WorldWideScience

Sample records for range-expanding plant species

  1. Belowground Plant–Herbivore Interactions Vary among Climate-Driven Range-Expanding Plant Species with Different Degrees of Novel Chemistry

    Directory of Open Access Journals (Sweden)

    Rutger A. Wilschut

    2017-10-01

    Full Text Available An increasing number of studies report plant range expansions to higher latitudes and altitudes in response to global warming. However, consequences for interactions with other species in the novel ranges are poorly understood. Here, we examine how range-expanding plant species interact with root-feeding nematodes from the new range. Root-feeding nematodes are ubiquitous belowground herbivores that may impact the structure and composition of natural vegetation. Because of their ecological novelty, we hypothesized that range-expanding plant species will be less suitable hosts for root-feeding nematodes than native congeneric plant species. In greenhouse and lab trials we compared nematode preference and performance of two root-feeding nematode species between range-expanding plant species and their congeneric natives. In order to understand differences in nematode preferences, we compared root volatile profiles of all range-expanders and congeneric natives. Nematode preferences and performances differed substantially among the pairs of range-expanders and natives. The range-expander that had the most unique volatile profile compared to its related native was unattractive and a poor host for nematodes. Other range-expanding plant species that differed less in root chemistry from native congeners, also differed less in nematode attraction and performance. We conclude that the three climate-driven range-expanding plant species studied varied considerably in their chemical novelty compared to their congeneric natives, and therefore affected native root-feeding nematodes in species-specific ways. Our data suggest that through variation in chemical novelty, range-expanding plant species may vary in their impacts on belowground herbivores in the new range.

  2. Successful range-expanding plants experience less above-ground and below-ground enemy impact.

    Science.gov (United States)

    Engelkes, Tim; Morriën, Elly; Verhoeven, Koen J F; Bezemer, T Martijn; Biere, Arjen; Harvey, Jeffrey A; McIntyre, Lauren M; Tamis, Wil L M; van der Putten, Wim H

    2008-12-18

    Many species are currently moving to higher latitudes and altitudes. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below-ground enemies than the natives.

  3. Effects of native and exotic range-expanding plant species on taxonomic and functional composition of nematodes in the soil food web

    NARCIS (Netherlands)

    Morrien, E.; Duyts, H.; Van der Putten, W.H.

    2012-01-01

    Due to climate warming, many plant species shift ranges towards higher latitudes. Plants can disperse faster than most soil biota, however, little is known about how range-expanding plants in the new range will establish interactions with the resident soil food web. In this paper we examine how the

  4. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  5. Postglacial migration supplements climate in determining plant species ranges in Europe

    Science.gov (United States)

    Normand, Signe; Ricklefs, Robert E.; Skov, Flemming; Bladt, Jesper; Tackenberg, Oliver; Svenning, Jens-Christian

    2011-01-01

    The influence of dispersal limitation on species ranges remains controversial. Considering the dramatic impacts of the last glaciation in Europe, species might not have tracked climate changes through time and, as a consequence, their present-day ranges might be in disequilibrium with current climate. For 1016 European plant species, we assessed the relative importance of current climate and limited postglacial migration in determining species ranges using regression modelling and explanatory variables representing climate, and a novel species-specific hind-casting-based measure of accessibility to postglacial colonization. Climate was important for all species, while postglacial colonization also constrained the ranges of more than 50 per cent of the species. On average, climate explained five times more variation in species ranges than accessibility, but accessibility was the strongest determinant for one-sixth of the species. Accessibility was particularly important for species with limited long-distance dispersal ability, with southern glacial ranges, seed plants compared with ferns, and small-range species in southern Europe. In addition, accessibility explained one-third of the variation in species' disequilibrium with climate as measured by the realized/potential range size ratio computed with niche modelling. In conclusion, we show that although climate is the dominant broad-scale determinant of European plant species ranges, constrained dispersal plays an important supplementary role. PMID:21543356

  6. Dispersal limitation at the expanding range margin of an evergreen tree in urban habitats?

    DEFF Research Database (Denmark)

    Møller, Linda Agerbo; Skou, Anne-Marie Thonning; Kollmann, Johannes Christian

    2012-01-01

    Dispersal limitations contribute to shaping plant distribution patterns and thus are significant for biodiversity conservation and urban ecology. In fleshy-fruited plants, for example, any preference of frugivorous birds affects dispersal capacities of certain fruit species. We conducted a removal...... landscapes. The results should be included in urban forestry and planting of potentially invasive ornamental species. © 2011 Elsevier GmbH. All rights reserved....... experiment with fruits of Ilex aquifolium, a species that is currently expanding its range margin in northern Europe in response to climate change. The species is also a popular ornamental tree and naturalization has been observed in many parts of its range. Fruits of native I. aquifolium and of three...

  7. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  8. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  9. Ecological and evolutionary processes at expanding range margins

    OpenAIRE

    Thomas, C.D.; Bodsworth, E.J.; Wilson, R.J.; Simmons, A.D.; Davies, Z.G.; Musche, M.; Conradt, L.

    2001-01-01

    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded\\ud rapidly in association with recent climate warming3±10. We examined four insect species that have expanded their geographical\\ud ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety ...

  10. Mapping plant species ranges in the Hawaiian Islands: developing a methodology and associated GIS layers

    Science.gov (United States)

    Price, Jonathan P.; Jacobi, James D.; Gon, Samuel M.; Matsuwaki, Dwight; Mehrhoff, Loyal; Wagner, Warren; Lucas, Matthew; Rowe, Barbara

    2012-01-01

    This report documents a methodology for projecting the geographic ranges of plant species in the Hawaiian Islands. The methodology consists primarily of the creation of several geographic information system (GIS) data layers depicting attributes related to the geographic ranges of plant species. The most important spatial-data layer generated here is an objectively defined classification of climate as it pertains to the distribution of plant species. By examining previous zonal-vegetation classifications in light of spatially detailed climate data, broad zones of climate relevant to contemporary concepts of vegetation in the Hawaiian Islands can be explicitly defined. Other spatial-data layers presented here include the following: substrate age, as large areas of the island of Hawai'i, in particular, are covered by very young lava flows inimical to the growth of many plant species; biogeographic regions of the larger islands that are composites of multiple volcanoes, as many of their species are restricted to a given topographically isolated mountain or a specified group of them; and human impact, which can reduce the range of many species relative to where they formerly were found. Other factors influencing the geographic ranges of species that are discussed here but not developed further, owing to limitations in rendering them spatially, include topography, soils, and disturbance. A method is described for analyzing these layers in a GIS, in conjunction with a database of species distributions, to project the ranges of plant species, which include both the potential range prior to human disturbance and the projected present range. Examples of range maps for several species are given as case studies that demonstrate different spatial characteristics of range. Several potential applications of species-range maps are discussed, including facilitating field surveys, informing restoration efforts, studying range size and rarity, studying biodiversity, managing

  11. Does enemy damage vary across the range of exotic plant species? Evidence from two coastal dune plant species in eastern Australia.

    Science.gov (United States)

    Tabassum, Samiya; Leishman, Michelle R

    2018-02-01

    Release from natural enemies is often cited as a key factor for understanding the success of invasive plant species in novel environments. However, with time invasive species will accumulate native enemies in their invaded range, with factors such as spread distance from the site of introduction, climate and leaf-level traits potentially affecting enemy acquisition rates. However, the influence of such factors is difficult to assess without examining enemy attack across the entire species' range. We tested the significance of factors associated with range expansion (distance from source population and maximum population density), climatic variables (annual temperature and rainfall) and leaf-level traits [specific leaf area (SLA) and foliar nitrogen concentration] in explaining variation in enemy damage across multiple populations of two coastal invasive plants (Gladiolus gueinzii Kunze and Hydrocotyle bonariensis Lam.) along their entire introduced distribution in eastern Australia. We found that for H. bonariensis, amount of foliar damage increased with distance from source population. In contrast, for G. gueinzii, probability and amount of foliar damage decreased with decreasing temperature and increasing rainfall, respectively. Our results show that patterns of enemy attack across species' ranges are complex and cannot be generalised between species or even range edges.

  12. Plant–soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  13. Ecological and evolutionary processes at expanding range margins.

    Science.gov (United States)

    Thomas, C D; Bodsworth, E J; Wilson, R J; Simmons, A D; Davies, Z G; Musche, M; Conradt, L

    2001-05-31

    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change.

  14. Habitat area and climate stability determine geographical variation in plant species range sizes

    DEFF Research Database (Denmark)

    Morueta-Holme, Naia; Enquist, Brian J.; McGill, Brian J.

    2013-01-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~85,000 ...

  15. Early signs of range disjunction of submountainous plant species: an unexplored consequence of future and contemporary climate changes.

    Science.gov (United States)

    Kuhn, Emilien; Lenoir, Jonathan; Piedallu, Christian; Gégout, Jean-Claude

    2016-06-01

    Poleward and upward species range shifts are the most commonly anticipated and studied consequences of climate warming. However, these global responses to climate change obscure more complex distribution change patterns. We hypothesize that the spatial arrangement of mountain ranges and, consequently, climatic gradients in Europe, will result in range disjunctions. This hypothesis was investigated for submountainous forest plant species at two temporal and spatial scales: (i) under future climate change (between 1950-2000 and 2061-2080 periods) at the European scale and (ii) under contemporary climate change (between 1914-1987 and 1997-2013 periods) at the French scale. We selected 97 submountainous forest plant species occurring in France, among which distribution data across Europe are available for 25 species. By projecting future distribution changes for the 25 submountainous plant species across Europe, we demonstrated that range disjunction is a likely consequence of future climate change. To assess whether it is already taking place, we used a large forest vegetation-plot database covering the entire French territory over 100 years (1914-2013) and found an average decrease in frequency (-0.01 ± 0.004) in lowland areas for the 97 submountainous species - corresponding to a loss of 6% of their historical frequency - along with southward and upward range shifts, suggesting early signs of range disjunctions. Climate-induced range disjunctions should be considered more carefully since they could have dramatic consequences on population genetics and the ability of species to face future climate changes. © 2016 John Wiley & Sons Ltd.

  16. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Trait-based analysis of decline in plant species ranges during the 20th century: a regional comparison between the UK and Estonia.

    Science.gov (United States)

    Laanisto, Lauri; Sammul, Marek; Kull, Tiiu; Macek, Petr; Hutchings, Michael J

    2015-02-02

    Although the distribution ranges and abundance of many plant species have declined dramatically in recent decades, detailed analysis of these changes and their cause have only become possible following the publication of second- and third-generation national distribution atlases. Decline can now be compared both between species and in different parts of species' ranges. We extracted data from distribution atlases to compare range persistence of 736 plant species common to both the UK and Estonia between survey periods encompassing almost the same years (1969 and 1999 in the UK and 1970 and 2004 in Estonia). We determined which traits were most closely associated with variation in species persistence, whether these were the same in each country, and the extent to which they explained differences in persistence between the countries. Mean range size declined less in Estonia than in the UK (24.3% vs. 30.3%). One-third of species in Estonia (239) maintained >90% of their distribution range compared with one-fifth (141) in the UK. In Estonia, 99 species lost >50% of their range compared with 127 species in the UK. Persistence was very positively related to original range in both countries. Major differences in species persistence between the studied countries were primarily determined by biogeographic (affiliation to floristic element) and ecoevolutionary (plant strategy) factors. In contrast, within-country persistence was most strongly determined by tolerance of anthropogenic activities. Decline of species in the families Orchidaceae and Potamogetonaceae was significantly greater in the UK than in Estonia. Almost all of the 736 common and native European plant species in our study are currently declining in their range due to pressure from anthropogenic activities. Those species with low tolerance of human activity, with biotic pollination vectors and in the families referred to above are the most vulnerable, especially where human population density is high. © 2015

  18. [Altitudinal patterns of species richness and species range size of vascular plants in Xiaolong- shan Reserve of Qinling Mountain: a test of Rapoport' s rule].

    Science.gov (United States)

    Zheng, Zhi; Gong, Da-Jie; Sun, Cheng-Xiang; Li, Xiao-Jun; Li, Wan-Jiang

    2014-09-01

    Altitudinal patterns of species richness and species range size and their underlying mechanisms have long been a key topic in biogeography and biodiversity research. Rapoport's rule stated that the species richness gradually declined with the increasing altitude, while the species ranges became larger. Using altitude-distribution database from Xiaolongshan Reverse, this study explored the altitudinal patterns of vascular plant species richness and species range in Qinling Xiaolongshan Reserve, and examined the relationships between species richness and their distributional middle points in altitudinal bands for different fauna, taxonomic units and growth forms and tested the Rapoport's rule by using Stevens' method, Pagel's method, mid-point method and cross-species method. The results showed that the species richness of vascular plants except small-range species showed a unimodal pattern along the altitude in Qinling Xiaolongshan Reserve and the highest proportion of small-range species was found at the lower altitudinal bands and at the higher altitudinal bands. Due to different assemblages and examining methods, the relationships between species distributing range sizes and the altitudes were different. Increasing taxonomic units was easier to support Rapoport's rule, which was related to niche differences that the different taxonomic units occupied. The mean species range size of angiosperms showed a unimodal pattern along the altitude, while those of the gymnosperms and pteridophytes were unclearly regular. The mean species range size of the climbers was wider with the increasing altitude, while that of the shrubs which could adapt to different environmental situations was not sensitive to the change of altitude. Pagel's method was easier to support the Rapoport's rule, and then was Steven's method. On the contrary, due to the mid-domain effect, the results of the test by using the mid-point method showed that the mean species range size varied in a unimodal

  19. [Psychoactive plant species--actual list of plants prohibited in Poland].

    Science.gov (United States)

    Simonienko, Katarzyna; Waszkiewicz, Napoleon; Szulc, Agata

    2013-01-01

    According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520.) the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where--among primeval cultures--are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  20. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range.

    Directory of Open Access Journals (Sweden)

    Patrik Inderbitzin

    Full Text Available Hybridization plays a central role in plant evolution, but its overall importance in fungi is unknown. New plant pathogens are thought to arise by hybridization between formerly separated fungal species. Evolution of hybrid plant pathogens from non-pathogenic ancestors in the fungal-like protist Phytophthora has been demonstrated, but in fungi, the most important group of plant pathogens, there are few well-characterized examples of hybrids. We focused our attention on the hybrid and plant pathogen Verticillium longisporum, the causal agent of the Verticillium wilt disease in crucifer crops. In order to address questions related to the evolutionary origin of V. longisporum, we used phylogenetic analyses of seven nuclear loci and a dataset of 203 isolates of V. longisporum, V. dahliae and related species. We confirmed that V. longisporum was diploid, and originated three different times, involving four different lineages and three different parental species. All hybrids shared a common parent, species A1, that hybridized respectively with species D1, V. dahliae lineage D2 and V. dahliae lineage D3, to give rise to three different lineages of V. longisporum. Species A1 and species D1 constituted as yet unknown taxa. Verticillium longisporum likely originated recently, as each V. longisporum lineage was genetically homogenous, and comprised species A1 alleles that were identical across lineages.

  1. Why some plant species are rare.

    Science.gov (United States)

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  2. Species richness of vascular plants along the climatic range of the Spanish dehesas at two spatial scales

    Directory of Open Access Journals (Sweden)

    Jose M. Garcia del Barrio

    2014-04-01

    Full Text Available Aims of study: The goals of this paper are to summarize and to compare plant species richness and floristic similarity at two spatial scales; mesohabitat (normal, eutrophic, and oligotrophic dehesas and dehesa habitat; and to establish guidelines for conserving species diversity in dehesas.Area of study: We considered four dehesa sites in the western Peninsular Spain, located along a climatic and biogeographic gradient from north to south. Main results: Average alpha richness for mesohabitats was 75.6 species, and average alpha richness for dehesa sites was 146.3. Gamma richness assessed for the overall dehesa habitat was 340.0 species. The species richness figures of normal dehesa mesohabitat were significantly lesser than of the eutrophic mesohabitat and lesser than the oligotrophic mesohabitat too. No significant differences were found for species richness among dehesa sites. We have found more dissimilarity at local scale (mesohabitat than at regional scale (habitat. Finally, the results of the similarity assessment between dehesa sites reflected both climatic and biogeographic gradients.Research highlights: An effective conservation of dehesas must take into account local and regional conditions all along their distribution range for ensuring the conservation of the main vascular plant species assemblages as well as the associated fauna.Keywords: Agroforestry systems; mesohabitat; non-parametric estimators; alpha richness; gamma richness; floristic similarity; climatic and biogeographic range.

  3. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.; Snoek, L.B.; Oplaat, C.; Biere, A.; Putten, van der W.H.; Verhoeven, K.J.F.

    2015-01-01

    Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test if northward range expansion of

  4. Non-indigenous plant species and their ecological range in Central European pine (Pinus sylvestris L.) forests

    OpenAIRE

    Zerbe , Stefan; Wirth , Petra

    2006-01-01

    International audience; In this study, forest ecosystems were analysed with regard to the occurrence and ecological range of non-indigenous plant species. Pine forests in the NE German lowland, which naturally and anthropogenically occur on a broad range of different sites, were taken as an example. The analysis is based on a data set of about 2 300 vegetation plots. The ecological range was assessed applying Ellenberg's ecological indicator values. Out of a total of 362 taxa recorded in the ...

  5. Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead.

    Science.gov (United States)

    Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2010-10-01

    The tolerance of wild flora to heavy-metal exposure has received very little research. In this study, the tolerance of four native tree species, four native grass species, and lettuce to copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) was investigated in a root-elongation study using Petri dishes. The results of these studies show a diverse range of responses to Cu, Zn, Cd, and Pb amongst the tested plant species. Toxicity among metals decreased in the following order: Cd ~ Cu > Pb > Zn. Metal concentrations resulting in a 50% reduction in growth (EC(50)) varied considerably, ranging from (microM) 30 (Dichanthium sericeum) to >2000 (Acacia spp.) for Cu; from 260 (Lactuca sativa) to 2000 (Acacia spp.) for Zn; from 27 (L. sativa) to 940 (Acacia holosericea) for Cd; and from 180 (L. sativa) to >1000 (Acacia spp.) for Pb. Sensitive native plant species identified included D. sericeum, Casuarina cunninghamiana, and Austrodanthonia caespitosa. However, L. sativa (lettuce) was also among the most sensitive to all four metals. Acacia species showed a high tolerance to metal exposure, suggesting that the Acacia genus shows potential for use in contaminated-site revegetation.

  6. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  7. Invasive Plant Species in the National Parks of Vietnam

    OpenAIRE

    Bernard Dell; Pham Quang Thu; Dang Thanh Tan

    2012-01-01

    The impact of invasive plant species in national parks and forests in Vietnam is undocumented and management plans have yet to be developed. Ten national parks, ranging from uncut to degraded forests located throughout Vietnam, were surveyed for invasive plant species. Transects were set up along roads, trails where local people access park areas, and also tracks through natural forest. Of 134 exotic weeds, 25 were classified as invasive species and the number of invasive species ranged from ...

  8. No universal scale-dependent impacts of invasive species on native plant species richness.

    Science.gov (United States)

    Stohlgren, Thomas J; Rejmánek, Marcel

    2014-01-01

    A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species-area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316-318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness-log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.

  9. Is the Geographic Range of Mangrove Forests in the Conterminous United States Really Expanding?

    Science.gov (United States)

    Giri, Chandra; Long, Jordan

    2016-11-28

    Changes in the distribution and abundance of mangrove species within and outside of their historic geographic range can have profound consequences in the provision of ecosystem goods and services they provide. Mangroves in the conterminous United States (CONUS) are believed to be expanding poleward (north) due to decreases in the frequency and severity of extreme cold events, while sea level rise is a factor often implicated in the landward expansion of mangroves locally. We used ~35 years of satellite imagery and in situ observations for CONUS and report that: (i) poleward expansion of mangrove forest is inconclusive, and may have stalled for now, and (ii) landward expansion is actively occurring within the historical northernmost limit. We revealed that the northernmost latitudinal limit of mangrove forests along the east and west coasts of Florida, in addition to Louisiana and Texas has not systematically expanded toward the pole. Mangrove area, however, expanded by 4.3% from 1980 to 2015 within the historic northernmost boundary, with the highest percentage of change in Texas and southern Florida. Several confounding factors such as sea level rise, absence or presence of sub-freezing temperatures, land use change, impoundment/dredging, changing hydrology, fire, storm, sedimentation and erosion, and mangrove planting are responsible for the change. Besides, sea level rise, relatively milder winters and the absence of sub-freezing temperatures in recent decades may be enabling the expansion locally. The results highlight the complex set of forcings acting on the northerly extent of mangroves and emphasize the need for long-term monitoring as this system increases in importance as a means to adapt to rising oceans and mitigate the effects of increased atmospheric CO₂.

  10. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    NARCIS (Netherlands)

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Putten, van der W.H.

    2012-01-01

    Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  11. Common Plants of Longleaf Pine-Bluestem Range

    Science.gov (United States)

    Harold E. Grelen; Vinson L. Duvall

    1966-01-01

    This publication describes many grasses, grasslike plants, forbs, and shrubs that inhabit longleaf pine-bluestem range. The species vary widely in importance; most produce forage palatable to cattle, some are noxious weeds, and others are valuable indicators of trends in range condition. All are abundant enough on certain sites, however, to require identification for...

  12. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Science.gov (United States)

    Léotard, Guillaume; Debout, Gabriel; Dalecky, Ambroise; Guillot, Sylvain; Gaume, Laurence; McKey, Doyle; Kjellberg, Finn

    2009-01-01

    Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are

  13. Is the Geographic Range of Mangrove Forests in the Conterminous United States Really Expanding?

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-11-01

    Full Text Available Changes in the distribution and abundance of mangrove species within and outside of their historic geographic range can have profound consequences in the provision of ecosystem goods and services they provide. Mangroves in the conterminous United States (CONUS are believed to be expanding poleward (north due to decreases in the frequency and severity of extreme cold events, while sea level rise is a factor often implicated in the landward expansion of mangroves locally. We used ~35 years of satellite imagery and in situ observations for CONUS and report that: (i poleward expansion of mangrove forest is inconclusive, and may have stalled for now, and (ii landward expansion is actively occurring within the historical northernmost limit. We revealed that the northernmost latitudinal limit of mangrove forests along the east and west coasts of Florida, in addition to Louisiana and Texas has not systematically expanded toward the pole. Mangrove area, however, expanded by 4.3% from 1980 to 2015 within the historic northernmost boundary, with the highest percentage of change in Texas and southern Florida. Several confounding factors such as sea level rise, absence or presence of sub-freezing temperatures, land use change, impoundment/dredging, changing hydrology, fire, storm, sedimentation and erosion, and mangrove planting are responsible for the change. Besides, sea level rise, relatively milder winters and the absence of sub-freezing temperatures in recent decades may be enabling the expansion locally. The results highlight the complex set of forcings acting on the northerly extent of mangroves and emphasize the need for long-term monitoring as this system increases in importance as a means to adapt to rising oceans and mitigate the effects of increased atmospheric CO2.

  14. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Directory of Open Access Journals (Sweden)

    Guillaume Léotard

    Full Text Available Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions.We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants.Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated

  15. Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Bridgham, Scott D. [Univ. of Oregon, Eugene, OR (United States); Johnson, Bart [Univ. of Oregon, Eugene, OR (United States)

    2013-09-26

    Pacific Northwest (PNW) prairies are an imperiled ecosystem that contain a large number of plant species with high fidelity to this habitat. The few remaining high-quality PNW prairies harbor a number of sensitive, rare, and endangered plant species that may be further at-risk with climate change. Thus, PNW prairies are an excellent model system to examine how climate change will affect the distribution of native plant species in grassland sites. Our experimental objectives were to determine: (i) how climate change will affect the range distribution of native plant species; (ii) what life history stages are most sensitive to climate change in a group of key indicator native species; (iii) the robustness of current restoration techniques and suites of species to changing climate, and in particular, the relative competitiveness of native species versus exotic invasive species; and (iv) the effects of climate change on carbon and nutrient cycling and soil-microbial-plant feedbacks. We addressed these objectives by experimentally increasing temperature 2.5 to 3.0 ºC above ambient with overhead infrared lamps and increasing wet-season precipitation by 20% above ambient in three upland prairie sites in central-western Washington, central-western Oregon, and southwestern Oregon from fall 2010 through 2012. Additional precipitation was applied within 2 weeks of when it fell so precipitation intensity was increased, particularly during the winter rainy season but with minimal additions during the summer dry season. These three sites also represent a 520-km natural climate gradient of increasing degree of severity of Mediterranean climate from north to south. After removing the extant vegetation, we planted a diverse suite of 12 native species that have their northern range limit someplace within the PNW in each experimental plot. An additional 20 more wide-spread native species were also planted into each plot. We found that recruitment of plant species within their ranges

  16. Species interactions and plant polyploidy.

    Science.gov (United States)

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. © 2016 Botanical Society of America.

  17. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  18. Invasive exotic plant species in Sierra Nevada ecosystems

    Science.gov (United States)

    Carla M. D' Antonio; Eric L. Berlow; Karen L. Haubensak

    2004-01-01

    The Sierra Nevada is a topographically and floristically diverse region of the western United States. While it comprises only a fifth of the total land area of California, half of the native plant species in the state occur within the range. In addition, more than 400 plant species are endemic to the Sierra Nevada and many of these are listed as threatened or have...

  19. Past climate-driven range shifts and population genetic diversity in arctic plants

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Eidesen, Pernille Bronken; Ehrich, Dorothee

    2016-01-01

    High intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since ...... the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses...

  20. Germination and early plant development of ten plant species ...

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  1. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    Science.gov (United States)

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  2. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Directory of Open Access Journals (Sweden)

    Hyeyeong Choe

    Full Text Available Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the

  3. Rapid evolution of parasite life history traits on an expanding range-edge.

    Science.gov (United States)

    Kelehear, Crystal; Brown, Gregory P; Shine, Richard

    2012-04-01

    Parasites of invading species undergoing range advance may be exposed to powerful new selective forces. Low host density in range-edge populations hampers parasite transmission, requiring the parasite to survive longer periods in the external environment before encountering a potential host. These conditions should favour evolutionary shifts in offspring size to maximise parasite transmission. We conducted a common-garden experiment to compare life history traits among seven populations of the nematode lungworm (Rhabdias pseudosphaerocephala) spanning from the parasite population core to the expanding range-edge in invasive cane toads (Rhinella marina) in tropical Australia. Compared to conspecifics from the population core, nematodes from the range-edge exhibited larger eggs, larger free-living adults and larger infective larvae, and reduced age at maturity in parasitic adults. These results support a priori predictions regarding adaptive changes in offspring size as a function of invasion history, and suggest that parasite life history traits can evolve rapidly in response to the selective forces exerted by a biological invasion. © 2012 Blackwell Publishing Ltd/CNRS.

  4. Differences in mobility at the range edge of an expanding invasive population of Xenopus laevis in the west of France.

    Science.gov (United States)

    Louppe, Vivien; Courant, Julien; Herrel, Anthony

    2017-01-15

    Theoretical models predict that spatial sorting at the range edge of expanding populations should favor individuals with increased mobility relative to individuals at the center of the range. Despite the fact that empirical evidence for the evolution of locomotor performance at the range edge is rare, data on cane toads support this model. However, whether this can be generalized to other species remains largely unknown. Here, we provide data on locomotor stamina and limb morphology in individuals from two sites: one from the center and one from the periphery of an expanding population of the clawed frog Xenopus laevis in France where it was introduced about 30 years ago. Additionally, we provide data on the morphology of frogs from two additional sites to test whether the observed differences can be generalized across the range of this species in France. Given the known sexual size dimorphism in this species, we also test for differences between the sexes in locomotor performance and morphology. Our results show significant sexual dimorphism in stamina and morphology, with males having longer legs and greater stamina than females. Moreover, in accordance with the predictions from theoretical models, individuals from the range edge had a greater stamina. This difference in locomotor performance is likely to be driven by the significantly longer limb segments observed in animals in both sites sampled in different areas along the range edge. Our data have implications for conservation because spatial sorting on the range edge may lead to an accelerated increase in the spread of this invasive species in France. © 2017. Published by The Company of Biologists Ltd.

  5. Species climate range influences hydraulic and stomatal traits in Eucalyptus species.

    Science.gov (United States)

    Bourne, Aimee E; Creek, Danielle; Peters, Jennifer M R; Ellsworth, David S; Choat, Brendan

    2017-07-01

    Plant hydraulic traits influence the capacity of species to grow and survive in water-limited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly ( P Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Are plant species able to keep pace with the rapidly changing climate?

    Directory of Open Access Journals (Sweden)

    Sarah Cunze

    Full Text Available Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC scenarios and global circulation models (GCMs. Range shift rates were estimated by means of species distribution modelling (SDM. With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat - epizoochory and dispersal by animals after feeding and digestion - endozoochory considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species.

  7. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  8. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus via range expansion of Asclepias host plants.

    Directory of Open Access Journals (Sweden)

    Nathan P Lemoine

    Full Text Available Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp. host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in

  9. Rapid evolution of phenology during range expansion with recent climate change.

    Science.gov (United States)

    Lustenhouwer, Nicky; Wilschut, Rutger A; Williams, Jennifer L; van der Putten, Wim H; Levine, Jonathan M

    2018-02-01

    Although climate warming is expected to make habitat beyond species' current cold range edge suitable for future colonization, this new habitat may present an array of biotic or abiotic conditions not experienced within the current range. Species' ability to shift their range with climate change may therefore depend on how populations evolve in response to such novel environmental conditions. However, due to the recent nature of thus far observed range expansions, the role of rapid adaptation during climate change migration is only beginning to be understood. Here, we evaluated evolution during the recent native range expansion of the annual plant Dittrichia graveolens, which is spreading northward in Europe from the Mediterranean region. We examined genetically based differentiation between core and edge populations in their phenology, a trait that is likely under selection with shorter growing seasons and greater seasonality at northern latitudes. In parallel common garden experiments at range edges in Switzerland and the Netherlands, we grew plants from Dutch, Swiss, and central and southern French populations. Population genetic analysis following RAD-sequencing of these populations supported the hypothesized central France origins of the Swiss and Dutch range edge populations. We found that in both common gardens, northern plants flowered up to 4 weeks earlier than southern plants. This differentiation in phenology extended from the core of the range to the Netherlands, a region only reached from central France over approximately the last 50 years. Fitness decreased as plants flowered later, supporting the hypothesized benefits of earlier flowering at the range edge. Our results suggest that native range expanding populations can rapidly adapt to novel environmental conditions in the expanded range, potentially promoting their ability to spread. © 2017 John Wiley & Sons Ltd.

  10. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners.

    Science.gov (United States)

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-07-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential.

  11. Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity.

    Science.gov (United States)

    Scherer, Laura; Curran, Michael; Alvarez, Miguel

    2017-04-01

    Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility. © 2016 Society for Conservation Biology.

  12. Current distribution, habitat, and status of Category 2 candidate plant species on and near the U.S. Department of Energy's Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, Kevin W. [EG& G Energy Measurements, Gaithersburg, MD (United States); Lindemann, Tim A. [EG& G Energy Measurements, Gaithersburg, MD (United States); Lyon, Glen E. [EG& G Energy Measurements, Gaithersburg, MD (United States); Steen, Dan C. [EG& G Energy Measurements, Gaithersburg, MD (United States); Wills, Cathy A. [EG& G Energy Measurements, Gaithersburg, MD (United States); Flick, Sarah A. [EG& G Energy Measurements, Gaithersburg, MD (United States); Ostler, W. Kent [EG& G Energy Measurements, Gaithersburg, MD (United States)

    1995-12-31

    Results of surveys conducted between 1991 and 1995 were used to document the distribution and habitat of 11 Category 2 candidate plant species known to occur on or near the Nevada Test Site (NTS). Approximately 200 areas encompassing about 13,000 ha were surveyed. Distributions of all species except Frasera-pahutensis and Phaceliaparishii were increased, and the ranges of Camissonia megalantha, Galium hilendiae ssp. kingstonense, Penstemon albomarginatus, and Penstemon pahutensis were expanded. The status of each species was assessed based on current distribution population trends, and potential threats. Recommendations were made to reclassi& the following five species to Category 3C: Arctomecon merriamii, F. pahutensis, P. pahutensis, Phacelia beatleyae, and Phaceliaparishii. Two species, C. megalantha and Cymopterus ripIeyi var. saniculoides, were recommended for reclassification to Category 3B status. No recommendation was made to reclassify Astragalus funereus, G. hilendiae ssp. kingstonense, P. albomarginatus, or Penstemon fruticiformis var. amargosae from their current Category 2 status. Populations of these four species are not threatened on NTS, but the NTS populations represent only a.small portion of each species’ range and the potential threats of mining or grazing activities off NTS on these species was notassessed. Conservation measures recommended included the development of an NTS ecosystem conservation plan, continued conduct of preactivity and plant surveys on NTS, and protection of plant type localities on NTS.

  13. Life styles of Colletotrichum species and implications for plant biosecurity

    NARCIS (Netherlands)

    Silva, Dilani D. De; Crous, Pedro W.; Ades, Peter Kevin; Hyde, Kevin D.; Taylor, Paul W. J.

    Colletotrichum is a genus of major plant pathogens causing anthracnose diseases in many plant crops worldwide. The genus comprises a highly diverse group of pathogens that infect a wide range of plant hosts. The life styles of Colletotrichum species can be broadly categorised as necrotrophic,

  14. Climate change, animal species, and habitats: Adaptation and issues (Chapter 5)

    Science.gov (United States)

    Deborah M. Finch; D. Max Smith; Olivia LeDee; Jean-Luc E. Cartron; Mark A. Rumble

    2012-01-01

    Because the rate of anthropogenic climate change exceeds the adaptive capacity of many animal and plant species, the scientific community anticipates negative consequences for ecosystems. Changes in climate have expanded, contracted, or shifted the climate niches of many species, often resulting in shifting geographic ranges. In the Great Basin, for example, projected...

  15. Seed bank and big sagebrush plant community composition in a range margin for big sagebrush

    Science.gov (United States)

    Martyn, Trace E.; Bradford, John B.; Schlaepfer, Daniel R.; Burke, Ingrid C.; Laurenroth, William K.

    2016-01-01

    The potential influence of seed bank composition on range shifts of species due to climate change is unclear. Seed banks can provide a means of both species persistence in an area and local range expansion in the case of increasing habitat suitability, as may occur under future climate change. However, a mismatch between the seed bank and the established plant community may represent an obstacle to persistence and expansion. In big sagebrush (Artemisia tridentata) plant communities in Montana, USA, we compared the seed bank to the established plant community. There was less than a 20% similarity in the relative abundance of species between the established plant community and the seed bank. This difference was primarily driven by an overrepresentation of native annual forbs and an underrepresentation of big sagebrush in the seed bank compared to the established plant community. Even though we expect an increase in habitat suitability for big sagebrush under future climate conditions at our sites, the current mismatch between the plant community and the seed bank could impede big sagebrush range expansion into increasingly suitable habitat in the future.

  16. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  17. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  18. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    NARCIS (Netherlands)

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Van der Putten, W.H.

    2012-01-01

    Invasive non-nativeplant species often harbor fewer herbivorous insects than related nativeplant species. However, little is known about how herbivorous insects on non-nativeplants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  19. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    separated for thousands of years. Location: European Alps and Fennoscandia. Methods: Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly......Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been...... to be largely valid for arctic-alpine plants....

  20. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  1. Extensive range overlap between heliconiine sister species: evidence for sympatric speciation in butterflies?

    Science.gov (United States)

    Rosser, Neil; Kozak, Krzysztof M; Phillimore, Albert B; Mallet, James

    2015-06-30

    Sympatric speciation is today generally viewed as plausible, and some well-supported examples exist, but its relative contribution to biodiversity remains to be established. We here quantify geographic overlap of sister species of heliconiine butterflies, and use age-range correlations and spatial simulations of the geography of speciation to infer the frequency of sympatric speciation. We also test whether shifts in mimetic wing colour pattern, host plant use and climate niche play a role in speciation, and whether such shifts are associated with sympatry. Approximately a third of all heliconiine sister species pairs exhibit near complete range overlap, and analyses of the observed patterns of range overlap suggest that sympatric speciation contributes 32%-95% of speciation events. Müllerian mimicry colour patterns and host plant choice are highly labile traits that seem to be associated with speciation, but we find no association between shifts in these traits and range overlap. In contrast, climatic niches of sister species are more conserved. Unlike birds and mammals, sister species of heliconiines are often sympatric and our inferences using the most recent comparative methods suggest that sympatric speciation is common. However, if sister species spread rapidly into sympatry (e.g. due to their similar climatic niches), then assumptions underlying our methods would be violated. Furthermore, although we find some evidence for the role of ecology in speciation, ecological shifts did not show the associations with range overlap expected under sympatric speciation. We delimit species of heliconiines in three different ways, based on "strict and " "relaxed" biological species concepts (BSC), as well as on a surrogate for the widely-used "diagnostic" version of the phylogenetic species concept (PSC). We show that one reason why more sympatric speciation is inferred in heliconiines than in birds may be due to a different culture of species delimitation in the two

  2. Exotic plant species attack revegetation plants in post-coal mining areas

    Science.gov (United States)

    Yusuf, Muhammad; Arisoesilaningsih, Endang

    2017-11-01

    This study aimed to explore some invasive exotic plant species that have the potential to disrupt the growth of revegetation plants in post-coal mining areas. This research was conducted in a revegetation area of PT, Amanah Anugerah Adi Mulia (A3M) Kintap site, South Borneo. Direct observation was carried out on some revegetation areas by observing the growth of revegetation plants disturbed by exotic plant species and the spread of exotic plant species. Based on observation, several invasive exotic plant species were identified including Mikania cordata, Centrosema pubescence, Calopogonium mucunoides, Mimosa pudica, Ageratum conyzoides, and Chromolaena odorata. These five plant species grew wild in the revegetation area and showed ability to disrupt the growth of other plants. In some tree species, such as Acacia mangium, Paraserianthes falcataria, M. cordata could inhibit the growth and even kill the trees through covering the tree canopy. So, the trees could not receive optimum sun light for photosynthesis processes. M. cordata was also observed to have the most widespread distribution. Several exotic plant species such as C. mucunoides, M. pudica, and A. conyzoides were observed to have deep root systems compared with plant species used for revegetation. This growth characteristic allowed exotic plant species to win the competition for nutrient absorption with other plant species.

  3. The nature of plant species.

    Science.gov (United States)

    Rieseberg, Loren H; Wood, Troy E; Baack, Eric J

    2006-03-23

    Many botanists doubt the existence of plant species, viewing them as arbitrary constructs of the human mind, as opposed to discrete, objective entities that represent reproductively independent lineages or 'units of evolution'. However, the discreteness of plant species and their correspondence with reproductive communities have not been tested quantitatively, allowing zoologists to argue that botanists have been overly influenced by a few 'botanical horror stories', such as dandelions, blackberries and oaks. Here we analyse phenetic and/or crossing relationships in over 400 genera of plants and animals. We show that although discrete phenotypic clusters exist in most genera (> 80%), the correspondence of taxonomic species to these clusters is poor (< 60%) and no different between plants and animals. Lack of congruence is caused by polyploidy, asexual reproduction and over-differentiation by taxonomists, but not by contemporary hybridization. Nonetheless, crossability data indicate that 70% of taxonomic species and 75% of phenotypic clusters in plants correspond to reproductively independent lineages (as measured by postmating isolation), and thus represent biologically real entities. Contrary to conventional wisdom, plant species are more likely than animal species to represent reproductively independent lineages.

  4. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens.

    Science.gov (United States)

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-12-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.

  5. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens

    Science.gov (United States)

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-01-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231

  6. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  7. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  8. Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    Science.gov (United States)

    Lemoine, Nathan P.

    2015-01-01

    Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  9. Diverse range dynamics and dispersal routes of plants on the Tibetan Plateau during the late Quaternary.

    Directory of Open Access Journals (Sweden)

    Haibin Yu

    Full Text Available Phylogeographical studies have suggested that several plant species on the Tibetan Plateau (TP underwent recolonization during the Quaternary and may have had distinct range dynamics in response to the last glacial. To further test this hypothesis and locate the possible historical dispersal routes, we selected 20 plant species from different parts of the TP and modeled their geographical distributions over four time periods using species distribution models (SDMs. Furthermore, we applied the least-cost path method together with SDMs and shared haplotypes to estimate their historical dispersal corridors. We identified three general scenarios of species distribution change during the late Quaternary: the 'contraction-expansion' scenario for species in the northeastern TP, the 'expansion-contraction' scenario for species in the southeast and the 'stable' scenario for widespread species. During the Quaternary, we identified that these species were likely to recolonize along the low-elevation valleys, huge mountain ranges and flat plateau platform (e.g. the Yarlung Zangbo Valley and the Himalaya. We inferred that Quaternary cyclic glaciations along with the various topographic and climatic conditions of the TP could have resulted in the diverse patterns of range shift and dispersal of Tibetan plant species. Finally, we believe that this study would provide valuable insights for the conservation of alpine species under future climate change.

  10. Status of endangered and threatened plant species on Tonopah Test Range: a survey

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Cochrane, S.A.; Williams, M.P.

    1979-10-01

    Six species under consideration by the US Fish and Wildlife Service (FWS) for endangered or threatened status were found on or near the Tonopah Test Range (TTR) in southern central Nevada. Based on recognized threats to these species, their overall distribution, rarity, and other factors, status recommendations were prepared for Sandia Corporation. In addition, ten species that occur in the vicinity of TTR, and which may yet be found on TTR, are discussed in brief. Each species is discussed in relation to distribution, rarity, taxonomy, habitat requirements, endangerment, assessment of status, and proposed protection and monitoring needs. Construction activities and off-road vehicle travel are the most prominent man-caused threats to species on TTR; habitat destruction by trampling and over-grazing by feral horses and non-permit cattle significantly modifies habitats of certain species. We recommend two kinds of protective measures. First is the planning of activities so that habitats, particularly the suggested protected habitats, are not disturbed. Second, and directed to the same end, off-road traffic should be curtailed in the regions of the proposed protected habitats

  11. Host range of Phytophthora parsiana: a new high temperature pathogen of woody plants

    Directory of Open Access Journals (Sweden)

    Somieh HAJEBRAHIMI

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Among several Phytophthora spp. reported previously from Pistacia vera in Iran, a high temperature species recently identified as P. parsiana (formerly known as high temperature P. cryptogea is becoming important in woody plants, including P. vera. The host range of this newly recognised species, including both annual and perennial plants, is reported here. The pathogen infected 4–5 month-old glasshouse grown seedlings of P. vera, Ficus carica, Malus pumila and Prunus dulcis, and detached stems of 23 woody plants collected during dormant and growing seasons. Nineteen field and vegetable crops and 17 weed species were not infected by  P. parsiana in these pathogenicity assays.

  12. Effects of plant sex on range distributions and allocation to reproduction.

    Science.gov (United States)

    Johnson, Marc T J; Smith, Stacey D; Rausher, Mark D

    2010-05-01

    Despite an abundance of theory, few empirical studies have explored the ecological and evolutionary consequences of sex. We used a comparative phylogenetic approach to examine whether transitions between sexual and asexual reproduction are associated with changes in the size and distribution of species' geographical ranges, and their investment in reproduction. Here, we reconstructed the phylogeny of the genus Oenothera sections Oenothera and Calylophus (Onagraceae), which contain 35 sexual and 30 functionally asexual species. From each species, we collected data on the geographical distribution and variation in plant traits related to reproduction. Functionally asexual species occurred at higher latitudes, but did not differ in range size, compared with sexual species. Transitions to asexuality were associated with decreased investment in floral structures, including the length of petals, floral tubes and styles. Decreased anther size and increased seed size within asexual species also suggest altered allocation to male and female fitness. The observed range shifts are consistent with superior colonization of environments by asexual species following glaciation, and the observed changes in reproductive allocation support predictions made by models relating to the evolution of selfing. Our results suggest that the evolutionary consequences of asexual reproduction might be less restrictive than previously thought.

  13. Functional plant types drive plant interactions in a Mediterranean mountain range

    Directory of Open Access Journals (Sweden)

    Petr eMacek

    2016-05-01

    Full Text Available Shrubs have both positive (facilitation and negative (competition effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional groups on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat.Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions.There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions.

  14. Recursion to food plants by free-ranging Bornean elephant.

    Science.gov (United States)

    English, Megan; Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne

    2015-01-01

    Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant's preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have

  15. Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity

    International Nuclear Information System (INIS)

    Kleidon, Axel; Pavlick, Ryan; Reu, Bjoern; Adams, Jonathan

    2009-01-01

    Among the most pronounced large-scale geographic patterns of plant biodiversity are the increase in plant species richness towards the tropics, a more even distribution of the relative abundances of plant species in the tropics, and a nearly log-normal relative abundance distribution. Here we use an individual-based plant diversity model that relates climatic constraints to feasible plant growth strategies to show that all three basic diversity patterns can be predicted merely from the climatic constraints acting upon plant ecophysiological trade-offs. Our model predicts that towards objectively 'harsher' environments, the range of feasible growth strategies resulting in reproductive plants is reduced, thus resulting in lower functional plant species richness. The reduction of evenness is attributed to a more rapid decline in productivity from the most productive to less productive plant growth strategies since the particular setup of the strategy becomes more important in maintaining high productivity in harsher environments. This approach is also able to reproduce the increase in the deviation from a log-normal distribution towards more evenly distributed communities of the tropics. Our results imply that these general biodiversity relationships can be understood primarily by considering the climatic constraints on plant ecophysiological trade-offs.

  16. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  17. Comparative phylogeography of two related plant species with overlapping ranges in Europe, and the potential effects of climate change on their intraspecific genetic diversity

    Directory of Open Access Journals (Sweden)

    Provan Jim

    2011-01-01

    Full Text Available Abstract Background The aim of the present study was to use a combined phylogeographic and species distribution modelling approach to compare the glacial histories of two plant species with overlapping distributions, Orthilia secunda (one-sided wintergreen and Monotropa hypopitys (yellow bird's nest. Phylogeographic analysis was carried out to determine the distribution of genetic variation across the range of each species and to test whether both correspond to the "classic" model of high diversity in the south, with decreasing diversity at higher latitudes, or whether the cold-adapted O. secunda might retain more genetic variation in northern populations. In addition, projected species distributions based on a future climate scenario were modelled to assess how changes in the species ranges might impact on total intraspecific diversity in both cases. Results Palaeodistribution modelling and phylogeographic analysis using multiple genetic markers (chloroplast trnS-trnG region, nuclear ITS and microsatellites for O. secunda; chloroplast rps2, nuclear ITS and microsatellites for M. hypopitys indicated that both species persisted throughout the Last Glacial Maximum in southern refugia. For both species, the majority of the genetic diversity was concentrated in these southerly populations, whereas those in recolonized areas generally exhibited lower levels of diversity, particularly in M. hypopitys. Species distribution modelling based on projected future climate indicated substantial changes in the ranges of both species, with a loss of southern and central populations, and a potential northward expansion for the temperate M. hypopitys. Conclusions Both Orthilia secunda and Monotropa hypopitys appear to have persisted through the LGM in Europe in southern refugia. The boreal O. secunda, however, has retained a larger proportion of its genetic diversity in more northerly populations outside these refugial areas than the temperate M. hypopitys. Given

  18. Recursion to food plants by free-ranging Bornean elephant

    Directory of Open Access Journals (Sweden)

    Megan English

    2015-08-01

    Full Text Available Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant’s preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when

  19. Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges

    NARCIS (Netherlands)

    Reinhart, K.O.; Packer, A.; Van der Putten, W.H.; Clay, K.A.

    2003-01-01

    One explanation for the higher abundance of invasive species in their non-native than native ranges is the escape from natural enemies. But there are few experimental studies comparing the parallel impact of enemies (or competitors and mutualists) on a plant species in its native and invaded ranges,

  20. Habitat Modeling of Alien Plant Species at Varying Levels of Occupancy

    Directory of Open Access Journals (Sweden)

    Jennifer A. Brown

    2012-09-01

    Full Text Available Distribution models of invasive plants are very useful tools for conservation management. There are challenges in modeling expanding populations, especially in a dynamic environment, and when data are limited. In this paper, predictive habitat models were assessed for three invasive plant species, at differing levels of occurrence, using two different habitat modeling techniques: logistic regression and maximum entropy. The influence of disturbance, spatial and temporal heterogeneity, and other landscape characteristics is assessed by creating regional level models based on occurrence records from the USDA Forest Service’s Forest Inventory and Analysis database. Logistic regression and maximum entropy models were assessed independently. Ensemble models were developed to combine the predictions of the two analysis approaches to obtain a more robust prediction estimate. All species had strong models with Area Under the receiver operator Curve (AUC of >0.75. The species with the highest occurrence, Ligustrum spp., had the greatest agreement between the models (93%. Lolium arundinaceum had the most disagreement between models at 33% and the lowest AUC values. Overall, the strength of integrative modeling in assessing and understanding habitat modeling was demonstrated.

  1. Why would plant species become extinct locally if growing conditions improve?

    NARCIS (Netherlands)

    Kramer, K.; Bijlsma, R.J.; Hickler, T.; Thuiller, W.

    2012-01-01

    Two assumptions underlie current models of the geographical ranges of perennial plant species: 1. current ranges are in equilibrium with the prevailing climate, and 2. changes are attributable to changes in macroclimatic factors, including tolerance of winter cold, the duration of the growing

  2. Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species.

    Science.gov (United States)

    Lee, Insook; Baek, Kyunghwa; Kim, Hyunhee; Kim, Sunghyun; Kim, Jaisoo; Kwon, Youngseok; Chang, Yoontoung; Bae, Bumhan

    2007-11-01

    We investigated the germination, growth rates and uptake of contaminants of four plant species, barnyard grass (Echinochloa crusgalli), sunflower (Helianthus annuus), Indian mallow (Abutilon avicennae) and Indian jointvetch (Aeschynomene indica), grown in soil contaminated with cadmium (Cd), lead (Pb) and 2,4,6-trinitrotoluene (TNT). These contaminants are typically found at shooting ranges. Experiments were carried out over 180 days using both single plant cultures and cultures containing an equal mix of the 4 plant species. Germination rates differed among the species in single culture (92% for H. annuus, 84% for E. crusgalli, 48% for A. avicennae and 38% Ae. indica). In the 4-plant mix culture, phytoremediation for the removal of heavy metals and TNT from contaminated soils should use a single plant species rather than a mixture of several plants.

  3. 75 FR 15454 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 14 Southwestern Species

    Science.gov (United States)

    2010-03-29

    ...] Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 14 Southwestern Species AGENCY: Fish... species or subspecies of fish, wildlife, or plant, and any distinct population segment of any species of... extinction throughout all or a significant portion of its range. C. Threatened species (T) means any species...

  4. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management

    Directory of Open Access Journals (Sweden)

    Michael Padmanaba

    2014-08-01

    Full Text Available Timber production is the most pervasive human impact on tropical forests, but studies of logging impacts have largely focused on timber species and vertebrates. This review focuses on the risk from invasive alien plant species, which has been frequently neglected in production forest management in the tropics. Our literature search resulted in 114 publications with relevant information, including books, book chapters, reports and papers. Examples of both invasions by aliens into tropical production forests and plantation forests as sources of invasions are presented. We discuss species traits and processes affecting spread and invasion, and silvicultural practices that favor invasions. We also highlight potential impacts of invasive plant species and discuss options for managing them in production forests. We suggest that future forestry practices need to reduce the risks of plant invasions by conducting surveillance for invasive species; minimizing canopy opening during harvesting; encouraging rapid canopy closure in plantations; minimizing the width of access roads; and ensuring that vehicles and other equipment are not transporting seeds of invasive species. Potential invasive species should not be planted within dispersal range of production forests. In invasive species management, forewarned is forearmed.

  5. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness

    Directory of Open Access Journals (Sweden)

    Mark A. Genung

    2014-03-01

    Full Text Available The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus. We found that plant biomass (a measurement of ecosystem function sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  6. The role of wildfire in the establishment and range expansion of nonnative plant species into natural areas: A review of current literature

    Science.gov (United States)

    Mara Johnson; Lisa J. Rew; Bruce D. Maxwell; Steve Sutherland

    2006-01-01

    Nonnative invasive plants are one of the greatest threats to natural ecosystems worldwide (Vitousek et al. 1996). In fact, their spread has been described as "a raging biological wildfire" (Dewey et al. 1995). Disturbances tend to create conditions that are favorable for germination and establishment of plant species. Nonnative plant species are often...

  7. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    Science.gov (United States)

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. 75 FR 18233 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 10 Southeastern Species

    Science.gov (United States)

    2010-04-09

    ...] Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 10 Southeastern Species AGENCY: Fish.... Definitions A. Species includes any species or subspecies of fish, wildlife, or plant, and any distinct... means any species that is in danger of extinction throughout all or a significant portion of its range...

  9. Patch size effects on plant species decline in an experimentally fragmented landscape.

    Science.gov (United States)

    Collins, Cathy D; Holt, Robert D; Foster, Bryan L

    2009-09-01

    Understanding local and global extinction is a fundamental objective of both basic and applied ecology. Island biogeography theory (IBT) and succession theory provide frameworks for understanding extinction in changing landscapes. We explore the relative contribution of fragment size vs. succession on species' declines by examining distributions of abundances for 18 plant species declining over time in an experimentally fragmented landscape in northeast Kansas, U.S.A. If patch size effects dominate, early-successional species should persist longer on large patches, but if successional processes dominate, the reverse should hold, because in our system woody plant colonization is accelerated on large patches. To compare the patterns in abundance among patch sizes, we characterize joint shifts in local abundance and occupancy with a new metric: rank occupancy-abundance profiles (ROAPs). As succession progressed, statistically significant patch size effects emerged for 11 of 18 species. More early-successional species persisted longer on large patches, despite the fact that woody encroachment (succession) progressed faster in these patches. Clonal perennial species persisted longer on large patches compared to small patches. All species that persisted longer on small patches were annuals that recruit from the seed bank each year. The degree to which species declined in occupancy vs. abundance varied dramatically among species: some species declined first in occupancy, others remained widespread or even expanded their distribution, even as they declined in local abundance. Consequently, species exhibited various types of rarity as succession progressed. Understanding the effect of fragmentation on extinction trajectories requires a species-by-species approach encompassing both occupancy and local abundance. We propose that ROAPs provide a useful tool for comparing the distribution of local abundances among landscape types, years, and species.

  10. Preferences for different nitrogen forms by coexisting plant species and soil microbes.

    Science.gov (United States)

    Harrison, Kathryn A; Bol, Roland; Bardgett, Richard D

    2007-04-01

    The growing awareness that plants might use a variety of nitrogen (N) forms, both organic and inorganic, has raised questions about the role of resource partitioning in plant communities. It has been proposed that coexisting plant species might be able to partition a limited N pool, thereby avoiding competition for resources, through the uptake of different chemical forms of N. In this study, we used in situ stable isotope labeling techniques to assess whether coexisting plant species of a temperate grassland (England, UK) display preferences for different chemical forms of N, including inorganic N and a range of amino acids of varying complexity. We also tested whether plants and soil microbes differ in their preference for different N forms, thereby relaxing competition for this limiting resource. We examined preferential uptake of a range of 13C15N-labeled amino acids (glycine, serine, and phenylalanine) and 15N-labeled inorganic N by coexisting grass species and soil microbes in the field. Our data show that while coexisting plant species simultaneously take up a variety of N forms, including inorganic N and amino acids, they all showed a preference for inorganic N over organic N and for simple over the more complex amino acids. Soil microbes outcompeted plants for added N after 50 hours, but in the long-term (33 days) the proportion of added 15N contained in the plant pool increased for all N forms except for phenylalanine, while the proportion in the microbial biomass declined relative to the first harvest. These findings suggest that in the longer-term plants become more effective competitors for added 15N. This might be due to microbial turnover releasing 15N back into the plant-soil system or to the mineralization and subsequent plant uptake of 15N transferred initially to the organic matter pool. We found no evidence that soil microbes preferentially utilize any of the N forms added, despite previous studies showing that microbial preferences for N forms

  11. The role of female search behaviour in determining host plant range in plant feeding insects: a test of the information processing hypothesis

    OpenAIRE

    Janz, N.; Nylin, S.

    1997-01-01

    Recent theoretical studies have suggested that host range in herbivorous insects may be more restricted by constraints on information processing on the ovipositing females than by trade-offs in larval feeding efficiency. We have investigated if females from polyphagous species have to pay for their ability to localize and evaluate plants from different species with a lower ability to discriminate between conspecific host plants with differences in quality. Females of the monophagous butterfli...

  12. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  13. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Science.gov (United States)

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  14. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Renata Perugini BIASI-GARBIN

    2016-01-01

    Full Text Available Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE, Libidibia ferrea (AE, and Persea americana (AcE also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  15. Small mammals as indicators of cryptic plant species diversity in the central Chilean plant endemicity hotspot

    Directory of Open Access Journals (Sweden)

    Meredith Root-Bernstein

    2014-12-01

    Full Text Available Indicator species could help to compensate for a shortfall of knowledge about the diversity and distributions of undersampled and cryptic species. This paper provides background knowledge about the ecological interactions that affect and are affected by herbaceous diversity in central Chile, as part of the indicator species selection process. We focus on the ecosystem engineering role of small mammals, primarily the degu Octodon degus. We also consider the interacting effects of shrubs, trees, avian activity, livestock, slope, and soil quality on herbaceous communities in central Chile. We sampled herbaceous diversity on a private landholding characterized by a mosaic of savanna, grassland and matorral, across a range of degu disturbance intensities. We find that the strongest factors affecting endemic herbaceous diversity are density of degu runways, shrub cover and avian activity. Our results show that the degu, a charismatic and easily identifiable and countable species, could be used as an indicator species to aid potential conservation actions such as private protected area uptake. We map areas in central Chile where degus may indicate endemic plant diversity. This area is larger than expected, and suggests that significant areas of endemic plant communities may still exist, and should be identified and protected. Keywords: Cryptic species, Diversity, Endemic, Indicator species, Octodon degus, Plant

  16. Climate driven range divergence among host species affects range-wide patterns of parasitism

    Directory of Open Access Journals (Sweden)

    Richard E. Feldman

    2017-01-01

    Full Text Available Species interactions like parasitism influence the outcome of climate-driven shifts in species ranges. For some host species, parasitism can only occur in that part of its range that overlaps with a second host species. Thus, predicting future parasitism may depend on how the ranges of the two hosts change in relation to each other. In this study, we tested whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer accounts for predicted changes in parasitism of two other species from the family Cervidae, Alces alces (moose and Rangifer tarandus (caribou, in North America. We used MaxEnt models to predict the recent (2000 and future (2050 ranges (probabilities of occurrence of the cervids and a parasite Parelaphostrongylus tenuis (brainworm taking into account range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range overlap between A. alces/R. tarandus and P. tenuis will decrease between 2000 and 2050, an outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and not the parasites, themselves. Geographically, our models predicted increasing potential occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate climate-mediated southern contraction of A. alces and R. tarandus ranges but will have limited influence on northward range expansion. Our results suggest that the spatial dynamics of one host species may be the driving force behind future rates of parasitism for another host species.

  17. Important biological factors for utilizing native plant species

    Science.gov (United States)

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  18. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's response to this solicitation calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life...

  19. Low genetic diversity despite multiple introductions of the invasive plant species Impatiens glandulifera in Europe.

    Science.gov (United States)

    Hagenblad, Jenny; Hülskötter, Jennifer; Acharya, Kamal Prasad; Brunet, Jörg; Chabrerie, Olivier; Cousins, Sara A O; Dar, Pervaiz A; Diekmann, Martin; De Frenne, Pieter; Hermy, Martin; Jamoneau, Aurélien; Kolb, Annette; Lemke, Isgard; Plue, Jan; Reshi, Zafar A; Graae, Bente Jessen

    2015-08-20

    Invasive species can be a major threat to native biodiversity and the number of invasive plant species is increasing across the globe. Population genetic studies of invasive species can provide key insights into their invasion history and ensuing evolution, but also for their control. Here we genetically characterise populations of Impatiens glandulifera, an invasive plant in Europe that can have a major impact on native plant communities. We compared populations from the species' native range in Kashmir, India, to those in its invaded range, along a latitudinal gradient in Europe. For comparison, the results from 39 other studies of genetic diversity in invasive species were collated. Our results suggest that I. glandulifera was established in the wild in Europe at least twice, from an area outside of our Kashmir study area. Our results further revealed that the genetic diversity in invasive populations of I. glandulifera is unusually low compared to native populations, in particular when compared to other invasive species. Genetic drift rather than mutation seems to have played a role in differentiating populations in Europe. We find evidence of limitations to local gene flow after introduction to Europe, but somewhat less restrictions in the native range. I. glandulifera populations with significant inbreeding were only found in the species' native range and invasive species in general showed no increase in inbreeding upon leaving their native ranges. In Europe we detect cases of migration between distantly located populations. Human activities therefore seem to, at least partially, have facilitated not only introductions, but also further spread of I. glandulifera across Europe. Although multiple introductions will facilitate the retention of genetic diversity in invasive ranges, widespread invasive species can remain genetically relatively invariant also after multiple introductions. Phenotypic plasticity may therefore be an important component of the

  20. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's Phase II proposal calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life capabilities. To...

  1. Arsenic speciation in moso bamboo shoot - A terrestrial plant that contains organoarsenic species

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Rui [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084, P.R. China (China); Zhao Mengxia [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084 (China); Wang Hui [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084 (China); Taneike, Yasuhito [Shimadzu Co Ltd, Spectroscopy Business Unit Analytical Instruments Div, Nakagyo Ku, Kyoto, 6048511 (Japan); Zhang Xinrong [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084 (China)]. E-mail: xrzhang@chem.tsinghua.edu.cn

    2006-12-01

    Arsenic is predominantly found as an inorganic species in most terrestrial plants. However, we found that a significant proportion of organic arsenic was present in moso bamboo (Phyllostachys pubescens Mazel) shoot in a market survey of arsenic species in edible terrestrial plants. Moso bamboo shoots from different producing areas in China were collected for analysis to confirm the ubiquity of methylated arsenic species. The total arsenic concentrations of bamboo shoots were determined by hydride generation coupled atomic fluorescence spectrometry (HG-AFS), ranging from 27.7 to 94.0 {mu}g/kg. Information about arsenic species was acquired from cold trap-hydride generation-atomic absorption spectrometry (CT-HG-AAS). Dimethylarsinic acid (DMA) was present in the amount of 13.9% to 44.9% of sum of the arsenic species in all these samples. Monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) were also detected in certain samples in the range of 4.2-16.5% and 11.8-18.4%, respectively. In addition, bamboo shoots collected in winter were found to have more total arsenic and organic arsenic than those collected in spring. To investigate the source of the organic arsenic in moso bamboo shoots, arsenic species in the rhizosphere soils of the plants were examined. The absence of organic arsenic in soils would suggest the possibility of formation of methylated arsenic in the plants. In addition, studies of arsenic speciation in the peel and core of winter bamboo shoots showed that all the cores contained organic arsenic while no organic arsenic was detected in the peels. The study provides useful information for better understanding of the distribution of arsenic species in terrestrial plants.

  2. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Science.gov (United States)

    Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly

  3. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Directory of Open Access Journals (Sweden)

    Rory L Hodd

    Full Text Available Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1 oceanic montane bryophytes and vascular plants; 2 species belonging to different montane plant communities; 3 species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need

  4. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment.

    Science.gov (United States)

    Arif, I A; Bakir, M A; Khan, H A; Al Farhan, A H; Al Homaidan, A A; Bahkali, A H; Al Sadoon, M; Shobrak, M

    2010-11-09

    The use of highly discriminatory methods for the identification and characterization of genotypes is essential for plant protection and appropriate use. We utilized the RAPD method for the genetic fingerprinting of 11 plant species of desert origin (seven with known medicinal value). Andrachne telephioides, Zilla spinosa, Caylusea hexagyna, Achillea fragrantissima, Lycium shawii, Moricandia sinaica, Rumex vesicarius, Bassia eriophora, Zygophyllum propinquum subsp migahidii, Withania somnifera, and Sonchus oleraceus were collected from various areas of Saudi Arabia. The five primers used were able to amplify the DNA from all the plant species. The amplified products of the RAPD profiles ranged from 307 to 1772 bp. A total of 164 bands were observed for 11 plant species, using five primers. The number of well-defined and major bands for a single plant species for a single primer ranged from 1 to 10. The highest pair-wise similarities (0.32) were observed between A. fragrantissima and L. shawii, when five primers were combined. The lowest similarities (0) were observed between A. telephioides and Z. spinosa; Z. spinosa and B. eriophora; B. eriophora and Z. propinquum. In conclusion, the RAPD method successfully discriminates among all the plant species, therefore providing an easy and rapid tool for identification, conservation and sustainable use of these plants.

  5. Determination of dose ranges of gamma rays to induce specific changes in three ornamental species

    International Nuclear Information System (INIS)

    Gonzalez J, J.

    2011-11-01

    In order to confirming the possibility of to settle a dose range that takes place directly and not at random, a specific effect independently of the species that is were produced several similar organisms to three ornamental species took place via meristems cultivation: Petunia hybrid, Impatiens walleriana and Sprekelia formosissima, same that were irradiated in an irradiator Gamma cell 220, to different dose: 0, 3.5, 5.0, 7.5, 10, 12.5, 15, 17.5 and 20 Gy. Later on, of the plants treated via in vitro the subsequent generations were obtained until the M 4 . To determine the DL 50 and the possible good doses, the survival parameters, development, morphogenesis and height were evaluated during 8 weeks, interpreting based on them, the possible physiologic and genetic alterations induced by the radiation. The established DL 50 were: 7.5 Gy (Petunia), 19.0 Gy (Impatiens) and 12.0 Gy (Sprekelia). Based on the DL 50 of each species, a range of coincident dose settled down that produces a similar effect in the three species: a range of DL 23 to the DL 50 induces and alteration in the cytokinins production affecting directly in the leaves number, buds and plants taken place by meristem, also a range of DL 32 - DL 50 impacts in the auxins production altering to the radicule system. However, when being superimposed the dose is considered that the investigation should continue. (Author)

  6. A proposal to rationalize within-species plant virus nomenclature: benefits and implications of inaction.

    Science.gov (United States)

    Jones, Roger A C; Kehoe, Monica A

    2016-07-01

    Current approaches used to name within-species, plant virus phylogenetic groups are often misleading and illogical. They involve names based on biological properties, sequence differences and geographical, country or place-association designations, or any combination of these. This type of nomenclature is becoming increasingly unsustainable as numbers of sequences of the same virus from new host species and different parts of the world increase. Moreover, this increase is accelerating as world trade and agriculture expand, and climate change progresses. Serious consequences for virus research and disease management might arise from incorrect assumptions made when current within-species phylogenetic group names incorrectly identify properties of group members. This could result in development of molecular tools that incorrectly target dangerous virus strains, potentially leading to unjustified impediments to international trade or failure to prevent such strains being introduced to countries, regions or continents formerly free of them. Dangerous strains might be missed or misdiagnosed by diagnostic laboratories and monitoring programs, and new cultivars with incorrect strain-specific resistances released. Incorrect deductions are possible during phylogenetic analysis of plant virus sequences and errors from strain misidentification during molecular and biological virus research activities. A nomenclature system for within-species plant virus phylogenetic group names is needed which avoids such problems. We suggest replacing all other naming approaches with Latinized numerals, restricting biologically based names only to biological strains and removing geographically based names altogether. Our recommendations have implications for biosecurity authorities, diagnostic laboratories, disease-management programs, plant breeders and researchers.

  7. Species discovery and diversity in Lobocriconema (Criconematidae: Nematoda) and related plant-parasitic nematodes from North American ecoregions.

    Science.gov (United States)

    Powers, T O; Bernard, E C; Harris, T; Higgins, R; Olson, M; Olson, S; Lodema, M; Matczyszyn, J; Mullin, P; Sutton, L; Powers, K S

    2016-03-03

    There are many nematode species that, following formal description, are seldom mentioned again in the scientific literature. Lobocriconema thornei and L. incrassatum are two such species, described from North American forests, respectively 37 and 49 years ago. In the course of a 3-year nematode biodiversity survey of North American ecoregions, specimens resembling Lobocriconema species appeared in soil samples from both grassland and forested sites. Using a combination of molecular and morphological analyses, together with a set of species delimitation approaches, we have expanded the known range of these species, added to the species descriptions, and discovered a related group of species that form a monophyletic group with the two described species. In this study, 148 specimens potentially belonging to the genus Lobocriconema were isolated from soil, individually measured, digitally imaged, and DNA barcoded using a 721 bp region of cytochrome oxidase subunit 1 (COI). One-third of the specimens were also analyzed using amplified DNA from the 3' region of the small subunit ribosomal RNA gene (18SrDNA) and the adjacent first internal transcribed spacer (ITS1). Eighteen mitochondrial haplotype groups, falling into four major clades, were identified by well-supported nodes in Bayesian and maximum likelihood trees and recognized as distinct lineages by species delimitation metrics. Discriminant function analysis of a set of morphological characters indicated that the major clades in the dataset possessed a strong morphological signal that decreased in comparisons of haplotype groups within clades. Evidence of biogeographic and phylogeographic patterns was apparent in the dataset. COI haplotype diversity was high in the southern Appalachian Mountains and Gulf Coast states and lessened in northern temperate forests. Lobocriconema distribution suggests the existence of phylogeographic patterns associated with recolonization of formerly glaciated regions by eastern

  8. Ecology and conservation of threatened plants in Tapkeshwari Hill ranges in the Kachchh Island, Gujarat, India

    Directory of Open Access Journals (Sweden)

    P.N. Joshi

    2012-02-01

    Full Text Available The survey was conducted in Tapkeshwari Hill Range (THR areas, wherever threatened plant species were said to exist, based on secondary information in literature. Thirteen plant species categorized as ‘Threatened’ by the World Conservation Monitoring centre (WCMC 1994 and also listed under various threat categories in the Red Data Book of Indian Plants (Nayar & Sastry 1988 were surveyed in the THR. All the RET plants reported from the study area occupied eight major habitat types. Thorn mixed forests harbored the highest number of individuals (560 of all RET plants, followed by open scrubs (345 individuals, Acacia senegal forests (328 and thorn mixed scrubs (293. Field observations showed that except Helichrysum cutchicum, all the other RET plant species were reported with very low seedlings and regeneration ratio. This paper discusses the status, distribution and threats faced and the conservation implications at border regions of some of the threatened plants of the arid Kachchh district.

  9. Retuning Rieske-type Oxygenases to Expand Substrate Range

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Mahmood; Viger, Jean-François; Kumar, Pravindra; Barriault, Diane; Bolin, Jeffrey T.; Sylvestre, Michel (INRS); (Purdue)

    2012-09-17

    Rieske-type oxygenases are promising biocatalysts for the destruction of persistent pollutants or for the synthesis of fine chemicals. In this work, we explored pathways through which Rieske-type oxygenases evolve to expand their substrate range. BphAE{sub p4}, a variant biphenyl dioxygenase generated from Burkholderia xenovorans LB400 BphAE{sub LB400} by the double substitution T335A/F336M, and BphAE{sub RR41}, obtained by changing Asn{sup 338}, Ile{sup 341}, and Leu{sup 409} of BphAE{sub p4} to Gln{sup 338}, Val{sup 341}, and Phe{sup 409}, metabolize dibenzofuran two and three times faster than BphAE{sub LB400}, respectively. Steady-state kinetic measurements of single- and multiple-substitution mutants of BphAE{sub LB400} showed that the single T335A and the double N338Q/L409F substitutions contribute significantly to enhanced catalytic activity toward dibenzofuran. Analysis of crystal structures showed that the T335A substitution relieves constraints on a segment lining the catalytic cavity, allowing a significant displacement in response to dibenzofuran binding. The combined N338Q/L409F substitutions alter substrate-induced conformational changes of protein groups involved in subunit assembly and in the chemical steps of the reaction. This suggests a responsive induced fit mechanism that retunes the alignment of protein atoms involved in the chemical steps of the reaction. These enzymes can thus expand their substrate range through mutations that alter the constraints or plasticity of the catalytic cavity to accommodate new substrates or that alter the induced fit mechanism required to achieve proper alignment of reaction-critical atoms or groups.

  10. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

  11. Growing substrates for aromatic plant species in green roofs and water runoff quality: pilot experiments in a Mediterranean climate.

    Science.gov (United States)

    Monteiro, Cristina M; Calheiros, Cristina S C; Palha, Paulo; Castro, Paula M L

    2017-09-01

    Green roof technology has evolved in recent years as a potential solution to promote vegetation in urban areas. Green roof studies for Mediterranean climates, where extended drought periods in summer contrast with cold and rainy periods in winter, are still scarce. The present research study assesses the use of substrates with different compositions for the growth of six aromatic plant species - Lavandula dentata, Pelargonium odoratissimum, Helichrysum italicum, Satureja montana, Thymus caespititius and T. pseudolanuginosus, during a 2-year period, and the monitoring of water runoff quality. Growing substrates encompassed expanded clay and granulated cork, in combination with organic matter and crushed eggshell. These combinations were adequate for the establishment of all aromatic plants, allowing their propagation in the extensive system located on the 5th storey. The substrate composed of 70% expanded clay and 30% organic matter was the most suitable, and crushed eggshell incorporation improved the initial plant establishment. Water runoff quality parameters - turbidity, pH, conductivity, NH 4 + , NO 3 - , PO 4 3- and chemical oxygen demand - showed that it could be reused for non-potable uses in buildings. The present study shows that selected aromatic plant species could be successfully used in green roofs in a Mediterranean climate.

  12. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  13. Threatened plant species of the Nevada Test Site, Ash Meadows, central-southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-04-01

    This report is a companion one to Endangered Plant Species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada (COO-2307-11) and deals with the threatened plant species of the same area. The species are those cited in the Federal Register, July 1, 1975, and include certain ones listed as occurring only in California or Arizona, but which occur also in central-southern Nevada. As with the earlier report, the purpose of this one is to record in detail the location of the past plant collections which constitute the sole or principal basis for defining the species' distributions and frequency of occurrence in southern Nye County, Nevada, and to recommend the area of the critical habitat where this is appropriate. Many of the species occur also in southern California, and for these the central-southern Nevada records are presented for consideration of the overall status of the species throughout its range.

  14. Inventory of the Invasive Alien Plant Species in Indonesia

    OpenAIRE

    TJITROSOEDIRDJO, SRI SUDARMIYATI

    2005-01-01

    An inventory of the alien plant species in Indonesia based on the existing references and herbarium specimens concluded that 1936 alien plant species are found in Indonesia which belong to 187 families. Field studies should be done to get the complete figures of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be identified, followed by studies on the assessment of losses, biology, management and their possible utilizat...

  15. Do species differ in their ability to coexist with the dominant alien Lupinus polyphyllus? A comparison between two distinct invaded ranges and a native range

    Directory of Open Access Journals (Sweden)

    Martin Hejda

    2013-06-01

    Full Text Available The community-level impacts of invasive plants are likely to vary depending on the character of native species of the target communities and their ability to thrive within the stands of the dominant alien invader. Therefore, I examined the response of native species richness to the cover of the dominant alien Lupinus polyphyllus in two distinct invaded ranges: Czech Republic (Central Europe and New Zealand. I compared the relation between native species richness and the cover of the dominant alien L. polyphyllus with that in its native range, Pacific Northwest, USA.In the native range, I found no response of native species richness to the cover of L. polyphyllus. In the Czech Republic (central Europe, the richness of native species related to it negativelly, but the relation was only marginally significant. Contrary to that, the richness of species native to New Zealand related to the cover of L. polyphyllus strongly negatively and the negative relation was significantly stronger than that of species native to Europe.Of the two invaded ranges, species native to New Zealand have been documented to be much more vulnerable to the conditions associated with the invasion and dominance of L. polyphyllus, compared to species native to central Europe. This principle has been shown both across these two invaded ranges and in New Zealand, where the aliens of european origin successfully coexist with the dominant invasive alien L. polyphyllus. Similarly, species in the native range of L. polyphyllus showed no relation to its cover, indicating their ability to thrive even in dense stands of this dominant species.

  16. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels.

    Science.gov (United States)

    Van der Putten, Wim H; Macel, Mirka; Visser, Marcel E

    2010-07-12

    Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection during climate change vary depending on how their trophic interactions become disrupted. Plant abundance can be controlled by aboveground and belowground multitrophic level interactions with herbivores, pathogens, symbionts and their enemies. We discuss how these interactions may alter during climate change and the resulting species range shifts. We suggest conceptual analogies between species responses to climate warming and exotic species introduced in new ranges. There are also important differences: the herbivores, pathogens and mutualistic symbionts of range-expanding species and their enemies may co-migrate, and the continuous gene flow under climate warming can make adaptation in the expansion zone of range expanders different from that of cross-continental exotic species. We conclude that under climate change, results of altered species interactions may vary, ranging from species becoming rare to disproportionately abundant. Taking these possibilities into account will provide a new perspective on predicting species distribution under climate change.

  17. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  18. Evaluating complementary networks of restoration plantings for landscape-scale occurrence of temporally dynamic species.

    Science.gov (United States)

    Ikin, Karen; Tulloch, Ayesha; Gibbons, Philip; Ansell, Dean; Seddon, Julian; Lindenmayer, David

    2016-10-01

    Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost-effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape-scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species-rich plantings. We investigated whether it is possible to apply a complementarity-based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity-based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species-richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species-richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and

  19. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  20. Species turnover drives β-diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands.

    Science.gov (United States)

    Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson

    2018-01-01

    This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.

  1. Invasive plant species in hardwood tree plantations

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  2. Anthropogenic range contractions bias species climate change forecasts

    Science.gov (United States)

    Faurby, Søren; Araújo, Miguel B.

    2018-03-01

    Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.

  3. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species

    Directory of Open Access Journals (Sweden)

    Saadia R. Tariq

    2016-11-01

    Full Text Available The phytoremediation potential of Helianthus annuus, Zea maize, Brassica campestris and Pisum sativum was studied for the soil of firing range contaminated with selected metals i.e. Cd, Cu, Co, Ni, Cr and Pb. The seedlings of the selected plants germinated in a mixture of sand and alluvial soil were transferred to the pots containing the soil of firing ranges and allowed to grow to the stage of reproductive growth. Subsequently they were harvested and then analyzed for selected metals by using AAS. Among the studied plants, P. sativum exhibited highest removal efficiency (i.e. 96.23% and bioconcentration factor for Pb thereby evidencing it to be Pb hyperaccumulator from the soil of firing ranges. Z. maize appreciably reduced the levels of all the selected metals in the soil but the highest phytoextraction capacity was shown for Pb i.e. 66.36%, which was enhanced to approximately 74% on EDTA application. H. annuus represented the highest removal potential for Cd i.e. 56.03% which was further increased on EDTA application. Thus it proved to be an accumulator of Cd after EDTA application. It was therefore concluded that different plants possess different phytoremediation potentials under given set of conditions.

  4. 75 FR 606 - Endangered and Threatened Wildlife and Plants; Listing Foreign Bird Species in Peru and Bolivia...

    Science.gov (United States)

    2010-01-05

    ... Threatened Wildlife and Plants; Listing Foreign Bird Species in Peru and Bolivia as Endangered Throughout... Plants; Listing Foreign Bird Species in Peru and Bolivia as Endangered Throughout Their Range AGENCY...)-- all native to Peru. The ash-breasted tit-tyrant and royal cinclodes are also native to Bolivia. This...

  5. Biodegradation of 2,4-dinitrotoluene by different plant species.

    Science.gov (United States)

    Podlipná, Radka; Pospíšilová, Blanka; Vaněk, Tomáš

    2015-02-01

    Over the past century, rapid growth of population, mining and industrialization significantly contributed to extensive soil, air and water contamination. The 2,4-dinitrotoluene (2,4-DNT), used mostly as explosive, belongs to the hazardous xenobiotics. Soils and waters contaminated with 2,4-DNT may be cleaned by phytoremediation using suitable plant species. The ability of crop plants (hemp, flax, sunflower and mustard) to germinate and grow on soils contaminated with 2,4-DNT was compared. Stimulation of their growth was found at 0.252 mg/g 2,4-DNT. The lethal concentration for the growth for these species was around 1 mg/g. In hydropony, the above mentioned species were able to survive 200 mg/l 2,4-DNT, the concentration close to maximal solubility of 2,4-DNT in water. Metabolism of 2,4-DNT was tested using suspension culture of soapwort and reed. The degradation products 2-aminonitrotoluene and 4-aminonitrotoluene were found both in the medium and in the acetone extract of plant cells. The test showed that the toxicity of these metabolites was higher than the toxicity of the parent compound, but 2,4-diaminotoluene, the product of next reduction step, was less toxic in the concentration range tested (0-200 mg/l). Copyright © 2014. Published by Elsevier Inc.

  6. Quantitative study of medicinal plants used by the communities residing in Koh-e-Safaid Range, northern Pakistani-Afghan borders.

    Science.gov (United States)

    Hussain, Wahid; Badshah, Lal; Ullah, Manzoor; Ali, Maroof; Ali, Asghar; Hussain, Farrukh

    2018-04-25

    The residents of remote areas mostly depend on folk knowledge of medicinal plants to cure different ailments. The present study was carried out to document and analyze traditional use regarding the medicinal plants among communities residing in Koh-e-Safaid Range northern Pakistani-Afghan border. A purposive sampling method was used for the selection of informants, and information regarding the ethnomedicinal use of plants was collected through semi-structured interviews. The collected data was analyzed through quantitative indices viz. relative frequency citation, use value, and family use value. The conservation status of medicinal plants was enumerated with the help of International Union for Conservation of Nature Red List Categories and Criteria (2001). Plant samples were deposited at the Herbarium of Botany Department, University of Peshawar for future reference. One hundred eight informants including 72 male and 36 female were interviewed. The informants provided information about 92 plants species used in the treatment of 53 ailments. The informant reported maximum number of species used for the treatment of diabetes (16 species), followed by carminatives (12 species), laxatives (11 species), antiseptics (11 species), for cough (10 species), to treat hepatitis (9 species), for curing diarrhea (7 species), and to cure ulcers (7 species), etc. Decoction (37 species, i.e., 40%) was the common method of recipe preparation. Most familiar medicinal plants were Withania coagulans, Caralluma tuberculata, and Artemisia absinthium with relative frequency (0.96), (0.90), and (0.86), respectively. The relative importance of Withania coagulans was highest (1.63) followed by Artemisia absinthium (1.34), Caralluma tuberculata (1.20), Cassia fistula (1.10), Thymus linearis (1.06), etc. This study allows identification of novel uses of plants. Abies pindrow, Artemisia scoparia, Nannorrhops ritchiana, Salvia reflexa, and Vincetoxicum cardiostephanum have not been reported

  7. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  8. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny.

    Science.gov (United States)

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-04-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species' native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion

  9. Relations between species rarity, vulnerability, and range contraction for a beetle group in a densely populated region in the Mediterranean biodiversity hotspot.

    Science.gov (United States)

    Fattorini, Simone

    2014-02-01

    Rarity is often considered an indication of species extinction risk, and it is frequently used to obtain measures of species vulnerability. However, there is no strong evidence of a correlation between species vulnerability and threat. Moreover, there is no consensus about how rarity should be measured. I used a multidimensional characterization of species rarity to calculate a vulnerability index for tenebrionid beetles inhabiting an Italian region in the Mediterranean biodiversity hotspot. I used different metrics to examine 3 dimensions of rarity: species range, ecology, and population. Species with rarity values below the median were scored as rare for each dimension. I combined rarity scores into a vulnerability index. I then correlated species vulnerability with range trends (expanded vs. contracted). Different measures of the same rarity dimension were strongly correlated and produced similar vulnerability scores. This result indicates rarity-based vulnerability estimates are slightly affected by the way a certain rarity dimension is measured. Vulnerability was correlated with range trends; species with the highest vulnerability had the strongest range contraction. However, a large number of common species also underwent range contraction in the last 50 years, and there was no clear relation between range contraction and their ecology. This indicates that in general human-induced environmental changes affected species irrespective of their assumed vulnerability and that focusing only on rare species may severely bias perceptions of the extent of species decline. © 2013 Society for Conservation Biology.

  10. Geographical range and local abundance of tree species in China.

    Directory of Open Access Journals (Sweden)

    Haibao Ren

    Full Text Available Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1 whether locally abundant species tend to be geographically widespread; 2 whether species are more abundant towards their range-centers; and 3 how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20-25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km(2, and >90% of 651 species had ranges >10(5 km(2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species' abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges.

  11. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  12. Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values.

    Science.gov (United States)

    Galbraith, David W

    2009-08-01

    Flow cytometry provides a rapid, accurate, and simple means to determine nuclear DNA contents (C-value) within plant homogenates. This parameter is extremely useful in a number of applications in basic and applied plant biology; for example, it provides an important starting point for projects involving whole genome sequencing, it facilitates characterization of plant species within natural and agricultural settings, it allows facile identification of engineered plants that are euploid or that represent desired ploidy classes, it points toward studies concerning the role of C-value in plant growth and development and in response to the environment and in terms of evolutionary fitness, and, in uncovering new and unexpected phenomena (for example endoreduplication), it uncovers new avenues of scientific enquiry. Despite the ease of the method, C-values have been determined for only around 2% of the described angiosperm (flowering plant) species. Within this small subset, one of the most remarkable observations is the range of 2C values, which spans at least two orders of magnitude. In determining C-values for new species, technical issues are encountered which relate both to requirement for a method that can provide accurate measurements across this extended dynamic range, and that can accommodate the large amounts of debris which accompanies flow measurements of plant homogenates. In this study, the use of the Accuri C6 flow cytometer for the analysis of plant C-values is described. This work indicates that the unusually large dynamic range of the C6, a design feature, coupled to the linearity of fluorescence emission conferred by staining of nuclei using propidium iodide, allows simultaneous analysis of species whose C-values span that of almost the entire described angiosperms. Copyright 2009 International Society for Advancement of Cytometry.

  13. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil.

    Science.gov (United States)

    Hockmann, Kerstin; Tandy, Susan; Studer, Björn; Evangelou, Michael W H; Schulin, Rainer

    2018-03-19

    Shooting ranges polluted by antimony (Sb), lead (Pb), copper (Cu) and zinc (Zn) are used for animal grazing, thus pose a risk of contaminants entering the food chain. Many of these sites are subject to waterlogging of poorly drained soils. Using field lysimeter experiments, we compared Sb, Pb, Cu and Zn uptake by four common pasture plant species (Lolium perenne, Trifolium repens, Plantago lanceolata and Rumex obtusifolius) growing on a calcareous shooting range soil under waterlogged and drained conditions. To monitor seasonal trends, the same plants were collected at three times over the growing season. Additionally, variations in soil solution concentrations were monitored at three depths over the experiment. Under reducing conditions, soluble Sb concentrations dropped from ∼50 μg L -1 to ∼10 μg L -1 , which was attributed to the reduction of Sb(V) to Sb(III) and the higher retention of the trivalent species by the soil matrix. Shoot Sb concentrations differed by a factor of 60 between plant species, but remained at levels <0.3 μg g -1 . Despite the difference in soil solution concentrations between treatments, total Sb accumulation in shoots for plants collected on the waterlogged soil did not change, suggesting that Sb(III) was much more available for plant uptake than Sb(V), as only 10% of the total Sb was present as Sb(III). In contrast to Sb, Pb, Cu and Zn soil solution concentrations remained unaffected by waterlogging, and shoot concentrations were significantly higher in the drained treatment for many plant species. Although showing an increasing trend over the season, shoot metal concentrations generally remained below regulatory values for fodder plants (40 μg g -1  Pb, 150 μg g -1 Zn, 15-35 μg g -1 Cu), indicating a low risk of contaminant transfer into the food chain under both oxic and anoxic conditions for the type of shooting range soil investigated in this study. Copyright © 2018 Elsevier Ltd. All rights

  14. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    Science.gov (United States)

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  15. New pasture plants intensify invasive species risk.

    Science.gov (United States)

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.

  16. The economic impact of fluid properties data on expander plants

    International Nuclear Information System (INIS)

    Elliott, D.G.; Chen, J.J.; Brown, T.S.; Sloan, E.D.; Kidnay, A.J.

    1991-01-01

    A number of factors led to design changes that improved the efficiency of expander plants during the 1970's, including the development of equations of state, the desire to increase ethane recoveries and the availability of accurate fluid properties data. The relative importance of fluid properties data in the development of two such design changes - the addition of side reboilers and the use of a subcooled, high-pressure demethanizer - is examined in this paper. simulations of several plants were performed and a comparison of two existing plants was made to estimate the savings in operating and capital costs in these two cases. The savings found far outweigh the cost of acquiring the data that helped to make the design changes possible. This would be of great interest to the petroleum industry in respect to gas processing and production

  17. Are range-size distributions consistent with species-level heritability?

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Gotelli, Nicholas; Rahbek, Carsten

    2012-01-01

    The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has...... been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output...

  18. Phytotoxic studies of medicinal plant species of Pakistan

    International Nuclear Information System (INIS)

    Gilani, S.A.; Adnan, M.; Kikuchi, A.; Fujii, Y.; Shinwari, Z.K.; Kazuo, N.; Watanabe, K.N.

    2010-01-01

    Allelopathic screening of 81 medicinal plant species, collected from North West Frontier Province (NWFP) Pakistan, was carried out to identify significantly higher allelopathic species for future phyto chemical analyses. For this purpose, sandwich method was used to test allelopathic potentials of leaf leachates of these plant species against lettuce seeds (Lactuca sativa L.). Two different concentrations of 10 mg and 50 mg of leaf leachates were used in the study. The radicle and hypocotyl growths were measured and compared with control treatments. It was observed that an endemic species Seriphidium kurramense, Andrachne cordifolia and Rhazya stricta were the stronger phyto toxic plants as compared to the other test species. Based on the current screening, three potential medicinal plants are recommended for future bioassay guided isolation of allelochemicals and for genetic diversity studies. It would also be interesting to see correlation between genetic markers and isolated allelochemicals. (author)

  19. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  20. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  1. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  2. Phytophthora Species, New Threats to the Plant Health in Korea

    Directory of Open Access Journals (Sweden)

    Ik-Hwa Hyun

    2014-12-01

    Full Text Available Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  3. Accumulation of some trace elements in plants of the Kuraminskiy range

    Energy Technology Data Exchange (ETDEWEB)

    Akzhigitova, N I; Lezhneva, N D

    1975-01-01

    Spectral analysis was made of shrubs, semi-shrubs and perennial herbaceous plants with deeply penetrating root systems; Rosa kokanica, Alhagi sparsifolia, Glycyrrhiza glabra, Inula grandis, Amygdalus spinosissima, Cerasus erythrocarpa, Centaurea squarrosa are the main dominants and components of associations widespread in the Kuraminskiy range in the Uzbek SSR (USSR). The content of trace elements (Cu, Mo, Ag, Pb) in the ash of these species over ore deposits is 2-6 times higher than over nonmetalliferous fields.

  4. Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts

    Science.gov (United States)

    Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.

    2017-05-01

    In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.

  5. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges.

    Directory of Open Access Journals (Sweden)

    Jonathan Lenoir

    Full Text Available BACKGROUND: The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? METHODOLOGY/PRINCIPAL FINDINGS: We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region to quantify four diversity components: (i total number of species occurring in a region (total γ-diversity, (ii number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity, (iii pair-wise species compositional turnover between plots (plot-to-plot β-diversity and (iv number of species present per plot (plot α-diversity. We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. CONCLUSIONS/SIGNIFICANCE: We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity

  6. Herbivory and pollen limitation at the upper elevational range limit of two forest understory plants of eastern North America.

    Science.gov (United States)

    Rivest, Sébastien; Vellend, Mark

    2018-01-01

    Studies of species' range limits focus most often on abiotic factors, although the strength of biotic interactions might also vary along environmental gradients and have strong demographic effects. For example, pollinator abundance might decrease at range limits due to harsh environmental conditions, and reduced plant density can reduce attractiveness to pollinators and increase or decrease herbivory. We tested for variation in the strength of pollen limitation and herbivory by ungulates along a gradient leading to the upper elevational range limits of Trillium erectum (Melanthiaceae) and Erythronium americanum (Liliaceae) in Mont Mégantic National Park, Québec, Canada. In T. erectum, pollen limitation was higher at the range limit, but seed set decreased only slightly with elevation and only in one of two years. In contrast, herbivory of T. erectum increased from 60% at the upper elevational range limit. In E. americanum , we found no evidence of pollen limitation despite a significant decrease in seed set with elevation, and herbivory was low across the entire gradient. Overall, our results demonstrate the potential for relatively strong negative interactions (herbivory) and weak positive interactions (pollination) at plant range edges, although this was clearly species specific. To the extent that these interactions have important demographic consequences-highly likely for herbivory on Trillium , based on previous studies-such interactions might play a role in determining plant species' range limits along putatively climatic gradients.

  7. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  8. Invading and expanding: range dynamics and ecological consequences of the greater white-toothed shrew (Crocidura russula invasion in Ireland.

    Directory of Open Access Journals (Sweden)

    Allan D McDevitt

    Full Text Available Establishing how invasive species impact upon pre-existing species is a fundamental question in ecology and conservation biology. The greater white-toothed shrew (Crocidura russula is an invasive species in Ireland that was first recorded in 2007 and which, according to initial data, may be limiting the abundance/distribution of the pygmy shrew (Sorex minutus, previously Ireland's only shrew species. Because of these concerns, we undertook an intensive live-trapping survey (and used other data from live-trapping, sightings and bird of prey pellets/nest inspections collected between 2006 and 2013 to model the distribution and expansion of C. russula in Ireland and its impacts on Ireland's small mammal community. The main distribution range of C. russula was found to be approximately 7,600 km2 in 2013, with established outlier populations suggesting that the species is dispersing with human assistance within the island. The species is expanding rapidly for a small mammal, with a radial expansion rate of 5.5 km/yr overall (2008-2013, and independent estimates from live-trapping in 2012-2013 showing rates of 2.4-14.1 km/yr, 0.5-7.1 km/yr and 0-5.6 km/yr depending on the landscape features present. S. minutus is negatively associated with C. russula. S. minutus is completely absent at sites where C. russula is established and is only present at sites at the edge of and beyond the invasion range of C. russula. The speed of this invasion and the homogenous nature of the Irish landscape may mean that S. minutus has not had sufficient time to adapt to the sudden appearance of C. russula. This may mean the continued decline/disappearance of S. minutus as C. russula spreads throughout the island.

  9. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.

    Science.gov (United States)

    Peterson, Megan L; Doak, Daniel F; Morris, William F

    2018-04-01

    Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life-history plasticity vs. local adaptation to species-wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species' range-not only those at the trailing range edge-could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species' latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade-off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species' ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest

  10. Estimating suitable environments for invasive plant species across large landscapes: a remote sensing strategy using Landsat 7 ETM+

    Science.gov (United States)

    Young, Kendal E.; Abbott, Laurie B.; Caldwell, Colleen A.; Schrader, T. Scott

    2013-01-01

    The key to reducing ecological and economic damage caused by invasive plant species is to locate and eradicate new invasions before they threaten native biodiversity and ecological processes. We used Landsat Enhanced Thematic Mapper Plus imagery to estimate suitable environments for four invasive plants in Big Bend National Park, southwest Texas, using a presence-only modeling approach. Giant reed (Arundo donax), Lehmann lovegrass (Eragrostis lehmanniana), horehound (Marrubium vulgare) and buffelgrass (Pennisteum ciliare) were selected for remote sensing spatial analyses. Multiple dates/seasons of imagery were used to account for habitat conditions within the study area and to capture phenological differences among targeted species and the surrounding landscape. Individual species models had high (0.91 to 0.99) discriminative ability to differentiate invasive plant suitable environments from random background locations. Average test area under the receiver operating characteristic curve (AUC) ranged from 0.91 to 0.99, indicating that plant predictive models exhibited high discriminative ability to differentiate suitable environments for invasive plant species from random locations. Omission rates ranged from <1.0 to 18%. We demonstrated that useful models estimating suitable environments for invasive plants may be created with <50 occurrence locations and that reliable modeling using presence-only datasets can be powerful tools for land managers.

  11. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.

    Science.gov (United States)

    Marrugo-Negrete, José; Marrugo-Madrid, Siday; Pinedo-Hernández, José; Durango-Hernández, José; Díez, Sergi

    2016-01-15

    Artisanal and small-scale gold mining (ASGM) is the largest sector of demand for mercury (Hg), and therefore, one of the major sources of Hg pollution in the environment. This study was conducted in the Alacrán gold-mining site, one of the most important ASGM sites in Colombia, to identify native plant species growing in Hg-contaminated soils used for agricultural purposes, and to assess their potential as phytoremediation systems. Twenty-four native plant species were identified and analysed for total Hg (THg) in different tissues (roots, stems, and leaves) and in underlying soils. Accumulation factors (AF) in the shoots, translocation (TF) from roots to shoots, and bioconcentration (BCF) from soil-to-roots were determined. Different tissues from all plant species were classified in the order of decreasing accumulation of Hg as follows: roots > leaves > stems. THg concentrations in soil ranged from 230 to 6320 ng g(-1). TF values varied from 0.33 to 1.73, with high values in the lower Hg-contaminated soils. No correlation was found between soils with low concentrations of Hg and plant leaves, indicating that TF is not a very accurate indicator, since most of the Hg input to leaves at ASGM sites comes from the atmosphere. On the other hand, the BCF ranged from 0.28 to 0.99, with Jatropha curcas showing the highest value. Despite their low biomass production, several herbs and sub-shrubs are suitable for phytoremediation application in the field, due to their fast growth and high AF values in large and easily harvestable plant parts. Among these species, herbs such as Piper marginathum and Stecherus bifidus, and the sub-shrubs J. curcas and Capsicum annuum are promising native plants with the potential to be used in the phytoremediation of soils in tropical areas that are impacted by mining.

  12. Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils

    CSIR Research Space (South Africa)

    Ramond, JB

    2015-02-01

    Full Text Available identified in a wide range of natural (e.g. soils, sediments, estuarine, and freshwaters) and man created or impacted habitats (e.g. wastewater treatment plants and agricultural soils). However, little is known on the plant-species association of AOBs...

  13. Pollination and reproduction of an invasive plant inside and outside its ancestral range

    Science.gov (United States)

    Petanidou, Theodora; Price, Mary V.; Bronstein, Judith L.; Kantsa, Aphrodite; Tscheulin, Thomas; Kariyat, Rupesh; Krigas, Nikos; Mescher, Mark C.; De Moraes, Consuelo M.; Waser, Nickolas M.

    2018-05-01

    Comparing traits of invasive species within and beyond their ancestral range may improve our understanding of processes that promote aggressive spread. Solanum elaeagnifolium (silverleaf nightshade) is a noxious weed in its ancestral range in North America and is invasive on other continents. We compared investment in flowers and ovules, pollination success, and fruit and seed set in populations from Arizona, USA ("AZ") and Greece ("GR"). In both countries, the populations we sampled varied in size and types of present-day disturbance. Stature of plants increased with population size in AZ samples whereas GR plants were uniformly tall. Taller plants produced more flowers, and GR plants produced more flowers for a given stature and allocated more ovules per flower. Similar functional groups of native bees pollinated in AZ and GR populations, but visits to flowers decreased with population size and we observed no visits in the largest GR populations. As a result, plants in large GR populations were pollen-limited, and estimates of fecundity were lower on average in GR populations despite the larger allocation to flowers and ovules. These differences between plants in our AZ and GR populations suggest promising directions for further study. It would be useful to sample S. elaeagnifolium in Mediterranean climates within the ancestral range (e.g., in California, USA), to study asexual spread via rhizomes, and to use common gardens and genetic studies to explore the basis of variation in allocation patterns and of relationships between visitation and fruit set.

  14. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  15. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species.

    Directory of Open Access Journals (Sweden)

    John J Wiens

    2016-12-01

    Full Text Available Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the "warm edges" of species' ranges (i.e., lower latitudes and elevations, contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%, in animals than in plants (50% versus 39%, and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%. Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades.

  16. The Role of Female Search Behaviour in Determining Host Plant Range in Plant Feeding Insects: A Test of the Information Processing Hypothesis

    Science.gov (United States)

    Janz, Niklas; Nylin, Soren

    1997-05-01

    Recent theoretical studies have suggested that host range in herbivorous insects may be more restricted by constraints on information processing on the ovipositing females than by trade-offs in larval feeding efficiency. We have investigated if females from polyphagous species have to pay for their ability to localize and evaluate plants from different species with a lower ability to discriminate between conspecific host plants with differences in quality. Females of the monophagous butterflies Polygonia satyrus, Vanessa indica and Inachis io and the polyphagous P. c-album and Cynthia cardui (all in Lepidoptera, Nymphalidae) were given a simultaneous choice of stinging nettles (Urtica dioica) of different quality. In addition, the same choice trial was given to females from two populations of P. c-album with different degrees of specificity. As predicted from the information processing hypothesis, all specialists discriminated significantly against the bad quality nettle, whereas the generalists laid an equal amount of eggs on both types of nettle. There were no corresponding differences between specialist and generalist larvae in their ability to utilize poor quality leaves. Our study therefore suggests that female host-searching behaviour plays an important role in determining host plant range.

  17. Hamiguitan Range: A sanctuary for native flora.

    Science.gov (United States)

    Amoroso, Victor B; Aspiras, Reyno A

    2011-01-01

    Hamiguitan Range is one of the wildlife sanctuaries in the Philippines having unique biodiversity resources that are at risk due to forest degradation and conversion of forested land to agriculture, shifting cultivation, and over-collection. Thus, it is the main concern of this research to identify and assess the endemic and endangered flora of Hamiguitan Range. Field reconnaissance and transect walk showed five vegetation types namely: agro-ecosystem, dipterocarp, montane, typical mossy and mossy-pygmy forests. Inventory of plant species revealed 163 endemic species, 35 threatened species, and 33 rare species. Assessment of plants also showed seven species as new record in Mindanao and one species as new record in the Philippines. Noteworthy is the discovery of Nepenthes micramphora, a new species of pitcher plant found in the high altitudes of Hamiguitan Range. This species is also considered site endemic, rare, and threatened. The result of the study also showed that the five vegetation types of Mt. Hamiguitan harbor a number of endangered, endemic, and rare species of plants. Thus, the result of this study would serve as basis for the formulation of policies for the protection and conservation of these species and their habitats before these plants become extinct.

  18. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  19. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward.

    Science.gov (United States)

    Richards, Christina L; Alonso, Conchita; Becker, Claude; Bossdorf, Oliver; Bucher, Etienne; Colomé-Tatché, Maria; Durka, Walter; Engelhardt, Jan; Gaspar, Bence; Gogol-Döring, Andreas; Grosse, Ivo; van Gurp, Thomas P; Heer, Katrin; Kronholm, Ilkka; Lampei, Christian; Latzel, Vít; Mirouze, Marie; Opgenoorth, Lars; Paun, Ovidiu; Prohaska, Sonja J; Rensing, Stefan A; Stadler, Peter F; Trucchi, Emiliano; Ullrich, Kristian; Verhoeven, Koen J F

    2017-12-01

    Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  20. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    Science.gov (United States)

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin; Hsieh, Chih-Hao; Ding, Tzung-Su

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions.

  1. The exotic invasive plant Vincetoxicum rossicum is a strong competitor even outside its current realized climatic temperature range

    Directory of Open Access Journals (Sweden)

    Laurа Sanderson

    2013-03-01

    Full Text Available Dog-strangling vine (Vincetoxicum rossicum is an exotic plant originating from Central and Eastern Europe that is becoming increasingly invasive in southern Ontario, Canada. Once established, it successfully displaces local native plant species but mechanisms behind this plant’s high competitive ability are not fully understood. It is unknown whether cooler temperatures will limit the range expansion of V. rossicum, which has demonstrated high tolerance for other environmental variables such as light and soil moisture. Furthermore, if V. rossicum can establish outside its current climatic limit it is unknown whether competition with native species can significantly contribute to reduce fitness and slow down invasion. We conducted an experiment to test the potential of V. rossicum to spread into northern areas of Ontario using a set of growth chambers to simulate southern and northern Ontario climatic temperature regimes. We also tested plant-plant competition by growing V. rossicum in pots with a highly abundant native species, Solidago canadensis, and comparing growth responses to plants grown alone. We found that the fitness of V. rossicum was not affected by the cooler climate despite a delay in reproductive phenology. Growing V. rossicum with S. canadensis caused a significant reduction in seedpod biomass of V. rossicum. However, we did not detect a temperature x competition interaction in spite of evidence for adaptation of S. canadensis to cooler temperature conditions. We conclude that the spread of V. rossicum north within the tested range is unlikely to be limited by climatic temperature but competition with an abundant native species may contribute to slow it down.

  2. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    International Nuclear Information System (INIS)

    Oyelami, Ayodeji O.; Okere, Uchechukwu V.; Orwin, Kate H.; De Deyn, Gerlinde B.; Jones, Kevin C.; Semple, Kirk T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14 C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of 14 C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of 14 C-phenanthrene degradation; lag phase, maximum rates and total extents of 14 C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: ► Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. ► The effects of individual plant species and plant diversity on mineralisation of 14 C-phenanthrene in soil were investigated. ► Soil fertility was the major influence on mineralisation of 14 C-phenanthrene, and abundance of microbial community. ► The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of 14 C-phenanthrene in soil.

  3. Comparative Susceptibility of Plants Native to the Appalachian Range of the United States to Inoculation With Phytophthora ramorum

    Science.gov (United States)

    R.G. Linderman; Patricia B. de Sá; E.A. Davis

    2008-01-01

    Phytophthora ramorum, cause of sudden oak death of trees or ramorum blight of other plant species, has many hosts. Some geographic regions, such as the Appalachian range of the eastern United States, are considered high risk of becoming infested with the pathogen because known susceptible plants occur there and climatic characteristics appear...

  4. Expansion of an exotic species and concomitant disease outbreaks: pigeon paramyxovirus in free-ranging Eurasian collared doves.

    Science.gov (United States)

    Schuler, Krysten L; Green, David E; Justice-Allen, Anne E; Jaffe, Rosemary; Cunningham, Mark; Thomas, Nancy J; Spalding, Marilyn G; Ip, Hon S

    2012-06-01

    Eurasian collared doves (Streptopelia decaocto) have expanded their range across the United States since their introduction several decades ago. Recent mortality events in Eurasian collared doves in Arizona and Montana, USA, during the winter of 2009-2010 were the result of pigeon paramyxovirus (PPMV), a novel disease agent. The first instance of mortality by this emerging infectious disease in this species occurred in Florida in 2001 with subsequent disease events in 2006 and 2008. Full diagnostic necropsies were performed on carcasses from the three states. PPMV was identified by RT-PCR and virus isolation and was sequenced to the VIb genotype of avian paramyxovirus-1 (APMV). Other APMVs are common in a variety of free-ranging birds, but concern is warranted because of the potential for commingling of this species with native birds, virus evolution, and threats to domestic poultry. Improved surveillance for wildlife mortality events and efforts to prevent introduction of non-native animals could reduce the threat of introducing new pathogens.

  5. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    Science.gov (United States)

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-10-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  6. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  7. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species.

    Science.gov (United States)

    Chen, Shilin; Yao, Hui; Han, Jianping; Liu, Chang; Song, Jingyuan; Shi, Linchun; Zhu, Yingjie; Ma, Xinye; Gao, Ting; Pang, Xiaohui; Luo, Kun; Li, Ying; Li, Xiwen; Jia, Xiaocheng; Lin, Yulin; Leon, Christine

    2010-01-07

    The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.

  8. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  9. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A; Eckhart, Vincent M; Tiffin, Peter

    2012-05-01

    Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.

  10. Population genetics and the evolution of geographic range limits in an annual plant.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A; Tiffin, Peter

    2011-10-01

    Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.

  11. Distribution and content of ellagitannins in Finnish plant species.

    Science.gov (United States)

    Moilanen, Johanna; Koskinen, Piia; Salminen, Juha-Pekka

    2015-08-01

    The results of a screening study, in which a total of 82 Finnish plant species were studied for their ellagitannin composition and content, are presented. The total ellagitannin content was determined by HPLC-DAD, the detected ellagitannins were further characterized by HPLC-ESI-QTOF-MS and divided into four structurally different sub-groups. Thirty plant species were found to contain ellagitannins and the ellagitannin content in the crude extracts varied from few mgg(-1) to over a hundred mgg(-1). Plant families that were rich in ellagitannins (>90mgg(-1) of the crude extract) were Onagraceae, Lyhtraceae, Geraniaceae, Elaeagnaceae, Fagaceae and some species from Rosaceae. Plant species that contained moderate amounts of ellagitannins (31-89mgg(-1) of the crude extract) were representatives of the family Rosaceae. Plant species that contained low amounts of ellagitannins (1-30mgg(-1) of the crude extract) were representatives of the families Betulaceae and Myricaceae. The specific ellagitannin composition of the species allowed their chemotaxonomic classification and the comparison between the older Cronquist's classification and the nowadays preferred Angiosperm Phylogeny Group classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    Science.gov (United States)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  13. Inventory of Invasive Plant Species along the corridor of Kawah Ijen Nature Tourism Park, Banyuwangi, East Java

    Directory of Open Access Journals (Sweden)

    Lia Hapsari

    2014-01-01

    Full Text Available A field survey was conducted in November 2013 to inventory invasive plant species present along the corridor of Kawah Ijen Nature Tourism Park exploratively. Result showed that there were 11 plant species found abundantly along the corridor. Typical native species were dominated by Cyathea contaminans, Casuarina junghuhniana and Vaccinium varingiaefolium. Three species were determined as invasive alien species i.e. Chromolaena odorata, Acacia decurrens and Blumea lacera whereas five species were determined as native species but potential invaders i.e. Rubus moluccanus, Melastoma malabatrichum, Polygonum barbatum, Debregeasia longifolia and Pteridium aquilinum. In term of tourism particularly on nature-based destinations enable moving in and out of invasive alien species due to opening the access of some natural protected areas. The environmental impact of an alien species whether it becomes invasive at its destination depends on its biological key point,  what ecological role the species may play, and on additional factors such as its tolerance of the gross features of the environment in the new range. Keyword: invasive plants, corridor, Kawah Ijen, Nature Tourism Park, Banyuwangi

  14. 77 FR 13248 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 46 Species in Idaho...

    Science.gov (United States)

    2012-03-06

    .... SUMMARY: We, the U.S. Fish and Wildlife Service, are initiating 5-year reviews for 46 species in Idaho...) Species includes any species or subspecies of fish, wildlife, or plant, and any distinct population... species that is in danger of extinction throughout all or a significant portion of its range; and (C...

  15. Accumulation of cesium-137 by different species of plants in the zone of floods

    International Nuclear Information System (INIS)

    Matsko, V.P.; Gaponenko, V.I.; Sukhover, L.K.

    2000-01-01

    Study was carried out in some areas of Brest, Gomel and Mogilev regions suffering from periodical floods. Cesium-137 accumulation by plants of various species and families differing phylogenetically and with different root systems has been investigated. The specific activity of soil (SAS) for Cs137 varied within the range of 190...154700 Bq/kg and that of overground phytomass was within 20...28000 Bq/kg. The inverse relationship was found between SAS and the values of radionuclide accumulation factor (RAF) by plants, the correlation of SAP (Bq/kg) and SAS (Bq/kg) as well as great importance of morpho-physiological characteristics in this process. RAF in higly organized species (angiospermous) is lower than in phylogenetically older plants (lichens, mosses)

  16. Plant–soil feedback in native vs. invasive populations of a range expanding plant

    Czech Academy of Sciences Publication Activity Database

    Dostálek, Tomáš; Münzbergová, Zuzana; Kladivová, A.; Macel, M.

    2016-01-01

    Roč. 399, 1-2 (2016), s. 209-220 ISSN 0032-079X Institutional support: RVO:67985939 Keywords : Rorippa australis * soil community * invasive species Subject RIV: EF - Botanics Impact factor: 3.052, year: 2016

  17. Connecting infrared spectra with plant traits to identify species

    Science.gov (United States)

    Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.

    2018-05-01

    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.

  18. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    Energy Technology Data Exchange (ETDEWEB)

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2013-02-15

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of {sup 14}C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of {sup 14}C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of {sup 14}C-phenanthrene degradation; lag phase, maximum rates and total extents of {sup 14}C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: Black-Right-Pointing-Pointer Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. Black-Right-Pointing-Pointer The effects of individual plant species and plant diversity on mineralisation of {sup 14}C-phenanthrene in soil were investigated. Black-Right-Pointing-Pointer Soil fertility was the major influence on mineralisation of {sup 14}C-phenanthrene, and abundance of microbial community. Black-Right-Pointing-Pointer The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of {sup 14}C-phenanthrene in soil.

  19. Biodiversity, Distributions and Adaptations of Arctic Species in the Context of Environmental Change

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Chernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in superdominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well

  20. Invasive plants and their escape from root herbivory: a worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges

    NARCIS (Netherlands)

    Putten, van der W.H.; Yeates, G.W.; Duyts, H.; Schreck Reis, C.; Karssen, G.

    2005-01-01

    Invasive plants generally have fewer aboveground pathogens and viruses in their introduced range than in their natural range, and they also have fewer pathogens than do similar plant species native to the introduced range. However, although plant abundance is strongly controlled by root herbivores

  1. Monitoring shifts in plant diversity in response to climate change: A method for landscapes

    Science.gov (United States)

    Stohlgren, T.J.; Owen, A.J.; Lee, M.

    2000-01-01

    Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.

  2. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Directory of Open Access Journals (Sweden)

    Jens G Froese

    Full Text Available Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  3. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......¿4)-linked ß-D-Glcp are joined by occasional (1¿3)-linkages. This mixed linkage glucan (MLG) has been the subject of extensive research because of the economic importance of several Poales species including rice, barley and wheat and because MLG has proven health benefits. The recent discovery of MLG...

  4. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  5. Biodiversity hotspots house most undiscovered plant species.

    Science.gov (United States)

    Joppa, Lucas N; Roberts, David L; Myers, Norman; Pimm, Stuart L

    2011-08-09

    For most organisms, the number of described species considerably underestimates how many exist. This is itself a problem and causes secondary complications given present high rates of species extinction. Known numbers of flowering plants form the basis of biodiversity "hotspots"--places where high levels of endemism and habitat loss coincide to produce high extinction rates. How different would conservation priorities be if the catalog were complete? Approximately 15% more species of flowering plant are likely still undiscovered. They are almost certainly rare, and depending on where they live, suffer high risks of extinction from habitat loss and global climate disruption. By using a model that incorporates taxonomic effort over time, regions predicted to contain large numbers of undiscovered species are already conservation priorities. Our results leave global conservation priorities more or less intact, but suggest considerably higher levels of species imperilment than previously acknowledged.

  6. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  7. Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions.

    Directory of Open Access Journals (Sweden)

    Boris Zimmermann

    Full Text Available BACKGROUND: It is imperative to have reliable and timely methodologies for analysis and monitoring of seed plants in order to determine climate-related plant processes. Moreover, impact of environment on plant fitness is predominantly based on studies of female functions, while the contribution of male gametophytes is mostly ignored due to missing data on pollen quality. We explored the use of infrared spectroscopy of pollen for an inexpensive and rapid characterization of plants. METHODOLOGY: The study was based on measurement of pollen samples by two Fourier transform infrared techniques: single reflectance attenuated total reflectance and transmission measurement of sample pellets. The experimental set, with a total of 813 samples, included five pollination seasons and 300 different plant species belonging to all principal spermatophyte clades (conifers, monocotyledons, eudicots, and magnoliids. RESULTS: The spectroscopic-based methodology enables detection of phylogenetic variations, including the separation of confamiliar and congeneric species. Furthermore, the methodology enables measurement of phenotypic plasticity by the detection of inter-annual variations within the populations. The spectral differences related to environment and taxonomy are interpreted biochemically, specifically variations of pollen lipids, proteins, carbohydrates, and sporopollenins. The study shows large variations of absolute content of nutrients for congenital species pollinating in the same environmental conditions. Moreover, clear correlation between carbohydrate-to-protein ratio and pollination strategy has been detected. Infrared spectral database with respect to biochemical variation among the range of species, climate and biogeography will significantly improve comprehension of plant-environment interactions, including impact of global climate change on plant communities.

  8. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  9. PLANT SPECIES, USING AGAINST VIROUS INFECTIONS OF MAN AND ANIMALS: REGULARITIES OF THE DISTRIBUTION IN THE PHYLOGENETIC CLASSIFICATION SYSTEM

    OpenAIRE

    Popov P.L.

    2008-01-01

    The list of 674 species of flowering plants, using against 21 virous infections of man and animals is presented. Systematic units of high levels (classes, subclasses) are defined by frequency of such species. Frequency (distinction of percentage parts of species with certain use between the systematic unit and the rest of flora of flowering plants) was estimated by Fisher's statistical criterion. Subclasses Lamiidae and Asteridae, latter in the evolution range, are most rich by uses against v...

  10. The Plant-Window system: A flexible, expandable computing environment for the integration of power plant activities

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1994-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. However, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and used, to the proper users throughout the plant. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National Laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed on Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications (e.g., monitoring, analysis, diagnosis, and control applications) within a common environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces to define a flexible computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades

  11. Fleshy fruit removal and nutritional composition of winter-fruiting plants: a comparison of non-native invasive and native species

    Science.gov (United States)

    Cathryn H. Greenberg; Scott T. Walter

    2010-01-01

    Invasive, non-native plants threaten forest ecosystems by reducing native plant species richness and potentially altering ecosystem processes. Seed dispersal is critical for successful invasion and range expansion by non-native plants; dispersal is likely to be enhanced if they can successfully compete with native plants for disperser services. Fruit production by non-...

  12. Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach.

    Science.gov (United States)

    Van der Putten, W H; Mortimer, S R; Hedlund, K; Van Dijk, C; Brown, V K; Lepä, J; Rodriguez-Barrueco, C; Roy, J; Diaz Len, T A; Gormsen, D; Korthals, G W; Lavorel, S; Regina, I Santa; Smilauer, P

    2000-07-01

    Succession is one of the most studied processes in ecology and succession theory provides strong predictability. However, few attempts have been made to influence the course of succession thereby testing the hypothesis that passing through one stage is essential before entering the next one. At each stage of succession ecosystem processes may be affected by the diversity of species present, but there is little empirical evidence showing that plant species diversity may affect succession. On ex-arable land, a major constraint of vegetation succession is the dominance of perennial early-successional (arable weed) species. Our aim was to change the initial vegetation succession by the direct sowing of later-successional plant species. The hypothesis was tested that a diverse plant species mixture would be more successful in weed suppression than species-poor mixtures. In order to provide a robust test including a wide range of environmental conditions and plant species, experiments were carried out at five sites across Europe. At each site, an identical experiment was set up, albeit that the plant species composition of the sown mixtures differed from site to site. Results of the 2-year study showed that diverse plant species mixtures were more effective at reducing the number of natural colonisers (mainly weeds from the seed bank) than the average low-diversity treatment. However, the effect of the low-diversity treatment depended on the composition of the species mixture. Thus, the effect of enhanced species diversity strongly depended on the species composition of the low-diversity treatments used for comparison. The effects of high-diversity plant species mixtures on weed suppression differed between sites. Low-productivity sites gave the weakest response to the diversity treatments. These differences among sites did not change the general pattern. The present results have implications for understanding biological invasions. It has been hypothesised that alien

  13. A meta-analysis of trait differences between invasive and non-invasive plant species

    OpenAIRE

    van Kleunen, Mark; Weber, Ewald; Fischer, Markus

    2010-01-01

    A major aim in ecology is identifying determinants of invasiveness. We performed a meta-analysis of 117 field or experimental-garden studies that measured pair-wise trait differences of a total of 125 invasive and 196 non-invasive plant species in the invasive range of the invasive species. We tested whether invasiveness is associated with performance-related traits (physiology, leaf-area allocation, shoot allocation, growth rate, size and fitness), and whether such associations depend on typ...

  14. Effect of different plant species in pilot constructed wetlands for wastewater reuse in agriculture

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2013-09-01

    Full Text Available In this paper the first results of an experiment carried out in Southern Italy (Sicily on the evapotranspiration (ET and removal in constructed wetlands with five plant species are presented. The pilot plant used for this study is made of twelve horizontal sub-surface flow constructed wetlands (each with a surface area of 4.5 m2 functioning in parallel, and it is used for tertiary treatment of part of the effluents from a conventional municipal wastewater treatment plant (trickling filter. Two beds are unplanted (control while ten beds are planted with five different macrophyte species: Cyperus papyrus, Vetiveria zizanoides, Miscanthus x giganteus, Arundo donax and Phragmites australis (i.e., every specie is planted in two beds to have a replication. The influent flow rate is measured in continuous by an electronic flow meter. The effluent is evaluated by an automatic system that measure the discharged volume for each bed. Physical, chemical and microbiological analyses were carried out on wastewater samples collected at the inlet of CW plant and at the outlet of the twelve beds. An automatic weather station is installed close to the experimental plant, measuring air temperature, wind speed and direction, rainfall, global radiation, relative humidity. This allows to calculate the reference Evapotranspiration (ET0 with the Penman-Monteith formula, while the ET of different plant species is measured through the water balance of the beds. The first results show no great differences in the mean removal performances of the different plant species for TSS, COD and E.coli, ranged from, respectively, 82% to 88%, 60% to 64% and 2.7 to 3.1 Ulog. The average removal efficiency of nutrient (64% for TN; 61 for NH4-N, 31% for PO4-P in the P.australis beds was higher than that other beds. From April to November 2012 ET measured for plant species were completely different from ET0 and ETcontrol, underlining the strong effect of vegetation. The cumulative

  15. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  16. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  17. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  18. Ozone injury to some Japanese woody plant species in summer

    Energy Technology Data Exchange (ETDEWEB)

    Kadota, M; Ohta, K

    1972-01-01

    Ozone is an important constituent of photochemical oxidant smog. This paper reveals the semiquantitative responses of various Japanese woody plant species to ozone (0.25 ppm). Plant species examined in this investigation include four coniferous trees, eleven evergreen broad-leaf trees, and twenty-one deciduous broad-leaf trees or shrubs. Generally, plants having thin leaves were susceptible. The plant species with higher activity of photosynthesis appeared to be more susceptible. As a whole, evergreen broad-leaf trees could be said to be more resistant to ozone than deciduous broad-leaf trees.

  19. Beneath the veil: Plant growth form influences the strength of species richness-productivity relationships in forests

    Science.gov (United States)

    Oberle, B.; Grace, J.B.; Chase, J.M.

    2009-01-01

    Aim: Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness-productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location: We analysed 231 plots ranging from 34.0?? to 48.3?? N latitude and from 75.0?? to 124.2?? W longitude in the United States. Methods: We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light-blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results: Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions: The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species

  20. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum.

    Science.gov (United States)

    Baroncelli, Riccardo; Amby, Daniel Buchvaldt; Zapparata, Antonio; Sarrocco, Sabrina; Vannacci, Giovanni; Le Floch, Gaétan; Harrison, Richard J; Holub, Eric; Sukno, Serenella A; Sreenivasaprasad, Surapareddy; Thon, Michael R

    2016-08-05

    Many species belonging to the genus Colletotrichum cause anthracnose disease on a wide range of plant species. In addition to their economic impact, the genus Colletotrichum is a useful model for the study of the evolution of host specificity, speciation and reproductive behaviors. Genome projects of Colletotrichum species have already opened a new era for studying the evolution of pathogenesis in fungi. We sequenced and annotated the genomes of four strains in the Colletotrichum acutatum species complex (CAsc), a clade of broad host range pathogens within the genus. The four CAsc proteomes and secretomes along with those representing an additional 13 species (six Colletotrichum spp. and seven other Sordariomycetes) were classified into protein families using a variety of tools. Hierarchical clustering of gene family and functional domain assignments, and phylogenetic analyses revealed lineage specific losses of carbohydrate-active enzymes (CAZymes) and proteases encoding genes in Colletotrichum species that have narrow host range as well as duplications of these families in the CAsc. We also found a lineage specific expansion of necrosis and ethylene-inducing peptide 1 (Nep1)-like protein (NLPs) families within the CAsc. This study illustrates the plasticity of Colletotrichum genomes, and shows that major changes in host range are associated with relatively recent changes in gene content.

  1. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  2. Microbial Biofilms and Breast Tissue Expanders

    Directory of Open Access Journals (Sweden)

    Melissa J. Karau

    2013-01-01

    Full Text Available We previously developed and validated a vortexing-sonication technique for detection of biofilm bacteria on the surface of explanted prosthetic joints. Herein, we evaluated this technique for diagnosis of infected breast tissue expanders and used it to assess colonization of breast tissue expanders. From April 2008 to December 2011, we studied 328 breast tissue expanders at Mayo Clinic, Rochester, MN, USA. Of seven clinically infected breast tissue expanders, six (85.7% had positive cultures, one of which grew Propionibacterium species. Fifty-two of 321 breast tissue expanders (16.2%, 95% CI, 12.3–20.7% without clinical evidence of infection also had positive cultures, 45 growing Propionibacterium species and ten coagulase-negative staphylococci. While vortexing-sonication can detect clinically infected breast tissue expanders, 16 percent of breast tissue expanders appear to be asymptomatically colonized with normal skin flora, most commonly, Propionibacterium species.

  3. Species and rotation frequency influence soil nitrogen in simplified tropical plant communities.

    Science.gov (United States)

    Ewel, John J

    2006-04-01

    Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N mineralization over a 12-year period. The communities consisted of large-stature perennial plants, comprising three tree species (Hyeronima alchorneoides, Cedrela odorata, and Cordia alliodora), a palm (Euterpe oleracea), and a large, perennial herb (Heliconia imbricata). Trees were grown in monoculture and in combination with the other two life-forms; tree monocultures were subjected to rotations of one or four years, or like the three-life-form systems, left uncut. The work was conducted on fertile soil in the humid lowlands of Costa Rica, a site with few abiotic constraints to plant growth. Rates of net N mineralization and nitrification were high, typically in the range of 0.2-0.8 microg x g(1) x d(-1), with net nitrification slightly higher than net mineralization, indicating preferential uptake of ammonium (NH4+) by plants and microbes. Net rates of N mineralization were about 30% lower in stands of one of the three tree species, Hyeronima, than in stands of the other two. Contrary to expectations, short-rotation management (one or four years) resulted in higher net rates of N mineralization than in uncut stands, whether the latter were composed of a single tree species or a combination of life-forms. Neither additional species richness nor replenishment of leached N augmented mineralization rates. The net rate at which N was supplied tended to be lowest in stands where demand for N was highest. Careful choice of species, coupled with low frequency of disturbance, can lead to maintenance of N within biomass and steady rates of within-system circulation, whereas pulses, whether caused by cutting

  4. PLAZA 3.0: an access point for plant comparative genomics

    Science.gov (United States)

    Proost, Sebastian; Van Bel, Michiel; Vaneechoutte, Dries; Van de Peer, Yves; Inzé, Dirk; Mueller-Roeber, Bernd; Vandepoele, Klaas

    2015-01-01

    Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms. PMID:25324309

  5. A retrospective analysis of pollen host plant use by stable and declining bumble bee species.

    Science.gov (United States)

    Kleijn, David; Raemakers, Ivo

    2008-07-01

    Understanding population declines has been the objective of a wide range of ecological studies. When species have become rare such studies are complicated because particular behavior or life history traits may be the cause but also the result of the decline of a species. We approached this problem by studying species' characteristics on specimens that were collected before the onset of their decline and preserved in natural history museums. In northwestern Europe, some bumble bee species declined dramatically during the 20th century whereas other, ecologically similar, species maintained stable populations. A long-standing debate focuses on whether this is caused by declining species having stricter host plant preferences. We compared the composition of pollen loads of five bumble bee species with stable populations and five with declining populations using museum specimens collected before 1950 in Belgium, England, and The Netherlands. Prior to 1950, the number of plant taxa in pollen loads of declining species was almost one-third lower than that in stable species even though individuals of stable and declining species generally originated from the same areas. There were no systematic differences in the composition of pollen loads between stable and declining species, but the plant taxa preferred by declining species before 1950 had experienced a stronger decline in the 20th century than those preferred by stable species. In 2004 and 2005, we surveyed the areas where bumble bees had been caught in the past and compared the composition of past and present pollen loads of the stable, but not of the by now locally extinct declining species. The number of collected pollen taxa was similar, but the composition differed significantly between the two periods. Differences in composition reflected the major changes in land use in northwestern Europe but also the spread of the invasive plant species Impatiens glandulifera. The main question now is why declining species

  6. Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude.

    Science.gov (United States)

    Roth, Tobias; Plattner, Matthias; Amrhein, Valentin

    2014-01-01

    As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003-2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world.

  7. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    OpenAIRE

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from early-stage ex-arable fields to examine how intra- and interspecific plant–soil feedbacks affect the performance of 10 conditioning species and the focal species, Jacobaea vulgaris. Plants were grown alon...

  8. Geographic range size and determinants of avian species richness

    DEFF Research Database (Denmark)

    Jetz, Walter; Rahbek, Carsten

    2002-01-01

    Geographic patterns in species richness are mainly based on wide-ranging species because their larger number of distribution records has a disproportionate contribution to the species richness counts. Here we demonstrate how this effect strongly influences our understanding of what determines spe...

  9. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes

    International Nuclear Information System (INIS)

    Igarashi, Aki; Yamagata, Kousuke; Sugai, Tomokazu; Takahashi, Yukari; Sugawara, Emiko; Tamura, Akihiro; Yaegashi, Hajime; Yamagishi, Noriko; Takahashi, Tsubasa; Isogai, Masamichi; Takahashi, Hideki; Yoshikawa, Nobuyuki

    2009-01-01

    Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.

  10. Citizen science contributes to our knowledge of invasive plant species distributions

    Science.gov (United States)

    Crall, Alycia W.; Jarnevich, Catherine S.; Young, Nicholas E.; Panke, Brendon; Renz, Mark; Stohlgren, Thomas

    2015-01-01

    Citizen science is commonly cited as an effective approach to expand the scale of invasive species data collection and monitoring. However, researchers often hesitate to use these data due to concerns over data quality. In light of recent research on the quality of data collected by volunteers, we aimed to demonstrate the extent to which citizen science data can increase sampling coverage, fill gaps in species distributions, and improve habitat suitability models compared to professionally generated data sets used in isolation. We combined data sets from professionals and volunteers for five invasive plant species (Alliaria petiolata, Berberis thunbergii, Cirsium palustre, Pastinaca sativa, Polygonum cuspidatum) in portions of Wisconsin. Volunteers sampled counties not sampled by professionals for three of the five species. Volunteers also added presence locations within counties not included in professional data sets, especially in southern portions of the state where professional monitoring activities had been minimal. Volunteers made a significant contribution to the known distribution, environmental gradients sampled, and the habitat suitability of P. cuspidatum. Models generated with professional data sets for the other four species performed reasonably well according to AUC values (>0.76). The addition of volunteer data did not greatly change model performance (AUC > 0.79) but did change the suitability surface generated by the models, making them more realistic. Our findings underscore the need to merge data from multiple sources to improve knowledge of current species distributions, and to predict their movement under present and future environmental conditions. The efficiency and success of these approaches require that monitoring efforts involve multiple stakeholders in continuous collaboration via established monitoring networks.

  11. Agricultural residues and expanded clay in Oncidium baueri Lindl. orchid cultivation

    Directory of Open Access Journals (Sweden)

    Matheus Marchezi Mora

    2015-02-01

    Full Text Available For orchid cultivation in containers is essential to select the right substrate, since this will influence the quality of the final product, it serve as a support for the root system of the plants. This study aimed to evaluate different agricultural residues and expanded clay in Oncidium baueri Lindl. orchid cultivation. The plants were subjected to treatments: pinus husk + carbonized rice husk, pinus husk + coffee husk, pinus husk + fibered coconut, pecan nut husk, expanded clay, fibered coconut, coffee husk, carbonized rice husk, pinus husk. After eleven months of the experiment, the following variables were evaluated: plant height; largest pseudo-bulb diameter; number of buds; shoot fresh dry matter; the longest root length; number of roots; root fresh matter; root dry matter; and electric conductivity; pH and water retention capacity of the substrates. Except the expanded clay, the other substrates showed satisfactory results in one or more traits. Standing out among these substrates pinus husk + coffee husk and pine bark + fibered coconut, which favored the most vegetative and root characteristic of the orchid. The mixture of pinus husk + coffee husk and pinus husk + fibered coconut, provided the best results in vegetative and root growth of the orchid Oncidium baueri and the expanded clay did not show favorable results in the cultivation of this species.

  12. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    Directory of Open Access Journals (Sweden)

    Yang eYang

    2015-06-01

    Full Text Available Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. 2500 m elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3-4 ‰ and 7-8 ‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7 ‰ except in Fabaceae (Trifolium alpinum and Juncaceae (Luzula lutea. There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic and insensitive to obvious environmental cues.

  13. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  14. PLANT SPECIES, USING AGAINST VIROUS INFECTIONS OF MAN AND ANIMALS: REGULARITIES OF THE DISTRIBUTION IN THE PHYLOGENETIC CLASSIFICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Popov P.L.

    2008-10-01

    Full Text Available The list of 674 species of flowering plants, using against 21 virous infections of man and animals is presented. Systematic units of high levels (classes, subclasses are defined by frequency of such species. Frequency (distinction of percentage parts of species with certain use between the systematic unit and the rest of flora of flowering plants was estimated by Fisher's statistical criterion. Subclasses Lamiidae and Asteridae, latter in the evolution range, are most rich by uses against virous infections in general, and especially against respiratory infections, jaundices, hydrophobia, rare virous infections. Subclasses Magnoliidae and Ranunculidae, beginning the evolutional range, are characterized high frequency of uses against measles, smallpox, jaundices. Subclasses Caryophyllidae, Hamamelidae, Dillenidae, Rosidae, middle in the evolution range, are characterized by middle or low frequency of uses against majority of virous infections. Twin relations between 6-th basic virous infections on intersecting complexes of plant species, applied against these infections, were characterized by Fisher's statistical criterion. Connections «respiratory infections - hydrophobia», «respiratory infections - measles», «measles - hydrophobia», «jaundices - hydrophobia», «respiratory infections - jaundices», «respiratory infections - warts», «respiratory infections - smallpox», «jaundices - warts», «measles - smallpox» are confident.

  15. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  16. Plant Species Identification by Bi-channel Deep Convolutional Networks

    Science.gov (United States)

    He, Guiqing; Xia, Zhaoqiang; Zhang, Qiqi; Zhang, Haixi; Fan, Jianping

    2018-04-01

    Plant species identification achieves much attention recently as it has potential application in the environmental protection and human life. Although deep learning techniques can be directly applied for plant species identification, it still needs to be designed for this specific task to obtain the state-of-art performance. In this paper, a bi-channel deep learning framework is developed for identifying plant species. In the framework, two different sub-networks are fine-tuned over their pretrained models respectively. And then a stacking layer is used to fuse the output of two different sub-networks. We construct a plant dataset of Orchidaceae family for algorithm evaluation. Our experimental results have demonstrated that our bi-channel deep network can achieve very competitive performance on accuracy rates compared to the existing deep learning algorithm.

  17. Coexistence induced by pollen limitation in flowering-plant species.

    OpenAIRE

    Ishii, R; Higashi, M

    2001-01-01

    We report a novel mechanism for species coexistence that does not invoke a trade-off relationship in the case of outbreeding flowering plants. Competition for pollination services may lead to interspecific segregation of the timing of flowering among plants. This, in turn, sets limits on the pollination services, which restrain the population growth of a competitively superior species, thereby allowing an inferior species to sustain its population in the habitat. This explains the often-obser...

  18. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  19. Invasive plant species in the West Indies: geographical, ecological, and floristic insights.

    Science.gov (United States)

    Rojas-Sandoval, Julissa; Tremblay, Raymond L; Acevedo-Rodríguez, Pedro; Díaz-Soltero, Hilda

    2017-07-01

    The level of invasion (number or proportion of invasive species) in a given area depends on features of the invaded community, propagule pressure, and climate. In this study, we assess the invasive flora of nine islands in the West Indies to identify invasion patterns and evaluate whether invasive species diversity is related to geographical, ecological, and socioeconomic factors. We compiled a database of invasive plant species including information on their taxonomy, origin, pathways of introduction, habitats, and life history. This database was used to evaluate the similarity of invasive floras between islands and to identify invasion patterns at regional (West Indies) and local (island) scales. We found a total of 516 alien plant species that are invasive on at least one of the nine islands studied, with between 24 to 306 invasive species per island. The invasive flora on these islands includes a wide range of taxonomic groups, life forms, and habitats. We detected low similarity in invasive species diversity between islands, with most invasive species (>60%) occurring on a single island and 6% occurring on at least five islands. To assess the importance of different models in predicting patterns of invasive species diversity among islands, we used generalized linear models. Our analyses revealed that invasive species diversity was well predicted by a combination of island area and economic development (gross domestic product per capita and kilometers of paved roadways). Our results provide strong evidence for the roles of geographical, ecological, and socioeconomic factors in determining the distribution and spread of invasive species on these islands. Anthropogenic disturbance and economic development seem to be the major drivers facilitating the spread and predominance of invasive species over native species.

  20. Riparian restoration in the Southwest: Species selection, propagation, planting methods, and case studies

    Science.gov (United States)

    David Dreesen; John Harrington; Tom Subirge; Pete Stewart; Greg Fenchel

    2002-01-01

    Riparian plant communities, though small in overall area, are among the most valuable natural areas in the Southwest. The causes of degradation of southwestern riparian zones range from excessive cattle and elk grazing in montane watersheds to invasive woody exotic species and lack of natural flooding in the cottonwood forests, "bosque," of low elevation...

  1. Plant antiherbivore defenses in Fabaceae species of the Chaco.

    Science.gov (United States)

    Lima, T E; Sartori, A L B; Rodrigues, M L M

    2017-01-01

    The establishment and maintenance of plant species in the Chaco, one of the widest continuous areas of forests in the South American with sharp climatic variations, are possibly related to biological features favoring plants with particular defenses. This study assesses the physical and chemical defenses mechanisms against herbivores of vegetative and reproductive organs. Its analyses of 12 species of Fabaceae (Leguminosae) collected in remnants of Brazilian Chaco shows that 75% present structural defense characters and 50% have chemical defense - defense proteins in their seeds, like protease inhibitors and lectins. Physical defenses occur mainly on branches (78% of the species), leaves (67%), and reproductive organs (56%). The most common physical characters are trichomes and thorns, whose color represents a cryptic character since it does not contrast with the other plant structures. Defense proteins occur in different concentrations and molecular weight classes in the seeds of most species. Protease inhibitors are reported for the first time in seeds of: Albizia niopoides, Anadenanthera colubrina, Mimosa glutinosa, Prosopis rubriflora, and Poincianella pluviosa. The occurrence of physical and chemical defenses in members of Fabaceae indicate no associations between defense characters in these plant species of the Chaco.

  2. Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California

    Science.gov (United States)

    Rundel, Philip W.; Keeley, Jon E.

    2016-01-01

    Patterns of elevational distribution of alien plant species in the southern Sierra Nevada of California were used to test the hypothesis that alien plant species invading high elevations around the world are typically climate generalists capable of growing across a wide elevational range. The Sierra Nevada has been heavily impacted for more than a century and a half, first by heavy grazing up into high elevation meadows, followed by major logging, and finally, by impacts associated with recreational use. The comparative elevational patterns of distribution and growth form were compared for native and alien plant species in the four families (Asteraceae, Brassicaceae, Fabaceae, and Poaceae) that contribute the majority of naturalized aliens in the study area. The distribution of realized climatic niche breadth, as measured by elevational range of occurrence, was virtually identical for alien and native species, with both groups showing a roughly Gaussian distribution peaking with species whose range covers a span of 1500–1999 m. In contrast to alien species, which only rarely occurred at higher elevations, native species showed a distribution of upper elevation limits peaking at 3000–3499 m, an elevation that corresponds to the zone of upper montane and subalpine forests. Consistent with a hypothesis of abiotic limitations, only a few alien species have been ecologically successful invaders at subalpine and alpine elevations above 2500 m. The low diversity of aliens able to become established in these habitats is unlikely due to dispersal limitations, given the long history of heavy grazing pressure at high elevations across this region. Instead, this low diversity is hypothesized to be a function of life history traits and multiple abiotic stresses that include extremes of cold air and soil temperature, heavy snowfall, short growing seasons, and low resource availability. These findings have significant implications for resource managers.

  3. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Directory of Open Access Journals (Sweden)

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  4. Plant uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Brett H. [Swiss Federal Institute of Technology (ETH), Universitaetstrasse 16, CH-8092 Zuerich (Switzerland)], E-mail: brett.robinson@env.ethz.ch; Bischofberger, Simone; Stoll, Andreas; Schroer, Dirk; Furrer, Gerhard; Roulier, Stephanie; Gruenwald, Anna; Attinger, Werner; Schulin, Rainer [Swiss Federal Institute of Technology (ETH), Universitaetstrasse 16, CH-8092 Zuerich (Switzerland)

    2008-06-15

    Over 400 tons of Pb enters Swiss soils annually at some 2000 military shooting ranges (MSRs). We measured elements in the leaves of 10 plant species and associated rhizospheric soil on the stop butt of a disused MSR. The geometric mean concentrations of Pb, Sb, Cu, Ni in rhizospheric soils were 10,171 mg/kg, 5067 mg/kg, 4125 mg/kg and 917 mg/kg. Some species contained Pb, Cu and Ni, above concentrations (30 mg/kg, 25 mg/kg and 50 mg/kg) shown to be toxic to livestock. Most contaminants in leaves resulted from surface deposition. However, at soil Pb concentrations >60,000 mg/kg, Equisetum arvense and Tussilago farfara took up >1000 mg/kg Pb into the leaves. These plants are not hyperaccumulators, having <100 mg/kg Pb in leaves at lower soil concentrations. Removal of soil with more than 30,000 Pb, from which one could smelt this metal to offset remediation costs, followed by revegetation, would minimise dust and hence leaf-borne contaminants. - Establishment of a complete vegetation cover on shooting ranges would reduce the contamination of plant leaves by toxic trace elements.

  5. The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat.

    Science.gov (United States)

    Irvine, Irina C; Brigham, Christy A; Suding, Katharine N; Martiny, Jennifer B H

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1) compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2) to 10(5) CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.

  6. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  7. 76 FR 33334 - Endangered and Threatened Wildlife and Plants; Initiation of 5-Year Reviews of Nine Species...

    Science.gov (United States)

    2011-06-08

    ... includes any species or subspecies of fish, wildlife, or plant, and any distinct population segment of any... danger of extinction throughout all or a significant portion of its range; and (C) Threatened species... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R5-ES-2010-N268; 50120 1113 0000 D2...

  8. New evidence for electrotropism in some plant species

    Science.gov (United States)

    Gorgolewski, S.; Rozej, B.

    The ever-present global Atmospheric Electrical F ield (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity to electrotropic effect in different electric field intensities and directions. It was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions in plant tissues. We use a "reference field" (130 V/m) and stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed field polarity. In conclusion electrotropic pl nts deprived of the electrical field do not develop asa expected, as can be seen in BIOSPHERE 2. It was a sad example of what happens when one forgets to provide the plants with this vital natural environmental factor. Electrical fields of different intensity and direction are cheap and easy to generate. More plants were investigated in order to verify their response to electrical fields. Effect of several kV/m horizontal fields, was compared with the vertical 130 V/m field (ued as a reference) and it was shown that electrotropic sensitivity can be found easily. Surprisingly even the nonelectrotropic plants, whose initial growth rate does not depend on the field strength, when they develop leaves begin to lean towards the positive electrode, and become elect rotropic. Ground based fitotron experiments enable us to select cheaply plants which shall be suitable

  9. Impacts of invasive plants on carbon pools depend on both species' traits and local climate.

    Science.gov (United States)

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2017-04-01

    Invasive plants can alter ecosystem properties, leading to changes in the ecosystem services on which humans depend. However, generalizing about these effects is difficult because invasive plants represent a wide range of life forms, and invaded ecosystems differ in their plant communities and abiotic conditions. We hypothesize that differences in traits between the invader and native species can be used to predict impacts and so aid generalization. We further hypothesize that environmental conditions at invaded sites modify the effect of trait differences and so combine with traits to predict invasion impacts. To test these hypotheses, we used systematic review to compile data on changes in aboveground and soil carbon pools following non-native plant invasion from studies across the World. Maximum potential height (H max ) of each species was drawn from trait databases and other sources. We used meta-regression to assess which of invasive species' H max , differences in this height trait between native and invasive plants, and climatic water deficit, a measure of water stress, were good predictors of changes in carbon pools following invasion. We found that aboveground biomass in invaded ecosystems relative to uninvaded ones increased as the value of H max of invasive relative to native species increased, but that this effect was reduced in more water stressed ecosystems. Changes in soil carbon pools were also positively correlated with the relative H max of invasive species, but were not altered by water stress. This study is one of the first to show quantitatively that the impact of invasive species on an ecosystem may depend on differences in invasive and native species' traits, rather than solely the traits of invasive species. Our study is also the first to show that the influence of trait differences can be altered by climate. Further developing our understanding of the impacts of invasive species using this framework could help researchers to identify not

  10. Threatened plant resources: distribution and ecosystem services in the world's high elevation park of the karakoram ranges

    International Nuclear Information System (INIS)

    Shedayi, A.; Xu, M.; Hussain, F.; Sadia, S.; Bano, S.

    2016-01-01

    This study aims to investigate diversity, distribution, status, ecosystem services and threats to the plant resources in the study area based on field survey and ethno ecological knowledge for effective conservation and sustainable ecosystem services. The present study was conducted in the world's high elevation Khunjerab National Park (KNP) of the Karakoram ranges in Pakistan bordering China. Tremendous ecosystem services are obtained from the park and considered the most important habitat for many plant biodiversity and wildlife species. Field surveys were conducted to collect plants in transect along the road side of seven valleys ranging from 3160m to 4934m altitudinal variation. The names and traditional uses were recorded from the local people of the area by semi structured questionnaires and direct interviews. The data was analyzed by excel spreadsheets, direct matrix ranking, and pair comparison tests. Asteraceae was the dominant family with 15% species followed by Chenopodiaceae 10%, Poaceae 8%, Papilionaceae and Rocaceae 7% each, Brasicaceae 6%. Plant resources contribute direct and indirect ecosystem services such as food, medicine, fuel, timber, thatching, water purification, mineral and soil retention, and most importantly as sink of global carbon stock especially in the high altitude peatlands. Herbs were the dominant species in the area with 89%. Fodder is the most common usage for plants, followed by medicine. Plants with percentages 27% and 39% found to be highly palatable and palatable respectively. Competition for food between wildlife and livestock was high recorded for 60% plants. Plants used to cure various diseases including stomachache, asthma, cancer and tuberculosis etc. Plant resources in KNP are unique and vary with climate and altitude. This floral wealth is under tremendous threats of global climate change and anthropogenic activities like overgrazing, increasing population, and a rapidly declining traditional knowledge for

  11. Tocochromanol content and composition in different species of the parasitic flowering plant genus Cuscuta.

    Science.gov (United States)

    van der Kooij, Thomas A W; Krupinska, Karin; Krause, Kirsten

    2005-07-01

    The holoparasitic plant genus Cuscuta is comprised of species with various degrees of plastid functionality and significant differences in photosynthetic capacity, ranging from moderate to no photosynthetic carbon fixation. In the present study, several Cuscuta species were analyzed with respect to the overall contents of tocochromanols and plastoquinone and the levels of the individual tocochromanols. No correlations among photosynthetic capacity, the amount of carotenoids, of plastoquinone and of tocochromanols were observed. On the contrary, wide variation in the composition of the tocochromanol fraction was observed among different species, as well as in stems of the same species in response to starvation conditions. The implications of these findings are discussed.

  12. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species.

  13. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    International Nuclear Information System (INIS)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species

  14. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  15. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  16. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  17. Using phylogenetic and ionomic relationships to predict the uptake of radionuclides by any plant species

    Energy Technology Data Exchange (ETDEWEB)

    Willey, Neil J.; Siasou, Eleni [Centre for Research In Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)

    2014-07-01

    It is not practical to empirically derive soil-to-plant TFs for all soil-plant combinations that are important in radiological assessments, so predictions for a range of species on different soils types are frequently impossible because TFs are unknown. This severely hampers predictions of both doses to biota and of the contamination of a variety of food chains with radioisotopes. Compilations of TFs in themselves provide no fundamental understanding of the plant factors that control the soil-to-plant transfer of radionuclides and thus no method of prediction. We have developed methods for the meta-analyses of radionuclide transfer data that can be used to make predictions of the transfer of radionuclides into any plants species for which TFs do not exist based on an understand of the plant factors that control radionuclide uptake. There is no reason a priori to think that variation in TF should be constrained by species. The species is, essentially, a reproductive unit and variation in many plant traits, some of which might control radionuclide uptake, occurs at taxonomic levels above the species. In the last 15 years genomic information has transformed the understanding of the evolutionary relationships of the living world so that new 'trees of life' (phylogenies) are now available. Using a Residual Maximum Likelihood modeling procedure to compile a significant proportion of all existing TF data onto a single scale, we here present a synthesis of the influence of phylogeny on variation in soil-to-plant TFs for radioisotopes of Cs, Sr, Co, I, Tc, and S. We show that a significant proportion of variation in TF is associated with major branches of the phylogeny of angiosperms (flowering plants) so that knowledge of a species' position on the phylogeny can be used to make predictions of transfer relative to other species. These phylogenetically-based predictions of relative transfer to any species can be used to make absolute predictions to any species

  18. Response of plant species to coal-mine soil materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Tucker, T.C.; Thames, J.L.

    1983-03-01

    The two-year Black Mesa Coal Mine Research Study on the area near Kayenta, Arizona investigating the growth and establishment of seven plant species in unmined soil and coal-mined soils found that plant species grew better in unmined soil and that irrigation is essential during seedling establishment for the effective stabilization of coal-mined soils in a semi-arid environment. Differences among the species included variations in germination, response to irrigation, seedling establishment, and stem growth. 12 references, 2 figures, 2 tables.

  19. The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat.

    Directory of Open Access Journals (Sweden)

    Irina C Irvine

    Full Text Available Pink-pigmented facultative methylotrophic bacteria (PPFMs are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2 to 10(5 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives than perennial species (all natives. Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.

  20. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador.

    Science.gov (United States)

    Bodner, Florian; Brehm, Gunnar; Homeier, Jürgen; Strutzenberger, Patrick; Fiedler, Konrad

    2010-01-01

    During four months of field surveys at the Reserva Biológica San Francisco in the south Ecuadorian Andes, caterpillars of 59 Geometridae species were collected in a montane rainforest between 1800 and 2800m altitude and reared to adults. The resulting data on host plant affiliations of these species was collated. The preimaginal stages of 58 and adult stages of all 59 species are depicted in colour plates. Observations on morphology and behaviour are briefly described. Five species, documented for the first time in the study area by means of larval collections, had not been previously collected by intensive light-trap surveys. Together with published literature records, life-history data covers 8.6% of the 1271 geometrid species observed so far in the study area. For 50 species these are the first records of their early stages, and for another 7 the data significantly extend known host plant ranges. Most larvae were collected on shrubs or trees, but more unusual host plant affiliations, such as ferns (6 geometrid species) and lichens (3 geometrid species), were also recorded. Thirty-four percent of the caterpillars were infested by wasp or tachinid parasitoids.

  2. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups.

    Science.gov (United States)

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  3. Rotylenchulus reniformis on Greenhouse-grown Foliage Plants: Host Range and Sources of Inoculum.

    Science.gov (United States)

    Starr, J L

    1991-10-01

    Two sources of inoculum of reniform nematodes, Rotylenchulus reniformis, were identified for infestation of ornamental foliage plants in commercial greenhouses. These were water from a local canal system and rooted cuttings purchased from other sources. Eight ornamental plant species were identified as good hosts for the reniform nematode, with each species supporting a reniform population density equal to or greater than that supported by 'Rutgers' tomato and a reproduction factor of greater than 1.0. Nine other plant species were identified as poor hosts.

  4. A new genus and twenty new species of Australian jumping plant-lice (Psylloidea: Triozidae) from Eremophila and Myoporum (Scrophulariaceae: Myoporeae).

    Science.gov (United States)

    Taylor, Gary S; Fagan-Jeffries, Erinn P; Austin, Andy D

    2016-02-05

    The Triozidae is a diverse, cosmopolitan family of jumping plant-lice (Hemiptera: Psylloidea) from an exceptionally diverse range of plant families, but with few described Australian species. As a direct outcome of the Australian Biological Resources Study Bush Blitz species discovery program, many new Psylloidea from novel host plants in remote localities have been revealed. In this study a new genus Myotrioza Taylor gen. nov. and 20 new species are described from southern and central Australia which also establishes the first host plant records from Eremophila and Myoporum (Scrophulariaceae: Myoporeae). New species, delineated using a combination of morphological and mitochondrial COI sequence data, are: Myotrioza clementsiana sp. nov., M. darwinensis sp. nov., M. desertorum sp. nov., M. eremi sp. nov., M. eremophili sp. nov., M. flindersiana sp.nov., M. gawlerensis sp. nov., M. insularis sp. nov., M. interioris sp. nov., M. interstantis sp. nov., M. longifoliae sp. nov., M. markmitchelli sp. nov., M. myopori sp. nov., M. oppositifoliae sp. nov., M. pantonii sp. nov., M. platycarpi sp. nov., M. remota sp. nov., M. scopariae sp. nov., M. serrulatae sp. nov., and M. telowiensis sp. nov. Genetic divergence data, host associations, biogeographic data, diagnoses and a key to species are presented. Myotrioza appears to be particularly diverse in ephemeral southern Australia, especially in inland Western Australia and South Australia, matching regions of high diversity of the host genera; some species are likely to be short range endemics.

  5. Ethnobotanical uses of medicinal plants in the highlands of Soan Valley, Salt Range, Pakistan.

    Science.gov (United States)

    Bibi, Sadia; Sultana, Jawairia; Sultana, Humaira; Malik, Riffat Naseem

    2014-08-08

    Two thirds of the world's population relies on medicinal plants for centuries for several human pathologies. Present study aimed to identify, catalogue and document the large number of medicinal plants used in traditional medicine in Soan Valley, Salt Range, Pakistan. Informal interviews were conducted involving a total of 255 villagers (155 male and 65 female and 35 herbalists) to elicit the knowledge and use of medicinal plants. Local communities possessed knowledge of fifty eight (58) medicinal plant species belonging to thirty five (35) families to treat fifteen ailment categories. Whole plant and leaves were the most frequently used plant parts (24%) followed by seed (14%), root (12%), flower (7%), bulb (6%), fruit (4%), stem (3%), latex and rhizome (2%) and sap and gum (1%). Frequently used growth forms of medicinal plants were wild herbs (63%) followed by cultivated herbs (14%), wild trees (11%), wild shrubs (10%) and wild and cultivated herbs (2%). Preparations were administrated generally through oral and topical routes. Local people were familiar mostly with the species in order to deal common ailments particularly cough, cold, digestive problems, fever, headache, and skin infections. Complex ailments were treated by traditional healers. Justica adhatoda, Olea ferruginea, Amaranthus viridis and Mentha royleana were identified as plants with high use value (UV). This study revealed that the area harbors high diversity of medicinal flora. Despite gradual socio-cultural transformation, local communities still hold ample knowledge of plants and their uses. The reliance on traditional medicines was associated with the lack of modern health care facilities, poverty and the traditional belief of their effectiveness. Medicinal plants play a significant role in management of various human diseases in the study area. A high degree of consensus among the informants was an indicative that plant use and knowledge were still strong, and preservation of this knowledge

  6. PLAZA 3.0: an access point for plant comparative genomics.

    Science.gov (United States)

    Proost, Sebastian; Van Bel, Michiel; Vaneechoutte, Dries; Van de Peer, Yves; Inzé, Dirk; Mueller-Roeber, Bernd; Vandepoele, Klaas

    2015-01-01

    Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    Science.gov (United States)

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  8. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?

    Science.gov (United States)

    Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R

    2006-03-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.

  9. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  10. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA).

    Science.gov (United States)

    Felker-Quinn, Emmi; Schweitzer, Jennifer A; Bailey, Joseph K

    2013-03-01

    Ecological explanations for the success and persistence of invasive species vastly outnumber evolutionary hypotheses, yet evolution is a fundamental process in the success of any species. The Evolution of Increased Competitive Ability (EICA) hypothesis (Blossey and Nötzold 1995) proposes that evolutionary change in response to release from coevolved herbivores is responsible for the success of many invasive plant species. Studies that evaluate this hypothesis have used different approaches to test whether invasive populations allocate fewer resources to defense and more to growth and competitive ability than do source populations, with mixed results. We conducted a meta-analysis of experimental tests of evolutionary change in the context of EICA. In contrast to previous reviews, there was no support across invasive species for EICA's predictions regarding defense or competitive ability, although invasive populations were more productive than conspecific native populations under noncompetitive conditions. We found broad support for genetically based changes in defense and competitive plant traits after introduction into new ranges, but not in the manner suggested by EICA. This review suggests that evolution occurs as a result of plant introduction and population expansion in invasive plant species, and may contribute to the invasiveness and persistence of some introduced species.

  11. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.

    Directory of Open Access Journals (Sweden)

    Ingo Titze

    2016-06-01

    Full Text Available Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size, range of fundamental frequency is facilitated by (1 laryngeal muscles that control elongation and by (2 nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid, so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers, increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations.

  12. Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.

    Science.gov (United States)

    Fork, Susanne K

    2010-06-01

    Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.

  13. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  14. When Are Native Species Inappropriate for Conservation Plantings

    Science.gov (United States)

    Conservation agencies and organizations are generally reluctant to encourage the use of invasive plant species in conservation programs. Harsh lessons learned in the past have resulted in tougher screening protocols for non-indigenous species introductions and removal of many no...

  15. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  16. Species mixture effects on flammability across plant phylogeny: the importance of litter particle size and the special role for non-Pinus Pinaceae.

    Science.gov (United States)

    Zhao, Weiwei; Cornwell, William K; van Pomeren, Marinda; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2016-11-01

    Fire affects and is affected by plants. Vegetation varies in flammability, that is, its general ability to burn, at different levels of ecological organization. To scale from individual plant traits to community flammability states, understanding trait effects on species flammability variation and their interaction is important. Plant traits are the cumulative result of evolution and they show, to differing extents, phylogenetic conservatism. We asked whether phylogenetic distance between species predicts species mixture effects on litterbed flammability. We conducted controlled laboratory burns for 34 phylogenetically wide-ranging species and 34 random two-species mixtures from them. Generally, phylogenetic distance did not predict species mixture effects on flammability. Across the plant phylogeny, most species were flammable except those in the non- Pinus Pinaceae, which shed small needles producing dense, poorly ventilated litterbeds above the packing threshold and therefore nonflammable. Consistently, either positive or negative dominance effects on flammability of certain flammable or those non-flammable species were found in mixtures involving the non- Pinus Pinaceae. We demonstrate litter particle size is key to explaining species nonadditivity in fuelbed flammability. The potential of certain species to influence fire disproportionately to their abundance might increase the positive feedback effects of plant flammability on community flammability state if flammable species are favored by fire.

  17. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  18. Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada.

    Science.gov (United States)

    Braukmann, Thomas W A; Kuzmina, Maria L; Sills, Jesse; Zakharov, Evgeny V; Hebert, Paul D N

    2017-01-01

    Their relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK. Using plant lists from 27 national parks and one scientific reserve, we tested the efficacy of DNA barcodes in identifying the plants in simulated species assemblages from six biogeographic regions of Canada using BLAST and mothur. Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were strong predictors of barcode performance for different plant families and genera, and both metrics supported ITS2 as possessing the highest genetic diversity. All three genes performed strongly in assigning the taxa present in local floras to the correct genus with values ranging from 91% for rbcL to 97% for ITS2 and 98% for matK. However, matK delivered the highest species discrimination (~81%) followed by ITS2 (~72%) and rbcL (~44%). Despite the low number of plant taxa in the Canadian Arctic, DNA barcodes had the least success in discriminating species from this biogeographic region with resolution ranging from 36% with rbcL to 69% with matK. Species resolution was higher in the other settings, peaking in the Woodland region at 52% for rbcL and 87% for matK. Our results indicate that DNA barcoding is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is

  19. Support Vector Machine Based Tool for Plant Species Taxonomic Classification

    OpenAIRE

    Manimekalai .K; Vijaya.MS

    2014-01-01

    Plant species are living things and are generally categorized in terms of Domain, Kingdom, Phylum, Class, Order, Family, Genus and name of Species in a hierarchical fashion. This paper formulates the taxonomic leaf categorization problem as the hierarchical classification task and provides a suitable solution using a supervised learning technique namely support vector machine. Features are extracted from scanned images of plant leaves and trained using SVM. Only class, order, family of plants...

  20. Diversity and ecological ranges of plant species from dry inter-Andean valleys

    DEFF Research Database (Denmark)

    Quintana, Catalina

    found on steep slopes and in ravines. These areas of original dry valley vegetation preserve many wild relatives of cultivated plants on the one hand and old lineages of other wild plant groups. Dry inter-Andean valleys (DIAVs) in Ecuador therefore makeup a biodiversity hot spot for both plants......Dry valleys in the American Andes and other mountains have provided excellent agricultural lands since millennia. Besides agriculture, wood extraction and the establishment of urban areas have diminished the native vegetation of these valleys. Consequently the original vegetation is now mostly...... and animals, but unfortunately only very few botanical studies have been carried out in these areas. This thesis intends to shed light on the vegetation of the Dry Ecuadorean Inter-Andean Valleys in four chapters, each with a different focus. 1) A review paper that summarizes all scientific knowledge...

  1. Plant establishment on unirrigated green roof modules in a subtropical climate

    Science.gov (United States)

    Dvorak, Bruce D.; Volder, Astrid

    2012-01-01

    Background and aims The application of green roof technology has become more common in the central, northwestern and eastern USA, and is now being employed across the southern USA as well. However, there is little research in the literature that evaluated plant survival on unirrigated green roofs in subtropical climates that experience frequent drought and heat stress. Here, we summarize the results of a study of plant establishment on a modular green roof in south-central Texas. Methodology Fifteen plant species were field tested in 11.4-cm-deep green roof modules on a four-storey building in College Station, Texas, with irrigation limited to the first several weeks of establishment. Climate data, plant growth and species survival were measured over three growing seasons. Principal results Four species survived growing seasons without any losses: Graptopetalum paraguayense, Malephora lutea, Manfreda maculosa and Phemeranthus calycinus. Six species experienced varying levels of mortality: Bulbine frutescens, Delosperma cooperi, Lampranthus spectabilis, Sedum kamtschaticum, Sedum mexicanum and Nassella tenuissima. Five species had no survivors: Dichondra argentea, Stemodia lanata, Myoporum parvifolium, Sedum moranense and Sedum tetractinum. Conclusions The establishment and survival of several plant species without any mortality suggests that irrigation limited to the first few weeks after planting may be an effective approach on green roofs in spite of the more challenging climatic conditions in the southern USA. Since the climate in south-central Texas had been consistently drier and warmer than normal during the study period, longer-term research on these species is recommended to expand knowledge of establishment requirements for these species under a wider range of conditions, including wetter than normal years.

  2. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  3. Benchmarking novel approaches for modelling species range dynamics.

    Science.gov (United States)

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  4. Model-based uncertainty in species range prediction

    DEFF Research Database (Denmark)

    Pearson, R. G.; Thuiller, Wilfried; Bastos Araujo, Miguel

    2006-01-01

    Aim Many attempts to predict the potential range of species rely on environmental niche (or 'bioclimate envelope') modelling, yet the effects of using different niche-based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions...

  5. Genetic variation for sensitivity to a thyme monoterpene in associated plant species.

    Science.gov (United States)

    Jensen, Catrine Grønberg; Ehlers, Bodil Kirstine

    2010-04-01

    Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with "chemical neighbour" plants perform better in their presence compared to naïve plants. This has cast new light on the complexity of plant-plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants' allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation. We studied the effect of the monoterpene carvacrol-a dominant compound in the essential oil of Thymus pulegioides-on three associated plant species originating from sites where thyme is either present or absent. We found the presence of genetic variation in both naïve and experienced populations for performance under the influence of the allelochemical but the response varied among naïve and experienced plant. Plants from experienced populations performed better than naïve plants on carvacrol soil and contained significantly more seed families with an adaptive response to carvacrol than naïve populations. This suggests that the presence of T. pulegioides can act as a selective agent on associated species, by favouring genotypes which perform best in the presence of its allelochemicals. The response to the thyme allelochemical varied from negative to neutral to positive among the species. The different responses within a species suggest that plant-plant interactions can evolve; this has implications for community dynamics and stability.

  6. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry

    Science.gov (United States)

    Zhou, Yonghong; Peisker, Helga

    2016-01-01

    Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363

  7. Housing is positively associated with invasive exotic plant species richness in New England, USA.

    Science.gov (United States)

    Gavier-Pizarro, Gregorio I; Radeloff, Volker C; Stewart, Susan I; Huebner, Cynthia D; Keuler, Nicholas S

    2010-10-01

    Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.

  8. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit.

    Directory of Open Access Journals (Sweden)

    Andrew Mugler

    2016-03-01

    Full Text Available Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit.

  9. Responses to Projected Changes in Climate and UV-B at the Species Level

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Cernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO{sub 2} and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO{sub 2} enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and 'new' species of insects and

  10. Radiocaesium accumulation by different plant species

    International Nuclear Information System (INIS)

    Filiptsova, G.G.

    2000-01-01

    Using the model object influence of mineral nutritions level on radiocaesium accumulation by different plant species has been studied. It was shown the wheat roots accumulation the minimal value on radiocaesium on normal potassium level, the rye roots accumulation maximal level radiocaesium. (authors)

  11. Intraspecific variability and reaction norms of forest understory plant species traits

    Science.gov (United States)

    Burton, Julia I.; Perakis, Steven; McKenzie, Sean C.; Lawrence, Caitlin E.; Puettmann, Klaus J.

    2017-01-01

    Trait-based models of ecological communities typically assume intraspecific variation in functional traits is not important, though such variation can change species trait rankings along gradients in resources and environmental conditions, and thus influence community structure and function.We examined the degree of intraspecific relative to interspecific variation, and reaction norms of 11 functional traits for 57 forest understory plant species, including: intrinsic water-use efficiency (iWUE), Δ15N, 5 leaf traits, 2 stem traits and 2 root traits along gradients in light, nitrogen, moisture and understory cover.Our results indicate that interspecific trait variation exceeded intraspecific variation by at least 50% for most, but not all traits. Intraspecific variation in Δ15N, iWUE, leaf nitrogen content and root traits was high (47-70%) compared with most leaf traits and stem traits (13-38%).Δ15N varied primarily along gradients in abiotic conditions, while light and understory cover were relatively less important. iWUE was related primarily to light transmission, reflecting increases in photosynthesis relative to stomatal conductance. Leaf traits varied mainly as a function of light availability, with some reaction norms depending on understory cover. Plant height increased with understory cover, while stem specific density was related primarily to light. Resources, environmental conditions and understory cover did not contribute strongly to the observed variation in root traits.Gradients in resources, environmental conditions and competition all appear to control intraspecific variability in most traits to some extent. However, our results suggest that species cross-over (i.e., trait rank reversals) along the gradients measured here are generally not a concern.Intraspecific variability in understory plant species traits can be considerable. However, trait data collected under a narrow range of environmental conditions appears sufficient to establish species

  12. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  13. Assumption-versus data-based approaches to summarizing species' ranges.

    Science.gov (United States)

    Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Gordillo, Alejandro

    2018-06-01

    For conservation decision making, species' geographic distributions are mapped using various approaches. Some such efforts have downscaled versions of coarse-resolution extent-of-occurrence maps to fine resolutions for conservation planning. We examined the quality of the extent-of-occurrence maps as range summaries and the utility of refining those maps into fine-resolution distributional hypotheses. Extent-of-occurrence maps tend to be overly simple, omit many known and well-documented populations, and likely frequently include many areas not holding populations. Refinement steps involve typological assumptions about habitat preferences and elevational ranges of species, which can introduce substantial error in estimates of species' true areas of distribution. However, no model-evaluation steps are taken to assess the predictive ability of these models, so model inaccuracies are not noticed. Whereas range summaries derived by these methods may be useful in coarse-grained, global-extent studies, their continued use in on-the-ground conservation applications at fine spatial resolutions is not advisable in light of reliance on assumptions, lack of real spatial resolution, and lack of testing. In contrast, data-driven techniques that integrate primary data on biodiversity occurrence with remotely sensed data that summarize environmental dimensions (i.e., ecological niche modeling or species distribution modeling) offer data-driven solutions based on a minimum of assumptions that can be evaluated and validated quantitatively to offer a well-founded, widely accepted method for summarizing species' distributional patterns for conservation applications. © 2016 Society for Conservation Biology.

  14. Experimental assemblage of novel plant-herbivore interactions: ecological host shifts after 40 million years of isolation.

    Science.gov (United States)

    Garcia-Robledo, Carlos; Horvitz, Carol C; Kress, W John; Carvajal-Acosta, A Nalleli; Erwin, Terry L; Staines, Charles L

    2017-11-01

    Geographic isolation is the first step in insect herbivore diet specialization. Such specialization is postulated to increase insect fitness, but may simultaneously reduce insect ability to colonize novel hosts. During the Paleocene-Eocene, plants from the order Zingiberales became isolated either in the Paleotropics or in the Neotropics. During the Cretaceous, rolled-leaf beetles diversified in the Neotropics concurrently with Neotropical Zingiberales. Using a community of Costa Rican rolled-leaf beetles and their Zingiberales host plants as study system, we explored if previous geographic isolation precludes insects to expand their diets to exotic hosts. We recorded interactions between rolled-leaf beetles and native Zingiberales by combining DNA barcodes and field records for 7450 beetles feeding on 3202 host plants. To determine phylogenetic patterns of diet expansions, we set 20 field plots including five exotic Zingiberales, recording beetles feeding on these exotic hosts. In the laboratory, using both native and exotic host plants, we reared a subset of insect species that had expanded their diets to the exotic plants. The original plant-herbivore community comprised 24 beetle species feeding on 35 native hosts, representing 103 plant-herbivore interactions. After exotic host plant introduction, 20% of the beetle species expanded their diets to exotic Zingiberales. Insects only established on exotic hosts that belong to the same plant family as their native hosts. Laboratory experiments show that beetles are able to complete development on these novel hosts. In conclusion, rolled-leaf beetles are pre-adapted to expand their diets to novel host plants even after millions of years of geographic isolation.

  15. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change.

    Science.gov (United States)

    Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.

  16. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change.

    Directory of Open Access Journals (Sweden)

    Diego Ellis-Soto

    Full Text Available Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava and passion fruit (Passiflora edulis occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.. Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.

  17. Floristic summary of plant species in the air pollution literature.

    Science.gov (United States)

    Bennett, J P

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  18. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained an...

  19. 75 FR 37460 - Endangered and Threatened Wildlife and Plants; Recovery Plan for the Prairie Species of Western...

    Science.gov (United States)

    2010-06-29

    ... Service and Bureau of Land Management), two State agencies (Washington Department of Natural Resources and... historical ranges. Recovery actions will include habitat management, restoration of historical disturbance... plant and animal species associated with these communities. We believe that a holistic ecosystem...

  20. Plant Survival and Mortality during Drought Can be Mediated by Co-occurring Species' Physiological and Morphological Traits: Results from a Model

    Science.gov (United States)

    Tai, X.; Mackay, D. S.

    2015-12-01

    Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and

  1. Plant mutualisms with rhizosphere microbiota in introduced versus native ranges

    NARCIS (Netherlands)

    Shelby, Natasha; Duncan, Richard P.; van der Putten, Wim H.; McGinn, Kevin J.; Weser, Carolin; Hulme, Philip E.

    2016-01-01

    * The performance of introduced plants can be limited by the availability of soil mutualists outside their native range, but how interactions with mutualists differ between ranges is largely unknown. If mutualists are absent, incompatible or parasitic, plants may compensate by investing more in root

  2. Plant invasions in China: an emerging hot topic in invasion science

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2012-12-01

    Full Text Available China has shown a rapid economic development in recent decades, and several drivers of this change are known to enhance biological invasions, a major cause of biodiversity loss. Here we review the current state of research on plant invasions in China by analyzing papers referenced in the ISI Web of Knowledge. Since 2001, the number of papers has increased exponentially, indicating that plant invasions in China are an emerging hot topic in invasion science. The analyzed papers cover a broad range of methodological approaches and research topics. While more that 250 invasive plant species with negative impacts have been reported from China, only a few species have been considered in more than a handful of papers (in order of decreasing number of references: Spartina alterniflora, Ageratina adenophora, Mikania micrantha, Alternanthera philoxeroides, Solidago canadensis, Eichhornia crassipes. Yet this selection might rather reflect the location of research teams than the most invasive plant species in China. Considering the previous achievements in China found in our analysis research in plant invasions could be expanded by (1 compiling comprehensive lists of non-native plant species at the provincial and national scales and to include species that are native to one part of China but non-native to others in these lists; (2 strengthening pathways studies (primary introduction to the country, secondary releases within the country to enhance prevention and management; and (3 assessing impacts of invasive species at different spatial scales (habitats, regions and in relation to conservation resources.

  3. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  4. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    Science.gov (United States)

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  5. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range.

    Science.gov (United States)

    Deng, Cecilia H; Plummer, Kim M; Jones, Darcy A B; Mesarich, Carl H; Shiller, Jason; Taranto, Adam P; Robinson, Andrew J; Kastner, Patrick; Hall, Nathan E; Templeton, Matthew D; Bowen, Joanna K

    2017-05-02

    Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species

  6. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a) Background. (1) A variety of plant and animal species of the United States are so reduced in numbers that...

  7. The extending of ranges of some bird species at the north-eastern border of their distribution due to intra-century climate changes

    Directory of Open Access Journals (Sweden)

    Oleg V. Glushenkov

    2017-10-01

    Full Text Available The paper presents an overview of the phenomenon of range expanding of birds located at the northeastern limit of their range. The study area is located in the Volga-Kama Krai in the Chuvash Republic, adjacent to the River Volga. It is situated northwards and southwards of 56° N, and westwards and eastwards of 49° E, in a band of about 400 km. The problem is considered in aspect of the intra-century changes of climatic conditions in the region and in European Russia as a whole. The analysis of the relationship between the range expansion of some bird species and the intra-century climate changes was based on ornithological and climatological material available for the study area. We have used material on climate change in the Chuvashian Republic and Volga-Kama Krai since 1926, taking into account recent data of Roshydromet and Intergovernmental Panel on Climate Change. The idea of this study was based on the theory of climatic cycles of different periodicity, the theory of recent global climate change and the hypothesis of cyclic dynamics of the ranges of waterfowl in the context of centuries-old and intra-century climate change in Northern Eurasia. In the framework of the problem, we have studied ornithological material dated from the late 19th till the early 21st century, authored by Bogdanov, Ruzsky, Zhitkov, Buturlin, Artobolevsky, Volchanetsky, Pershakov, Popov, Glushenkov and others. As shown the intra-century climate changes do quite likely affect the northward and northeastward range expansion of such bird species as Cygnus olor, Anas strepera, Aythya ferina, Hieraaetus pennatus, Aquila heliaca, and Fulica atra. Climate changes can also be judged on the base of the shift in the arrival timing to earlier dates for some birds. It is most clearly manifested for early arriving species (Grus grus, Ardea cinerea, Actitis hypoleucos. It is also true for the later arriving Pernis apivorus and Merops apiaster whose existence depends on the

  8. Herbicides: an unexpected ally for native plants in the war against invasive species

    Science.gov (United States)

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  9. Long-term effects of burning on woody plant species sprouting on the False thornveld of Eastern Cape

    CSIR Research Space (South Africa)

    Ratsele, C

    2010-11-01

    Full Text Available Sprouting allows woody plant species to persist in a site after a wide range of disturbances (e.g. prolonged fire), where opportunities for seedling establishment are limited. A study to investigate long-term effects of fire sprouting of woody...

  10. Multiple phenological responses to climate change among 42 plant species in Xi'an, China.

    Science.gov (United States)

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2013-09-01

    Phenological data of 42 woody plants in a temperate deciduous forest from the Chinese Phenological Observation Network (CPON) and the corresponding meteorological data from 1963 to 2011 in Xi'an, Shaanxi Province, China were collected and analyzed. The first leaf date (FLD), leaf coloring date (LCD) and first flower date (FFD) are revealed as strong biological signals of climatic change. The FLD, LCD and FFD of most species are sensitive to average temperature during a certain period before phenophase onset. Regional precipitation also has a significant impact on phenophases of about half of the species investigated. Affected by climate change, the FLD and FFD of these species have advanced by 5.54 days and 10.20 days on average during 2003-2011 compared with the period 1963-1996, respectively. Meanwhile, the LCD has delayed by 10.59 days, and growing season length has extended 16.13 days. Diverse responses of phenology commonly exist among different species and functional groups during the study period. Especially for FFD, the deviations between the above two periods ranged from -20.68 to -2.79 days; biotic pollination species showed a significantly greater advance than abiotic pollination species. These results were conducive to the understanding of possible changes in both the structure of plant communities and interspecific relationships in the context of climate change.

  11. Species diversity of plant communities from territories with natural origin radionuclides contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Belykh, E.S.; Maystrenko, T.A.; Grusdev, B.I.; Zainullin, V.G.; Vakhrusheva, O.M. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation); Oughton, D. [Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas (Norway)

    2014-07-01

    Since plants dominate every landscape, the impact of any environmental stressor on plants can directly affect the structure and function of an ecosystem, resulting in decreased primary productivity and degradation of wildlife habitat. The investigation goal of the present research was to study how vascular plant species' composition at a former radium mining site could be related to i) soil contamination with heavy metals and uranium and thorium decay chain radionuclides and ii) soil agrochemical properties. Between the 1930's and 1950's, the commercial extraction of radium, storage of the uranium mill tailings and radium production wastes, together with deactivation of the site with a mixture of sand and gravel completely destroyed plant communities in the vicinity of Vodny settlement (Komi Republic, Russia). The plant cover recovery started more than 60 years ago, and resulted in overgrowing with common grassland plant species. Three meadow sites were investigated, one with low contamination (on the territory of former radium production plant), one with high contamination (waste storage cell) and a reference sites out of the radiochemical plant zone of influence, but with similar natural conditions. Geo-botanical descriptions revealed 134 vascular plant species from 34 families in the meadow communities studied. The greatest richness was seen for Poaceae, Asteraceae, Rosaceae and Fabaceae families; others had 1-5 species. The highest richness in diversity was seen at reference sites with 95 vascular plant species. 87 species were registered on low contaminated sites and 75 species on high contaminated. Perennial herbs were the dominant life form on all the studied meadow communities. Arboreal species expansion in vegetation was noted at both experimental and reference sites. Shannon index calculations indicated a significant (p<0.05) decrease in species diversity on sample areas of the highly contaminated radioactive waste storage cell. Mean values

  12. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    Science.gov (United States)

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature.

  13. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species.

    Science.gov (United States)

    Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George

    2012-01-01

    Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.

  14. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya.

    Science.gov (United States)

    Thapa, Sunil; Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively.

  15. Pioneer plant species contributing to phytoestabilization of contaminated soils in mine areas

    Science.gov (United States)

    João Batista, Maria; Gonzalez-Fernandez, Oscar; Abreu, Maria Manuela; Carvalho, Luisa; Queralt, Ignasi

    2013-04-01

    Young and mature leaves from several plant species of the genus Cistus L. (C. crispus, C. ladanifer, C. monspeliensis, C. salviifolius), Erica australis L., and Lavandula sampaioana (Rozeira) Rivas Mart., T.E. Díaz& Fern. Gonz., as well as soils where plants grew, were sampled in various areas of São Domingos abandoned mine. The São Domingos mine, dating from pre-Roman times, is 60 km SE of Beja, Southeast Portugal. This mine belongs to the world class metallogenetic province of the Iberian Pyrite Belt. Sampling occurred throughout spring and winter to better understand plant behaviour and natural attenuation of contaminated soils. Multiple Correspondence Analysis (MCA) was used to synthesize the information and group characteristics that could justify different chemical concentrations. Soils are extremely acid (pH between 3.4 and 5.2) and present a wide range of Corganic concentrations (10.2-109 g/kg). Total nitrogen and extractable phosphorus concentrations are low to very low, but extractable potassium show medium to high concentrations. Chemical elements concentrations, analysed for total fraction, were great in soils, especially arsenic and lead that can attain 7.6 g/kg and 17.2 g/kg, respectively. However, only a small percentage (in general plants showed different behaviour on the trace-elements uptake and translocation. Winter and spring variations in most chemical elements concentrations in the plants leaves are not significantly different, except for arsenic, probably because plants were not exposed to important dry conditions during the sampling seasons. Nevertheless, MCA of the individuals makes a clear distinction between winter and spring leaves. Generally, mature leaves have higher concentrations of arsenic, copper, iron, lead, manganese and zinc than younger ones. However, in this study, sulfur concentrations show an opposite behaviour. Soil total and available fraction concentrations of the chemical elements have similar behaviour between sites

  16. Plant species influence on soil C after afforestation of Mediterranean degraded soils

    Science.gov (United States)

    Dominguez, Maria T.; García-Vargas, Carlos; Madejón, Engracia; Marañón, Teodoro

    2015-04-01

    Increasing C sequestration in terrestrial ecosystems is one of the main current environmental challenges to mitigate climate change. Afforestation of degraded and contaminated lands is one of the key strategies to achieve an increase in C sequestration in ecosystems. Plant species differ in their mechanisms of C-fixation, C allocation into different plant organs, and interaction with soil microorganisms, all these factors influencing the dynamics of soil C following the afforestation of degraded soils. In this work we examine the influence of different woody plant species on soil C dynamics in degraded and afforested Mediterranean soils. The soils were former agricultural lands that were polluted by a mining accident and later afforested with different native plant species. We analysed the effect of four of these species (Olea europaea var. sylvestris Brot., Populus alba L., Pistacia lentiscus L. and Retama sphaerocarpa (L.) Boiss.) on different soil C fractions, soil nutrient availability, microbial activity (soil enzyme activities) and soil CO2 fluxes 15 years after the establishment of the plantations. Results suggest that the influence of the planted trees and shrubs is still limited, being more pronounced in the more acidic and nutrient-poor soils. Litter accumulation varied among species, with the highest C accumulated in the litter under the deciduous species (Populus alba L.). No differences were observed in the amount of total soil organic C among the studied species, or in the concentrations of phenols and sugars in the dissolved organic C (DOC), which might have indicated differences in the biodegradability of the DOC. Microbial biomass and activity was highly influenced by soil pH, and plant species had a significant influence on soil pH in the more acidic site. Soil CO2 fluxes were more influenced by the plant species than total soil C content. Our results suggest that changes in total soil C stocks after the afforestation of degraded Mediterranean

  17. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    Science.gov (United States)

    Bhattarai, Ganesh P.; Cronin, James T.

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  18. Public attitude in the city of Belgrade towards invasive alien plant species

    Directory of Open Access Journals (Sweden)

    Tomićević Jelena

    2012-01-01

    Full Text Available Biological invasions are seen as a major threat to biodiversity at a global level, while the number of new invasions is increasing at an alarming rate. Raising the awareness of the public, academic world and policy makers about the dangers caused by invasive species, is essential for the creation of the support needed to implement and coordinate the policies necessary to address this problem. The aim of this study is to determine the level of local public awareness of the existence of these plant species, examine the public attitude towards alien invasive plant species and willingness to get involved in the prevention of their spreading. The survey was conducted in four nurseries on the territory of the City of Belgrade and the investigation dealt only with alien invasive woody plant species. Thirty customers were questioned in each of the four nurseries. The results show that local public is uninformed on the issue of invasive plant species. It is necessary to constantly and intensively raise their awareness of this issue, as well as the awareness of harmful consequences that may occur due to the uncontrolled spreading of alien invasive species. This refers not only to the population that visits the nurseries and buys the plants there and to those employed in plant production and selling, but also to the whole local public and decision makers.

  19. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-09-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  20. Assessment of 210Po deposition in moss species and soil around coal-fired power plant

    International Nuclear Information System (INIS)

    Nita Salina Abu Bakar; Ahmad Saat

    2013-01-01

    In the present study, the depositions of 210 Po were assessed in the surface soil and some mosses species found in the area around coal fired power plant using radiochemical deposition and alpha spectrometry counting system. The purposes of the study were to determine activity concentrations of 210 Po in mosses and surface soil collected around coal-fired power plant in relation to trace the potential source of 210 Po and to identify most suitable moss species as a bio-indicator for 210 Po deposition. In this study, different species of mosses, Orthodontium imfractum, Campylopus serratus and Leucobryum aduncum were collected in May 2011 at the area around 15 km radius from Tanjung Bin coal-fired power plant located in Pontian, Johor. The 210 Po activity concentrations in mosses and soil varied in the range 102 ± 4 to 174 ± 8 Bq/kg dry wt. and 37 ± 2 to 184 ± 8 Bq/kg dry wt., respectively. Corresponding highest activity concentration of 210 Po observed in L. aduncum, therefore, this finding can be concluded this species was the most suitable as a bio-indicator for 210 Po deposition. On the other hand, it is clear the accumulation of 210 Po in mosses might be supplied from various sources of atmospheric deposition such as coal-fired power plant operation, industrial, plantation, agriculture and fertilizer activities, burned fuel fossil and forest; and other potential sources. Meanwhile, the main source of 210 Po in surface soil is supplied from the in situ deposition of radon decay and its daughters in the soil itself. (author)

  1. Climate change risks and conservation implications for a threatened small-range mammal species.

    Science.gov (United States)

    Morueta-Holme, Naia; Fløjgaard, Camilla; Svenning, Jens-Christian

    2010-04-29

    Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070-2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has

  2. Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions

    Directory of Open Access Journals (Sweden)

    Wesley Dattilo

    2012-12-01

    Full Text Available The knowledge of the mechanisms that shape biodiversity-stability relationships is essential to understand ecological and evolutionary dynamics of interacting species. However, most studies focus only on species loss and ignore the loss of interactions. In this study, I evaluated the topological structure of two different ant-plant networks: symbiotic (ants and myrmecophytes and nonsymbiotic (ants and plants with extrafloral nectaries. Moreover, I also evaluated in both networks the tolerance to plant and ant species extinction using a new approach. For this, I used models based on simulations of cumulative removals of species from the network at random. Both networks were fundamentally different in the interaction and extinction patterns. The symbiotic network was more specialized and less robust to species extinction. On the other hand, the nonsymbiotic network tends to be functionally redundant and more robust to species extinction. The difference for food resource utilization and ant nesting in both ant-plant interactions can explain the observed pattern. In short, I contributed in this manner to our understanding of the biodiversity maintenance and coevolutionary processes in facultative and obligate mutualisms.

  3. Density-dependency and plant-soil feedback: former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks

    NARCIS (Netherlands)

    Xue, W.; Bezemer, T.M.; Berendse, Frank

    2018-01-01

    Backgrounds and aims Negative plant-soil feedbacks (PSFs) are thought to promote species coexistence, but most evidence is derived from theoretical models and data from plant monoculture experiments. Methods We grew Anthoxanthum odoratum and Centaurea jacea in field plots in monocultures and in

  4. Productivity of selected plant species adapted to arid regions. [Crassulacean metabolizing plants; Agave deserti and Ferocactus acanthodes

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1980-01-01

    The biomass potential of selected arid region species for alcohol production merits careful consideration. The basis for this interest is the current low agronomic use of arid lands and the potential productivity of certain species adapted to these lands. Plants displaying Crassulacean acid metabolism (CAM) are particularly interesting with reference to biomass for fuel in regions with low rainfall, because plants with this photosynthetic process are strikingly efficient in water requirements. For CAM plants, CO/sub 2/ fixation occurs primarily at night, when tissue surface temperature and hence transpirational water loss is less than daytime values. For Agave deserti in the Sonoran desert, the water-use efficiency (mass of CO/sub 2/ fixed/mass of water transpired) over an entire year is an order of magnitude or more larger than for C-3 and C-4 plants. This indicates how well adapted CAM species are to arid regions. The potential productivity per unit land area of CAM plants is fairly substantial and, therefore, of considerable economic interest for arid areas where growth of agricultural plants is minimal.

  5. Screening for new accumulator plants in Andes Range mines

    Science.gov (United States)

    Bech, Jaume; Roca, Núria

    2016-04-01

    Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of plants or plant products to restore or stabilize contaminated sites, collectively known as phytoremediation, takes advantage of the natural abilities of plants to take up, accumulate, store, or degrade organic and inorganic substances. Although not a new concept, phytoremediation is currently being re-examined as an environmentally friendly, cost-effective means of reducing metal contaminated soil. Plants growing on naturally metal-enriched soils are of particular interest in this regard, since they are genetically tolerant to high metal concentrations and have an excellent adaptation to this multi-stress environment. Processes include using plants that tolerate and accumulate metals at high levels (phytoextraction) and using plants that can grow under conditions that are toxic to other plants while preventing, for example, soil erosion (phytostabilization). Soil and plant samples were taken at polymetallic mines in Peru, Ecuador and Chile. It is suggested that Plantago orbignyana Steinheil is a Pb hyperaccumulator. Moreover, unusually elevated concentrations of Pb (over 1000 mg kg-1) and Translocation Factor (TF) greater than one were also detected in shoots of 6 different plants species (Ageratina sp., Achirodine alata, Cortaderia apalothica, Epilobium denticulatum, Taraxacum officinalis and Trifolium repens) of a Caroline mine in Perú. Among the grass species (Poaceae), the highest shoot As concentration were found in Paspalum sp. (>1000 μg g-1) and Eriochola ramose (460 μg g-1) from the Cu mine in Peru and in Holcus lanatus and Pennisetum clandestinum (>200 μg g-1) from the silver mine in Ecuador. The shoot accumulation of Zn was highest in Baccharis amdatensis (>1900 μg g-1) and in Rumex crispus (1300 μg g-1) from the Ag mine in Ecuador (Bech et al., 2002). Paspalum racemosum also

  6. Diversification Rates and the Evolution of Species Range Size Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Silvia Castiglione

    2017-11-01

    Full Text Available The geographic range sizes frequency distribution (RFD within clades is typically right-skewed with untransformed data, and bell-shaped or slightly left-skewed under the log-transformation. This means that most species within clades occupy diminutive ranges, whereas just a few species are truly widespread. A number of ecological and evolutionary explanations have been proposed to account for this pattern. Among the latter, much attention has been given to the issue of how extinction and speciation probabilities influence RFD. Numerous accounts now convincingly demonstrate that extinction rate decreases with range size, both in living and extinct taxa. The relationship between range size and speciation rate, though, is much less obvious, with either small or large ranged species being proposed to originate more daughter taxa. Herein, we used a large fossil database including 21 animal clades and more than 80,000 fossil occurrences distributed over more than 400 million years of marine metazoans (exclusive of vertebrates evolution, to test the relationship between extinction rate, speciation rate, and range size. As expected, we found that extinction rate almost linearly decreases with range size. In contrast, speciation rate peaks at the large (but not the largest end of the range size spectrum. This is consistent with the peripheral isolation mode of allopatric speciation being the main mechanism of species origination. The huge variation in phylogeny, fossilization potential, time of fossilization, and the overarching effect of mass extinctions suggest caution must be posed at generalizing our results, as individual clades may deviate significantly from the general pattern.

  7. Adaptive Management Plan for Sensitive Plant Species on the Nevada Test Site

    International Nuclear Information System (INIS)

    Wills, C. A.

    2001-01-01

    The Nevada Test Site supports numerous plant species considered sensitive because of their past or present status under the Endangered Species Act and with federal and state agencies. In 1998, the U.S. Department of Energy, Nevada Operation Office (DOE/NV) prepared a Resource Management Plan which commits to protects and conserve these sensitive plant species and to minimize accumulative impacts to them. This document presents the procedures of a long-term adaptive management plan which is meant to ensure that these goals are met. It identifies the parameters that are measured for all sensitive plant populations during long-term monitoring and the adaptive management actions which may be taken if significant threats to these populations are detected. This plan does not, however, identify the current list of sensitive plant species know to occur on the Nevada Test Site. The current species list and progress on their monitoring is reported annually by DOE/NV in the Resource Management Plan

  8. The Eocene Arctic Azolla phenomenon: species composition, temporal range and geographic extent.

    Science.gov (United States)

    Collinson, Margaret; Barke, Judith; van der Burgh, Johan; van Konijnenburg-van Cittert, Johanna; Pearce, Martin; Bujak, Jonathan; Brinkhuis, Henk

    2010-05-01

    Azolla is a free-floating freshwater fern that is renowned for its rapid vegetative spread and invasive biology, being one of the world's fastest growing aquatic macrophytes. Two species of this plant have been shown to have bloomed and reproduced in enormous numbers in the latest Early to earliest Middle Eocene of the Arctic Ocean and North Sea based on samples from IODP cores from the Lomonosov Ridge (Arctic) and from outcrops in Denmark (Collinson et al 2009 a,b Review of Palaeobotany and Palynology 155,1-14; and doi:10.1016/j.revpalbo.2009.12.001). To determine the geographic and temporal extent of this Azolla phenomenon, and the spatial distribution of the different species, we have examined samples from 15 additional sites using material from ODP cores and commercial exploration wells. The sites range from the Sub-Arctic (Northern Alaska and Canadian Beaufort Mackenzie Basin) to the Nordic Seas (Norwegian-Greenland Sea and North Sea Basin). Our data show that the Azolla phenomenon involved at least three species. These are distinguished by characters of the megaspore apparatus (e.g. megaspore wall, floats, filosum) and the microspore massulae (e.g. glochidia fluke tips). The Lomonosov Ridge (Arctic) and Danish occurrences are monotypic but in other sites more than one species co-existed. The attachment to one another and the co-occurrence of megaspore apparatus and microspore massulae, combined with evidence that these spores were shed at the fully mature stage of their life cycle, shows that the Azolla remains were not transported over long distances, a fact which could not be assumed from isolated massula fragments alone. Our evidence, therefore, shows that Azolla plants grew on the ocean surfaces for approximately 1.2 million years (from 49.3 to 48.1 Ma) and that the Azolla phenomenon covered the area from Denmark northwards across the North Sea Basin and the whole of the Arctic and Nordic seas. Apparently, early Middle Eocene Northern Hemisphere middle

  9. Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module

    Science.gov (United States)

    Cordova, Brennan A.

    2017-01-01

    Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Veggie growth system. The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, Daikon radishes were grown in the system to test the capability and success of the system through a full growth cycle.

  10. Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges.

    Science.gov (United States)

    Chen, Bao-Ming; Gao, Yang; Liao, Hui-Xuan; Peng, Shao-Lin

    2017-07-01

    Although many studies have documented the effects of global warming on invasive plants, little is known about whether the effects of warming on plant invasion differ depending on the imposed change in different diurnal temperature ranges (DTR). We tested the impact of warming with DTR change on seed germination and seedling growth of eight species in the family Asteraceae. Four of these are invasive ( Eupatorium catarium , Mikania micrantha , Biodens pilosa var. radiate , Ageratum conyzoides ) in China, and four are native ( Sonchus arvensis , Senecios candens , Pterocypsela indica , Eupatorium fortunei ). Four temperature treatments were set in growth chambers (three warming by 3 °C with different DTRs and control), and experiments were run to mimic wintertime and summertime conditions. The control treatment ( T c ) was set to the mean temperature for the corresponding time of year, and the three warming treatments were symmetric (i.e. equal night-and-day) (DTR sym ), asymmetric warming with increased (DTR inc ) and decreased (DTR dec ) DTR. The warming treatments did not affect seed germination of invasive species under any of the conditions, but DTR sym and DTR inc increased seed germination of natives relative to the control, suggesting that warming may not increase success of these invasive plant species via effects on seed germination of invasive plants relative to native plants. The invasive plants had higher biomass and greater stem allocation than the native ones under all of the warming treatments. Wintertime warming increased the biomass of the invasive and wintertime DTR sym and DTR inc increased that of the native plants, whereas summertime asymmetric warming decreased the biomass of the invasives but not the natives. Therefore, warming may not facilitate invasion of these invasive species due to the suppressive effects of summertime warming (particularly the asymmetric warming) on growth. Compared with DTR sym , DTR dec decreased the biomass of

  11. Rare vascular plant species at risk : recovery by seeding?

    NARCIS (Netherlands)

    Pegtel, Dick M.

    . Rare vascular plant species are endangered worldwide. Population losses are most commonly caused by human-related factors. Conservation management seeks to halt this adverse trend and if possible, to enhance long-lasting self-sustainable populations. In general, rare species are poorly recruited

  12. Egg-laying by the butterfly Iphiclides podalirius (Lepidoptera, Papilionidae on alien plants: a broadening of host range or oviposition mistakes?

    Directory of Open Access Journals (Sweden)

    Stefanescu, C.

    2006-06-01

    Full Text Available Iphiclides podalirius is an oligophagous butterfly which feeds on plants of the Rosaceae family. In 2002 and 2005 in NE Spain, we recorded for the first time oviposition on two alien plant species, Cotoneaster franchetii and Spiraea cantoniensis. To ascertain if this unusual behaviour represents a broadening of host range or, alternatively, an oviposition mistake, larval performance on the new plants was investigated in the laboratory and compared with performance on the most common host plants used in the study area. Although larval performance on common hosts differed to some extent, the use of a wide range of plants of different quality at population level may in fact respond to the so-called “spreading of risk” strategy in variable environments. On the other hand, larval performance and survival to adulthood were so low on the two new hosts that our observations probably represent a case of maladaptive oviposition behaviour. This may be due to an evolutionary lag between the newly introduced plants and the insect, although other possible explanations are also taken into account.

  13. Investigation on resistance to drought and efficiency of water usage in two range species, Dactylis glomerata and Eragrostis curvula

    International Nuclear Information System (INIS)

    Jafari, M.; Saiedian, F.; Heydari, H.; Azarnayvand, H.; Farzaneh, Z.

    2000-01-01

    Determination of water efficiency and resistance to drought in range plants are important factors that have essential role in selection of range development methods. As there is not any comprehensive study in resistance to drought, present research was done with selection of two range species. Selected species were two kinds of Gramineae, namely Dactylis glomerata and Eragrostis curvula. Some parameters such as used water, length, width and number of leaves, dry mass of leaves were studies. Obtained results showed that length and width of leaves were not under stress in irrigation periods, but number of leaves, dry mass of leaf and stem decreased under drought stress. Amount of decrease in Eragrostis curvula was less than Dactylis glomerata Increment of irrigation periods, increased root growth rather than stem, but root growth in Dactylis glomerata was more than Eragrostis curvula for production of dry matter, Dactylis glomerata species has less water requirement and higher water usage efficiency in terms of amount of water usage. In terms of resistance to drought, Eragrostis curvula has more resistance rather than Dactylis glomerata because of high water potential and lower witt ing point

  14. The Role of Different Agricultural Plant Species in Air Pollution

    Science.gov (United States)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  15. Alien plant species (ephemerophytes in Romensko-Poltavsky Geobotanical District, Ukraine

    Directory of Open Access Journals (Sweden)

    Dvirna Tetyana S.

    2017-09-01

    Full Text Available This paper presents the results of research on ephemerophytes of the alien portion of the flora of the Romensko-Poltavsky Geobotanical District (north-eastern Ukraine. It is a detailed study of this group of plants, conducted for the first time in the Ukraine. The checklist of alien vascular plants contains 345 species, of which 27 species are ephemerophytes (or 8%: Adonis aestivalis, A. annua, Papaver albiflorum, Urtica cannabina, Gypsophila perfoliata, Atriplex micrantha, Chenopodium × preissmannii, Ch. × thellungii, Rumex longifolius, Sisymbrium polymorphum, Euphorbia humifusa, Malus sylvestris, Onobrychis viciifolia, Astrodaucus orientalis, Datura tatula, Solanum schultesii, Lindernia procumbens, Melampyrum cristatum, Helianthus annuus, Petasites spurius, Xanthium ripicola × Xanthium albinum, Echinochloa tzvelevii, Panicum capillare, Panicum capillare L. subsp. barvipulvinatum, Phalaris canariensis, Setaria ×ambigua, Sorghum halepense. The basis of this work is original data of the author obtained during field studies, and a critical study of the literature, archival, cartographic materials and herbarium collections, and the use of classical methods of botanical classification. Complex research of this group of plants was conducted and as a result of these investigations the following characteristics were established: a predominance of kenophytes of Mediterranean origin in this group, species of arid areas, cosmopolitan species with a diffuse type of space structure, therophytes, herbaceous monocarpic plants, mesotrophes, heliophytes and xeromesophytes, with an insignificant degree of impact on native plant communities and with a limited distribution within the study region. The combination of these results indicates that ephemerophytes comprise a temporary, unstable component of the flora of this region of the Ukraine. The paper provides maps of the distribution of these 27 species.

  16. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  17. Species composition, plant cover and diversity of recently reforested ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Deforestation, over-cultivation and rural growth have severely ... over-cultivation, plant populations changed, and biolo- ... Restoring community structure (e.g. species composi-tion ... plant diversity at all spatial scales are the criteria that should ..... taxonomic groups in recovering and restored forests.

  18. The role of web sharing, species recognition and host-plant defence in interspecific competition between two herbivorous mite species.

    Science.gov (United States)

    Sato, Yukie; Alba, Juan M; Egas, Martijn; Sabelis, Maurice W

    2016-11-01

    When competing with indigenous species, invasive species face a problem, because they typically start with a few colonizers. Evidently, some species succeeded, begging an answer to the question how they invade. Here, we investigate how the invasive spider mite Tetranychus evansi interacts with the indigenous species T. urticae when sharing the solanaceous host plant tomato: do they choose to live together or to avoid each other's colonies? Both species spin protective, silken webs on the leaf surfaces, under which they live in groups of con- and possibly heterospecifics. In Spain, T. evansi invaded the non-crop field where native Tetranychus species including T. urticae dominated. Moreover, T. evansi outcompetes T. urticae when released together on a tomato plant. However, molecular plant studies suggest that T. urticae benefits from the local down-regulation of tomato plant defences by T. evansi, whereas T. evansi suffers from the induction of these defences by T. urticae. Therefore, we hypothesize that T. evansi avoids leaves infested with T. urticae whereas T. urticae prefers leaves infested by T. evansi. Using wild-type tomato and a mutant lacking jasmonate-mediated anti-herbivore defences, we tested the hypothesis and found that T. evansi avoided sharing webs with T. urticae in favour of a web with conspecifics, whereas T. urticae more frequently chose to share webs with T. evansi than with conspecifics. Also, T. evansi shows higher aggregation on a tomato plant than T. urticae, irrespective of whether the mites occur on the plant together or not.

  19. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    Science.gov (United States)

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  20. Testing the Stress-Gradient Hypothesis at the Roof of the World: Effects of the Cushion Plant Thylacospermum caespitosum on Species Assemblages

    Science.gov (United States)

    Dvorský, Miroslav; Doležal, Jiří; Kopecký, Martin; Chlumská, Zuzana; Janatková, Kateřina; Altman, Jan; de Bello, Francesco; Řeháková, Klára

    2013-01-01

    Many cushion plants ameliorate the harsh environment they inhabit in alpine ecosystems and act as nurse plants, with significantly more species growing within their canopy than outside. These facilitative interactions seem to increase with the abiotic stress, thus supporting the stress-gradient hypothesis. We tested this prediction by exploring the association pattern of vascular plants with the dominant cushion plant Thylacospermum caespitosum (Caryophyllaceae) in the arid Trans-Himalaya, where vascular plants occur at one of the highest worldwide elevational limits. We compared plant composition between 1112 pair-plots placed both inside cushions and in surrounding open areas, in communities from cold steppes to subnival zones along two elevational gradients (East Karakoram: 4850–5250 m and Little Tibet: 5350–5850 m). We used PERMANOVA to assess differences in species composition, Friedman-based permutation tests to determine individual species habitat preferences, species-area curves to assess whether interactions are size-dependent and competitive intensity and importance indices to evaluate plant-plant interactions. No indications for net facilitation were found along the elevation gradients. The open areas were not only richer in species, but not a single species preferred to grow exclusively inside cushions, while 39–60% of 56 species detected had a significant preference for the habitat outside cushions. Across the entire elevation range of T. caespitosum, the number and abundance of species were greater outside cushions, suggesting that competitive rather than facilitative interactions prevail. This was supported by lower soil nutrient contents inside cushions, indicating a resource preemption, and little thermal amelioration at the extreme end of the elevational gradient. We attribute the negative associations to competition for limited resources, a strong environmental filter in arid high-mountain environment selecting the stress-tolerant species

  1. Testing the stress-gradient hypothesis at the roof of the world: effects of the cushion plant Thylacospermum caespitosum on species assemblages.

    Directory of Open Access Journals (Sweden)

    Miroslav Dvorský

    Full Text Available Many cushion plants ameliorate the harsh environment they inhabit in alpine ecosystems and act as nurse plants, with significantly more species growing within their canopy than outside. These facilitative interactions seem to increase with the abiotic stress, thus supporting the stress-gradient hypothesis. We tested this prediction by exploring the association pattern of vascular plants with the dominant cushion plant Thylacospermum caespitosum (Caryophyllaceae in the arid Trans-Himalaya, where vascular plants occur at one of the highest worldwide elevational limits. We compared plant composition between 1112 pair-plots placed both inside cushions and in surrounding open areas, in communities from cold steppes to subnival zones along two elevational gradients (East Karakoram: 4850-5250 m and Little Tibet: 5350-5850 m. We used PERMANOVA to assess differences in species composition, Friedman-based permutation tests to determine individual species habitat preferences, species-area curves to assess whether interactions are size-dependent and competitive intensity and importance indices to evaluate plant-plant interactions. No indications for net facilitation were found along the elevation gradients. The open areas were not only richer in species, but not a single species preferred to grow exclusively inside cushions, while 39-60% of 56 species detected had a significant preference for the habitat outside cushions. Across the entire elevation range of T. caespitosum, the number and abundance of species were greater outside cushions, suggesting that competitive rather than facilitative interactions prevail. This was supported by lower soil nutrient contents inside cushions, indicating a resource preemption, and little thermal amelioration at the extreme end of the elevational gradient. We attribute the negative associations to competition for limited resources, a strong environmental filter in arid high-mountain environment selecting the stress

  2. Rapid plant evolution in the presence of an introduced species alters community composition.

    Science.gov (United States)

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  3. 77 FR 43433 - Endangered and Threatened Wildlife and Plants; Listing Foreign Bird Species in Peru and Bolivia...

    Science.gov (United States)

    2012-07-24

    ... and Bolivia as Endangered Throughout Their Range; Final Rule #0;#0;Federal Register / Vol. 77 , No... Endangered and Threatened Wildlife and Plants; Listing Foreign Bird Species in Peru and Bolivia as Endangered... Peru. The ash-breasted tit-tyrant and royal cinclodes are also native to Bolivia. DATES: This rule...

  4. Cloth-based hybridization array system for expanded identification of the animal species origin of derived materials in feeds.

    Science.gov (United States)

    Murphy, Johanna; Armour, Jennifer; Blais, Burton W

    2007-12-01

    A cloth-based hybridization array system (CHAS) previously developed for the detection of animal species for which prohibited materials have been specified (cattle, sheep, goat, elk, and deer) has been expanded to include the detection of animal species for which there are no prohibitions (pig and horse) in Canadian and American animal feeds. Animal species were identified by amplification of mitochondrial DNA sequences by PCR and subsequent hybridization of the amplicons with an array of species-specific oligonucleotide capture probes immobilized on a polyester cloth support, followed by an immunoenzymatic assay of the bound PCR products. The CHAS permitted sensitive and specific detection of meat meals from different animal species blended in a grain-based feed and should provide a useful adjunct to microscopic examination for the identification of prohibited materials in animal feeds.

  5. Unidirectional hybridization at a species' range boundary: implications for habitat tracking

    DEFF Research Database (Denmark)

    Beatty, Gemma, E.; Philipp, Marianne; Provan, Jim

    2010-01-01

    hybridization may lead to the extinction of peripheral populations of P. minor where the two species grow sympatrically. Extinction could occur as a result of genetic assimilation where F1s are fertile, or via the removal of unidirectionally pollinated sterile F1s, or by a combination of these processes......Aim Introgressive hybridization between a locally rare species and a more abundant congener can drive population extinction via genetic assimilation, or the replacement of the rare species gene pool with that of the common species. To date, however, few studies have assessed the effects...... of such processes at the limits of species' distribution ranges. In this study, we have examined the potential for hybridization between range-edge populations of the wintergreen Pyrola minor and sympatric populations of Pyrola grandiflora. Location Qeqertarsuaq, Greenland and Churchill, Manitoba, Canada. Methods...

  6. Busy Bees: Variation in Insect Flower-Visiting Rates across Multiple Plant Species

    Directory of Open Access Journals (Sweden)

    Margaret J. Couvillon

    2015-01-01

    Full Text Available We quantified insect visitation rates by counting how many flowers/inflorescences were probed per unit time for five plant species (four native and one garden: California lilac, bramble, ragwort, wild marjoram, and ivy growing in Sussex, United Kingdom, by following individual insects (n=2987 from nine functional groups (honey bees (Apis mellifera, bumble bees (Bombus spp., hoverflies, flies, butterflies, beetles, wasps, non-Apidae bees, and moths. Additionally, we made a census of the insect diversity on the studied plant species. Overall we found that insect groups differed greatly in their rate of flower visits (P<2.2e-16, with bumble bees and honey bees visiting significantly more flowers per time (11.5 and 9.2 flowers/minute, resp. than the other insect groups. Additionally, we report on a within-group difference in the non-Apidae bees, where the genus Osmia, which is often suggested as an alternative to honey bees as a managed pollinator, was very speedy (13.4 flowers/minute compared to the other non-Apidae bees (4.3 flowers/minute. Our census showed that the plants attracted a range of insects, with the honey bee as the most abundant visitor (34%. Therefore, rate differences cannot be explained by particular specializations. Lastly, we discuss potential implications of our conclusions for pollination.

  7. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  8. Online purchases of an expanded range of condom sizes in comparison to current dimensional requirements allowable by US national standards.

    Science.gov (United States)

    Cecil, Michael; Warner, Lee; Siegler, Aaron J

    2013-11-01

    Across studies, 35-50% of men describe condoms as fitting poorly. Rates of condom use may be inhibited in part due to the inaccessibility of appropriately sized condoms. As regulated medical devices, condom sizes conform to national standards such as those developed by the American Society for Testing and Materials (ASTM) or international standards such as those developed by the International Organisation for Standardisation (ISO). We describe the initial online sales experience of an expanded range of condom sizes and assess uptake in relation to the current required standard dimensions of condoms. Data regarding the initial 1000 sales of an expanded range of condom sizes in the United Kingdom were collected from late 2011 through to early 2012. Ninety-five condom sizes, comprising 14 lengths (83-238mm) and 12 widths (41-69mm), were available. For the first 1000 condom six-pack units that were sold, a total of 83 of the 95 unique sizes were purchased, including all 14 lengths and 12 widths, and both the smallest and largest condoms. Initial condom purchases were made by 572 individuals from 26 countries. Only 13.4% of consumer sales were in the ASTM's allowable range of sizes. These initial sales data suggest consumer interest in an expanded choice of condom sizes that fall outside the range currently allowable by national and international standards organisations.

  9. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels

    Science.gov (United States)

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie HD

    2015-01-01

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. DOI: http://dx.doi.org/10.7554/eLife.05896.001 PMID:25647728

  10. Climate change risks and conservation implications for a threatened small-range mammal species.

    Directory of Open Access Journals (Sweden)

    Naia Morueta-Holme

    Full Text Available BACKGROUND: Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. METHODOLOGY/PRINCIPAL FINDINGS: We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus, which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070-2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. CONCLUSIONS/SIGNIFICANCE: Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be

  11. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  12. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS.

    Science.gov (United States)

    Yi, Tao; Fan, Lan-Lan; Chen, Hong-Li; Zhu, Guo-Yuan; Suen, Hau-Man; Tang, Yi-Na; Zhu, Lin; Chu, Chu; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2014-08-09

    Dioscorea is a genus of flowering plants, and some Dioscorea species are known and used as a source for the steroidal sapogenin diosgenin. To screen potential resource from Dioscorea species and related medicinal plants for diosgenin extraction, a rapid method to compare the contents of diosgenin in various plants is crucial. An ultra-performance liquid chromatography (UPLC) coupled with diode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS) method was developed for identification and determination of diosgenin in various plants. A comprehensive validation of the developed method was conducted. Twenty-four batches of plant samples from four Dioscorea species, one Smilax species and two Heterosmilax species were analyzed by using the developed method.The present method presented good sensitivity, precision and accuracy. Diosgenin was found in three Dioscorea species and one Heterosmilax species, namely D. zingiberensis, D. septemloba, D. collettii and H. yunnanensis. The method is suitable for the screening of diosgenin resources from plants. D. zingiberensis is an important resource for diosgenin harvesting.

  13. ecotaxonomic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    Admin

    plant species of medicinal and other economic values. The investigation was ... A total of 41 and 24 representative ... INTRODUCTION. Baseline .... at 100m interval, involving a total of 15 sampling locations .... explained by factors such as climate, productivity and ... encouraging the: Maintenance of traditional tree species.

  14. Natural selection constrains neutral diversity across a wide range of species.

    Science.gov (United States)

    Corbett-Detig, Russell B; Hartl, Daniel L; Sackton, Timothy B

    2015-04-01

    The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics.

  15. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  16. A systematic review of the recent ecological literature on cushion plants: champions of plant facilitation

    Directory of Open Access Journals (Sweden)

    A. M. Reid

    2010-09-01

    Full Text Available Cushion-forming plant species are found in alpine and polar environments around the world. They modify the microclimate, thereby facilitating other plant species. Similar to the effectiveness of shrubs as a means to study facilitation in arid and semi-arid environments, we explore the potential for cushion plant species to expand the generality of research on this contemporary ecological interaction. A systematic review was conducted to determine the number of publications and citation frequency on relevant ecological topics whilst using shrub literature as a baseline to assess relative importance of cushions as a focal point for future ecological research. Although there are forty times more shrub articles, mean citations per paper is comparable between cushion and shrub literature. Furthermore, the scope of ecological research topics studied using cushions is broad including facilitation, competition, environmental gradients, life history, genetics, reproduction, community, ecosystem and evolution. The preliminary ecological evidence to date also strongly suggests that cushion plants can be keystone species in their ecosystems. Hence, ecological research on net interactions including facilitation and patterns of diversity can be successfully examined using cushion plants, and this is particularly timely given expectations associated with a changing climate in these regions.

  17. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    Science.gov (United States)

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Yeoh, Yun Kit; Donose, Bogdan C.; Webb, Richard I.; Parsons, Jeremy; Liao, Webber; Sagulenko, Evgeny; Lakshmanan, Prakash; Hugenholtz, Philip; Schmidt, Susanne; Ragan, Mark A.

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere. PMID:27869215

  18. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness?

    Science.gov (United States)

    Dong, Li-Jia; Yu, Hong-Wei; He, Wei-Ming

    2015-11-17

    Whether plant invasions pose a great threat to native plant diversity is still hotly debated due to conflicting findings. More importantly, we know little about the mechanisms of invasion impacts on native plant richness. We examined how Solidago canadensis invasion influenced native plants using data from 291 pairs of invaded and uninvaded plots covering an entire invaded range, and quantified the relative contributions of climate, recipient communities, and S. canadensis to invasion impacts. There were three types of invasion consequences for native plant species richness (i.e., positive, neutral, and negative impacts). Overall, the relative contributions of recipient communities, S. canadensis and climate to invasion impacts were 71.39%, 21.46% and 7.15%, respectively; furthermore, the roles of recipient communities, S. canadensis and climate were largely ascribed to plant diversity, density and cover, and precipitation. In terms of direct effects, invasion impacts were negatively linked to temperature and native plant communities, and positively to precipitation and soil microbes. Soil microbes were crucial in the network of indirect effects on invasion impacts. These findings suggest that the characteristics of recipient communities are the most important determinants of invasion impacts and that invasion impacts may be a continuum across an entire invaded range.

  19. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Science.gov (United States)

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  20. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  1. Distribution patterns of rare earth elements in various plant species

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Tobler, L.; Furrer, V.

    1997-01-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs

  2. Refrigeration generation using expander-generator units

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  3. Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia.

    Science.gov (United States)

    Thomas, Evert; Vandebroek, Ina; Sanca, Sabino; Van Damme, Patrick

    2009-02-25

    Medicinal plant use was investigated in Apillapampa, a community of subsistence farmers located in the semi-arid Bolivian Andes. The main objectives were to identify the culturally most significant medicinal plant families and species in Apillapampa. A total of 341 medicinal plant species was inventoried during guided fieldtrips and transect sampling. Data on medicinal uses were obtained from fifteen local Quechua participants, eight of them being traditional healers. Contingency table and binomial analyses of medicinal plants used versus the total number of inventoried species per family showed that Solanaceae is significantly overused in traditional medicine, whereas Poaceae is underused. Also plants with a shrubby habitat are significantly overrepresented in the medicinal plant inventory, which most likely relates to their year-round availability to people as compared to most annual plants that disappear in the dry season. Our ranking of medicinal species according to cultural importance is based upon the Quality Use Agreement Value (QUAV) index we developed. This index takes into account (1) the average number of medicinal uses reported for each plant species by participants; (2) the perceived quality of those medicinal uses; and (3) participant consensus. According to the results, the QUAV index provides an easily derived and valid appraisal of a medicinal plant's cultural significance.

  4. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Malick eMbengue

    2016-03-01

    Full Text Available Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum , the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi.

  5. Salinity ranges of some southern African fish species occurring in ...

    African Journals Online (AJOL)

    The recorded salinity ranges of 96 fish species occurring in southern African estuaries are documented. Factors influen- cing the tolerance of fishes to low and high salinity regimes are discussed, with most species tolerant of low rather than high salinity conditions. This is important since most systems are subject to periodic ...

  6. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes.

    Science.gov (United States)

    Williams, Jennifer L; Levine, Jonathan M

    2018-04-01

    Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.

  7. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    NARCIS (Netherlands)

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from

  8. Mercury uptake and accumulation by four species of aquatic plants

    International Nuclear Information System (INIS)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water

  9. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  10. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  11. A feasibility study of perennial/annual plant species to restore soils contaminated with heavy metals

    Science.gov (United States)

    Zacarías, Montserrat; Beltrán, Margarita; Gilberto Torres, Luis; González, Abelardo

    A feasibility study was carried out to evaluate the application of perennial/annual plant species in a phytoextraction process of a previously washed industrial urban soil contaminated by nickel, arsenic and cupper. The plant species selected for this study were Ipomea (Ipomea variada); grass (Poa pratensis); grass mixture (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum sp.); Monks Cress (Tropaeolum majus); ficus (Ficus benajamina) and fern (Pteris cretica). Soil was characterized and it presented the following heavy metals concentrations (dry weight): 80 mg of Ni/kg, 456-656 mg of As/kg and 1684-3166 mg of Cu/kg. Germination and survival in contaminated soil tests were conducted, from these, P. pratensis was discarded and the rest of plant species tested were used for the phytoextraction selection test. After 4 months of growth, biomass production was determined, and content of Ni, As and Cu was analyzed in plant’s tissue. Metal biological absorption coefficient (BAC), bio-concentration factor (BCF) and translocation factor (TF), were calculated. Regarding to biomass generation it was observed, in every case, an inhibition of the plant growth compared with blanks sown in a non contaminated soil; inhibition ranged from 22.5% for the Monk cress to 98% for Ipomea. Even though the later presented high BAC, BCF and TF, its growth was severely inhibited, and therefore, due its low biomass generation, it is not recommended for phytoextraction under conditions for this study. Heavy metals concentrations in plant’s tissue (dry weight) were as high as 866 mg Cu/kg and 602 mg As/kg for grass mixture; and 825 mg As/kg was observed for Monks cress. Grass mixture and monks cress had high BAC, BCF and TF, also they had high metal concentrations in its plants tissues and the lowest growth inhibition rates; hence the application in phytoextraction processes of these plants is advisable.

  12. Stability of modularity and structural keystone species in temporal cumulative plant- flower-visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2012-01-01

    Modularity is a structural property of ecological networks, which has received much interest, but has been poorly explored. Modules are distinct subsets of species interacting strongly with each other, but sparsely with species outside the subset. Using a series of temporal cumulative networks, we...... all flowering plants and flower-visiting insect species throughout the flowering season at three dry heathland sites in Denmark. For each site, we constructed cumulative networks every 0.5 months, resulting in series of 10–12 networks per site. Numbers of interactions, and plant and insect species...... around one or two hubs. These hub species encompassed a small number of plant species, many of which acted as hubs at several study sites and throughout most of their flowering season. Thus, these plants become of key importance in maintaining the structure of their pollination network. We conclude...

  13. Wild Plant Species with Extremely Small Populations Require Conservation and Reintroduction in China

    Science.gov (United States)

    Hai Ren; Qianmei Zhang; Hongfang Lu; Hongxiao Liu; Qinfeng Guo; Jun Wang; Shuguang Jian; Hai’ou Bao

    2012-01-01

    China is exceptionally rich in biodiversity, with more than 30000 vascular plant species that include many endemic genera, species of ancient origin, and cultivated plants (Yang et al. 2005). Because of rapid economic development, population growth, pollution, and continuing resource exploitation, China’s plant diversity faces severe threats. According to the Chinese...

  14. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  15. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    NARCIS (Netherlands)

    Tonneijck, A.E.G.; Berge, ten W.F.; Jansen, B.P.

    2003-01-01

    Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation

  16. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    Science.gov (United States)

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  17. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as `endangered` when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A `threatened` classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals.

  18. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as 'endangered' when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A 'threatened' classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals

  19. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  20. Phytotoxic Activity of Ocimum tenuiflorum Extracts on Germination and Seedling Growth of Different Plant Species

    Directory of Open Access Journals (Sweden)

    A. K. M. Mominul Islam

    2014-01-01

    Full Text Available Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum, lettuce (Lactuca sativa, alfalfa (Medicago sativa, Italian ryegrass (Lolium multiflorum, barnyard grass (Echinochloa crus-galli, and timothy (Phleum pratense at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL−1 reduced significantly the total germination percent (GP, germination index (GI, germination energy (GE, speed of emergence (SE, seedling vigour index (SVI, and coefficient of the rate of germination (CRG of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T50 and mean germination time (MGT were increased at the same or higher than this concentration. The increasing trend of T50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL−1. The I50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL−1. Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds.

  1. Climate and soil attributes determine plant species turnover in global drylands.

    Science.gov (United States)

    Ulrich, Werner; Soliveres, Santiago; Maestre, Fernando T; Gotelli, Nicholas J; Quero, José L; Delgado-Baquerizo, Manuel; Bowker, Matthew A; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A; Raveh, Eran; Romão, Roberto L; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2014-12-01

    Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R 2 )), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R 2 )) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate

  2. Climate and soil attributes determine plant species turnover in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Gotelli, Nicholas J.; Quero, José L.; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Raveh, Eran; Romão, Roberto L.; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2015-01-01

    Aim Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Methods Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake’s beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These

  3. CE of phytosiderophores and related metal species in plants.

    Science.gov (United States)

    Xuan, Yue; Scheuermann, Enrico B; Meda, Anderson R; Jacob, Peter; von Wirén, Nicolaus; Weber, Günther

    2007-10-01

    Phytosiderophores (PS) and the closely related substance nicotianamine (NA) are key substances in metal uptake into graminaceous plants. Here, the CE separation of these substances and related metal species is demonstrated. In particular, the three PS 2'-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), and NA, are separated using MES/Tris buffer at pH 7.3. Moreover, three Fe(III) species of the different PS are separated without any stability problems, which are often present in chromatographic analyses. Also divalent metal species of Cu, Ni, and Zn with the ligands DMA and NA are separated with the same method. By using a special, zwitterionic CE capillary, even the separation of two isomeric Fe(III) chelates with the ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) is possible (i.e., meso-Fe(III)-EDDHA and rac-Fe(III)-EDDHA), and for fast separations of NA and respective divalent and trivalent metal species, a polymer CE microchip with suppressed EOF is described. The proposed CE method is applicable to real plant samples, and enables to detect changes of metal species (Cu-DMA, Ni-NA), which are directly correlated to biological processes.

  4. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding.

    Science.gov (United States)

    Nithaniyal, Stalin; Vassou, Sophie Lorraine; Poovitha, Sundar; Raju, Balaji; Parani, Madasamy

    2017-02-01

    Plants are the major source of therapeutic ingredients in complementary and alternative medicine (CAM). However, species adulteration in traded medicinal plant raw drugs threatens the reliability and safety of CAM. Since morphological features of medicinal plants are often not intact in the raw drugs, DNA barcoding was employed for species identification. Adulteration in 112 traded raw drugs was tested after creating a reference DNA barcode library consisting of 1452 rbcL and matK barcodes from 521 medicinal plant species. Species resolution of this library was 74.4%, 90.2%, and 93.0% for rbcL, matK, and rbcL + matK, respectively. DNA barcoding revealed adulteration in about 20% of the raw drugs, and at least 6% of them were derived from plants with completely different medicinal or toxic properties. Raw drugs in the form of dried roots, powders, and whole plants were found to be more prone to adulteration than rhizomes, fruits, and seeds. Morphological resemblance, co-occurrence, mislabeling, confusing vernacular names, and unauthorized or fraudulent substitutions might have contributed to species adulteration in the raw drugs. Therefore, this library can be routinely used to authenticate traded raw drugs for the benefit of all stakeholders: traders, consumers, and regulatory agencies.

  5. Patterns of plant species diversity during succession under different disturbance regimes.

    Science.gov (United States)

    Denslow, Julie Sloan

    1980-07-01

    I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches (gaps) of different environmental conditions. The composition of the mosaic is described by the size-frequency distribution of the gaps and is dependent on the rates and scales of disturbance. The life-history strategies of plant species dependent on some form of disturbance for establishment of propagules should reflect this size-frequency distribution of disturbance patches. An extension of island biogeographic theory to encompass relative habitat area predicts that a community should be most rich in species adapted to growth and establishment in the spatially most common patch types. Changes in species diversity during succession following large scale disturbance reflect the prevalent life history patterns under historically common disturbance regimes. Communities in which the greatest patch area is in large-scale clearings (e.g. following fire) are most diverse in species establishing seedlings in xeric, high light conditions. Species diversity decreases during succession. Communities in which such large patches are rare are characterized by a large number of species that reach the canopy through small gaps and realtively few which regenerate in the large clearings. Diversity increases during succession following a large scale disturbance.Evidence from communities characterized by different disturbance regimes is summarized from the literature. This hypothesis provides an evolutionary mechanism with which to examine the changes in plant community structure during succession. Diversity peaks occurring at "intermediate levels" of disturbance as

  6. Screening of plant species as ground cover on uranium mill tailings

    International Nuclear Information System (INIS)

    Venu Babu, P.; Eapen, S.

    2012-01-01

    The concept of construction of dams or holding areas for uranium mill tailings is relatively new in India and to date there is only one such facility being maintained by Uranium Corporation of India Limited (UCIL) at Jaduguda in Jharkhand. Due to the residual nature of radionuclides, chiefly uranium and its daughter products, special emphasis is given to the engineering aspects of the mill tailings ponds so as to ensure safety to general public for at least 200 years. Once a mill tailings pond reaches to its full capacity, creation of barrier layers over the mill tailings to prevent seepage of rain water and also erosion of mill tailings due to wind and water are advocated and a number of procedures are followed worldwide. Taking the extraordinary period of public safety to be assured, providing soil covers along with contouring and appropriate slopes over which vegetation is grown is gaining popularity. The vegetation not only reduces the impact of rain water hitting the soil cover, thereby reducing the soil erosion, but also lowers the moisture in the soil cover by extensive evapotranspiration, ensuring long term hydrological separation of the mill tailings underneath. Based on set criteria, applicable to the field scenario of mill tailings, a screening experiment was conducted under pot culture conditions to evaluate the survival and growth of different plant species. The plants after germination and hardening were transplanted into beakers containing mill tailings and periodical measurements on appropriate morphological characteristics such as plant height, length of twiners, number of tillers and number of leaves were recorded and evaluated. Of the twenty species tested in mill tailings, significant differences were noticed in the vigour of growth and several plant species could indeed establish well completing their life cycle including flowering and seed setting. Further, several leguminous species could also produce root nodules. It appears that the

  7. Eco-taxonomic distribution of plant species around motor mechanic ...

    African Journals Online (AJOL)

    A survey of plant species and their families present in auto mechanic workshops in Benin City and Asaba was carried out. The frequency of occurrence of plants in the sites visited was used to determine prevalence. Peperomia pellucida occurred most in all the sites visited with a 55% frequency. The high rate of occurrence ...

  8. Ring species as demonstrations of the continuum of species formation

    DEFF Research Database (Denmark)

    Pereira, Ricardo José Do Nascimento; Wake, David B.

    2015-01-01

    In the mid-20th century, Ernst Mayr (1942) and Theodosius Dobzhansky (1958) championed the significance of 'circular overlaps' or 'ring species' as the perfect demonstration of the gradual nature of species formation. As an ancestral species expands its range, wrapping around a geographic barrier......? What conditions favour their formation? Modelling studies have attempted to address these knowledge gaps by estimating the biological parameters that result in stable ring species (Martins et al. 2013), and determining the necessary topographic parameters of the barriers encircled (Monahan et al. 2012......). However, any generalization is undermined by a major limitation: only a handful of ring species are known to exist in nature. In addition, many of them have been broken into multiple species presumed to be evolving independently, usually obscuring the evolutionary dynamics that generate diversity. A paper...

  9. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    Science.gov (United States)

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

  10. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  11. Tree-Dwelling Ants: Contrasting Two Brazilian Cerrado Plant Species without Extrafloral Nectaries

    Directory of Open Access Journals (Sweden)

    Jonas Maravalhas

    2012-01-01

    Full Text Available Ants dominate vegetation stratum, exploiting resources like extrafloral nectaries (EFNs and insect honeydew. These interactions are frequent in Brazilian cerrado and are well known, but few studies compare ant fauna and explored resources between plant species. We surveyed two cerrado plants without EFNs, Roupala montana (found on preserved environments of our study area and Solanum lycocarpum (disturbed ones. Ants were collected and identified, and resources on each plant noted. Ant frequency and richness were higher on R. montana (67%; 35 spp than S. lycocarpum (52%; 26, the occurrence of the common ant species varied between them, and similarity was low. Resources were explored mainly by Camponotus crassus and consisted of scale insects, aphids, and floral nectaries on R. montana and two treehopper species on S. lycocarpum. Ants have a high diversity on cerrado plants, exploring liquid and prey-based resources that vary in time and space and affect their presence on plants.

  12. Impacts of invasive nonnative plant species on the rare forest herb Scutellaria montana

    Science.gov (United States)

    Sikkema, Jordan J.; Boyd, Jennifer N.

    2015-11-01

    Invasive plant species and overabundant herbivore populations have the potential to significantly impact rare plant species given their increased risk for local extirpation and extinction. We used interacting invasive species removal and grazer exclusion treatments replicated across two locations in an occurrence of rare Scutellaria montana (large-flowered skullcap) in Chattanooga, Tennessee, USA, to assess: 1) competition by invasive Ligustrum sinense (Chinese privet) and Lonicera japonica (Japanese honeysuckle) and 2) the role of invasive species in mediating Oedocoilus virginianus (white-tailed deer) grazing of S. montana. Contrary to our hypothesis that invasive species presence would suppress S. montana directly via competition, S. montana individuals experienced a seasonal increase in stem height when invasive species were intact but not when invasive species were removed. Marginally significant results indicated that invasive species may afford S. montana protection from grazers, and we suggest that invasive species also could protect S. montana from smaller herbivores and/or positively influence abiotic conditions. In contrast to growth responses, S. montana individuals protected from O. virginianus exhibited a decrease in flowering between seasons relative to unprotected plants, but invasive species did not affect this variable. Although it has been suggested that invasive plant species may negatively influence S. montana growth and fecundity, our findings do not support related concerns. As such, we suggest that invasive species eradication efforts in S. montana habitat could be more detrimental than positive due to associated disturbance. However, the low level of invasion of our study site may not be representative of potential interference in more heavily infested habitat.

  13. Northwest range-plant symbols adapted to automatic data processing.

    Science.gov (United States)

    George A. Garrison; Jon M. Skovlin

    1960-01-01

    Many range technicians, agronomists, foresters, biologists, and botanists of various educational institutions and government agencies in the Northwest have been using a four-letter symbol list or code compiled 12 years ago from records of plants collected by the U.S. Forest Service in Oregon and Washington, This code has served well as a means of entering plant names...

  14. Interspecific competition between alien and native congeneric species

    Science.gov (United States)

    Garcia-Serrano, H.; Sans, F. X.; Escarré, J.

    2007-01-01

    A good way to check hypotheses explaining the invasion of ecosystems by exotic plants is to compare alien and native congeneric species. To test the hypothesis that invasive alien plants are more competitive than natives, we designed a replacement series experiment to evaluate interspecific competition between three Senecio species representing the same bushy life form: two alien species ( S. inaequidens and S. pterophorus, both from South Africa) and a native species from the south-east of the Iberian Peninsula and Maghreb ( S. malacitanus). While S. inaequidens is widespread throughout western Europe and is expanding towards the south of Spanish-French border, the geographical distribution of the recently introduced S. pterophorus is still limited to north-eastern Spain. Plants from each species were grown in pure and in mixed cultures with one of their congeners, and water availability was manipulated to evaluate the effects of water stress on competitive abilities. Our results show that the alien S. inaequidens is the most competitive species for all water conditions. The native S. malacitanus is more competitive that the alien S. pterophorus in water stress conditions, but this situation is reversed when water availability is not limiting.

  15. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log......-transformed species numbers as dependent and log-transformed modified area (i.e. area not covered with barren lava) as an independent variable. This holds both for total species number, for native species number, for endemic species number and for total number of seed plants as well as number of endemic seed plants...

  16. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    Vegetated plots were established by planting different plant species – legumes and vegetable (Abelmoschus, esculentus, Telfaria occidentalis and Vigna unguiculata) and applied with sawdust and chromolaena leaves at different intensities of oil pollution. Toxicity of the soil was evaluated using germination percentage, ...

  17. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding

    Science.gov (United States)

    Wood, Eric M.

    2017-01-01

    Anthropogenic changes to the landscape and climate cause novel ecological and evolutionary pressures, leading to potentially dramatic changes in the distribution of biodiversity. Warm winter temperatures can shift species' distributions to regions that were previously uninhabitable. Further, urbanization and supplementary feeding may facilitate range expansions and potentially reduce migration tendency. Here we explore how these factors interact to cause non-uniform effects across a species's range. Using 17 years of data from the citizen science programme Project FeederWatch, we examined the relationships between urbanization, winter temperatures and the availability of supplementary food (i.e. artificial nectar) on the winter range expansion (more than 700 km northward in the past two decades) of Anna's hummingbirds (Calypte anna). We found that Anna's hummingbirds have colonized colder locations over time, were more likely to colonize sites with higher housing density and were more likely to visit feeders in the expanded range compared to the historical range. Additionally, their range expansion mirrored a corresponding increase over time in the tendency of people to provide nectar feeders in the expanded range. This work illustrates how humans may alter the distribution and potentially the migratory behaviour of species through landscape and resource modification. PMID:28381617

  18. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone

    OpenAIRE

    He, Qiang; Cui, Baoshan

    2015-01-01

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab ...

  19. Response of Key Soil Parameters During Compost-Assisted Phytostabilization in Extremely Acidic Tailings: Effect of Plant Species

    Science.gov (United States)

    Solís-Dominguez, Fernando A.; White, Scott A.; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2012-01-01

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ~ 2.5) metalliferous (As, Pb, Zn: 2000–3000 mg kg−1) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites. PMID:22191663

  20. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species.

    Science.gov (United States)

    Solís-Dominguez, Fernando A; White, Scott A; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A; Chorover, Jon; Maier, Raina M

    2012-01-17

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ∼ 2.5) metalliferous (As, Pb, Zn: 2000-3000 mg kg(-1)) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites.

  1. Plant species from coal mine overburden dumping site in Satui, South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Vivi Novianti

    2017-07-01

    Full Text Available Coal mine overburden (OB materials were nutrient-poor, loosely adhered particles of shale, stones, boulders, and cobbles, also contained elevated concentration of trace metals. This condition cause OB substrate did not support plants growth. However, there were certain species that able to grow on overburden dumping site. This investigation sought to identify plants species that presence on coal mine overburden. The research was conducted on opencast coal mine OB dumping site in Satui, South Kalimantan. Vegetation sampling was carried out on six different ages of coal mine OB dumps (7, 10, 11, 42, 59 and 64 month using line transect. Species identification used information from local people, AMDAL report of PT Arutmin Indonesia-Satui mine project, and website. There were 123 plant species, consisted of 79 herbs (Cyperaceae, Poaceae and Asteraceae, 10 lianes, bryophyte, 9 ferns, 10 shrubs, and 14 trees. A number of Poaceae, i.e., Paspalumconjugatum, Paspalumdilatatum, and Echinochloacolona generally present among the stones, boulders, and cobbles. While Cyperaceae such as Fimbristylis miliaceae, Cyperus javanicus, Rhyncospora corymbosa and Scleria sumatrensis most often foundinand around thebasin/pond with its smooth and humid substrate characteristics. Certain species of shrubs and trees present on the 7 month OB dumping site. They wereChromolaena odorata, Clibadium surinamense, Melastoma malabathricum, Trema micrantha, and Solanum torvum (Shrubs, Ochroma pyramidale and Homalanthus populifolius (trees. This plant species could be used for accelerating primary succession purpose on coal mine overburden dumping site. Nevertheless, species selection was needed to avoid planting invasive species.

  2. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  3. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii.

    Science.gov (United States)

    Funk, Helena T; Berg, Sabine; Krupinska, Karin; Maier, Uwe G; Krause, Kirsten

    2007-08-22

    The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels) and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a) the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b) the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c) a significant reduction of RNA editing. Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards a simplification of the plastid gene expression

  4. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii

    Directory of Open Access Journals (Sweden)

    Maier Uwe G

    2007-08-01

    Full Text Available Abstract Background The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. Results The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c a significant reduction of RNA editing. Conclusion Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards

  5. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Directory of Open Access Journals (Sweden)

    Craig Costion

    Full Text Available BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70% and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  6. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK).

    Science.gov (United States)

    Kosanic, Aleksandra; Anderson, Karen; Harrison, Stephan; Turkington, Thea; Bennie, Jonathan

    2018-01-01

    Recent climate change has had a major impact on biodiversity and has altered the geographical distribution of vascular plant species. This trend is visible globally; however, more local and regional scale research is needed to improve understanding of the patterns of change and to develop appropriate conservation strategies that can minimise cultural, health, and economic losses at finer scales. Here we describe a method to manually geo-reference botanical records from a historical herbarium to track changes in the geographical distributions of plant species in West Cornwall (South West England) using both historical (pre-1900) and contemporary (post-1900) distribution records. We also assess the use of Ellenberg and climate indicator values as markers of responses to climate and environmental change. Using these techniques we detect a loss in 19 plant species, with 6 species losing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light, moisture, nitrogen) and climate indicator values (mean January temperature, mean July temperature and mean precipitation) could be used as environmental change indicators. Significantly higher percentages of area lost were detected in species with lower January temperatures, July temperatures, light, and nitrogen values, as well as higher annual precipitation and moisture values. This study highlights the importance of historical records in examining the changes in plant species' geographical distributions. We present a method for manual geo-referencing of such records, and demonstrate how using Ellenberg and climate indicator values as environmental and climate change indicators can contribute towards directing appropriate conservation strategies.

  7. Habitat types on the Hanford Site: Wildlife and plant species of concern

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Rickard, W.H.; Brandt, C.A. [and others

    1993-12-01

    The objective of this report is to provide a comprehensive source of the best available information on Hanford Site sensitive and critical habitats and plants and animals of importance or special status. In this report, sensitive habitats include areas known to be used by threatened, endangered, or sensitive plant or animal species, wetlands, preserves and refuges, and other sensitive habitats outlined in the Hanford Site Baseline Risk Assessment Methodology. Potentially important species for risk assessment and species of special concern with regard to their status as threatened, endangered, or sensitive are described, and potential habitats for these species identified.

  8. ISOLATION AND CHARACTERIZATION OF CHITINASE GENE FROM THE UNTRADITIONAL PLANT SPECIES

    Directory of Open Access Journals (Sweden)

    Dominika Ďurechová

    2013-02-01

    Full Text Available Round-leaf sundew (Drosera rotundifolia L. from Droseraceae family belongs among a few plant species with strong antifungal potential. It was previously shown that chitinases of carnivorous plant species may play role during the insect prey digestion, when hard chitin skeleton is being decomposed. As many phytopathogenic fungi contain chitin in their cell wall our attention in this work was focused on isolation and in silico characterization of genomic DNA sequence of sundew chitinase gene. Subsequently this gene was fused to strong constitutive CaMV35S promoter and cloned into the plant binary vector pBinPlus and tested in A. tumefaciens LBA 4404 for its stability. Next, when transgenic tobacco plants are obtained, increasing of their antifungal potential will be tested.

  9. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  10. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    -interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased......Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  11. Impacts of sea level rise and climate change on coastal plant species in the central California coast

    Directory of Open Access Journals (Sweden)

    Kendra L. Garner

    2015-05-01

    Full Text Available Local increases in sea level caused by global climate change pose a significant threat to the persistence of many coastal plant species through exacerbating inundation, flooding, and erosion. In addition to sea level rise (SLR, climate changes in the form of air temperature and precipitation regimes will also alter habitats of coastal plant species. Although numerous studies have analyzed the effect of climate change on future habitats through species distribution models (SDMs, none have incorporated the threat of exposure to SLR. We developed a model that quantified the effect of both SLR and climate change on habitat for 88 rare coastal plant species in San Luis Obispo, Santa Barbara, and Ventura Counties, California, USA (an area of 23,948 km2. Our SLR model projects that by the year 2100, 60 of the 88 species will be threatened by SLR. We found that the probability of being threatened by SLR strongly correlates with a species’ area, elevation, and distance from the coast, and that 10 species could lose their entire current habitat in the study region. We modeled the habitat suitability of these 10 species under future climate using a species distribution model (SDM. Our SDM projects that 4 of the 10 species will lose all suitable current habitats in the region as a result of climate change. While SLR accounts for up to 9.2 km2 loss in habitat, climate change accounts for habitat suitability changes ranging from a loss of 1,439 km2 for one species to a gain of 9,795 km2 for another species. For three species, SLR is projected to reduce future suitable area by as much as 28% of total area. This suggests that while SLR poses a higher risk, climate changes in precipitation and air temperature represents a lesser known but potentially larger risk and a small cumulative effect from both.

  12. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  13. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    Directory of Open Access Journals (Sweden)

    Kyle Dexter

    2016-09-01

    Full Text Available Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

  14. Combining Inferential and Deductive Approaches to Estimate the Potential Geographical Range of the Invasive Plant Pathogen, Phytophthora ramorum

    Science.gov (United States)

    Ireland, Kylie B.; Hardy, Giles E. St. J.; Kriticos, Darren J.

    2013-01-01

    Phytophthora ramorum, an invasive plant pathogen of unknown origin, causes considerable and widespread damage in plant industries and natural ecosystems of the USA and Europe. Estimating the potential geographical range of P. ramorum has been complicated by a lack of biological and geographical data with which to calibrate climatic models. Previous attempts to do so, using either invaded range data or surrogate species approaches, have delivered varying results. A simulation model was developed using CLIMEX to estimate the global climate suitability patterns for establishment of P. ramorum. Growth requirements and stress response parameters were derived from ecophysiological laboratory observations and site-level transmission and disease factors related to climate data in the field. Geographical distribution data from the USA (California and Oregon) and Norway were reserved from model-fitting and used to validate the models. The model suggests that the invasion of P. ramorum in both North America and Europe is still in its infancy and that it is presently occupying a small fraction of its potential range. Phytophthora ramorum appears to be climatically suited to large areas of Africa, Australasia and South America, where it could cause biodiversity and economic losses in plant industries and natural ecosystems with susceptible hosts if introduced. PMID:23667628

  15. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change.

    Directory of Open Access Journals (Sweden)

    Giovanni Rapacciuolo

    Full Text Available Conservation planners often wish to predict how species distributions will change in response to environmental changes. Species distribution models (SDMs are the primary tool for making such predictions. Many methods are widely used; however, they all make simplifying assumptions, and predictions can therefore be subject to high uncertainty. With global change well underway, field records of observed range shifts are increasingly being used for testing SDM transferability. We used an unprecedented distribution dataset documenting recent range changes of British vascular plants, birds, and butterflies to test whether correlative SDMs based on climate change provide useful approximations of potential distribution shifts. We modelled past species distributions from climate using nine single techniques and a consensus approach, and projected the geographical extent of these models to a more recent time period based on climate change; we then compared model predictions with recent observed distributions in order to estimate the temporal transferability and prediction accuracy of our models. We also evaluated the relative effect of methodological and taxonomic variation on the performance of SDMs. Models showed good transferability in time when assessed using widespread metrics of accuracy. However, models had low accuracy to predict where occupancy status changed between time periods, especially for declining species. Model performance varied greatly among species within major taxa, but there was also considerable variation among modelling frameworks. Past climatic associations of British species distributions retain a high explanatory power when transferred to recent time--due to their accuracy to predict large areas retained by species--but fail to capture relevant predictors of change. We strongly emphasize the need for caution when using SDMs to predict shifts in species distributions: high explanatory power on temporally-independent records

  16. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  17. Variations in plant forage quality in the range of the Porcupine caribou herd

    Directory of Open Access Journals (Sweden)

    Jill Johnstone

    2002-06-01

    Full Text Available Understanding potential impacts of vegetation change on caribou energetics requires information on variations in forage quality among different plant types and over time. We synthesized data on forage quality (nitrogen, neutral detergent fiber and dry matter digestibility for 10 plant growth forms from existing scientific literature and from field research in the Arctic National Wildlife Refuge, Alaska. These data describe forage quality of plant species in habitats found within the summer and winter range of the Porcupine caribou herd in northwestern Canada and northern Alaska, U.S.A. We compared mean levels of summer forage quality among growth forms and, where possible, estimated seasonal changes in forage quality. Preferred forage groups (deciduous shrubs, forbs, and cottongrass flowers had higher nitrogen and digestibility, and lower fiber content, than other growth forms. Nitrogen concentration in green biomass peaked at the onset of the growing season in forbs and deciduous shrubs, whereas graminoids reached peak nitrogen concentrations approximately 15-30 days after growth initiation. In vitro dry matter digestibility (IVDMD and concentration of neutral detergent fiber (NDF of green biomass differed among growth forms, but did not show strong seasonal changes. IVDMD and NDF concentrations were correlated with nitrogen concentrations in studies that had paired sampling.

  18. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  19. Ecological Performances of Plant Species of Halophilous Hydromorphic Ecosystems

    Directory of Open Access Journals (Sweden)

    Maria Speranza

    2015-12-01

    Full Text Available Coastal wetlands are very special environments, characterized by soils permanently or seasonally saturated by salt or brackish water. They host microorganisms and plants able to adapt to anoxic conditions. This paper proposes a review of recent scientific papers dealing with the study of coastal wetlands from different points of view. Some studies examine the species composition and the pattern of the spatial distribution of plant communities, depending on the depth of the salt water table, as well as on other related factors. A significant number of studies analyse instead the coastal wetlands in their ability for the phytoremediation (phytostabilisation and/or phytoextraction and highlight the importance of interactions between the rhizosphere of the halophytes and the physical environment. Finally, more recent studies consider the plant species of the coastal wetlands as a source of useful products (food, feed, oils and expose the results of promising researches on their cultivation.

  20. Which species? A decision-support tool to guide plant selection in stormwater biofilters

    Science.gov (United States)

    Payne, Emily G. I.; Pham, Tracey; Deletic, Ana; Hatt, Belinda E.; Cook, Perran L. M.; Fletcher, Tim D.

    2018-03-01

    Plant species are diverse in form, function and environmental response. This provides enormous potential for designing nature-based stormwater treatment technologies, such as biofiltration systems. However, species can vary dramatically in their pollutant-removal performance, particularly for nitrogen removal. Currently, there is a lack of information on how to efficiently select from the vast palette of species. This study aimed to identify plant traits beneficial to performance and create a decision-support tool to screen species for further testing. A laboratory experiment using 220 biofilter columns paired plant morphological characteristics with nitrogen removal and water loss for 20 Australian native species and two lawn grasses. Testing was undertaken during wet and dry conditions, for two biofilter designs (saturated zone and free-draining). An extensive root system and high total biomass were critical to the effective removal of total nitrogen (TN) and nitrate (NO3-), driven by high nitrogen assimilation. The same characteristics were key to performance under dry conditions, and were associated with high water use for Australian native plants; linking assimilation and transpiration. The decision-support tool uses these scientific relationships and readily-available information to identify the morphology, natural distribution and stress tolerances likely to be good predictors of plant nitrogen and water uptake.

  1. Phytophthora niederhauserii sp. nov., a polyphagous species associated with ornamentals, fruit trees and native plants in 13 countries.

    Science.gov (United States)

    Abad, Z Gloria; Abad, Jorge A; Cacciola, Santa Olga; Pane, Antonella; Faedda, Roberto; Moralejo, Eduardo; Pérez-Sierra, Ana; Abad-Campos, Paloma; Alvarez-Bernaola, Luis A; Bakonyi, József; Józsa, András; Herrero, Maria Luz; Burgess, Treena I; Cunnington, James H; Smith, Ian W; Balci, Yilmaz; Blomquist, Cheryl; Henricot, Béatrice; Denton, Geoffrey; Spies, Chris; Mcleod, Adele; Belbahri, Lassaad; Cooke, David; Kageyama, Koji; Uematsu, Seiji; Kurbetli, Ilker; Değirmenci, Kemal

    2014-01-01

    A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1α, and β-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate. © 2014 by The Mycological Society of America.

  2. Data from: Plant mutualisms with rhizosphere microbiota in introduced versus native ranges

    NARCIS (Netherlands)

    Shelby, Natasha; Duncan, Richard P.; Putten, van der W.H.; Mcginn, Kevin J.; Weser, Carolin; Hulme, Philip E.

    2016-01-01

    The performance of introduced plants can be limited by the availability of soil mutualists outside their native range, but how interactions with mutualists differ between ranges is largely unknown. If mutualists are absent, incompatible or parasitic, plants may compensate by investing more in root

  3. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway

    Science.gov (United States)

    Grytnes, John Arvid; Heegaard, Einar; Ihlen, Per G.

    2006-05-01

    Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310-1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600-700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.

  4. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    Science.gov (United States)

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities

    Directory of Open Access Journals (Sweden)

    Kristin Aleklett

    2015-02-01

    Full Text Available Plant roots are known to harbor large and diverse communities of bacteria. It has been suggested that plant identity can structure these root-associated communities, but few studies have specifically assessed how the composition of root microbiota varies within and between plant species growing under natural conditions. We assessed the community composition of endophytic and epiphytic bacteria through high throughput sequencing using 16S rDNA derived from root tissues collected from a population of a wild, clonal plant (Orange hawkweed–Pilosella aurantiaca as well as two neighboring plant species (Oxeye daisy–Leucanthemum vulgare and Alsike clover–Trifolium hybridum. Our first goal was to determine if plant species growing in close proximity, under similar environmental conditions, still hosted unique root microbiota. Our results showed that plants of different species host distinct bacterial communities in their roots. In terms of community composition, Betaproteobacteria (especially the family Oxalobacteraceae were found to dominate in the root microbiota of L. vulgare and T. hybridum samples, whereas the root microbiota of P. aurantiaca had a more heterogeneous distribution of bacterial abundances where Gammaproteobacteria and Acidobacteria occupied a larger portion of the community. We also explored the extent of individual variance within each plant species investigated, and found that in the plant species thought to have the least genetic variance among individuals (P. aurantiaca still hosted just as diverse microbial communities. Whether all plant species host their own distinct root microbiota and plants more closely related to each other share more similar bacterial communities still remains to be fully explored, but among the plants examined in this experiment there was no trend that the two species belonging to the same family shared more similarities in terms of bacterial community composition.

  6. Molecular and morphological analysis reveals five new species of Zygophiala associated with flyspeck signs on plant hosts from China.

    Directory of Open Access Journals (Sweden)

    Liu Gao

    Full Text Available Species in the genus Zygophiala are associated with sooty blotch and flyspeck disease on a wide range of hosts. In this study, 63 Zygophiala isolates collected from flyspeck colonies on a range of plants from several regions of China were used for phylogeny, host range and geographic distribution analysis. Phylogenetic trees were constructed on four genes--internal transcribed spacer (ITS, partial translation elongation factor 1-alpha (TEF, β-tubulin (TUB2, and actin (ACT--both individually and in combination. Isolates were grouped into 11 clades among which five new species, Z. emperorae, Z. trispora, Z. musae, Z. inaequalis and Z. longispora, were described. Species of Zygophiala differed in observed host range and geographic distribution. Z. wisconsinensis and Z. emperorae were the most prevalent throughout the sampled regions of China, whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were collected only in southern China. The hosts of Z. wisconsinensis and Z. emperorae were mainly in the family Rosaceae whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were found mainly on banana (Musa spp.. Cross inoculation tests provided evidence of host specificity among SBFS species.

  7. HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION

    Science.gov (United States)

    Nylin, Sören; Slove, Jessica; Janz, Niklas

    2014-01-01

    It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598

  8. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  9. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  10. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States); Smutzer, Chad [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2017-05-30

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies of having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.

  11. Covariance of oxygen and hydrogen isotopic compositions in plant water: species effects

    International Nuclear Information System (INIS)

    Cooper, L.W.; DeNiro, M.J.

    1989-01-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species—specific factors on leaf water enrichment of D and 18 O have not been studied for different plants growing together. Accordingly, to learn whether leaf water enrichment patterns and processes for D and 18 O are different for individual species growing under the same environmental conditions we tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show higher slopes (m in the leaf water equation °D = m ° 18 O + b) than in C 3 plants. We determined the relationships between the stable hydrogen (°D) and oxygen (° 18 O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. Slopes (m in the above leaf water equation) ranged from 1.50 to 3.21, compared to °8 for meteoric water, but differences in slope could not be attributed to carboxylation pathway (CAM vs. C 3 ) nor climate (coastal California vs. Sonoran Desert). Higher slopes were correlated with greater overall ranges of leaf water enrichment of D and 18 O. Water in plants with higher slopes also differed most from unaltered meteoric water. Leaf water isotope ratios in plants with lower slopes were better correlated with temperature and humidity. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes

  12. Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient.

    Science.gov (United States)

    Haider, Sylvia; Kueffer, Christoph; Edwards, Peter J; Alexander, Jake M

    2012-09-01

    A non-native plant species spreading along an environmental gradient may need to adjust its growth to the prevailing conditions that it encounters by a combination of phenotypic plasticity and genetic adaptation. There have been several studies of how non-native species respond to changing environmental conditions along latitudinal gradients, but much less is known about elevational gradients. We conducted a climate chamber experiment to investigate plastic and genetically based growth responses of 13 herbaceous non-native plants along an elevational gradient from 100 to 2,000 m a.s.l. in Tenerife. Conditions in the field ranged from high anthropogenic disturbance but generally favourable temperatures for plant growth in the lower half of the gradient, to low disturbance but much cooler conditions in the upper half. We collected seed from low, mid and high elevations and grew them in climate chambers under the characteristic temperatures at these three elevations. Growth of all species was reduced under lower temperatures along both halves of the gradient. We found consistent genetically based differences in growth over the upper elevational gradient, with plants from high-elevation sites growing more slowly than those from mid-elevation ones, while the pattern in the lower part of the gradient was more mixed. Our data suggest that many non-native plants might respond to climate along elevational gradients by genetically based changes in key traits, especially at higher elevations where low temperatures probably impose a stronger selection pressure. At lower elevations, where anthropogenic influences are greater, higher gene flow and frequent disturbance might favour genotypes with broad ecological amplitudes. Thus the importance of evolutionary processes for invasion success is likely to be context-dependent.

  13. Ecological studies of plants for the control of environmental pollution. IV. Growth of various plant species as influenced by soil applied cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cha, J.W.; Kim, B.W.

    1975-03-01

    The relations of the growth response of plants, i.e. 4 species of crops, 12 species of roadside trees and 5 species of horticultural plants to cadmium (Cd) were studied in pot cultures. Growth in dry weight of corn, soybeans, barley, and wheat plants was decreased with an increase in Cd concentration. Damage to corn plants caused by Cd treatment was more or less recovered when it was grown in soil with calcium, but the other three crops did not recover. Although crop plants used here absorbed a small amount of Cd through the roots, the Cd content in the shoots was directly proportionate to the concentration of Cd added to the soil. Additions of calcium and sulfur to soil were sufficient to change the soil pH. The chlorosis on leaves caused by Cd treatment was observed in 2 species such as Euonymus japonica and Rhododendron yedoense out of 5 species of the horticultural plants, especially at 50 ppm of Cd. Euonymus japonica had symptoms of chlorosis and defoliation, and at higher concentrations the symptoms were more severe. At 200 ppm of Cd little damage was observed in Pinus koraiensis and Ginkgo biloba, but severe chlorosis was observed in Robinia pseudoacacia and Sabina chinensis, Buxus koreana, Abies holophylla and Platanus orientalis. Nevertheless, those plants that had serious damage at 200 ppm of Cd showed weakened symptoms by adding calcium to the soil. There were many Cd tolerant species out of the plants used in this experiment, such as Crassula falcata, Chrysanthemum morifolium, Hibiscus syriacus, Ligustrum ovalifolium, Liriodendron tulipeferia, and Lespedeza crytobotrys.

  14. Application of two way indicator species analysis in lowland plant types classification.

    Science.gov (United States)

    Kooch, Yahya; Jalilvand, Hamid; Bahmanyar, Mohammad Ali; Pormajidian, Mohammad Reza

    2008-03-01

    A TWINSPAN classification of 60 sample plots from the Khanikan forest (North of Iran) is presented. Plant types were determined from field observations and sample plot data arranged and analyzed in association tables. The types were defined on the basis of species patterns of presence, absence and coverage values. Vegetation was sampled with randomized-systematic method. Vegetation data including density and cover percentage were estimated quantitatively within each quadrate and using the two-way indicator species analysis. The objectives of the study were to plant type's classification for Khanikan lowland forest in North of Iran, Identification of indicator species in plant types and increase our understanding in regarding to one of Multivariate analysis methods (TWINSPAN). Five plant types were produced for the study area by TWINSPAN, i.e., Menta aquatica, Oplismenus undulatifolius, Carex grioletia, Viola odarata and Rubus caesius. Therefore, at each step of the process, the program identifies indicator species that show strongly differential distributions between groups and so can severe to distinguish the groups. The final result, incorporating elements of classification can provide a compact and powerful summary of pattern in the data set.

  15. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong

    2015-01-01

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex

  16. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2015-08-15

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex.

  17. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  18. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer ( Odocoileus virginianus ) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km 2 , and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m 2 quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs ( Eurybia divaricata , Maianthemum racemosum , Polygonatum pubescens and Trillium recurvatum ) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  19. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  20. Lead Concentrations in Soils and Some Wild Plant Species Along Two Busy Roads in Pakistan.

    Science.gov (United States)

    Khalid, Noreen; Hussain, Mumtaz; Young, Hillary S; Ashraf, Muhammad; Hameed, Mansoor; Ahmad, Rashid

    2018-02-01

    This study assessed the level of Pb in soil and five wild plant species (Calotropis procera, Datura alba, Parthenium hysterophorus, Cenchrus ciliaris and Ricinus communis) during all the four seasons. Two busy roads varying in age and traffic volume were selected i.e., Faisalabad-Sargodha road (FSR) and Pindi Bhattian to Lillah (M-2) in the Punjab, Pakistan. Results showed raised levels of Pb in both plants and soil samples along both roads. The range of Pb concentration in plants was 0.08-3.98 and 1.95-4.74 mg kg - 1 for soil. Higher Pb contamination was recorded along FSR road as compared to M-2. Among seasons, the higher Pb concentration was found during summer, probably due to very high temperature. Among all the plants studied, Calotropis procera accumulated the highest level (3.98 mg kg - 1 dry wt.) of Pb; Thus, it can be used as good biomonitor/phytoremediator at Pb contaminated areas.

  1. Assessment of plant species diversity based on hyperspectral indices at a fine scale.

    Science.gov (United States)

    Peng, Yu; Fan, Min; Song, Jingyi; Cui, Tiantian; Li, Rui

    2018-03-19

    Fast and nondestructive approaches of measuring plant species diversity have been a subject of excessive scientific curiosity and disquiet to environmentalists and field ecologists worldwide. In this study, we measured the hyperspectral reflectances and plant species diversity indices at a fine scale (0.8 meter) in central Hunshandak Sandland of Inner Mongolia, China. The first-order derivative value (FD) at each waveband and 37 hyperspectral indices were used to assess plant species diversity. Results demonstrated that the stepwise linear regression of FD can accurately estimate the Simpson (R 2  = 0.83), Pielou (R 2  = 0.87) and Shannon-Wiener index (R 2  = 0.88). Stepwise linear regression of FD (R 2  = 0.81, R 2  = 0.82) and spectral vegetation indices (R 2  = 0.51, R 2  = 0.58) significantly predicted the Margalef and Gleason index. It was proposed that the Simpson, Pielou and Shannon-Wiener indices, which are widely used as plant species diversity indicators, can be precisely estimated through hyperspectral indices at a fine scale. This research promotes the development of methods for assessment of plant diversity using hyperspectral data.

  2. Comparing the two Greek archipelagos plant species diversity and endemism patterns highlight the importance of isolation and precipitation as biodiversity drivers.

    Science.gov (United States)

    Iliadou, Eleni; Kallimanis, Athanasios S; Dimopoulos, Panayotis; Panitsa, Maria

    2014-12-01

    Greece has two island archipelagos, the Aegean and the Ionian, which host a rich array of plants and wildlife, particularly endemic and threatened plant species. Despite the long history of island biogeographic studies in the Aegean, similar studies in the Ionian remain limited, with the two island archipelagos rarely being compared. The Aegean and Ionian archipelagos share many features, especially regarding total plant diversity, but exhibit different patterns of endemism. For instance, when considering similarly sized islands, those in the Ionian host as many as, if not more, species compared to the Aegean. In contrast, the Ionian Islands are poor in endemics (particularly narrow range endemics, such as single island or regional endemics) and threatened taxa, compared to the Aegean Islands. In the Ionian, endemics only persist on the largest islands, and form a very small proportion of the species pool, compared to the Aegean archipelago. The lack of endemism might be attributed to the more recent separation of the Ionian Islands from the mainland and the shorter distance separating them from the mainland. In addition, the Ionian Islands receive higher levels of precipitation and are typically covered by denser and higher vegetation than the Aegean Islands. These conditions favour greater total species richness, but tend to lead to higher numbers of common species compared to threatened and endemic taxa. This study demonstrates that both isolation and precipitation serve as biodiversity drivers, influencing plant species diversity and endemism patterns, of the two Greek archipelagos.

  3. INAA of microelements in plant species from the Danube floodplain

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, A; Salagean, M; Scarlat, A [Department of Applie Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Magurele-Bucharest (Romania); Iordache, V [Department of Ecology, University of Bucharest, Bucharest (Romania)

    1999-07-01

    A research was developed and implemented in the Danube floodplain, as a part of a program dealing with biogeochemistry of metals, to assess the possibility of using the ubiquitous plant species in the soil pollution monitoring activity. The Danube River is heavily polluted by the input from a catchment, which includes 12 countries. Even if the concentrations in the Danube water and sediments reach acute values only in some hot spots, due to the dilution effect, they could have negative consequences by phenomena of bioaccumulation and bioconcentration. The content of Al, Ag, As, Au, Ba, Br, Ca, Cl, Ce, Co, Cr, Cs, Cu, Eu, Fe, Hg, Hf, K, La, Mg, Mn, Na, Ni, Rb, Sc, Se, Sm, Sr, Th, V and Zn in Bidens tripartita, Rubus caesius, Stachys palustris and Xanthium strumarium ubiquitous plant species, collected from two areas located on different regularly flooded islands of the Danube river was investigated by instrumental neutron activation analysis method at WWR-S reactor in Bucharest. From the statistical point of view, three groups of elements present highly correlated concentrations in the investigated plant samples (p(0.05))//. The first one includes Al, As, Ce, Cs, Eu, Fe, Hf, La, Sc, Sm, Th and V, the second one Au, Ca, Cu and Sr, and the third one Br, Cr, Na and Mn. For the elements of the first group, the elemental concentrations are found to be in similar ratios in the species investigated, namely: Xanthium s. < Rubus c. < Bidens t. < Stachys p. as well as for the third group: Bidens t. < Rubus c. < Stachys p. < Xanthium s, suggesting that physiological features of the species could be responsible for the observed patterns of distribution. The soil and dominating plant species were analysed for Cr, Cu, Fe, Mn, Ni, Pb, Zn and Zr by the X-ray fluorescence method at the Institute for Geological Explorations, Bucharest. The elemental content in soil is reflected in the analysed plants for Cr, Cu, Fe, Ni, Pb and Zn, but not for Mn. This could be explained by the redox

  4. INAA of microelements in plant species from the Danube floodplain

    International Nuclear Information System (INIS)

    Pantelica, A.; Salagean, M.; Scarlat, A.; Iordache, V.

    1999-01-01

    A research was developed and implemented in the Danube floodplain, as a part of a program dealing with biogeochemistry of metals, to assess the possibility of using the ubiquitous plant species in the soil pollution monitoring activity. The Danube River is heavily polluted by the input from a catchment, which includes 12 countries. Even if the concentrations in the Danube water and sediments reach acute values only in some hot spots, due to the dilution effect, they could have negative consequences by phenomena of bioaccumulation and bioconcentration. The content of Al, Ag, As, Au, Ba, Br, Ca, Cl, Ce, Co, Cr, Cs, Cu, Eu, Fe, Hg, Hf, K, La, Mg, Mn, Na, Ni, Rb, Sc, Se, Sm, Sr, Th, V and Zn in Bidens tripartita, Rubus caesius, Stachys palustris and Xanthium strumarium ubiquitous plant species, collected from two areas located on different regularly flooded islands of the Danube river was investigated by instrumental neutron activation analysis method at WWR-S reactor in Bucharest. From the statistical point of view, three groups of elements present highly correlated concentrations in the investigated plant samples (p(0.05))//. The first one includes Al, As, Ce, Cs, Eu, Fe, Hf, La, Sc, Sm, Th and V, the second one Au, Ca, Cu and Sr, and the third one Br, Cr, Na and Mn. For the elements of the first group, the elemental concentrations are found to be in similar ratios in the species investigated, namely: Xanthium s. < Rubus c. < Bidens t. < Stachys p. as well as for the third group: Bidens t. < Rubus c. < Stachys p. < Xanthium s, suggesting that physiological features of the species could be responsible for the observed patterns of distribution. The soil and dominating plant species were analysed for Cr, Cu, Fe, Mn, Ni, Pb, Zn and Zr by the X-ray fluorescence method at the Institute for Geological Explorations, Bucharest. The elemental content in soil is reflected in the analysed plants for Cr, Cu, Fe, Ni, Pb and Zn, but not for Mn. This could be explained by the redox

  5. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK)

    Science.gov (United States)

    Kosanic, Aleksandra; Anderson, Karen; Harrison, Stephan; Turkington, Thea; Bennie, Jonathan

    2018-01-01

    Recent climate change has had a major impact on biodiversity and has altered the geographical distribution of vascular plant species. This trend is visible globally; however, more local and regional scale research is needed to improve understanding of the patterns of change and to develop appropriate conservation strategies that can minimise cultural, health, and economic losses at finer scales. Here we describe a method to manually geo-reference botanical records from a historical herbarium to track changes in the geographical distributions of plant species in West Cornwall (South West England) using both historical (pre-1900) and contemporary (post-1900) distribution records. We also assess the use of Ellenberg and climate indicator values as markers of responses to climate and environmental change. Using these techniques we detect a loss in 19 plant species, with 6 species losing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light, moisture, nitrogen) and climate indicator values (mean January temperature, mean July temperature and mean precipitation) could be used as environmental change indicators. Significantly higher percentages of area lost were detected in species with lower January temperatures, July temperatures, light, and nitrogen values, as well as higher annual precipitation and moisture values. This study highlights the importance of historical records in examining the changes in plant species’ geographical distributions. We present a method for manual geo-referencing of such records, and demonstrate how using Ellenberg and climate indicator values as environmental and climate change indicators can contribute towards directing appropriate conservation strategies. PMID:29401494

  6. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity

    NARCIS (Netherlands)

    Dassen, S.; Cortois, R.; Martens, Henk; De Hollander, M.; Kowalchuk, G.A.; van der Putten, W.H.; De Deyn, G.B.

    2017-01-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil

  7. Presence of indicator plant species as a predictor of wetland vegetation integrity

    Science.gov (United States)

    Stapanian, Martin A.; Adams, Jean V.; Gara, Brian

    2013-01-01

    We fit regression and classification tree models to vegetation data collected from Ohio (USA) wetlands to determine (1) which species best predict Ohio vegetation index of biotic integrity (OVIBI) score and (2) which species best predict high-quality wetlands (OVIBI score >75). The simplest regression tree model predicted OVIBI score based on the occurrence of three plant species: skunk-cabbage (Symplocarpus foetidus), cinnamon fern (Osmunda cinnamomea), and swamp rose (Rosa palustris). The lowest OVIBI scores were best predicted by the absence of the selected plant species rather than by the presence of other species. The simplest classification tree model predicted high-quality wetlands based on the occurrence of two plant species: skunk-cabbage and marsh-fern (Thelypteris palustris). The overall misclassification rate from this tree was 13 %. Again, low-quality wetlands were better predicted than high-quality wetlands by the absence of selected species rather than the presence of other species using the classification tree model. Our results suggest that a species’ wetland status classification and coefficient of conservatism are of little use in predicting wetland quality. A simple, statistically derived species checklist such as the one created in this study could be used by field biologists to quickly and efficiently identify wetland sites likely to be regulated as high-quality, and requiring more intensive field assessments. Alternatively, it can be used for advanced determinations of low-quality wetlands. Agencies can save considerable money by screening wetlands for the presence/absence of such “indicator” species before issuing permits.

  8. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  9. E-commerce trade in invasive plants.

    Science.gov (United States)

    Humair, Franziska; Humair, Luc; Kuhn, Fabian; Kueffer, Christoph

    2015-12-01

    Biological invasions are a major concern in conservation, especially because global transport of species is still increasing rapidly. Conservationists hope to anticipate and thus prevent future invasions by identifying and regulating potentially invasive species through species risk assessments and international trade regulations. Among many introduction pathways of non-native species, horticulture is a particularly important driver of plant invasions. In recent decades, the horticultural industry expanded globally and changed structurally through the emergence of new distribution channels, including internet trade (e-commerce). Using an automated search algorithm, we surveyed, on a daily basis, e-commerce trade on 10 major online auction sites (including eBay) of approximately three-fifths of the world's spermatophyte flora. Many recognized invasive plant species (>500 species) (i.e., species associated with ecological or socio-economic problems) were traded daily worldwide on the internet. A markedly higher proportion of invasive than non-invasive species were available online. Typically, for a particular plant family, 30-80% of recognized invasive species were detected on an auction site, but only a few percentages of all species in the plant family were detected on a site. Families that were more traded had a higher proportion of invasive species than families that were less traded. For woody species, there was a significant positive relationship between the number of regions where a species was sold and the number of regions where it was invasive. Our results indicate that biosecurity is not effectively regulating online plant trade. In the future, automated monitoring of e-commerce may help prevent the spread of invasive species, provide information on emerging trade connectivity across national borders, and be used in horizon scanning exercises for early detection of new species and their geographic source areas in international trade. © 2015 Society for

  10. Plant and animal species composition and heavy metal content in fly ash ecosystems

    International Nuclear Information System (INIS)

    Brieger, G.; Wells, J.R.; Hunter, R.D.

    1992-01-01

    Plant and animal species present on a coal fly ash slurry pond site and a dry deposit site were surveyed and sampled during a two-day period in October. Elemental analyses were determined for most of the species encountered. A total of 48 plant species were observed on the two sites, with 35 species on the wet site, and 20 on the dry site. Eighteen terrestrial and 7 aquatic animal species were found on the wet site, exclusive of vertebrates which were not studied with the exception of a carp (Cyprinus carpio). Eleven terrestrial invertebrate and one aquatic species were observed on the dry site. Neutron activation analysis was carried out for: Se, Hg, Cr, Ni, Zn, Co, Sb, Cd, and As. Using literature values for phytotoxicity, it is concluded that, in general, plants did not accumulate toxic levels of metals. Only one plant (Impatiens biflora Willd.) showed a significant level of Cd. Of 20 plants analyzed on the wet site, 10 had excessive Se concentrations (>5 ppm); on the dry site 6 out of 18 had high Se values. In animals (Gryllus sp.; Melanoplus sp.; Trachelipus sp; Lumbricus terrestris; Physa integra; Cyprinus carpio) the trace metal concentration was generally in between that of control animals and that of the fly ash itself. One exception included Zn, which, although the most variable element examined, was concentrated in all the terrestrial animals to levels higher than in fly ash. Crickets are the most consistent bioconcentrators with Cr, Se, and Zn at higher levels than for control animals. All animals species studied accumulated Se compared to controls. 48 refs., 6 tabs

  11. Pleistocene sea level fluctuation and host plant habitat requirement influenced the historical phylogeography of the invasive species Amphiareus obscuriceps (Hemiptera: Anthocoridae) in its native range.

    Science.gov (United States)

    Zhang, Danli; Ye, Zhen; Yamada, Kazutaka; Zhen, Yahui; Zheng, Chenguang; Bu, Wenjun

    2016-08-31

    On account of repeated exposure and submergence of the East China Sea (ECS) land bridge, sea level fluctuation played an important role in shaping the population structure of many temperate species across the ECS during the glacial period. The flower bug Amphiareus obscuriceps (Poppius, 1909) (Hemiptera: Anthocoridae) is an invasive species native to the Sino-Japanese Region (SJR) of East Asia. We tested the hypothesis of the ECS land bridge acting as a dispersal corridor or filter for A. obscuriceps during the glacial period. Specifically, we tested whether and the extent to which dispersal ability and host plant habitat requirement influenced the genetic structure of A. obscuriceps during the exposure of the ECS land bridge. Phylogenetic and network analyses indicated that A. obscuriceps is composed of two major lineages, i.e., China and Japan. Divergence time on both sides of the ECS was estimated to be approximately 1.07 (0.79-1.32) Ma, which was about the same period that the sea level increased. No significant Isolation by Distance (IBD) relationship was found between Фst and Euclidean distances in the Mantel tests, which is consistent with the hypothesis that this species has a good dispersal ability. Our Last Glacial Maximum (LGM) niche modeling of plants that constitute preferred habitats for A. obscuriceps exhibited a similar habitat gap on the exposed ECS continental shelf between China and Japan, but showed a continuous distribution across the Taiwan Strait. Our results suggest that ecological properties (habitat requirement and dispersal ability), together with sea level fluctuation during the Pleistocene across the ECS, have shaped the genetic structure and demographic history of A. obscuriceps in its native area. The host plant habitat requirement could also be a key to the colonization of the A. obscuriceps species during the exposure of the ECS land bridge. Our findings will shed light on the potential role of habitat requirement in the process of

  12. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    Science.gov (United States)

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone.

    Science.gov (United States)

    He, Qiang; Cui, Baoshan

    2015-02-27

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab burrows were abundant under Tamarix, but were absent in open areas between Tamarix. Removing Tamarix decreased associated crab burrows with time, while simulating Tamarix in open areas by shading, excluding predators, and adding Tamarix branches as crab food, increased crab burrows. Measurements of soil and microclimate factors showed that removing Tamarix increased abiotic stress, while simulating Tamarix by shading decreased abiotic stress. Survival of tethered crabs was high only when protected from desiccation and predation. Thus, by alleviating abiotic and biotic stresses, as well as by food provision, Tamarix expanded the upper intertidal distribution of Helice. Our study provides clear evidence for the importance of facilitation in expanding species distributions at their range limits, and suggests that facilitation is a crucial biological force maintaining the ecotones between ecosystems.

  14. Temporal-spatial dynamics in orthoptera in relation to nutrient availability and plant species richness.

    Directory of Open Access Journals (Sweden)

    Rob J J Hendriks

    Full Text Available Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets, a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen

  15. Floristic characteristics of alien invasive seed plant species in China.

    Science.gov (United States)

    Wang, Congyan; Liu, Jun; Xiao, Hongguang; Zhou, Jiawei; DU, Daolin

    2016-01-01

    This study aims to determine the floristic characteristics of alien invasive seed plant species (AISPS) in China. There are a total of five hundred and thirteen AISPS, belonging to seventy families and two hundred and eighty-three genera. Seventy families were classified into nine areal types at the family level, and "Cosmopolitan" and "Pantropic" are the two main types. Two hundred and eighty-three genera were classified into twelve areal types at the genus level, and "Pantropic", "Trop. Asia & Amer. disjuncted", and "Cosmopolitan" are the three main types. These results reveal a certain degree of diversity among AISPS in China. The floristic characteristics at the family level exhibit strong pantropic characteristics. Two possible reasons for this are as follows. Firstly, southeastern China is heavily invaded by alien invasive plant species and this region has a mild climate. Secondly, southeastern China is more disturbed by human activities than other regions in China. The floristic characteristics at the genus level display strong pantropic but with abundant temperate characteristics. This may be due to that China across five climatic zones and the ecosystems in which the most alien invasive plant species occur have the same or similar climate with their natural habitat.

  16. Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough.

    Science.gov (United States)

    Conchou, Lucie; Anderson, Peter; Birgersson, Göran

    2017-08-01

    Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.

  17. Modeling invasive alien plant species in river systems: Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    Science.gov (United States)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G. W.; Egger, G.; Leuven, R. S. E. W.; Middelkoop, H.

    2017-08-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding interactions of invasive and native species and their combined effects on river dynamics is essential for developing cost-effective management strategies. However, numerical models for simulating long-term effects of these processes are lacking. This paper investigates how an invasive alien plant species affects native riparian vegetation and hydro-morphodynamics. A morphodynamic model has been coupled to a dynamic vegetation model that predicts establishment, growth and mortality of riparian trees. We introduced an invasive alien species with life-history traits based on Japanese Knotweed (Fallopia japonica), and investigated effects of low- and high propagule pressure on invasion speed, native vegetation and hydro-morphodynamic processes. Results show that high propagule pressure leads to a decline in native species cover due to competition and the creation of unfavorable native colonization sites. With low propagule pressure the invader facilitates native seedling survival by creating favorable hydro-morphodynamic conditions at colonization sites. With high invader abundance, water levels are raised and sediment transport is reduced during the growing season. In winter, when the above-ground invader biomass is gone, results are reversed and the floodplain is more prone to erosion. Invasion effects thus depend on seasonal above- and below ground dynamic vegetation properties and persistence of the invader, on the characteristics of native species it replaces, and the combined interactions with hydro-morphodynamics.

  18. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis

    Science.gov (United States)

    Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; de Faria, Sergio M.; Dakora, Felix D.; Weinstock, George; Hirsch, Ann M.

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low. PMID:24416172

  19. Quantifying species' range shifts in relation to climate change: a case study of Abies spp. in China.

    Directory of Open Access Journals (Sweden)

    Xiaojun Kou

    Full Text Available Predicting species range shifts in response to climatic change is a central aspect of global change studies. An ever growing number of species have been modeled using a variety of species distribution models (SDMs. However, quantitative studies of the characteristics of range shifts are rare, predictions of range changes are hard to interpret, analyze and summarize, and comparisons between the various models are difficult to make when the number of species modeled is large. Maxent was used to model the distribution of 12 Abies spp. in China under current and possible future climate conditions. Two fuzzy set defined indices, range increment index (I and range overlapping index (O, were used to quantify range shifts of the chosen species. Correlation analyses were used to test the relationships between these indices and species distribution characteristics. Our results show that Abies spp. range increments (I were highly correlated with longitude, latitude, and mean roughness of their current distributions. Species overlapping (O was moderately, or not, correlated with these parameters. Neither range increments nor overlapping showed any correlation with species prevalence. These fuzzy sets defined indices provide ideal measures of species range shifts because they are stable and threshold-free. They are reliable indices that allow large numbers of species to be described, modeled, and compared on a variety of taxonomic levels.

  20. Invasive vascular plant species of limnocrenic karst springs in Poland

    Science.gov (United States)

    Spałek, Krzysztof

    2015-04-01

    Natural water reservoirs are very valuable floristic sites in Poland. Among them, the most important for preservation of biodiversity of flora are limnocrenic karst springs. The long-term process of human pressure on habitats of this type caused disturbance of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of last two hundred years, led to systematic disappearance of localities of many plant species connected with rare habitats and also to appear numerous invasive plant species. They are: Acorus calamus, Echinocystis lobata, Elodea canadensis, Erechtites hieraciifolia, Impatiens glandulifera, Solidago canadensis, S. gigantea and S. graminifolia. Fielworks were conducted in 2010-2014.

  1. Radiocarbon ages of insects and plants frozen in the No. 31 Glacier, Suntar-Khayata Range, eastern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, F., E-mail: nakazawa@nipr.ac.jp [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Transdisciplinary Research Integration Center, Hulic Kamiyacho Bldg. 2F, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Uchida, M.; Kondo, M. [Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053 (Japan); Kadota, T. [Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka 237-0061 (Japan); Shirakawa, T. [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Enomoto, H. [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Fedorov, A.N. [Melnikov Permafrost Institute, SB RAN, Yakutsk 6770110 (Russian Federation); North-Eastern Federal University, Yakutsk 677010 (Russian Federation); Fujisawa, Y. [Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Konstantinov, P.Y. [Melnikov Permafrost Institute, SB RAN, Yakutsk 6770110 (Russian Federation); Kusaka, R. [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Miyairi, M. [Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ohata, T.; Yabuki, H. [Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka 237-0061 (Japan)

    2015-10-15

    The aim of this study was to estimate the age of glacier ice in the No. 31 Glacier in the Suntar-Khayata Range of eastern Siberia by performing dating of insects thought to be long-legged fly species (Dolichopodidae) as well as plants (species unknown) fragments preserved in the ice. Ice samples containing organisms were collected at depths of 0.4–1.1 m at five points from the middle to lowest parts of the glacier in 2013. The age of an insect collected at the lowest point on the glacier was estimated as 2038 ± 32 yr B.P. Insects collected at higher points had a modern or near-modern radiocarbon age. The age of plant fragments collected at the uppermost and middle points was 1531 ± 44 and 1288 ± 26 yr B.P., respectively, and that of a mixture of plant and insect fragments collected at the lowest point was 9772 ± 42 yr B.P. When comparing specimens collected at the same point, the plant fragments were found to be older than the insects. In 2012–2014 observations, some living insects were found on the glacier, and thus the age of the insects appears to correspond to the age of the ice. On the other hand, the plant fragments might have already aged since detachment from the source plants. This study found an approximately 2000-year gap in the age of the ice between the lowest and higher points. Annual mass balance observations from 2012 to 2014 showed that in recent years, the glacier sometimes had no accumulation area. Therefore, the wide gap in the age of ice may be due to a difference in past melting processes between the lowest and higher points on the glacier.

  2. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-11-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.

  3. Identification and conservation of important plant areas (IPAS) for the distribution of medicinal, aromatic and economic plants in the Hindukush-Himalaya mountain range

    International Nuclear Information System (INIS)

    Sher, H.; Ali, H.; Rehman, S.

    2012-01-01

    Study on the identification of Important Plant Areas (IPAs) was conducted in seven valleys of Hindukush-Himalayas mountainous ranges of Pakistan during 2005 and 2006. The principal aim of the study is to search new avenues for the conservation and sustainable utilization of threatened medicinal and economic plants and their habitats in IPAs. IPAs are sites of tremendous ecological and economic values that still exist in the world and are being managed on specific sites to study wild plant diversity. Several of such plants are used in the traditional medicines that are being used since the dawn of history to provide basic healthcare to people the world over. According to WHO, 80% of the human population of Africa still use medicinal plants in their primary healthcare. The popularity of herbal drugs is on the constant rise in many developed countries of the world, while in developing countries like Pakistan; medicinal plants contribute significantly to the income sources of people living in remote areas. Keeping such importance in view, the World Health Organization (WHO) launched a global vision in the form of 'Global Strategy for Plant Conservation' having various targets and mile stones. Target 5 of the strategy required for the global integration of the herbal medicine in health care system with proper identification of medicinal plants and the conservation of sites where such plants are found naturally, as its basic elements. In order to contribute to the specified target, WHO advised the relevant institutions to develop research plans and conservation programmes that are focused on the Global strategy in general and target 5 in specific. While complementing the appeal and contributing to its vision, a study was conducted in various eco-systems of the Pakistan's Hindukush-Himalayas region, identifying Important Plant Areas (IPAs) for their subsequent conservation and uses for scientific purposes. Site selection for the study was based on: 1). Exceptional

  4. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  5. Do seedling functional groups reflect ecological strategies of woody plant species in Caatinga?

    Directory of Open Access Journals (Sweden)

    Tatiane Gomes Calaça Menezes

    2017-11-01

    Full Text Available ABSTRACT It is assumed that morphological traits of seedlings reflect different strategies in response to environmental conditions. The ecological significance of this has been widely documented in rainforests, where habitat structure and species interactions play an important role in community assembly. However, in seasonally dry ecosystems, where environmental filtering is expected to strongly influence community structure, this relationship is poorly understood. We investigated this relationship between functional groups of seedlings and life history traits and tested whether functional group predicts the ecological strategies employed by woody species to deal with the stressful conditions in seasonally dry ecosystems. Seedling functional groups, life history traits and traits that reflect ecological strategies for occupying seasonally dry environments were described for twenty-six plant species. Seedlings of species from the Caatinga vegetation exhibited a functional profile different from that observed in rainforests ecosystems. Phanerocotylar-epigeal seedlings were the most frequently observed groups, and had the largest range of ecological strategies related to dealing with seasonally dry environments, while phanerocotylar-hypogeal-reserve seedlings exhibited an increase in frequency with seasonality. We discuss these results in relation to those observed in other tropical forests and their ecological significance in seasonally dry environments.

  6. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  7. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Science.gov (United States)

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  8. Diversity, classification and function of the plant protein kinase superfamily

    OpenAIRE

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase r...

  9. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  10. The role of plant-soil feedbacks in driving native-species recovery.

    Science.gov (United States)

    Yelenik, Stephanie G; Levine, Jonathan M

    2011-01-01

    The impacts of exotic plants on soil nutrient cycling are often hypothesized to reinforce their dominance, but this mechanism is rarely tested, especially in relation to other ecological factors. In this manuscript we evaluate the influence of biogeochemically mediated plant-soil feedbacks on native shrub recovery in an invaded island ecosystem. The introduction of exotic grasses and grazing to Santa Cruz Island, California, USA, converted native shrublands (dominated by Artemisia californica and Eriogonum arborescens) into exotic-dominated grasslands (dominated by Avena barbata) over a century ago, altering nutrient-cycling regimes. To test the hypothesis that exotic grass impacts on soils alter reestablishment of native plants, we implemented a field-based soil transplant experiment in three years that varied widely in rainfall. Our results showed that growth of Avena and Artemisia seedlings was greater on soils influenced by their heterospecific competitor. Theory suggests that the resulting plant-soil feedback should facilitate the recovery of Artemisia in grasslands, although four years of monitoring showed no such recovery, despite ample seed rain. By contrast, we found that species effects on soils lead to weak to negligible feedbacks for Eriogonum arborescens, yet this shrub readily colonized the grasslands. Thus, plant-soil feedbacks quantified under natural climate and competitive conditions did not match native-plant recovery patterns. We also found that feedbacks changed with climate and competition regimes, and that these latter factors generally had stronger effects on seedling growth than species effects on soils. We conclude that even when plant-soil feedbacks influence the balance between native and exotic species, their influence may be small relative to other ecological processes.

  11. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    Energy Technology Data Exchange (ETDEWEB)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.; Yu, M.; Terry, N.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of the various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.

  12. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    Science.gov (United States)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  13. Distribution of the invasive plant species Heracleum sosnowskyi Manden. in the Komi Republic (Russia).

    Science.gov (United States)

    Chadin, Ivan; Dalke, Igor; Zakhozhiy, Ilya; Malyshev, Ruslan; Madi, Elena; Olga Kuzivanova; Kirillov, Dmitrii; Elsakov, Vladimir

    2017-01-01

    Occurrences of the invasive plant species Heracleum sosnowskyi Manden. in the Komi Republic (northeastern part of European Russia) were recorded and published in the Global Biodiversity Information Facility (GBIF http://www.gbif.org) using the RIVR information system (http://ib.komisc.ru/add/rivr/en). RIVR stands for "Rasprostranenie Invasionnyh Vidov Rastenij" [Occurrence of Invasion Plant Species]. This citizen science project aims at collecting occurrence data about invasive plant species with the help of citizen scientists. Information can be added by any user after a simple registration (concept) process. However, the data published in GBIF are provided only by professional scientists. The total study area is approximately 19,000 km 2 . The GBIF resource contains 10894 Heracleum sosnowskyi occurrence points, each with their geographical coordinates and photographs of the plants in the locus of growth. The preliminary results of species distribution modelling on the territory of European North-East Russia presented.

  14. Habitat-based conservation strategies cannot compensate for climate-change-induced range loss

    Science.gov (United States)

    Wessely, Johannes; Hülber, Karl; Gattringer, Andreas; Kuttner, Michael; Moser, Dietmar; Rabitsch, Wolfgang; Schindler, Stefan; Dullinger, Stefan; Essl, Franz

    2017-11-01

    Anthropogenic habitat fragmentation represents a major obstacle to species shifting their range in response to climate change. Conservation measures to increase the (meta-)population capacity and permeability of landscapes may help but the effectiveness of such measures in a warming climate has rarely been evaluated. Here, we simulate range dynamics of 51 species from three taxonomic groups (vascular plants, butterflies and grasshoppers) in Central Europe as driven by twenty-first-century climate scenarios and analyse how three habitat-based conservation strategies (establishing corridors, improving the landscape matrix, and protected area management) modify species' projected range size changes. These simulations suggest that the conservation strategies considered are unable to save species from regional extinction. For those persisting, they reduce the magnitude of range loss in lowland but not in alpine species. Protected area management and corridor establishment are more effective than matrix improvement. However, none of the conservation strategies evaluated could fully compensate the negative impact of climate change for vascular plants, butterflies or grasshoppers in central Europe.

  15. Forecasting the poleward range expansion of an intertidal species driven by climate alterations

    Directory of Open Access Journals (Sweden)

    Raquel Xavier

    2010-11-01

    Full Text Available Accurate distributional models can be used to reliably predict the response of organisms to climatic changes. Though such models have been extensively applied to terrestrial organisms, they have hardly ever been applied to the marine environment. Recent changes in the distribution of the marine gastropod Patella rustica (L. were previously modelled with Classification and Regression Tree (CART and the results revealed that increases in temperature were the major driver of those changes. However, the accuracy scores during the validation of the model were unsatisfactory, preventing its use for forecasting purposes. To fulfil this objective, in the present study a more robust method, Artificial Neural Network (ANN, was employed to produce a model suited to forecasting changes in the distribution of P. rustica. Results confirmed that the ANN model behaved better than the CART, and that it could be used for forecasting future distributional scenarios. The model forecasts that by the 2020s P. rustica is likely to expand its range at least 1000 km northwards. These results should be interpreted with caution considering the dispersal limitations of this species, but if such an expansion took place, major changes in the colonized ecosystems are expected due to the key role of limpets in intertidal communities.

  16. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity

    DEFF Research Database (Denmark)

    Dalsgaard, Bo; Magård, Else; Fjeldså, Jon

    2011-01-01

    patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower...... latitudes, with latitude explaining 20-22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization--contemporary climate, Quaternary climate-change velocity, and species richness--had superior explanatory power, together explaining 53-64% of the variation...... specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks....

  17. Systemic range shift lags among a pollinator species assemblage following rapid climate change

    DEFF Research Database (Denmark)

    Bedford, Felicity E.; Whittaker, Robert J.; Kerr, Jeremy T.

    2012-01-01

    Contemporary climate change is driving widespread geographical range shifts among many species. If species are tracking changing climate successfully, then leading populations should experience similar climatic conditions through time as new populations establish beyond historical range margins....... Here, we investigate geographical range shifts relative to changing climatic conditions among a particularly well-sampled assemblage of butterflies in Canada. We assembled observations of 81 species and measured their latitudinal displacement between two periods: 1960–1975 (a period of little climate...... change) and 1990–2005 (a period with large climate change). We find an unexpected trend for species’ northern borders to shift progressively less relative to increasing minimum winter temperatures in northern Canada. This study demonstrates a novel, systemic latitudinal gradient in lags among a large...

  18. Iron Requirement and Iron Uptake from Various Iron Compounds by Different Plant Species

    Science.gov (United States)

    Christ, Rudolf A.

    1974-01-01

    The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species. PMID:16658933

  19. Range expansion by Passer montanus in North America

    Science.gov (United States)

    Burnett, J.L.; Roberts, C.P.; Allen, Craig R.; Brown, M.B.; Moulton, M.P.

    2017-01-01

    Passer montanus became established in a small area of central North America following its introduction in 1870. P. montanus underwent minimal range expansion in the first 100 years following introduction. However, the North American population of P. montanus is now growing in size and expanding in geographic distribution, having expanded approximately 125 km to the north by 1970. We quantify the distance of spread by P. montanus from its introduction site in the greater St. Louis, Missouri-Illinois, USA area, using distributional (presence) data from the National Audubon Society Christmas Bird Count surveys for the period of 1951 to 2014. Linear regressions of the average annual range center of P. montanus confirmed significant shifts to the north at a rate of 3.3 km/year (P Linear regressions of the linear and angular distance of range center indicates significant northern movement (change in angle of mean range center; P < 0.001) since 1951. Our results quantify the extent of a northward range expansion, and suggesting a probable spread of this species northward.

  20. Fifteen-Year Growth of Six Planted Hardwood Species on Sharkey Clay Soil

    Science.gov (United States)

    Roger M. Krinard; Harvey E. Kennedy

    1987-01-01

    Six hardwood species planted on Sharkey clay soil that had been disked the first 5 years for weed control were significantly taller at age 5 when compared to species grown on mowed sites. By age 15, there were no differences in heights within species except for sweet pecan. Average heights by species at age 15 were: cottonwood (Populus deltoides...

  1. Clonal growth and plant species abundance.

    Science.gov (United States)

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-08-01

    Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden

  2. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  3. Tackling Contentious Invasive Plant Species: A Case Study of Buffel Grass in Australia

    Science.gov (United States)

    Grice, Anthony C.; Friedel, Margaret H.; Marshall, Nadine A.; van Klinken, Rieks D.

    2012-02-01

    Introduced plants that have both production values and negative impacts can be contentious. Generally they are either treated as weeds and their use prohibited; or unfettered exploitation is permitted and land managers must individually contend with any negative effects. Buffel grass ( Cenchrus ciliaris) is contentious in Australia and there has been no attempt to broadly and systematically address the issues surrounding it. However, recent research indicates that there is some mutual acceptance by proponents and opponents of each others' perspectives and we contend that this provides the basis for a national approach. It would require thorough and on-going consultation with stakeholders and development of realistic goals that are applicable across a range of scales and responsive to regional differences in costs, benefits and socio-economic and biophysical circumstances. It would be necessary to clearly allocate responsibilities and ascertain the most appropriate balance between legislative and non-legislative mechanisms. A national approach could involve avoiding the introduction of additional genetic material, countering proliferation in regions where the species is sparse, preventing incursion into conservation reserves where it is absent, containing strategically located populations and managing communities to prevent or reduce dominance by buffel grass. This approach could be applied to other contentious plant species.

  4. Nutritive values of some food plants, fresh and processed fish species

    Directory of Open Access Journals (Sweden)

    Ali Aberoumand

    2015-12-01

    Full Text Available The chemical composition of four edible plant foods species, three fish species and one prawn were analyzed in Food Chemistry Laboratory of Behbahan Khatam Alanbia University of Technology, Behbahan, Iran in 2014. The analysis of fatty acid and sugars composition were performed by gas liquid chromatography and high performance liquid chromatography, respectively. Protein and lipid content were founded higher in baked and fried in fish S. commersonnianus (74.29%, (20.20%, fish Sphyraena helleri (88.12% and (17.77%, respectively. Ash content in fish S. commersonnianus varies from 9.80% to 15.34%, and in fish S. helleri from 5.83% to 7.68%. Based on the proximate analysis, it can be calculated that an edible portion of 100 g of studied edible plant foods provides, on average, around 303.9±1.04 kcal. The plant Portulaca neglecta is suitable for high temperature food processes. The macronutrient profile in general revealed that the wild plant foods were with rich sources of protein and carbohydrates, and had low amounts of fat. The highest protein, the lowest fat and energy contents were found in boiled in both fish species; therefore, boiling can be recommended as the best cooking method for healthy diet.

  5. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics.

    Science.gov (United States)

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  6. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    Science.gov (United States)

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has

  7. Flowering Plants Preferred by Bumblebees (Bombus Latr. in the Botanical Garden of Medicinal Plants in Wrocław

    Directory of Open Access Journals (Sweden)

    Sikora Aneta

    2016-12-01

    Full Text Available Due to fewer bumblebees in rural areas these days, it is necessary to look for alternative habitats for the active protection of these very important pollinators. The research was carried out in The Botanical Garden of Medicinal Plants, in Wrocław, Poland. In the garden, approximately 2000 plant species were cultivated, of which 185 were visited by bumblebees. Amongst them, 57 plant species were deemed very attractive and were determined to be indicators for 7 bumblebee species. Indicator species for bumblebees ranged between 6 for Bombus pratorum to up to 20 for B. pascuorum. Monarda didyma was an indicator plant to 6 recorded bumblebee species. Other indicator plant species for at least 4 bumblebees species were: Origanum vulgare, Lavandula angustifolia, Rhododendron catawbiense, Phacelia tanacetifolia, and Agastache rugosa. Three bumblebee species were found to forage the most on 11 of the flowering plant species. The biggest group of plants were those which were mostly visited by 1-2 bumblebee species. Amongst all recorded indicator plants, 32% were native species.

  8. Relationships between Plant Biomass and Species Richness under ...

    African Journals Online (AJOL)

    The study was conducted in a montane grassland of Kokosa District, West Arsi Zone of Oromia Region, southern Ethiopia. The objective of the study was to investigate the relationships between aboveground plant biomass and species richness in three farming systems and four grazing management systems. A total of 180 ...

  9. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  10. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  11. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in dete...... rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.......Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...

  12. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...

  13. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  14. Fire and invasive exotic plant species in eastern oak communities: an assessment of current knowledge

    Science.gov (United States)

    Cynthia D. Huebner

    2006-01-01

    Successful regeneration of oak-dominated communities in the Eastern United States historically requires disturbance such as fire, making them vulnerable to invasion by exotic plants. Little is currently known about the effects of fire on invasive plant species and the effects of invasive plant species on fire regimes of this region. Seventeen common eastern invaders...

  15. Rare and endangered plant species and associations in the Moravica river (Serbia

    Directory of Open Access Journals (Sweden)

    Ljevnaić-Mašić Branka B.

    2016-01-01

    Full Text Available The Moravica is a river in the southeast of Banat (Vojvodina Province, Serbia. This relatively small river is characterised by great floristic richness. A total of 87 taxa were found in the Moravica River. It is a sanctuary for some plant species that are rare and endangered both in Serbia and in Europe. Fifty-five species are on the IUCN Red List of Threatened Species and forty-five species are on the European Red List of Vascular Plants. Species Acorus calamus L., Alisma gramineum Gmel., Iris pseudacorus L., Marsilea quadrifolia L., Potamogeton fluitans Roth. and Utricularia vulgaris L. are protected or strictly protected by law in Serbia. Some of these rare species form stands of aquatic and semiaquatic vegetation rare both in Banat and in Serbia in general, such as: Lemnetum (minori - trisulcae Den Hartog 1963, Potametum nodosi Soó (1928 1960, Segal 1964, Acoreto - Glycerietum aquaticae Slavnić 1956, Rorippo - Oenanthetum (Soó 1927 Lohm. 1950, Pop 1968, and Bolboschoenetum maritimi continentale Soó (1927 1957 subass. marsiletosum quadrifoliae Ljevnaić-Mašić (2010. Because of its great diversity of flora and vegetation, the Moravica River could be a potential Important Plant Area (IPA in the future. Unfortunately, strong anthropogenic influence is a threat to this unique flora and vegetation, so appropriate and timely measures for protecting the aquatic ecosystem need to be implemented.

  16. Sesquiterpene lactones and monoterpene glucosides from plant species Picris echoides

    Directory of Open Access Journals (Sweden)

    MILUTIN STEFANOVIC

    2000-11-01

    Full Text Available Investigation of the constituents of the aerial parts of domestic plant species Picris echoides afforded the sesquiterpene lactones, i.e., guaianolides jacquilenin (1, 11-epi-jacquilenin (2, achillin (3 and eudesmanolide telekin (4. The chemical indentification of the two monoterpene glucosides (–-cis-chrysanthenol-b-D-glucopyranoside (5 and its 6’-acetate 6 is also repoted. The guaianolide achillin (3 and the two monoterpene glucosides 5 and 6 were isolated for the first time from this plant species. Isolation was achieved by column chromatography and the structures were established mainly by the interpretation of their physical and spectral data, which were in agreement with those in the literature.

  17. Impact of mine dumps on transport the invasive plant species to Upper Silesia

    Science.gov (United States)

    Sotkova, N.; Lokajickova, B.; Mec, J.; Svehlakova, H.; Stalmachova, B.

    2017-10-01

    Human activities significantly change the species composition in the area. The main factor of change was the mining industry, which changed the natural conditions on Upper Silesia. The anthropogenic relief of mine dumps are the main centre of alien plant in an industrial landscape. The poster deals with the state of the invasive plant species by the phyto-sociological surveys on Upper Silesia.

  18. Larvicidal activity of six Nigerian plant species against Anopheles ...

    African Journals Online (AJOL)

    This study evaluated the larvicidal activity of extracts from six Nigerian plant species (Zanthoxylum zanthoxyloides, Piper guineense, Nicotianat abacum, Erythrophleum suaveoleus, Jatropha curcas and Petiveria alliacea) against laboratory-bred Anopheles gambiae and Aedes aegypti larvae. Zanthoxylum zanthoxyloides ...

  19. Positive effects of plant species diversity on productivity in the absence of legumes

    NARCIS (Netherlands)

    Ruijven, van J.; Berendse, F.

    2003-01-01

    We investigated the effect of species richness on productivity in randomly assembled grassland communities without legumes. Aboveground biomass increased with increasing species richness and different measures of complementarity showed strong increases with plant species richness. Increasing

  20. Remote-Sensed Monitoring of Dominant Plant Species Distribution and Dynamics at Jiuduansha Wetland in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Wenpeng Lin

    2015-08-01

    Full Text Available Spartina alterniflora is one of the most hazardous invasive plant species in China. Monitoring the changes in dominant plant species can help identify the invasion mechanisms of S. alterniflora, thereby providing scientific guidelines on managing or controlling the spreading of this invasive species at Jiuduansha Wetland in Shanghai, China. However, because of the complex terrain and the inaccessibility of tidal wetlands, it is very difficult to conduct field experiments on a large scale in this wetland. Hence, remote sensing plays an important role in monitoring the dynamics of plant species and its distribution on both spatial and temporal scales. In this study, based on multi-spectral and high resolution (<10 m remote sensing images and field observational data, we analyzed spectral characteristics of four dominant plant species at different green-up phenophases. Based on the difference in spectral characteristics, a decision tree classification was built for identifying the distribution of these plant species. The results indicated that the overall classification accuracy for plant species was 87.17%, and the Kappa Coefficient was 0.81, implying that our classification method could effectively identify the four plant species. We found that the area of Phragmites australi showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 33.77% and 31.92%, respectively. The area of Scirpus mariqueter displayed an increasing trend from 1997 to 2004 (12.16% per year and a decreasing trend from 2004 to 2012 (−7.05% per year. S. alterniflora has the biggest area (3302.20 ha as compared to other species, accounting for 51% of total vegetated area at the study region in 2012. It showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 130.63% and 28.11%, respectively. As a result, the native species P. australi was surrounded and the habitats of S. mariqueter were

  1. Species richness, alpha and beta diversity of trees, shrubs and herbaceous plants in the woodlands of swat, pakistan

    International Nuclear Information System (INIS)

    Akhtar, N.; Bergmeier, E.

    2015-01-01

    The variation in species richness and diversity of trees, shrubs and herbs in the mountains of Miandam, Swat, North Pakistan, along an elevation gradient between 1600 m and 3400 m was explored. Field data were collected in 18 altitudinal intervals of 100 m each. Polynomial regression was used to find relations of the different growth forms with elevation. The Shannon index was used for calculating α-diversity and the Simpson index for β-diversity. Species richness and α-diversity of herbs were unrelated to elevation. Herbaceous species turnover was high, ranging between 0.46 and 0.89, with its maximum between 2700 and 3000 m. Hump-shaped relationship was observed for shrubs with maximum richness between 2000 and 2200 m; and α-diversity decreased monotonically. Turnover of shrub species was highest between 2000 and 2500 m. Tree species richness was highest at low elevations, and α-diversity was relatively low along the entire gradient. Tree species turnover was also high in the lower zone and again at 2600-2800 m. Species richness of all vascular plants was highest at 2200-2500 m, and α-diversity was highest in the lower part of the gradient. Beta diversity of all growth forms was quite high ranging between 0.53 and 0.87 along the entire gradient reflecting high species and structural turnover. (author)

  2. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens.

    Science.gov (United States)

    Navaud, Olivier; Barbacci, Adelin; Taylor, Andrew; Clarkson, John P; Raffaele, Sylvain

    2018-03-01

    The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae, a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events and host range variation during the evolution of this family. Variations in diversification rate during the evolution of the Sclerotiniaceae define three major macro-evolutionary regimes with contrasted proportions of species infecting a broad range of hosts. Host-parasite cophylogenetic analyses pointed towards parasite radiation on distant hosts long after host speciation (host jump or duplication events) as the dominant mode of association with plants in the Sclerotiniaceae. The intermediate macro-evolutionary regime showed a low diversification rate, high frequency of duplication events and the highest proportion of broad host range species. Our findings suggest that the emergence of broad host range fungal pathogens results largely from host jumps, as previously reported for oomycete parasites, probably combined with low speciation rates. These results have important implications for our understanding of fungal parasites evolution and are of particular relevance for the durable management of disease epidemics. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  3. How to conserve threatened Chinese plant species with extremely small populations?

    Directory of Open Access Journals (Sweden)

    Sergei Volis

    2016-02-01

    Full Text Available The Chinese flora occupies a unique position in global plant diversity, but is severely threatened. Although biodiversity conservation in China has made significant progress over the past decades, many wild plant species have extremely small population sizes and therefore are in extreme danger of extinction. The concept of plant species with extremely small populations (PSESPs, recently adopted and widely accepted in China, lacks a detailed description of the methodology appropriate for conserving PSESPs. Strategies for seed sampling, reintroduction, protecting PSESP locations, managing interactions with the local human population, and other conservation aspects can substantially differ from those commonly applied to non-PSESPs. The present review is an attempt to provide a detailed conservation methodology with realistic and easy-to-follow guidelines for PSESPs in China.

  4. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Monica Scognamiglio

    2015-01-01

    Full Text Available An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  5. A new tool for exploring climate change induced range shifts of conifer species in China.

    Science.gov (United States)

    Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong

    2014-01-01

    It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management.

  6. A new tool for exploring climate change induced range shifts of conifer species in China.

    Directory of Open Access Journals (Sweden)

    Xiaojun Kou

    Full Text Available It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I, overlapping (O, and range center movement in three dimensions (Dx, Dy, Dz, based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index. A graphical tool (PRS_Chart was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management.

  7. 75 FR 55820 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Midwest Species

    Science.gov (United States)

    2010-09-14

    ...] Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Midwest Species AGENCY: Fish... CFR 424.02: (A) Species includes any species or subspecies of fish, wildlife, or plant, and any... species means any species that is in danger of extinction throughout all or a significant portion of its...

  8. Mean latitudinal range sizes of bird assemblages in six Neotropical forest chronosequences

    DEFF Research Database (Denmark)

    Dunn, Robert R.; Romdal, Tom Skovlund

    2005-01-01

    Aim The geographical range size frequency distributions of animal and plant assemblages are among the most important factors affecting large-scale patterns of diversity. Nonetheless, the relationship between habitat type and the range size distributions of species forming assemblages remains poorly...... towards more small ranged species occurs. Even relatively old secondary forests have bird species with larger average ranges than mature forests. As a consequence, conservation of secondary forests alone will miss many of the species most at risk of extinction and most unlikely to be conserved in other...

  9. SPECIES COMPOSITION, DISTRIBUTION, LIFE FORMS AND FOLK NOMENCLATURE OF FOREST AND COMMON LAND PLANTS OF WESTERN CHITWAN, NEPAL

    Science.gov (United States)

    Dangol, D. R.

    2012-01-01

    This paper enumerates 349 plant species belonging to 77 families of vascular plants collected in the winter seasons of 1996 and 2000 by the flora teams of the Population and Ecology Research Laboratory, Nepal. Of the total species, 249 species belong to dicotyledons, 87 species to monocotyledons and 13 species to pteridophytes. Among the families, dicotyledons contributed the highest number of families (55 in number) followed by monocotyledons and pteridophytes. In the study areas, species composition varies with the type of habitats in the study plots. Some species are unique in distribution. The highest unique species are contributed by common lands (87 spp.), followed by the Chitwan National Park forest (36 spp.) and Tikauli forest (32 spp.). Ageratum houstonianum Mill., Cynodon dactylon (L.) Pers., Imperata cylindrica (L.) Beauv., Rungia parviflora (Retz.) Nees, Saccharum spontaneum L. and Thelypteris auriculata (J. Sm.) K. Iwats are the most common species across all the research blocks. Of the listed plants, many plants have local names either in Nepalese or other tribal languages. Plants are named in different ways on the basis of habit, habitat, smell, taste, and morphological characters of the plants, which are also the basis of nomenclature in plant taxonomy. PMID:22962539

  10. Public reaction to invasive plant species in a disturbed Colorado landscape

    Science.gov (United States)

    Michael T. Daab; Courtney G. Flint

    2010-01-01

    Invasive plant species degrade ecosystems in many ways. Controlling invasive plants is costly for government agencies, businesses, and individuals. North central Colorado is currently experiencing large-scale disturbance, and millions of acres are vulnerable to invasion because of natural and socioeconomic processes. Mountain pine beetles typically endemic to this...

  11. Mutagenic effects of carbon ions near the range end in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@jaea.go.jp [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Ryouhei; Nozawa, Shigeki; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-03-01

    To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425 keV/{mu}m) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113 keV/{mu}m). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113 keV/{mu}m carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>{approx}30 kb) were six times more frequently induced by carbon ions near the range end. When 352 keV/{mu}m neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113 keV/{mu}m carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.

  12. Intra-specific downsizing of frugivores affects seed germination of fleshy-fruited plant species

    Science.gov (United States)

    Pérez-Méndez, Néstor; Rodríguez, Airam; Nogales, Manuel

    2018-01-01

    The loss of largest-bodied individuals within species of frugivorous animals is one of the major consequences of defaunation. The gradual disappearance of large-bodied frugivores is expected to entail a parallel deterioration in seed dispersal functionality if the remaining smaller-sized individuals are not so effective as seed dispersers. While the multiple impacts of the extinction of large bodied species have been relatively well studied, the impact of intraspecific downsizing (i.e. the extinction of large individuals within species) on seed dispersal has rarely been evaluated. Here we experimentally assessed the impact of body-size reduction in the frugivorous lizard Gallotia galloti (Lacertidae), an endemic species of the Canary Islands, on the seed germination patterns of two fleshy-fruited plant species (Rubia fruticosa and Withania aristata). Seed germination curves and the proportions of germinated seeds were compared for both plant species after being defecated by large-sized individuals and small-sized individuals. The data show that seeds of W. aristata defecated by larger-sized lizards germinated faster and in a higher percentage than those defecated by small-sized lizards, while no differences were found for R. fruticosa seeds. Our results suggest that disappearance of the largest individuals of frugivorous species may impair recruitment of some plant species by worsening seed germination. They also warn us of a potential cryptic loss of seed dispersal functionality on defaunated ecosystems, even when frugivorous species remain abundant.

  13. BOREAS TGB-3 Plant Species Composition Data over the NSA Fen

    Science.gov (United States)

    Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.

  14. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species

    International Nuclear Information System (INIS)

    De La Riva, Deborah G.; Trumble, John T.

    2016-01-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL −1 ) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL −1 ) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. - Highlights: • Argentine ant colonies exposed to selenium had reduced fecundity compared to unexposed colonies. • Viability of offspring was negatively impacted by selenium. • Queen survival was reduced in colonies

  15. Variability of Pesticide Dissipation Half-Lives in Plants

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, Ronnie

    2013-01-01

    on the variability across substances, plant species and harvested plant components and finally discuss different substance, plant and environmental aspects influencing pesticide dissipation. Measured half-lives in harvested plant materials range from around 1 hour for pyrethrins in leaves of tomato and pepper fruit...... to 918 days for pyriproxyfen in pepper fruits under cold storage conditions. Ninety-five percent of all half-lives fall within the range between 0.6 and 29 days. Our results emphasize that future experiments are required to analyze pesticide–plant species combinations that have so far not been covered...

  16. Plant community resistance to invasion by Bromus species – the roles of community attributes, Bromus Interactions with plant communities, and Bromus traits

    Science.gov (United States)

    Chambers, Jeanne; Germino, Matthew; Belnap, Jayne; Brown, Cynthia; Schupp, Eugene W.; St. Clair, Samuel B

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromushereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in particular ambient and soil temperatures, have significant effects on the ability of Bromus to establish and spread. Seasonality of precipitation relative to temperature influences plant community resistance toBromus through effects on soil water storage, timing of water and nutrient availability, and dominant plant life forms. Differences among plant communities in how well soil resource use by the plant community matches resource supply rates can influence the magnitude of resource fluctuations due to either climate or disturbance and thus the opportunities for invasion. The spatial and temporal patterns of resource availability and acquisition of growth resources by Bromus versus native species strongly influence resistance to invasion. Traits of Bromus that confer a “priority advantage” for resource use in many communities include early-season germination and high growth and reproductive rates. Resistance to Bromus can be overwhelmed by high propagule supply, low innate seed dormancy, and large, if short-lived, seed banks. Biological crusts can inhibit germination and establishment of invasive annual plants, including several annual Bromus species, but are effective only in the absence of disturbance. Herbivores can have negative direct effects on Bromus, but positive indirect effects through decreases in competitors. Management strategies can be improved through increased understanding of community resistance to exotic annual Bromus species.

  17. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities.

    Science.gov (United States)

    Al-Zahrani, Ateeq Ahmed

    2018-01-30

    Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd.

  18. The alpine cushion plant Silene acaulis as foundation species: a bug's-eye view to facilitation and microclimate.

    Directory of Open Access Journals (Sweden)

    Olivia Molenda

    Full Text Available Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.

  19. Ecological modules and roles of species in heathland plant-insect flower visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2009-01-01

    1.  Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network...... analytical approach to (i) detect modularity in pollination networks, (ii) investigate species composition of modules, and (iii) assess the stability of modules across sites. 2.  Interactions between entomophilous plants and their flower-visitors were recorded throughout the flowering season at three...... heathland sites in Denmark, separated by ≥ 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3.  Qualitative (presence-absence) interaction networks were...

  20. The oomycete broad-host-range pathogen Phytophthora capsici.

    Science.gov (United States)

    Lamour, Kurt H; Stam, Remco; Jupe, Julietta; Huitema, Edgar

    2012-05-01

    . For many cucurbit fruit, the expanding lesions produce fresh sporangia over days (or even weeks depending on the size of the fruit) and the fruit often look as if they have been dipped in white powdered confectioner's sugar (Fig. 1). Generally, hyphae do not emerge from infected plants or fruit (common with Pythium infections) and all that is visible on the surface of an infected plant is sporangia. Phytophthora capsici presents an oomycete worst-case scenario to growers as it has a broad host range, often produces long-lived dormant sexual spores, has extensive genotypic diversity and has an explosive asexual disease cycle. It is becoming increasingly apparent that novel control strategies are needed to safeguard food production from P. capsici and other oomycetes. Considering that P. capsici is easy to grow, mate and manipulate in the laboratory and infects many plant species, this pathogen is a robust model for investigations, particularly those related to sexual reproduction, host range and virulence. Phytophthora capsici genome database: http://genome.jgi-psf.org/Phyca11/Phyca11.home.html. Molecular tools to identify Phytophthora isolates: http://phytophthora-id.org. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.