    NARCIS (Netherlands)

    Gan, Y; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2002-01-01

    Response of soybean (Glycine max (L.) Merr.) to plant density has occupied a segment of agronomic research for most of the century. Genotype differences have been noted especially in response to planting date, lodging problems and water limitation. There is limited information on the physiological

  11. Does responsiveness to arbuscular mycorrhizas depend on plant invasive status?

    Science.gov (United States)

    1. Some posit invasive alien plants are less dependent on mycorrhizal associations than native plants, and thus weak mycorrhizal responsiveness may be a general mechanism of plant invasion. 2. Here, we tested whether mycorrhizal responsiveness varies by plant invasive status while controlling for ph...

  12. Meat fatty acid and cholesterol level of free-range broilers fed on grasshoppers on alpine rangeland in the Tibetan Plateau.

    Science.gov (United States)

    Sun, Tao; Liu, Zhiyun; Qin, Liping; Long, Ruijun

    2012-08-30

    Meat safety and nutrition are major concerns of consumers. The development of distinctive poultry production methods based on locally available natural resources is important. Grasshoppers are rich in important nutrients and occur in dense concentrations in most rangelands of northern China. Foraging chickens could be used to suppress grasshopper infestations. However, knowledge of the fatty acid content of meat from free-range broilers reared on alpine rangeland is required. Rearing conditions and diet did not significantly (P > 0.05) affect concentrations of saturated fatty acid (SFA), arachidonic acid, docosahexaenoic acid or the ratio of total n-6 to total n-3 fatty acids. Breast muscle of chickens that had consumed grasshoppers contained significantly (P 0.05) higher than intensively reared birds. Compared with meat from intensively reared birds, meat from free-range broilers had less cholesterol and higher concentrations of total lipid and phospholipids. Chickens eating grasshoppers in rangeland produce superior quality meat and reduce the grasshopper populations that damage the pastures. This provides an economic system of enhanced poultry-meat production, which derives benefits from natural resources rather than artificial additives. Copyright © 2012 Society of Chemical Industry.

  13. Weight gain and behavior of Raramuri Criollo versus Corriente steers developed on Chihuahuan Desert rangeland

    Science.gov (United States)

    Ranchers that raise Criollo cattle must overcome the challenge of lack of markets for weaned calves. Raramuri Criollo (RC) steers are commonly raised for beef and finished on rangelands, while Corriente (CR) are often raised for rodeo sports. No data exist on weight gains and grazing behavior of ran...

  14. Weight gain and behavior of Raramuri Criollo versus crossbred steers developed on Chihuahuan Desert rangeland

    Science.gov (United States)

    Ranchers that raise Raramuri Criollo (RC) cattle must overcome the challenge of lack of markets for weaned calves. Growing and finishing RC or RC-crossbred steers on rangeland pastures is increasingly common; however, no data exist on their weight gains or grazing behavior. We tracked the weight a...

  15. Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides

    DEFF Research Database (Denmark)

    Newman, Mari-Anne; Dow, J. Maxwell; Molinaro, Antonio

    2007-01-01

    Bacterial lipopolysaccharides (LPSs) have multiple roles in plant-microbe interactions. LPS contributes to the low permeability of the outer membrane, which acts as a barrier to protect bacteria from plant-derived antimicrobial substances. Conversely, perception of LPS by plant cells can lead...... to the triggering of defence responses or to the priming of the plant to respond more rapidly and/or to a greater degree to subsequent pathogen challenge. LPS from symbiotic bacteria can have quite different effects on plants to those of pathogens. Some details are emerging of the structures within LPS...... that are responsible for induction of these different plant responses. The lipid A moiety is not solely responsible for all of the effects of LPS in plants; core oligosaccharide and O-antigen components can elicit specific responses. Here, we review the effects of LPS in induction of defence-related responses...

  16. Comparative Assessment of Goods and Services Provided by Grazing Regulation and Reforestation in Degraded Mediterranean Rangelands

    NARCIS (Netherlands)

    Papanastasis, Vasilios P.; Bautista, Susana; Chouvardas, Dimitrios; Mantzanas, Konstantinos; Papadimitriou, Maria; Garcia Mayor, Angeles; Koukioumi, Polina; Papaioannou, Athanasios; Vallejo, Ramon V.

    2017-01-01

    Several management actions are applied to restore ecosystem services in degraded Mediterranean rangelands, which range from adjusting the grazing pressure to the removal of grazers and pine plantations. Four such actions were assessed in Quercus coccifera L. shrublands in northern Greece: (i)

  17. Regulation of phosphate starvation responses in higher plants.

    Science.gov (United States)

    Yang, Xiao Juan; Finnegan, Patrick M

    2010-04-01

    Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (P(i)), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance P(i) acquisition and avoid starvation. Controlling the deployment of adaptations used by plants to avoid P(i) starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding P(i) availability. In this review, the current knowledge of the regulatory mechanisms that control P(i) starvation responses and the local and long-distance signals that may trigger P(i) starvation responses are discussed. Uncharacterized mutants that have P(i)-related phenotypes and their potential to give us additional insights into regulatory pathways and P(i) starvation-induced signalling are also highlighted and assessed. An impressive list of factors that regulate P(i) starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to P(i) availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low P(i) environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving P(i) acquisition in crop plants.

  18. Plant responses to water stress

    Science.gov (United States)

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  19. Rangeland livestock production: Developing the concept of sustainability on the Santa Rita Experimental Range

    Science.gov (United States)

    George B. Ruyle

    2003-01-01

    The Santa Rita Experimental Range (SRER) was established in 1903 at the behest of concerned stockmen and researchers as the first facility in the United States set aside to study range livestock production. At the time, severe overgrazing of the public domain had seriously reduced carrying capacities of Southwestern rangelands. Researchers on the SRER developed and...

  20. In-plant considerations for optimal offsite response to reactor accidents

    International Nuclear Information System (INIS)

    Burke, R.P.; Heising, C.D.; Aldrich, D.C.

    1982-11-01

    Offsite response decision-making methods based on in-plant conditions are developed for use during severe reactor-accident situations. Dose projections are used to eliminate all LWR plant systems except the reactor core and the spent-fuel storage pool from consideration for immediate offsite emergency response during accident situations. A simple plant information-management scheme is developed for use in offsite response decision-making. Detailed consequence calculations performed with the CRAC2 model are used to determine the appropriate timing of offsite-response implementation for a range of PWR accidents involving the reactor core. In-plant decision criteria for offsite-response implementation are defined. The definition of decision criteria is based on consideration of core-accident physical processes, in-plant accident monitoring information, and results of consequence calculations performed to determine the effectiveness of various public-protective measures. The benefits and negative aspects of the proposed response-implementation criteria are detailed

  1. Higher Plants in Space: Microgravity Perception, Response, and Adaptation

    Science.gov (United States)

    Zheng, Hui Qiong; Han, Fei; Le, Jie

    2015-11-01

    Microgravity is a major abiotic stress in space. Its effects on plants may depend on the duration of exposure. We focused on two different phases of microgravity responses in space. When higher plants are exposed to short-term (seconds to hours) microgravity, such as on board parabolic flights and sounding rockets, their cells usually exhibit abiotic stress responses. For example, Ca 2+-, lipid-, and pH-signaling are rapidly enhanced, then the production of reactive oxygen species and other radicals increase dramatically along with changes in metabolism and auxin signaling. Under long-term (days to months) microgravity exposure, plants acclimatize to the stress by changing their metabolism and oxidative response and by enhancing other tropic responses. We conclude by suggesting that a systematic analysis of regulatory networks at the molecular level of higher plants is needed to understand the molecular signals in the distinct phases of the microgravity response and adaptation.

  2. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    Directory of Open Access Journals (Sweden)

    Iwai Ohbayashi

    2018-01-01

    Full Text Available The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  3. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    Science.gov (United States)

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  4. Estimating climate change effects on net primary production of rangelands in the United States

    Science.gov (United States)

    Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running

    2014-01-01

    The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...

  5. Agroecology: Implications for plant response to climate change

    Science.gov (United States)

    Agricultural ecosystems (agroecosystems) represent the balance between the physiological responses of plants and plant canopies and the energy exchanges. Rising temperature and increasing CO2 coupled with an increase in variability of precipitation will create a complex set of interactions on plant ...

  6. Three-dimensional framework of vigor, organization, and resilience (VOR) for assessing rangeland health: a case study from the alpine meadow of the Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Li, Yuan-yuan; Dong, Shi-kui; Wen, Lu; Wang, Xue-xia; Wu, Yu

    2013-12-01

    Rangeland health assessments play an important role in providing qualitative and quantitative data about ecosystem attributes and rangeland management. The objective of this study is to test the feasible of a modified model and visualize the health in a three-dimensional model. A modified Costanza model was employed, and eight indicators, including the biomass, biodiversity, and carrying capacity [associated with the vigor, organization, and resilience (VOR)] were applied. An entropy method was also developed to calculate the weight of each indicator, and a three-dimensional framework was applied to visualize the indicators and health index. The conceptual model was demonstrated using data from a case study on the alpine rangeland of the Qinghai-Tibetan Plateau, one of the globally important grassland biomes being severely degraded by natural and human factors. The health indices of four grassland plots at different levels of degradation were calculated using a modified approach to measuring their VOR. The results indicated that the least disturbed plot was relatively healthy compared to the other plots. In addition, the health indices presented in the three-dimensional VOR framework decreased in a consistent manner across the four plots along the disturbance gradients. Such rangeland health assessments should be integrated with management efforts to insure their long-term sustainable use.

  7. Responses and damages during long-term continuous irradiation in plants

    International Nuclear Information System (INIS)

    Watanabe, Yoshito

    2011-01-01

    Effects of long-term continuous irradiation are relevant to studies in radiation ecotoxicology. To investigate plants biological responses to continuous irradiation, we performed metabolome and transcriptome analysis in a model plant, arabidopsis. Comprehensive analysis of primary metabolites using capillary electrophoresis mass spectrometry revealed extensive metabolic changes at early onset of growth inhibition in plants exposed to gamma rays at the dose rate of 20 Gy/day. The changes included elevated levels of B vitamins and second metabolites, commonly responsive to many abiotic and biotic stresses. Responses at early onset of growth inhibition were also observed in the transcriptome analysis using microarray, which showed up-regulation of 55 genes in plants exposed to gamma rays at 20 Gy/day. Although about a half of the up-regulated genes were also responsive just after acute irradiation, the other half was responsive only during long-term continuous irradiation. Database analyses showed that the specifically up-regulated genes to long-term continuous irradiation included genes relating to general stress responses and protein metabolism. The results of these analyses appear to reflect plants responses to progressive radiation damages, from radiation-specific responses, which repair primary DNA damage, to more general stress responses, which maintain homoeostasis against secondary damages. (author)

  8. Use of local pastoral species to increase fodder production of the saline rangelands in southern Tunisia

    Science.gov (United States)

    Tlili, Abderrazak; Tarhouni, Mohamed; Cardà, Artemi; Neffati, Mohamed

    2017-04-01

    Climate changes associated with multiple destructive human activities accelerate the degradation process of the natural rangelands around the world and especially the vulnerable areas such as the dryland ecosystems (Anaya-Romero et al., 2015; Eskandari et al., 2016; Muños Rojas et al., 2016; Vicente-Serrano et al., 2016). The vegetation cover and the biomass production of these ecosystems are decreasing and this is resulting in land degradation due to the soil erosion and changes in soil quality due to the abuse and misuse of the soil resources (Cerdà et al., 2016; Prosdocimi et al., 2016; Keesstra et al., 2016). To cope with such threats, it is necessary to develop some management techniques (restoration, plantation…) to enhance the biomass production and the carbon sequestration of the degraded rangelands (Muñoz-Rojas et al., 2016; Tarhouni et al., 2016). The valorization of saline water by planting pastoral halophyte species in salt-affected soils as well as the marginal areas are considered among the valuable tools to increase the rangeland production in dry areas. In this work, the ability of four plants (Atriplex halimus L. (Amaranthaceae), Atriplex mollis Desf. (Amaranthaceae), Lotus creticus L. (Fabaceae) and Cenchrus ciliaris L. (Poaceae)) to grow and to produce are tested under a field saline conditions (water and soil). Non-destructive method (Vegmeasure) is used to estimate the biomass production of these species. Chemical (crude protein, moisture and ash contents) and biochemical analyses (sugars, tannins and polyphenols contents) are also undertaken. Two years after plantation, the obtained results showed the ability of the four species to survive and to grow under high salinity degree. A strong positive correlation was obtained between the canopy cover and the dry biomass of the four studied species. Hence, the restoration of saline soils can be ensured by planting local halophytes. Acknowledgements. The research leading to these results has

  9. Plant Responses to Pathogen Attack: Small RNAs in Focus.

    Science.gov (United States)

    Islam, Waqar; Noman, Ali; Qasim, Muhammad; Wang, Liande

    2018-02-08

    Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.

  10. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This workbook contains all the activity data, emission factor data, and ancillary data used to compute crop residue burning and rangeland emissions for the 2014 NEI...

  11. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Murilo S. Alves

    2014-03-01

    Full Text Available Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP, amino-acid sequence WRKYGQK (WRKY, myelocytomatosis related proteins (MYC, myeloblastosis related proteins (MYB, APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP and no apical meristem (NAM, Arabidopsis transcription activation factor (ATAF, and cup-shaped cotyledon (CUC (NAC. We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.

  12. Biomass increases go under cover: woody vegetation dynamics in South African rangelands

    CSIR Research Space (South Africa)

    Mograbi, PJ

    2015-05-01

    Full Text Available and ranging (LiDAR) data The communal rangelands were surveyed with airborne laser mapping as part of a Carnegie Airborne Observatory (http://cao.ciw.edu/) campaign in April 2008 and April 2012, concur- rently with the collected fieldwork data in 2012. Small... permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All data necessary to replicate the results of this study are contained within the paper and its...

  13. Experience with RTD response time testing in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Kerlin, T.W.

    1985-01-01

    The reactor coolant temperatures in pressurized water reactors are measured with platinum resistance temperature detectors (RTDs). The information furnished by these RTDs is used for plant protection as well as control. As a part of the plant protection system, the RTDs must respond to temperature changes in a timely fashion. The RTD response time requirements are different for the various plant types. These requirements are specified in the plant technical specifications in terms of an RTd time constant. The current time constant requirements for nuclear plant RTDs varies from 0.5 seconds to 13.0 seconds depending on the type of the plant. Therefore, different types of RTDs are used in different plants to achieve the required time constants. In addition, in-situ response time tests are periodically performed on protective system RTDs to ensure that the in-service time constants are within acceptable limits as the plant is operating. The periodic testing is important because response time degradation may occur while the RTD ages in the process. Recent response time tests in operating plants revealed unacceptable time constants for several protection system RTDs. As a result, these plants had to be shut down to resolve the problem which in one case was due to improper installation and in another case was because of degradation of a thermal compound used in the thermowell

  14. Plant responses to multiple herbivory

    NARCIS (Netherlands)

    Li, Yehua

    2016-01-01

    This thesis explores whether aphid-infestation interferes with the plant response to chewing herbivores and whether this impacts performance and behaviour of individual chewing insect herbivores and their natural enemies, as well as the entire insect community. I investigated this using three

  15. The ability of winter grazing to reduce wildfire size, intensity, and fire-induced plant mortality was not demonstrated: A comment on Davies et al. (2015)

    Science.gov (United States)

    A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behavior metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience more fire-induced mortality of native peren...

  16. How best to quantify soil seed banks in arid rangelands of the Nama Karoo?

    Science.gov (United States)

    Dreber, Niels

    2011-02-01

    Sampling design and three sample treatments prior the application of the seedling emergence method were tested in order to find the best method for seed bank quantification in arid Nama Karoo rangelands. I analyzed species composition and seed densities by contrasting undercanopy and open-matrix samples from two soil depths and by comparing the effects of cold-, heat-, and no stratification on germination rates of species in a greenhouse setting. The soil seed bank showed minimal similarity to the standing vegetation, with only 20 plant species germinated. Spatial distribution of seeds was highly heterogeneous. Nearly 90% of germinated seeds were located in 0- to 4-cm compared to >4- to 8-cm soil depth. Undercanopy seed banks contained significantly more species and seeds than open-matrix seed banks. Neither the number nor the diversity of seeds germinated differed significantly among the three treatments. Cold stratification tended to detect more species and seeds only at >4- to 8-cm soil depth. The results highlight the importance of spatial heterogeneity in the accurate evaluation of soil seed banks in the arid Nama Karoo and the importance of considering seasonal variability in the availability of readily germinable seeds. Data also suggest that sample pretreatment in germination trials may give little return for cost and effort, which emphasizes that it is more important to choose the sampling design most likely to give a representative number of seed bank species. Further studies are needed to analyze seed bank dynamics and species-specific germination requirements to promote recruitment of plant taxa underrepresented in the seed bank.

  17. A Plant's Response to Gravity as a Wave Guide Phenomenon

    Science.gov (United States)

    Wagner, Orvin

    1997-11-01

    Plant experimental data provides a unifying wave theory (W-wave theory) for the growth and development of plants. A plant's response to gravity is an important aspect of this theory. It appears that a plant part is tuned to the angle with which it initially grew with respect to the gravitational field and changes produce correction responses. This is true because the velocity of W-waves (whose standing waves determine plant structure) within plant tissue is found to be different in different directions (angle a) with respect to the gravitational field. I found that there are preferred values of a, namely integral multiples of near 5 degrees for some plants. Conifers apparently are more sensitive to the gravitational field than deciduous trees, in the cases studied, so their structure is determined in more detail by the gravitational field. A plant's response to gravity appears to be a fundamental phenomenon and may provide a new model for gravity that can be experimentally verified in the laboratory. Along these same lines accelerometers placed in plant tissue indicate that plants produce gravity related forces that facilitate sap flow. See the

  18. Traits determining the digestibility-decomposability relationships in species from Mediterranean rangelands.

    Science.gov (United States)

    Bumb, Iris; Garnier, Eric; Coq, Sylvain; Nahmani, Johanne; Del Rey Granado, Maria; Gimenez, Olivier; Kazakou, Elena

    2018-03-05

    Forage quality for herbivores and litter quality for decomposers are two key plant properties affecting ecosystem carbon and nutrient cycling. Although there is a positive relationship between palatability and decomposition, very few studies have focused on larger vertebrate herbivores while considering links between the digestibility of living leaves and stems and the decomposability of litter and associated traits. The hypothesis tested is that some defences of living organs would reduce their digestibility and, as a consequence, their litter decomposability, through 'afterlife' effects. Additionally in high-fertility conditions the presence of intense herbivory would select for communities dominated by fast-growing plants, which are able to compensate for tissue loss by herbivory, producing both highly digestible organs and easily decomposable litter. Relationships between dry matter digestibility and decomposability were quantified in 16 dominant species from Mediterranean rangelands, which are subject to management regimes that differ in grazing intensity and fertilization. The digestibility and decomposability of leaves and stems were estimated at peak standing biomass, in plots that were either fertilized and intensively grazed or unfertilized and moderately grazed. Several traits were measured on living and senesced organs: fibre content, dry matter content and nitrogen, phosphorus and tannin concentrations. Digestibility was positively related to decomposability, both properties being influenced in the same direction by management regime, organ and growth forms. Digestibility of leaves and stems was negatively related to their fibre concentrations, and positively related to their nitrogen concentration. Decomposability was more strongly related to traits measured on living organs than on litter. Digestibility and decomposition were governed by similar structural traits, in particular fibre concentration, affecting both herbivores and micro

  19. Effects of feral free-roaming horses on semi-arid rangeland ecosystems: an example from the sagebrush steppe

    Science.gov (United States)

    Feral horses (Equus caballus) are viewed as a symbol of freedom and power; however, they are also a largely unmanaged, non-native grazer in North America, South America, and Australia. Information on their influence on vegetation and soil characteristics in semi-arid rangelands has been limited by ...

  20. The changing role of shrubs in rangeland-based livestock production systems: Can shrubs increase our forage supply?

    Science.gov (United States)

    Projected global increases in ruminant numbers and loss of native grasslands will present a number of challenges for livestock agriculture. Escalated demand for livestock products may stimulate interest in using shrubs on western rangelands. A paradigm shift is needed to change the role of shrubs in...

  1. Stage-Related Defense Response Induction in Tomato Plants by Nesidiocoris tenuis

    Science.gov (United States)

    Naselli, Mario; Urbaneja, Alberto; Siscaro, Gaetano; Jaques, Josep A.; Zappalà, Lucia; Flors, Víctor; Pérez-Hedo, Meritxell

    2016-01-01

    The beneficial effects of direct predation by zoophytophagous biological control agents (BCAs), such as the mirid bug Nesidiocoris tenuis, are well-known. However, the benefits of zoophytophagous BCAs’ relation with host plants, via induction of plant defensive responses, have not been investigated until recently. To date, only the females of certain zoophytophagous BCAs have been demonstrated to induce defensive plant responses in tomato plants. The aim of this work was to determine whether nymphs, adult females, and adult males of N. tenuis are able to induce defense responses in tomato plants. Compared to undamaged tomato plants (i.e., not exposed to the mirid), plants on which young or mature nymphs, or adult males or females of N. tenuis fed and developed were less attractive to the whitefly Bemisia tabaci, but were more attractive to the parasitoid Encarsia formosa. Female-exposed plants were more repellent to B. tabaci and more attractive to E. formosa than were male-exposed plants. When comparing young- and mature-nymph-exposed plants, the same level of repellence was obtained for B. tabaci, but mature-nymph-exposed plants were more attractive to E. formosa. The repellent effect is attributed to the signaling pathway of abscisic acid, which is upregulated in N. tenuis-exposed plants, whereas the parasitoid attraction was attributed to the activation of the jasmonic acid signaling pathway. Our results demonstrate that all motile stages of N. tenuis can trigger defensive responses in tomato plants, although these responses may be slightly different depending on the stage considered. PMID:27472328

  2. Distinct roles of jasmonates and aldehydes in plant-defense responses.

    Directory of Open Access Journals (Sweden)

    E Wassim Chehab

    Full Text Available BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs, C(6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS and hydroperoxide lyase (HPL branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae, an insect herbivore (leafminers: Liriomyza trifolii, and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola. We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani, a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic

  3. Assessment of water resource potential for common use of cow and goat by GIS (Case study: Boroujerd Rangeland, Sarab Sefid, Iran)

    International Nuclear Information System (INIS)

    Ariapour, A; Karami, K; Sadr, A

    2014-01-01

    One of the most important factors to sustainability utilization of natural potential by rangeland grazing suitability is water resources suitability. This study is a model for quantitative, qualitative and spatial distance assessment of water resource's propriety for goat and cow grazing based on geographic information systems (GIS) in Boroujerd Sarab Sefid rangeland, Lorestan province, Iran 2013. In this research from combining three factors such as quantity, quality and water resource's distances; the final model of degree of propriety of water resources for goat and cow grazing is characterized. Results showed that slope factor was the reason of limitation, and it is considered as a limiting factor in propriety of water resources, so in terms of access to water resources for goat grazing, 4856.4 ha (100%) located in S1 classes and for cow grazing, 4023.14 ha (68.6%) located in S1(suitability) classes, 1,187 ha (20.24%) in S2 classes and 654.8 ha (11.16%) located in S3 classes, respectively for both. So according to the results the rangelands in this region are most suitable for goat because of terrain and weather but this, in combination with, cow hasbandry will allow diversity of economic production and stability of incomes

  4. Geospatial Data as a Service: The GEOGLAM Rangelands and Pasture Productivity Map Experience

    Science.gov (United States)

    Evans, B. J. K.; Antony, J.; Guerschman, J. P.; Larraondo, P. R.; Richards, C. J.

    2017-12-01

    Empowering end-users like pastoralists, land management specialists and land policy makers in the use of earth observation data for both day-to-day and seasonal planning needs both interactive delivery of multiple geospatial datasets and the capability of supporting on-the-fly dynamic queries while simultaneously fostering a community around the effort. The use of and wide adoption of large data archives, like those produced by earth observation missions, are often limited by compute and storage capabilities of the remote user. We demonstrate that wide-scale use of large data archives can be facilitated by end-users dynamically requesting value-added products using open standards (WCS, WMS, WPS), with compute running in the cloud or dedicated data-centres and visualizing outputs on web-front ends. As an example, we will demonstrate how a tool called GSKY can empower a remote end-user by providing the data delivery and analytics capabilities for the GEOGLAM Rangelands and Pasture Productivity (RAPP) Map tool. The GEOGLAM RAPP initiative from the Group on Earth Observations (GEO) and its Agricultural Monitoring subgroup aims at providing practical tools to end-users focusing on the important role of rangelands and pasture systems in providing food production security from both agricultural crops and animal protein. Figure 1, is a screen capture from the RAPP Map interface for an important pasture area in the Namibian rangelands. The RAPP Map has been in production for six months and has garnered significant interest from groups and users all over the world. GSKY, being formulated around the theme of Open Geospatial Data-as-a-Service capabilities uses distributed computing and storage to facilitate this. It works behind the scenes, accepting OGC standard requests in WCS, WMS and WPS. Results from these requests are rendered on a web-front end. In this way, the complexities of data locality and compute execution are masked from an end user. On-the-fly computation of

  5. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    OpenAIRE

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a minute-to-minute basis from July 2002 until April 2003. Data collected included, amongst others, crop transpiration from lysimeter data (2 m2), canopy temperature using infrared sensors, rockwool water...

  6. Effects of different management regimes on soil erosion and surface runoff in semi-arid to sub-humid rangelands

    NARCIS (Netherlands)

    Oudenhoven, van A.P.E.; Veerkamp, C.J.; Alkemade, Rob; Leemans, Rik

    2015-01-01

    Over one billion people's livelihoods depend on dry rangelands through livestock grazing and agriculture. Livestock grazing and other management activities can cause soil erosion, increase surface runoff and reduce water availability. We studied the effects of different management regimes on soil

  7. A potential to monitor nutrients as an indicator of rangeland quality using space borne remote sensing

    International Nuclear Information System (INIS)

    Ramoelo, A; Madonsela, S; Mathieu, R; Van der Korchove, R; Kaszta, Z; Wolf, E; Cho, M A

    2014-01-01

    Global change consisting of land use and climate change could have huge impacts on food security and the health of various ecosystems. Leaf nitrogen (N) is one of the key factors limiting agricultural production and ecosystem functioning. Leaf N can be used as an indicator of rangeland quality which could provide information for the farmers, decision makers, land planners and managers. Leaf N plays a crucial role in understanding the feeding patterns and distribution of wildlife and livestock. Assessment of this vegetation parameter using conventional methods at landscape scale level is time consuming and tedious. Remote sensing provides a synoptic view of the landscape, which engenders an opportunity to assess leaf N over wider rangeland areas from protected to communal areas. Estimation of leaf N has been successful during peak productivity or high biomass and limited studies estimated leaf N in dry season. The objective of this study is to monitor leaf N as an indicator of rangeland quality using WorldView 2 satellite images in the north-eastern part of South Africa. Series of field work to collect samples for leaf N were undertaken in the beginning of May (end of wet season) and July (dry season). Several conventional and red edge based vegetation indices were computed. Simple regression was used to develop prediction model for leaf N. Using bootstrapping, indicator of precision and accuracy were analyzed to select a best model for the combined data sets (May and July). The may model for red edge based simple ratio explained over 90% of leaf N variations. The model developed from the combined data sets with normalized difference vegetation index explained 62% of leaf N variation, and this is a model used to estimate and map leaf N for two seasons. The study demonstrated that leaf N could be monitored using high spatial resolution with the red edge band capability

  8. Dynamic Frequency Response of Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit

    according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...

  9. Plant responses to metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Briat, J.F. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie moleculaire des plantes, CNRS, URA 2133; Lebrun, M. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie vegetale appliquee

    1999-01-01

    Increased metal concentration in the soils, up to toxic levels, is becoming an important environmental problem. Safety rule evolution will require solutions in order to cope with food safety rules, and to freeze metal leakage from heavily metal-poisoned soils, such as those from industrial fallows. In this context, plants could serve to develop bio-assays in order to promote new standards, more realistic than the mass of a given metal per kg of soil, that does not consider the metal bio-disponibility. Plants could also be used for phyto-extraction and/or phyto-stabilization. To reach these objectives, a genetic approach could be useful to generate metal-tolerant plants with enough biomass. In this work is more particularly studied the plant responses to metal toxicity. Metal toxicity for living organisms involves oxidative and /or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathione-derived peptides named phyto-chelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyper accumulate metals provides helpful tools for this research. (authors) 130 refs.

  10. Ionic signaling in plant responses to gravity and touch

    Science.gov (United States)

    Fasano, Jeremiah M.; Massa, Gioia D.; Gilroy, Simon

    2002-01-01

    Touch and gravity are two of the many stimuli that plants must integrate to generate an appropriate growth response. Due to the mechanical nature of both of these signals, shared signal transduction elements could well form the basis of the cross-talk between these two sensory systems. However, touch stimulation must elicit signaling events across the plasma membrane whereas gravity sensing is thought to represent transformation of an internal force, amyloplast sedimentation, to signal transduction events. In addition, factors such as turgor pressure and presence of the cell wall may also place unique constraints on these plant mechanosensory systems. Even so, the candidate signal transduction elements in both plant touch and gravity sensing, changes in Ca2+, pH and membrane potential, do mirror the known ionic basis of signaling in animal mechanosensory cells. Distinct spatial and temporal signatures of Ca2+ ions may encode information about the different mechanosignaling stimuli. Signals such as Ca2+ waves or action potentials may also rapidly transfer information perceived in one cell throughout a tissue or organ leading to the systemic reactions characteristic of plant touch and gravity responses. Longer-term growth responses are likely sustained via changes in gene expression and asymmetries in compounds such as inositol-1,4,5-triphosphate (IP3) and calmodulin. Thus, it seems likely that plant mechanoperception involves both spatial and temporal encoding of information at all levels, from the cell to the whole plant. Defining this patterning will be a critical step towards understanding how plants integrate information from multiple mechanical stimuli to an appropriate growth response.

  11. Interactions between plant hormones and heavy metals responses.

    Science.gov (United States)

    Bücker-Neto, Lauro; Paiva, Ana Luiza Sobral; Machado, Ronei Dorneles; Arenhart, Rafael Augusto; Margis-Pinheiro, Marcia

    2017-01-01

    Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  12. Native plant community response to alien plant invasion and removal

    Directory of Open Access Journals (Sweden)

    Jara ANDREU

    2011-01-01

    Full Text Available Given the potential ecological impacts of invasive species, removal of alien plants has become an important management challenge and a high priority for environmental managers. To consider that a removal effort has been successful requires both, the effective elimination of alien plants and the restoration of the native plant community back to its historical composition and function. We present a conceptual framework based on observational and experimental data that compares invaded, non-invaded and removal sites to quantify invaders’ impacts and native plant recover after their removal. We also conduct a meta-analysis to quantitatively evaluate the impacts of plant invaders and the consequences of their removal on the native plant community, across a variety of ecosystems around the world. Our results that invasion by alien plants is responsible for a local decline in native species richness and abundance. Our analysis also provides evidence that after removal, the native vegetation has the potential to recover to a pre-invasion target state. Our review reveal that observational and experimental approaches are rarely used in concert, and that reference sites are scarcely employed to assess native species recovery after removal. However, we believe that comparing invaded, non-invaded and removal sites offer the opportunity to obtain scientific information with relevance for management.

  13. Influence of forest and rangeland management on anadromous fish habitat in Western North America: economic considerations.

    Science.gov (United States)

    William R. tech. ed. Meehan

    1985-01-01

    Although many effects of forest and rangeland management on anadromous fisheries are difficult to measure, economic methods for the evaluation of costs and benefits can be helpful. Such methods can be used to address questions of equity as well as efficiency. Evaluations of equity can show who bears the costs and who captures the benefits of management actions, but...

  14. National projections of forest and rangeland condition indicators: a supporting technical document for the 1999 RPA assessment.

    Science.gov (United States)

    John Hof; Curtis Flather; Tony Baltic; Stephen. Davies

    1999-01-01

    The 1999 forest and rangeland condition indicator model is a set of independent econometric production functions for environmental outputs (measured with condition indicators) at the national scale. This report documents the development of the database and the statistical estimation required by this particular production structure with emphasis on two special...

  15. How predictable are the behavioral responses of insects to herbivore induced changes in plants? Responses of two congeneric thrips to induced cotton plants.

    Directory of Open Access Journals (Sweden)

    Rehan Silva

    Full Text Available Changes in plants following insect attack are referred to as induced responses. These responses are widely viewed as a form of defence against further insect attack. In the current study we explore whether it is possible to make generalizations about induced plant responses given the unpredictability and variability observed in insect-plant interactions. Experiments were conducted to test for consistency in the responses of two congeneric thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae to cotton seedlings (Gossypium hirsutum Linneaus (Malvales: Malvaceae damaged by various insect herbivores. In dual-choice experiments that compared intact and damaged cotton seedlings, F. schultzei was attracted to seedlings damaged by Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae, Tetranychus urticae (Koch (Trombidiforms: Tetranychidae, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae, F. schultzei and F. occidentalis but not to mechanically damaged seedlings. In similar tests, F. occidentalis was attracted to undamaged cotton seedlings when simultaneously exposed to seedlings damaged by H. armigera, T. molitor or F. occidentalis. However, when exposed to F. schultzei or T. urticae damaged plants, F. occidentalis was more attracted towards damaged plants. A quantitative relationship was also apparent, F. schultzei showed increased attraction to damaged seedlings as the density of T. urticae or F. schultzei increased. In contrast, although F. occidentalis demonstrated increased attraction to plants damaged by higher densities of T. urticae, there was a negative relationship between attraction and the density of damaging conspecifics. Both species showed greater attraction to T. urticae damaged seedlings than to seedlings damaged by conspecifics. Results demonstrate that the responses of both species of thrips were context dependent, making generalizations difficult to formulate.

  16. Impact of animal density on cattle nutrition in dry Mediterranean rangelands: a faecal near-IR spectroscopy-aided study.

    Science.gov (United States)

    Landau, S Y; Dvash, L; Yehuda, Y; Muklada, H; Peleg, G; Henkin, Z; Voet, H; Ungar, E D

    2018-02-01

    In the context of determining the sustainable carrying capacity of dry-Mediterranean herbaceous rangelands, we examined the effect of animal density on cattle nutrition, which is fundamental to animal performance and welfare. The effects on dietary components of low (0.56 cows/ha; L) and high (1.11 cows/ha; H) animal densities were monitored for three consecutive years in grazing beef cows. In the dry season (summer and early autumn), cows had free access to N-rich poultry litter (PL) given as a dietary supplement. In each season, near-IR spectroscopy (NIRS) was used to predict the chemical composition of herbage samples (ash, NDF, CP, in vitro dry matter digestibility (IVDMD) and metabolizable energy (ME) content from IVDMD). Near-IR spectroscopy was applied also to faecal samples to determine the chemical composition of the diet selected by the animal, as well as the contents of ash, NDF and CP in the faeces themselves. A faecal-NIRS equation was applied to estimate the dietary proportion of PL. Seasonal categories were green, dry without PL supplementation and dry with it. We found no effects of animal density on nutrition during the green season but effects were apparent when cows consumed dry pasture. Ash content predicted by faecal NIRS was higher in the diet than in plant samples clipped from pasture, which infers that cows ingested soil. Dietary and faecal ash contents were higher (Panimals. During the dry period, dietary contents of ME were higher in L than in H (Panimal health, the above results cast doubts on the long-term sustainability of the higher of the animal densities tested. Although it may be sustainable vis-à-vis the vegetation, treatment H may have exceeded the boundaries of what is acceptable for cow health. Chemical information revealed with NIRS can be used to evaluate whether animal densities are compatible with animal health and welfare standards and can play a role in determining the carrying capacity of Mediterranean rangelands.

  17. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 2).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described in a series of appendices. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. ...

  18. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    Science.gov (United States)

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Interactions between plant hormones and heavy metals responses

    Directory of Open Access Journals (Sweden)

    Lauro Bücker-Neto

    2017-04-01

    Full Text Available Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  20. Morphological and molecular characterization of an uninucleated cyst-producing Entamoeba spp. in captured Rangeland goats in Western Australia.

    Science.gov (United States)

    Al-Habsi, Khalid; Yang, Rongchang; Ryan, Una; Jacobson, Caroline; Miller, David W

    2017-02-15

    Uninucleated Entamoeba cysts measuring 7.3×7.7μm were detected in faecal samples collected from wild Rangeland goats (Capra hircus) after arrival at a commercial goat depot near Geraldton, Western Australia at a prevalence of 6.4% (8/125). Sequences were obtained at the 18S rRNA (n=8) and actin (n=5) loci following PCR amplification. At the 18S locus, phylogenetic analysis grouped the isolates closest with an E. bovis isolate (FN666250) from a sheep from Sweden with 99% similarity. At the actin locus, no E. bovis sequences were available, and the isolates shared 94.0% genetic similarity with E. suis from a pig in Western Japan. This is the first report to describe the morphology and molecular characterisation of Entamoeba from Rangeland goats in Western Australia and the first study to produce actin sequences from E. bovis-like Entamoeba sp. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of livestock grazing on grasshopper abundance on a native rangeland in Montana.

    Science.gov (United States)

    O'Neill, Kevin M; Olson, Bret E; Wallander, Roseann; Rolston, Marni G; Seibert, Catherine E

    2010-06-01

    Livestock grazing can affect habitat quality for grasshoppers through effects on food and oviposition site availability, microclimate, and other factors. Because of this, some authors have suggested that grazing programs can be used to help manage pest grasshopper populations. In a 6-yr study, we controlled access of cattle to replicated experimental plots on an Agropyron spicatum/Poa sandbergii pasture to create consistent year-to-year differences in postgrazing plant cover, with resultant affects on microclimate. After sampling grasshoppers multiple times after grazing treatments each summer, we found evidence of between-treatment differences in grasshopper abundance for the entire assemblage during 4 of the 6 yr. Some species, including Melanoplus sanguinipes (perhaps the worse rangeland grasshopper pest in the western United States), tended to be more abundant on ungrazed plots, whereas Melanoplus gladstoni often had greater densities on heavily-grazed plots. The effect of grazing on grasshopper densities in this study was lower in magnitude and less consistent among years than in a study we conducted simultaneously at a nearby site where the vegetation was dominated by the exotic species crested wheatgrass (Agropyron cristatum). Our results generally support proposals that grazing could be used to reduce pest grasshopper densities, although the effectiveness of a particular grazing scheme may vary among sites, years, and grasshopper and vegetation assemblages.

  2. A detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum.

    Science.gov (United States)

    Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua

    2018-08-30

    The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.

  3. Glutathione-dependent responses of plants to drought: a review

    Directory of Open Access Journals (Sweden)

    Mateusz Labudda

    2014-02-01

    Full Text Available Water is a renewable resource. However, with the human population growth, economic development and improved living standards, the world’s supply of fresh water is steadily decreasing and consequently water resources for agricultural production are limited and diminishing. Water deficiency is a significant problem in agriculture and increasing efforts are currently being made to understand plant tolerance mechanisms and to develop new tools (especially molecular that could underpin plant breeding and cultivation. However, the biochemical and molecular mechanisms of plant water deficit tolerance are not fully understood, and the data available is incomplete. Here, we review the significance of glutathione and its related enzymes in plant responses to drought. Firstly, the roles of reduced glutathione and reduced/oxidized glutathione ratio, are discussed, followed by an extensive discussion of glutathione related enzymes, which play an important role in plant responses to drought. Special attention is given to the S-glutathionylation of proteins, which is involved in cell metabolism regulation and redox signaling in photosynthetic organisms subjected to abiotic stress. The review concludes with a brief overview of future perspectives for the involvement of glutathione and related enzymes in drought stress responses.

  4. The Integrated Rangeland Fire Management Strategy Actionable Science Plan: U.S. Department of the Interior, Washington D.C.

    Science.gov (United States)

    Integrated Rangeland Fire Management Strategy Actionable Science Plan Team

    2016-01-01

    The Integrated Rangeland Fire Management Strategy (hereafter Strategy, DOI 2015) outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit...

  5. Plant community responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kongstad, J.

    2012-07-01

    ecosystem more resilient to the climatic treatments than expected. We also found that the amount of flowering culms of D. flexuosa increased in response to increased CO{sub 2}, whereas the seed germination success decreased. The bryophyte biomass and the nitrogen content decreased in response to nitrogen addition. Even such apparently minor changes might, given time, affect the plant composition and thereby possibly also the major ecosystem processes. Further, we observed changes in the aboveground plant composition in response to the climate manipulations at the Mols site, where C. vulgaris was regenerating after a disturbance. Here a decrease in biomass of the pioneer stage was seen, when subjected to the drought treatment compared to warmed and control treatments. I therefore conclude, that the stage of the C. vulgaris population as well as the magnitude and frequency of disturbances determine the effects of future climate change on the plant community in heathland ecosystems. (Author)

  6. The Climate-Population Nexus in the East African Horn: Emerging Degradation Trends in Rangeland and Pastoral Livelihood Zones

    Science.gov (United States)

    Pricope, N. G.; Husak, G. J.; Funk, C. C.; Lopez-Carr, D.

    2014-12-01

    Increasing climate variability and extreme weather conditions along with declining trends in both rainfall and temperature represent major risk factors affecting agricultural production and food security in many regions of the world. We identify regions where significant rainfall decrease from 1979-2011 over the entire continent of Africa couples with significant human population density increase. The rangelands of Ethiopia, Kenya, and Somalia in the East African Horn remain one of the world's most food insecure regions, yet have significantly increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. Vegetation in this region is characterized by a variable mosaic of land covers, generally dominated by grasslands necessary for agro-pastoralism, interspersed by woody vegetation. Recent assessments indicate that widespread degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using two underutilized MODIS products, we observe significant changes in vegetation patterns and productivity over the last decade all across the East African Horn. We observe significant vegetation browning trends in areas experiencing drying precipitation trends in addition to increasing population pressures. We also found that the drying precipitation trends only partially statistically explain the vegetation browning trends, further indicating that other factors such as population pressures and land use changes are responsible for the observed declining vegetation health. Furthermore, we show that the general vegetation browning trends persist even during years with normal rainfall conditions such as 2012, indicating potential long-term degradation of rangelands on which approximately 10 million people depend. These findings have serious implications for current and future regional food security monitoring and forecasting as well as for mitigation and adaptation strategies in a region where population is expected

  7. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO

    NARCIS (Netherlands)

    Loon, Van Marloes P.; Rietkerk, Max; Dekker, Stefan C.; Hikosaka, Kouki; Ueda, Miki U.; Anten, Niels P.R.

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant-plant interactions could mediate the trajectory of vegetation responses to elevated

  8. Review of Signal Crosstalk in Plant Stress Responses

    Science.gov (United States)

    This book was prepared to summarize the current understanding of the dynamics of plant response to biotic and abiotic stresses. The preface of the book sets the stage for the contents of the different chapters by outlining that plants defend themselves from various environmental stresses through a v...

  9. The role of fire in managing for biological diversity on native rangelands of the Northern Great Plains

    Science.gov (United States)

    Carolyn Hull Sieg

    1997-01-01

    A strategy for using fire to manage for biological diversity on native rangelands in the Northern Great Plains incorporates an understanding of its past frequency, timing and intensity. Historically, lightning and humans were the major fire setters, and the role of fire varied both in space and time. A burning regime that includes fires at various intervals, seasons...

  10. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Subtle variation in shade avoidance responses may have profound consequences for plant competitiveness.

    Science.gov (United States)

    Bongers, Franca J; Pierik, Ronald; Anten, Niels P R; Evers, Jochem B

    2017-12-21

    Although phenotypic plasticity has been shown to be beneficial for plant competitiveness for light, there is limited knowledge on how variation in these plastic responses plays a role in determining competitiveness. A combination of detailed plant experiments and functional-structural plant (FSP) modelling was used that captures the complex dynamic feedback between the changing plant phenotype and the within-canopy light environment in time and 3-D space. Leaf angle increase (hyponasty) and changes in petiole elongation rates in response to changes in the ratio between red and far-red light, two important shade avoidance responses in Arabidopsis thaliana growing in dense population stands, were chosen as a case study for plant plasticity. Measuring and implementing these responses into an FSP model allowed simulation of plant phenotype as an emergent property of the underlying growth and response mechanisms. Both the experimental and model results showed that substantial differences in competitiveness may arise between genotypes with only marginally different hyponasty or petiole elongation responses, due to the amplification of plant growth differences by small changes in plant phenotype. In addition, this study illustrated that strong competitive responses do not necessarily have to result in a tragedy of the commons; success in competition at the expense of community performance. Together, these findings indicate that selection pressure could probably have played a role in fine-tuning the sensitive shade avoidance responses found in plants. The model approach presented here provides a novel tool to analyse further how natural selection could have acted on the evolution of plastic responses.

  12. Plant response to heavy metals and organic pollutants in cell culture and at whole plant level

    Energy Technology Data Exchange (ETDEWEB)

    Golan-Goldhirsh, A.; Barazani, O. [Ben-Gurion Univ. of The Negev, The Jacob Blaustein Inst. for Desert Research, Albert Katz Dept. of Dryland Biotechnologies, Desert Plant Biotechnology Lab., Sede Boqer Campus (Israel); Nepovim, A.; Soudek, P.; Vanek, T. [Inst. of Organic Chemistry and Biochemistry (Czech Republic); Smrcek, S.; Dufkova, L.; Krenkova, S. [Faculty of Natural Sciences, Charles Univ. (Czech Republic); Yrjala, K. [Univ. of Helsinki, Dept. of Biosciences, Div. of General Microbiology, Helsinki (Finland); Schroeder, P. [Inst. for Soil Ecology, GSF National Research Center for Environment and Health, Neuherberg, Oberschleissheim (Germany)

    2004-07-01

    Background. Increasing awareness in the last decade concerning environmental quality had prompted research into 'green solutions' for soil and water remediation, progressing from laboratory in vitro experiments to pot and field trials. In vitro cell culture experiments provide a convenient system to study basic biological processes, by which biochemical pathways, enzymatic activity and metabolites can be specifically studied. However, it is difficult to relate cell cultures, calli or even hydroponic experiments to the whole plant response to pollutant stress. In the field, plants are exposed to additional a-biotic and biotic factors, which complicate further plant response. Hence, we often see that in vitro selected species perform poorly under soil and field conditions. Soil physical and chemical properties, plant-mycorrhizal association and soil-microbial activity affect the process of contaminant degradation by plants and/or microorganisms, pointing to the importance of pot and field experiments. Objective. This paper is a joint effort of a group of scientists in COST action 837. It represents experimental work and an overview on plant response to environmental stress from in vitro tissue culture to whole plant experiments in soil. Results. Results obtained from in vitro plant tissue cultures and whole plant hydroponic experiments indicate the phytoremediation potential of different plant species and the biochemical mechanisms involved in plant tolerance. In pot experiments, several selected desert plant species, which accumulated heavy metal in hydroponic systems, succeeded in accumulating the heavy metal in soil conditions as well. Conclusions and recommendations. In vitro plant tissue cultures provide a useful experimental system for the study of the mechanisms involved in the detoxification of organic and heavy metal pollutants. However, whole plant experimental systems, as well as hydroponics followed by pot and field trials, are essential when

  13. Remote sensing data in Rangeland assessment and monitoring

    International Nuclear Information System (INIS)

    Hamid, Amna Ahmed; Ali, Mohamed M.

    1999-01-01

    The main objective of the paper is to illustrate the potential of remote sensing data in the study and monitoring of environmental changes in western Sudan where considerable part of the area is under rangeland use. Data from NOAA satellite AVHRR sensor as well as thematic mapper Tm was used to assess the environment of the area during 1982-1997. The AVHRR data was processed into vegetation index (NDVI) images. Image analysis and classification was done using image display and analysis (IDA) GIS method to study vegetation condition in time series. The obtained information from field observations. The result showed high correlation between the information the work concluded the followings: NDVI images and thematic mapper data proved to be efficient in environment change analysis. NOAA AVHRR satellite data can provide an early-warning indicator of an approaching disaster. Remote sensing integrated into a GIS can contribute effectively to improve land management through better understanding of environment variability.(Author)

  14. A War of Words: Do Conflict Metaphors Affect Beliefs about Managing “Unwanted” Plants?

    Directory of Open Access Journals (Sweden)

    Cameron G. Nay

    2013-03-01

    Full Text Available Woody plants have increased in density and extent in rangelands worldwide since the 1800s, and land managers increasingly remove woodland plants in hopes of restoring pre-settlement conditions and/or improved forage for grazing livestock. Because such efforts can be controversial, especially on publicly owned lands, managers often attempt to frame issues in ways they believe can improve public acceptance of proposed actions. Frequently these framing efforts employ conflict metaphors drawn from military or legal lexicons. We surveyed citizens in the Rocky Mountains region, USA, about their beliefs concerning tree-removal as a management strategy. Plants targeted for removal in the region include such iconic tree species as Douglas-fir and ponderosa pine as well as other less-valued species, such as Rocky Mountain juniper, that are common targets for removal nationwide. To test the influence of issue frame on acceptance, recipients were randomly assigned surveys in which the reason for conifer removal was described using one of three terms often employed by invasive biologists and land managers: “invasion”, “expansion”, and “encroachment”. Framing in this instance had little effect on responses. We conclude the use of single-word frames by scientists and managers use to contextualize an issue may not resonate with the public.

  15. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 1).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. The paper does not provide guidelines but rather...

  16. Introducing PCTRAN as an evaluation tool for nuclear power plant emergency responses

    International Nuclear Information System (INIS)

    Cheng, Yi-Hsiang; Shih, Chunkuan; Chiang, Show-Chyuan; Weng, Tung-Li

    2012-01-01

    Highlights: ► PCTRAN is integrated with an atmospheric dispersion algorithm. ► The improved PCTRAN acts as an accident/incident simulator and a data exchange system. ► The software helps the responsible organizations decide the rescue and protective actions. ► The evaluation results show the nuclear power plant accident and its off-site dose consequences. ► The software can be used for nuclear power plant emergency responses. - Abstract: Protecting the public from radiation exposure is important if a nuclear power plant (NPP) accident occurs. Deciding appropriate protective actions in a timely and effective manner can be fulfilled by using an effective accident evaluation tool. In our earlier work, we have integrated PCTRAN (Personal Computer Transient Analyzer) with the off-site dose calculation model. In this study, we introduce PCTRAN as an evaluation tool for nuclear power plant emergency responses. If abnormal conditions in the plant are monitored or observed, the plant staffs can distinguish accident/incident initiation events. Thus, the responsible personnel can immediately operate PCTRAN and set up those accident/incident initiation events to simulate the nuclear power plant transient or accident in conjunction with off-site dose distributions. The evaluation results consequently help the responsible organizations decide the rescue and protective actions. In this study, we explain and demonstrate the capabilities of PCTRAN for nuclear emergency responses, through applying it to simulate the postulated nuclear power plant accident scenarios.

  17. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  18. Fire impact on soil-water repellency and functioning of semi-arid croplands and rangelands: Implications for prescribed burnings and wildfires

    Science.gov (United States)

    Stavi, Ilan; Barkai, Daniel; Knoll, Yaakov M.; Glion, Hiam Abu; Katra, Itzhak; Brook, Anna; Zaady, Eli

    2017-03-01

    An unintended fire outbreak during summer 2015 in the semi-arid Israeli Negev resulted in the burning of extensive croplands and rangelands. The rangelands have been managed over the long term for occasional grazing, while the croplands have been utilized for rainfed wheat cropping. Yet, during the studied year, the croplands were left fallow, allowing the growth of herbaceous vegetation, which was harvested and baled for hay before the fire outbreak. The study objectives were to investigate the impacts of fire, land-use, and soil depth on water-repellency and on the status and dynamics of some of the most important organic and mineral soil resources. Additionally, we aimed to assess the severity of this fire outbreak. The soil-water repellency was studied by measuring the soil's water drop penetration time (WDPT) and critical surface tension (CST). A significant effect of fire on soil hydrophobicity was recorded, with a slight increase in mean WDPT and a slight decrease in mean CST in the burnt sites than in the non-burnt sites. Yet, soil hydrophobicity in the burnt lands was rather moderate and remained within the water repellency's lowest class. A significant effect of land-use on the means of WDPT and CST was also recorded, being eleven-fold greater and 7% smaller, respectively, in the rangelands than in the croplands. This is consistent with the almost eightfold greater mean above-ground biomass recorded in the non-burnt rangelands than in the non-burnt post-harvest croplands, revealing the positive relations between available fuel load and soil-water repellency. The effect of soil depth was significant for CST but not for WDPT. Overall, the gathered data suggest that fire severity was low to moderate. Fire was also found to significantly affect the fire severity only slightly increased the soil water repellency, and at the same time, increased on-site availability of some important soil resources. Nevertheless, it is acknowledged that such fires could impose

  19. Sediment budgets and source determinations using fallout Cesium-137 in a semiarid rangeland watershed, Arizona, USA

    International Nuclear Information System (INIS)

    Ritchie, Jerry C.; Nearing, Mark A.; Rhoton, Fred E.

    2009-01-01

    Analysis of soil redistribution and sediment sources in semiarid and arid watersheds provides information for implementing management practices to improve rangeland conditions and reduce sediment loads to streams. The purpose of this research was to develop sediment budgets and identify potential sediment sources using 137 Cs and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for 137 Cs and selected physical and chemical properties (i.e., bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at measuring flume sites on the Walnut Gulch Experimental Watershed were also analyzed for these properties. Soil redistribution measured using 137 Cs inventories for a small shrub-dominated subwatershed and a small grass-dominated subwatershed found eroding areas in these subwatersheds were losing -5.6 and -3.2 t ha -1 yr -1 , respectively; however, a sediment budget for each of these subwatersheds, including depositional areas, found net soil loss to be -4.3 t ha -1 yr -1 from the shrub-dominated subwatershed and -0.1 t ha -1 yr -1 from the grass-dominated subwatershed. Generally, the suspended sediment collected at the flumes of the six other subwatersheds was enriched in silt and clay. Using a mixing model to determine sediment source indicated that shrub-dominated subwatersheds were contributing most of the suspended sediment that was measured at the outlet flume of the Walnut Gulch Experimental Watershed. The two methodologies (sediment budgets and sediment source analyses) indicate that shrub-dominated systems provide more suspended sediment to the stream systems. The sediment budget studies also suggest that sediment yields measured at the outlet of a

  20. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  1. Signalling network construction for modelling plant defence response.

    Directory of Open Access Journals (Sweden)

    Dragana Miljkovic

    Full Text Available Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2 triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be

  2. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient

    Science.gov (United States)

    Anderson, T. Michael; Griffith, Daniel M.; Grace, James B.; Lind, Eric M.; Adler, Peter B.; Biederman, Lori A.; Blumenthal, Dana M.; Daleo, Pedro; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; MacDougall, Andrew S.; McCulley, Rebecca L.; Prober, Suzanne M.; Risch, Anita C.; Sankaran, Mahesh; Schütz, Martin; Seabloom, Eric W.; Stevens, Carly J.; Sullivan, Lauren; Wragg, Peter; Borer, Elizabeth T.

    2018-01-01

    Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.

  3. Carbon transport by symbiotic fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt

    Science.gov (United States)

    Jerry R. Barrow

    2001-01-01

    Mycorrhizal fungi enhance the nutrition and survival of host plants in native ecosystems. Arid rangelands severely challenge plants because of chronic nutrient and water stress. Fourwing saltbush, Atriplex canescens (Pursh) Nutt., a dominant and important shrub of western arid rangelands, generally considered to be non-mycorrhizal, is more extensively colonized by dark...

  4. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  6. Modelling tree dynamics to assess the implementation of EU policies related to afforestation in SW Spain rangelands

    Science.gov (United States)

    Herguido, Estela; Pulido, Manuel; Francisco Lavado Contador, Joaquín; Schnabel, Susanne

    2017-04-01

    In Iberian dehesas and montados, the lack of tree recruitment compromises its long-term sustainability. However, in marginal areas of dehesas shrub encroachment facilitates tree recruitment while altering the distinctive physiognomic and cultural characteristics of the system. These are ongoing processes that should be considered when designing afforestation measures and policies. Based on spatial variables, we modeled the proneness of a piece of land to undergo tree recruitment and the results were related with the afforestation measures carried out under the UE First Afforestation Agricultural Land Program between 1992 and 2008. We analyzed the temporal tree population dynamics in 800 randomly selected plots of 100 m radius (2,510 ha in total) in dehesas and treeless pasturelands of Extremadura (hereafter rangelands). Tree changes were revealed by comparing aerial images taken in 1956 with orthophotographs and infrared ones from 2012. Spatial models that predict the areas prone either to lack tree recruitment or with recruitment were developed and based on three data mining algorithms: MARS (Multivariate Adaptive Regression Splines), Random Forest (RF) and Stochastic Gradient Boosting (Tree-Net, TN). Recruited-tree locations (1) vs. locations of places with no recruitment (0) (randomly selected from the study areas) were used as the binary dependent variable. A 5% of the data were used as test data set. As candidate explanatory variables we used 51 different topographic, climatic, bioclimatic, land cover-related and edaphic ones. The statistical models developed were extrapolated to the spatial context of the afforested areas in the region and also to the whole Extremenian rangelands, and the percentage of area modelled as prone to tree recruitment was calculated for each case. A total of 46,674.63 ha were afforested with holm oak (Quercus ilex) or cork oak (Quercus suber) in the studied rangelands under the UE First Afforestation Agricultural Land Program. In

  7. Exploring the Response of Plants Grown under Uranium Stress

    Energy Technology Data Exchange (ETDEWEB)

    Doustaly, Fany; Berthet, Serge; Bourguignon, Jacques [CEA, iRTSV, Laboratoire de Physiologie Cellulaire Vegetale, UMR 5168 CEA-CNRS-INRA-Univ. Grenoble Alpes (France); Combes, Florence; Vandenbrouck, Yves [CEA, iRTSV, Laboratoire de Biologie a Grande Echelle, EDyP, CEA-Grenoble (France); Carriere, Marie [CEA, INAC, LAN, UMR E3 CEA-Universite Joseph Fourier, Grenoble (France); Vavasseur, Alain [CEA, IBEB, LBDP, Saint Paul lez Durance, CEA Cadarache (France)

    2014-07-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between uranium speciation and plant response. We analyzed the impact of different uranium (U) treatments on three plant species namely sunflower, oilseed rape and wheat. Using inductively coupled plasma mass spectrometry elemental analysis, together with a panel of imaging techniques including scanning electron microscopy coupled with energy dispersive spectroscopy, transmission electron microscopy and particle-induced X-ray emission spectroscopy, we have recently shown how chemical speciation greatly influences the accumulation and distribution of U in plants. Uranyl (UO{sub 2}{sup 2+} free ion) is the predominant mobile form in soil surface at low pH in absence of ligands. With the aim to characterize the early plant response to U exposure, complete Arabidopsis transcriptome microarray experiments were conducted on plants exposed to 50 μM uranyl nitrate for 2, 6 and 30 h and highlighted a set of 111 genes with modified expression at these three time points. Quantitative real-time RT-PCR experiments confirmed and completed CATMA micro-arrays results allowing the characterization of biological processes perturbed by U. Functional categorization of deregulated genes emphasizes oxidative stress, cell wall biosynthesis and hormone biosynthesis and signaling. We showed that U stress is perceived by plant cells like a phosphate starvation stress since several phosphate deprivation marker genes were deregulated by U and also highlighted perturbation of iron homeostasis by U. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with

  8. An Application of BLM's Riparian Inventory Procedure to Rangeland Riparian Resources in the Kern and Kaweah River Watersheds

    Science.gov (United States)

    Patricia Gradek; Lawrence Saslaw; Steven Nelson

    1989-01-01

    The Bakersfield District of the Bureau of Land Management conducted an inventory of rangeland riparian systems using a new method developed by a Bureau-wide task force to inventory, monitor and classify riparian areas. Data on vegetation composition were collected for 65 miles of streams and entered into a hierarchical vegetation classification system. Ratings of...

  9. Licensee responsibility for nuclear power plant safety

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    Simple sentences easy to grasp are desirable in regulations and bans. However, in a legal system, their meaning must be unambiguous. Article 6, Paragraph 1 of the EURATOM Directive on a community framework for the nuclear safety of nuclear facilities of June 2009 states that 'responsibility for the nuclear safety of a nuclear facility is incumbent primarily on the licensee.' The draft 'Safety Criteria for Nuclear Power Plants, Revision D, April 2009' of the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) (A Module 1, 'Safety Criteria for Nuclear Power Plants: Basic Safety Criteria' / '0 Principles' Paragraph 2) reads: 'Responsibility for ensuring safety rests with the licensee. He shall give priority to compliance with the safety goal over the achievement of other operational objectives.' In addition, the existing rules and regulations, whose rank is equivalent to that of international regulations, assign priority to the safety goal to be pursued by the licensee over all other objectives of the company. The operator's responsibility for nuclear safety can be required and achieved only on the basis of permits granted, which must meet legal requirements. The operator's proximity to plant operation is the reason for his 'primary responsibility.' Consequently, verbatim incorporation of Article 6, Paragraph 1 of the EURATOM Directive would only be a superscript added to existing obligations of the operator - inclusive of a safety culture designed as an incentive to further 'the spirit of safety-related actions' - without any new legal contents and consequences. In the reasons of the regulation, this would have to be clarified in addition to the cryptic wording of 'responsibility.. primarily,' at the same time expressing that operators and authorities work together in a spirit of openness and trust. (orig.)

  10. Estimating grass nutrients and biomass as an indicator of rangeland (forage) quality and quantity using remote sensing in Savanna ecosystems

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available and grass quantity, respectively. The objective of the study is to estimate and map leaf N and biomass as an indicator of rangeland quality and quantity using vegetation indices derived from one RapidEye image taken at peak productivity. The study...

  11. Plant response-based sensing for control starategies in sustainable greenhouse production

    International Nuclear Information System (INIS)

    Kacira, M.; Sase, S.; Okushima, L.; Ling, P.P.

    2005-01-01

    The effect of environmental variability is one of the major concerns in experimental design for both research in plant systems and greenhouse plant production. Microclimates surrounding plants are not usually uniform. Therefore, many samples and sensors are required to obtain a true representation of the plant population. A plant monitoring system capable of reducing the required number of samples by reducing environmental variability would be more advantageous. To better understand plant-environment interaction, it is essential to study plants, microclimate surrounding the plants and the growth media. To achieve this, the monitoring system must be equipped with proper instrumentation. To achieve proper management practices and sustainable greenhouse production, it is essential first to understand plants and their interactions with their surroundings and then establish plant response-based sensing and control strategies for greenhouse processes. Therefore, an effort was conducted to review and discuss current sensing and control strategies in greenhouse research and plant production and provide recommendations on plant response-based sensing and control strategies for sustainable greenhouse production

  12. Plants' responses to drought and shade environments

    African Journals Online (AJOL)

    전병기

    factors affect plants' growth, morphology, physiology and biochemistry. Many research works .... Hardwood and Conifer tree species n central Wisconsin: Influence of light regime and .... Ecotypic variation in response to light spectra in Scots ...

  13. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  14. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    Energy Technology Data Exchange (ETDEWEB)

    Hoylman, Anne M. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived 14C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  15. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  16. Re-interpreting plant morphological responses to UV-B radiation

    Czech Academy of Sciences Publication Activity Database

    Matthew Robson, T.; Klem, Karel; Urban, Otmar; Jansen, M. A.

    2015-01-01

    Roč. 38, č. 5 (2015), s. 856-866 ISSN 0140-7791 R&D Projects: GA MŠk LD12030 Institutional support: RVO:67179843 Keywords : auxin homeostasis * canopy structure and light interception * chronic * acute stress * flavonoid accumulation * plant-plant interactions * stress-induced morphogenic responses (SIMR) * ultraviolet radiation * UVR8 photoreceptor * whole-plant phenotype Subject RIV: EH - Ecology, Behaviour Impact factor: 6.169, year: 2015

  17. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas.

    Science.gov (United States)

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-06-01

    The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant-plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant's lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant-plant interactions was analysed. Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant-plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly driven by plastic and not by genotypic responses to changes in

  18. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  19. A role for SR proteins in plant stress responses.

    Science.gov (United States)

    Duque, Paula

    2011-01-01

    Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.

  20. Do plants modulate biomass allocation in response to petroleum pollution?

    Science.gov (United States)

    Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2010-01-01

    Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution. PMID:20484231

  1. Assessing Cd-induced stress from plant spectral response

    Science.gov (United States)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  2. Seedbed preparation influence on morphometric characteristics of perennial grasses of a semi-arid rangeland in Kenya

    OpenAIRE

    Opiyo, Francis EO; Ekaya, Wellington N; Nyariki, Dickson M; Mureithi, Stephen Mwangi

    2011-01-01

    Semi-arid rangelands in Kenya are an important source of forage for both domestic and wild animals. However, indigenous perennial grasses notably Cenchrus ciliaris (African foxtail grass), Eragrostis superba (Maasai love grass) and Enteropogon macrostachyus (Bush rye grass) are disappearing at an alarming rate. Efforts to re-introduce them through restoration programs have often yielded little success. This can partly be attributed to failure of topsoil to capture and store scarce water to me...

  3. Plant responsiveness to root-root communication of stress cues.

    Science.gov (United States)

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-07-01

    Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.

  4. The Rangeland Vegetation Simulator: A user-driven system for quantifying production, succession, disturbance and fuels in non-forest environments

    Science.gov (United States)

    Matt Reeves; Leonardo Frid

    2016-01-01

    Rangeland landscapes occupy roughly 662 million acres in the coterminous U.S. (Reeves and Mitchell 2011) and their vegetation responds quickly to climate and management, with high relative growth rates and inter-annual variability. Current national decision support systems in the U.S. such as the Interagency Fuels Treatment Decision Support System (IFT-DSS) require...

  5. Methodology for Assessment of Inertial Response from Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit; Teodorescu, Remus; Bak-Jensen, Birgitte

    2012-01-01

    High wind power penetration levels result in additional requirements from wind power in order to improve frequency stability. Replacement of conventional power plants with wind power plants reduces the power system inertia due to the wind turbine technology. Consequently, the rate of change...... of frequency and the maximum frequency deviation increase after a disturbance such as generation loss, load increase, etc. Having no inherent inertial response, wind power plants need additional control concepts in order to provide an additional active power following a disturbance. Several control concepts...... have been implemented in the literature, but the assessment of these control concepts with respect to power system requirements has not been specified. In this paper, a methodology to assess the inertial response from wind power plants is proposed. Accordingly, the proposed methodology is applied...

  6. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.

    Science.gov (United States)

    Nachappa, Punya; Margolies, David C; Nechols, James R; Loughin, Thomas

    2006-01-01

    The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae

  7. Plant community mediation of ecosystem responses to global change factors

    Science.gov (United States)

    Churchill, A. C.

    2017-12-01

    Human alteration of the numerous environmental drivers affecting ecosystem processes is unprecedented in the last century, including changes in climate regimes and rapid increases in the availability of biologically active nitrogen (N). Plant communities may offer stabilizing or amplifying feedbacks mediating potential ecosystem responses to these alterations, and my research seeks to examine the conditions associated with when plant feedbacks are important for ecosystem change. My dissertation research focused on the unintended consequences of N deposition into natural landscapes, including alpine ecosystems which are particularly susceptible to adverse environmental impacts. In particular, I examined alpine plant and soil responses to N deposition 1) across multiple spatial scales throughout the Southern Rocky Mountains, 2) among diverse plant communities associated with unique environmental conditions common in the alpine of this region, and 3) among ecosystem pools of N contributing to stabilization of N inputs within those communities. I found that communities responded to inputs of N differently, often associated with traits of dominant plant species but these responses were intimately linked with the abiotic conditions of each independent community. Even so, statistical models predicting metrics of N processing in the alpine were improved by encompassing both abiotic and biotic components of the main community types.

  8. Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress

    Directory of Open Access Journals (Sweden)

    Marcela eSimontacchi

    2015-11-01

    Full Text Available Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant´s ontogeny and environmental fluctuations.Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant´s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signalling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation.

  9. A nature-based approach for managing the invasive weed species Gutenbergia cordifolia for sustainable rangeland management.

    Science.gov (United States)

    Ngondya, Issakwisa B; Munishi, Linus K; Treydte, Anna C; Ndakidemi, Patrick A

    2016-01-01

    The invasive weed species Gutenbergia cordifolia has been observed to suppress native plants and to dominate more than half of the entire crater floor (250 km 2 ) in the Ngorongoro Conservation Area (NCA). As this species has been found to be toxic to ruminants it might strongly impact animal populations in this ecologically diverse ecosystem. Hence, a nature-based approach is urgently needed to manage its spread. We tested two Desmodium spp extracts applied to G. cordifolia and assessed the latter's germination rate, height, fresh weight and leaf total chlorophyll content after 30 days in both laboratory and screen house experiments. Seedling germination rate was halved by Desmodium uncinatum leaf extract (DuL), particularly under higher concentrations (≥75 %) rather than lower concentrations (≤62.5 %). Likewise, in both laboratory and screen house experiments, germination rate under DuL treatments declined with increasing concentrations. Seedling height, fresh weight and leaf total chlorophyll content (Chl) were also most strongly affected by DuL treatments rather than D. uncinatum root extract, Desmodium intortum leaf extract or D. intortum root extract treatments. Generally, seedlings treated with higher DuL concentrations were half as tall, had one-third the weight and half the leaf Chl content compared to those treated with lower concentrations. Our study shows a novel technique that can be applied where G. cordifolia may be driving native flora and fauna to local extinction. Our data further suggest that this innovative approach is both ecologically safe and effective and that D. uncinatum can be sustainably used to manage invasive plants, and thus, to improve rangeland productivity.

  10. Plant Perception and Short-Term Responses to Phytophagous Insects and Mites

    Directory of Open Access Journals (Sweden)

    M. Estrella Santamaria

    2018-05-01

    Full Text Available Plant–pest relationships involve complex processes encompassing a network of molecules, signals, and regulators for overcoming defenses they develop against each other. Phytophagous arthropods identify plants mainly as a source of food. In turn, plants develop a variety of strategies to avoid damage and survive. The success of plant defenses depends on rapid and specific recognition of the phytophagous threat. Subsequently, plants trigger a cascade of short-term responses that eventually result in the production of a wide range of compounds with defense properties. This review deals with the main features involved in the interaction between plants and phytophagous insects and acari, focusing on early responses from the plant side. A general landscape of the diverse strategies employed by plants within the first hours after pest perception to block the capability of phytophagous insects to develop mechanisms of resistance is presented, with the potential of providing alternatives for pest control.

  11. The molecular mechanism of zinc and cadmium stress response in plants

    NARCIS (Netherlands)

    Lin, Y.F.; Aarts, M.G.M.

    2012-01-01

    When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and

  12. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    Science.gov (United States)

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  13. Plant eco-physiological responses to multiple environmental and climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Rost Albert, K.

    2009-03-15

    The current global changes of temperature, precipitation, atmospheric CO{sub 2} and UV-B radiation impact in concert ecosystems and processes in an unpredictable way. Therefore multifactor experimentation is needed to unravel the variability in strength of these drivers, whether the factors act additively or synergistically and to establish cause-effect relations between ecosystem processes. This thesis deals with heath plant responses to global change factors (the CLIMAITE project). In a Danish temperate heath ecosystem elevated CO{sub 2}, experimental summer drought, and passive nighttime warming was applied in all combinations (based on the scenario for Denmark anno 2075) and the responses after one year of treatment were investigated through a growing season in Hairgrass (Deschampsia flexousa) and Heather (Calluna vulgaris). In a high arctic heath ecosystem situated in NE-Greenland UV-B exclusion experiments were conducted on Salix arctica and Vaccinium uliginosum during six years. Responses of photosynthesis performance were characterized on the leaf scale by means of leaf gas-exchange (A/Ci curves), chlorophyll-a fluorescence, leaf nitrogen, carbon and delta13C and secondary compounds. The main findings were 1) The different growth strategies of the evergreen Calluna versus the opportunistic bi-phasic Deschampsia affects the photosynthesis response to drought and autumn warming; 2) Elevated CO{sub 2} and warming synergistically increase photosynthesis in spring and autumn; 3) Summer drought decreased photosynthesis in both species, but where Calluna maintained photosynthetic metabolism then major proportion of grass leaves wilted down; 4) Elevated CO{sub 2} did not decrease stomatal conductance, but the treatments affected soil water content positively, pointing to the complex water relations when plants of contrasting growth strategy co-occur; 5) Water availability affected the magnitude of photosynthesis to a higher degree than warming and elevated CO{sub 2

  14. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  15. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara; Gottig, Natalia; Garavaglia, Betiana S.; Gehring, Christoph A; Ottado, Jorgelina

    2011-01-01

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  16. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara

    2011-11-03

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  17. Transcriptional plant responses critical for resistance towards necrotrophic pathogens

    Directory of Open Access Journals (Sweden)

    Rainer P. Birkenbihl

    2011-11-01

    Full Text Available Plant defenses aimed at necrotrophic pathogens appear to be genetically complex. Despite the apparent lack of a specific recognition of such necrotrophs by products of major R genes, biochemical, molecular, and genetic studies, in particular using the model plant Arabidopsis, have uncovered numerous host components critical for the outcome of such interactions. Although the JA signaling pathway plays a central role in plant defense towards necrotrophs additional signaling pathways contribute to the plant response network. Transcriptional reprogramming is a vital part of the host defense machinery and several key regulators have recently been identified. Some of these transcription factors positively affect plant resistance whereas others play a role in enhancing host susceptibility towards these phytopathogens.

  18. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  19. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    Science.gov (United States)

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  20. Plant surface wax affects parasitoid's response to host footprints

    Science.gov (United States)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  1. Generation of floor response spectra for a model structure of nuclear power plant

    International Nuclear Information System (INIS)

    Vaidyanathan, C.V.; Kamatchi, P.; Ravichandran, R.; Lakshmanan, N.

    2003-01-01

    The importance of Nuclear power plants and the consequences of a nuclear accident require that the nuclear structures be designed for the most severe environmental conditions. Earthquakes constitutes major design consideration for the system, structures and equipment of a nuclear power plant. The design of structures on ground is based on the ground response spectra. Many important parts of a nuclear power plant facility are attached to the principal parts of the structure and respond in a manner determined by the structural response rather than by the general ground motion to which the structure is supported. Hence the seismic response of equipment is generally based on the response spectrum of the floor on which it is mounted. In this paper such floor response spectra have been generated at different nodes of a chosen model structure of a nuclear power plant. In the present study a detailed nonlinear time history analysis has been carried out on the mathematical model of the chosen Nuclear Power Plant model structure with the spectrum compatible time history. The acceleration response results of the time history analysis has been used in the spectral analysis and the response spectra are generated. Further peak broadening has been done to account for uncertainties in the material properties and soil characteristics. (author)

  2. Plant-parasitic nematodes: towards understanding molecular players in stress responses.

    Science.gov (United States)

    Gillet, François-Xavier; Bournaud, Caroline; Antonino de Souza Júnior, Jose Dijair; Grossi-de-Sa, Maria Fatima

    2017-03-01

    Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Detection of plant adaptation responses to saline environment in rhizosphere using microwave sensing

    International Nuclear Information System (INIS)

    Shimomachi, T.; Kobashikawa, C.; Tanigawa, H.; Omoda, E.

    2008-01-01

    The physiological adaptation responses in plants to environmental stress, such as water stress and salt stress induce changes in physicochemical conditions of the plant, since formation of osmotic-regulatory substances can be formed during the environmental adaptation responses. Strong electrolytes, amino acids, proteins and saccharides are well-known as osmoregulatory substances. Since these substances are ionic conductors and their molecules are electrically dipolar, it can be considered that these substances cause changes in the dielectric properties of the plant, which can be detected by microwave sensing. The dielectric properties (0.3 to 3GHz), water content and water potential of plant leaves which reflect the physiological condition of the plant under salt stress were measured and analyzed. Experimental results showed the potential of the microwave sensing as a method for monitoring adaptation responses in plants under saline environment and that suggested the saline environment in rhizosphere can be detected noninvasively and quantitatively by the microwave sensing which detects the changes in complex dielectric properties of the plant

  4. The COP9 signalosome controls jasmonic acid synthesis and plant responses to herbivory and pathogens.

    Science.gov (United States)

    Hind, Sarah R; Pulliam, Sarah E; Veronese, Paola; Shantharaj, Deepak; Nazir, Azka; Jacobs, Nekaiya S; Stratmann, Johannes W

    2011-02-01

    The COP9 signalosome (CSN) is a multi-protein complex that regulates the activities of cullin-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate proteins in order to target them for proteasomal degradation. The CSN is required for proper plant development. Here we show that the CSN also has a profound effect on plant defense responses. Silencing of genes for CSN subunits in tomato plants resulted in a mild morphological phenotype and reduced expression of wound-responsive genes in response to mechanical wounding, attack by Manduca sexta larvae, and Prosystemin over-expression. In contrast, expression of pathogenesis-related genes was increased in a stimulus-independent manner in these plants. The reduced wound response in CSN-silenced plants corresponded with reduced synthesis of jasmonic acid (JA), but levels of salicylic acid (SA) were unaltered. As a consequence, these plants exhibited reduced resistance against herbivorous M. sexta larvae and the necrotrophic fungal pathogen Botrytis cinerea. In contrast, susceptibility to tobacco mosaic virus (TMV) was not altered in CSN-silenced plants. These data demonstrate that the CSN orchestrates not only plant development but also JA-dependent plant defense responses. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  5. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    Science.gov (United States)

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  6. Limits to understory plant restoration following fuel-reduction treatments in a piñon-juniper woodland.

    Science.gov (United States)

    Redmond, Miranda D; Zelikova, Tamara J; Barger, Nichole N

    2014-11-01

    National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon-juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon-juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments.

  7. Arctic plants are capable of sustained responses to long-term warming

    Directory of Open Access Journals (Sweden)

    Robert T. Barrett

    2016-05-01

    Full Text Available Previous studies have shown that Arctic plants typically respond to warming with increased growth and reproductive effort and accelerated phenology, and that the magnitude of these responses is likely to change over time. We investigated the effects of long-term experimental warming on plant growth (leaf length and reproduction (inflorescence height, reproductive phenology and reproductive effort using 17–19 years of measurements collected as part of the International Tundra Experiment (ITEX at sites near Barrow and Atqasuk, Alaska. During the study period, linear regressions indicated non-significant tendencies towards warming air temperatures at our study sites. Results of our meta-analyses on the effect size of experimental warming (calculated as Hedges’ d indicated species generally responded to warming by increasing inflorescence height, increasing leaf length and flowering earlier, while reproductive effort did not respond consistently. Using weighted least-squares regressions on effect sizes, we found a significant trend towards dampened response to experimental warming over time for reproductive phenology. This tendency was consistent, though non-significant, across all traits. A separate analysis revealed significant trends towards reduced responses to experimental warming during warmer summers for all traits. We therefore propose that tendencies towards dampened plant responses to experimental warming over time are the result of regional warming. These results show that Arctic plants are capable of sustained responses to warming over long periods of time but also suggest that, as the region continues to warm, factors such as nutrient availability, competition and herbivory will become more limiting to plant growth and reproduction than temperature.

  8. Does responsiveness to arbuscular mycorrhizal fungi depend on plant invasive status?

    Science.gov (United States)

    Reinhart, Kurt O; Lekberg, Ylva; Klironomos, John; Maherali, Hafiz

    2017-08-01

    Differences in the direction and degree to which invasive alien and native plants are influenced by mycorrhizal associations could indicate a general mechanism of plant invasion, but whether or not such differences exist is unclear. Here, we tested whether mycorrhizal responsiveness varies by plant invasive status while controlling for phylogenetic relatedness among plants with two large grassland datasets. Mycorrhizal responsiveness was measured for 68 taxa from the Northern Plains, and data for 95 taxa from the Central Plains were included. Nineteen percent of taxa from the Northern Plains had greater total biomass with mycorrhizas while 61% of taxa from the Central Plains responded positively. For the Northern Plains taxa, measurable effects often depended on the response variable (i.e., total biomass, shoot biomass, and root mass ratio) suggesting varied resource allocation strategies when roots are colonized by arbuscular mycorrhizal fungi. In both datasets, invasive status was nonrandomly distributed on the phylogeny. Invasive taxa were mainly from two clades, that is, Poaceae and Asteraceae families. In contrast, mycorrhizal responsiveness was randomly distributed over the phylogeny for taxa from the Northern Plains, but nonrandomly distributed for taxa from the Central Plains. After controlling for phylogenetic similarity, we found no evidence that invasive taxa responded differently to mycorrhizas than other taxa. Although it is possible that mycorrhizal responsiveness contributes to invasiveness in particular species, we find no evidence that invasiveness in general is associated with the degree of mycorrhizal responsiveness. However, mycorrhizal responsiveness among species grown under common conditions was highly variable, and more work is needed to determine the causes of this variation.

  9. Unraveling the response of plant cells to cytotoxic saponins

    Science.gov (United States)

    Balestrazzi, Alma; Macovei, Anca; Tava, Aldo; Avato, Pinarosa; Raimondi, Elena

    2011-01-01

    A wide range of pharmacological properties are ascribed to natural saponins, in addition to their biological activities against herbivores, plant soil-borne pathogens and pests. As for animal cells, the cytotoxicity and the chemopreventive role of saponins are mediated by a complex network of signal transduction pathways which include reactive oxygen species (ROS) and nitric oxide (NO). The involvement of other relevant components of the saponin-related signaling routes, such as the Tumor Necrosis Factor (TNF)α, the interleukin (IL)-6 and the Nuclear Transcription FactorκB (NFκB), has been highlighted in animal cells. By contrast, information concerning the response of plant cells to saponins and the related signal transduction pathways is almost missing. To date, there are only a few common features which link plant and animal cells in their response to saponins, such as the early burst in ROS and NO production and the induction of metallothioneins (MTs), small cysteine-rich, metal-binding proteins. This aspect is discussed in the present paper in view of the recent hypothesis that MTs and NO are part of a novel signal transduction pathway participating in the cell response to oxidative stress. PMID:21673512

  10. A review of major factors influencing plant responses to recreation impacts

    Science.gov (United States)

    Kuss, Fred R.

    1986-09-01

    This article reviews some of the more important factors found to influence the susceptibility of plants to trampling impacts associated with recreational use of natural areas. A three-way interaction mediates plant responses to impacts: plant x environment x stress level(s). Plant responses vary in part according to the genetic constitution of the plant, life and growth form, the adaptive flexibility of the plant, and anatomical differences inherent to growth habit and morphology. Other factors that influence plant sensitivities to impacts are the habitat environments in which plants grow, since a number of conditions such as moisture excesses or deficiencies, nitrogen or oxygen starvation, late frosts, etc., cause physiological injury and may increase plant sensitivity to impacts. Among the environmental factors that may increase or lessen plant sensitivities to impacts are soil moisture levels, canopy density, elevation, aspect, microclimate, soil drainage, texture, fertility and productivity. Seasonal influences also bear consideration since environmental changes and phonological and physiological events are mediated by time of year. Stresses are caused by both direct and indirect forms of impact and vary according to season of use, frequency and amount of use, and the type of activity. These interactions are further complicated by evidence that inter- and intraspecific competition, antagonism, and commensalism may influence differences in the sensitivity of plant communities to impacts.

  11. ‘Omics’ and Plant Responses to Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Synan F. AbuQamar

    2016-11-01

    Full Text Available Botrytis cinerea is a dangerous plant pathogenic fungus with wide host ranges. This aggressive pathogen uses multiple weapons to invade and cause serious damages on its host plants. The continuing efforts of how to solve the puzzle of the multigenic nature of B. cinerea’s pathogenesis and plant defense mechanisms against the disease caused by this mold, the integration of omic approaches, including genomics, transcriptomics, proteomics and metabolomics, along with functional analysis could be a potential solution. Omic studies will provide a foundation for development of genetic manipulation and breeding programs that will eventually lead to crop improvement and protection. In this mini-review, we will highlight the current progresses in research in plant stress responses to B. cinerea using high-throughput omic technologies. We also discuss the opportunities that omic technologies can provide to research on B. cinerea-plant interactions as an example showing the impacts of omics on agricultural research.

  12. Aquatic emergency response model at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1987-01-01

    The Savannah River Plant emergency response plans include a stream/river emergency response model to predict travel times, maximum concentrations, and concentration distributions as a function of time at selected downstream/river locations from each of the major SRP installations. The menu driven model can be operated from any of the terminals that are linked to the real-time computer monitoring system for emergency response

  13. The influence of grazing intensity on soil properties and degradation processes in Mediterranean rangelands (Extremadura, SW Spain)

    Science.gov (United States)

    Pulido-Fernández, Manuel; Schnabel, Susanne; Francisco Lavado-Contador, Joaquín

    2014-05-01

    Rangelands cover vast extensions of land in Spain (>90,000 km2), where a total amount of 13 millions of domestic animals graze extensively their pastures. By clear-cutting shrubs, removing selected trees and by cultivation, these rangelands were created from former Mediterranean oak forests, mainly composed by holm oak and cork oak (Quercus ilex rotundifolia and Q. suber) as tree species, Nowadays this land system is exploited economically in large farms (>100 ha), most of them held on private ownership (80% of total) and dedicated to extensive ranching. Overgrazing is common and the excessive stocking rates may deteriorate soil quality, causing economic losses and environmental damage. Many studies have been developed on the effects of livestock grazing over soil properties and degradation processes, most of them by only comparing extreme cases (e.g. ungrazed vs. grazed or overgrazed areas). The main goal of this study is to contribute to the understanding on how animal grazing affects soil properties and degradation processes. The study is particularly focused on soil compaction and sheet erosion as related to the reduction of vegetation cover by defoliation. Soil properties were analysed from 119 environmental units selected from 56 farms distributed throughout the region of Extremadura (SW Spain). The units are representative of different rangeland types, i.e. scrublands of Retama sphaerocarpa, dehesas (wooded rangelands) and treeless grasslands. Soil surface cover was determined along transects in September 2010 (antecedent rainfall: 413-923 mm) considering the following classes: bare ground, grasses, mosses, litter, stones (<2 mm) and rock outcrops. Farmer interviews were also conducted in order to quantify stocking rates and to assess land management in 12 out of 56 farms. In the farms where transects and farmer interviews could not be carried out, bare soil surface and livestock densities were estimated. Bare soil surface was determined by classifying

  14. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  15. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1.

    Science.gov (United States)

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.

  16. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    Directory of Open Access Journals (Sweden)

    Yuling Bai

    2018-06-01

    Full Text Available In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  17. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants.

    Science.gov (United States)

    Gratão, Priscila Lupino; Monteiro, Carolina Cristina; Tezotto, Tiago; Carvalho, Rogério Falleiros; Alves, Letícia Rodrigues; Peters, Leila Priscila; Azevedo, Ricardo Antunes

    2015-10-01

    Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism.

  18. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    NARCIS (Netherlands)

    Jansen, J.J.; Van Dam, N.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2009-01-01

    Background Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their

  19. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    NARCIS (Netherlands)

    Jansen, J.J.; van Dam, N.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2009-01-01

    Background: Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their

  20. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress

    Science.gov (United States)

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E.

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant’s ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant’s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation. PMID:26617619

  1. Spatial distribution of overland flow and sediment yield in semi-arid rangelands

    International Nuclear Information System (INIS)

    Sarah, P.; Lavee, H.

    2009-01-01

    Feedbacks and mutual links exist among soil, vegetation and water; they enable co-evolution of these features within eco-geomorphic systems, These relations are fragile, especially in semi-arid areas where grazing is the main land use. The simples subdivision of the surface of many semi-arid rangelands is into a two-component mosaic pattern comprising shrub patches interspersed with open spaces, with the former acting s skinks for water and other resources, and the latter as sources. However close observations in areas under grazing in the northern Negev region of Israel suggested that the spatial patterns of surface components is more complicated, and that the open space between shrubs consists of two components: herbaceous areas, separated by trampling routes that support no vegetation. (Author)

  2. Trial application of guidelines for nuclear plant response to an earthquake

    International Nuclear Information System (INIS)

    Schmidt, W.; Oliver, R.; O'Connor, W.

    1993-09-01

    Guidelines have been developed to assist nuclear plant personnel in the preparation of earthquake response procedures for nuclear power plants. These guidelines are published in EPRI report NP-6695, ''Guidelines for Nuclear Plant Response to an Earthquake,'' dated December 1989. This report includes two sets of nuclear plant procedures which were prepared to implement the guidelines of EPRI report NP-6695. The first set were developed by the Toledo Edison Company Davis-Besse plant. Davis-Besse is a pressurized water reactor (PWR) and contains relatively standard seismic monitoring instrumentation typical of many domestic nuclear plants. The second set of procedures were prepared by Yankee Atomic Electric Company for the Vermont Yankee facility. This plant is a boiling water reactor (BWR) with state-of-the-art seismic monitoring and PC-based data processing equipment, software developed specifically to implement the OBE Exceedance Criterion presented in EPRI report NP-5930, ''A Criterion for Determining Exceedance of the operating Basis Earthquake.'' The two sets of procedures are intended to demonstrate how two different nuclear utilities have interpreted and applied the EPRI guidance given in report NP-6695

  3. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    Science.gov (United States)

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  4. Environmentally Optimal, Nutritionally Aware Beef Replacement Plant-Based Diets.

    Science.gov (United States)

    Eshel, Gidon; Shepon, Alon; Noor, Elad; Milo, Ron

    2016-08-02

    Livestock farming incurs large and varied environmental burdens, dominated by beef. Replacing beef with resource efficient alternatives is thus potentially beneficial, but may conflict with nutritional considerations. Here we show that protein-equivalent plant based alternatives to the beef portion of the mean American diet are readily devisible, and offer mostly improved nutritional profile considering the full lipid profile, key vitamins, minerals, and micronutrients. We then show that replacement diets require on average only 10% of land, 4% of greenhouse gas (GHG) emissions, and 6% of reactive nitrogen (Nr) compared to what the replaced beef diet requires. Applied to 320 million Americans, the beef-to-plant shift can save 91 million cropland acres (and 770 million rangeland acres), 278 million metric ton CO2e, and 3.7 million metric ton Nr annually. These nationwide savings are 27%, 4%, and 32% of the respective national environmental burdens.

  5. Green thermoelectrics: Observation and analysis of plant thermoelectric response

    Directory of Open Access Journals (Sweden)

    Goupil Christophe

    2016-01-01

    Full Text Available Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant’s electrophysiological response. therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

  6. Real-time information support for managing plant emergency responses

    International Nuclear Information System (INIS)

    Cain, D.G.; Lord, R.J.; Wilkinson, C.D.

    1983-01-01

    The Three Mile Island Unit 2 accident highlighted the need to develop a systematic approach to managing plant emergency responses, to identify a better decision-making process, and to implement real-time information support for decision-making. The overall process management function is described and general information requirements for management of plant emergencies are identified. Basic information systems are being incorporated and future extensions and problem areas are discussed. (U.K.)

  7. Effect of foundation embedment on the seismic response of a high-temperature gas-cooled reactor plant

    International Nuclear Information System (INIS)

    Lee, T.H.; Thompson, R.W.; Charman, C.M.

    1983-01-01

    The effects of soil-structure interaction during seismic events upon the dynamic response of a High Temperature Gas-Cooled Reactor plant (HTGR) have been investigated for both surface-founded and embedded basemats. The influence from foundation embedment has been quantitatively assessed through a series of theoretical studies on plants of various sizes. The surface-founded analyses were performed using frequency-independent soil impedance parameters, while the embedded plant analyses utilized finite element models simulated on the FLUSH computer program. The seismic response of the surface-founded plants has been used to establish the standard-site design in-structure response spectra. These analyses were performed by using the linear modal formulation based on conventional soil stiffness and damping values. They serve as reference solutions to which the response data of the corresponding embedded plants are compared. In these comparison studies the responses of embedded plants were generally found to be lower than those of the corresponding surface-founded plants. Additional studies on the surface-founded plants have recently been performed by considering inelastic soil behavior. These inelastic solutions, which treat the soil as an elasto-plastic medium exhibiting hysteretic unloading-reloading characteristics in time, have reduced the response of surface-founded plants. Numerical results are presented in terms of in-structure response spectra along with other pertinent seismic load data at key levels of the plant. Analysis techniques for future studies using viscoelastic halfspace representation and inelastic finite element modeling for soil are also discussed

  8. Stress Response to High Magnetic Fields in Transgenic Arabidopsis thaliana Plants.

    Science.gov (United States)

    Morgan, A. N.; Watson, B. C.; Maloney, J. R.; Meisel, M. W.; Brooks, J. S.; Paul, A.-L.; Ferl, R. J.

    2000-03-01

    With increasingly greater strength magnetic fields becoming available in research and medicine, the response of living tissue exposed to high magnetic fields has come under investigation. In this experiment, genetically engineered arabidopsis plants were exposed to homogeneous magnetic fields of varying strengths using a superconducting NMR magnet (0 to 9 T) at UF and a resistive magnet (0 to 25 T) at the NHMFL. The engineered plants produce the enzyme β-glucaronidase (GUS) when under stressful environmental conditions. The level of GUS activity is determined through qualitative histochemical assays and quantitative fluorometric assays. The control group of plants experienced baseline levels of GUS activity, but some of the plants that were exposed to magnetic fields in excess of 9 T show increased stress response. Additional information is available at http://www.phys.ufl.edu/ ~meisel/maglev.htm.

  9. Responsiveness of performance and morphological traits to experimental submergence predicts field distribution pattern of wetland plants

    NARCIS (Netherlands)

    Luo, Fang-Li; Huang, Lin; Lei, Ting; Xue, Wei; Li, Hong-Li; Yu, Fei-Hai; Cornelissen, J.H.C.

    2016-01-01

    Question: Plant trait mean values and trait responsiveness to different environmental regimes are both important determinants of plant field distribution, but the degree to which plant trait means vs trait responsiveness predict plant distribution has rarely been compared quantitatively. Because

  10. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation

    International Nuclear Information System (INIS)

    Conconi, A.; Smerdon, M.J.; Howe, G.A.; Ryan, C.A.

    1996-01-01

    Many plant genes that respond to environmental and developmental changes are regulated by jasmonic acid, which is derived from linolenic acid via the octadecanoid pathway. Linolenic acid is an important fatty-acid constituent of membranes in most plant species and its intracellular levels increase in response to certain signals. Here we report that irradiation of tomato leaves with ultraviolet light induces the expression of several plant defensive genes that are normally activated through the octadecanoid pathway after wounding. The response to ultraviolet light is blocked by an inhibitor of the octadecanoid pathway and it does not occur in a tomato mutant defective in this pathway. The ultraviolet irradiation maximally induces the defence genes at levels where cyclobutane pyrimidine dimer formation, an indicator of DNA damage, is less than 0.2 dimers per gene. Our evidence indicates that this plant defence response to certain wavelengths of ultraviolet radiation requires the activation of the octadecanoid defence signalling pathway. (author)

  11. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    Science.gov (United States)

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  12. Impact of grazing on range plant community components under arid Mediterranean climate in northern Syria

    NARCIS (Netherlands)

    Niane, A.A.

    2013-01-01

    Keywords: Rotational grazing, full protection, continuous grazing species richness,

    species diversity, soil seed bank, Bayesian methods, Salsola vermiculata, seed

    longevity, rangeland management, Syria.

    Rangelands represent 70% of the semi-arid and arid

  13. Good and bad protons: genetic aspects of acidity stress responses in plants.

    Science.gov (United States)

    Shavrukov, Yuri; Hirai, Yoshihiko

    2016-01-01

    Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Multifrequency passive microwave observations of soil moisture in an arid rangeland environment

    Science.gov (United States)

    Jackson, T. J.; Schmugge, T. J.; Parry, R.; Kustas, W. P.; Ritchie, J. C.; Shutko, A. M.; Khaldin, A.; Reutov, E.; Novichikhin, E.; Liberman, B.

    1992-01-01

    A cooperative experiment was conducted by teams from the U.S. and U.S.S.R. to evaluate passive microwave instruments and algorithms used to estimate surface soil moisture. Experiments were conducted as part of an interdisciplinary experiment in an arid rangeland watershed located in the southwest United States. Soviet microwave radiometers operating at wavelengths of 2.25, 21 and 27 cm were flown on a U.S. aircraft. Radio frequency interference limited usable data to the 2.25 and 21 cm systems. Data have been calibrated and compared to ground observations of soil moisture. These analyses showed that the 21 cm system could produce reliable and useful soil moisture information and that the 2.25 cm system was of no value for soil moisture estimation in this experiment.

  15. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA),

  16. Evaluation of Rambouillet, Polypay, and Romanov-White Dorper x Rambouillet ewes mated to terminal sires in an extensive rangeland production system: Lamb production

    Science.gov (United States)

    Ewe productivity (i.e., total numbers or weight of lamb weaned ÷ number of breeding ewes) is a key indicator of lamb production efficiency. This second-generation study compared various measures of ewe productivity and ewe and lamb performance in an extensive rangeland production system of ewes of 3...

  17. Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2018-03-01

    Full Text Available Phytohormones regulate numerous important biological processes in plant development and biotic/abiotic stress response cascades. More than 50 and 100 years have passed since the initial discoveries of the phytohormones abscisic acid (ABA and gibberellins (GA, respectively. Over the past several decades, numerous elegant studies have demonstrated that ABA and GA antagonistically regulate many plant developmental processes, including seed maturation, seed dormancy and germination, root initiation, hypocotyl and stem elongation, and floral transition. Furthermore, as a well-established stress hormone, ABA plays a key role in plant responses to abiotic stresses, such as drought, flooding, salinity and low temperature. Interestingly, recent evidence revealed that GA are also involved in plant response to adverse environmental conditions. Consequently, the complex crosstalk networks between ABA and GA, mediated by diverse key regulators, have been extensively investigated and documented. In this updated mini-review, we summarize the most recent advances in our understanding of the antagonistically regulatory roles of ABA and GA in different stages of plant development and in various plant–environment interactions, focusing on the crosstalk between ABA and GA at the levels of phytohormone metabolism and signal transduction.

  18. Demand Response Integration Through Agent-Based Coordination of Consumers in Virtual Power Plants

    DEFF Research Database (Denmark)

    Clausen, Anders; Umair, Aisha; Ma, Zheng

    2016-01-01

    of industrial loads. Coordination happens in response to Demand Response events, while considering local objectives in the industrial domain. We illustrate the applicability of our approach on a Virtual Power Plant scenario with three simulated greenhouses. The results suggest that the proposed design is able...... Power Plant design that is able to balance the demand of energy-intensive, industrial loads with the supply situation in the electricity grid. The proposed Virtual Power Plant design uses a novel inter-agent, multi-objective, multi-issue negotiation mechanism, to coordinate the electricity demands...... to coordinate the electricity demands of industrial loads, in compliance with external Demand Response events....

  19. The Effect of the Habitat Type on Soil and Plant Diversity Properties in Natural Ecosystems in the Northern Alborz (Case Study: Vaz Watershed

    Directory of Open Access Journals (Sweden)

    M. Salarvand

    2016-09-01

    Full Text Available This study aimed to compare plant species diversity indices (diversity and richness and some physico-chemical properties of soil among forest, ecotone and rangeland habitats. Vegetation sampling was done randomly at each habitat. One dominant community was selected in each habitat and one key area was distinguished in each community and 8×1m2 plots were randomly established in each key area. In each plot, the list of existing plants and cover percentage for each species were determined and soil samples were taken from depths of 0-10 cm. The Shannon-Wiener and Simpson diversity indices and Margalef and Menhinic richness indices were estimated using PAST software. Physical and chemical characteristics of the soil were compared at three sites by analysis of variance (One Way ANOVA. The results showed that the lowest and highest values of all species diversity and richness were occurred in forest and ecotone habitats, respectively. Bulk density, sand and pH value of soil were significantly the highest in the rangeland. The percentage of clay and organic carbon in forest habitat were higher than the two other habitats. This study revealed the importance of ecotone in preserving the diversity and species richness.

  20. Construction and comparison of gene co-expression networks shows complex plant immune responses

    Directory of Open Access Journals (Sweden)

    Luis Guillermo Leal

    2014-10-01

    Full Text Available Gene co-expression networks (GCNs are graphic representations that depict the coordinated transcription of genes in response to certain stimuli. GCNs provide functional annotations of genes whose function is unknown and are further used in studies of translational functional genomics among species. In this work, a methodology for the reconstruction and comparison of GCNs is presented. This approach was applied using gene expression data that were obtained from immunity experiments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation of diverse similarity metrics for the GCN reconstruction, we recommended the mutual information coefficient measurement and a clustering coefficient-based method for similarity threshold selection. To compare GCNs, we proposed a multivariate approach based on the Principal Component Analysis (PCA. Branches of plant immunity that were exemplified by each experiment were analyzed in conjunction with the PCA results, suggesting both the robustness and the dynamic nature of the cellular responses. The dynamic of molecular plant responses produced networks with different characteristics that are differentiable using our methodology. The comparison of GCNs from plant pathosystems, showed that in response to similar pathogens plants could activate conserved signaling pathways. The results confirmed that the closeness of GCNs projected on the principal component space is an indicative of similarity among GCNs. This also can be used to understand global patterns of events triggered during plant immune responses.

  1. Responses of soilless grown tomato plants to arbuscular ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Full Length Research Paper. Responses of soilless grown tomato plants to arbuscular mycorrhizal fungal (Glomus fasciculatum) colonization in re-cycling and open systems. H. Yildiz Dasgan1*, Sebnem Kusvuran1 and Ibrahim Ortas2. 1Cukurova University, Faculty of Agriculture, Department of Horticulture ...

  2. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.

    Science.gov (United States)

    Wang, Bin; Waters, Cathy; Orgill, Susan; Gray, Jonathan; Cowie, Annette; Clark, Anthony; Liu, De Li

    2018-07-15

    Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this potential, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal fractional cover data; SFC) together with elevation, lithology, climatic data and observed soil data to map the spatial distribution of SOC at two soil depths (0-5cm and 0-30cm) in semi-arid rangelands of eastern Australia. Overall, model performance statistics showed that random forest (RF) and boosted regression trees (BRT) models performed better than support vector machine (SVM). The models obtained moderate results with R 2 of 0.32 for SOC stock at 0-5cm and 0.44 at 0-30cm, RMSE of 3.51MgCha -1 at 0-5cm and 9.16MgCha -1 at 0-30cm without considering SFC covariates. In contrast, by including SFC, the model accuracy for predicting SOC stock improved by 7.4-12.7% at 0-5cm, and by 2.8-5.9% at 0-30cm, highlighting the importance of including SFC to enhance the performance of the three modelling techniques. Furthermore, our models produced a more accurate and higher resolution digital SOC stock map compared with other available mapping products for the region. The data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. On the role of salicylic acid in plant responses to environmental stresses

    DEFF Research Database (Denmark)

    Hernández, José A.; Diaz-Vivancos, Pedro; Barba Espin, Gregorio

    2017-01-01

    (NPR1), which is one of the few known redox-regulated proteins in plants. Different synthetic chemicals are able to mimic the ability of SA to activate resistance to various stresses, both biotic and abiotic, in plants with agronomic interest. Among these chemicals, 2,6-dichloroisonicotinic acid (INA......Salicylic acid (SA) is a plant hormone more commonly known by its role in human medicine than in the field of plant physiology. However, in the last two decades, SA has been described as an important signalling molecule in plants regulating growth, development and response to a wide number...... of biotic and abiotic stresses. Indeed, actually, it is well known that SA is a key signalling molecule involved in systemic acquired resistance (SAR), and recent works reported a role for SA in the response to salt or drought stresses. The precise mode of the stress hormone SA action is unclear, although...

  4. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process.

    Science.gov (United States)

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2018-01-01

    Phytoremediation is a low cost technology based on the use of plants to remove a wide range of pollutants from the environment, including the insecticide DDT. However, some pollutants are known to enhance generation of reactive oxygen species (ROS), which can generate toxic effects on plants affecting the phytoremediation efficiency. This study aims to analyze the potential use of antioxidant responses as a measure of tolerance to select plants for phytoremediation purposes. Tomato and zucchini plants were grown for 15 days in soils contaminated with DDTs (DDT + DDE + DDD). Protein content, glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were measured in plant tissues. Exposure to DDTs did not affect protein content or CAT activity in any of the species. GST, GR and GPx activity showed different responses in exposed and control tomato plants. After DDTs exposure, tomato showed increased GR and GPX activity in stems and leaves, respectively, and a decrease in the GST activity in roots. As no effects were observed in zucchini, results suggest different susceptibility and/or defense mechanisms involved after pesticide exposure. Finally, both species differed also in terms of DDTs uptake and translocation. The knowledge about antioxidant responses induced by pesticides exposure could be helpful for planning phytoremediation strategies and for the selection of tolerant species according to particular scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Habitat‐ and rainfall‐dependent biodiversity responses to cattle removal in an arid woodland–grassland environment.

    Science.gov (United States)

    Frank, Anke S K; Wardle, Glenda M; Dickman, Chris R; Greenville, Aaron C

    Biodiversity conservation in rangeland environments is often addressed by removing livestock, but inconsistent responses by biota mean that the efficacy of this form of management is hotly debated. Reasons for this inconsistency include the usually short duration and small spatial scale of manipulations compared to the area of grazing properties, as well as divergent responses amongst biota. In low-productivity arid environments, the pulse-reserve dynamic also complicates the outcome of manipulations. Here, we tested and extended these ideas in a heterogeneous desert environment in central Australia that consists of small patches of open woodland (gidgee) in a grassland (spinifex) matrix. Taking advantage of a controlled property-scale removal of cattle, and a rain event that stimulated productivity, we first quantified differences in the vegetation and small vertebrates of these two habitats, and then tracked the diversity, composition, and abundance of these biota for 6–19 months post-rain. We predicted that the two habitats would differ in the structure, composition, and reproductive output of their constituent plant species. We predicted also that the effects of cattle removal would interact with these habitat differences, with the abundance, richness, and diversity of small mammals and reptiles differing across habitats and grazing treatments. As anticipated, plant species composition in woodland was distinct from that in grassland and varied over time. The effects of cattle removal were habitat specific: Plant composition responded to de-stocking in woodland, but not in grassland; flowers were more abundant, and palatable plant cover also was greater following cessation of grazing pressure. The responses of small mammals but not reptiles showed some accord with our predictions, varying over time but inconsistently with treatment, and perhaps reflected high variability in capture success. We conclude that the timing and length of sampling are important when

  6. Plant control impact on IFR power plant passive safety response

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1993-01-01

    A method is described for optimizing the closed-loop plant control strategy with respect to safety margins sustained in the unprotected upset response of a liquid metal reactor. The optimization is performed subject to the normal requirements for reactor startup, load change and compensation for reactivity changes over the cycle. The method provides a formal approach to the process of exploiting the innate self-regulating property of a metal fueled reactor to make it less dependent on operator action and less vulnerable to automatic control system fault and/or operator error

  7. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays.

    Science.gov (United States)

    Ogle, Kiona; Reynolds, James F

    2004-10-01

    The 'two-layer' and 'pulse-reserve' hypotheses were developed 30 years ago and continue to serve as the standard for many experiments and modeling studies that examine relationships between primary productivity and rainfall variability in aridlands. The two-layer hypothesis considers two important plant functional types (FTs) and predicts that woody and herbaceous plants are able to co-exist in savannas because they utilize water from different soil layers (or depths). The pulse-reserve model addresses the response of individual plants to precipitation and predicts that there are 'biologically important' rain events that stimulate plant growth and reproduction. These pulses of precipitation may play a key role in long-term plant function and survival (as compared to seasonal or annual rainfall totals as per the two-layer model). In this paper, we re-evaluate these paradigms in terms of their generality, strengths, and limitations. We suggest that while seasonality and resource partitioning (key to the two-layer model) and biologically important precipitation events (key to the pulse-reserve model) are critical to understanding plant responses to precipitation in aridlands, both paradigms have significant limitations. Neither account for plasticity in rooting habits of woody plants, potential delayed responses of plants to rainfall, explicit precipitation thresholds, or vagaries in plant phenology. To address these limitations, we integrate the ideas of precipitation thresholds and plant delays, resource partitioning, and plant FT strategies into a simple 'threshold-delay' model. The model contains six basic parameters that capture the nonlinear nature of plant responses to pulse precipitation. We review the literature within the context of our threshold-delay model to: (i) develop testable hypotheses about how different plant FTs respond to pulses; (ii) identify weaknesses in the current state-of-knowledge; and (iii) suggest future research directions that will

  8. Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea.

    Science.gov (United States)

    Salla, Tamiris D; Astarita, Leandro V; Santarém, Eliane R

    2016-04-01

    Elicitation of E. grandis plants with Streptomyces PM9 reduced the gray-mold disease, through increasing the levels of enzymes directly related to the induction of plant defense responses, and accumulation of specific phenolic compounds. Members of Eucalyptus are economically important woody species, especially as a raw material in many industrial sectors. Species of this genus are susceptible to pathogens such as Botrytis cinerea (gray mold). Biological control of plant diseases using rhizobacteria is one alternative to reduce the use of pesticides and pathogen attack. This study evaluated the metabolic and phenotypic responses of Eucalyptus grandis and E. globulus plants treated with Streptomyces sp. PM9 and challenged with the pathogenic fungus B. cinerea. Metabolic responses were evaluated by assessing the activities of the enzymes polyphenol oxidase and peroxidase as well as the levels of phenolic compounds and flavonoids. The incidence and progression of the fungal disease in PM9-treated plants and challenged with B. cinerea were evaluated. Treatment with Streptomyces sp. PM9 and challenge with B. cinerea led to changes in the activities of polyphenol oxidase and peroxidase as well as in the levels of phenolic compounds in the plants at different time points. Alterations in enzymes of PM9-treated plants were related to early defense responses in E. grandis. Gallic and chlorogenic acids were on average more abundant, although caffeic acid, benzoic acid and catechin were induced at specific time points during the culture period. Treatment with Streptomyces sp. PM9 significantly delayed the establishment of gray mold in E. grandis plants. These results demonstrate the action of Streptomyces sp. PM9 in inducing plant responses against B. cinerea, making this organism a potential candidate for biological control in Eucalyptus.

  9. Plant Response to TSWV and Seed Accumulation of Resveratrol in Peanut

    Science.gov (United States)

    Biotic and abiotic stress may induce peanut plants to produce a high amount of resveratrol. The relationship of plant response to tomato spotted wilt virus (TSWV) and seed accumulation of resveratrol was investigated. Twenty peanut accessions and six wild relatives were selected from the US peanut g...

  10. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  11. The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed

    Science.gov (United States)

    Nichols, Mary H.; Magirl, Christopher S.; Sayre, N.F.; Shaw, Jeremy R.

    2018-01-01

    Control over water supply and distribution is critical for agriculture in drylands where manipulating surface runoff often serves the dual purpose of erosion control. However, little is known of the geomorphic impacts and legacy effects of rangeland water manipulation infrastructure, especially if not maintained. This study investigated the geomorphic impacts of structures such as earthen berms, water control gates, and stock tanks, in a semiarid rangeland in the southwestern USA that is responding to both regional channel incision that was initiated over a century ago, and a more recent land use change that involved cattle removal and abandonment of structures. The functional condition of remnant structures was inventoried, mapped, and assessed using aerial imagery and lidar data. Headcut initiation, scour, and channel incision associated with compromised lateral channel berms, concrete water control structures, floodplain water spreader berms, and stock tanks were identified as threats to floodplains and associated habitat. Almost half of 27 identified lateral channel berms (48%) have been breached and 15% have experienced lateral scour; 18% of 218 shorter water spreader berms have been breached and 17% have experienced lateral scour. A relatively small number of 117 stock tanks (6%) are identified as structurally compromised based on analysis of aerial imagery, although many currently do not provide consistent water supplies. In some cases, the onset of localized disturbance is recent enough that opportunities for mitigation can be identified to alter the potentially damaging erosion trajectories that are ultimately driven by regional geomorphic instability. Understanding the effects of prior land use and remnant structures on channel and floodplain morphologic condition is critical because both current land management and future land use options are constrained by inherited land use legacy effects.

  12. Influencing adaptation processes on the Australian rangelands for social and ecological resilience

    Directory of Open Access Journals (Sweden)

    Nadine A. Marshall

    2014-06-01

    Full Text Available Resource users require the capacity to cope and adapt to climate changes affecting resource condition if they, and their industries, are to remain viable. Understanding individual-scale responses to a changing climate will be an important component of designing well-targeted, broad-scale strategies and policies. Because of the interdependencies between people and ecosystems, understanding and supporting resilience of resource-dependent people may be as important an aspect of effective resource management as managing the resilience of ecological components. We refer to the northern Australian rangelands as an example of a system that is particularly vulnerable to the impacts of climate change and look for ways to enhance the resilience of the system. Vulnerability of the social system comprises elements of adaptive capacity and sensitivity to change (resource dependency as well as exposure, which is not examined here. We assessed the adaptive capacity of 240 cattle producers, using four established dimensions, and investigated the association between adaptive capacity and climate sensitivity (or resource dependency as measured through 14 established dimensions. We found that occupational identity, employability, networks, strategic approach, environmental awareness, dynamic resource use, and use of technology were all positively correlated with at least one dimension of adaptive capacity and that place attachment was negatively correlated with adaptive capacity. These results suggest that adaptation processes could be influenced by focusing on adaptive capacity and these aspects of climate sensitivity. Managing the resilience of individuals is critical to processes of adaptation at higher levels and needs greater attention if adaptation processes are to be shaped and influenced.

  13. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story

    Directory of Open Access Journals (Sweden)

    Magdalena Czolpinska

    2018-03-01

    Full Text Available Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures, these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.

  14. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  15. Using RapidEye and MODIS Data Fusion to Monitor Vegetation Dynamics in Semi-Arid Rangelands in South Africa

    Directory of Open Access Journals (Sweden)

    Andreas Tewes

    2015-05-01

    Full Text Available Image time series of high temporal and spatial resolution capture land surface dynamics of heterogeneous landscapes. We applied the ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model algorithm to multi-spectral images covering two semi-arid heterogeneous rangeland study sites located in South Africa. MODIS 250 m resolution and RapidEye 5 m resolution images were fused to produce synthetic RapidEye images, from June 2011 to July 2012. We evaluated the performance of the algorithm by comparing predicted surface reflectance values to real RapidEye images. Our results show that ESTARFM predictions are accurate, with a coefficient of determination for the red band 0.80 < R2 < 0.92, and for the near-infrared band 0.83 < R2 < 0.93, a mean relative bias between 6% and 12% for the red band and 4% to 9% in the near-infrared band. Heterogeneous vegetation at sub-MODIS resolution is captured adequately: A comparison of NDVI time series derived from RapidEye and ESTARFM data shows that the characteristic phenological dynamics of different vegetation types are reproduced well. We conclude that the ESTARFM algorithm allows us to produce synthetic remote sensing images at high spatial combined with high temporal resolution and so provides valuable information on vegetation dynamics in semi-arid, heterogeneous rangeland landscapes.

  16. How a retrotransposon exploits the plant's heat stress response for its activation.

    Directory of Open Access Journals (Sweden)

    Vladimir V Cavrak

    2014-01-01

    Full Text Available Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.

  17. Response of plant species to coal-mine soil materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Tucker, T.C.; Thames, J.L.

    1983-03-01

    The two-year Black Mesa Coal Mine Research Study on the area near Kayenta, Arizona investigating the growth and establishment of seven plant species in unmined soil and coal-mined soils found that plant species grew better in unmined soil and that irrigation is essential during seedling establishment for the effective stabilization of coal-mined soils in a semi-arid environment. Differences among the species included variations in germination, response to irrigation, seedling establishment, and stem growth. 12 references, 2 figures, 2 tables.

  18. The Role of Plant Cell Wall Proteins in Response to Salt Stress

    Directory of Open Access Journals (Sweden)

    Lyuben Zagorchev

    2014-01-01

    Full Text Available Contemporary agriculture is facing new challenges with the increasing population and demand for food on Earth and the decrease in crop productivity due to abiotic stresses such as water deficit, high salinity, and extreme fluctuations of temperatures. The knowledge of plant stress responses, though widely extended in recent years, is still unable to provide efficient strategies for improvement of agriculture. The focus of study has been shifted to the plant cell wall as a dynamic and crucial component of the plant cell that could immediately respond to changes in the environment. The investigation of plant cell wall proteins, especially in commercially important monocot crops revealed the high involvement of this compartment in plants stress responses, but there is still much more to be comprehended. The aim of this review is to summarize the available data on this issue and to point out the future areas of interest that should be studied in detail.

  19. BRIC-17 Mapping Spaceflight-Induced Hypoxic Signaling and Response in Plants

    Science.gov (United States)

    Gilroy, Simon; Choi, Won-Gyu; Swanson, Sarah

    2012-01-01

    Goals of this work are: (1) Define global changes in gene expression patterns in Arabidopsis plants grown in microgravity using whole genome microarrays (2) Compare to mutants resistant to low oxygen challenge using whole genome microarrays Also measuring root and shoot size Outcomes from this research are: (1) Provide fundamental information on plant responses to the stresses inherent in spaceflight (2) Potential for informing on genetic strategies to engineer plants for optimal growth in space

  20. Holocene Substrate Influences on Plant and Fire Response to Climate Change

    Science.gov (United States)

    Briles, C.; Whitlock, C. L.

    2011-12-01

    The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil

  1. Evolutionary History Underlies Plant Physiological Responses to Global Change Since the Last Glacial Maximum

    Science.gov (United States)

    Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.

    2014-12-01

    Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  2. Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant

    Science.gov (United States)

    Lauren P. Waller; Ragan M. Callaway; John N. Klironomos; Yvette K. Ortega; John L. Maron

    2016-01-01

    1. Arbuscular mycorrhizal (AM) fungi can exert a powerful influence on the outcome of plant–plant competition. Since some exotic plants interact differently with soil biota such as AM fungi in their new range, range-based shifts in AM responsiveness could shift competitive interactions between exotic and resident plants, although this remains poorly studied. 2. We...

  3. Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands.

    Directory of Open Access Journals (Sweden)

    Thomas C Wagner

    Full Text Available Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such encroachment by woody plants has been extensively researched, studies on similar processes involving herbaceous species are rare. We studied the impact of a sustained and massive spread of the native herbaceous legume Crotalaria podocarpa in Namibia's escarpment region on the locally dominant fodder grasses Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x 10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight consecutive years and under different seasonal rainfalls and estimated the potential relative productivity of the land. We found the percentage of active Stipagrostis tussocks and the biomass production of individual tussocks to increase asymptotically with higher seasonal rainfall reaching a maximum around 300 mm while the land's relative productivity under average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa encroachment had no effect on the proportion of productive grass tussocks, but reduced he productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on grass productivity was immediate and direct and was not compensated for by above-average rainfall. Besides this immediate effect, over time, the density of grass tussocks declined by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble those of woody

  4. High productivity of wheat intercropped with maize is associated with plant architectural responses

    NARCIS (Netherlands)

    Zhu, J.; Werf, van der W.; Vos, J.; Putten, van der P.E.L.; Evers, J.B.

    2016-01-01

    Mixed cultivation of crops often results in increased production per unit land area, but the underlying mechanisms are poorly understood. Plants in intercrops grow differently from plants in single crops; however, no study has shown the association between plant plastic responses and the yield

  5. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  6. Performance and effects of land cover type on synthetic surface reflectance data and NDVI estimates for assessment and monitoring of semi-arid rangeland

    Science.gov (United States)

    Olexa, Edward M.; Lawrence, Rick L

    2014-01-01

    Federal land management agencies provide stewardship over much of the rangelands in the arid andsemi-arid western United States, but they often lack data of the proper spatiotemporal resolution andextent needed to assess range conditions and monitor trends. Recent advances in the blending of com-plementary, remotely sensed data could provide public lands managers with the needed information.We applied the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to five Landsat TMand concurrent Terra MODIS scenes, and used pixel-based regression and difference image analyses toevaluate the quality of synthetic reflectance and NDVI products associated with semi-arid rangeland. Pre-dicted red reflectance data consistently demonstrated higher accuracy, less bias, and stronger correlationwith observed data than did analogous near-infrared (NIR) data. The accuracy of both bands tended todecline as the lag between base and prediction dates increased; however, mean absolute errors (MAE)were typically ≤10%. The quality of area-wide NDVI estimates was less consistent than either spectra lband, although the MAE of estimates predicted using early season base pairs were ≤10% throughout the growing season. Correlation between known and predicted NDVI values and agreement with the 1:1regression line tended to decline as the prediction lag increased. Further analyses of NDVI predictions,based on a 22 June base pair and stratified by land cover/land use (LCLU), revealed accurate estimates through the growing season; however, inter-class performance varied. This work demonstrates the successful application of the STARFM algorithm to semi-arid rangeland; however, we encourage evaluation of STARFM’s performance on a per product basis, stratified by LCLU, with attention given to the influence of base pair selection and the impact of the time lag.

  7. Perception of volatiles produced by UVC-irradiated plants alters the response to viral infection in naïve neighboring plants.

    Science.gov (United States)

    Yao, Youli; Danna, Cristian H; Ausubel, Frederick M; Kovalchuk, Igor

    2012-07-01

    Interplant communication of stress via volatile signals is a well-known phenomenon. It has been shown that plants undergoing stress caused by pathogenic bacteria or insects generate volatile signals that elicit defense response in neighboring naïve plants. Similarly, we have recently shown that naïve plants sharing the same gaseous environment with UVC-exposed plants exhibit similar changes in genome instability as UVC-exposed plants. We found that methyl salicylate (MeSA) and methyl jasmonate (MeJA) serve as volatile signals communicating genome instability (as measured by an increase in the homologous recombination frequency). UVC-exposed plants produce high levels of MeSA and MeJA, a response that is missing in an npr1 mutant. Concomitantly, npr1 mutants are impaired in communicating the signal leading to genome instability, presumably because this mutant does not develop new necrotic lesion after UVC irradiation as observed in wt plants. To analyze the potential biological significance of such plant-plant communication, we have now determined whether bystander plants that receive volatile signals from UVC-irradiated plants, become more resistant to UVC irradiation or infection with oilseed rape mosaic virus (ORMV). Specifically, we analyzed the number of UVC-elicited necrotic lesions, the level of anthocyanin pigments, and the mRNA levels corresponding to ORMV coat protein and the NPR1-regulated pathogenesis-related protein PR1 in the irradiated or virus-infected bystander plants that have been previously exposed to volatiles produced by UVC-irradiated plants. These experiments showed that the bystander plants responded similarly to control plants following UVC irradiation. Interestingly, however, the bystander plants appeared to be more susceptible to ORMV infection, even though PR1 mRNA levels in systemic tissue were significantly higher than in the control plants, which indicates that bystander plants could be primed to strongly respond to bacterial

  8. Mapping Erosion Risk in California's Rangelands Using the Universal Soil Loss Equation (USLE)

    Science.gov (United States)

    Salls, W. B.; O'Geen, T. T.

    2015-12-01

    Soil loss constitutes a multi-faceted problem for agriculture: in addition to reducing soil fertility and crop yield, it compromises downstream water quality. Sediment itself is a major issue for aquatic ecosystems, but also serves as a vector for transporting nutrients, pesticides, and pathogens. Rangelands are thought to be a contributor to water quality degradation in California, particularly in the northern Coast Range. Though total maximum daily loads (TMDLs) have been imposed in some watersheds, and countless rangeland water quality outreach activities have been conducted, the connection between grazing intensity recommendations and changes in water quality is poorly understood at the state level. This disconnect gives rise to poorly informed regulations and discourages adoption of best management practices by ranchers. By applying the Universal Soil Loss Equation (USLE) at a statewide scale, we highlighted areas most prone to erosion. We also investigated how two different grazing intensity scenarios affect modeled soil loss. Geospatial data layers representing the USLE parameters—rainfall erosivity, soil erodibility, slope length and steepness, and cover—were overlaid to model annual soil loss. Monitored suspended sediment data from a small North Coast watershed with grazing as the predominant land use was used to validate the model. Modeled soil loss values were nearly one order of magnitude higher than monitored values; average soil loss feeding the downstream-most site was modeled at 0.329 t ha-1 yr-1, whereas storm-derived sediment passing the site over two years was calculated to be 0.037 t ha-1 yr-1. This discrepancy may stem from the fact that the USLE models detached sediment, whereas stream monitoring reflects sediment detached and subsequently transported to the waterway. Preliminary findings from the statewide map support the concern that the North Coast is particularly at risk given its combination of intense rain, erodible soils, and

  9. Meteorological considerations in emergency response capability at nuclear power plant

    International Nuclear Information System (INIS)

    Fairobent, J.E.

    1985-01-01

    Meteorological considerations in emergency response at nuclear power plants are discussed through examination of current regulations and guidance documents, including discussion of the rationale for current regulatory requirements related to meteorological information for emergency response. Areas discussed include: major meteorological features important to emergency response; onsite meteorological measurements programs, including redundant and backup measurements; access to offsite sources of meteorological information; consideration of real-time and forecast conditions and atmospheric dispersion modeling

  10. Local plant responses to global problems: Dactylis glomerata responses to different traffic pollutants on roadsides.

    Science.gov (United States)

    Jiménez, M D; de Torre, R; Mola, I; Casado, M A; Balaguer, L

    2018-04-15

    The growing number of road vehicles is a major source of regional and global atmospheric pollution increasing concentrations of CO 2 in the air, and levels of metals in air and soil. Nevertheless, the effects of these pollutants on plants growing at roadsides are poorly documented. We carried out an observational study of unmanipulated plants growing by the road, to identify the morpho-physiological responses in a perennial grass Dactylis glomerata. Firstly, we wanted to know the general effect of traffic intensity and ambient CO 2 and its interactions on different plant traits. Accordingly, we analyzed the photosynthetic response by field A/Ci Response Curves, SLA, pigment pools, foliar nitrogen, carbohydrates and morphological traits in plants at three distances to the road. Secondly, we wanted to know if Dactylis glomerata plants can accumulate metals present on the roadside (Pb, Zn, Cu, and Sr) in their tissues and rhizosphere, and the effect of these metals on morphological traits. The MANCOVA whole model results shown: 1) a significant effect of road ambient CO 2 concentration on morphological traits (not affected by traffic intensity, P interaction CO2 x traffic intensity >0.05), that was mainly driven by a significant negative relationship between the inflorescence number and ambient CO 2 ; 2) a positive and significant relationship between ambient CO 2 and the starch content in leaves (unaffected by traffic intensity); 3) a reduction in J max (electron transport rate) at high traffic intensity. These lines of evidences suggest a decreased photosynthetic capacity due to high traffic intensity and high levels of ambient CO 2 . In addition, Pb, Cu, Zn and Sr were detected in Dactylis glomerata tissues, and Cu accumulated in roots. Finally, we observed that Dactylis glomerata individuals growing at the roadside under high levels of CO 2 and in the presence of metal pollutants, reduced their production of inflorescences. Copyright © 2018 Elsevier Ltd. All

  11. Plant responses, climate pivot points, and trade-offs in water-limited ecosystems

    Science.gov (United States)

    Munson, S. M.; Bunting, E.

    2017-12-01

    Ecosystem transitions and thresholds are conceptually well-defined and have become a framework to address vegetation response to climate change and land-use intensification, yet there are few approaches to define the environmental conditions which can lead to them. We demonstrate a novel climate pivot point approach using long-term monitoring data from a broad network of permanent plots, satellite imagery, and experimental treatments across the southwestern U.S. The climate pivot point identifies conditions that lead to decreased plant performance and serves as an early warning sign of increased vulnerability of crossing a threshold into an altered ecosystem state. Plant responses and climate pivot points aligned with the lifespan and structural characteristics of species, were modified by soil and landscape attributes of a site, and had non-linear dynamics in some cases. Species with strong increases in abundance when water was available were most susceptible to losses during water shortages, reinforcing plant energetic and physiological tradeoffs. Future research to uncover the heterogeneity of plant responses and climate pivot points at multiple scales can lead to greater understanding of shifts in ecosystem productivity and vulnerability to climate change.

  12. Effects of land use change and management on SOC and soil quality in Mediterranean rangelands areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Requejo, Ana; Zornoza, Raúl

    2017-04-01

    INTRODUCTION Rangelands in the Iberian Peninsula occupy more than 90,000 km2. These rangelands were created from the former Mediterranean oak forests, mainly composed of holm oak and cork oak (Quercus ilex rotundifolia and Quercus suber), by clear-cutting shrubs, removing selected trees and cultivating. These man-made landscapes are called 'dehesas' in Spain and 'montados' in Portugal. Between 1955 and 1981, more than 5,000 km2 of dehesas was converted from pastureland to cultivated land. This process has been accelerated since 1986 owing to subsidies from the European Common Agricultural Policy (Parras-Alcántara et al., 2015a). The role that natural rangelands play in the global carbon cycle is extremely important, accounting for 10-30% of the world's total soil organic carbon (SOC), in addition, SOC concentration is closely related to soil quality and vegetation productivity (Brevik, 2012). Therefore, to study the land use and management changes is important, particularly in Mediterranean soils, as they are characterized by low organic carbon content, furthermore, the continuous use of ploughing for grain production is the principal cause of soil degradation. Therefore, land use decisions and management systems can increase or decrease SOC content and stock (Corral-Fernández et al., 2013; Parras-Alcántara et al., 2014, 2015a and 2015b; Parras-Alcántara and Lozano-García, 2014) MATERIAL AND METHODS A field study was conducted to determine the land use change (Mediterranean evergreen oak woodland to olive grove and cereal, all of them managed under conventional tillage and under conservationist practices) effects on SOC stocks and the soil quality (Stratification Ratio) in Los Pedroches valley, southern Spain. RESULTS Results for the present study indicate that management practices had little effect on SOC storage in dehesas. The stratification ratio was >2 both under conventional tillage and under organic farming, so, soils under dehesa had high quality

  13. How light competition between plants affects their response to climate change.

    Science.gov (United States)

    van Loon, Marloes P; Schieving, Feike; Rietkerk, Max; Dekker, Stefan C; Sterck, Frank; Anten, Niels P R

    2014-09-01

    How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 concentration, and modeled the extent to which local plant-plant interactions may modify these effects. A canopy model was developed, which calculates photosynthesis as a function of light, nitrogen, temperature, CO2 and water availability, and considers different degrees of light competition between neighboring plants through canopy mixing; soybean (Glycine max) was used as a reference system. The model predicts increased net photosynthesis and reduced stomatal conductance and transpiration under atmospheric CO2 increase. When CO2 elevation is combined with warming, photosynthesis is increased more, but transpiration is reduced less. Intriguingly, when competition is considered, the optimal response shifts to producing larger leaf areas, but with lower stomatal conductance and associated vegetation transpiration than when competition is not considered. Furthermore, only when competition is considered are the predicted effects of elevated CO2 on leaf area index (LAI) well within the range of observed effects obtained by Free air CO2 enrichment (FACE) experiments. Together, our results illustrate how competition between plants may modify vegetation responses to climate change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response.

    Science.gov (United States)

    Wang, Pengcheng; Zhao, Yang; Li, Zhongpeng; Hsu, Chuan-Chih; Liu, Xue; Fu, Liwen; Hou, Yueh-Ju; Du, Yanyan; Xie, Shaojun; Zhang, Chunguang; Gao, Jinghui; Cao, Minjie; Huang, Xiaosan; Zhu, Yingfang; Tang, Kai; Wang, Xingang; Tao, W Andy; Xiong, Yan; Zhu, Jian-Kang

    2018-01-04

    As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Plant hydraulic controls over ecosystem responses to climate-enhanced disturbances

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Reed, D. E.; Pendall, E.; McDowell, N. G.

    2012-12-01

    Climate-enhanced disturbances such as drought and insect infestation range in severity, contributing minor to severe stress to forests including forest mortality. While neither form of disturbance has been unambiguously implicated as a mechanism of mortality, both induce changes in water, carbon, and nutrient cycling that are key to understanding forest ecosystem response to, and recovery from, disturbance. Each disturbance type has different biophysical, ecohydrological, and biogeochemical signatures that potentially complicate interpretation and development of theory. Plant hydraulic function is arguably a unifying control over these responses to disturbance because it regulates stomatal conductance, leaf biochemistry, carbon (C) uptake and utilization, and nutrient cycling. We demonstrated this idea by focusing on water and C, including non-structural (NSC), resources, and nitrogen (N) uptake across a spectrum of forest ecosystems (e.g., northern temperate mixed forests, lodgepole pine forests in the Rocky Mountains, and pinon pine - juniper woodlands in New Mexico) using the Terrestrial Regional Ecosystem Exchange Simulator (TREES). TREES is grounded in the biophysics of water movement through soil and plants, respectively via hydraulic conductivity of the soil and cavitation of xylem. It combines this dynamic plant hydraulic conductance with canopy biochemical controls over photosynthesis, and the dynamics of structural and non-structural carbon through a carbon budget that responds to plant hydraulic status. As such, the model can be used to develop testable hypotheses on a multitude of disturbance and recovery responses including xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, respiration, and allocation to defense compounds. For each of the ecosystems we constrained and evaluated the model with allometry, sap flux and/or eddy covariance data, leaf gas exchange measurements, and vulnerability to cavitation data

  16. Physiological blockage in plants in response to postharvest stress

    African Journals Online (AJOL)

    Marcos

    2013-03-13

    Mar 13, 2013 ... response of the plant to cut stem (Ichimura et al., 1999). When the vessel is ... blockage due to microbial growth and blockage caused by formation of .... HQS) and chlorine, are used to assess its actions in the microorganisms ...

  17. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    AlShareef, Sahar A.

    2017-06-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses. Recent work showed that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various AS small-molecule inhibitors that perturb splicing and thereby provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Here, I show that the macrolide Pladienolide B (PB) and herboxidiene (GEX1A) inhibits both constitutive and alternative splicing, mimics an abiotic stress signal, and activates the abscisic acid (ABA) pathway in plants. Moreover, PB and GEX1A activate genome-wide transcriptional patterns involved in abiotic stress responses in plants. PB and GEX1A treatment triggered the ABA signaling pathway, activated ABA-inducible promoters, and led to stomatal closure. Interestingly, PB and GEX1A elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. This work establishes PB and GEX1A as potent splicing inhibitors in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  18. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley

    Directory of Open Access Journals (Sweden)

    M. E. Santamaria

    2018-04-01

    Full Text Available Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.

  19. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley

    Science.gov (United States)

    Santamaria, M. E.; Diaz, Isabel; Martinez, Manuel

    2018-01-01

    Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production. PMID:29681917

  20. Transcriptional Responses in the Hemiparasitic Plant Triphysaria versicolor to Host Plant Signals1[w

    Science.gov (United States)

    Matvienko, Marta; Torres, Manuel J.; Yoder, John I.

    2001-01-01

    Parasitic plants in the Scrophulariaceae use chemicals released by host plant roots to signal developmental processes critical for heterotrophy. Haustoria, parasitic plant structures that attach to and invade host roots, develop on roots of the hemiparasitic plant Triphysaria versicolor within a few hours of exposure to either maize (Zea mays) root exudate or purified haustoria-inducing factors. We prepared a normalized, subtractive cDNA library enriched for transcripts differentially abundant in T. versicolor root tips treated with the allelopathic quinone 2,6-dimethoxybenzoquinone (DMBQ). Northern analyses estimated that about 10% of the cDNAs represent transcripts strongly up-regulated in roots exposed to DMBQ. Northern and reverse northern analyses demonstrated that most DMBQ-responsive messages were similarly up-regulated in T. versicolor roots exposed to maize root exudates. From the cDNA sequences we assembled a unigene set of 137 distinct transcripts and assigned functions by homology comparisons. Many of the proteins encoded by the transcripts are predicted to function in quinone detoxification, whereas others are more likely associated with haustorium development. The identification of genes transcriptionally regulated by haustorium-inducing factors provides a framework for dissecting genetic pathways recruited by parasitic plants during the transition to heterotrophic growth. PMID:11553755

  1. Integrating Science and Land Management for the Conservation Effects Assessment Project (CEAP) in Southwestern Rangelands

    Science.gov (United States)

    Goodrich, D. C.; Heilman, P.; Nearing, M.; Speath, K.; Hernandez, M.; Wei, H.; Holifield-Collins, C.; Kautz, M.; Nichols, M.; Barlow, J.; Guertin, P.; Burns, S.; Stone, J. J.; Weltz, M.; Metz, L.; Norfleet, L.; Duriancik, L.; Johnson, M.

    2013-12-01

    Farm Bill legislation enacted by Congress in 2002 directed the U.S. Department of Agriculture to assess of the benefits and efficacy of conservation practices provided by a variety of USDA programs. Benefits include improved agricultural production, reduction of erosion and associated nutrient losses, improved water quality, improved soil resilience, and improved habitat among others. To conduct the assessment, the USDA initiated CEAP or the Conservation Effects Assessment Project in 2003, which included a national assessment complemented by small watershed studies. The national assessment started in eastern and midwestern cultivated croplands and has now progressed to western rangelands. This presentation will discuss the challenges of assessing the effects of rangeland conservation practices in a period of unusually hot and dry climatic conditions in the Cienega Creek Watershed (CCW) located southeast of Tucson, Arizona. As is common in the western U.S., the CCW consists of a patchwork of private and public lands in the west with much of the public lands leased for grazing cattle. The watershed also has high recreational value and provides many ecosystem services, including wildlife habitat qualities and flood protection to Tucson. A combination of monitoring, modeling, and remote sensing was utilized in the assessment. Conservation spending in the watershed ramped up in 1997. However, the 16-year period from 1997-2012 contains almost half of the 23 driest seasons (lowest 20 percentile) from the 117-year observed precipitation record. Initial results indicate that Landsat remotely sensed images can be effectively used to estimate both green and senescent canopy cover. This enabled detection of the impacts of drought and changes in canopy cover from practices such as prescribed fire and mechanical brush removal. Cienega Creek Watershed - Land Ownership

  2. Physiological blockage in plants in response to postharvest stress

    African Journals Online (AJOL)

    Marcos

    2013-03-13

    Mar 13, 2013 ... response of the plant to cut stem (Ichimura et al., 1999). When the vessel is blocked, ... E-mail: m.r.s.v@hotmail.com. of complex physiological ... of cells which protrude into the vessel lumen xylem whose shape is similar to a.

  3. Plant responses to Agrobacterium tumefaciens and crown gall development

    Science.gov (United States)

    Gohlke, Jochen; Deeken, Rosalia

    2014-01-01

    Agrobacterium tumefaciens causes crown gall disease on various plant species by introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively studied both as a pathogen and an important biotechnological tool. The infection process involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the gene expression patterns of host plants differ depending on the Agrobacterium strain, plant species and cell-type used. Later on, integration of the T-DNA into the plant host genome, expression of the encoded oncogenes, and increase in phytohormone levels induce a fundamental reprogramming of the transformed cells. This results in their proliferation and finally formation of plant tumors. The process of reprogramming is accompanied by altered gene expression, morphology and metabolism. In addition to changes in the transcriptome and metabolome, further genome-wide (“omic”) approaches have recently deepened our understanding of the genetic and epigenetic basis of crown gall tumor formation. This review summarizes the current knowledge about plant responses in the course of tumor development. Special emphasis is placed on the connection between epigenetic, transcriptomic, metabolomic, and morphological changes in the developing tumor. These changes not only result in abnormally proliferating host cells with a heterotrophic and transport-dependent metabolism, but also cause differentiation and serve as mechanisms to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the coexistence of the crown gall and host plant. PMID:24795740

  4. Smart plants, smart models? On adaptive responses in vegetation-soil systems

    Science.gov (United States)

    van der Ploeg, Martine; Teuling, Ryan; van Dam, Nicole; de Rooij, Gerrit

    2015-04-01

    Hydrological models that will be able to cope with future precipitation and evapotranspiration regimes need a solid base describing the essence of the processes involved [1]. The essence of emerging patterns at large scales often originates from micro-behaviour in the soil-vegetation-atmosphere system. A complicating factor in capturing this behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. To assess root water uptake by plants in a changing soil environment, a direct indication of the amount of energy required by plants to take up water can be obtained by measuring the soil water potential in the vicinity of roots with polymer tensiometers [2]. In a lysimeter experiment with various levels of imposed water stress the polymer tensiometer data suggest maize roots regulate their root water uptake on the derivative of the soil water retention curve, rather than the amount of moisture alone. As a result of environmental changes vegetation may wither and die, or these changes may instead trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [3-7]. To investigate a possible relation between plant genotype, the plant stress hormone abscisic acid (ABA) and the soil water potential, a proof of principle experiment was set up with Solanum Dulcamare plants. The results showed a significant difference in ABA response between genotypes from a dry and a wet environment, and this response was also reflected in the root water uptake. Adaptive responses may have consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant

  5. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation

    Directory of Open Access Journals (Sweden)

    Michael J. McCann

    2016-03-01

    Full Text Available Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis to nutrient stoichiometry (nitrogen and phosphorus and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1. The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions.

  6. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation

    Science.gov (United States)

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions. PMID:26989619

  7. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua; Gehring, Christoph A; Irving, Helen R.

    2011-01-01

    plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  8. Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2

    NARCIS (Netherlands)

    Alberton, O.; Kuyper, T.W.; Gorissen, A.

    2005-01-01

    The aim here was to separately assess mycorrhizal fungal and plant responses under elevated atmospheric CO2, and to test a mycocentric model that assumes that increased carbon availability to the fungus will not automatically feed back to enhanced plant growth performance. Meta-analyses were applied

  9. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2 : an experiment with plant populations from naturally high CO2 areas

    NARCIS (Netherlands)

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may

  10. Disease interactions in a shared host plant: effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease.

    Directory of Open Access Journals (Sweden)

    Lori R Shapiro

    Full Text Available Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV. We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant

  11. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses.

    Science.gov (United States)

    Jansen, Jeroen J; van Dam, Nicole M; Hoefsloot, Huub C J; Smilde, Age K

    2009-12-16

    Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favorable nutritional properties for humans. Each responding compound may have its own dynamic profile and metabolic relationships with other compounds. The chemical background of the induced response is therefore highly complex and may therefore not reveal all the properties of the response in any single model. This study therefore aims to describe the dynamics of the glucosinolate response, measured at three time points after induction in a feral Brassica, by a three-faceted approach, based on Principal Component Analysis. First the large-scale aspects of the response are described in a 'global model' and then each time-point in the experiment is individually described in 'local models' that focus on phenomena that occur at specific moments in time. Although each local model describes the variation among the plants at one time-point as well as possible, the response dynamics are lost. Therefore a novel method called the 'Crossfit' is described that links the local models of different time-points to each other. Each element of the described analysis approach reveals different aspects of the response. The crossfit shows that smaller dynamic changes may occur in the response that are overlooked by global models, as illustrated by the analysis of a metabolic profiling dataset of the same samples.

  12. Population structures of Astragalus filipes collections from western North America

    Science.gov (United States)

    B. Shaun Bushman; Kishor Bhattarai; Douglas A. Johnson

    2010-01-01

    The majority of species used for revegetation in semi-arid western rangelands of North America are grasses, with few forbs and nearly no legumes. Astragalus filipes (Torr. Ex A. Gray) is a western North American legume and a promising candidate for use in rangeland revegetation, but assessments of plant species diversity and structure are necessary to determine which...

  13. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  14. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    International Nuclear Information System (INIS)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe; Ranty, Benoit

    2010-01-01

    Research highlights: → The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein → The interaction is confirmed in plant cell nuclei → The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  15. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

    2010-08-06

    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  16. Responses of Two Invasive Plants Under Various Microclimate Conditions in the Seoul Metropolitan Region

    Science.gov (United States)

    Song, Uhram; Mun, Saeromi; Ho, Chang-Hoi; Lee, Eun Ju

    2012-06-01

    The possible consequences of global warming on plant communities and ecosystems have wide-ranging ramifications. We examined how environmental change affects plant growth as a function of the variations in the microclimate along an urban-suburban climate gradient for two allergy-inducing, invasive plants, Humulus japonicus and Ambrosia artemisiifolia var. elatior. The environmental factors and plant growth responses were measured at two urban sites (Gangbuk and Seongbuk) and two suburban sites (Goyang and Incheon) around Seoul, South Korea. The mean temperatures and CO2 concentrations differed significantly between the urban (14.8 °C and 439 ppm CO2) and suburban (13.0 °C and 427 ppm CO2) sites. The soil moisture and nitrogen contents of the suburban sites were higher than those at the urban sites, especially for the Goyang site. The two invasive plants showed significantly higher biomasses and nitrogen contents at the two urban sites. We conducted experiments in a greenhouse to confirm the responses of the plants to increased temperatures, and we found consistently higher growth rates under conditions of higher temperatures. Because we controlled the other factors, the better performance of the two invasive plants appears to be primarily attributable to their responses to temperature. Our study demonstrates that even small temperature changes in the environment can confer significant competitive advantages to invasive species. As habitats become urbanized and warmer, these invasive plants should be able to displace native species, which will adversely affect people living in these areas.

  17. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    Science.gov (United States)

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  18. Chemical composition and digestibility of some browse plant species collected from Algerian arid rangelands

    Energy Technology Data Exchange (ETDEWEB)

    Boufennara, S.; Lopez, S.; Boussebouna, H.; Bodas, R.; Bouazza, L.

    2012-11-01

    Many wild browse and bush species are undervalued mainly because of insufficient knowledge about their potential feeding value. The objective was to evaluate some nutritional attributes of various Algerian browse and shub species (Atriplex halimus, Artemisia campestris, Artemisia herba-alba, Astragalus gombiformis, Calobota saharae, Retama raetam, Stipagrostis pungens, Lygeum spartum and Stipa tenacissima). Chemical composition, phenols and tannins concentration, in vitro digestibility, in vitro gas production kinetics and in vitro bio-assay for assessment of tannins using buffered rumen fluid, and in situ disappearence of the edible parts of the plants (leaves, thin twigs and flowers) were determined. In general, protein content in dicotyledon species was always greater than in monocotyledon grasses, these showing higher neutral and acid detergent fibre and lower lignin contents than dicots. The tannin concentrations varied considerably between species, but in general the plants investigated in this study had low tannin contents (except for Artemisia spp. and S. tenacissima). Monocots showed lower in vitro and in situ digestibilities, fermentation rate, cumulative gas production and extent of degradation than dicot species. The plants were clustered by principal components analysis in two groups: poor-quality grasses and the most digestible dicot species. Chemical composition (neutral detergent fibre and protein) and digestibility were the main influential variables determining the ranking. In conclusion, A. halimus, A. campestris, A. herba-alba and A. gombiformis can be considered of greater nutritional value than the highly fibrous and low digestible grasses (S. pungens, L. spartum and S. tenacissima) that should be considered emergency roughages. (Author) 46 refs.

  19. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    Science.gov (United States)

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non

  20. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption.

    Science.gov (United States)

    van Vliet, Stephan; Burd, Nicholas A; van Loon, Luc J C

    2015-09-01

    Clinical and consumer market interest is increasingly directed toward the use of plant-based proteins as dietary components aimed at preserving or increasing skeletal muscle mass. However, recent evidence suggests that the ingestion of the plant-based proteins in soy and wheat results in a lower muscle protein synthetic response when compared with several animal-based proteins. The possible lower anabolic properties of plant-based protein sources may be attributed to the lower digestibility of plant-based sources, in addition to greater splanchnic extraction and subsequent urea synthesis of plant protein-derived amino acids compared with animal-based proteins. The latter may be related to the relative lack of specific essential amino acids in plant- as opposed to animal-based proteins. Furthermore, most plant proteins have a relatively low leucine content, which may further reduce their anabolic properties when compared with animal proteins. However, few studies have actually assessed the postprandial muscle protein synthetic response to the ingestion of plant proteins, with soy and wheat protein being the primary sources studied. Despite the proposed lower anabolic properties of plant vs. animal proteins, various strategies may be applied to augment the anabolic properties of plant proteins. These may include the following: 1) fortification of plant-based protein sources with the amino acids methionine, lysine, and/or leucine; 2) selective breeding of plant sources to improve amino acid profiles; 3) consumption of greater amounts of plant-based protein sources; or 4) ingesting multiple protein sources to provide a more balanced amino acid profile. However, the efficacy of such dietary strategies on postprandial muscle protein synthesis remains to be studied. Future research comparing the anabolic properties of a variety of plant-based proteins should define the preferred protein sources to be used in nutritional interventions to support skeletal muscle mass gain

  1. Using a dynamic model to assess trends in land degradation by water erosion in Spanish Rangelands

    Science.gov (United States)

    Ibáñez, Javier; Francisco Lavado-Contador, Joaquín; Schnabel, Susanne; Pulido-Fernández, Manuel; Martínez Valderrama, Jaime

    2014-05-01

    This work presents a model aimed at evaluating land degradation by water erosion in dehesas and montados of the Iberian Peninsula, that constitute valuable rangelands in the area. A multidisciplinary dynamic model was built including weather, biophysical and economic variables that reflect the main causes and processes affecting sheet erosion on hillsides of the study areas. The model has two main and two derived purposes: Purpose 1: Assessing the risk of degradation that a land-use system is running. Derived purpose 1: Early warning about land-use systems that are particularly threatened by degradation. Purpose 2: Assessing the degree to which different factors would hasten degradation if they changed from the typical values they show at present. Derived purpose 2: Evaluating the role of human activities on degradation. Model variables and parameters have been calibrated for a typical open woodland rangeland (dehesa or montado) defined along 22 working units selected from 10 representative farms and distributed throughout the Spanish region of Extremadura. The model is the basis for a straightforward assessment methodology which is summarized by the three following points: i) The risk of losing a given amount of soil before a given number of years was specifically estimated as the percentage of 1000 simulations where such a loss occurs, being the simulations run under randomly-generated scenarios of rainfall amount and intensity and meat and supplemental feed market prices; ii) Statistics about the length of time that a given amount of soil takes to be lost were calculated over 1000 stochastic simulations run until year 1000, thereby ensuring that such amount of soil has been lost in all of the simulations, i.e. the total risk is 100%; iii) Exogenous factors potentially affecting degradation, mainly climatic and economic, were ranked in order of importance by means of a sensitivity analysis. Particularly remarkable in terms of model performance is the major role

  2. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  3. Optimal plant water use across temporal scales: bridging eco-hydrological theories and plant eco-physiological responses

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Palmroth, S.; Katul, G. G.; Porporato, A. M.

    2013-12-01

    unpredictable rainfall conditions, plant hydraulic traits (xylem and stomatal response to water availability) and morphological features (leaf and sapwood areas) must be coordinated - thus providing an ecohydrological interpretation of observed coordination (or homeostasis) among hydraulic traits. Moreover, the combinations of hydraulic traits and responses to drought that are optimal are found to depend on both total rainfall and its distribution during the growing season. Both drier conditions and more intense rainfall events interspaced by longer dry periods favor plants with high resistance to cavitation and delayed stomatal closure as soils dry. In contrast, plants in mesic conditions benefit from cavitation prevention through earlier stomatal closure. The proposed ecohydrological optimality criteria can be used as analytical tools to interpret variability in plant water use and predict trends in plant productivity and species composition under future climates.

  4. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2

    Science.gov (United States)

    Leakey, Andrew D. B.; Lau, Jennifer A.

    2012-01-01

    Variation in atmospheric [CO2] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO2] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO2] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO2] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO2]. Evolutionary responses to elevated [CO2] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO2] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO2]. This lack of evidence for strong evolutionary effects of elevated [CO2] is surprising, given the large effects of elevated [CO2] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO2] and (ii) benefit maximally from future, greater [CO2]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C4 photosynthesis into C3 leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying

  5. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2].

    Science.gov (United States)

    Leakey, Andrew D B; Lau, Jennifer A

    2012-02-19

    Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration

  6. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    B W Poovaiah

    2015-08-01

    Full Text Available Transient changes in intracellular Ca2+ concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM and calmodulin-like proteins (CMLs are major Ca2+ sensors, playing critical roles in interpreting encrypted Ca2+ signals. Ca2+-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca2+ signal and overview of Ca2+ signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca2+/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca2+/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of ROS signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca2+/CaM-mediated signaling warrant further investigation. Ca2+/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca2+ signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca2+/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.

  7. Plant–plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas

    Science.gov (United States)

    van Loon, Marloes P.; Rietkerk, Max; Dekker, Stefan C.; Hikosaka, Kouki; Ueda, Miki U.; Anten, Niels P. R.

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant’s lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant–plant interactions was analysed. Methods Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. Key Results It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. Conclusion The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant–plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly

  8. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants.

    Science.gov (United States)

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-08-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. [BMB Reports 2017; 50(8): 393-400].

  9. Grape marc extract acts as elicitor of plant defence responses.

    Science.gov (United States)

    Goupil, Pascale; Benouaret, Razik; Charrier, Olivia; Ter Halle, Alexandra; Richard, Claire; Eyheraguibel, Boris; Thiery, Denis; Ledoigt, Gérard

    2012-07-01

    Plant protection based on novel alternative strategies is a major concern in agriculture to sustain pest management. The marc extract of red grape cultivars reveals plant defence inducer properties. Treatment with grape marc extract efficiently induced hypersensitive reaction-like lesions with cell death evidenced by Evans Blue staining of tobacco leaves. Examination of the infiltration zone and the surrounding areas under UV light revealed the accumulation of autofluorescent compounds. Both leaf infiltration and a foliar spray of the red grape extract on tobacco leaves induced defence gene expression. The PR1 and PR2 target genes were upregulated locally and systemically in tobacco plants following grape marc extract treatment. The grape extract elicited an array of plant defence responses making this natural compound a potential phytosanitary product with a challenging issue and a rather attractive option for sustainable agriculture and environmentally friendly practices.

  10. Mycorrhizal mediation of plant response to atmospheric change: Air quality concepts and research considerations.

    Science.gov (United States)

    Shafer, S R; Schoeneberger, M M

    1991-01-01

    The term 'global climate change' encompasses many physical and chemical changes in the atmosphere that have been induced by anthropogenic pollutants. Increases in concentrations of CO2 and CH4 enhance the 'greenhouse effect' of the atmosphere and may contribute to changes in temperature and precipitation patterns at the earth's surface. Nitrogen oxides and SO2 are phytotoxic and also react with other pollutants to produce other phytotoxins in the troposphere such as O3 and acidic substances. However, release of chlorofluorocarbons into the atmosphere may cause depletion of stratospheric O3, increasing the transmittance of ultraviolet-B (UV-B) radiation to the earth's surface. Increased intensities of UV-B could affect plants and enhance photochemical reactions that generate some phytotoxic pollutants. The role of mycorrhizae in plant responses to such stresses has received little attention. Although plans for several research programs have acknowledged the importance of drought tolerance and soil fertility in plant responses to atmospheric stresses, mycorrhizae are rarely targeted to receive specific investigation. Most vascular land plants form mycorrhizae, so the role of mycorrhizae in mediating plant responses to atmospheric change may be an important consideration in predicting effects of atmospheric changes on plants in managed and natural ecosystems.

  11. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  12. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    simulated microgravity and temperature elevation have different effects on the small HSP genes belonging to subfamilies with different subcellular localization: cytosol/nucleus - PsHSP17.1-CII and PsHSP18.1-CI, cloroplasts - PsHSP26.2-Cl, endoplasmatic reticulum - PsHSP22.7-ER and mitochondria - PsHSP22.9-M: unlike high temperature, clinorotation does not cause denaturation of cell proteins, that confirms the sHSP chaperone function. Dynamics of investigated gene expression in pea seedlings growing 5 days after seed germination under clinorotation was similar to that in the stationary control. Similar patterns in dynamics of sHSP gene expression in the stationary control and under clinorotation may be one of mechanisms providing plant adaptation to simulated microgravity. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in cell organelle functional load. Thus, next certain changes in the structure and function of plant cells may be considered as adaptive: 1) an increase in the unsaturated fatty acid content in the plasmalemma, 2) rearrangements of organelle ultrastructure and an increase in their functional load, 3) an increase in cortical F-actin under destabilization of tubulin microtubules, 4) the level of gene expression and synthesis of heat shock proteins, 5) alterations of the enzyme and antioxidant system activity. The dynamics of these patterns demonstrated that the adaptation occurs on the principle of self-regulating systems in the limits of physiological norm reaction. The very importance of changed expression of genes involved in different cellular processes, especially HSP genes, in cell adaptation to altered gravity is discussed.

  13. Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour.

    Science.gov (United States)

    Sznajder, Beata; Sabelis, Maurice W; Egas, Martijn

    2010-07-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators' responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.

  14. Photosynthetic responses of pea plants (Pisum sativum L. cv. Little ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... (O3) have fundamental effects on CO2 exchange by plants. ... produce responses such as reduced photosynthetic rates and earlier senescence .... quality localities treatments and two soil regimes in Riyadh city, KSA. Pn rates.

  15. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward.

    Science.gov (United States)

    Kaleem, Fawad; Shabir, Ghulam; Aslam, Kashif; Rasul, Sumaira; Manzoor, Hamid; Shah, Shahid Masood; Khan, Abdul Rehman

    2018-04-02

    Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.

  16. Generation of floor response spectra for mixed-oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Arthur, D.F.; Murray, R.C.; Tokarz, F.J.

    1975-01-01

    Floor or amplified response spectra are generally used as input motion for seismic analysis of critical equipment and piping in nuclear power plants and related facilities. The floor spectra are normally the result of a time-history calculation of building response to ground shaking. However, alternate approximate methods have been suggested by both Kapur and Biggs. As part of a study for the Nuclear Regulatory Commission horizontal floor response spectra were generated and compared by all three methods. The dynamic analyses were performed on a model of the Westinghouse Recycle Fuels Plant Manufacturing Building (MOFFP). Input to the time-history calculations was a synthesized accelerogram whose response spectrum is similar to that in Regulatory Guide 1.60. The response spectrum of the synthetic ground motion was used as input to the Kapur and Biggs methods. Calculations were performed for both hard (3500 fps) and soft (1500 fps) foundation soils. Results of comparison of the three methods indicate that although the approximate methods could easily be made acceptable from a safety standpoint, they would be overly conservative. The time-history method will yield floor spectra which are less uncertain and less conservative for a relatively modest additional effort. (auth)

  17. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant`s operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ``onsite`` response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world`s collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously.

  18. ROLE OF ETHYLENE IN RESPONSES OF PLANTS TO NITROGEN AVAILABILITY

    Directory of Open Access Journals (Sweden)

    M Iqbal R Khan

    2015-10-01

    Full Text Available Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signalling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological process such as leaf gas exchanges, roots architecture, leaf, fruits and flowers development. Low plant N use efficiency leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signalling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signalling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase N use efficiency and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.

  19. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  20. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  1. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    Directory of Open Access Journals (Sweden)

    Smilde Age K

    2009-12-01

    Full Text Available Abstract Background Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favorable nutritional properties for humans. Each responding compound may have its own dynamic profile and metabolic relationships with other compounds. The chemical background of the induced response is therefore highly complex and may therefore not reveal all the properties of the response in any single model. Results This study therefore aims to describe the dynamics of the glucosinolate response, measured at three time points after induction in a feral Brassica, by a three-faceted approach, based on Principal Component Analysis. First the large-scale aspects of the response are described in a 'global model' and then each time-point in the experiment is individually described in 'local models' that focus on phenomena that occur at specific moments in time. Although each local model describes the variation among the plants at one time-point as well as possible, the response dynamics are lost. Therefore a novel method called the 'Crossfit' is described that links the local models of different time-points to each other. Conclusions Each element of the described analysis approach reveals different aspects of the response. The crossfit shows that smaller dynamic changes may occur in the response that are overlooked by global models, as illustrated by the analysis of a metabolic profiling dataset of the same samples.

  2. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  3. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  4. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses.

    Science.gov (United States)

    Zhu, Xiaoyang; Perez, Manon; Aldon, Didier; Galaud, Jean-Philippe

    2017-05-04

    In their natural environment, plants have to continuously face constraints such as biotic and abiotic stresses. To achieve their life cycle, plants have to perceive and interpret the nature, but also the strength of environmental stimuli to activate appropriate physiological responses. Nowadays, it is well established that signaling pathways are crucial steps in the implementation of rapid and efficient plant responses such as genetic reprogramming. It is also reported that rapid raises in calcium (Ca 2+ ) levels within plant cells participate in these early signaling steps and are essential to coordinate adaptive responses. However, to be informative, calcium increases need to be decoded and relayed by calcium-binding proteins also referred as calcium sensors to carry-out the appropriate responses. In a recent study, we showed that CML8, an Arabidopsis calcium sensor belonging to the calmodulin-like (CML) protein family, promotes plant immunity against the phytopathogenic bacteria Pseudomonas syringae pv tomato (strain DC3000). Interestingly, other CML proteins such as CML9 were also reported to contribute to plant immunity using the same pathosystem. In this addendum, we propose to discuss about the specific contribution of these 2 CMLs in stress responses.

  5. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens

    Directory of Open Access Journals (Sweden)

    Fan Baofang

    2008-06-01

    Full Text Available Abstract Background Plant WRKY DNA-binding transcription factors are involved in plant responses to biotic and abiotic responses. It has been previously shown that Arabidopsis WRKY3 and WRKY4, which encode two structurally similar WRKY transcription factors, are induced by pathogen infection and salicylic acid (SA. However, the role of the two WRKY transcription factors in plant disease resistance has not been directly analyzed. Results Both WRKY3 and WRKY4 are nuclear-localized and specifically recognize the TTGACC W-box sequences in vitro. Expression of WRKY3 and WRKY4 was induced rapidly by stress conditions generated by liquid infiltration or spraying. Stress-induced expression of WRKY4 was further elevated by pathogen infection and SA treatment. To determine directly their role in plant disease resistance, we have isolated T-DNA insertion mutants and generated transgenic overexpression lines for WRKY3 and WRKY4. Both the loss-of-function mutants and transgenic overexpression lines were examined for responses to the biotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea. The wrky3 and wrky4 single and double mutants exhibited more severe disease symptoms and support higher fungal growth than wild-type plants after Botrytis infection. Although disruption of WRKY3 and WRKY4 did not have a major effect on plant response to P. syringae, overexpression of WRKY4 greatly enhanced plant susceptibility to the bacterial pathogen and suppressed pathogen-induced PR1 gene expression. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY3 and WRKY4 function as transcription factors. Functional analysis based on T-DNA insertion mutants and transgenic overexpression lines indicates that WRKY3 and WRKY4 have a positive role in plant resistance to necrotrophic pathogens and WRKY4 has a negative effect on plant resistance to biotrophic pathogens.

  6. Assessing the Influence of Precipitation Variability on the Vegetation Dynamics of the Mediterranean Rangelands using NDVI and Machine Learning

    Science.gov (United States)

    Daliakopoulos, Ioannis; Tsanis, Ioannis

    2017-04-01

    Mitigating the vulnerability of Mediterranean rangelands against degradation is limited by our ability to understand and accurately characterize those impacts in space and time. The Normalized Difference Vegetation Index (NDVI) is a radiometric measure of the photosynthetically active radiation absorbed by green vegetation canopy chlorophyll and is therefore a good surrogate measure of vegetation dynamics. On the other hand, meteorological indices such as the drought assessing Standardised Precipitation Index (SPI) are can be easily estimated from historical and projected datasets at the global scale. This work investigates the potential of driving Random Forest (RF) models with meteorological indices to approximate NDVI-based vegetation dynamics. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The updated E-OBS-v13.1 dataset of the ENSEMBLES EU FP6 program provides observed monthly meteorological input to estimate SPI over the Mediterranean rangelands. RF models are trained to depict vegetation dynamics using the latest version (3g.v1) of the third generation GIMMS NDVI generated from NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensors. Analysis is conducted for the period 1981-2015 at a gridded spatial resolution of 25 km. Preliminary results demonstrate the potential of machine learning algorithms to effectively mimic the underlying physical relationship of drought and Earth Observation vegetation indices to provide estimates based on precipitation variability.

  7. Evaluation of Columbia, USMARC-Composite, Suffolk, and Texel rams as terminal sires in an extensive rangeland production system: I. Ewe productivity and crossbred lamb survival and preweaning growth

    Science.gov (United States)

    A 3-yr study was conducted to comprehensively evaluate Columbia, Suffolk, USMARC-Composite (Composite), and Texel breeds as terminal sires in an extensive rangeland production system. The objective was to estimate breed-of-ram effects on ewe fertility, prolificacy, and dystocia, and sire breed effe...

  8. Unique phytochrome responses of the holoparasitic plant Orobanche minor.

    Science.gov (United States)

    Takagi, Kazuteru; Okazawa, Atsushi; Wada, Yu; Mongkolchaiyaphruek, Anchaya; Fukusaki, Eiichiro; Yoneyama, Koichi; Takeuchi, Yasutomo; Kobayashi, Akio

    2009-06-01

    Holoparasitic plants such as Orobanche spp. have lost their photosynthetic ability, so photoresponses to optimize photosynthesis are not necessary in these plants. Photoresponses are also involved in the regulation of plant development but the photoresponses of holoparasites have not been characterized in detail. In this study, the phytochrome (phy)-related photoresponse of Orobanche minor was investigated. Its photoreceptor, phytochrome A (OmphyA), was also characterized. Light effects on germination, shoot elongation, anthocyanin biosynthesis, and OmphyA expression and subcellular localization were analyzed. Red light (R):far-red light (FR) reversible inhibition of O. minor seed germination demonstrated that phy-mediated responses are retained in this holoparasite. Shoot elongation was inhibited by FR but not by R. This pattern is unique among known patterns of plant photoresponses. Additionally, molecular analysis showed that OmphyA is able to respond to the light signals. Interestingly, the unique pattern of photoresponses in O. minor seems to have been modified for adaptation to its parasitic life cycle. We hypothesize that this alteration has resulted from the loss or alteration of some phy-signaling components. Elucidation of altered components in phy signaling in this parasite will provide useful information not only about its physiological characteristics but also about general plant photoreception systems.

  9. Apple F-box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response

    Directory of Open Access Journals (Sweden)

    Jian-Ping An

    2016-11-01

    Full Text Available MAX2 (MORE AXILLARY GROWTH2 is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild type, the MdMAX2-overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.

  10. Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez, E-mail: rcsantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)

  11. Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez

    2011-01-01

    This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)

  12. TCP Transcription Factors at the Interface between Environmental Challenges and the Plant's Growth Responses.

    Science.gov (United States)

    Danisman, Selahattin

    2016-01-01

    Plants are sessile and as such their reactions to environmental challenges differ from those of mobile organisms. Many adaptions involve growth responses and hence, growth regulation is one of the most crucial biological processes for plant survival and fitness. The plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factor family is involved in plant development from cradle to grave, i.e., from seed germination throughout vegetative development until the formation of flowers and fruits. TCP transcription factors have an evolutionary conserved role as regulators in a variety of plant species, including orchids, tomatoes, peas, poplar, cotton, rice and the model plant Arabidopsis. Early TCP research focused on the regulatory functions of TCPs in the development of diverse organs via the cell cycle. Later research uncovered that TCP transcription factors are not static developmental regulators but crucial growth regulators that translate diverse endogenous and environmental signals into growth responses best fitted to ensure plant fitness and health. I will recapitulate the research on TCPs in this review focusing on two topics: the discovery of TCPs and the elucidation of their evolutionarily conserved roles across the plant kingdom, and the variety of signals, both endogenous (circadian clock, plant hormones) and environmental (pathogens, light, nutrients), TCPs respond to in the course of their developmental roles.

  13. Regulation and Turnover of Nitric Oxide by Phytoglobins in Plant Cell Responses

    DEFF Research Database (Denmark)

    Igamberdiev, Abir U; Hebelstrup, Kim; Stasolla, Claudio

    2016-01-01

    The involvement of phytoglobins in the metabolism of nitric oxide (NO) and reactive nitrogen species (RNS) produced during stress, plant growth, and development is discussed. The action of phytoglobin expression upon NO leads to the maintenance of redox status, minimization of the damage from...... to the mobility of both NO and phytohormones, plants developed strategies to regulate specific cell hormonal actions to permit differentiation during development and to respond to stress. Phytoglobins are the agents responsible for differential cellular responses to hormones that use NO as a signal transduction...... reactive oxygen and nitrogen species in the cytoplasm of the cell, and regulation of hormonal and stress responses. NO scavenging is achieved via phytoglobins, and it can also involve S-nitrosoglutathione reductase and a direct interaction of NO with superoxide anion followed by detoxification of formed...

  14. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.

    Directory of Open Access Journals (Sweden)

    Jennifer N Smith

    Full Text Available Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe's architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.

  15. Response of a Sphagnum bog plant community to elevated CO2 and N supply

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Klees, H.; Visser, de W.; Berendse, F.

    2002-01-01

    The response of plant growth to rising CO2 levels appears to depend on nutrient availability, but it is not known whether the growth of bog plants reacts similarly. We therefore studied the effects of elevated CO2 in combination with N supply on the growth of Sphagnum mosses and vascular plants in

  16. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    Directory of Open Access Journals (Sweden)

    Astrid eWingler

    2015-01-01

    Full Text Available Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g. via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellins (GA and jasmonate (JA play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor (CBF dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants.

  17. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity

  18. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  19. Using Remote Sensing Mapping and Growth Response to Environmental Variability to Aide Aquatic Invasive Plant Management

    Science.gov (United States)

    Bubenheim, David L.; Schlick, Greg; Genovese, Vanessa; Wilson, Kenneth D.

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass density), direct operations, and assess management impacts on plant communities. Archived satellite records enable review of results following previous climate and management events and aide in developing long-term strategies. Examples of remote sensing aiding effectiveness of aquatic weed management will be discussed as well as areas for potential technological improvement. Modeling at local and watershed scales using the SWAT modeling tool provides insight into land-use effects on water quality (described by Zhang in same Symposium). Controlled environment growth studies have been conducted to quantify the growth response of invasive aquatic plants to water quality and other environmental factors. Environmental variability occurs across a range of time scales from long-term climate and seasonal trends to short-term water flow mediated variations. Response time for invasive species response are examined at time scales of weeks, day, and hours using a combination of study duration and growth assessment techniques to assess water quality, temperature (air and water), nitrogen, phosphorus, and light effects. These provide response parameters for plant growth models in response to the variation and interact with management and economic models associated with aquatic weed management. Plant growth models are to be informed by remote sensing and applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments and

  20. PHYSIOLOGICAL RESPONSES OF DWARF COCONUT PLANTS UNDER WATER DEFICIT IN SALT - AFFECTED SOILS

    Directory of Open Access Journals (Sweden)

    ALEXANDRE REUBER ALMEIDA DA SILVA

    2017-01-01

    Full Text Available The objective of this study was to characterize the physiological acclimation responses of young plants of the dwarf coconut cultivar ̳Jiqui Green‘ associated with tolerance to conditions of multiple abiotic stresses (drought and soil salinity, acting either independently or in combination. The study was conducted under controlled conditions and evaluated the following parameters: leaf gas exchange, quantum yield of chlorophyll a fluorescence, and relative contents of total chlorophyll (SPAD index. The experiment was conducted under a randomized block experimental design, in a split plot arrangement. In the plots, plants were exposed to different levels of water stress, by imposing potential crop evapotranspiration replacement levels equivalent to 100%, 80%, 60%, 40%, and 20%, whereas in subplots, plants were exposed to different levels of soil salinity (1.72, 6.25, 25.80, and 40.70 dS m - 1 . Physiological mechanisms were effectively limited when water deficit and salinity acted separately and/or together. Compared with soil salinity, water stress was more effective in reducing the measured physiological parameters. The magnitudes of the responses of plants to water supply and salinity depended on the intensity of stress and evaluation period. The physiological acclimation responses of plants were mainly related to stomatal regulation. The coconut tree has a number of physiological adjustment mechanisms that give the species partial tolerance to drought stress and/or salt, thereby enabling it to revegetate salinated areas, provided that its water requirements are at least partially met.