Li, Zhenglin; Zhang, Renhe; Li, Fenghua
2010-09-01
Ocean reverberation in shallow water is often the predominant background interference in active sonar applications. It is still an open problem in underwater acoustics. In recent years, an oscillation phenomenon of the reverberation intensity, due to the interference of the normal modes, has been observed in many experiments. A coherent reverberation theory has been developed and used to explain this oscillation phenomenon [F. Li et al., Journal of Sound and Vibration, 252(3), 457-468, 2002]. However, the published coherent reverberation theory is for the range independent environment. Following the derivations by F. Li and Ellis [D. D. Ellis, J. Acoust. Soc. Am., 97(5), 2804-2814, 1995], a general reverberation model based on the adiabatic normal mode theory in a range dependent shallow water environment is presented. From this theory the coherent or incoherent reverberation field caused by sediment inhomogeneity and surface roughness can be predicted. Observations of reverberation from the 2001 Asian Sea International Acoustic Experiment (ASIAEX) in the East China Sea are used to test the model. Model/data comparison shows that the coherent reverberation model can predict the experimental oscillation phenomenon of reverberation intensity and the vertical correlation of reverberation very well.
System Estimation of Panel Data Models under Long-Range Dependence
DEFF Research Database (Denmark)
Ergemen, Yunus Emre
A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects and innovat...
Generalized Efficient Inference on Factor Models with Long-Range Dependence
DEFF Research Database (Denmark)
Ergemen, Yunus Emre
. Short-memory dynamics are allowed in the common factor structure and possibly heteroskedastic error term. In the estimation, a generalized version of the principal components (PC) approach is proposed to achieve efficiency. Asymptotics for efficient common factor and factor loading as well as long......A dynamic factor model is considered that contains stochastic time trends allowing for stationary and nonstationary long-range dependence. The model nests standard I(0) and I(1) behaviour smoothly in common factors and residuals, removing the necessity of a priori unit-root and stationarity testing...
Interaction Models for Common Long-Range Dependence in Asset Prices Volatility
Teyssière, G.
We consider a class of microeconomic models with interacting agents which replicate the main properties of asset prices time series: non-linearities in levels and common degree of long-memory in the volatilities and co-volatilities of multivariate time series. For these models, long-range dependence in asset price volatility is the consequence of swings in opinions and herding behavior of market participants, which generate switches in the heteroskedastic structure of asset prices. Thus, the observed long-memory in asset prices volatility might be the outcome of a change-point in the conditional variance process, a conclusion supported by a wavelet anaysis of the volatility series. This explains why volatility processes share only the properties of the second moments of long-memory processes, but not the properties of the first moments.
Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models
DEFF Research Database (Denmark)
Hillebrand, Eric Tobias; Medeiros, Marcelo C.
We study the simultaneous occurrence of long memory and nonlinear effects, such as parameter changes and threshold effects, in ARMA time series models and apply our modeling framework to daily realized volatility. Asymptotic theory for parameter estimation is developed and two model building proc...... procedures are proposed. The methodology is applied to stocks of the Dow Jones Industrial Average during the period 2000 to 2009. We find strong evidence of nonlinear effects....
Analytic model utilizing the complex ABCD method for range dependency of a monostatic coherent lidar
DEFF Research Database (Denmark)
Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Hanson, Steen Grüner
2014-01-01
In this work, we present an analytic model for analyzing the range and frequency dependency of a monostatic coherent lidar measuring velocities of a diffuse target. The model of the signal power spectrum includes both the contribution from the optical system as well as the contribution from the t...
A long range dependent model with nonlinear innovations for simulating daily river flows
Directory of Open Access Journals (Sweden)
P. Elek
2004-01-01
Full Text Available We present the analysis aimed at the estimation of flood risks of Tisza River in Hungary on the basis of daily river discharge data registered in the last 100 years. The deseasonalised series has skewed and leptokurtic distribution and various methods suggest that it possesses substantial long memory. This motivates the attempt to fit a fractional ARIMA model with non-Gaussian innovations as a first step. Synthetic streamflow series can then be generated from the bootstrapped innovations. However, there remains a significant difference between the empirical and the synthetic density functions as well as the quantiles. This brings attention to the fact that the innovations are not independent, both their squares and absolute values are autocorrelated. Furthermore, the innovations display non-seasonal periods of high and low variances. This behaviour is characteristic to generalised autoregressive conditional heteroscedastic (GARCH models. However, when innovations are simulated as GARCH processes, the quantiles and extremes of the discharge series are heavily overestimated. Therefore we suggest to fit a smooth transition GARCH-process to the innovations. In a standard GARCH model the dependence of the variance on the lagged innovation is quadratic whereas in our proposed model it is a bounded function. While preserving long memory and eliminating the correlation from both the generating noise and from its square, the new model is superior to the previously mentioned ones in approximating the probability density, the high quantiles and the extremal behaviour of the empirical river flows.
A Dynamic Multi-Level Factor Model with Long-Range Dependence
DEFF Research Database (Denmark)
Ergemen, Yunus Emre; Rodríguez-Caballero, Carlos Vladimir
A dynamic multi-level factor model with stationary or nonstationary global and regional factors is proposed. In the model, persistence in global and regional common factors as well as innovations allows for the study of fractional cointegrating relationships. Estimation of global and regional...... common factors is performed in two steps employing canonical correlation analysis and a sequential least-squares algorithm. Selection of the number of global and regional factors is discussed. The small sample properties of our methodology are investigated by some Monte Carlo simulations. The method...... is then applied to the Nord Pool power market for the analysis of price comovements among different regions within the power grid. We find that the global factor can be interpreted as the system price of the power grid as well as a fractional cointegration relationship between prices and the global factor....
Simple illustrations of range-dependence and 3-D effects by normal-mode sound propagation modelling
Ivansson, Sven
2016-01-01
As is well known, the sound-speed profile has significant effects on underwater acoustic sound propagation. These effects can be quantified by normal-mode models, for example. The basic case is a laterally homogeneous medium, for which the sound speed and the density depend on depth only and not on horizontal position. Effects of horizontal medium-parameter variation can be quantified by coupled-mode models, with coupling between mode expansions for laterally homogeneous parts of the medium. In the present paper, these effects are illustrated for media with a particularly simple horizontal parameter variation such that mode shapes do not vary with horizontal position. The modal wavenumbers depend on horizontal position, however. At a vertical interface between regions with laterally homogeneous medium parameters, each mode is reflected as well as transmitted. For the media considered, reflection and transmission coefficients can be computed separately for each mode without mode coupling, and this is done recu...
Watkins, Nick; Graves, Timothy; Franzke, Christian; Gramacy, Robert; Tindale, Elizabeth
2017-04-01
Long-Range Dependence (LRD) and heavy-tailed distributions are ubiquitous in natural and socio-economic data. Such data can be self-similar whereby both LRD and heavy-tailed distributions contribute to the self-similarity as measured by the Hurst exponent. Some methods widely used in the physical sciences separately estimate these two parameters, which can lead to estimation bias. Those which do simultaneous estimation are based on frequentist methods such as Whittle's approximate maximum likelihood estimator. Here we present a new and systematic Bayesian framework for the simultaneous inference of the LRD and heavy-tailed distribution parameters of a parametric ARFIMA model with non-Gaussian innovations. As innovations we use the alpha-stable and t-distributions which have power law tails. Our algorithm also provides parameter uncertainty estimates. We test our algorithm using synthetic data, and also data from the Geostationary Operational Environmental Satellite system (GOES) solar X-ray time series. These tests show that our algorithm is able to accurately and robustly estimate the LRD and heavy-tailed distribution parameters. See Physica A: Statistical Mechanics and its Applications, (January 2017), DOI: 10.1016/j.physa.2017.01.028
Graves, Timothy; Franzke, Christian L. E.; Watkins, Nicholas W.; Gramacy, Robert B.; Tindale, Elizabeth
2017-05-01
Long-Range Dependence (LRD) and heavy-tailed distributions are ubiquitous in natural and socio-economic data. Such data can be self-similar whereby both LRD and heavy-tailed distributions contribute to the self-similarity as measured by the Hurst exponent. Some methods widely used in the physical sciences separately estimate these two parameters, which can lead to estimation bias. Those which do simultaneous estimation are based on frequentist methods such as Whittle's approximate maximum likelihood estimator. Here we present a new and systematic Bayesian framework for the simultaneous inference of the LRD and heavy-tailed distribution parameters of a parametric ARFIMA model with non-Gaussian innovations. As innovations we use the α-stable and t-distributions which have power law tails. Our algorithm also provides parameter uncertainty estimates. We test our algorithm using synthetic data, and also data from the Geostationary Operational Environmental Satellite system (GOES) solar X-ray time series. These tests show that our algorithm is able to accurately and robustly estimate the LRD and heavy-tailed distribution parameters.
Wishart, Justin Rory
2011-01-01
In this paper, a lower bound is determined in the minimax sense for change point estimators of the first derivative of a regression function in the fractional white noise model. Similar minimax results presented previously in the area focus on change points in the derivatives of a regression function in the white noise model or consider estimation of the regression function in the presence of correlated errors.
Acoustic emission source modeling
Directory of Open Access Journals (Sweden)
Hora P.
2010-07-01
Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.
Acoustic Model Testing Chronology
Nesman, Tom
2017-01-01
Scale models have been used for decades to replicate liftoff environments and in particular acoustics for launch vehicles. It is assumed, and analyses supports, that the key characteristics of noise generation, propagation, and measurement can be scaled. Over time significant insight was gained not just towards understanding the effects of thruster details, pad geometry, and sound mitigation but also to the physical processes involved. An overview of a selected set of scale model tests are compiled here to illustrate the variety of configurations that have been tested and the fundamental knowledge gained. The selected scale model tests are presented chronologically.
Directory of Open Access Journals (Sweden)
Stephen R. Scherrer
2018-01-01
Full Text Available Background Passive acoustic telemetry using coded transmitter tags and stationary receivers is a popular method for tracking movements of aquatic animals. Understanding the performance of these systems is important in array design and in analysis. Close proximity detection interference (CPDI is a condition where receivers fail to reliably detect tag transmissions. CPDI generally occurs when the tag and receiver are near one another in acoustically reverberant settings. Here we confirm transmission multipaths reflected off the environment arriving at a receiver with sufficient delay relative to the direct signal cause CPDI. We propose a ray-propagation based model to estimate the arrival of energy via multipaths to predict CPDI occurrence, and we show how deeper deployments are particularly susceptible. Methods A series of experiments were designed to develop and validate our model. Deep (300 m and shallow (25 m ranging experiments were conducted using Vemco V13 acoustic tags and VR2-W receivers. Probabilistic modeling of hourly detections was used to estimate the average distance a tag could be detected. A mechanistic model for predicting the arrival time of multipaths was developed using parameters from these experiments to calculate the direct and multipath path lengths. This model was retroactively applied to the previous ranging experiments to validate CPDI observations. Two additional experiments were designed to validate predictions of CPDI with respect to combinations of deployment depth and distance. Playback of recorded tags in a tank environment was used to confirm multipaths arriving after the receiver’s blanking interval cause CPDI effects. Results Analysis of empirical data estimated the average maximum detection radius (AMDR, the farthest distance at which 95% of tag transmissions went undetected by receivers, was between 840 and 846 m for the deep ranging experiment across all factor permutations. From these results, CPDI was
Ares I Scale Model Acoustic Test Lift-Off Acoustics
Counter, Douglas D.; Houston, Janie D.
2011-01-01
The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.
Zampolli, M.; Ainslie, M.A.
2011-01-01
In April 2010, a symposium in Memory of David Weston was held at Clare College in Cambridge (UK). International researchers from academia and research laboratories met to discuss two sets of test problems for sonar performance models, one aimed at understanding mammal echolocation sonar („Problem
Simulation of Acoustics for Ares I Scale Model Acoustic Tests
Putnam, Gabriel; Strutzenberg, Louise L.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.
Stochastic processes and long range dependence
Samorodnitsky, Gennady
2016-01-01
This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been publis...
National Research Council Canada - National Science Library
Xie, Geoffrey; Gibson, John; Diaz-Gonzalez, Leopoldo
2006-01-01
.... The validity of the simulation results becomes questionable. There are, though, very high fidelity models developed by acoustic engineers and physicists for predicting acoustic propagation characteristics...
An acoustical model based monitoring network
Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der
2010-01-01
In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the
Spacecraft Internal Acoustic Environment Modeling
Chu, SShao-sheng R.; Allen, Christopher S.
2009-01-01
Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. In FY09, the physical mockup developed in FY08, with interior geometric shape similar to Orion CM (Crew Module) IML (Interior Mode Line), was used to validate SEA (Statistical Energy Analysis) acoustic model development with realistic ventilation fan sources. The sound power levels of these sources were unknown a priori, as opposed to previous studies that RSS (Reference Sound Source) with known sound power level was used. The modeling results were evaluated based on comparisons to measurements of sound pressure levels over a wide frequency range, including the frequency range where SEA gives good results. Sound intensity measurement was performed over a rectangular-shaped grid system enclosing the ventilation fan source. Sound intensities were measured at the top, front, back, right, and left surfaces of the and system. Sound intensity at the bottom surface was not measured, but sound blocking material was placed tinder the bottom surface to reflect most of the incident sound energy back to the remaining measured surfaces. Integrating measured sound intensities over measured surfaces renders estimated sound power of the source. The reverberation time T6o of the mockup interior had been modified to match reverberation levels of ISS US Lab interior for speech frequency bands, i.e., 0.5k, 1k, 2k, 4 kHz, by attaching appropriately sized Thinsulate sound absorption material to the interior wall of the mockup. Sound absorption of Thinsulate was modeled in three methods: Sabine equation with measured mockup interior reverberation time T60, layup model based on past impedance tube testing, and layup model plus air absorption correction. The evaluation/validation was
Energy based prediction models for building acoustics
DEFF Research Database (Denmark)
Brunskog, Jonas
2012-01-01
In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...
Model-based passive acoustic tracking of sperm whale foraging behavior in the Gulf of Alaska
Tiemann, Christopher; Thode, Aaron; Straley, Jan; Folkert, Kendall; O'Connell, Victoria
2005-09-01
In 2004, the Southeast Alaska Sperm Whale Avoidance Project (SEASWAP) introduced the use of passive acoustics to help monitor the behavior of sperm whales depredating longline fishing operations. Acoustic data from autonomous recorders mounted on longlines provide the opportunity to demonstrate a tracking algorithm based on acoustic propagation modeling while providing insight into whales' foraging behavior. With knowledge of azimuthally dependent bathymetry, a 3D track of whale motion can be obtained using data from just one hydrophone by exploiting multipath arrival information from recorded sperm whale clicks. The evolution of multipath arrival patterns is matched to range-, depth-, and azimuth-dependent modeled arrival patterns to generate an estimate of whale motion. This technique does not require acoustic ray identification (i.e., direct path, surface reflected, etc.) while still utilizing individual ray arrival information, and it can also account for all waveguide propagation physics such as interaction with range-dependent bathymetry and ray refraction.
Acoustic modelling of Sepedi affricates for ASR
CSIR Research Space (South Africa)
Modipa, T
2010-10-01
Full Text Available Automatic speech recognition (ASR) systems are increasingly being developed for under-resourced languages, especially for use in multilingual spoken dialogue systems. We investigate different approaches to the acoustic modelling of Sepedi affricates...
Advanced Concepts for Underwater Acoustic Channel Modeling
Etter, P. C.; Haas, C. H.; Ramani, D. V.
2014-12-01
This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.
ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL
Directory of Open Access Journals (Sweden)
Kok Hwa Yu
2011-10-01
Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.
Effective acoustic modeling for robust speaker recognition
Hasan Al Banna, Taufiq
Robustness due to mismatched train/test conditions is the biggest challenge facing the speaker recognition community today, with transmission channel and environmental noise degradation being the prominent factors. Performance of state-of-the art speaker recognition methods aim at mitigating these factors by effectively modeling speech in multiple recording conditions, so that it can learn to distinguish between inter-speaker and intra-speaker variability. The increasing demand and availability of large development corpora introduces difficulties in effective data utilization and computationally efficient modeling. Traditional compensation strategies operate on higher dimensional utterance features, known as supervectors, which are obtained from the acoustic modeling of short-time features. Feature compensation is performed during front-end processing. Motivated by the covariance structure of conventional acoustic features, we envision that feature normalization and compensation can be integrated into the acoustic modeling. In this dissertation, we investigate the following fundamental research challenges: (i) analysis of data requirements for effective and efficient background model training, (ii) introducing latent factor analysis modeling of acoustic features, (iii) integration of channel compensation strategies in mixture-models, and (iv) development of noise robust background models using factor analysis. The effectiveness of the proposed solutions are demonstrated in various noisy and channel degraded conditions using the recent evaluation datasets released by the National Institute of Standards and Technology (NIST). These research accomplishments make an important step towards improving speaker recognition robustness in diverse acoustic conditions.
Computational acoustic modeling of cetacean vocalizations
Gurevich, Michael Dixon
A framework for computational acoustic modeling of hypothetical vocal production mechanisms in cetaceans is presented. As a specific example, a model of a proposed source in the larynx of odontocetes is developed. Whales and dolphins generate a broad range of vocal sounds, but the exact mechanisms they use are not conclusively understood. In the fifty years since it has become widely accepted that whales can and do make sound, how they do so has remained particularly confounding. Cetaceans' highly divergent respiratory anatomy, along with the difficulty of internal observation during vocalization have contributed to this uncertainty. A variety of acoustical, morphological, ethological and physiological evidence has led to conflicting and often disputed theories of the locations and mechanisms of cetaceans' sound sources. Computational acoustic modeling has been used to create real-time parametric models of musical instruments and the human voice. These techniques can be applied to cetacean vocalizations to help better understand the nature and function of these sounds. Extensive studies of odontocete laryngeal morphology have revealed vocal folds that are consistently similar to a known but poorly understood acoustic source, the ribbon reed. A parametric computational model of the ribbon reed is developed, based on simplified geometrical, mechanical and fluid models drawn from the human voice literature. The physical parameters of the ribbon reed model are then adapted to those of the odontocete larynx. With reasonable estimates of real physical parameters, both the ribbon reed and odontocete larynx models produce sounds that are perceptually similar to their real-world counterparts, and both respond realistically under varying control conditions. Comparisons of acoustic features of the real-world and synthetic systems show a number of consistencies. While this does not on its own prove that either model is conclusively an accurate description of the source, it
Acoustic cavitation mechanism: a nonlinear model.
Vanhille, Christian; Campos-Pozuelo, Cleofé
2012-03-01
During acoustic cavitation process, bubbles appear when acoustic pressure reaches a threshold value in the liquid. The ultrasonic field is then submitted to the action of the bubbles. In this paper we develop a model to analyze the cavitation phenomenon in one-dimensional standing waves, based on the nonlinear code SNOW-BL. Bubbles are produced where the minimum rarefaction pressure peak exceeds the cavitation threshold. We show that cavitation bubbles appear at high amplitude and drastically affect (dissipation, dispersion, and nonlinearity) the ultrasonic field. This paper constitutes the first work that associates the nonlinear ultrasonic field to a bubble generation process. Copyright © 2011 Elsevier B.V. All rights reserved.
Surface Acoustic Wave Strain Sensor Model
Wilson, William; Gary ATKINSON
2011-01-01
NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasi...
Long-range dependence and sea level forecasting
Ercan, Ali; Abbasov, Rovshan K
2013-01-01
This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA
An asymptotic model in acoustics: acoustic drift equations.
Vladimirov, Vladimir A; Ilin, Konstantin
2013-11-01
A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.
Ares I Scale Model Acoustic Test Liftoff Acoustic Results and Comparisons
Counter, Doug; Houston, Janice
2011-01-01
Conclusions: Ares I-X flight data validated the ASMAT LOA results. Ares I Liftoff acoustic environments were verified with scale model test results. Results showed that data book environments were under-conservative for Frustum (Zone 5). Recommendations: Data book environments can be updated with scale model test and flight data. Subscale acoustic model testing useful for future vehicle environment assessments.
Surface Acoustic Wave Strain Sensor Model
Directory of Open Access Journals (Sweden)
William WILSON
2011-04-01
Full Text Available NASA Langley Research Center is investigating Surface Acoustic Wave (SAW sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented.
Acoustic modeling for emotion recognition
Anne, Koteswara Rao; Vankayalapati, Hima Deepthi
2015-01-01
This book presents state of art research in speech emotion recognition. Readers are first presented with basic research and applications – gradually more advance information is provided, giving readers comprehensive guidance for classify emotions through speech. Simulated databases are used and results extensively compared, with the features and the algorithms implemented using MATLAB. Various emotion recognition models like Linear Discriminant Analysis (LDA), Regularized Discriminant Analysis (RDA), Support Vector Machines (SVM) and K-Nearest neighbor (KNN) and are explored in detail using prosody and spectral features, and feature fusion techniques.
Theory and modeling of cylindrical thermo-acoustic transduction
Energy Technology Data Exchange (ETDEWEB)
Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)
2016-06-03
Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.
Acoustic Model Adaptation for Speech Recognition
Shinoda, Koichi
Statistical speech recognition using continuous-density hidden Markov models (CDHMMs) has yielded many practical applications. However, in general, mismatches between the training data and input data significantly degrade recognition accuracy. Various acoustic model adaptation techniques using a few input utterances have been employed to overcome this problem. In this article, we survey these adaptation techniques, including maximum a posteriori (MAP) estimation, maximum likelihood linear regression (MLLR), and eigenvoice. We also present a schematic view called the adaptation pyramid to illustrate how these methods relate to each other.
Compact Acoustic Models for Embedded Speech Recognition
Directory of Open Access Journals (Sweden)
Lévy Christophe
2009-01-01
Full Text Available Speech recognition applications are known to require a significant amount of resources. However, embedded speech recognition only authorizes few KB of memory, few MIPS, and small amount of training data. In order to fit the resource constraints of embedded applications, an approach based on a semicontinuous HMM system using state-independent acoustic modelling is proposed. A transformation is computed and applied to the global model in order to obtain each HMM state-dependent probability density functions, authorizing to store only the transformation parameters. This approach is evaluated on two tasks: digit and voice-command recognition. A fast adaptation technique of acoustic models is also proposed. In order to significantly reduce computational costs, the adaptation is performed only on the global model (using related speaker recognition adaptation techniques with no need for state-dependent data. The whole approach results in a relative gain of more than 20% compared to a basic HMM-based system fitting the constraints.
Structural Acoustic Physics Based Modeling of Curved Composite Shells
2017-09-19
NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An
Acoustic Modeling of Lightweight Structures: A Literature Review
Yang, Shasha; Shen, Cheng
2017-10-01
This paper gives an overview of acoustic modeling for three kinds of typical lightweight structures including double-leaf plate system, stiffened single (or double) plate and porous material. Classical models are citied to provide frame work of theoretical modeling for acoustic property of lightweight structures; important research advances derived by our research group and other authors are introduced to describe the current state of art for acoustic research. Finally, remaining problems and future research directions are concluded and prospected briefly
Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements
Vargas, Magda B.; Counter, Douglas D.
2011-01-01
The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.
Thermoviscous Model Equations in Nonlinear Acoustics
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne
Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....
National Research Council Canada - National Science Library
Dushaw, Brian
2009-01-01
... depth of the receiver lies well below the depths of the predicted cusps. Several models for the temperature and salinity in the North Pacific Ocean were obtained and processed to enable simulations of acoustic propagation for comparison to the observations...
Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements
Vargas, Magda B.; Counter, Douglas
2011-01-01
Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements
Acoustic sorting models for improved log segregation
Xiping Wang; Steve Verrill; Eini Lowell; Robert J. Ross; Vicki L. Herian
2013-01-01
In this study, we examined three individual log measures (acoustic velocity, log diameter, and log vertical position in a tree) for their ability to predict average modulus of elasticity (MOE) and grade yield of structural lumber obtained from Douglas-fir (Pseudotsuga menziesii [Mirb. Franco]) logs. We found that log acoustic velocity only had a...
Auditory modelling for assessing room acoustics
Van Dorp Schuitman, J.
2011-01-01
The acoustics of a concert hall, or any other room, are generally assessed by measuring room impulse responses for one or multiple source and receiver location(s). From these responses, objective parameters can be determined that should be related to various perceptual attributes of room acoustics.
Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test
Counter, Douglas D.; Houston, Janice D.
2012-01-01
Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.
Verification of Ares I Liftoff Acoustic Environments via the Ares Scale Model Acoustic Test
Counter, Douglas D.; Houston, Janice D.
2012-01-01
Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.
The Acoustic Breathiness Index (ABI): A Multivariate Acoustic Model for Breathiness.
Barsties V Latoszek, Ben; Maryn, Youri; Gerrits, Ellen; De Bodt, Marc
2017-07-01
The evaluation of voice quality is a major component of voice assessment. The aim of the present study was to develop a new multivariate acoustic model for the evaluation of breathiness. Concatenated voice samples of continuous speech and the sustained vowel [a:] from 970 subjects with dysphonia and 88 vocally healthy subjects were perceptually judged for breathiness severity. Acoustic analyses were conducted on the same concatenated voice samples after removal of the non-voiced segments of the continuous speech sample. The development of an acoustic model for breathiness was based on stepwise multiple linear regression analysis. Concurrent validity, diagnostic accuracy, and cross validation were statistically verified on the basis of the Spearman rank-order correlation coefficient (r s ), several estimates of the receiver operating characteristics plus the likelihood ratio, and iterated internal cross correlations. Ratings of breathiness from four experts with moderate reliability were used. Stepwise multiple regression analysis yielded a nine-variable acoustic model for the multiparametric measurement of breathiness (Acoustic Breathiness Index [ABI]). A strong correlation was found between ABI and auditory-perceptual rating (r s = 0.840, P = 0.000). The cross correlations confirmed a comparably high degree of association. Additionally, the receiver operating characteristics and likelihood ratio results showed the best diagnostic outcome at a threshold of ABI = 3.44 with a sensitivity of 82.4% and a specificity of 92.9%. This study developed a new acoustic multivariate correlate for the evaluation of breathiness in voice. The ABI model showed valid and robust results and is therefore proposed as a new acoustic index for the evaluation of breathiness. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Acoustic field distribution of sawtooth wave with nonlinear SBE model
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Zhang, Lue; Wang, Xiangda; Gong, Xiufen [Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093 (China)
2015-10-28
For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.
Finite Element Modeling of Acoustic Shielding via Phononic Crystal structures
Lipp, Clémentine Sophie Sarah; Lozzi, Andrea
2016-01-01
Quality factor of Contour Mode Resonators (CMR) are mainly affected by energy losses due to acoustic waves leaving the resonator through the anchors. An engineering of the anchors in order to create a periodic variation in the acoustic impedance of the material, structures known as Phononic Crystals (PnCs), can help improve the Q factor by reflecting part of the acoustic waves. During this project, FEM models have been validated for both 1D and 2D PnCs. The behavior of the band diagram and qu...
Validation of high frequency acoustic target modeling
Quesson, B.A.J.; Schippers, P.; Groen, J.; Sabel, J.C.; Driessen, F.P.G.
2005-01-01
The underwater acoustics group at TNO Defense, Security and Safety has developed two simulation software programs named ALMOST and SIMONA. The first is already commercially used and aims at sonar performance prediction, whereas the second one is used as a tool to generate simulated data for mine
Finite-element modeling in ocean acoustics: Where are we heading?
Jensen, F.B.; Zampolli, M.
2010-01-01
This paper summarizes 10 years of NURC experience with the application of a state-of-the-art FE code [Zampolli et al., JASA 122, 1472-85 (2007)] to propagation and scattering problems in ocean acoustics. We show benchmark results for low-frequency propagation in a range-dependent waveguide with an
Drive Rig Mufflers for Model Scale Engine Acoustic Testing
Stephens, David
2010-01-01
Testing of air breathing propulsion systems in the 9x15 foot wind tunnel at NASA Glenn Research Center depends on compressed air turbines for power. The drive rig turbines exhaust directly to the wind tunnel test section, and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the model being tested. In order to mitigate this acoustic contamination, a muffler can be attached downstream of the drive rig turbine. The modern engine designs currently being tested produce much less noise than traditional engines, and consequently a lower noise floor is required of the facility. An acoustic test of a muffler designed to mitigate this extraneous noise is presented, and a noise reduction of 8 dB between 700 Hz and 20 kHz was documented, significantly improving the quality of acoustic measurements in the facility.
Model reduction for optimization of structural-acoustic coupling problems
DEFF Research Database (Denmark)
Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas
2016-01-01
-acoustic coupling, for which two different approaches to constructing a modal reduction base are discussed. The efficiency and accuracy of the CMS and the MMR methods are strongly model-dependent; in this paper, they are compared for two optimization problems in the hearing aid context, where the MMR technique......Fully coupled structural-acoustic models of complex systems, such as those used in the hearing aid field, may have several hundreds of thousands of nodes. When there is a strong structure-acoustic interaction, performing optimization on one part requires the complete model to be taken into account......, which becomes highly time consuming since many iterations may be required. The use of model reduction techniques to speed up the computations is studied in this work. The Component Mode Synthesis (CMS) method and the Multi-Model Reduction (MMR) method are adapted for problems with structure...
Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials
Directory of Open Access Journals (Sweden)
Weihua Chen
2016-01-01
Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.
Model reduction for optimization of structural-acoustic coupling problems
DEFF Research Database (Denmark)
Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas
2016-01-01
Fully coupled structural-acoustic models of complex systems, such as those used in the hearing aid field, may have several hundreds of thousands of nodes. When there is a strong structure-acoustic interaction, performing optimization on one part requires the complete model to be taken into account......-acoustic coupling, for which two different approaches to constructing a modal reduction base are discussed. The efficiency and accuracy of the CMS and the MMR methods are strongly model-dependent; in this paper, they are compared for two optimization problems in the hearing aid context, where the MMR technique...... is found to be the most efficient, speeding up the optimizations up to 6 times compared to the full model....
Aero-acoustic modeling using large eddy simulation
DEFF Research Database (Denmark)
Shen, Wen Zhong; Sørensen, Jens Nørkær
2007-01-01
The splitting technique for aero-acoustic computations is extended to simulate three-dimensional flow and acoustic waves from airfoils. The aero-acoustic model is coupled to a sub-grid-scale turbulence model for Large-Eddy Simulations. In the first test case, the model is applied to compute laminar...... flow past a NACA 0015 airfoil at a Reynolds number of 800, a Mach number of 0.2 and an angle of attack of 20 degrees. The model is then applied to compute turbulent flow past a NACA 0015 airfoil at a Reynolds number of 100 000, a Mach number of 0.2 and an angle of attack of 20 degrees. The predicted...
Modeling Large sound sources in a room acoustical calculation program
DEFF Research Database (Denmark)
Christensen, Claus Lynge
1999-01-01
A room acoustical model capable of modelling point, line and surface sources is presented. Line and surface sources are modelled using a special ray-tracing algorithm detecting the radiation pattern of the surfaces in the room. Point sources are modelled using a hybrid calculation method combinin...... this ray-tracing method with Image source modelling. With these three source types, it is possible to model large and complex sound sources in workrooms....
Robustness of Estimators of Long-Range Dependence and Self-Similarity under non-Gaussianity
Franzke, Christian L E; Watkins, Nicholas W; Gramacy, Robert B; Hughes, Cecilia
2011-01-01
Long-range dependence and non-Gaussianity are ubiquitous in many natural systems like ecosystems, biological systems and climate. However, it is not always appreciated that both phenomena usually occur together in natural systems and that the superposition of both phenomena constitute the self-similarity of a system. These features, which are common in complex systems, impact the attribution of trends and the occurrence and clustering of extremes. The risk assessment of systems with these properties will lead to different outcomes (e.g. return periods) than the more common assumption of independence of extremes. Two paradigmatic models are discussed which can simultaneously account for long-range dependence and non-Gaussianity: Autoregressive Fractional Integrated Moving Average (ARFIMA) and Linear Fractional Stable Motion (LFSM). Statistical properties of estimators for long-range dependence and self-similarity are critically assessed. It is found that the most popular estimators are not robust. In particula...
Fluid mechanical model of the acoustic impedance of small orifices
Hersh, A. S.; Rogers, T.
1976-01-01
A fluid mechanical model of the acoustic behavior of small orifices is presented which predicts orifice resistance and reactance as a function of incident sound pressure level, frequency, and orifice geometry. Agreement between predicted and measured values is excellent. The model shows the following: (1) The acoustic flow in immediate neighborhood of the orifice can be modeled as a locally spherical flow. Within this near field, the flow is, to a first approximation, unsteady and incompressible. (2) At very low sound pressure levels, the orifice viscous resistance is directly related to the effect of boundary-layer displacement along the walls containing the orifice, and the orifice reactance is directly related to the inertia of the oscillating flow in the neighborhood of the orifice. (3) For large values of the incident acoustic pressure, the impedance is dominated by nonlinear jet-like effects. (4) For low values of the pressure, the resistance and reactance are roughly equal.
Modelling of bulk acoustic wave resonators for microwave filters
Jose, Sumy; Hueting, Raymond Josephus Engelbart; Jansman, Andreas
2008-01-01
Modelling and development of high Q thin-film bulk acoustic wave (BAW) devices is a topic of research gaining attention due to good selectivity and steep transition band offered by these devices used for cellular applications. A preliminary survey of various modeling approaches of these devices and
Modeling acoustic wave propagation in isotropic medium
Krasnoveikin, V. A.; Druzhinin, N. V.; Derusova, D. A.; Tarasov, S. Yu.
2017-12-01
The paper carries out the graphical analysis of acoustic wave propagation in plates of different thickness to reveal the surface wave patterns formed on the plate surfaces. The results of the analysis allowed explaining the non-uniform distribution of the surface wave pattern nodes formed on the PMMA plate by a point oscillator. The wave pattern reconstruction made it possible to reveal fundamental and reflected waves as well as their interference patterns with node distributions on the surfaces of the plate. These results may be useful for defect detection in composite materials such as delamination, impact damage, gaps, etc.
Aero-acoustic noise of wind turbines. Noise prediction models
Energy Technology Data Exchange (ETDEWEB)
Maribo Pedersen, B. [ed.
1997-12-31
Semi-empirical and CAA (Computational AeroAcoustics) noise prediction techniques are the subject of this expert meeting. The meeting presents and discusses models and methods. The meeting may provide answers to the following questions: What Noise sources are the most important? How are the sources best modeled? What needs to be done to do better predictions? Does it boil down to correct prediction of the unsteady aerodynamics around the rotor? Or is the difficult part to convert the aerodynamics into acoustics? (LN)
Baccouche, Ryan; Moreau, Soléne; Ben Tahar, Mabrouk
2017-06-01
Passive acoustic treatments, also called liners, are the main solution to noise problems. The Single Degree Of Freedom (SDOF) acoustic treatment, composed of a thin material (perforated plate) affixed to air cavities with a rigid bottom, constitutes a solution. Predicting sound level reduction by an SDOF treatment requires reliable acoustic impedance models. An experimental/numerical method has been developed for a duct with an acoustic treatment to test acoustic impedance models of SDOF treatment with a multimodal propagation in the presence of a mean flow. This method is based on the comparison of experimental results from an aeroacoustic bench composed of a circular duct with a treated area, and numerical results from an FEM-PML axisymmetric model based on Galbrun's equation. The numerical results are confronted with experimental results to test impedance models up to M0=±0.25.
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Design, characterization and modeling of biobased acoustic foams
Ghaffari Mosanenzadeh, Shahrzad
Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube
Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling
Wilson, William; Atkinson, Gary
2009-01-01
Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.
Overview of the Ares I Scale Model Acoustic Test Program
Counter, Douglas D.; Houston, Janice D.
2011-01-01
Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.
A linearized dispersion relation for orthorhombic pseudo-acoustic modeling
Song, Xiaolei
2012-11-04
Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.
Use of Theoretical Controls in Underwater Acoustic Model Evaluation.
1982-01-04
shallow water. 50. White, D., Normal Mode Evaluation of FASOR Shallow Water Areas, unpublished. 126 5.2.2 Assessment of Ray Theory Use of Normal Mode...Normal Mode Evaluation of FASOR Shallow Water Areas, unpublished. 51. Mitchell, S. K.. and J. J. Lemmon. A Ray Theory Model of Acoustic Interaction
Dislocation unpinning model of acoustic emission from alkali halide ...
Indian Academy of Sciences (India)
Dislocation unpinning model of acoustic emission from alkali halide crystals. B P CHANDRA1, ANUBHA S GOUR1, VIVEK K CHANDRA2 and YUVRAJ PATIL3. 1School of Studies in Physics, Pt. Ravi Shankar Shukia University, Raipur 492 010, India. 2Department of Electronics and Telecommunication, Raipur Institute of ...
Vibro-acoustics of porous materials - waveguide modeling approach
DEFF Research Database (Denmark)
Darula, Radoslav; Sorokin, Sergey V.
2016-01-01
The porous material is considered as a compound multi-layered waveguide (i.e. a fluid layer surrounded with elastic layers) with traction free boundary conditions. The attenuation of the vibro-acoustic waves in such a material is assessed. This approach is compared with a conventional Biot's model...
Sound field modeling in architectural acoustics using a diffusion equation
Picaut, Judicaël; Valeau, Vincent; Billon, Alexis; Sakout, Anas
2006-01-01
A numerical approach is proposed to model the reverberated sound field in rooms. The model is based on the numerical implementation of a diffusion model enabling spatial variations of the sound energy within a room, unlike the statistical theory. The proposed method allows to take into account most of complex phenomena encountered in room acoustics, like mixed reflections on walls (diffuse and specular), low and high absorption on walls, atmospheric attenuation, fitted zones. Moreover, the mo...
Sound field modeling in architectural acoustics using a diffusion equation
PICAUT, J; VALEAU, V; BILLON, A; SAKOUT, A
2006-01-01
A numerical approach is proposed to model the reverberated sound field in rooms. The model is based on the numerical implementation of a diffusion model enabling spatial variations of the sound energy within a room, unlike the statistical theory. The proposed method allows to take into account most of complex phenomena encountered in room acoustics, like mixed reflections on walls (diffuse and specular), low and high absorption on walls, atmospheric attenation, fitted zones. Moreover, the mod...
Acoustic Propagation Modeling for Marine Hydro-Kinetic Applications
Johnson, C. N.; Johnson, E.
2014-12-01
The combination of riverine, tidal, and wave energy have the potential to supply over one third of the United States' annual electricity demand. However, in order to deploy and test prototypes, and commercial installations, marine hydrokinetic (MHK) devices must meet strict regulatory guidelines that determine the maximum amount of noise that can be generated and sets particular thresholds for determining disturbance and injury caused by noise. An accurate model for predicting the propagation of a MHK source in a real-life hydro-acoustic environment has been established. This model will help promote the growth and viability of marine, water, and hydrokinetic energy by confidently assuring federal regulations are meet and harmful impacts to marine fish and wildlife are minimal. Paracousti, a finite difference solution to the acoustic equations, was originally developed for sound propagation in atmospheric environments and has been successfully validated for a number of different geophysical activities. The three-dimensional numerical implementation is advantageous over other acoustic propagation techniques for a MHK application where the domains of interest have complex 3D interactions from the seabed, banks, and other shallow water effects. A number of different cases for hydro-acoustic environments have been validated by both analytical and numerical results from canonical and benchmark problems. This includes a variety of hydrodynamic and physical environments that may be present in a potential MHK application including shallow and deep water, sloping, and canyon type bottoms, with varying sound speed and density profiles. With the model successfully validated for hydro-acoustic environments more complex and realistic MHK sources from turbines and/or arrays can be modeled.
Record length requirement of long-range dependent teletraffic
Li, Ming
2017-04-01
This article contributes the highlights mainly in two folds. On the one hand, it presents a formula to compute the upper bound of the variance of the correlation periodogram measurement of teletraffic (traffic for short) with long-range dependence (LRD) for a given record length T and a given value of the Hurst parameter H (Theorems 1 and 2). On the other hand, it proposes two formulas for the computation of the variance upper bound of the correlation periodogram measurement of traffic of fractional Gaussian noise (fGn) type and the generalized Cauchy (GC) type, respectively (Corollaries 1 and 2). They may constitute a reference guideline of record length requirement of traffic with LRD. In addition, record length requirement for the correlation periodogram measurement of traffic with either the Schuster type or the Bartlett one is studied and the present results about it show that both types of periodograms may be used for the correlation measurement of traffic with a pre-desired variance bound of correlation estimation. Moreover, real traffic in the Internet Archive by the Special Interest Group on Data Communication under the Association for Computing Machinery of US (ACM SIGCOMM) is analyzed in the case study in this topic.
Geodesic acoustic mode in a reduced two-fluid model
Haijun, REN
2017-12-01
A reduced two-fluid model is constructed to investigate the geodesic acoustic mode (GAM). The ion dynamics is sufficiently considered by including an anisotropic pressure tensor and inhibited heat flux vector, whose evolutions are determined by equations derived from the 16-momentum model. Electrons are supposed to obey the Boltzmann distribution responding to the electrostatic oscillation with near ion acoustic velocity. In the large safety factor limit, the GAM frequency is identical with the kinetic one to the order of 1/{q}2 when zeroing the anisotropy. For general anisotropy, the reduced two-fluid model generates the frequency agreeing well with the kinetic result with arbitrary electron temperature. The present simplified fluid model will be of great use and interest for young researchers and students devoted to plasma physics.
An acoustic glottal source for vocal tract physical models
Hannukainen, Antti; Kuortti, Juha; Malinen, Jarmo; Ojalammi, Antti
2017-11-01
A sound source is proposed for the acoustic measurement of physical models of the human vocal tract. The physical models are produced by fast prototyping, based on magnetic resonance imaging during prolonged vowel production. The sound source, accompanied by custom signal processing algorithms, is used for two kinds of measurements from physical models of the vocal tract: (i) amplitude frequency response and resonant frequency measurements, and (ii) signal reconstructions at the source output according to a target pressure waveform with measurements at the mouth position. The proposed source and the software are validated by computational acoustics experiments and measurements on a physical model of the vocal tract corresponding to the vowels [] of a male speaker.
Vorlander, Michael
2007-01-01
"Auralization" is the technique of creation and reproduction of sound on the basis of computer data. With this tool is it possible to predict the character of sound signals which are generated at the source and modified by reinforcement, propagation and transmission in systems such as rooms, buildings, vehicles or other technical devices. This book is organized as a comprehensive collection of the basics of sound and vibration, acoustic modelling, simulation, signal processing and audio reproduction. Implementations of the auralization technique are described using examples drawn from various fields in acoustic’s research and engineering, architecture, sound design and virtual reality.
Acoustic Environment of Haro Strait: Preliminary Propagation Modeling and Data Analysis
National Research Council Canada - National Science Library
Jones, Christopher D; Wolfson, Michael A
2006-01-01
Field measurements and acoustic propagation modeling for the frequency range 1 10 kHz are combined to analyze the acoustic environment of Haro Strait of Puget Sound, home to the southern resident killer whales...
Subphonetic acoustic modeling for speaker-independent continuous speech recognition
Hwang, Mei-Yuh
1993-12-01
To model the acoustics of a large vocabulary well while staying within a reasonable memory capacity, most speech recognition systems use phonetic models to share parameters across different words in the vocabulary. This dissertation investigates the merits of modeling at the subphonetic level. We demonstrate that sharing parameters at the subphonetic level provides more accurate acoustic models than sharing at the phonetic level. The concept of subphonetic parameter sharing can be applied to any class of parametric models. Since the first-order hidden Markov model (HMM) has been overwhelmingly successful in speech recognition, this dissertation bases all its studies and experiments on HMM's. The subphonetic unit we investigate is the state of phonetic HMM's. We develop a system in which similar Markov states of phonetic models share the same Markov parameters. The shared parameter (i.e., the output distribution) associated with a cluster of similar states is called a senone because of its state dependency. The phonetic models that share senones are shared-distribution models or SDM's. Experiments show that SDM's offer more accurate acoustic models than the generalized-triphone model presented by Lee. Senones are next applied to offer accurate models for triphones not experienced in the system training data. In this dissertation, two approaches for modeling unseen triphones are studied - purely decision-tree based senones and a hybrid approach using the concept of Markov state quantization. Both approaches indeed offer a significant error reduction over the previously accepted approach of monophone model substitution. However, the purely decision-tree based senone approach is preferred for its simplicity.
Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects
2015-09-30
water and sediments at the ocean bottom. The attenuation in near-bottom ocean sediments may be very high. It may be high enough that perturbation...for oceanic T-wave generation," Frank et al., has been published. This article documents the incorporation of seismic -like sources into the PE...contribution to this were supported by this grant. Finally the paper “Traveling wave modal attenuation and interaction with a transversely isotropic
A novel dynamic acoustical model for speaker verification
Li, Gongjun; Espy-Wilson, Carol
2004-05-01
In speaker verification, the conventional acoustical models (hidden Markov model and vector quantization) are not able to capture a speaker's dynamic characteristics. In this paper we describe a novel dynamic acoustical model. The training data are viewed as a concatenation of many speech-pattern samples, and the pattern matching involves a comparison of the pattern samples and the test speech. To reduce the amount of computation, a tree is generated to index the entrance to pattern samples using an expectation and maximization (EM) approach, and leaves in the tree are employed to quantize the feature vectors in the training data. The obtained leaf-number sequences are exploited in pattern matching as a temporal model. We use a DTW scheme and a GMM scheme to match the training data and the test speech. Experimental results on NIST'98 speaker recognition evaluation data show that the accuracy of speaker verification on 3- and 10-s test speech is raised from 71.1% and 75.2% for a baseline GMM-based system to 80.0% and 82.1% for the dynamic acoustical model, respectively. Furthermore, some pattern samples in the training data are correctly tracked by the test speech.
Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results
Counter, Douglas D.; Houston, Janice D.
2011-01-01
The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.
Modeling of a Surface Acoustic Wave Strain Sensor
Wilson, W. C.; Atkinson, Gary M.
2010-01-01
NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented
Acoustic model optimisation for a call routing system
CSIR Research Space (South Africa)
Kleynhans, N
2012-11-01
Full Text Available ASR systems is that they allow easier modification of the recognition grammar - for instance adding language name recognition - which adds flexibility to the system. Collecting a corpus of names per application [1] would be impractical... as the recognition grammar and concept mapping that were used during system evaluation. A. Training Corpora To enable robust acoustic model development in a multilin- gual South African context we focused on three South African corpora. Table I shows the number...
Acoustic Vocal Tract Model of One-year-old Children
M. Vojnović; I. Bogavac; L. Dobrijević
2014-01-01
The physical shape of vocal tract and its formant (resonant) frequencies are directly related. The study of this functional connectivity is essential in speech therapy practice with children. Most of the perceived children’s speech anomalies can be explained on a physical level: malfunctioning movement of articulation organs. The current problem is that there is no enough data on the anatomical shape of children’s vocal tract to create its acoustic model. Classical techniques for vocal tract...
Ocean and Coastal Modeling: Nonlinear Acoustic Propagation
2009-03-27
33 report. In 1996, Thompson and Cardone [5] developed a model for generating tropical cyclones based on the planetary boundary layer approach. This...tracks A,C and F. Elevation Recording Stations vy Green - Lake Pontchartraln South Shore Orange - New Orleans East Blue - M RGO /GIWW/IHNC Red...System (MODAS) synthetics (with the surface height derived from the Naval Layer Ocean Model (NLOM) (http://www7320.nrlssc.navy.mil/global_nlom/). No data
Acoustic/seismic signal propagation and sensor performance modeling
Wilson, D. Keith; Marlin, David H.; Mackay, Sean
2007-04-01
Performance, optimal employment, and interpretation of data from acoustic and seismic sensors depend strongly and in complex ways on the environment in which they operate. Software tools for guiding non-expert users of acoustic and seismic sensors are therefore much needed. However, such tools require that many individual components be constructed and correctly connected together. These components include the source signature and directionality, representation of the atmospheric and terrain environment, calculation of the signal propagation, characterization of the sensor response, and mimicking of the data processing at the sensor. Selection of an appropriate signal propagation model is particularly important, as there are significant trade-offs between output fidelity and computation speed. Attenuation of signal energy, random fading, and (for array systems) variations in wavefront angle-of-arrival should all be considered. Characterization of the complex operational environment is often the weak link in sensor modeling: important issues for acoustic and seismic modeling activities include the temporal/spatial resolution of the atmospheric data, knowledge of the surface and subsurface terrain properties, and representation of ambient background noise and vibrations. Design of software tools that address these challenges is illustrated with two examples: a detailed target-to-sensor calculation application called the Sensor Performance Evaluator for Battlefield Environments (SPEBE) and a GIS-embedded approach called Battlefield Terrain Reasoning and Awareness (BTRA).
Directory of Open Access Journals (Sweden)
Ginno Millán Naveas
2010-04-01
Full Text Available En este trabajo se presentan los fundamentos de un proyecto de investigación sobre el modelado de redes de computadoras con mecanismo de control de acceso al medio, según el estándar IEEE 802.3-2005, empleando los postulados de la teoría de conjuntos autosimilares para establecer el nivel de impacto que poseen las correlaciones temporales con dependencia de largo alcance sobre el rendimiento de tales redes. Se postula una nueva forma de estimar grados de autosimilaridad basada en una variación del estimador de Whittle.The foundation of a research project about a model of computer networks with media access control mechanism based on the IEEE standard 802.3-2005 is presented. The model draws from the theory of self-similar sets for establishing the impact level that the long-range-dependent temporary correlations have on the performance of such networks. A new method for the estimation of self-similar levels based on a variation of the Whittle estimator is postulated.
Fundamental Rotorcraft Acoustic Modeling From Experiments (FRAME)
Greenwood, Eric
2011-01-01
A new methodology is developed for the construction of helicopter source noise models for use in mission planning tools from experimental measurements of helicopter external noise radiation. The models are constructed by employing a parameter identification method to an assumed analytical model of the rotor harmonic noise sources. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. The method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor harmonic noise, allowing accurate estimates of the dominant rotorcraft noise sources to be made for operating conditions based on a small number of measurements taken at different operating conditions. The ability of this method to estimate changes in noise radiation due to changes in ambient conditions is also demonstrated.
Modeling structural acoustic properties of loudspeaker cabinets
DEFF Research Database (Denmark)
Luan, Yu
In this dissertation, a theoretical/numerical methodology is presented for coarse and fast predictions of cabinet vibrations. The study is focused on vibrations of rib-stiffened panels by improving a smearing technique and employing it into finite element modeling. The computationally efficient s...
Lokki, Tapio; Savioja, Lauri
The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.
Prevention of Pressure Oscillations in Modeling a Cavitating Acoustic Fluid
Directory of Open Access Journals (Sweden)
B. Klenow
2010-01-01
Full Text Available Cavitation effects play an important role in the UNDEX loading of a structure. For far-field UNDEX, the structural loading is affected by the formation of local and bulk cavitation regions, and the pressure pulses resulting from the closure of the cavitation regions. A common approach to numerically modeling cavitation in far-field underwater explosions is Cavitating Acoustic Finite Elements (CAFE and more recently Cavitating Acoustic Spectral Elements (CASE. Treatment of cavitation in this manner causes spurious pressure oscillations which must be treated by a numerical damping scheme. The focus of this paper is to investigate the severity of these oscillations on the structural response and a possible improvement to CAFE, based on the original Boris and Book Flux-Corrected Transport algorithm on structured meshes [6], to limit oscillations without the energy loss associated with the current damping schemes.
Modeling of Acoustic Emission Signal Propagation in Waveguides
Directory of Open Access Journals (Sweden)
Andreea-Manuela Zelenyak
2015-05-01
Full Text Available Acoustic emission (AE testing is a widely used nondestructive testing (NDT method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing.
Acoustic Model Support Activities, P-2220
1974-05-30
backgrounds of Messrs. Paul Wolff, Robert Colilla , Edward Ver Hoef, Charles Baker, Kenneth Osborne, Howard Straus, Warren Yogi, Gilbert Jacobs, William...oceanographic communities. Mr. Colilla was the ODSI Technical Staff Member most directly responsible for the adaptation of the NISSM II model for the CDC 6700...overall efficiency of operation under Contract No. N66314-70-C-0778. Mr. Colilla also participated in the ambient noise investigations under Contract
Vibro-acoustic model of an active aircraft cabin window
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2017-06-01
This paper presents modeling and design of an active structural acoustic control (ASAC) system for controlling the low frequency sound field transmitted through an aircraft cabin window. The system uses stacked piezoelectric elements arranged in a manner to generate out-of-plane actuation point forces acting on the window panel boundaries. A theoretical vibro-acoustic model for an active quadruple-panel system is developed to characterize the dynamic behavior of the system and achieve a good understanding of the active control performance and the physical phenomena of the sound transmission loss (STL) characteristics. The quadruple-panel system represents the passenger window design used in some classes of modern aircraft with an exterior double pane of Plexiglas, an interior dust cover pane and a glazed dimmable pane, all separated by thin air cavities. The STL characteristics of identical pane window configurations with different piezoelectric actuator sets are analyzed. A parametric study describes the influence of important active parameters, such as the input voltage, number and location of the actuator elements, on the STL is investigated. In addition, a mathematical model for obtaining the optimal input voltage is developed to improve the acoustic attenuation capability of the control system. In general, the achieved results indicate that the proposed ASAC design offers a considerable improvement in the passive sound loss performance of cabin window design without significant effects, such as weight increase, on the original design. Also, the results show that the acoustic control of the active model with piezoelectric actuators bonded to the dust cover pane generates high structural vibrations in the radiating panel (dust cover) and an increase in sound power radiation. High active acoustic attenuation can be achieved by designing the ASAC system to apply active control forces on the inner Plexiglas panel or dimmable panel by installing the actuators on the
Theoretical models for duct acoustic propagation and radiation
Eversman, Walter
1991-01-01
The development of computational methods in acoustics has led to the introduction of analysis and design procedures which model the turbofan inlet as a coupled system, simultaneously modeling propagation and radiation in the presence of realistic internal and external flows. Such models are generally large, require substantial computer speed and capacity, and can be expected to be used in the final design stages, with the simpler models being used in the early design iterations. Emphasis is given to practical modeling methods that have been applied to the acoustical design problem in turbofan engines. The mathematical model is established and the simplest case of propagation in a duct with hard walls is solved to introduce concepts and terminologies. An extensive overview is given of methods for the calculation of attenuation in uniform ducts with uniform flow and with shear flow. Subsequent sections deal with numerical techniques which provide an integrated representation of duct propagation and near- and far-field radiation for realistic geometries and flight conditions.
A model for acoustic absorbent materials derived from coconut fiber
Directory of Open Access Journals (Sweden)
Ramis, J.
2014-03-01
Full Text Available In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The method, which was previously applied to other materials, requires performing measurements of air-flow resistivity and of acoustic impedance for samples of the material under study. The equations that govern the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance and of the propagation constant. These results can be useful since they allow the empirically obtained analytical equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control that incorporate the studied materials.En este trabajo se describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, que ha sido ensayado con éxito en otros materiales, implica la realización de medidas de impedancia y resistencia al flujo de muestras del material bajo estudio. Las ecuaciones que gobiernan el comportamiento desde el punto de vista acústico del material se obtienen a partir del ajuste de ecuaciones de comportamiento de la impedancia acústica y la constante de propagación del material. Los resultados son útiles ya que, al disponer de ecuaciones analíticas obtenidas empíricamente, facilitan la incorporación de estos materiales en predicciones mediante métodos numéricos del comportamiento cuando son instalados formando parte de dispositivos para el control del ruido.
Multiobjective muffler shape optimization with hybrid acoustics modeling.
Airaksinen, Tuomas; Heikkola, Erkki
2011-09-01
This paper considers the combined use of a hybrid numerical method for the modeling of acoustic mufflers and a genetic algorithm for multiobjective optimization. The hybrid numerical method provides accurate modeling of sound propagation in uniform waveguides with non-uniform obstructions. It is based on coupling a wave based modal solution in the uniform sections of the waveguide to a finite element solution in the non-uniform component. Finite element method provides flexible modeling of complicated geometries, varying material parameters, and boundary conditions, while the wave based solution leads to accurate treatment of non-reflecting boundaries and straightforward computation of the transmission loss (TL) of the muffler. The goal of optimization is to maximize TL at multiple frequency ranges simultaneously by adjusting chosen shape parameters of the muffler. This task is formulated as a multiobjective optimization problem with the objectives depending on the solution of the simulation model. NSGA-II genetic algorithm is used for solving the multiobjective optimization problem. Genetic algorithms can be easily combined with different simulation methods, and they are not sensitive to the smoothness properties of the objective functions. Numerical experiments demonstrate the accuracy and feasibility of the model-based optimization method in muffler design. © 2011 Acoustical Society of America
Acoustic model optimisation for a call routing system
CSIR Research Space (South Africa)
Kleynhans, N
2012-11-01
Full Text Available to be difficult Corpus Name # utterances duration in hours Lwazi English 5843 5.03 Lwazi English plus Lwazi language prompts 7770 5.57 NCHLT English 106018 76.97 AST English (5 dialects) 51745 29.80 TABLE I THE NUMBER OF TRAINING UTTERANCES AND DURATION... as the recognition grammar and concept mapping that were used during system evaluation. A. Training Corpora To enable robust acoustic model development in a multilin- gual South African context we focused on three South African corpora. Table I shows the number...
Analytical modelling for predicting the sound field of planar acoustic metasurface
Zhou, Jie; Zhang, Xin; Fang, Yi
2018-01-01
An analytical model is built to predict the acoustic fields of acoustic metasurfaces. The acoustic fields are investigated for a Gaussian sound beam incident on the acoustic metasurfaces. The Gaussian sound beam is decomposed into a set of discrete elementary plane waves. The diffraction caused by the acoustic metasurfaces can be obtained using this analytical model, which is validated with the numerical simulations for the different incident angles of the Gaussian sound beam. This model overcomes the limitation of the method based on the generalised Snell's law which can only predict the direction of a specific diffracted order. Actually, this analytical model can be also used to predict the sound fields of acoustic metasurfaces under any incident sound if its Fourier transforms exist. This conclusion is demonstrated by studying the sound field for a point sound source incident on the acoustic metasurface. The acoustic admittances of acoustic metasurfaces are required in the calculation of the analytical model. Therefore, a numerical method for obtaining the effective acoustic admittances is proposed for the structurally complex metasurfaces without the analytical expressions of material properties, such as equivalent density and sound speed.
Effective-range dependence of two-dimensional Fermi gases
Schonenberg, L. M.; Verpoort, P. C.; Conduit, G. J.
2017-08-01
The Feshbach resonance provides precise control over the scattering length and effective range of interactions between ultracold atoms. We propose the ultratransferable pseudopotential to model effective interaction ranges -1.5 ≤kF2Reff2≤0 , where Reff is the effective range and kF is the Fermi wave vector, describing narrow to broad Feshbach resonances. We develop a mean-field treatment and exploit the pseudopotential to perform a variational and diffusion Monte Carlo study of the ground state of the two-dimensional Fermi gas, reporting on the ground-state energy, contact, condensate fraction, momentum distribution, and pair-correlation functions as a function of the effective interaction range across the BEC-BCS crossover. The limit kF2Reff2→-∞ is a gas of bosons with zero binding energy, whereas ln(kFa )→-∞ corresponds to noninteracting bosons with infinite binding energy.
Modeling skull's acoustic attenuation and dispersion on photoacoustic signal
Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.
2017-03-01
Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.
Energy Technology Data Exchange (ETDEWEB)
Aldridge, David Franklin; Collier, Sandra L. (U.S. Army Research Laboratory); Marlin, David H. (U.S. Army Research Laboratory); Ostashev, Vladimir E. (NOAA/Environmental Technology Laboratory); Symons, Neill Phillip; Wilson, D. Keith (U.S. Army Cold Regions Research Engineering Lab.)
2005-05-01
This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.
A theoretical approach to room acoustic simulations based on a radiative transfer model
DEFF Research Database (Denmark)
Ruiz-Navarro, Juan-Miguel; Jacobsen, Finn; Escolano, José
2010-01-01
by incorporating a propagation medium that absorbs and scatters radiation, handling both diffuse and non-diffuse reflections on boundaries and objects in the room. The main scope of this model is to provide a proper foundation for a wide number of room acoustic simulation models, in order to establish and unify...... their principles. It is shown that this room acoustic modeling technique establishes the basis of two recently proposed algorithms, the acoustic diffusion equation and the room acoustic rendering equation. Both methods are derived in detail using an analytical approximation and a simplified integral equation...
Acoustic Modeling for Aqua Ventus I off Monhegan Island, ME
Energy Technology Data Exchange (ETDEWEB)
Whiting, Jonathan M.; Hanna, Luke A.; DeChello, Nicole L.; Copping, Andrea E.
2013-10-31
The DeepCwind consortium, led by the University of Maine, was awarded funding under the US Department of Energy’s Offshore Wind Advanced Technology Demonstration Program to develop two floating offshore wind turbines in the Gulf of Maine equipped with Goldwind 6 MW direct drive turbines, as the Aqua Ventus I project. The Goldwind turbines have a hub height of 100 m. The turbines will be deployed in Maine State waters, approximately 2.9 miles off Monhegan Island; Monhegan Island is located roughly 10 miles off the coast of Maine. In order to site and permit the offshore turbines, the acoustic output must be evaluated to ensure that the sound will not disturb residents on Monhegan Island, nor input sufficient sound levels into the nearby ocean to disturb marine mammals. This initial assessment of the acoustic output focuses on the sound of the turbines in air by modeling the assumed sound source level, applying a sound propagation model, and taking into account the distance from shore.
Improving the Navy’s Passive Underwater Acoustic Monitoring of Marine Mammal Populations
2014-09-30
modeling effort. The C version of the Range-dependent Acoustic Model (“ CRAM ”), a parabolic equation-based numerical model developed by Richard...bottom using Hamilton’s empirical equations (Hamilton, 1980). Although a few areas in the Southern California Bight have been well studied , and
Airflow resistivity of models of fibrous acoustic materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1996-01-01
for the resistivity are given, which are valid for the cylinder (fiber) concentrations found in acoustic materials. A one-dimensional model consisting of parallel plates with random spacing between the plates is first discussed. Then a two-dimensional model consisting of parallel cylinders randomly spaced is treated......A new way of calculating the airflow resistivity of randomly placed parallel cylinders is presented. The calculation is based on Voronoi polygons, and the resistivity is given by the mean spacing between the fibers, their diameters, and the physical properties of air. New explicit formulas...... for flow parallel and perpendicular to the cylinders. The resistivity formulas are exact for plates and approximate for cylinders....
Long Range Dependence Prognostics for Bearing Vibration Intensity Chaotic Time Series
Directory of Open Access Journals (Sweden)
Qing Li
2016-01-01
Full Text Available According to the chaotic features and typical fractional order characteristics of the bearing vibration intensity time series, a forecasting approach based on long range dependence (LRD is proposed. In order to reveal the internal chaotic properties, vibration intensity time series are reconstructed based on chaos theory in phase-space, the delay time is computed with C-C method and the optimal embedding dimension and saturated correlation dimension are calculated via the Grassberger–Procaccia (G-P method, respectively, so that the chaotic characteristics of vibration intensity time series can be jointly determined by the largest Lyapunov exponent and phase plane trajectory of vibration intensity time series, meanwhile, the largest Lyapunov exponent is calculated by the Wolf method and phase plane trajectory is illustrated using Duffing-Holmes Oscillator (DHO. The Hurst exponent and long range dependence prediction method are proposed to verify the typical fractional order features and improve the prediction accuracy of bearing vibration intensity time series, respectively. Experience shows that the vibration intensity time series have chaotic properties and the LRD prediction method is better than the other prediction methods (largest Lyapunov, auto regressive moving average (ARMA and BP neural network (BPNN model in prediction accuracy and prediction performance, which provides a new approach for running tendency predictions for rotating machinery and provide some guidance value to the engineering practice.
Ares I Scale Model Acoustic Test Overpressure Results
Casiano, M. J.; Alvord, D. A.; McDaniels, D. M.
2011-01-01
A summary of the overpressure environment from the 5% Ares I Scale Model Acoustic Test (ASMAT) and the implications to the full-scale Ares I are presented in this Technical Memorandum. These include the scaled environment that would be used for assessing the full-scale Ares I configuration, observations, and team recommendations. The ignition transient is first characterized and described, the overpressure suppression system configuration is then examined, and the final environment characteristics are detailed. The recommendation for Ares I is to keep the space shuttle heritage ignition overpressure (IOP) suppression system (below-deck IOP water in the launch mount and mobile launcher and also the crest water on the main flame deflector) and the water bags.
Innovative High Temperature Acoustic Liner Development and Modeling Project
National Aeronautics and Space Administration — The massive acoustic loads produced by launch vehicles can detrimentally affect the proper functioning of vehicle components, payloads, and launch support...
Modelling of acoustic emission generated in involute spur gear pair
Sharma, Ram Bihari; Parey, Anand; Tandon, Naresh
2017-04-01
Acoustic emission (AE) is an important technique for the condition monitoring and diagnostics of various mechanical system components like gear, bearing, macahine tool etc. Several researchers have found experimentally that gear operating parameters such as speed, load, specific film thickness, temperature etc. influence the energy of AE generated during meshing of the gears. But there is lack of mathematical model to comprehend the actual physical mechanism in the gear for the same. In this study, a theoretical model has been developed to establish a rapport between gear operating parameters and energy of AE on the bases of asperity contact and friction between involute surfaces of gear using Hertzian contact approach, statistical concepts, and varying sliding velocity of gear tooth mechanism. The effects of load sharing, lubrication, and dynamic load condition during the gear mesh cycle are also considered in the developed model. An experimental study has been performed for validation of developed theoretical model. A satisfactory validation has been perceived between the AE rms (root mean square) predicted by the developed theoretical model and obtained experimental results.
Shi, Shuangxia; Su, Zhu; Jin, Guoyong; Liu, Zhigang
2018-01-01
This paper is concerned with the modeling and solution method of a three-dimensional (3D) coupled acoustic system comprising a partially opened cavity coupled with a flexible plate and an exterior field of semi-infinite size, which is ubiquitously encountered in architectural acoustics and is a reasonable representation of many engineering occasions. A general solution method is presented to predict the dynamic behaviors of the three-dimensional (3D) acoustic coupled system, in which the displacement of the plate and the sound pressure in the cavity are respectively constructed in the form of the two-dimensional and three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The effect of the opening is taken into account via the work done by the sound pressure acting at the coupling aperture that is contributed from the vibration of particles on the acoustic coupling interface and on the structural-acoustic coupling interface. Both the acoustic coupling between finite cavity and exterior field and the structural-acoustic coupling between flexible plate and interior acoustic field are considered in the vibro-acoustic modeling of the three-dimensional acoustic coupled acoustic system. The dynamic responses of the coupled structural-acoustic system are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the coupled system. The accuracy and effectiveness of the proposed method are validated through numerical examples and comparison with results obtained by the boundary element analysis. Furthermore, the influence of the opening and the cavity volume on the acoustic behaviors of opened cavity system is studied.
Model-based processing for underwater acoustic arrays
Sullivan, Edmund J
2015-01-01
This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Third...
Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing
Stephens, David, B.
2013-01-01
Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.
Adaptation of Acoustic Model Experiments of STM via Smartphones and Tablets
Thees, Michael; Hochberg, Katrin; Kuhn, Jochen; Aeschlimann, Martin
2017-01-01
The importance of Scanning Tunneling Microscopy (STM) in today's research and industry leads to the question of how to include such a key technology in physics education. Manfred Euler has developed an acoustic model experiment to illustrate the fundamental measuring principles based on an analogy between quantum mechanics and acoustics. Based on…
Time-Evolving Acoustic Propagation Modeling in a Complex Ocean Environment
Colin, M.E.G.G.; Duda, T.F.; Raa, L.A. te; Zon, T. van; Haley Jr., P.J., P. F. J.; Lermusiaux, P.F.J.; Leslie, W.G.; Mirabito, C.; Lam, F.P.A.; Newhall, A.E.; Lin, Y.T.; Lynch, J.F.
2013-01-01
During naval operations, sonar performance estimates often need to be computed in-situ with limited environmental information. This calls for the use of fast acoustic propagation models. Many naval operations are carried out in challenging and dynamic environments. This makes acoustic propagation
FDTD model of acoustic wave interaction with soft targets | Ikata ...
African Journals Online (AJOL)
Our interest has been on the character of the acoustic field inside the target and the interaction parameters which influence it. The numerical simulations suggest that for an acoustically denser target the interior field consist of alternate bands of high-(and low-) pressure, though in a narrow cylindrical target the interior is ...
Full acoustic and thermal characterization of HIFU field in the presence of a ribcage model
Cao, Rui; Le, Nhan; Nabi, Ghulam; Huang, Zhihong
2017-03-01
In the treatment of abdominal organs using high intensity focused ultrasound (HIFU), the patient's ribs are in the pathway of the HIFU beams which could result in acoustic distortion, occasional skin burns and insufficient energy delivered to the target organs. To provide full characterization of HIFU field with the influence of ribcage, the ribcage phantom reconstructed from a patient's CT images was created by tissue mimicking materials and its effect on acoustic field was characterized. The effect of the ribcage on acoustic field has been provided in acoustic pressure distribution, acoustic power and focal temperature. Measurement result shows focus splitting with one main focus and two secondary intensity maxima. With the presence of ribcage phantom, the acoustic pressure was reduced by 48.3% and another two peak values were observed near the main focus, reduced by 65.0% and 71.7% respectively. The acoustic power was decreased by 47.5% to 52.5%. With these characterization results, the form of the focus, the acoustic power, acoustic pressure and temperature rise are provided before the transcostal HIFU treatment, which are significant to determine the energy delivery dose. In conclusion, this ribcage model and characterization technique will be useful for the further study in the abdominal HIFU treatment.
Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing
Nance, Donald K.; Liever, Peter A.
2015-01-01
The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.
Acoustic 3D modeling by the method of integral equations
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2018-02-01
This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.
Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.
Gao, Fei; Zheng, Qian; Zheng, Yuanjin
2014-05-01
Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network
Education in acoustics and speech science using vocal-tract models.
Arai, Takayuki
2012-03-01
Several vocal-tract models were reviewed, with special focus given to the sliding vocal-tract model [T. Arai, Acoust. Sci. Technol. 27(6), 384-388 (2006)]. All of the models have been shown to be excellent tools for teaching acoustics and speech science to elementary through university level students. The sliding three-tube model is based on Fant's three-tube model [G. Fant, Acoustic Theory of Speech Production (Mouton, The Hague, The Netherlands, 2006)] and consists of a long tube with a slider simulating tongue constriction. In this article, the design of the sliding vocal-tract model was reviewed. Then a science workshop was discussed where children were asked to make their own sliding vocal-tract models using simple materials. It was also discussed how the sliding vocal-tract model compares to our other vocal-tract models, emphasizing how the model can be used to instruct students at higher levels, such as undergraduate and graduate education in acoustics and speech science. Through this discussion the vocal-tract models were shown to be a powerful tool for education in acoustics and speech science for all ages of students. © 2012 Acoustical Society of America
Evidence of Long Range Dependence and Self-similarity in Urban Traffic Systems
Energy Technology Data Exchange (ETDEWEB)
Thakur, Gautam S [ORNL; Helmy, Ahmed [University of Florida, Gainesville; Hui, Pan [Hong Kong University of Science & Technology
2015-01-01
Transportation simulation technologies should accurately model traffic demand, distribution, and assignment parame- ters for urban environment simulation. These three param- eters significantly impact transportation engineering bench- mark process, are also critical in realizing realistic traffic modeling situations. In this paper, we model and charac- terize traffic density distribution of thousands of locations around the world. The traffic densities are generated from millions of images collected over several years and processed using computer vision techniques. The resulting traffic den- sity distribution time series are then analyzed. It is found using the goodness-of-fit test that the traffic density dis- tributions follows heavy-tail models such as Log-gamma, Log-logistic, and Weibull in over 90% of analyzed locations. Moreover, a heavy-tail gives rise to long-range dependence and self-similarity, which we studied by estimating the Hurst exponent (H). Our analysis based on seven different Hurst estimators strongly indicate that the traffic distribution pat- terns are stochastically self-similar (0.5 H 1.0). We believe this is an important finding that will influence the design and development of the next generation traffic simu- lation techniques and also aid in accurately modeling traffic engineering of urban systems. In addition, it shall provide a much needed input for the development of smart cities.
Multi-input Multi-output Beta Wavelet Network: Modeling of Acoustic Units for Speech Recognition
Chokri Ben Amar; Mourad Zaied; Ridha Ejbali
2012-01-01
In this paper, we propose a novel architecture of wavelet network called Multi-input Multi-output Wavelet Network MIMOWN as a generalization of the old architecture of wavelet network. This newel prototype was applied to speech recognition application especially to model acoustic unit of speech. The originality of our work is the proposal of MIMOWN to model acoustic unit of speech. This approach was proposed to overcome limitation of old wavelet network model. The use of the multi-input multi...
Gendron, Paul J
2017-04-01
A hierarchical Gaussian mixture model has been proposed to characterize sparse space-time varying shallow water acoustic response functions [Gendron, J. Acoust. Soc. Am. 139, 1923-1937 (2016)]. Considered here is an extension of this model to a uniform linear vertical array in order to provide an empirical validation of the mixture model for receivers of small aperture. An acoustic environment between source and moving receiver is predicated on a small proportion of relatively coherent paths obeying an ensemble frequency-angle-Doppler distribution. Provided are quantile-quantile plots of the discrete mixture model versus the empirical channel coefficients that lend credence to its use as a sparse model for acoustic response functions.
Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms
Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.
1998-01-01
A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.
Acoustic model of micro-pressure wave emission from a high-speed train tunnel
Miyachi, T.
2017-03-01
The micro-pressure wave (MPW) radiated from a tunnel portal can, if audible, cause serious problems around tunnel portals in high-speed railways. This has created a need to develop an acoustic model that considers the topography around a radiation portal in order to predict MPWs more accurately and allow for higher speed railways in the future. An acoustic model of MPWs based on linear acoustic theory is developed in this study. First, the directivity of sound sources and the acoustical effect of topography are investigated using a train launcher facility around a portal on infinitely flat ground and with an infinite vertical baffle plate. The validity of linear acoustic theory is then discussed through a comparison of numerical results obtained using the finite difference method (FDM) and experimental results. Finally, an acoustic model is derived that considers sound sources up to the second order and Green's function to represent the directivity and effect of topography, respectively. The results predicted by this acoustic model are shown to be in good agreement with both numerical and experimental results.
Radhakrishnan, Sreeram
Underwater intrusion detection is an ongoing security concern in port and harbor areas. Of particular interest is to detect SCUBA divers, unmanned underwater vehicles and small boats from their acoustic signature. A thorough understanding of the effects of the shallow water propagating medium on acoustic signals can help develop new technologies and improve the performance of existing acoustic based surveillance systems. The Hudson River Estuary provides us with such a shallow water medium to conduct research and improve our knowledge of shallow water acoustics. Acoustic propagation in the Hudson River Estuary is highly affected by the temporal and spatial variability of salinity and temperature due to tides, freshwater inflows, winds etc. The primary goal of this research is to help develop methodologies to predict the formation of an acoustic field in the realistic environment of the lower Hudson River Estuary. Shallow water high-frequency acoustic propagation experiments were conducted in the Hudson River near Hoboken, New Jersey. Channel Impulse Response (CIR) measurements were carried out in the frequency band from 10 to 100 kHz for distances up to 200 meters in a water depth of 8-10 meters which formed the basis for experimental Transmission Loss (TL). CIR data was also utilized to demonstrate multi-path propagation in shallow water. Acoustic propagation models based on Ray Theory and Parabolic Equation methods were implemented in the frequency band from 10 to 100 kHz and TL was estimated. The sound velocity profiles required as input by acoustic propagation models were calculated from in-situ measurements of temperature, salinity and depth. Surface reflection loss was obtained from CIR data and incorporated into the acoustic propagation models. Experimentally obtained TL was used to validate the acoustic model predictions. An outcome of this research is an operational acoustic transmission loss (TL) forecast system based on the existing, Stevens New York
Acoustic Vocal Tract Model of One-year-old Children
Directory of Open Access Journals (Sweden)
M. Vojnović
2014-11-01
Full Text Available The physical shape of vocal tract and its formant (resonant frequencies are directly related. The study of this functional connectivity is essential in speech therapy practice with children. Most of the perceived children’s speech anomalies can be explained on a physical level: malfunctioning movement of articulation organs. The current problem is that there is no enough data on the anatomical shape of children’s vocal tract to create its acoustic model. Classical techniques for vocal tract shape imaging (X-ray, magnetic resonance, etc. are not appropriate for children. One possibility is to start from the shape of the adult vocal tract and correct it based on anatomical, morphological and articulatory differences between children and adults. This paper presents a method for vocal tract shape estimation of the child aged one year. The initial shapes of the vocal tract refer to the Russian vowels spoken by an adult male. All the relevant anatomical and articulation parameters, that influence the formant frequencies, are analyzed. Finally, the hypothetical configurations of the children’s vocal tract, for the five vowels, are presented.
DEFF Research Database (Denmark)
Hyun, Jaeyub; Kook, Junghwan; Wang, Semyung
2015-01-01
This study proposes an efficient and stable model reduction scheme for the numerical simulation of broadband, inhomogeneous, and anisotropic acoustic systems. Unlike a conventional model reduction scheme, the proposed model reduction scheme uses the adaptive quasi-static Ritz vector (AQSRV...... using the error indicator. "Multiple frequency subintervals" means to divide the frequency band of interest into several frequency bands from the computational time viewpoint. "Adaptive selection of the subinterval information and basis vector" means to select a different number of subintervals...... and basis vectors for use according to the target system. The proposed model reduction scheme is applied to the numerical simulation of the simple mass-damping-spring system and the acoustic metamaterial systems (i.e., acoustic lens and acoustic cloaking device) for the first time. Through these numerical...
National Research Council Canada - National Science Library
Weatherly, Kirk
2000-01-01
This thesis examines two implementations of the parabolic equation approximation to the acoustic wave equation aimed at removing three errors inherent to the wide-angle parabolic equation (WAPE) model...
Xue, S; Mountain, D C; Hubbard, A E
1995-11-01
A simple model for the acoustic enhancement of electrically evoked otoacoustic emissions (EEOEs) is presented in this paper. The model is based on the assumption that the enhancement is a result of the local interaction between the electrical current spreading in the scala media and the basilar membrane (BM) response to acoustic input. The analytical, steady-state response of the 1-dimensional linear cable to sinusoidal current injection is derived and is used to predict the current spreading in the cochlea. Acoustic enhancement at an emission generator is modeled as a magnitude change that is a sigmoid function of the local BM motion. The model results are in good agreement with the experimental findings and support our interpretation that the acoustic enhancement of EEOEs reflects BM tuning.
A room acoustical computer model for industrial environments - the model and its verification
DEFF Research Database (Denmark)
Christensen, Claus Lynge; Foged, Hans Torben
1998-01-01
This paper presents an extension to the traditional room acoustic modelling methods allowing computer modelling of huge machinery in industrial spaces. The program in question is Odeon 3.0 Industrial and Odeon 3.0 Combined which allows the modelling of point sources, surface sources and line...... of an omnidirectional sound source and a microphone. This allows the comparison of simulated results with the ones measured in real rooms. However when simulating the acoustic environment in industrial rooms, the sound sources are often far from being point like, as they can be distributed over a large space...... in the room and may indeed contribute surfaces to the room. Examples of such sources could be ventilation tubes or the surfaces of two turbines as presented in this paper....
Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Wei Qian
2013-01-01
Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.
Structural acoustics model of the violin radiativity profile.
Bissinger, George
2008-12-01
Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages.
Theoretical Model of Acoustic Wave Propagation in Shallow Water
Directory of Open Access Journals (Sweden)
Kozaczka Eugeniusz
2017-06-01
Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.
High frequency acoustic propagation under variable sea surfaces
Senne, Joseph
This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are
Numerical Acoustic Models Including Viscous and Thermal losses: Review of Existing and New Methods
DEFF Research Database (Denmark)
Andersen, Peter Risby; Cutanda Henriquez, Vicente; Aage, Niels
2017-01-01
This work presents an updated overview of numerical methods including acoustic viscous and thermal losses. Numerical modelling of viscothermal losses has gradually become more important due to the general trend of making acoustic devices smaller. Not including viscothermal acoustic losses...... in such numerical computations will therefore lead to inaccurate or even wrong results. Both, Finite Element Method (FEM) and Boundary Element Method (BEM), formulations are available that incorporate these loss mechanisms. Including viscothermal losses in FEM computations can be computationally very demanding, due...... and BEM method including viscothermal dissipation are compared and investigated....
Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development
Putnam, G. C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.
Grazing incidence modeling of a metamaterial-inspired dual-resonance acoustic liner
Beck, Benjamin S.
2014-03-01
To reduce the noise emitted by commercial aircraft turbofan engines, the inlet and aft nacelle ducts are lined with acoustic absorbing structures called acoustic liners. Traditionally, these structures consist of a perforated facesheet bonded on top of a honeycomb core. These traditional perforate over honeycomb core (POHC) liners create an absorption spectra where the maximum absorption occurs at a frequency that is dictated by the depth of the honeycomb core; which acts as a quarter-wave resonator. Recent advances in turbofan engine design have increased the need for thin acoustic liners that are effective at low frequencies. One design that has been developed uses an acoustic metamaterial architecture to improve the low frequency absorption. Specifically, the liner consists of an array of Helmholtz resonators separated by quarter-wave volumes to create a dual-resonance acoustic liner. While previous work investigated the acoustic behavior under normal incidence, this paper outlines the modeling and predicted transmission loss and absorption of a dual-resonance acoustic metamaterial when subjected to grazing incidence sound.
Acoustic modelling of exhaust devices with nonconforming finite element meshes and transfer matrices
Denia, FD.; J. Martínez-Casas; L. Baeza; Fuenmayor, FJ
2012-01-01
Transfer matrices are commonly considered in the numerical modelling of the acoustic behaviour associated with exhaust devices in the breathing system of internal combustion engines, such as catalytic converters, particulate filters, perforated mufflers and charge air coolers. In a multidimensional finite element approach, a transfer matrix provides a relationship between the acoustic fields of the nodes located at both sides of a particular region. This approach can be useful, for example, w...
Development and Application of a Three-Dimensional Seismo-Acoustic Coupled-Mode Model
2015-09-30
calculate acoustic propagation in environments with fluid and elastic bottoms. First, a 3D propagation model based on adiabatic modes was applied to...sediments have been obtained. One highlight of this work is the measurement of the shear wave speed in muds with comparison to a recently developed card...W. M. Carey. Card-house theory of mud sediments containing kaolinite and its acoustical implications. POMA, 5:070001, 2008. http://dx.doi.org/10.1121
One-dimensional acoustic modeling of thermoacoustic instabilities (on cd)
van Kampen, J.F.; Huls, R.A.; Kok, Jacobus B.W.; van der Meer, Theodorus H.; Nilsson, A.; Boden, H.
2003-01-01
In this paper the acoustic stability of a premixed turbulent natural gas flame confined in a combustor is investigated. Specifically when the flame is operated in a lean premixed mode, the thermoacoustic system is known to exhibit instabilities. These arise from a feedback mechanism between the
A model for an acoustically driven microbubble inside a rigid tube
Qamar, Adnan
2014-09-10
A theoretical framework to model the dynamics of acoustically driven microbubble inside a rigid tube is presented. The proposed model is not a variant of the conventional Rayleigh-Plesset category of models. It is derived from the reduced Navier-Stokes equation and is coupled with the evolving flow field solution inside the tube by a similarity transformation approach. The results are computed, and compared with experiments available in literature, for the initial bubble radius of Ro=1.5μm and 2μm for the tube diameter of D=12μm and 200μm with the acoustic parameters as utilized in the experiments. Results compare quite well with the existing experimental data. When compared to our earlier basic model, better agreement on a larger tube diameter is obtained with the proposed coupled model. The model also predicts, accurately, bubble fragmentation in terms of acoustic and geometric parameters.
Kumar, Jagadish; Ananthakrishna, G.
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum
Tajdari, Farnaz; Berkhoff, Arthur P.; de Boer, Andries; Sas, P
2016-01-01
The present work describes the electrical, mechanical and acoustical behavior of a thin honey-comb structure as an acoustic source. The acoustic source has to operate in the low frequency, quasi-static regime and is driven by a piezoelectric stack actuator. In addition, a two-way energy flow between
Fractality Evidence and Long-Range Dependence on Capital Markets: a Hurst Exponent Evaluation
Oprean, Camelia; Tănăsescu, Cristina
2014-07-01
Since the existence of market memory could implicate the rejection of the efficient market hypothesis, the aim of this paper is to find any evidence that selected emergent capital markets (eight European and BRIC markets, namely Hungary, Romania, Estonia, Czech Republic, Brazil, Russia, India and China) evince long-range dependence or the random walk hypothesis. In this paper, the Hurst exponent as calculated by R/S fractal analysis and Detrended Fluctuation Analysis is our measure of long-range dependence in the series. The results reinforce our previous findings and suggest that if stock returns present long-range dependence, the random walk hypothesis is not valid anymore and neither is the market efficiency hypothesis.
Modeling of natural acoustic frequencies of a gas-turbine plant combustion chamber
Zubrilin, I. A.; Gurakov, N. I.; Zubrilin, R. A.; Matveev, S. G.
2017-05-01
The paper presents results of determination of natural acoustic frequencies of a gas-turbine plant annular combustion chamber model using 3D-simulation. At the beginning, a calculation procedure for determining natural acoustic frequencies of the gas-turbine plant combustion chamber was worked out. The effect of spatial inhomogeneity of the flow parameters (fluid composition, pressure, temperature) arising in combustion and some geometrical parameters (cooling holes of the flame tube walls) on the calculation results is studied. It is found that the change of the fluid composition in combustion affects the acoustic velocity not more than 5%; therefore, the air with a volume variable temperature can be taken as a working fluid in the calculation of natural acoustic frequencies. It is also shown that the cooling holes of the flame tube walls with diameter less than 2 mm can be neglected in the determination of the acoustic modes in the frequency range of up to 1000 Hz. This reduces the number of the grid-model elements by a factor of six in comparison with a model that considers all of the holes. Furthermore, a method of export of spatial inhomogeneity of the flow parameters from a CFD solver sector model to the annular combustion chamber model in a modal solver is presented. As a result of the obtained model calculation, acoustic modes of the combustion chamber in the frequency range of up to 1000 Hz are determined. For a standard engine condition, a potentially dangerous acoustic mode with a frequency close to the ripple frequency of the precessing vortex core, which is formed behind the burner device of this combustion chamber, is detected.
Acoustical topology optimization for Zwicker's loudness model - Application to noise barriers
DEFF Research Database (Denmark)
Kook, Junghwan; Koo, Kunmo; Hyun, Jaeyub
2012-01-01
acoustic properties may not represent adequate parameters for optimizing acoustic devices. In this paper, we first present a design method for acoustical topology optimization by considering human's subjective conception of sound. To consider human hearing characteristics. Zwicker's loudness is calculated...... according to DIN45631 (ISO 532B). The main objective of this work is to minimize the main specific loudness of a target critical band rate by optimizing the distribution of the reflecting material in a design domain. The Helmholtz equation is used to model acoustic wave propagation and, it is solved using...... the finite element method. The sensitivity of the main specific loudness is calculated using the adjoint variable method and the chain rule. To demonstrate the effectiveness of the proposed method, various examples of noise barriers are presented with different source and receiver locations. The results...
Integrating acoustic analysis in the architectural design process using parametric modelling
DEFF Research Database (Denmark)
Peters, Brady
2011-01-01
This paper discusses how parametric modeling techniques can be used to provide architectural designers with a better understanding of the acoustic performance of their designs and provide acoustic engineers with models that can be analyzed using computational acoustic analysis software. Architects...... provide a method by which architects and engineers can work together more efficiently and communicate better. This research is illustrated through the design of an architectural project, a new school in Copenhagen, Denmark by JJW Architects, where parametric modeling techniques have been used in different...... are increasingly using parametric modeling techniques in their design processes to allow the exploration of large numbers of design options using multiple criteria. Parametric modeling software can be performance-driven and sound has the potential to become one of these performance-driven dimensions. This can...
Directory of Open Access Journals (Sweden)
Javier Macias-Guarasa
2012-10-01
Full Text Available This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.
Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier
2012-01-01
This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies. PMID:23202021
Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
Zhang, Zhaoyan; Neubauer, Juergen; Berry, David A
2006-11-01
In a single-layered, isotropic, physical model of the vocal folds, distinct phonation types were identified based on the medial surface dynamics of the vocal fold. For acoustically driven phonation, a single, in-phase, x-10 like eigenmode captured the essential dynamics, and coupled with one of the acoustic resonances of the subglottal tract. Thus, the fundamental frequency appeared to be determined primarily by a subglottal acoustic resonance. In contrast, aerodynamically driven phonation did not naturally appear in the single-layered model, but was facilitated by the introduction of a vertical constraint. For this phonation type, fundamental frequency was relatively independent of the acoustic resonances, and two eigenmodes were required to capture the essential dynamics of the vocal fold, including an out-of-phase x-11 like eigenmode and an in-phase x-10 like eigenmode, as described in earlier theoretical work. The two eigenmodes entrained to the same frequency, and were decoupled from subglottal acoustic resonances. With this independence from the acoustic resonances, vocal fold dynamics appeared to be determined primarily by near-field, fluid-structure interactions.
Acoustic Measurements of a Large Civil Transport Main Landing Gear Model
Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.
2016-01-01
Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.
Modeling of Acoustic Pressure Waves in Level-Dependent Earplugs
2008-09-01
of these boundary conditions were applied using user-defined functions ( UDFs ), which are user-written C- code that allows direct access to the FLUENT...ABSTRACT UNCLASSIFIED c. THIS PAGE UNCLASSIFIED 17. LIMITATION OF ABSTRACT UL 18. NUMBER OF PAGES 32 19b. TELEPHONE NUMBER (Include area code ...of interest in auditory acoustics (4). The commercial CFD code FLUENT (5) was used in this study. FLUENT is a general-purpose CFD package that
Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad
2014-11-01
This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Noise control in enclosures: modeling and experiments with T-shaped acoustic resonators.
Li, D; Cheng, L; Yu, G H; Vipperman, J S
2007-11-01
This paper presents a theoretical and experimental study of noise control in enclosures using a T-shaped acoustic resonator array. A general model with multiple resonators is developed to predict the acoustic performance of small resonators placed in an acoustic enclosure. Analytical solutions for the sound pressure inside the enclosure and the volume velocity source strength out of the resonator aperture are derived when a single resonator is installed, which provides insight into the physics of acoustic interaction between the enclosure and the resonator. Based on the understanding of the coupling between the individual resonators and enclosure modes, both targeted and nontargeted, a sequential design methodology is proposed for noise control in the enclosure using an array of acoustic resonators. Design examples are given to illustrate the control performance at a specific or at several resonance peaks within a frequency band of interest. Experiments are conducted to systematically validate the theory and the design method. The agreement between the theoretical and experimental results shows that, with the help of the presented theory and design methodology, either single or multiple resonance peaks of the enclosure can be successfully controlled using an optimally located acoustic resonator array.
DEFF Research Database (Denmark)
Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho
2015-01-01
A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflec...
Treatment of early and late reflections in a hybrid computer model for room acoustics
DEFF Research Database (Denmark)
Naylor, Graham
1992-01-01
The ODEON computer model for acoustics in large rooms is intended for use both in design (by predicting room acoustical indices quickly and easily) and in research (by forming the basis of an auralization system and allowing study of various room acoustical phenomena). These conflicting demands...... preclude the use of both ``pure'' image source and ``pure'' particle tracing methods. A hybrid model has been developed, in which rays discover potential image sources up to a specified order. Thereafter, the same ray tracing process is used in a different way to rapidly generate a dense reverberant decay....... In this paper the computational model is described. Particular attention is paid to alternative methods of implementing the reverberant tail, and to the problems that arise when joining early and late parts of a reflectogram generated with different algorithms. A companion paper presents the features...
Directory of Open Access Journals (Sweden)
Veras Carlos A. G.
2002-01-01
Full Text Available The chemical percolation devolatilization model (CPD was extended for the prediction of drying and devolatilization of coal particles in high intensity acoustic fields found in Rijke tube reactors. The acoustic oscillations enhance the heat and mass transfer processes in the fuel bed as well as in the freeboard, above the grate. The results from simulations in a Rijke tube combustor have shown an increase in the rate of water evaporation and thermal degradation of the particles. The devolatilization model, based on chemical percolation, applied in pulsating regime allowed the dynamic prediction on the yields of CO, CO2, CH4, H2O, other light gases as well as tar which are important on ignition and stabilization of flames. The model predicted the quantity and form of nitrogen containing species generated during devolatilization, for which knowledge is strategically indispensable for reducing pollutant emissions (NOx in flames under acoustic excitation .
Analytical Modeling of Acoustic Phonon-Limited Mobility in Strained Graphene Nanoribbons
Yousefvand, Ali; Ahmadi, Mohammad T.; Meshginqalam, Bahar
2017-11-01
Recent advances in graphene nanoribbon-based electronic devices encourage researchers to develop modeling and simulation methods to explore device physics. On the other hand, increasing the operating speed of nanoelectronic devices has recently attracted significant attention, and the modification of acoustic phonon interactions because of their important effect on carrier mobility can be considered as a method for carrier mobility optimization which subsequently enhances the device speed. Moreover, strain has an important influence on the electronic properties of the nanoelectronic devices. In this paper, the acoustic phonons mobility of armchair graphene nanoribbons ( n-AGNRs) under uniaxial strain is modeled analytically. In addition, strain, width and temperature effects on the acoustic phonon mobility of strained n-AGNRs are investigated. An increment in the strained AGNR acoustic phonon mobility by increasing the ribbon width is reported. Additionally, two different behaviors for the acoustic phonon mobility are verified by increasing the applied strain in 3 m, 3 m + 2 and 3 m + 1 AGNRs. Finally, the temperature effect on the modeled AGNR phonon mobility is explored, and mobility reduction by raising the temperature is reported.
Three-dimensional point-cloud room model for room acoustics simulations
DEFF Research Database (Denmark)
Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte
2013-01-01
acquisition and its representation with a 3D point-cloud model, as well as utilization of such a model for the room acoustics simulations. A room is scanned with a commercially available input device (Kinect for Xbox360) in two different ways; the first one involves the device placed in the middle of the room...
Three-dimensional point-cloud room model in room acoustics simulations
DEFF Research Database (Denmark)
Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte
2013-01-01
acquisition and its representation with a 3D point-cloud model, as well as utilization of such a model for the room acoustics simulations. A room is scanned with a commercially available input device (Kinect for Xbox360) in two different ways; the first one involves the device placed in the middle of the room...
Acoustic and Perceptual Effects of Left-Right Laryngeal Asymmetries Based on Computational Modeling
Samlan, Robin A.; Story, Brad H.; Lotto, Andrew J.; Bunton, Kate
2014-01-01
Purpose: Computational modeling was used to examine the consequences of 5 different laryngeal asymmetries on acoustic and perceptual measures of vocal function. Method: A kinematic vocal fold model was used to impose 5 laryngeal asymmetries: adduction, edge bulging, nodal point ratio, amplitude of vibration, and starting phase. Thirty /a/ and /?/…
Sparse Linear Parametric Modeling of Room Acoustics with Orthonormal Basis Functions
DEFF Research Database (Denmark)
Vairetti, G.; von Waterschoot, T.; Moonen, M.
2014-01-01
Orthonormal Basis Function (OBF) models provide a stable and well-conditioned representation of a linear system. When used for the modeling of room acoustics, useful information about the true dynamics of the system can be introduced by a proper selection of a set of poles, which however appear non...
An Adaptive Neural Mechanism with a Lizard Ear Model for Binaural Acoustic Tracking
DEFF Research Database (Denmark)
Shaikh, Danish; Manoonpong, Poramate
2016-01-01
Acoustic tracking of a moving sound source is relevant in many domains including robotic phonotaxis and human-robot interaction. Typical approaches rely on processing time-difference-of-arrival cues obtained via multi-microphone arrays with Kalman or particle filters, or other computationally...... expensive algorithms. We present a novel bioinspired solution to acoustic tracking that uses only two microphones. The system is based on a neural mechanism coupled with a model of the peripheral auditory system of lizards. The peripheral auditory model provides sound direction information which the neural...
Development of a pressure based room acoustic model using impedance descriptions of surfaces
DEFF Research Database (Denmark)
Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho
2013-01-01
and acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection...... absorption coefficient, thus retaining the phase and the angle dependence. The approach of the proposed model will be to calculate the pressure impulse response using a combination of the image source method and acoustic radiosity. The image source method will account for the specular reflections...
The Exploration of an Objective Model for Roughness With Several Acoustic Markers.
Latoszek, Ben Barsties V; De Bodt, Marc; Gerrits, Ellen; Maryn, Youri
2017-05-29
In voice assessment, the evaluation of voice quality is a major component in which roughness has received wide acceptance as a major subtype of abnormal voice quality. The aim of the present study was to develop a new multivariate acoustic model for the evaluation of roughness. In total, 970 participants with dysphonia and 88 participants with normal voice were included. Concatenated voice samples of continuous speech and sustained vowel [a:] were perceptually judged on roughness severity. Acoustic analyses were conducted on the voiced segments of the continuous speech sample plus sustained vowel as well. A stepwise multiple linear regression analysis was applied to construct an acoustic model of the best acoustic predictors. Concurrent validity, diagnostic accuracy, and cross-validation were verified on the basis of Spearman correlation coefficient (r s ), several estimates of the receiver operating characteristics plus the likelihood ratio, and iterated internal cross-correlations. Six experts were included for perceptual analysis based on acceptable rater reliability. Stepwise multiple regression analysis yielded a 12-variable acoustic model. A marked correlation was identified between the model and the perceptual judgment (r s = 0.731, P = 0.000). The cross-correlations confirmed a high comparable degree of association. However, the receiver operating characteristics and likelihood ratio results showed the best diagnostic outcome at a threshold of 2.92, with a sensitivity of 51.9% and a specificity of 94.9%. Currently, the newly developed roughness model is not recommended for clinical practice. Further research is needed to detect the acoustic complexity of roughness (eg, multiplophonia, irregularity, chaotic structure, glottal fry, etc). Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Mapping the sound field of an erupting submarine volcano using an acoustic glider.
Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W
2011-03-01
An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds. © 2011 Acoustical Society of America
An Acoustic Demonstration Model for CW and Pulsed Spectrosocopy Experiments
Starck, Torben; Mäder, Heinrich; Trueman, Trevor; Jäger, Wolfgang
2009-06-01
High school and undergraduate students have often difficulties if new concepts are introduced in their physics or chemistry lectures. Lecture demonstrations and references to more familiar analogues can be of great help to the students in such situations. We have developed an experimental setup to demonstrate the principles of cw absorption and pulsed excitation - emission spectroscopies, using acoustical analogues. Our radiation source is a speaker and the detector is a microphone, both controlled by a computer sound card. The acoustical setup is housed in a plexiglas box, which serves as a resonator. It turns out that beer glasses are suitable samples; this also helps to keep the students interested! The instrument is controlled by a LabView program. In a cw experiment, the sound frequency is swept through a certain frequency range and the microphone response is recorded simultaneously as function of frequency. A background signal without sample is recorded, and background subtraction yields the beer glass spectrum. In a pulsed experiment, a short sound pulse is generated and the microphone is used to record the resulting emission signal of the beer glass. A Fourier transformation of the time domain signal gives then the spectrum. We will discuss the experimental setup and show videos of the experiments.
Acoustic Sensor Self-Localization: Models and Recent Results
Directory of Open Access Journals (Sweden)
Diego B. Haddad
2017-01-01
Full Text Available The wide availability of mobile devices with embedded microphones opens up opportunities for new applications based on acoustic sensor localization (ASL. Among them, this paper highlights mobile device self-localization relying exclusively on acoustic signals, but with previous knowledge of reference signals and source positions. The problem of finding the sensor position is stated as a function of estimated times-of-flight (TOFs or time-differences-of-flight (TDOFs from the sound sources to the target microphone, and the main practical issues involved in TOF estimation are discussed. Least-squares ASL solutions are introduced, followed by other strategies inspired by sound source localization solutions: steered-response power, which improves localization accuracy, and a new region-based search, which alleviates complexity. A set of complementary techniques for further improvement of TOF/TDOF estimates are reviewed: sliding windows, matching pursuit, and TOF selection. The paper proceeds with proposing a novel ASL method that combines most of the previous material, whose performance is assessed in a real-world example: in a typical lecture room, the method achieves accuracy better than 20 cm.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
Energy Technology Data Exchange (ETDEWEB)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2017-02-15
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
Long-range Acoustic Interactions in Insect Swarms - An Adaptive Gravity Model
Gorbonos, Dan; Ianconescu, Reuven; Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.; Gov, Nir S.
The collective motion of groups of animals emerges from the net effect of the interactions between individual members of the group. In many cases, such as birds, fish, or ungulates, these interactions are mediated by sensory stimuli that predominantly arise from nearby neighbors. But not all stimuli in animal groups are short range. We consider mating swarms of midges, which are thought to interact primarily via long-range acoustic stimuli. We exploit the similarity in form between the decay of acoustic and gravitational sources to build a model for swarm behavior. By accounting for the adaptive nature of the midges' acoustic sensing, we show that our ``adaptive gravity'' model makes mean-field predictions that agree well with experimental observations of laboratory swarms. Our results highlight the role of sensory mechanisms and interaction range in collective animal behavior. Additionally, the adaptive interactions open a new class of equations of motion, which may appear in other biological contexts.
Directory of Open Access Journals (Sweden)
Natalia A. Tomashenko
2016-11-01
Full Text Available Subject of Research. We study speaker adaptation of deep neural network (DNN acoustic models in automatic speech recognition systems. The aim of speaker adaptation techniques is to improve the accuracy of the speech recognition system for a particular speaker. Method. A novel method for training and adaptation of deep neural network acoustic models has been developed. It is based on using an auxiliary GMM (Gaussian Mixture Models model and GMMD (GMM-derived features. The principle advantage of the proposed GMMD features is the possibility of performing the adaptation of a DNN through the adaptation of the auxiliary GMM. In the proposed approach any methods for the adaptation of the auxiliary GMM can be used, hence, it provides a universal method for transferring adaptation algorithms developed for GMMs to DNN adaptation.Main Results. The effectiveness of the proposed approach was shown by means of one of the most common adaptation algorithms for GMM models – MAP (Maximum A Posteriori adaptation. Different ways of integration of the proposed approach into state-of-the-art DNN architecture have been proposed and explored. Analysis of choosing the type of the auxiliary GMM model is given. Experimental results on the TED-LIUM corpus demonstrate that, in an unsupervised adaptation mode, the proposed adaptation technique can provide, approximately, a 11–18% relative word error reduction (WER on different adaptation sets, compared to the speaker-independent DNN system built on conventional features, and a 3–6% relative WER reduction compared to the SAT-DNN trained on fMLLR adapted features.
Theoretical and Numerical Modeling of Acoustic Metamaterials for Aeroacoustic Applications
Directory of Open Access Journals (Sweden)
Umberto Iemma
2016-05-01
Full Text Available The advent, during the first decade of the 21st century, of the concept of acoustic metamaterial has disclosed an incredible potential of development for breakthrough technologies. Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial task, because of the different structure of the governing equations, characterized by the presence of the background aerodynamic convection. Some of the approaches recently introduced to circumvent the problem are biased by a fundamental assumption that makes the actual realization of devices extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic convection in order to modify suitably the acoustic field and obtain the desired effect, thus implying the porosity of the cloaking device. In the present paper, we propose an interpretation of the metamaterial design that removes this unlikely assumption, focusing on the identification of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance profile required to achieve the desired scattering abatement. The attention is focused on a moving obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is written in a frame of reference rigidly connected to the moving object to couple the convective wave equation in the hosting medium with the inertially-anisotropic wave operator within the cloak. The problem is recast in an integral form and numerically solved through a boundary-field element method. The matching of the local wave vector is used to derive a convective design of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable enhancement of the masking capability of the convected design. The numerical method developed shows a remarkable computational efficiency, completing a simulation of the entire
Autonomic imbalance induced breakdown of long-range dependence in healthy heart rate.
Aoyagi, N; Struzik, Z R; Kiyono, K; Yamamoto, Y
2007-01-01
The investigation of the relation between the long-range correlation property of heart rate and autonomic balance. An investigation of the fractal scaling properties of heart rate variability was carried out by using detrended fluctuation analysis (DFA). Eleven healthy subjects were examined for two consecutive days, which included usual daily activity, strenuous prolonged experimental exercise, and sleep. We also considered two patient groups with autonomic dysfunction characterized by selective sympathetic and parasympathetic dominance. Robust long-range dependence in heart rate is observed only in the state of usual daily activity, characterized by normal heart rate typical of balanced autonomic sympathetic and parasympathetic regulation. This confirms the previously postulated behavioral independence of heart rate regulation, but reveals that the occurrence of 1/f, long-range dependence is restricted to only the state of autonomic balance. Both the sympathetic dominant high heart rate state, realized during strenuous experimental exercise, and the parasympathetic dominant low heart rate state, prevalent in (deep) sleep, are characterized by uncorrelated, near white-noise-like scaling, lacking long-range dependence. Remarkably, the breakdown of the long-range correlations observed in healthy heart rate in the states of sympathetic and parasympathetic dominance is in stark contrast to the increased correlations which have previously been observed in neurogenic parasympathetic and sympathetic dominance in patients suffering from primary autonomic failure and congestive heart failure, respectively. Our findings further reveal the diagnostic capabilities of heart rate dynamics, by differentiating physiological healthy states from pathology.
La Torraca, P.; Larcher, L.; Bobinger, M.; Pavan, P.; Seeber, B.; Lugli, P.
2017-06-01
Recent developments of ultra-low heat capacity nanostructured materials revived the interest in the thermo-acoustic (TA) loudspeaker technology, which shows important advantages compared to the classical dynamic loudspeakers as they feature a lower cost and weight, flexibility, conformability to the surface of various shapes, and transparency. The development of the TA loudspeaker technology requires accurate physical models connecting the material properties to the thermal and acoustic speaker's performance. We present here a combined theoretical and experimental analysis of TA loudspeakers, where the electro-thermal and the thermo-acoustic transductions are handled separately, thus allowing an in-depth description of both the pressure and temperature dynamics. The electro-thermal transduction is analyzed by accounting for all the heat flow processes taking place between the TA loudspeaker and the surrounding environment, with focus on their frequency dependence. The thermo-acoustic conversion is studied by solving the coupled thermo-acoustic equations, derived from the Navier-Stokes equations, and by exploiting the Huygens-Fresnel principle to decompose the TA loudspeaker surface into a dense set of TA point sources. A general formulation of the 3D pressure field is derived summing up the TA point source contributions via a Rayleigh integral. The model is validated against temperature and sound pressure level measured on the TA loudspeaker sample made of a Silver Nanowire random network deposited on a polyimide substrate. A good agreement is found between measurements and simulations, demonstrating that the model is capable of connecting material properties to the thermo-acoustic performance of the device, thus providing a valuable tool for the design and optimization of TA loudspeakers.
Langasite surface acoustic wave gas sensors: modeling and verification
Energy Technology Data Exchange (ETDEWEB)
Peng Zheng,; Greve, D. W.; Oppenheim, I. J.
2013-03-01
We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.
Liever, Peter A.; West, Jeffrey S.; Harris, Robert E.
2016-01-01
A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate Discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured mesh Discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.
Adaptation of acoustic model experiments of STM via smartphones and tablets
Thees, Michael; Hochberg, Katrin; Kuhn, Jochen; Aeschlimann, Martin
2017-10-01
The importance of Scanning Tunneling Microscopy (STM) in today's research and industry leads to the question of how to include such a key technology in physics education. Manfred Euler has developed an acoustic model experiment to illustrate the fundamental measuring principles based on an analogy between quantum mechanics and acoustics. Based on earlier work we applied mobile devices such as smartphones and tablets instead of using a computer to record and display the experimental data and thus converted Euler's experimental setup into a low-cost experiment that is easy to build and handle by students themselves.
Acoustical Measurement and Biot Model for Coral Reef Detection and Quantification
Directory of Open Access Journals (Sweden)
Henry M. Manik
2016-01-01
Full Text Available Coral reefs are coastal resources and very useful for marine ecosystems. Nowadays, the existence of coral reefs is seriously threatened due to the activities of blast fishing, coral mining, marine sedimentation, pollution, and global climate change. To determine the existence of coral reefs, it is necessary to study them comprehensively. One method to study a coral reef by using a propagation of sound waves is proposed. In this research, the measurement of reflection coefficient, transmission coefficient, acoustic backscattering, hardness, and roughness of coral reefs has been conducted using acoustic instruments and numerical modeling using Biot theory. The results showed that the quantification of the acoustic backscatter can classify the type of coral reef.
Ray-trace modeling of acoustic Green's function based on the semiclassical (eikonal) approximation.
Prislan, Rok; Veble, Gregor; Svenšek, Daniel
2016-10-01
The Green's function (GF) for the scalar wave equation is numerically constructed by an advanced geometric ray-tracing method based on the eikonal approximation related to the semiclassical propagator. The underlying theory is first briefly introduced, and then it is applied to acoustics and implemented in a ray-tracing-type numerical simulation. The so constructed numerical method is systematically used to calculate the sound field in a rectangular (cuboid) room, yielding also the acoustic modes of the room. The simulated GF is rigorously compared to its analytic approximation. Good agreement is found, which proves the devised numerical approach potentially useful also for low frequency acoustic modeling, which is in practice not covered by geometrical methods.
A Multi-Model Reduction Technique for Optimization of Coupled Structural-Acoustic Problems
DEFF Research Database (Denmark)
Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas
2016-01-01
Finite Element models of structural-acoustic coupled systems can become very large for complex structures with multiple connected parts. Optimization of the performance of the structure based on harmonic analysis of the system requires solving the coupled problem iteratively and for several...
Elastic Changes of Capsule in a Rat Knee Contracture Model Assessed by Scanning Acoustic Microscopy
Hagiwara, Y.; Chimoto, E.; Ando, A.; Saijo, Y.; Itoi, E.
Sound speed of a capsule in a rat knee contracture model was measured by scanning acoustic microscopy. There was no statistical significant difference in the anterior capsule compared with the control group. However, the sound speed of the posterior capsule was significantly greater compared with the control group after prolonged immobilization.
Accounting for false-positive acoustic detections of bats using occupancy models
Clement, Matthew J.; Rodhouse, Thomas J.; Ormsbee, Patricia C.; Szewczak, Joseph M.; Nichols, James D.
2014-01-01
1. Acoustic surveys have become a common survey method for bats and other vocal taxa. Previous work shows that bat echolocation may be misidentified, but common analytic methods, such as occupancy models, assume that misidentifications do not occur. Unless rare, such misidentifications could lead to incorrect inferences with significant management implications.
Computer programs for forward and inverse modeling of acoustic and electromagnetic data
Ellefsen, Karl J.
2011-01-01
A suite of computer programs was developed by U.S. Geological Survey personnel for forward and inverse modeling of acoustic and electromagnetic data. This report describes the computer resources that are needed to execute the programs, the installation of the programs, the program designs, some tests of their accuracy, and some suggested improvements.
Modeling nonlinear acoustic waves in media with inhomogeneities in the coefficient of nonlinearity
Demi, L.; Verweij, M.D.; Van Dongen, K.W.A.
2010-01-01
The refraction and scattering of nonlinear acoustic waves play an important role in the realistic application of medical ultrasound. One cause of these effects is the tissue dependence of the nonlinear medium behavior. A method that is able to model those effects is essential for the design of
Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model
Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming; Hu, Gengkai; Sun, Chin-Teh
2014-12-01
By considering the membrane's dissipation, the membrane-type acoustic metamaterial (MAM) has been demonstrated as a super absorber for low-frequency sound. In the paper, a theoretical vibroacoustic plate model is developed to reveal sound energy absorption mechanism within the MAM under a plane normal incidence. Based on the plate model in conjunction with the point matching method, the in-plane strain energy of the membrane due to the resonant and antiresonant motion of the attached masses can be accurately captured by solving the coupled vibroacoustic integrodifferential equation. Therefore, the sound absorption of the MAM is obtained and discussed, which is also in good agreement with the prediction from the finite element method. In particular, microstructure effects including eccentricity of the attached masses, the depth, thickness and loss factor of the membrane on sound absorption peak values are quantitatively investigated.
A porosity-based Biot model for acoustic waves in snow
Sidler, Rolf
2015-01-01
Phase velocities and attenuation in snow can not be explained by the widely used elastic or viscoelastic models for acoustic wave propagation. Instead, Biot's model of wave propagation in porous materials should be used. However, the application of Biot's model is complicated by the large property space of the underlying porous material. Here the properties of ice and air as well as empirical relationships are used to define the properties of snow as a function of porosity. Based on these rel...
Martellotta, Francesco
2009-09-01
St. Peter's Basilica is one of the largest buildings in the world, having a huge volume resulting from the addition of different parts. Consequently, sound propagation cannot be interpreted using a conventional approach and requires experimental measures to be compared with statistical-acoustics and geometrical predictions in order to explain the interplay between shape, materials, and sound waves better. In previous research one of the most evident effects, the surprisingly low reverberation time, was believed to result from acoustical coupling phenomena. Taking advantage of more refined measuring techniques available today an acoustic survey was carried out and the results were analyzed using different methods, including Bayesian parameter estimation of multiple slope decays and directional energy plots, which showed that coupling effects actually take place, even though measured reverberation times were longer than those given in previous studies. In addition, experimental results were compared with geometrical- and statistical-acoustic models of the basilica, which showed that careful selection of input data and, in statistical models, the inclusion of phenomena such as direct sound radiation and non-diffuse energy transfer, allow obtaining accurate results. Finally, both models demonstrated that reduced reverberation depends more on increased absorption of decorated surfaces than on coupling effects.
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Andersen, Peter Risby; Jensen, Jakob Søndergaard
2016-01-01
In recent years, boundary element method (BEM) and finite element method (FEM) implementations of acoustics in fluids with viscous and thermal losses have been developed. They are based on the linearized Navier–Stokes equations with no flow. In this paper, such models with acoustic losses...
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Andersen, Peter Risby; Jensen, Jakob Søndergaard
2016-01-01
In recent years, boundary element method (BEM) and finite element method (FEM) implementations of acoustics in fluids with viscous and thermal losses have been developed. They are based on the linearized Navier–Stokes equations with no flow. In this paper, such models with acoustic losses are app...
2006-09-30
wave equation (PE) [ Hardin and Tappert, 1970], well known as one of the most important wave-theoretic, range-dependent propagation models [ Jensen ...5- REFERENCES F. B. Jensen , W. A. Kuperman, M. B. Porter and H. Schmidt, Computation Ocean Acoustics, Springer, 2000. PUBLICATIONS A. R
Passive Acoustic Leak Detection for Sodium Cooled Fast Reactors Using Hidden Markov Models
Marklund, A. Riber; Kishore, S.; Prakash, V.; Rajan, K. K.; Michel, F.
2016-06-01
Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970s and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control.
Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models
Energy Technology Data Exchange (ETDEWEB)
Riber Marklund, A. [CEA, Cadarache, DEN/DTN/STCP/LIET, Batiment 202, 13108 St Paul-lez-Durance, (France); Kishore, S. [Fast Reactor Technology Group of IGCAR, (India); Prakash, V. [Vibrations Diagnostics Division, Fast Reactor Technology Group of IGCAR, (India); Rajan, K.K. [Fast Reactor Technology Group and Engineering Services Group of IGCAR, (India)
2015-07-01
Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)
Casiano, Matthew J.; Zoladz, Tom F.
2004-01-01
Cracks were found on bellows flow liners in the liquid hydrogen feedlines of several space shuttle orbiters in 2002. An effort to characterize the fluid environment upstream of the space shuttle main engine low-pressure fuel pump was undertaken to help identify the cause of the cracks and also provide quantitative environments and loads of the region. Part of this effort was to determine the duct acoustics several inches upstream of the low-pressure fuel pump in the region of a bellows joint. A finite element model of the complicated geometry was made using three-dimensional fluid elements. The model was used to describe acoustics in the complex geometry and played an important role in the investigation. Acoustic mode shapes and natural frequencies of the liquid hydrogen in the duct and in the cavity behind the flow liner were determined. Forced response results were generated also by applying an edgetone-like forcing to the liner slots. Studies were conducted for state conditions and also conditions assuming two-phase entrapment in the backing cavity. Highly instrumented single-engine hot fire data confirms the presence of some of the predicted acoustic modes.
M-Estimators in Linear Models with Long Range Dependent Errors
1990-02-01
4) below. Proof To simplify writing, let a := AN l c N i , bi := BNlCNi , 1 < i < N. Now, by the absolute continuity of 7p, the Fubini Theorem and...are of the order 0 p(N 1 /2) and hence one must have AN = Ni / 2 . Note that, in view of the Ergodic Theorem , the first term in the above approximation...linearity of S. The following theorem gives a set of sufficient conditions for such a result to hold. It also gives the required approximation to M
Analytical and finite element modelling of the acoustic behaviour of exhaust mufflers
Denia Guzman, Francisco David
This Thesis is focused on the development and implementation of efficient methods for the acoustic modelling and design of exhaust mufflers for internal combustion engines, by means of tools based on analytical and numerical solutions of the governing wave equation. First, the finite element method is considered. The acoustic modelling of perforated components inside a muffler, including their interaction with the moving medium, is investigated in detail. The influence of the perforate boundary conditions on the acoustic behaviour of the muffler is also analysed. In addition, an h-adaptive refinement strategy is defined in order to obtain the optimum mesh for a set of natural frequencies and modes shapes when considered simultaneously. The main core of the Thesis deals with the development of analytical techniques, which take into account the modal solution of the wave equation in ducts. The elliptical geometry is quite relevant, since it is widely used in automotive mufflers and relatively few reported studies have been found regarding its acoustic attenuation performance. This justifies a detailed analysis of the modal properties of elliptical ducts, for which polynomial fitting curves are subsequently evaluated to enable the prediction of the cutoff frequencies as a function of muffler eccentricity and dimension. Based on the previous modal information, the formulation of the mode-matching technique is developed in detail for mufflers involving elliptical ducts in order to evaluate their acoustic attenuation performance. Mufflers with arbitrary, but axially uniform, cross-section are also considered by means of the mode-matching method, and combining the analytical and numerical information of the modal properties. Some additional relevant aspects regarding moving medium and perforated components are investigated, by means of a component mode synthesis formulation used to obtain the transverse eigenfunctions of the muffler. Moreover, some important design
Sgard, Franck; Nelisse, Hugues; Atalla, Noureddine; Amedin, Celse Kafui; Oddo, Remy
2010-02-01
Enclosures are commonly used to reduce the sound exposure of workers to the noise radiated by machinery. Some acoustic predictive tools ranging from simple analytical tools to sophisticated numerical deterministic models are available to estimate the enclosure acoustical performance. However, simple analytical models are usually valid in limited frequency ranges because of underlying assumptions whereas numerical models are commonly limited to low frequencies. This paper presents a general and simple model for predicting the acoustic performance of large free-standing enclosures which is capable of taking into account the complexity of the enclosure configuration and covering a large frequency range. It is based on the statistical energy analysis (SEA) framework. The sound field inside the enclosure is calculated using the method of image sources. Sound transmission across the various elements of the enclosure is considered in the SEA formalism. The model is evaluated by comparison with existing methods and experimental results. The effect of several parameters such as enclosure geometry, panel materials, presence of noise control treatments, location of the source inside the enclosure, and presence of an opening has been investigated. The comparisons between the model and the experimental results show a good agreement for most of the tested configurations.
A state-space model for estimating detailed movements and home range from acoustic receiver data
DEFF Research Database (Denmark)
Pedersen, Martin Wæver; Weng, Kevin
2013-01-01
We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function...... that the location error scales log-linearly with detection range and movement speed. This result can be used as guideline for designing network layout when species movement capacity and acoustic environment are known or can be estimated prior to network deployment. Finally, as an example, the state-space model...... is used to estimate home range and movement of a reef fish in the Pacific Ocean....
van Dorp Schuitman, Jasper; de Vries, Diemer; Lindau, Alexander
2013-03-01
Acousticians generally assess the acoustic qualities of a concert hall or any other room using impulse response-based measures such as the reverberation time, clarity index, and others. These parameters are used to predict perceptual attributes related to the acoustic qualities of the room. Various studies show that these physical measures are not able to predict the related perceptual attributes sufficiently well under all circumstances. In particular, it has been shown that physical measures are dependent on the state of occupation, are prone to exaggerated spatial fluctuation, and suffer from lacking discrimination regarding the kind of acoustic stimulus being presented. Accordingly, this paper proposes a method for the derivation of signal-based measures aiming at predicting aspects of room acoustic perception from content specific signal representations produced by a binaural, nonlinear model of the human auditory system. Listening tests were performed to test the proposed auditory parameters for both speech and music. The results look promising; the parameters correlate with their corresponding perceptual attributes in most cases.
Multiple-scale modelling of acoustic sources in low Mach-number flow
Munz, Claus-Dieter; Fortenbach, Roland; Dumbser, Michael
2005-09-01
The main difficulty in the calculation of sound generated by fluid flow at low Mach numbers is the occurrence of different scales. The fluid flow is characterized by small spatial structures containing a large amount of energy that may propagate with a small convective velocity, such as small vortices in a turbulent flow. The radiated acoustic waves have small amplitudes and carry a small amount of energy, but have a long wavelength due to their fast propagation velocity. In this paper a perturbation method is used to calculate noise generation and propagation in combination with fluid flow based on the incompressible equations. The idea for the numerical modelling is to introduce a fine grid for the resolution of the fluid flow that is embedded into a larger acoustical domain with a coarse grid adapted to the long wavelength acoustics. To get an appropriate restriction of the acoustic source terms from the fine CFD-grid to the coarse CAA-grid, a multi-scale expansion with one time and two space scales is introduced. To cite this article: C.-D. Munz et al., C. R. Mecanique 333 (2005).
Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko
2017-07-01
An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.
Acoustic modelling and simulation of next generation torpedoes.
Schippers, P.; Benders, F.P.A.
2003-01-01
Since 1987 sonar performance modelling is developed at TNO Physics and Electronics Laboratory. This is based on propagation modelling in a given environment together with modelling of the sonar based on its specific parameters. Beam forming, pulse type and signal processing are taken into account.
The Box Model and the Acoustic Sounder, a Case Study
DEFF Research Database (Denmark)
Jensen, Niels Otto; Lundtang Petersen, Erik
1979-01-01
Concentrations of SO2 in a large city during a subsidence situation are predicted as a function of time by means of a simple box model and the predictions are compared to actual SO2 concentration measurements. The agreement between model results and measurements is found to be excellent. The model...
Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides
DEFF Research Database (Denmark)
Bæk, David; Willatzen, Morten
2008-01-01
A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...
Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters
Alexander, Polly; Duncan, Alec; Bose, Neil; Williams, Guy
2016-09-01
Autonomous underwater vehicles are improving and expanding in situ observations of sea ice for the validation of satellite remote sensing and climate models. Missions under sea ice, particularly over large distances (up to 100 km) away from the immediate vicinity of a ship or base, require accurate acoustic communication for monitoring, emergency response and some navigation systems. We investigate the propagation of acoustic signals in the Antarctic seasonal ice zone using the BELLHOP model, examining the influence of ocean and sea ice properties. We processed available observations from around Antarctica to generate input variables such as sound speed, surface reflection coefficient (R) and roughness parameters. The results show that changes in the sound speed profile make the most significant difference to the propagation of the direct path signal. The inclusion of the surface reflected signals from a flat ice surface was found to greatly decrease the transmission loss with range. When ice roughness was added, the transmission loss increased with roughness, in a manner similar to the direct path transmission loss results. The conclusions of this work are that: (1) the accuracy of acoustic modelling in this environment is greatly increased by using realistic sound speed data; (2) a risk averse ranging model would use only the direct path signal transmission; and (3) in a flat ice scenario, much greater ranges can be achieved if the surface reflected transmission paths are included. As autonomous missions under sea ice increase in scale and complexity, it will be increasingly important for operational procedures to include effective modelling of acoustic propagation with representative environmental data.
Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads
DEFF Research Database (Denmark)
Ergemen, Yunus Emre; Haldrup, Niels; Rodríguez-Caballero, Carlos Vladimir
Equilibrium electricity spot prices and loads are often determined simultaneously in a day-ahead auction market for each hour of the subsequent day. Hence daily observations of hourly prices take the form of a periodic panel rather than a time series of hourly observations. We consider novel panel...... data approaches to analyse the time series and the cross-sectional dependence of hourly Nord Pool electricity spot prices and loads for the period 2000-2013. Hourly electricity prices and loads data are characterized by strong serial long-range dependence in the time series dimension in addition...... of the underlying production technology and because the demand is more volatile than the supply, equilibrium prices and loads are argued to identify the periodic power supply curve. The estimated supply elasticities are estimated from fractionally co-integrated relations and range between 0.5 and 1...
Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model
Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming; Hu, Gengkai; Sun, Chin-Teh
2014-09-01
Membrane-type Acoustic Metamaterials (MAMs) have demonstrated unusual capacity in controlling low-frequency sound transmission/reflection. In this paper, an analytical vibroacoustic membrane model is developed to study sound transmission behavior of the MAM under a normal incidence. The MAM is composed of a prestretched elastic membrane with attached rigid masses. To accurately capture finite-dimension rigid mass effects on the membrane deformation, the point matching approach is adopted by applying a set of distributed point forces along the interfacial boundary between masses and the membrane. The accuracy and capability of the theoretical model is verified through the comparison with the finite element method. In particular, microstructure effects such as weight, size and eccentricity of the attached mass, pretension and thickness of the membrane on the resulting transmission peak and dip frequencies of the MAM are quantitatively investigated. New peak and dip frequencies are found for the MAM with one and multiple eccentric attached masses. The developed model can be served as an efficient tool for design of such membrane-type metamaterials.
Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model.
Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming; Hu, Gengkai; Sun, Chin-Teh
2014-09-01
Membrane-type acoustic metamaterials (MAMs) have demonstrated unusual capacity in controlling low-frequency sound transmission/reflection. In this paper, an analytical vibroacoustic membrane model is developed to study sound transmission behavior of the MAM under a normal incidence. The MAM is composed of a prestretched elastic membrane with attached rigid masses. To accurately capture finite-dimension rigid mass effects on the membrane deformation, the point matching approach is adopted by applying a set of distributed point forces along the interfacial boundary between masses and the membrane. The accuracy and capability of the theoretical model is verified through the comparison with the finite element method. In particular, microstructure effects such as weight, size, and eccentricity of the attached mass, pretension, and thickness of the membrane on the resulting transmission peak and dip frequencies of the MAM are quantitatively investigated. New peak and dip frequencies are found for the MAM with one and multiple eccentric attached masses. The developed model can be served as an efficient tool for design of such membrane-type metamaterials.
The Vibro-Acoustic Modelling of Slab Track with Embedded Rails
VAN LIER, S.
2000-03-01
The application of concrete slab track in railways has certain advantages compared with conventional ballasted track, but conventional slab track structures generally produce more noise than ballasted track. For this reason a “silent slab track” has been developed in the Dutch ICES “Stiller Treinverkeer” project (silent railway traffic) by optimizing the track. In the design, the rails are embedded in a cork-filled elastomeric material. The paper discusses the vibro-acoustic modelling of this track using the simulation package “TWINS”, combined with finite element techniques. The model evaluates the one-third octave band sound power spectrum radiated by train wheels and track, and provides for a tool to optimize the track design. Three track types are compared using the vibro-acoustic model: an existing slab track with embedded UIC54 rails, a newly designed, acoustically optimized slab track with a less stiff rail embedded in a stiffer elastomere, and, as a reference, a ballasted track. The models of the existing tracks have been validated with measurements. Calculations indicate that the optimized slab track will emit between 4 and 6 dB(A) less noise than the ballasted track. The existing slab track produces between 1·5 and 3 dB(A) more noise than the ballasted track; this is caused by resonances in the elastomeric moulding material in the frequency range determining the dB(A)-level.
The PAC-MAN model: Benchmark case for linear acoustics in computational physics
Ziegelwanger, Harald; Reiter, Paul
2017-10-01
Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.
Experimental Evaluation of Acoustic Engine Liner Models Developed with COMSOL Multiphysics
Schiller, Noah H.; Jones, Michael G.; Bertolucci, Brandon
2017-01-01
Accurate modeling tools are needed to design new engine liners capable of reducing aircraft noise. The purpose of this study is to determine if a commercially-available finite element package, COMSOL Multiphysics, can be used to accurately model a range of different acoustic engine liner designs, and in the process, collect and document a benchmark dataset that can be used in both current and future code evaluation activities. To achieve these goals, a variety of liner samples, ranging from conventional perforate-over-honeycomb to extended-reaction designs, were installed in one wall of the grazing flow impedance tube at the NASA Langley Research Center. The liners were exposed to high sound pressure levels and grazing flow, and the effect of the liner on the sound field in the flow duct was measured. These measurements were then compared with predictions. While this report only includes comparisons for a subset of the configurations, the full database of all measurements and predictions is available in electronic format upon request. The results demonstrate that both conventional perforate-over-honeycomb and extended-reaction liners can be accurately modeled using COMSOL. Therefore, this modeling tool can be used with confidence to supplement the current suite of acoustic propagation codes, and ultimately develop new acoustic engine liners designed to reduce aircraft noise.
Osses Vecchi, Alejandro; Kohlrausch, Armin; Lachenmayr, Winfried; Mommertz, Eckard
2017-04-01
In this paper a binaural auditory model was used to compute reverberance estimates in four simulated halls. For three of the halls different absorption conditions were evaluated. The model estimates (pRev) were obtained using music excerpts of an orchestra consisting of 23 instrument sections and then compared with the room acoustic parameters of reverberation time (T30) and early decay time (EDT) at mid frequencies. Although the results showed that pRev has a higher correlation with EDT rather than with T30, this relationship depends on the properties of the instruments. The simulations show that pRev depends on the presentation level and that for instruments with similar critical-band spectrum, pRev follows a similar trend across acoustic conditions. A computational framework and sound stimuli are provided to encourage the search of experimental evidence of the aspects addressed in this study.
Review and analysis of the DNW/Model 360 rotor acoustic data base
Zinner, R. A.; Boxwell, D. A.; Spencer, R. H.
1989-01-01
A comprehensive model rotor aeroacoustic data base was collected in a large anechoic wind tunnel in 1986. Twenty-six microphones were positioned around the azimuth to collect acoustic data for approximately 150 different test conditions. A dynamically scaled, blade-pressure-instrumented model of the forward rotor of the BH360 helicopter simultaneously provided blade pressures for correlation with the acoustic data. High-speed impulsive noise, blade-vortex interaction noise, low-frequency noise, and broadband noise were all captured in this extensive data base. Trends are presentes for each noise source, with important parametric variations. The purpose of this paper is to introduce this data base and illustrate its potential for predictive code validation.
Simulation of wave propagation inside a human eye: acoustic eye model (AEM)
Požar, T.; Halilovič, M.; Horvat, D.; Petkovšek, R.
2018-02-01
The design and development of the acoustic eye model (AEM) is reported. The model consists of a computer-based simulation that describes the propagation of mechanical disturbance inside a simplified model of a human eye. The capabilities of the model are illustrated with examples, using different laser-induced initial loading conditions in different geometrical configurations typically occurring in ophthalmic medical procedures. The potential of the AEM is to predict the mechanical response of the treated eye tissue in advance, thus complementing other preliminary procedures preceding medical treatments.
Acoustic performance of industrial mufflers with CAE modeling and simulation
Directory of Open Access Journals (Sweden)
Jeon Soohong
2014-12-01
Full Text Available This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/ SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.
Acoustic performance of industrial mufflers with CAE modeling and simulation
Jeon, Soohong; Kim, Daehwan; Hong, Chinsuk; Jeong, Weuibong
2014-12-01
This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/ SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.
Acoustic performance of industrial mufflers with CAE modeling and simulation
Directory of Open Access Journals (Sweden)
Soohong Jeon
2014-12-01
Full Text Available This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive ele- ments, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.
Acoustics and signal processing techniques for physical modeling of brass instruments
Berners, David Patrick
Webster's equation is used to model the acoustics of brass instruments. This model is used to characterize anechoically terminated acoustic waveguides with negative flare, which, when modeled by others using piecewise conical elements, produced noncausal reflection functions. Equivalence is shown between Webster's equation and conical element modeling for conical junctions under the assumption of zero interaction width between the conical segments of the waveguide. Webster's equation is used to show the effects of increasing interaction width on reflectance functions. Proof is given that, regardless of interaction width, reflectances generated by Webster's equation tend towards one-pole active filters for conical junctions with negative flare. Proof is also given that, under Webster's equation, all waveguide segments with an overall decrease in taper angle are modeled as active, while all segments with zero or positive change in taper angle are modeled as passive. Accurate methods are introduced for producing Sturm- Liouville models of acoustic waveguides based on Webster's equation from discrete physical measurements of waveguide radius. Numerical methods for the solution of Schrödinger's equation are taken from the physics community and applied to Webster's equation. These methods are generalized to deal with impulsive Schrödinger potential functions specific to modeling of musical horns. Hyperbolic waveguide elements are Introduced, which produce reflectance functions which are passive for the entire set of boundary conditions which produce active reflectances using conical elements. A synthesis method for brass tone production is developed which eliminates problems in stability and intonation which are associated with most physical models, while retaining many of the good features of standard physical modeling synthesis.
Acoustic Mine Detection Using the Navy's CASS/GRAB Model
National Research Council Canada - National Science Library
Chu, Peter C; Cintron, Carlos; Haeger, Steven D; Keenan, Ruth E
2002-01-01
The purpose of this work is to determine the necessity of a near real time ocean modeling capability such as the Naval Oceanographic Office's "NAVOCEANO" Modular Ocean Data Assimilation System "MODAS...
Using numerical models and acoustic methods to predict reservoir sedimentation
Elçi, Şebnem; Bor, Aslı; Çalışkan, Anıl
2009-01-01
This study draws on drainage basin hydrography, numerical modeling and geographic information system (GIS) techniques in concert with dual frequency echo sounder data to estimate sediment thickness when initial surveys are unavailable or inaccurate. Tahtali Reservoir (Turkey), which provides 40% of water supply to the city of Izmir, was selected as the study site. Deposition patterns within the whole lake were estimated with a 3-D hydrodynamic and sediment transport model applied to Tahtali R...
Electro-thermo-mechanical model for bulk acoustic wave resonators.
Rocas, Eduard; Collado, Carlos; Mateu, Jordi; Orloff, Nathan D; Aigner, Robert; Booth, James C
2013-11-01
We present the electro-thermo-mechanical constitutive relations, expanded up to the third order, for a BAW resonator. The relations obtained are implemented into a circuit model, which is validated with extensive linear and nonlinear measurements. The mathematical analysis, along with the modeling, allows us to identify the dominant terms, which are the material temperature derivatives and two intrinsic nonlinear terms, and explain, for the first time, all observable effects in a BAW resonator by use of a unified physical description. Moreover, the terms that are responsible for the second-harmonic generation and the frequency shift with dc voltage are shown to be the same.
Reduced-Order Models for Acoustic Response Prediction
2011-07-01
predicted frequencies from a FEM. The first two axial natural frequencies were measured using a pair of small piezoelectric strain actuators, one...test. Displacement and velocity relative to the shaker head were measured with a Polytec Model OVF-512 Differential Fiber Optic Vibrometer . The...The vibrometer controller processes the object and reference beams to produce differential velocity and displacement. Dynamic strains were
Imaging acoustic vibrations in an ear model using spectrally encoded interferometry
Grechin, Sveta; Yelin, Dvir
2018-01-01
Imaging vibrational patterns of the tympanic membrane would allow an accurate measurement of its mechanical properties and provide early diagnosis of various hearing disorders. Various optical technologies have been suggested to address this challenge and demonstrated in vitro using point scanning and full-field interferometry. Spectrally encoded imaging has been previously demonstrated capable of imaging tissue acoustic vibrations with high spatial resolution, including two-dimensional phase and amplitude mapping. In this work, we demonstrate a compact optical apparatus for imaging acoustic vibrations that could be incorporated into a commercially available digital otoscope. By transmitting harmonic sound waves through the otoscope insufflation port and analyzing the spectral interferograms using custom-built software, we demonstrate high-resolution vibration imaging of a circular rubber membrane within an ear model.
Vibro-acoustics of ribbed structures: A compact modal formulation for SEA models
Bremner, Paul G.
Rib-stiffening of plates and shells is a structurally-efficient construction technique common to aerospace, shipbuilding, automotive, and many other industries. Engineers need to be able to design the vibro-acoustic behavior of these panel systems. That is, the panel vibration response to excitation by a sound pressure field and the sound radiated by panel vibration. The effect of adding rib-stiffeners to a uniform thickness, isotropic panel is to cause scattering of the panel free bending waves. The superposition of these wavefields can also be described by modal methods, if the panel has finite dimensions. The effect of rib stiffening is shown to be the re-distribution of resonant frequencies and mode shapes of the panel, which can significantly alter its noise and vibration character. This paper describes a compact modal method for description of the vibro-acoustics of ribbed panels which is currently implemented in the Statistical Energy Analysis modeling package AutoSEA.
Modeling broadband ocean acoustic transmissions with time-varying sea surfaces.
Siderius, Martin; Porter, Michael B
2008-07-01
Solutions to ocean acoustic scattering problems are often formulated in the frequency domain, which implies that the surface is "frozen" in time. This may be reasonable for short duration signals but breaks down if the surface changes appreciably over the transmission time. Frequency domain solutions are also impractical for source-receiver ranges and frequency bands typical for applications such as acoustic communications (e.g. hundreds to thousands of meters, 1-50 kHz band). In addition, a driving factor in the performance of certain acoustic systems is the Doppler spread, which is often introduced from sea-surface movement. The time-varying nature of the sea surface adds complexity and often leads to a statistical description for the variations in received signals. A purely statistical description likely limits the insight that modeling generally provides. In this paper, time-domain modeling approaches to the sea-surface scattering problem are described. As a benchmark for comparison, the Helmholtz integral equation is used for solutions to static, time-harmonic rough surface problems. The integral equation approach is not practical for time-evolving rough surfaces and two alternatives are formulated. The first approach is relatively simple using ray theory. This is followed with a ray-based formulation of the Helmholtz integral equation with a time-domain Kirchhoff approximation.
Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen
2017-01-01
This paper investigates the acoustic properties of a duct resonator tuned by an electro-active membrane. The resonator takes the form of a side-branch cavity which is attached to a rigid duct and covered by a pre-stretched Dielectric Elastomer (DE) in the neck area. A three-dimensional, analytical model based on the sub-structuring approach is developed to characterize the complex structure-acoustic coupling between the DE membrane and its surrounding acoustic media. We show that such resonator provides sound attenuation in the medium frequency range mainly by means of sound reflection, as a result of the membrane vibration. The prediction accuracy of the proposed model is validated against experimental test. The pre-stretched DE membrane with fixed edges responds to applied voltage change with a varying inner stress and, by the same token, its natural frequency and vibrational response can be tuned to suit particular frequencies of interest. The peaks in the transmission loss (TL) curves can be shifted towards lower frequencies when the voltage applied to the DE membrane is increased. Through simulations on the effect of increasing the voltage level, the TL shifting mechanism and its possible tuning range are analyzed. This paves the way for applying such resonator device for adaptive-passive noise control.
3D modeling of carbonates petro-acoustic heterogeneities
Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie
2015-04-01
Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.
Mancini, John G; Neisius, Andreas; Smith, Nathan; Sankin, Georgy; Astroza, Gaston M; Lipkin, Michael E; Simmons, W Neal; Preminger, Glenn M; Zhong, Pei
2013-09-01
The acoustic lens of the Modularis electromagnetic shock wave lithotripter (Siemens, Malvern, Pennsylvania) was modified to produce a pressure waveform and focal zone more closely resembling that of the original HM3 device (Dornier Medtech, Wessling, Germany). We assessed the newly designed acoustic lens in vivo in an animal model. Stone fragmentation and tissue injury produced by the original and modified lenses of the Modularis lithotripter were evaluated in a swine model under equivalent acoustic pulse energy (about 45 mJ) at 1 Hz pulse repetition frequency. Stone fragmentation was determined by the weight percent of stone fragments less than 2 mm. To assess tissue injury, shock wave treated kidneys were perfused, dehydrated, cast in paraffin wax and sectioned. Digital images were captured every 120 μm and processed to determine functional renal volume damage. After 500 shocks, the mean ± SD stone fragmentation efficiency produced by the original and modified lenses was 48% ± 12% and 52% ± 17%, respectively (p = 0.60). However, after 2,000 shocks, the modified lens showed significantly improved stone fragmentation compared to the original lens (mean 86% ± 10% vs 72% ± 12%, p = 0.02). Tissue injury caused by the original and modified lenses was minimal at a mean of 0.57% ± 0.44% and 0.25% ± 0.25%, respectively (p = 0.27). With lens modification the Modularis lithotripter demonstrates significantly improved stone fragmentation with minimal tissue injury at a clinically relevant acoustic pulse energy. This new lens design could potentially be retrofitted to existing lithotripters, improving the effectiveness of electromagnetic lithotripters. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Three-dimensional model of hydro acoustic channel for research MIMO systems
Fedosov, V. P.; Lomakina, A. V.; Legin, A. A.; Voronin, V. V.
2017-05-01
Currently, wireless hydroacoustic modems are actively being developed, which are used to provide efficient data transmission in the hydroacoustic channel. Such kind of developments are relevant for today, as they are used in various fields of science and fields of activity. An example is the connection with underwater vehicles for scientific, research, search and rescue purposes. Development of this kind of communication systems (modems) is a difficult task, as signal propagation is affected by various factors. As a result, the transfer characteristic changes with time, thereby imposing restrictions on the acoustic communication channel. In this regard, the researchers began the task of further study sonar environment and get a detailed mathematical description of the underwater channel. For this, a huge number of field tests were conducted, aimed at studying the underwater acoustic environment. However, the results of the research are always limited by the conditions in which the test took place. Therefore, it is not always possible to apply these results to the required conditions. All of the above features do not allow you to create some kind of a commonly accepted model for the acoustic channel, as studies based on experiments, collected in localized environments without generalizations. This paper presents, the three-dimensional model of the sonar channel for MIMO systems in the coastal zone, based on the acoustic signal propagation characteristics in the presence of multiple paths, the influence of the Doppler effect (as a result of mobile and / or base station traffic), in terms of signal attenuation, receiver characteristics influence and Transmitting antenna, etc.
Long-range dependence in returns and volatility of global gold market amid financial crises
Omane-Adjepong, Maurice; Boako, Gideon
2017-04-01
Using sampled historical daily gold market data from 07-03-1985 to 06-01-2015, and building on a related work by Bentes (2016), this paper examines the presence of long-range dependence (LRD) in the world's gold market returns and volatility, accounting for structural breaks. The sampled gold market data was divided into subsamples based on four global crises: the September 1992 collapse of the European Exchange Rate Mechanism (ERM), the Asian financial crisis of mid-1997, the Subprime meltdown of 2007, and the recent European sovereign debt crisis, which hit the world's market with varying effects. LRD test was carried-out on the full-sample and subsample periods using three semiparametric methods-before and after adjusting for structural breaks. The results show insignificant evidence of LRD in gold returns. However, very diminutive evidence is found for periods characterized by financial/economic shocks, with no significant detections for post-shock periods. Collectively, this is indicative that the gold market is less speculative, and hence could be somehow less risky for hedging and portfolio diversification.
Comparison of artificial absorbing boundaries for acoustic wave equation modelling
Gao, Yingjie; Song, Hanjie; Zhang, Jinhai; Yao, Zhenxing
2017-12-01
Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves, convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models. The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude errors as the full waveform inversion.
Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.; Caplot, M.
1986-01-01
Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.);
Energy Technology Data Exchange (ETDEWEB)
Kotas, Charlotte W [ORNL; Rogers, Peter [Georgia Institute of Technology; Yoda, Minami [Georgia Institute of Technology
2011-01-01
The ears of fishes are remarkable sensors for the small acoustic disturbances associated with underwater sound. For example, each ear of the Atlantic cod (Gadus morhua) has three dense bony bodies (otoliths) surrounded by fluid and tissue, and detects sounds at frequencies from 30 to 500 Hz. Atlantic cod have also been shown to localize sounds. However, how their ears perform these functions is not fully understood. Steady streaming, or time-independent, flows near a 350% scale model Atlantic cod otolith immersed in a viscous fluid were studied to determine if these fluid flows contain acoustically relevant information that could be detected by the ear s sensory hair cells. The otolith was oscillated sinusoidally at various orientations at frequencies of 8 24 Hz, corresponding to an actual frequency range of 280 830 Hz. Phaselocked particle pathline visualizations of the resulting flows give velocity, vorticity, and rate of strain fields over a single plane of this mainly two-dimensional flow. Although the streaming flows contain acoustically relevant information, the displacements due to these flows are likely too small to explain Atlantic cod hearing abilities near threshold. The results, however, may suggest a possible mechanism for detection of ultrasound in some fish species.
Acoustic Performance of an Advanced Model Turbofan in Three Aeroacoustic Test Facilities
Woodward, Richard P.; Hughes, Christopher E.
2012-01-01
A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot-Low-Speed Wind Tunnel (LSWT), and in two other aeroacoustic facilities. The Universal Propulsion Simulator (UPS) fan was designed and manufactured by the General Electric Aircraft Engines (GEAE) Company, and featured active core, as well as bypass, flow paths. The reference test configurations were with the metal, M4, rotor with hardwall and treated bypass flow ducts. The UPS fan was tested within an airflow at a Mach number of 0.20 (limited flow data were also acquired at a Mach number of 0.25) which is representative of aircraft takeoff and approach conditions. Comparisons were made between data acquired within the airflow (9x15 LSWT and German-Dutch Wind Tunnel (DNW)) and outside of a free jet (Boeing Low Speed Aero acoustic Facility (LSAF) and DNW). Sideline data were acquired on an 89-in. (nominal 4 fan diameters) sideline using the same microphone assembly and holder in the 9x15 LSWT and DNW facilities. These data showed good agreement for similar UPS operating conditions and configurations. Distortion of fan spectra tonal content through a free jet shear layer was documented, suggesting that in-flow acoustic measurements are required for comprehensive fan noise diagnostics. However, there was good agreement for overall sound power level (PWL) fan noise measurements made both within and outside of the test facility airflow.
A hardware model of the auditory periphery to transduce acoustic signals into neural activity
Directory of Open Access Journals (Sweden)
Takashi eTateno
2013-11-01
Full Text Available To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number.
Investigation of acoustically coupled enclosures using a diffusion-equation model.
Xiang, Ning; Jing, Yun; Bockman, Alexander C
2009-09-01
Recent application of coupled-room systems in performing arts spaces has prompted active research on sound fields in these complex geometries. This paper applies a diffusion-equation model to the study of acoustics in coupled-rooms. Acoustical measurements are conducted on a scale-model of two coupled-rooms. Using the diffusion model and the experimental results the current work conducts in-depth investigations on sound pressure level distributions, providing further evidence supporting the valid application of the diffusion-equation model. Analysis of the results within the Bayesian framework allows for quantification of the double-slope characteristics of sound-energy decays obtained from the diffusion-equation numerical modeling and the experimental measurements. In particular, Bayesian decay analysis confirms sound-energy flux modeling predictions that time-dependent sound-energy flows in coupled-room systems experience feedback in the form of energy flow-direction change across the aperture connecting the two rooms in cases where the dependent room is more reverberant than the source room.
Cincarek, Tobias; Toda, Tomoki; Saruwatari, Hiroshi; Shikano, Kiyohiro
Development of an ASR application such as a speech-oriented guidance system for a real environment is expensive. Most of the costs are due to human labeling of newly collected speech data to construct the acoustic model for speech recognition. Employment of existing models or sharing models across multiple applications is often difficult, because the characteristics of speech depend on various factors such as possible users, their speaking style and the acoustic environment. Therefore, this paper proposes a combination of unsupervised learning and selective training to reduce the development costs. The employment of unsupervised learning alone is problematic due to the task-dependency of speech recognition and because automatic transcription of speech is error-prone. A theoretically well-defined approach to automatic selection of high quality and task-specific speech data from an unlabeled data pool is presented. Only those unlabeled data which increase the model likelihood given the labeled data are employed for unsupervised training. The effectivity of the proposed method is investigated with a simulation experiment to construct adult and child acoustic models for a speech-oriented guidance system. A completely human-labeled database which contains real-environment data collected over two years is available for the development simulation. It is shown experimentally that the employment of selective training alleviates the problems of unsupervised learning, i. e. it is possible to select speech utterances of a certain speaker group but discard noise inputs and utterances with lower recognition accuracy. The simulation experiment is carried out for several selected combinations of data collection and human transcription period. It is found empirically that the proposed method is especially effective if only relatively few of the collected data can be labeled and transcribed by humans.
Summers, Jason E
2012-08-01
A statistical-acoustics model for energy decay in systems of two or more coupled rooms is introduced, which accounts for the distribution of delay in the transfer of energy between subrooms that results from the finite speed of sound. The method extends previous models based on systems of coupled ordinary differential equations by using functional differential equations to explicitly model dependence on prior values of energy in adjacent subrooms. Predictions of the model are illustrated for a two-room coupled system and compared with the predictions of a benchmark computational geometrical-acoustics model.
Söderlund, Göran B W; Eckernäs, Daniel; Holmblad, Olof; Bergquist, Filip
2015-03-01
The spontaneously hypertensive (SH) rat model of ADHD displays impaired motor learning. We used this characteristic to study if the recently described acoustic noise benefit in learning in children with ADHD is also observed in the SH rat model. SH rats and a Wistar control strain were trained in skilled reach and rotarod running under either ambient noise or in 75 dBA white noise. In other animals the effect of methylphenidate (MPH) on motor learning was assessed with the same paradigms. To determine if acoustic noise influenced spontaneous motor activity, the effect of acoustic noise was also determined in the open field activity paradigm. We confirm impaired motor learning in the SH rat compared to Wistar SCA controls. Acoustic noise restored motor learning in SH rats learning the Montoya reach test and the rotarod test, but had no influence on learning in Wistar rats. Noise had no effect on open field activity in SH rats, but increased corner time in Wistar. MPH completely restored rotarod learning and performance but did not improve skilled reach in the SH rat. It is suggested that the acoustic noise benefit previously reported in children with ADHD is shared by the SH rat model of ADHD, and the effect is in the same range as that of stimulant treatment. Acoustic noise may be useful as a non-pharmacological alternative to stimulant medication in the treatment of ADHD. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Prokopiou, Andreas; Moncada-Torres, Arturo; Wouters, Jan; Francart, Tom
2017-08-01
Objective. Interaural time differences (ITDs) are important for sound source localisation. We present a model to predict the just noticeable differences (JNDs) in ITD discrimination for normal hearing and electric stimulation through a cochlear implant. Approach. We combined periphery models of acoustic and electric stimulation with a novel JND in the ITD estimation stage, which consists of a shuffled cross correlogram and a binary classifier characterisation method. Furthermore, an evaluation framework is presented based on a large behavioural dataset. Main results. The model correctly predicts behavioural observations for unmodulated stimuli (such as pure tones and electric pulse trains) and modulated stimuli for modulation frequencies below 30 Hz. For higher modulation frequencies, the model predicts the observed behavioural trends, but tends to estimate higher ITD sensitivity. Significance. The presented model can be used to investigate the implications of modifying the stimulus waveform on ITD sensitivity, and as such be applied in investigating sound encoding strategies.
Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks
Directory of Open Access Journals (Sweden)
Manuel Perez Malumbres
2013-02-01
Full Text Available In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation, we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc., an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc..
A finite element model to predict the sound attenuation of earplugs in an acoustical test fixture.
Viallet, Guilhem; Sgard, Franck; Laville, Frédéric; Boutin, Jérôme
2014-09-01
Acoustical test fixtures (ATFs) are currently used to measure the attenuation of the earplugs. Several authors pointed out that the presence of an artificial skin layer inside the cylindrical ear canal of the ATFs strongly influenced the attenuation measurements. In this paper, this role is investigated via a 2D axisymmetric finite element model of a silicon earplug coupled to an artificial skin. The model is solved using COMSOL Multiphysics (COMSOL(®), Sweden) and validated experimentally. The model is exploited thereafter to better understand the role of each part of the earplug/ear canal system and how the energy circulates within the domains. This is investigated by calculating power balances and by representing the mechanical and acoustical fluxes in the system. The important dissipative role of the artificial skin is underlined and its contribution as a sound transmission pathway is quantified. In addition, the influence of both the earplug and the artificial skin parameters is assessed via sensitivities analyses performed on the model.
Predicting Acoustics in Class Rooms
DEFF Research Database (Denmark)
Christensen, Claus Lynge; Rindel, Jens Holger
2005-01-01
Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...
Advances in edge-diffraction modeling for virtual-acoustic simulations
Calamia, Paul Thomas
In recent years there has been growing interest in modeling sound propagation in complex, three-dimensional (3D) virtual environments. With diverse applications for the military, the gaming industry, psychoacoustics researchers, architectural acousticians, and others, advances in computing power and 3D audio-rendering techniques have driven research and development aimed at closing the gap between the auralization and visualization of virtual spaces. To this end, this thesis focuses on improving the physical and perceptual realism of sound-field simulations in virtual environments through advances in edge-diffraction modeling. To model sound propagation in virtual environments, acoustical simulation tools commonly rely on geometrical-acoustics (GA) techniques that assume asymptotically high frequencies, large flat surfaces, and infinitely thin ray-like propagation paths. Such techniques can be augmented with diffraction modeling to compensate for the effect of surface size on the strength and directivity of a reflection, to allow for propagation around obstacles and into shadow zones, and to maintain soundfield continuity across reflection and shadow boundaries. Using a time-domain, line-integral formulation of the Biot-Tolstoy-Medwin (BTM) diffraction expression, this thesis explores various aspects of diffraction calculations for virtual-acoustic simulations. Specifically, we first analyze the periodic singularity of the BTM integrand and describe the relationship between the singularities and higher-order reflections within wedges with open angle less than 180°. Coupled with analytical approximations for the BTM expression, this analysis allows for accurate numerical computations and a continuous sound field in the vicinity of an arbitrary wedge geometry insonified by a point source. Second, we describe an edge-subdivision strategy that allows for fast diffraction calculations with low error relative to a numerically more accurate solution. Third, to address
Pope, L. D.; Wilby, E. G.; Willis, C. M.; Mayes, W. H.
1983-08-01
As part of the continuing development of an aircraft interior noise prediction model, in which a discrete modal representation and power flow analysis are used, theoretical results are considered for inclusion of sidewall trim, stiffened structures, and cabin acoustics with floor partition. For validation purposes, predictions of the noise reductions for three test articles (a bare ring-stringer stiffened cylinder, an unstiffened cylinder with floor and insulation, and a ring-stringer stiffened cylinder with floor and sidewall trim) are compared with measurements.
Pope, L. D.; Wilby, E. G.; Willis, C. M.; Mayes, W. H.
1983-01-01
As part of the continuing development of an aircraft interior noise prediction model, in which a discrete modal representation and power flow analysis are used, theoretical results are considered for inclusion of sidewall trim, stiffened structures, and cabin acoustics with floor partition. For validation purposes, predictions of the noise reductions for three test articles (a bare ring-stringer stiffened cylinder, an unstiffened cylinder with floor and insulation, and a ring-stringer stiffened cylinder with floor and sidewall trim) are compared with measurements.
Nasedkin, A. V.
2017-01-01
This research presents the new size-dependent models of piezoelectric materials oriented to finite element applications. The proposed models include the facilities of taking into account different mechanisms of damping for mechanical and electric fields. The coupled models also incorporate the equations of the theory of acoustics for viscous fluids. In particular cases, these models permit to use the mode superposition method with full separation of the finite element systems into independent equations for the independent modes for transient and harmonic problems. The main boundary conditions were supplemented with the facilities of taking into account the coupled surface effects, allowing to explore the nanoscale piezoelectric materials in the framework of theories of continuous media with surface stresses and their generalizations. For the considered problems we have implemented the finite element technologies and various numerical algorithms to maintain a symmetrical structure of the finite element quasi-definite matrices (matrix structure for the problems with a saddle point).
A Bayesian view on acoustic model-based techniques for robust speech recognition
Maas, Roland; Huemmer, Christian; Sehr, Armin; Kellermann, Walter
2015-12-01
This article provides a unifying Bayesian view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By identifying and converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules. We thus summarize the various approaches as approximations or modifications of the same Bayesian decoding rule leading to a unified view on known derivations as well as to new formulations for certain approaches.
Computational Modeling of Fluid–Structure–Acoustics Interaction during Voice Production
Jiang, Weili; Zheng, Xudong; Xue, Qian
2017-01-01
The paper presented a three-dimensional, first-principle based fluid–structure–acoustics interaction computer model of voice production, which employed a more realistic human laryngeal and vocal tract geometries. Self-sustained vibrations, important convergent–divergent vibration pattern of the vocal folds, and entrainment of the two dominant vibratory modes were captured. Voice quality-associated parameters including the frequency, open quotient, skewness quotient, and flow rate of the glottal flow waveform were found to be well within the normal physiological ranges. The analogy between the vocal tract and a quarter-wave resonator was demonstrated. The acoustic perturbed flux and pressure inside the glottis were found to be at the same order with their incompressible counterparts, suggesting strong source–filter interactions during voice production. Such high fidelity computational model will be useful for investigating a variety of pathological conditions that involve complex vibrations, such as vocal fold paralysis, vocal nodules, and vocal polyps. The model is also an important step toward a patient-specific surgical planning tool that can serve as a no-risk trial and error platform for different procedures, such as injection of biomaterials and thyroplastic medialization. PMID:28243588
Zhuo, Congshan; Sagaut, Pierre
2017-06-01
In this paper, a variant of the acoustic multipole source (AMS) method is proposed within the framework of the lattice Boltzmann method. A quadrupole term is directly included in the stress system (equilibrium momentum flux), and the dependency of the quadrupole source in the inviscid limit upon the fortuitous discretization error reported in the works of E. M. Viggen [Phys. Rev. E 87, 023306 (2013), 10.1103/PhysRevE.87.023306] is removed. The regularized lattice Boltzmann (RLB) method with this variant AMS method is presented for the 2D and 3D acoustic problems in the inviscid limit, and without loss of generality, the D3Q19 model is considered in this work. To assess the accuracy and the advantage of the RLB scheme with this AMS for acoustic point sources, the numerical investigations and comparisons with the multiple-relaxation-time (MRT) models and the analytical solutions are performed on the 2D and 3D acoustic multipole point sources in the inviscid limit, including monopoles, x dipoles, and x x quadrupoles. From the present results, the good precision of this AMS method is validated, and the RLB scheme exhibits some superconvergence properties for the monopole sources compared with the MRT models, and both the RLB and MRT models have the same accuracy for the simulations of acoustic dipole and quadrupole sources. To further validate the capability of the RLB scheme with AMS, another basic acoustic problem, the acoustic scattering from a solid cylinder presented at the Second Computational Aeroacoustics Workshop on Benchmark Problems, is numerically considered. The directivity pattern of the acoustic field is computed at r =7.5 ; the present results agree well with the exact solutions. Also, the effects of slip and no-slip wall treatments within the regularized boundary condition on this pure acoustic scattering problem are tested, and compared with the exact solution, the slip wall treatment can present a better result. All simulations demonstrate that the
Obtaining objective, content-specific room acoustical parameters using auditory modeling
Van Dorp Schuitman, J.; De Vries, D.
2013-01-01
The acoustical properties of rooms are generally described using objective parameters as determined from measured or simulated roomimpulse responses. However, this method has some disadvantages. Forexample, room impulse responses are generally measured in empty rooms, while the acoustical
A coupling procedure for modeling acoustic problems using finite elements and boundary elements
Coyette, J.; Vanderborck, G.; Steichen, W.
1994-01-01
Finite element (FEM) and boundary element (BEM) methods have been used for a long time for the numerical simulation of acoustic problems. The development presented in this paper deals with a general procedure for coupling acoustic finite elements with acoustic boundary elements in order to solve efficiently acoustic problems involving non homogeneous fluids. Emphasis is made on problems where finite elements are used for a confined (bounded) fluid while boundary elements are selected for an e...
Haqshenas, S R; Ford, I J; Saffari, N
2018-01-14
Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.
Maxit, L; Yang, C; Cheng, L; Guyader, J-L
2012-03-01
A micro-perforated panel (MPP) with a backing cavity is a well known device for efficient noise absorption. This configuration has been thoroughly studied in the experimental conditions of an acoustic tube (Kundt tube), in which the MPP is excited by a normal incident plane wave in one dimension. In a more practical situation, the efficiency of MPP may be influenced by the vibro-acoustic behavior of the surrounding systems as well as excitation. To deal with this problem, a vibro-acoustic formulation based on the patch transfer functions (PTF) approach is proposed to model the behavior of a micro-perforated structure in a complex vibro-acoustic environment. PTF is a substructuring approach, which allows assembling different vibro-acoustic subsystems through coupled surfaces. Upon casting micro-perforations and the flexibility of the MPP under transfer function framework, the proposed PTF formulation provides explicit representation of the coupling between subsystems and facilitates physical interpretation. As an illustration example, application to a MPP with a backing cavity located in an infinite baffle is demonstrated. The proposed PTF formulation is finally validated through comparison with experimental measurements available in the literature. © 2012 Acoustical Society of America
Results From a Parametric Acoustic Liner Experiment Using P and W GEN1 HSR Mixer/Ejector Model
Boyd, Kathleen C.; Wolter, John D.
2004-01-01
This report documents the results of an acoustic liner test performed using a Gen 1 HSR mixer/ejector model installed on the Jet Exit Rig in the Nozzle Acoustic Test Rig in the Aeroacoustic Propulsion Laboratory or NASA Glenn Research Center. Acoustic liner effectiveness and single-component thrust performance results are discussed. Results from 26 different types of single-degree-of-freedom and bulk material liners are compared with each other and against a hardwall baseline. Design parameters involving all aspects of the facesheet, the backing cavity, and the type of bulk material were varied in order to study the effects of these design features on the acoustic impedance, acoustic effectiveness and on nozzle thrust performance. Overall, the bulk absorber liners are more effective at reducing the jet noise than the single-degree-of-freedom liners. Many of the design parameters had little effect on acoustic effectiveness, such as facesheeet hole diameter and honeycomb cell size. A relatively large variation in the impedance of the bulk absorber in a bulk liner is required to have a significant impact on the noise reduction. The thrust results exhibit a number of consistent trends, supporting the validity of this new addition to the facility. In general, the thrust results indicate that thrust performance benefits from increased facesheet thickness and decreased facesheet porosity.
Oberst, S.; Lai, J. C. S.; Marburg, S.
2013-04-01
Brake squeal has become of increasing concern to the automotive industry but guidelines on how to confidently predict squeal propensity are yet to be established. While it is standard practice to use the complex eigenvalue analysis to predict unstable vibration modes, there have been few attempts to calculate their acoustic radiation. Here guidelines are developed for numerical vibration and acoustic analysis of brake squeal using models of simplified brake systems with friction contact by considering (1) the selection of appropriate elements, contact and mesh; (2) the extraction of surface velocities via forced response; and (3) the calculation of the acoustic response itself. Results indicate that quadratic tetrahedral elements offer the best option for meshing more realistic geometry. A mesh has to be sufficiently fine especially in the contact region to predict mesh-independent unstable vibration modes. Regarding the vibration response, only the direct, steady-state method with a pressurised pad and finite sliding formulation (allowing contact separation) should be used. Comparison of different numerical methods suggest that a obroadband fast multi-pole boundary element method with the Burton-Miller formulation would efficiently solve the acoustic radiation of a full brake system. Results also suggest that a pad lift-off can amplify the acoustic radiation similar to a horn effect. A horn effect is also observed for chamfered pads which are used in practice to reduce the number and strength of unstable vibration modes. These results highlight the importance of optimising the pad shape to reduce acoustic radiation of unstable vibration modes.
Energy Technology Data Exchange (ETDEWEB)
Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)
2014-10-15
Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.
DEFF Research Database (Denmark)
Kook, Junghwan; Jensen, Jakob Søndergaard
2014-01-01
relation expressing how an increased damping due to the acoustic medium surrounding the microbeam affect the MDR of the macrobeam. We further analyze the effect of including dissipation of the acoustic medium by using finite element (FE) analysis with acoustic-structure interaction (ASI) using a simple...
Yaghi, Hussein M.
Two separate but related issues are addressed: how simultaneous translation (ST) works on a cognitive level and how such translation can be objectively assessed. Both of these issues are discussed in the light of qualitative and quantitative analyses of a large corpus of recordings of ST and shadowing. The proposed ST model utilises knowledge derived from a discourse analysis of the data, many accepted facts in the psychology tradition, and evidence from controlled experiments that are carried out here. This model has three advantages: (i) it is based on analyses of extended spontaneous speech rather than word-, syllable-, or clause -bound stimuli; (ii) it draws equally on linguistic and psychological knowledge; and (iii) it adopts a non-traditional view of language called 'the linguistic construction of reality'. The discourse-based knowledge is also used to develop three computerised systems for the assessment of simultaneous translation: one is a semi-automated system that treats the content of the translation; and two are fully automated, one of which is based on the time structure of the acoustic signals whilst the other is based on their cross-correlation. For each system, several parameters of performance are identified, and they are correlated with assessments rendered by the traditional, subjective, qualitative method. Using signal processing techniques, the acoustic analysis of discourse leads to the conclusion that quality in simultaneous translation can be assessed quantitatively with varying degrees of automation. It identifies as measures of performance (i) three content-based standards; (ii) four time management parameters that reflect the influence of the source on the target language time structure; and (iii) two types of acoustical signal coherence. Proficiency in ST is shown to be directly related to coherence and speech rate but inversely related to omission and delay. High proficiency is associated with a high degree of simultaneity and
Alimonti, L.; Atalla, N.
2016-04-01
This paper is concerned with the development of a simplified model for noise control treatments to speed up finite element analysis in vibroacoustic applications. The methodology relies on the assumption that the acoustic treatment is flat and homogeneous. Moreover, its finite lateral extent is neglected. This hypothesis is justified by short wavelength and large dissipation, which suggest that the reflected field emanating from the acoustic treatment lateral boundaries does not substantially affect its dynamic response. Under these circumstances, the response of the noise control treatment can be formally obtained by means of convolution integrals involving simple analytical kernels (i.e. Green functions). Such fundamental solutions can be computed efficiently by the transfer matrix method. However, some arbitrariness arises in the formulation of the mathematical model, resulting in different baffling conditions at the two ends of the treatment to be considered. Thus, the paper investigates the possibility of different formulations (i.e. baffling conditions) within the same hybrid finite element-transfer matrix framework, seeking for the best strategy in terms of tradeoff between efficiency and accuracy. Numerical examples are provided to show strengths and limitations of the proposed methodology.
Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models
Schmitz, F.; Ulmschneider, P.; Kalkofen, W.
1985-01-01
The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.
A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor
Directory of Open Access Journals (Sweden)
Walied A. Moussa
2010-02-01
Full Text Available Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT patterned on the surface. A thin palladium (Pd film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.
Zhang, Benfeng; Han, Tao; Tang, Gongbin; Zhang, Qiaozhen; Omori, Tatsuya; Hashimoto, Ken-Ya
2017-09-01
This paper discusses lateral propagation of surface acoustic waves (SAWs) in periodic grating structures when two types of SAWs exist simultaneously and are coupled. The thin plate model proposed by the authors is extended to include the coupling between two different SAW modes. First, lateral SAW propagation in an infinitely long periodic grating is modeled and discussed. Then, the model is applied to the Al-grating/42° YX-LiTaO3 (42-LT) substrate structure, and it is shown that the slowness curve shape changes from concave to convex with the Al grating thickness. The transverse responses are also analyzed on an infinitely long interdigital transducer on the structure, and good agreement is achieved between the present and the finite-element method analyses. Finally, SAW resonators are fabricated on the Cu grating/42-LT substrate structure, and it is experimentally verified that the slowness curve shape of the shear horizontal SAW changes with the Cu thickness.
Shabangu, Fannie W; Yemane, Dawit; Stafford, Kathleen M; Ensor, Paul; Findlay, Ken P
2017-01-01
Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is
Directory of Open Access Journals (Sweden)
Fannie W Shabangu
Full Text Available Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC, latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of
Shan, Feng; Tu, Juan; Cheng, Jianchun; Zhang, Dong; Li, Faqi; Wang, Zhibiao
2017-03-01
High-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for noninvasive tumor treatment. The key component of HIFU systems is the acoustic transducer, which generates a focal region of high-intensity focused ultrasonic energy. A key determinant of safety in HIFU treatment is the size of the focal region. To achieve subwavelength focusing, we previously investigated the feasibility of an ultrasonic spherical cavity resonator (USCR) with two open ends. To further investigate the properties of the USCR, experiments and simulations were performed to comprehensively characterize the acoustic field generated. The emphasis was on the field formation process, the pressure distribution, the frequency dependence, and the acoustic nonlinearity. As a novel simulation approach, an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model was used to numerically analyze the acoustic field. The reliability of this model was verified by comparing the results generated with those from experiments. The MRT-LBM model gave new insight into conventional acoustic numerical simulations and provided significant indications for USCR parameter optimization. The USCR demonstrated its feasibility for application in HIFU treatment or in other fields that demand high-precision focusing.
May, Gary L.
1991-03-01
The modeling of damped signals as the impulse response of a pole-zero system is considered for a broad range of pole zero modeling algorithms. The goal is to obtain the best possible fit between the model impulse response and the modeled signal. Prony's method, the least squares modified Yule-Walker equations (LSMYWE), iterative prefiltering, and the Akakie maximum likelihood estimator are compared on known test sequences for a variety of model degrading situation (e.g., additive noise) to develop an understanding of which methods are most suitable for modeling real world signals. A correlation domain version of interative prefiltering is also introduced. The most robust algorithms are determined to be LSMYWE using singular value decomposition and iterative prefiltering (including the correlation domain version). Modeling several laboratory generated short duration acoustic signals confirmed the robustness of LSMYWE and iterative prefiltering. It is shown that correlation domain iterative prefiltering outperforms standard iterative prefiltering when large model orders are required for accurate modeling. Shank's method was determined to be the most effective method of determining the zeros of a pole-zero model when a time domain match is required.
Efficient electromechanical network model for wireless acoustic-electric feed-throughs
Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu
2005-05-01
There are numerous engineering design problems where the use of wires to transfer power and communicate data thru the walls of a structure is prohibitive or significantly difficult that it may require a complex design. Such systems may be concerned with the leakage of chemicals or gasses, loss of pressure or vacuum, as well as difficulties in providing adequate thermal or electrical insulation. Moreover, feeding wires thru a wall of a structure reduces the strength of the structure and makes the structure susceptibility to cracking due to fatigue that can result from cyclic loading. Two areas have already been identified to require a wireless alternative capability and they include (a) the container of the Mars Sample Return Mission will need the use of wireless sensors to sense pressure leak and to avoid potential contamination; and (b) the Navy is seeking the capability to communicate with the crew or the instrumentation inside marine structures without the use of wires that will weaken the structure. The idea of using elastic or acoustic waves to transfer power was suggested recently by Y. Hu, et al.1. However, the disclosed model was developed directly from the wave equation and the linear equations of piezoelectricity. This model restricted by an inability to incorporate head and tail mass and account for loss in all the mechanisms. In addition there is no mechanism for connecting the model to actual power processing circuitry (diode bridge, capacitors, rectifiers etc.). An alternative approach which is to be presented is a network equivalent circuit that can easily be modified to account for additional acoustic elements and connected directly to other networks or circuits. All the possible loss mechanisms of the disclosed solution can be accounted for and introduced into the model. The circuit model allows for both power and data transmission in the forward and reverse directions through acoustic signals at the harmonic and higher order resonances. This
Costa, Bryan; Taylor, J Christopher; Kracker, Laura; Battista, Tim; Pittman, Simon
2014-01-01
Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥ 29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤ 11 cm) and medium (12-28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45-79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value.
2016-08-03
for including this in acoustic models . Experimental analysis is combined with model development to isolate specific physics and improve our...under- ice scattering, bathymetric diffraction and the application of the ocean acoustic Parabolic Equation to infrasound. 2. Tasks a. Task 1: Basin...of Japan received at the CTBTO HA03 station in Juan Fernandez Chile , are a treasure trove of long-range low frequency acoustic propagation. In
Modeling and experimental study on near-field acoustic levitation by flexural mode.
Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu
2009-12-01
Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.
Energy Technology Data Exchange (ETDEWEB)
Dentico, G.; Pacilio, V.; Papalia, B.; Taglienti, S.; Tosi, V.
1982-01-01
Sodium vapour bubble collapsing is detected by means of piezoelectric accelorometers coupled to the test section via short waveguides. The output analog signal is processed by transforming it into a time series of pulses through the setting of an amplitude threshold and the shaping of a standard pulse (denominated 'event') every time the signal crosses that border. The number of events is counted in adjacent and equal time duration samples and the waiting time distribution between contiguous events is measured. Up to the moment, six kinetic properties have been found for the mentioned time series. They help in setting a stochastic model in which the subministration of energy into a liquid sodium medium induces the formation of vapour bubbles and their consequent collapsing delivers acoustic pulses. Finally, a simulation procedure is carried out: a Polya's urn model is adopted for simulating event sequences with a priori established requisites.
An acoustic model for microresonator in on-beam quartz-enhanced photoacoustic spectroscopy
Yi, H.; Chen, W.; Guo, X.; Sun, S.; Liu, K.; Tan, T.; Zhang, W.; Gao, X.
2012-08-01
Based on a new spectrophone configuration using a single microresonator (mR) in "on beam" quartz-enhanced photoacoustic spectroscopy (QEPAS), referred to "half on beam QEPAS", a classical acoustic model originated from "orifice ended tube" was introduced to model and optimize the mR geometrical parameters. The calculated optimum mR parameters were in good agreement with the experimental results obtained in "half on beam" as well as conventional "on beam" QEPAS approaches through monitoring of atmospheric H2O vapor absorption. In addition, spectrophone performances of different QEPAS configurations (off beam, on beam and half on beam) were compared in terms of signal-to-noise ratio (SNR) gain.
Directory of Open Access Journals (Sweden)
Ana Mehl
2011-01-01
Full Text Available Phase behavior of systems composed by supercritical carbon dioxide and ethanol is of great interest, especially in the processes involving supercritical extraction in which ethanol is used as a cosolvent. The development of an apparatus, which is able to perform the measurements of vapor-liquid equilibrium (VLE at high pressure using a combination of the visual and the acoustic methods, was successful and was proven to be suited for determining the isothermal VLE data of this system. The acoustic method, based on the variation of the amplitude of an ultra-sound signal passing through a mixture during a phase transition, was applied to investigate the phase equilibria of the system carbon dioxide + ethanol at temperatures ranging from 298.2 K to 323.2 K and pressures from 3.0 MPa to 9.0 MPa. The VLE data were correlated with Peng-Robinson equation of state combined with two different mixing rules and the SAFT equations of state as well. The compositions calculated with the models are in good agreement with the experimental data for the isotherms evaluated.
Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.
Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan
2015-09-01
To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-25
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.
Houston, Janice; Counter, D.; Giacomoni, D.
2015-01-01
The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.
Garcia, Raphael F.; Brissaud, Quentin; Rolland, Lucie; Martin, Roland; Komatitsch, Dimitri; Spiga, Aymeric; Lognonné, Philippe; Banerdt, Bruce
2017-10-01
The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission.
Energy Technology Data Exchange (ETDEWEB)
Lauterborn, W.; Parlitz, U. [Drittes Physikalisches Institut, Universitaet Goettingen, D-37073 Goettingen (Germany); Holzfuss, J.; Billo, A. [Institut fuer Angewandte Physik, Technische Hochschule Darmstadt, D-64289 Darmstadt (Germany); Akhatov, I. [Department of Continuous Media Mechanics, Bashkir State University, Ufa 450074 (Russia)
1996-06-01
Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}
National Research Council Canada - National Science Library
Long, Marshall
2014-01-01
.... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...
Llor, Jesús; Malumbres, Manuel P
2012-01-01
Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios.
Acoustic comfort in eating establishments
DEFF Research Database (Denmark)
Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas
2014-01-01
The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-01
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2% , and the growth-rate parameter by ˜5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
Global acoustic daylight imaging in a stratified Earth-like model
de Hoop, Maarten V.; Garnier, Josselin; Sølna, Knut
2018-01-01
We present an analysis of acoustic daylight imaging in an Earth-like model assuming a random distribution of noise sources spatially supported in an annulus located away from the surface. We assume a situation with scalar wave propagation and that the measurements are of the wave field at the surface. Then, we obtain a relation between the autocorrelation function of the measurements and the trace of the scattered field generated by an impulsive source localized just below the surface. From this relation it is, for example, clear that the eigenfrequencies can be recovered from the autocorrelation. Moreover, the complete scattering operator can be extracted under the additional assumption that the annulus is close to the surface and has a thickness smaller than the typical wavelength.
Cost-Efficient Development of Acoustic Models for Speech Recognition of Related Languages
Directory of Open Access Journals (Sweden)
J. Nouza
2013-09-01
Full Text Available When adapting an existing speech recognition system to a new language, major development costs are associated with the creation of an appropriate acoustic model (AM. For its training, a certain amount of recorded and annotated speech is required. In this paper, we show that not only the annotation process, but also the process of speech acquisition can be automated to minimize the need of human and expert work. We demonstrate the proposed methodology on Croatian language, for which the target AM has been built via cross-lingual adaptation of a Czech AM in 2 ways: a using commercially available GlobalPhone database, and b by automatic speech data mining from HRT radio archive. The latter approach is cost-free, yet it yields comparable or better results in LVCSR experiments conducted on 3 Croatian test sets.
Xue, Chao; Pulvermacher, Allyson; Calawerts, William; Devine, Erin; Jiang, Jack
2017-03-01
This study aims to build an excised anterior glottic web (AGW) model and study the basic voice-related mechanisms of the AGW through investigating the acoustic, aerodynamic, and vibratory properties. Overall, four conditions were tested for each of the eight canine larynges used. At baseline, 10%, 20%, and 33% occlusion (as determined by the placement of the suture), acoustic, aerodynamic, and high-speed video data were collected while each larynx was phonated in a soundproof booth. The phonation threshold pressure (PTP) and the phonation threshold flow significantly increased as percent occlusion increased (P aerodynamic, acoustic, and high-speed video analysis in our study. We observed and investigated the glottic web movement, which may be a new explanation for the pathologic voice-related mechanism of AGW. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
He, Xiao; Hu, Hengshan; Wang, Xiuming
2013-01-01
Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.
Digital Repository Service at National Institute of Oceanography (India)
Chakraborty, B.; Haris, K.
stream_size 19622 stream_content_type text/plain stream_name Underwater_Acoust_Conf_Exhibit_1_1013.pdf.txt stream_source_info Underwater_Acoust_Conf_Exhibit_1_1013.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset...=UTF-8 1st International Conference and Exhibition on Underwater Acoustics 1st Underwater Acoustics Conference and Exhibition 23rd to 28th June 2013 Corfu island, Greece Proceedings Edited by John S. Papadakis...
Boutillon, Xavier; Ege, Kerem
2013-09-01
In string musical instruments, the sound is radiated by the soundboard, subject to the strings excitation. This vibration of this rather complex structure is described here with models which need only a small number of parameters. Predictions of the models are compared with the results of experiments that have been presented in Ege et al. [Vibroacoustics of the piano soundboard: (non)linearity and modal properties in the low- and mid-frequency ranges, Journal of Sound and Vibration 332 (5) (2013) 1288-1305]. The apparent modal density of the soundboard of an upright piano in playing condition, as seen from various points of the structure, exhibits two well-separated regimes, below and above a frequency flim that is determined by the wood characteristics and by the distance between ribs. Above flim, most modes appear to be localised, presumably due to the irregularity of the spacing and height of the ribs. The low-frequency regime is predicted by a model which consists of coupled sub-structures: the two ribbed areas split by the main bridge and, in most cases, one or two so-called cut-off corners. In order to assess the dynamical properties of each of the subplates (considered here as homogeneous plates), we propose a derivation of the (low-frequency) modal density of an orthotropic homogeneous plate which accounts for the boundary conditions on an arbitrary geometry. Above flim, the soundboard, as seen from a given excitation point, is modelled as a set of three structural wave-guides, namely the three inter-rib spacings surrounding the excitation point. Based on these low- and high-frequency models, computations of the point-mobility and of the apparent modal densities seen at several excitation points match published measurements. The dispersion curve of the wave-guide model displays an acoustical radiation scheme which differs significantly from that of a thin homogeneous plate. It appears that piano dimensioning is such that the subsonic regime of acoustical
Chen, Wen; Fang, Jun; Pang, Guofei; Holm, Sverre
2017-01-01
This paper proposes a fractional biharmonic operator equation model in the time-space domain to describe scattering attenuation of acoustic waves in heterogeneous media. Compared with the existing models, the proposed fractional model is able to describe arbitrary frequency-dependent scattering attenuation, which typically obeys an empirical power law with an exponent ranging from 0 to 4. In stark contrast to an extensive and rapidly increasing application of the fractional derivative models for wave absorption attenuation in the literature, little has been reported on frequency-dependent scattering attenuation. This is largely because the order of the fractional Laplacian is from 0 to 2 and is infeasible for scattering attenuation. In this study, the definition of the fractional biharmonic operator in space with an order varying from 0 to 4 is proposed, as well as a fractional biharmonic operator equation model of scattering attenuation which is consistent with arbitrary frequency power-law dependency and obeys the causal relation under the smallness approximation. Finally, the correlation between the fractional order and the ratio of wavelength to the diameter of the scattering heterogeneity is investigated and an expression on exponential form is also provided.
Chu, Chunlei
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.
O'Carroll, Jack P. J.; Kennedy, Robert; Ren, Lei; Nash, Stephen; Hartnett, Michael; Brown, Colin
2017-10-01
The INFOMAR (Integrated Mapping For the Sustainable Development of Ireland's Marine Resource) initiative has acoustically mapped and classified a significant proportion of Ireland's Exclusive Economic Zone (EEZ), and is likely to be an important tool in Ireland's efforts to meet the criteria of the MSFD. In this study, open source and relic data were used in combination with new grab survey data to model EUNIS level 4 biotope distributions in Galway Bay, Ireland. The correct prediction rates of two artificial neural networks (ANNs) were compared to assess the effectiveness of acoustic sediment classifications versus sediments that were visually classified by an expert in the field as predictor variables. To test for autocorrelation between predictor variables the RELATE routine with Spearman rank correlation method was used. Optimal models were derived by iteratively removing predictor variables and comparing the correct prediction rates of each model. The models with the highest correct prediction rates were chosen as optimal. The optimal models each used a combination of salinity (binary; 0 = polyhaline and 1 = euhaline), proximity to reef (binary; 0 = within 50 m and 1 = outside 50 m), depth (continuous; metres) and a sediment descriptor (acoustic or observed) as predictor variables. As the status of benthic habitats is required to be assessed under the MSFD the Ecological Status (ES) of the subtidal sediments of Galway Bay was also assessed using the Infaunal Quality Index. The ANN that used observed sediment classes as predictor variables could correctly predict the distribution of biotopes 67% of the time, compared to 63% for the ANN using acoustic sediment classes. Acoustic sediment ANN predictions were affected by local sediment heterogeneity, and the lack of a mixed sediment class. The all-round poor performance of ANNs is likely to be a result of the temporally variable and sparsely distributed data within the study area.
Alimonti, L.; Atalla, N.
2017-02-01
This work is concerned with the hybrid finite element-transfer matrix methodology recently proposed by the authors. The main assumption behind this hybrid method consists in neglecting the actual finite lateral extent of the acoustic treatment. Although a substantial increase of the computational efficiency can be achieved, the effect of the reflected field (i.e. finite size effects) may be sometimes important, preventing the hybrid model from giving quantitative meaningful results. For this reason, a correction to account for wave reflections at the lateral boundaries of the acoustic treatment is sought. It is shown in the present paper that the image source method can be successfully employed to retrieve such finite size effects. Indeed, such methodology is known to be effective when the response of the system is a smooth function of the frequency, like in the case of highly dissipative acoustic treatments. The main concern of this paper is to assess accuracy and feasibility of the image source method in the context of acoustic treatments modeling. Numerical examples show that the performance of the standard hybrid model can be substantially improved by the proposed correction without deteriorating excessively the computational efficiency.
Electro-acoustic behavior of the mitotic spindle: a semi-classical coarse-grained model.
Directory of Open Access Journals (Sweden)
Daniel Havelka
Full Text Available The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i the triggering of the apoptosis or (ii the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells--a strategy used in novel methods for cancer treatment.
Sheaffer, Jonathan; van Walstijn, Maarten; Fazenda, Bruno
2014-01-01
In finite difference time domain simulation of room acoustics, source functions are subject to various constraints. These depend on the way sources are injected into the grid and on the chosen parameters of the numerical scheme being used. This paper addresses the issue of selecting and designing sources for finite difference simulation, by first reviewing associated aims and constraints, and evaluating existing source models against these criteria. The process of exciting a model is generalized by introducing a system of three cascaded filters, respectively, characterizing the driving pulse, the source mechanics, and the injection of the resulting source function into the grid. It is shown that hard, soft, and transparent sources can be seen as special cases within this unified approach. Starting from the mechanics of a small pulsating sphere, a parametric source model is formulated by specifying suitable filters. This physically constrained source model is numerically consistent, does not scatter incoming waves, and is free from zero- and low-frequency artifacts. Simulation results are employed for comparison with existing source formulations in terms of meeting the spectral and temporal requirements on the outward propagating wave.
Van Dorp Schuitman, J.; De Vries, D.; Lindau, A.
2013-01-01
Acousticians generally assess the acoustic qualities of a concert hall or any other room using impulse response-based measures such as the reverberation time, clarity index, and others. These parameters are used to predict perceptual attributes related to the acoustic qualities of the room. Various
Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.
Wei, Zongsu; Weavers, Linda K
2016-07-01
Scaled-up and economically viable sonochemical systems are critical for increased use of ultrasound in environmental and chemical processing applications. In this study, computational simulations and acoustic pressure maps were used to design a larger-scale sono-reactor containing a multi-stepped ultrasonic horn. Simulations in COMSOL Multiphysics showed ultrasonic waves emitted from the horn neck and tip, generating multiple regions of high acoustic pressure. The volume of these regions surrounding the horn neck were larger compared with those below the horn tip. The simulated acoustic field was verified by acoustic pressure contour maps generated from hydrophone measurements in a plexiglass box filled with water. These acoustic pressure contour maps revealed an asymmetric and discrete distribution of acoustic pressure due to acoustic cavitation, wave interaction, and water movement by ultrasonic irradiation. The acoustic pressure contour maps were consistent with simulation results in terms of the effective scale of cavitation zones (∼ 10 cm and COMSOL simulations. In this study, verification of simulation results with experiments demonstrates that coupling of COMSOL simulations with hydrophone measurements is a simple, effective and reliable scientific method to evaluate reactor designs of ultrasonic systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Vlaun, N.J.V.; van Waart, A.; Tenpierik, M.J.; Turrin, M.; Attar, Ramtin; Chronis, Angelos; Hanna, Sean; Turrin, Michela
2016-01-01
Optimizing the acoustic environment of open plan offices is a complex task due to the large number of design parameters that must be considered. In current practice, acoustic analysis – even in a simplified form – is not naturally integrated into the design process of office spaces. Applying digital
Localized Acoustic Surface Modes
Farhat, Mohamed
2015-08-04
We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.
Williams, Hollis Edward Fitzgerald
There is continuing interest in understanding the propagation of sound in the Arctic Ocean. The location of sound sources in the Arctic Ocean and the mapping of the ice-water interface both use the scattering of acoustic data and its analysis. The better the analysis model, the better the source location and mapping. This paper reports on the development of an experimental system for scale modeling of Arctic ice ridges. This system measures the forward and backward scattered waves from acoustically "soft" protuberances at ka = 0.67. The new experimental system examines the Burke-Twersky mathematical theory applied to ocean acoustic wave scattering. The experiment implements the geometry of the Twersky model in its evaluation. The Diachok geometric model was used for the bottom cross-section of an Arctic ice keel. The system measured the reflection coefficient of a scattered wave. This systematic approach studied the scattering from a single ridge, with varying incident-grazing angles, and two different azimuthal orientations. Scattering from a full random scale model was also measured. The experimental technique involved a large diameter to wavelength ratio for the transducer insonifying the model. Multiple point transducers received scattered signals. Several receivers were positioned to measure the scattering simultaneously. The size of the receivers also made it possible to measure the acoustic signal at angles close to the transmitting angle. The data for the single ridge with perpendicular azimuth was compared directly to the differential scattering function of the Twersky model. Favorable results were found. The experimental system successfully measures the angular dependence of the Twersky model. The expected broad peak exists at the 90^circ grazing receiving angle and the expected variations exists with differing incident-grazing angle. The system allows testing of other aspects of the Burke-Twersky theory. Also, other elements of under-ice scattering can
Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.
2008-01-01
Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878
DEFF Research Database (Denmark)
Blauert, Jens
Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book chapt......: acoustics, cognitive science, speech science, and communication technology.......Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as...
Richecoeur, Franck; Schuller, Thierry; Lamraoui, Ammar; Ducruix, Sébastien
2013-01-01
When coupled to acoustics, unsteady heat release oscillations may cause recurrent problems in many combustion chambers, potentially leading to dramatic damages to the structure. Accumulation of acoustic energy around the eigenmodes of the combustor results from the resonant coupling between pressure disturbances in the flame region with synchronized heat release rate perturbations. Predicting these frequencies and the corresponding sound pressure field is a key issue to design passive or active control systems to prevent the growth of these instabilities. In this study, an acoustically controlled combustion test bench CESAM is used to stabilize a partially premixed swirling propane-air flame. In the premixing tube, reactants are injected tangentially to generate the swirling flow, the flame being stabilized in the combustion chamber by a sudden expansion of the cross section. The premixer backplane is equipped with an Impedance Control System (ICS) allowing to adjust the acoustic reflection coefficient at this location. Acoustics of the coupled-cavity system formed by the premixer and the combustion chamber is investigated analytically by taking into account the measured acoustic impedances at the premixer backplane and in the feeding lines. The chamber length is also modified to examine the effects of the geometry on these predictions. It is shown that the premixer and combustion chamber can be considered as acoustically decoupled for small values of the acoustic coupling index, defined in the article. This offers flexible solutions to control the pressure distribution within the combustor, except when these frequencies match. When the frequencies are close to each other, only the analysis of the damping of the different cavities enables to indicate whether the system is coupled or not. Modifying either the acoustic coupling index or the damping values featuring the same frequency appears then as alternative solutions to decouple cavities.
Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.
1995-01-01
A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.
Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor
Sree, Dave; Stephens, David B.
2014-01-01
Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.
Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor
Sree, David; Stephens, David B.
2014-01-01
Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.
DEFF Research Database (Denmark)
Blauert, Jens
Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....
DEFF Research Database (Denmark)
Blauert, Jens
the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book......: acoustics, cognitive science, speech science, and communication technology....
DEFF Research Database (Denmark)
Blauert, Jens
Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book......: acoustics, cognitive science, speech science, and communication technology....... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as...
Modeling Uncertainties in the Prediction of the Acoustic Wavefield in a Shelfbeak Environment
National Research Council Canada - National Science Library
Lermusiaux, P. F; Chiu, C.-S; Robinson, A. R
2001-01-01
The uncertainties in the predicted acoustic wavefield associated with the transmission of low-frequency sound from the continental slope, through the shelfbreak front, onto the continental shelf are examined...
Acoustic startle induced ultrasonic vocalization in the rat: a novel animal model of anxiety?
Kaltwasser, M T
1991-05-15
Ultrasonic vocalization was induced by either high intensity acoustic stimuli or by electric footshock in the rat. High intensity acoustic stimuli elicit a startle response, while electric footshocks provoke an immediate withdrawal of the feet often accompanied by a pain reaction. Flunitrazepam (0.5 mg/kg), diazepam (5 mg/kg), and ipsapirone (5 mg/kg) reduced the vocalization induced by both averse stimuli. Maprotiline (10-25 mg/kg) enhanced the vocalization. FG 7142 (10 mg/kg) had no effect. The acoustic startle-induced vocalization paradigm like the electric footshock-induced vocalization paradigm may provide a simple and reliable tool in the study of anxiety. The advantage of an acoustic pulse as the averse stimulus is discussed.
Laukka, Petri; Elfenbein, Hillary Anger; Thingujam, Nutankumar S; Rockstuhl, Thomas; Iraki, Frederick K; Chui, Wanda; Althoff, Jean
2016-11-01
This study extends previous work on emotion communication across cultures with a large-scale investigation of the physical expression cues in vocal tone. In doing so, it provides the first direct test of a key proposition of dialect theory, namely that greater accuracy of detecting emotions from one's own cultural group-known as in-group advantage-results from a match between culturally specific schemas in emotional expression style and culturally specific schemas in emotion recognition. Study 1 used stimuli from 100 professional actors from five English-speaking nations vocally conveying 11 emotional states (anger, contempt, fear, happiness, interest, lust, neutral, pride, relief, sadness, and shame) using standard-content sentences. Detailed acoustic analyses showed many similarities across groups, and yet also systematic group differences. This provides evidence for cultural accents in expressive style at the level of acoustic cues. In Study 2, listeners evaluated these expressions in a 5 × 5 design balanced across groups. Cross-cultural accuracy was greater than expected by chance. However, there was also in-group advantage, which varied across emotions. A lens model analysis of fundamental acoustic properties examined patterns in emotional expression and perception within and across groups. Acoustic cues were used relatively similarly across groups both to produce and judge emotions, and yet there were also subtle cultural differences. Speakers appear to have a culturally nuanced schema for enacting vocal tones via acoustic cues, and perceivers have a culturally nuanced schema in judging them. Consistent with dialect theory's prediction, in-group judgments showed a greater match between these schemas used for emotional expression and perception. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...
Theoretical analysis of transcranial magneto-acoustical stimulation with Hodgkin–Huxley neuron model
Directory of Open Access Journals (Sweden)
Yi eYuan
2016-04-01
Full Text Available Transcranial magneto-acoustical stimulation (TMAS is a novel stimulation technology in which an ultrasonic wave within a magnetostatic field generates an electric current in an area of interest in the brain to modulate neuronal activities. As a key part of the neural network, neurons transmit information in the nervous system. However, the effect of TMAS on the neuronal firing rhythm remains unknown. To address this problem, we investigated the stimulatory mechanism of TMAS on neurons with a Hodgkin-Huxley neuron model. The simulation results indicate that the magnetostatic field intensity and ultrasonic power can affect the amplitude and interspike interval of neuronal action potential under continuous wave ultrasound. The simulation results also show that the ultrasonic power, duty cycle and repetition frequency can alter the firing rhythm of neural action potential under pulsed ultrasound. This study can help to reveal and explain the biological mechanism of TMAS and to provide a theoretical basis for TMAS in the treatment or rehabilitation of neuropsychiatric disorders.
Using passive acoustics to model blue whale habitat off the Western Antarctic Peninsula
Širović, Ana; Hildebrand, John A.
2011-07-01
Habitat preferences of calling blue whales were investigated using data from two multidisciplinary oceanographic cruises conducted off the Western Antarctic Peninsula (WAP) during the austral falls of 2001 and 2002. Data were collected on depth, temperature, salinity, chlorophyll a (Chl- a) concentration, krill biomass, zooplankton abundance, and blue whale call presence. In 2001, the study area was sea ice free, high Chl- a concentrations occurred over a small area, krill biomass and zooplankton abundance were high, and few blue whale calls were detected. In 2002 the sea ice covered the southern part of the survey area, Chl- a was high over a large area, krill and zooplankton were low, and there were more blue whale calls. Logistic regression analysis revealed blue whale calls were positively correlated with depth and SST, and negatively correlated with the mean zooplankton abundance from 101 to 300 m and the mean krill biomass in the top 100 m. The negative correlation between blue whale calls and zooplankton could occur if feeding animals do not produce calls. Our survey area did not cover the full range of blue whale habitat off the WAP, as blue whales probably follow the melting and freezing ice edge through this region. Passive acoustics can provide insight to mesoscale habitat use by blue whales in the Southern Ocean where visual sightings are rare, but the ability to localize on the calling animals would greatly improve the ability to model at a finer scale.
On the Impact of Children's Emotional Speech on Acoustic and Language Models
Directory of Open Access Journals (Sweden)
Björn Schuller
2010-01-01
Full Text Available The automatic recognition of children's speech is well known to be a challenge, and so is the influence of affect that is believed to downgrade performance of a speech recogniser. In this contribution, we investigate the combination of both phenomena. Extensive test runs are carried out for 1 k vocabulary continuous speech recognition on spontaneous motherese, emphatic, and angry children's speech as opposed to neutral speech. The experiments address the question how specific emotions influence word accuracy. In a first scenario, “emotional” speech recognisers are compared to a speech recogniser trained on neutral speech only. For this comparison, equal amounts of training data are used for each emotion-related state. In a second scenario, a “neutral” speech recogniser trained on large amounts of neutral speech is adapted by adding only some emotionally coloured data in the training process. The results show that emphatic and angry speech is recognised best—even better than neutral speech—and that the performance can be improved further by adaptation of the acoustic and linguistic models. In order to show the variability of emotional speech, we visualise the distribution of the four emotion-related states in the MFCC space by applying a Sammon transformation.
5 Percent Ares I Scale Model Acoustic Test: Overpressure Characterization and Analysis
Alvord, David; Casiano, Matthew; McDaniels, Dave
2011-01-01
During the ignition of a ducted solid rocket motor (SRM), rapid expansion of injected hot gases from the motor into a confined volume causes the development of a steep fronted wave. This low frequency transient wave propagates outward from the exhaust duct, impinging the vehicle and ground structures. An unsuppressed overpressure wave can potentially cause modal excitation in the structures and vehicle, subsequently leading to damage. This presentation details the ignition transient f indings from the 5% Ares I Scale Model Acoustic Test (ASMAT). The primary events of the ignition transient environment induced by the SRM are the ignition overpressure (IOP), duct overpressure (DOP), and source overpressure (SOP). The resulting observations include successful knockdown of the IOP environment through use of a Space Shuttle derived IOP suppression system, a potential load applied to the vehicle stemming from instantaneous asymmetrical IOP and DOP wave impingement, and launch complex geometric influences on the environment. The results are scaled to a full-scale Ares I equivalent and compared with heritage data including Ares I-X and both suppressed and unsuppressed Space Shuttle IOP environments.
Gizon, Laurent; Barucq, Hélène; Duruflé, Marc; Hanson, Chris S.; Leguèbe, Michael; Birch, Aaron C.; Chabassier, Juliette; Fournier, Damien; Hohage, Thorsten; Papini, Emanuele
2017-04-01
Context. Local helioseismology has so far relied on semi-analytical methods to compute the spatial sensitivity of wave travel times to perturbations in the solar interior. These methods are cumbersome and lack flexibility. Aims: Here we propose a convenient framework for numerically solving the forward problem of time-distance helioseismology in the frequency domain. The fundamental quantity to be computed is the cross-covariance of the seismic wavefield. Methods: We choose sources of wave excitation that enable us to relate the cross-covariance of the oscillations to the Green's function in a straightforward manner. We illustrate the method by considering the 3D acoustic wave equation in an axisymmetric reference solar model, ignoring the effects of gravity on the waves. The symmetry of the background model around the rotation axis implies that the Green's function can be written as a sum of longitudinal Fourier modes, leading to a set of independent 2D problems. We use a high-order finite-element method to solve the 2D wave equation in frequency space. The computation is embarrassingly parallel, with each frequency and each azimuthal order solved independently on a computer cluster. Results: We compute travel-time sensitivity kernels in spherical geometry for flows, sound speed, and density perturbations under the first Born approximation. Convergence tests show that travel times can be computed with a numerical precision better than one millisecond, as required by the most precise travel-time measurements. Conclusions: The method presented here is computationally efficient and will be used to interpret travel-time measurements in order to infer, e.g., the large-scale meridional flow in the solar convection zone. It allows the implementation of (full-waveform) iterative inversions, whereby the axisymmetric background model is updated at each iteration.
A stochastic model for soft tissue failure using acoustic emission data.
Sánchez-Molina, D; Martínez-González, E; Velázquez-Ameijide, J; Llumà, J; Rebollo Soria, M C; Arregui-Dalmases, C
2015-11-01
The strength of soft tissues is due mainly to collagen fibers. In most collagenous tissues, the arrangement of the fibers is random, but has preferred directions. The random arrangement makes it difficult to make deterministic predictions about the starting process of fiber breaking under tension. When subjected to tensile stress the fibers are progressively straighten out and then start to be stretched. At the beginning of fiber breaking, some of the fibers reach their maximum tensile strength and break down while some others remain unstressed (this latter fibers will assume then bigger stress until they eventually arrive to their failure point). In this study, a sample of human esophagi was subjected to a tensile breaking of fibers, up to the complete failure of the specimen. An experimental setup using Acoustic Emission to detect the elastic energy released is used during the test to detect the location of the emissions and the number of micro-failures per time unit. The data were statistically analyzed in order to be compared to a stochastic model which relates the level of stress in the tissue and the probability of breaking given the number of previously broken fibers (i.e. the deterioration in the tissue). The probability of a fiber breaking as the stretch increases in the tissue can be represented by a non-homogeneous Markov process which is the basis of the stochastic model proposed. This paper shows that a two-parameter model can account for the fiber breaking and the expected distribution for ultimate stress is a Fréchet distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Gasser, St.
2003-07-15
This thesis has focused on a model metallic cellular material, in order to provide a candidate material and design tools of an acoustic liner for turbo-engine exhausters. The acoustic absorption problem has lead to discuss an analytic, descriptive modelling that was available in the literature, and then to introduce a numerical technique allowing to predict the acoustical properties of a porous material. To answer the industrial need of structural strength, the elastic properties of the material have been computed, and a numerical approach of micro-plasticity was proposed. Finally, the implemented numerical tools were used in a simplified design and optimisation problem of an acoustic liner. (author)
1982-09-01
1499.9 1676 1495.2 2500 1500.6 3353 1513.6 UNCLASSIFIED S~SITE 4 (C) SITE 4 was located on the Chain Ridge in the Northern ji Somali Basin. The site...150o 0.0 s.. 100.0 RnNGE KlM ) x 4 x ,I A - *~- ý(C Z xxe O. • • 0o•0 , 20., z* •’CG 0••, 30 O CONFIENTIA X4 XU ’,•, CCONFIDENTIAL 276 1 r 3*C. 350.1...34Geoacoustic ModeLs of the Sea Floor: Gulf of Oman, Arabian Sea, and Somali Basin (U)," by E. L. Hamilton and R. T. Bachman, 15 Jun 1979. CONFIDENTIAL 9
Lyamshev, L.
1990-01-01
Radiation acoustics is a new branch of acoustics. Its' fundamentals are lying in the research of acoustical effects due to the interaction of a radiation with matter. The sound excitation in liquids and solids by modulated or pulsed particle beams (electron, proton, ion beams, γ-radiation and single high-energy elementary particles) and some practical applications are discussed.
Tao, Yang; Zhang, Zhihang; Sun, Da-Wen
2014-07-01
The effects of acoustic energy density (6.8-47.4 W/L) and temperature (20-50 °C) on the extraction yields of total phenolics and tartaric esters during ultrasound-assisted extraction from grape marc were investigated in this study. The ultrasound treatment was performed in a 25-kHz ultrasound bath system and the 50% aqueous ethanol was used as the solvent. The initial extraction rate and final extraction yield increased with the increase of acoustic energy density and temperature. The two site kinetic model was used to simulate the kinetics of extraction process and the diffusion model based on the Fick's second law was employed to determine the effective diffusion coefficient of phenolics in grape marc. Both models gave satisfactory quality of data fit. The diffusion process was divided into one fast stage and one slow stage and the diffusion coefficients in both stages were calculated. Within the current experimental range, the diffusion coefficients of total phenolics and tartaric esters for both diffusion stages increased with acoustic energy density. Meanwhile, the rise of temperature also resulted in the increase of diffusion coefficients of phenolics except the diffusion coefficient of total phenolics in the fast stage, the value of which being the highest at 40 °C. Moreover, an empirical equation was suggested to correlate the effective diffusion coefficient of phenolics in grape marc with acoustic energy density and temperature. In addition, the performance comparison of ultrasound-assisted extraction and convention methods demonstrates that ultrasound is an effective and promising technology to extract bioactive substances from grape marc. Copyright © 2014 Elsevier B.V. All rights reserved.
Jensen, Finn B; Porter, Michael B; Schmidt, Henrik
2011-01-01
Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...
3D Acoustic Modelling of Dissipative Silencers with Nonhomogeneous Properties and Mean Flow
Directory of Open Access Journals (Sweden)
E. M. Sánchez-Orgaz
2014-07-01
Full Text Available A finite element approach is proposed for the acoustic analysis of automotive silencers including a perforated duct with uniform axial mean flow and an outer chamber with heterogeneous absorbent material. This material can be characterized by means of its equivalent acoustic properties, considered coordinate-dependent via the introduction of a heterogeneous bulk density, and the corresponding material airflow resistivity variations. An approach has been implemented to solve the pressure wave equation for a nonmoving heterogeneous medium, associated with the problem of sound propagation in the outer chamber. On the other hand, the governing equation in the central duct has been solved in terms of the acoustic velocity potential considering the presence of a moving medium. The coupling between both regions and the corresponding acoustic fields has been carried out by means of a perforated duct and its acoustic impedance, adapted here to include absorbent material heterogeneities and mean flow effects simultaneously. It has been found that bulk density heterogeneities have a considerable influence on the silencer transmission loss.
Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.
2010-01-01
Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.
Leurer, Klaus C; Brown, Colin
2008-04-01
This paper presents a model of acoustic wave propagation in unconsolidated marine sediment, including compaction, using a concept of a simplified sediment structure, modeled as a binary grain-size sphere pack. Compressional- and shear-wave velocities and attenuation follow from a combination of Biot's model, used as the general framework, and two viscoelastic extensions resulting in complex grain and frame moduli, respectively. An effective-grain model accounts for the viscoelasticity arising from local fluid flow in expandable clay minerals in clay-bearing sediments. A viscoelastic-contact model describes local fluid flow at the grain contacts. Porosity, density, and the structural Biot parameters (permeability, pore size, structure factor) as a function of pressure follow from the binary model, so that the remaining input parameters to the acoustic model consist solely of the mass fractions and the known mechanical properties of each constituent (e.g., carbonates, sand, clay, and expandable clay) of the sediment, effective pressure, or depth, and the environmental parameters (water depth, salinity, temperature). Velocity and attenuation as a function of pressure from the model are in good agreement with data on coarse- and fine-grained unconsolidated marine sediments.
2016-12-22
Final Report 3. DATES COVERED (From - To) 7/1/15 to 12/22/16 4. TITLE AND SUBTITLE Deep Water Ocean Acoustics 5a. CONTRACT NUMBER...shortening of the water column); 2.) Explicitly defined the geo-acoustics so that both models had the same sponge ; 3.) Output the complete computational...chosen because this VLA was spaced at /2 at 250Hz and is therefore beamforming capable, covering the conjugate depth. An ambient noise model was
Energy Technology Data Exchange (ETDEWEB)
Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Grana, Dario [Department of Geology and Geophysics, University of Wyoming, Laramie (United States); Santos, Marcio; Figueiredo, Wagner [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Roisenberg, Mauro [Informatic and Statistics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Schwedersky Neto, Guenther [Petrobras Research Center, Rio de Janeiro (Brazil)
2017-05-01
We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well data multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.
Droubi, M. G.; Reuben, R. L.; White, G.
2012-07-01
The estimation of energy dissipated during multiple particle impact is a key aspect in evaluating the abrasive potential of particle-laden streams. This paper reports the results of systematic acoustic emission measurements in which a particle laden airflow was directed at a target plate. The impingement conditions were chosen to limit the amount of overlap of particle arrival events in order to develop a model of the stream as the cumulation of individual particle arrival events. To this end, some limited experiments were done with individual particles. The probability distribution of particle impact energy was obtained for a range of particle sizes and impact velocities. Two methods of time series processing were investigated to isolate the individual particle arrivals from the background noise and from particle noise associated with contact of the particles with the target after their first arrival. For the conditions where it was possible to resolve individual impacts, the probability distribution of particle arrival AE energy was determined by the best-fit lognormal probability distribution function. The mean and variance of this function was then correlated with the known nominal mass and impact speed to give a semi-quantitative assessment of particle impact energy. A pulse shape function was devised for the target plate by inspection of the records, backed up by pencil lead tests and this, coupled with the energy distribution functions allowed the records to be simulated knowing the arrival rate and the nominal mass and velocity of the particles. A comparison of the AE energy between the recorded and simulated records showed that the principle of accumulating individual particle impact signatures could be applied to records even when the individual impacts could not be resolved.
Zárate, Boris A.; Caicedo, Juan M.; Yu, Jianguo; Ziehl, Paul
2011-04-01
Acoustic emission (AE) is generated when cracks develop and it is used as an indicator of the current state of damage in structural elements. Algorithms that use AE data to predict the state of a structural element are still in their research stages because the relationship between crack length and AE activity is not well understood. The process of trying to predict the future stage of a crack based on AE data is usually performed by an expert, and requires significant experience. This paper proposes a new strategy for the use of AE data for structural prognosis. A probabilistic model is used to predict AE data. An expert can analyze this data to draw conclusions about the health of the structural member. The goal is to aid the analyst by providing an estimation of the AE activity in the future. The methodology provides the cumulative signal strength at a future number of cycles, assuming the loading and boundary conditions hold. The methodology uses a relationship between the rate of change of the cumulative absolute energy of the AE with respect to the number of cycles and the stress intensity range. A third order polynomial equation that describes the stress intensity range as function of the AE data is proposed. The variables to be updated are treated as random and their joint probability distribution is computed using Bayesian inference. Markov Chain Monte Carlo (MCMC) is used to forecast the cumulative signal strength at some number of cycles in the future. The methodology is tested using a compact test specimen tested in structures lab at the University of South Carolina.
DEFF Research Database (Denmark)
Escolano-Carrasco, José; Jacobsen, Finn; López, J.J.
2008-01-01
The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to include such boundary conditions in an FDTD model. Although solutions...... to this problem exist, most of them have high computational costs, and stability cannot always be ensured. In this work, a solution is proposed based on "mixing modelling strategies"; this involves separating the FDTD mesh and the boundary conditions (a digital filter representation of the impedance...
Directory of Open Access Journals (Sweden)
Li Cheng
2014-01-01
Full Text Available In the oil industry, the accompanied reverberation is a major constraint in the transmission rate and distance because the drillstring is a heterogeneous assembly. Based on the transient impulse responses in uplink and downlink channels, an improved simplified echo suppression model with two acoustic receivers is presented in consideration of position optimization of single acoustic receiver. Then the acoustic receiving characteristics of transmitted signals in a length-limited periodic drillstring channel are obtained in single- and dual-receiver modes. An additive downward white Gaussian noise is also introduced in the channel. Moreover, an experimental rig is established by using a rotatable electromagnetic vibration exciter and two piezoelectric accelerometers, which are spaced one-quarter wavelength apart along a 6.3-meter simulated periodic drillstring. The ASK-, FSK-, and PSK-modulated square-wave pulse sequences at a transmission rate of 200 bit/s are applied to the simulated drillstring at a rotation speed of 0, 80, and 140 r/min, respectively. The experimental results show that the dual-receiver mode can exhibit a significantly improved average error bit ratio, which is approximately 2.5 to 3 times lower than that of the single-receiver mode, especially under the conditions of higher rotation speeds.
Jensen, C. R.; Cleveland, R. O.; Coussios, C. C.
2013-09-01
Passive acoustic mapping (PAM) has been recently demonstrated as a method of monitoring focused ultrasound therapy by reconstructing the emissions created by inertially cavitating bubbles (Jensen et al 2012 Radiology 262 252-61). The published method sums energy emitted by cavitation from the focal region within the tissue and uses a threshold to determine when sufficient energy has been delivered for ablation. The present work builds on this approach to provide a high-intensity focused ultrasound (HIFU) treatment monitoring software that displays both real-time temperature maps and a prediction of the ablated tissue region. This is achieved by determining heat deposition from two sources: (i) acoustic absorption of the primary HIFU beam which is calculated via a nonlinear model, and (ii) absorption of energy from bubble acoustic emissions which is estimated from measurements. The two sources of heat are used as inputs to the bioheat equation that gives an estimate of the temperature of the tissue as well as estimates of tissue ablation. The method has been applied to ex vivo ox liver samples and the estimated temperature is compared to the measured temperature and shows good agreement, capturing the effect of cavitation-enhanced heating on temperature evolution. In conclusion, it is demonstrated that by using PAM and predictions of heating it is possible to produce an evolving estimate of cell death during exposure in order to guide treatment for monitoring ablative HIFU therapy. Portions presented at the 13th International Symposium on Therapeutic Ultrasound, Heidelberg, Germany (2012).
Directory of Open Access Journals (Sweden)
Andrés Ospina-Álvarez
Full Text Available To date, there are numerous transport simulation studies demonstrating the relevance of the hydrodynamics for the advection, dispersion and recruitment of early stages of marine organisms. However, the lack of data has conditioned the use of realistic locations for the model setup and configuration in transport studies. This work (I demonstrates the key role played by the use of the realistic initial position of the eggs of small pelagic fishes in the analysis of late-larval recruitment in coastal nursery areas and (II provides a general solution for deriving future egg positions and abundances from adult biomass obtained from acoustic surveys and available fecundity data. Using European anchovy in the NW Mediterranean as a case study, we first analyzed the impact of the initial location, timing, egg buoyancy and diel vertical migration of larvae on the potential late-larval recruitment to coastal areas. The results suggested that prior knowledge of the initial spawning grounds may substantially affect the estimates of potential recruitment. We then integrated biological and acoustics-derived data (the biomass and size structure, sex ratio, a weight-batch fecundity model, mean weight, number of fish and mean spawning to build a predictive model for interannual egg production. This model was satisfactorily contrasted with field data for two years obtained with the Daily Egg Production Method (DEPM. We discuss our results in the context of the fluctuations of European anchovy egg abundance from 2003 through 2010 in the NW Mediterranean and in terms of the potential applicability of the acoustics-based spatial predictive egg production model.
Doppler effects in heterogeneous media with applications to ocean acoustic modeling.
Weichman, Peter B
2005-12-01
Doppler shift corrections to ocean acoustic signals are complicated by the multi-spatial-scale structure of the ocean medium, resulting in a multi-time-scale structure of the acoustic Green function. Repeated reflections and refractions lead in general to an infinite number of acoustic paths or modes, with different times of flight, connecting source and receiver. The rate of change of these flight times with source or receiver motion gives rise to Doppler shift corrections, and each acoustic path or mode has a different correction. A clean Doppler correction (in the sense of an observable coherent motion-induced frequency shift for each path or mode) is shown to emerge only when the medium is homogeneous along the direction of source or receiver motion, even when it is highly inhomogeneous in directions orthogonal to the motion. A very general quantitative theory for this correction is developed, encompassing earlier results in the literature, and presented in a form amenable to efficient numerical implementation in data processing.
Mems based hair flow-sensors as model systems for acoustic perception studies
Krijnen, Gijsbertus J.M.; Dijkstra, Marcel; van Baar, J.J.J.; Shankar, Siripurapu S.; Kuipers, Winfred J.; de Boer, J.H.; Altpeter, Dominique; Lammerink, Theodorus S.J.; Wiegerink, Remco J.
2006-01-01
Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees
Validation of a numerical model of acoustic ceiling combined with TABS
DEFF Research Database (Denmark)
Rage, Nils; Kazanci, Ongun Berk; Olesen, Bjarne W.
2016-01-01
Thermally-Active Building Systems (TABS) have proven to be an energy-efficient and economical cooling and heating solution for commercial buildings. However, acoustic comfort is often jeopardized in such buildings, due to the thermal requirements of the system. More knowledge is required to under...
A scalable acoustic sensor network for model based monitoring of urban traffic noise
Basten, T.G.H.; Wessels, P.W.; Eerden, F.J.M. van der
2012-01-01
A good understanding of the acoustic environment due to traffic in urban areas is very important. Long term monitoring within large areas provides a clear insight in the actual noise situation. This is needed to take appropriate and cost efficient measures; to asses the effect of measures by
Acoustic modeling of fan noise generation and scattering in a modular duct system
Nijhof, M.J.J.; Beltman, Marco; Wijnant, Ysbrand H.; de Boer, Andries
2005-01-01
Fan noise is an important noise source in computers. The noise spectrum of fans contains tonal noise, found at the so-called Blade Passing Frequency (BPF) and its higher harmonics, that plays an important role in the perceived sound quality. An acoustic resonator integrated in the duct of an in-duct
Establishing a sea bottom model by applying a multi-sensor acoustic remote sensing approach
Siemes, K.
2013-01-01
Detailed information about the oceanic environment is essential for many applications in the field of marine geology, marine biology, coastal engineering, and marine operations. Especially, knowledge of the properties of the sediment body is often required. Acoustic remote sensing techniques have
Theoretical model of lossy acoustic bipolar cylindrical cloak with negative index metamaterial
Lee, Yong Y.; Ahn, Doyeol
2017-09-01
While, it was shown that for the lossless acoustic cloak the illumination direction independent cloaking can be achieved by employing the structure with compressed geometry and complementary media, the effect of the material loss have not been fully explored yet. Here, we show that realistic cloaking materials with moderate loss still works when complementary media is introduced but with the attenuated back scattering waves.
Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging
2012-01-01
The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging
Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory
2016-04-01
The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
Eickmeier, Justin
signal propagation. It is determined that on a time scale of seconds, corresponding to typical periods of surface water waves, the arrival time of reflected acoustic signals from surface waves appear as striation patterns in measured data and can be accurately modelled by ray tracing. Second, changes in acoustic beam arrival angle and acoustic ray path influenced by isotherm depth oscillations are analyzed using an 8-element delay-sum beamformer. The results are compared with outputs from a two-dimensional (2-D) parabolic equation (PE) model using measured sound speed profiles (SSPs) in the water column. Using the method of beamforming on the received signal, the arrival time and angle of an acoustic beam was obtained for measured acoustic signals. It is determined that the acoustic ray path, acoustic beam intensity and angular spread are a function of vertical isotherm oscillations on a time scale of minutes and can be modeled accurately by a 2-D PE model. Third, a forward problem is introduced which uses acoustic wavefronts received on a vertical line array, 1.48 km from the source, in the lower part of the water column to infer range dependence or independence in the SSP. The matched filtering results of received acoustic wavefronts at all hydrophone depths are compared with a ray tracing routine augmented to calculate only direct path and bottom reflected signals. It is determined that the SSP range dependence can be inferred on a time scale of hours using an array of hydrophones spanning the water column. Sound speed profiles in the acoustic field were found to be range independent for 11 of the 23 hours in the measurements. A SSP cumulative reconstruction process, conducted from the seafloor to the sea surface, layer-by-layer, identifies critical segments in the SSP that define the ray path, arrival time and boundary interactions. Data-model comparison between matched filtered arrival time spread and arrival time output from the ray tracing was robust when the SSP
Nayak, Rajkishore
2016-01-01
This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.
Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.
2013-01-01
A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.
Soderman, Paul T.; Olson, Larry (Technical Monitor)
1995-01-01
The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.
Ellis, Jonathan S; Thompson, Michael
2010-07-06
Transverse-shear mode acoustic wave devices have been used as real-time, label-free detectors of conformational shifts in biomolecules on surfaces. However, material changes in the biochemical monolayers and coupling between the substrate and the surrounding liquid make it difficult to isolate the desired signal, so an understanding of these phenomena is required. An important step in this understanding is knowledge of the material properties of the linker layer that attaches a biochemically selective molecule to the gold surface, in our case, neutravidin. With the goal of obtaining material properties for a neutravidin monolayer, for use in future studies, neutravidin adsorption to the gold surface of an acoustic wave biosensor is described as a viscoelastic monolayer using one-dimensional modeling. Neutravidin is described as forming hydrated, viscoelastic monolayers, and slip is allowed at all interfaces. An impedance model is numerically fit to experimental values using a two-parameter minimization algorithm and values for the shear modulus of the neutravidin monolayer, in agreement with literature values for similar proteins, are obtained. Slip is found on the electrode surface prior to neutravidin adsorption. These results will be used for future modeling studies involving this protein as a linker protein.
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2017-10-01
Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.
Proskuryakov, K. N.
2017-11-01
Created new scientific direction: “Diagnosis, prognosis and prevention of vibration - acoustic resonances in the nuclear power plant (NPP) equipment. The possibility of using methods for calculating and analyzing electric oscillation systems in the study of the properties of acoustic systems with a two-phase medium is proved, based on the similarity of the differential equations describing the state of these systems. Is shown that the developed methods can be used to predict and prevent the occurrence of vibration - acoustic resonances in the NPP equipment. Is shown that the volume of pressurizer at NPPs with VVER and PWR as well as boiling water reactor that exploded at Japan’s NPP Fukushima Daiichi is a Helmholtz resonator, which contain water and steam volumes and able many times increases the impact on them of outside periodic oscillations. Paper presents most important results published long before the severe accidents at NPPs Three Mile Island (TMI), Chernobyl and Fukushima Daiichi that could be used for the prediction of a severe accident scenario, identification of measuring data and process control in order to minimize the damage. Worked out results also could be useful in another industrial technologies based on applications of single and two-phase flows.
Gough, Colin
This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.
Oyeyemi, Kehinde D.; Olowokere, Mary T.; Aizebeokhai, Ahzegbobor P.
2017-12-01
The evaluation of economic potential of any hydrocarbon field involves the understanding of the reservoir lithofacies and porosity variations. This in turns contributes immensely towards subsequent reservoir management and field development. In this study, integrated 3D seismic data and well log data were employed to assess the quality and prospectivity of the delineated reservoirs (H1-H5) within the OPO field, western Niger Delta using a model-based seismic inversion technique. The model inversion results revealed four distinct sedimentary packages based on the subsurface acoustic impedance properties and shale contents. Low acoustic impedance model values were associated with the delineated hydrocarbon bearing units, denoting their high porosity and good quality. Application of model-based inverted velocity, density and acoustic impedance properties on the generated time slices of reservoirs also revealed a regional fault and prospects within the field.
High-Frequency Seafloor Acoustics
Jackson, Darrell R
2007-01-01
High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.
DEFF Research Database (Denmark)
Blauert, Jens
Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... chapters represent review articles covering the most relevant areas of the field. They are written with the goal of providing students with comprehensive introductions. Further they offer a supply of numerous references to the relevant literature. Besides its usefulness as a textbook, this will make...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as...
Strutzenberg, Louise L.; Putman, Gabriel C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow-Water Mud Acoustics William L. Siegmann...models and methods that explain observed material and acoustic properties of different physical types of shallow-ocean mud sediments. Other goals...are to assess prior data relating to the acoustic properties of mud and to provide guidance in the development and interpretation of experiments. A
2015-09-30
of Acoustic Field Statistics for Deep ...00303 LONG-TERM GOALS The long-term goals of this research are to understand the statistics of acoustic fields in both deep and shallow water ocean...environments. OBJECTIVES The primary objective of this work is the development of accurate, and computationally efficient, reduced-physics acoustic
Christensen, David B.; Basaeri, Hamid; Roundy, Shad
2017-12-01
In acoustic power transfer systems, a receiver is displaced from a transmitter by an axial depth, a lateral offset (alignment), and a rotation angle (orientation). In systems where the receiver’s position is not fixed, such as a receiver implanted in biological tissue, slight variations in depth, orientation, or alignment can cause significant variations in the received voltage and power. To address this concern, this paper presents a computationally efficient technique to model the effects of depth, orientation, and alignment via ray tracing (DOART) on received voltage and power in acoustic power transfer systems. DOART combines transducer circuit equivalent models, a modified version of Huygens principle, and ray tracing to simulate pressure wave propagation and reflection between a transmitter and a receiver in a homogeneous medium. A reflected grid method is introduced to calculate propagation distances, reflection coefficients, and initial vectors between a point on the transmitter and a point on the receiver for an arbitrary number of reflections. DOART convergence and simulation time per data point is discussed as a function of the number of reflections and elements chosen. Finally, experimental data is compared to DOART simulation data in terms of magnitude and shape of the received voltage signal.
Zhang, Victor Y; Dubus, Bertrand; Lefebvre, Jean Etienne; Gryba, Tadeusz
2008-03-01
The fundamental electro-acoustic properties of a solid layer are deduced in terms of its impedance matrix (Z) and represented by a network for modeling the bulk acoustic wave devices built on piezoelectric stacked structures. A piezoelectric layer is described by a three-port equivalent network, a nonpiezoelectric layer, and a short- or open-circuit piezoelectric layer by a two-port one. Electrical input impedance of the resonator is derived in terms of the Z-matrix of both the piezoelectric layer and an external load, the unique expression applies whether the resonator is a mono- or electroded-layer or a solidly mounted resonator (SMR). The loading effects of Al-electrodes on the resonating frequencies of the piezoelectric ZnO-layer are analyzed. Transmission and reflection properties of Bragg mirrors are investigated along with the bulk radiation in SMR. As a synthesizing example, a coupled resonator filter (CRF) is analyzed using the associated two-port equivalent network and by calculating the power transmission to a 50Omega-load. The stacked crystal filter is naturally included in the model as a special case of CRF. Combining a comprehensive matrix analysis and an instructive network representation and setting the problem with a full vectorial formalism are peculiar features of the presented approach.
Bilbao, Stefan; Harrison, Reginald
2016-07-01
Numerical modeling of wave propagation in acoustic tubes is a subject of longstanding interest, particularly for enclosures of varying cross section, and especially when viscothermal losses due to boundary layer effects are taken into consideration. Though steady-state, or frequency domain methods, are a common avenue of approach, recursive time domain methods are an alternative, allowing for the generation of wideband responses, and offer a point of departure for more general modeling of nonlinear wave propagation. The design of time-domain methods is complicated by numerical stability considerations, and to this end, a passive representation is a useful design principle leading to simple stable and explicit numerical schemes, particularly in the case of viscothermal loss modeling. Such schemes and the accompanying energy and stability analysis are presented here. Numerical examples are presented for a variety of duct profiles, illustrating strict energy dissipation, and for comparison of computed input impedances against frequency-domain results.
Strutzenberg, Louise L.; Putman, Gabriel C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Building on dry simulations of the ASMAT tests with the vehicle at 5 ft. elevation (100 ft. real vehicle elevation), wet simulations of the ASMAT test setup have been performed using the Loci/CHEM computational fluid dynamics software to explore the effect of rainbird water suppression inclusion on the launch platform deck. Two-phase water simulation has been performed using an energy and mass coupled lagrangian particle system module where liquid phase emissions are segregated into clouds of virtual particles and gas phase mass transfer is accomplished through simple Weber number controlled breakup and boiling models. Comparisons have been performed to the dry 5 ft. elevation cases, using configurations with and without launch mounts. These cases have been used to explore the interaction between rainbird spray patterns and launch mount geometry and evaluate the acoustic sound pressure level knockdown achieved through above-deck rainbird deluge inclusion. This comparison has been anchored with validation from live-fire test data which showed a reduction in rainbird effectiveness with the presence of a launch mount.
Acoustic levitation of an object larger than the acoustic wavelength.
Andrade, Marco A B; Okina, Fábio T A; Bernassau, Anne L; Adamowski, Julio C
2017-06-01
Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.
Sonar Performance Estimation Model with Seismo-Acoustic Effects on Underwater Sound Propagation
1989-06-27
a dfluid properties are obtained from Jensen , the properties of clay-silt, sand, 61 and basalt are taken from the paper by Werby and Tango , and the...the power of very loud music may be 30 Watts with a sound pressure of 3 Pascals which corresponds to a sound pressure level near 100dB. The...Underwater Acoustic Propagation, DREA Report 85/105, Sep 1985, Nova Scotia, Canada. 61. Werby, M. F. and Tango , G. J., "Characterization of Average
Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel
Dietrich, D. A.; Heidmann, M. F.; Abbott, J. M.
1977-01-01
One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack.
Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen
2018-01-01
Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, ;sub-sampling training examples;-based and ;manipulating input features;-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.
DEFF Research Database (Denmark)
Shaikh, Danish; Schmidt, Michael Kjær
2017-01-01
-related transfer functions of stationary KEMAR dummy heads equipped with two microphones. We present a preliminary approach using two sound sensors, whose directed movements resolve the location of a stationary acoustic target in three dimensions. A model of the peripheral auditory system of lizards provides sound...... localisation performance of the system is evaluated in simulation for noiseless as well as noisy sinusoidal auditory signals with a 20 dB signal-to-noise ratio for four different sound frequencies of 1450 Hz, 1650 Hz, 1850 Hz and 2050 Hz that span the response frequency range of the peripheral auditory model...... spherical section in space defined by an azimuth and elevation range of [-90 deg., +90 deg.] with a resolution of 1 deg. in both planes....
Directory of Open Access Journals (Sweden)
Santiago-Omar Caballero-Morales
2013-01-01
Full Text Available An approach for the recognition of emotions in speech is presented. The target language is Mexican Spanish, and for this purpose a speech database was created. The approach consists in the phoneme acoustic modelling of emotion-specific vowels. For this, a standard phoneme-based Automatic Speech Recognition (ASR system was built with Hidden Markov Models (HMMs, where different phoneme HMMs were built for the consonants and emotion-specific vowels associated with four emotional states (anger, happiness, neutral, sadness. Then, estimation of the emotional state from a spoken sentence is performed by counting the number of emotion-specific vowels found in the ASR’s output for the sentence. With this approach, accuracy of 87–100% was achieved for the recognition of emotional state of Mexican Spanish speech.
Caballero-Morales, Santiago-Omar
2013-01-01
An approach for the recognition of emotions in speech is presented. The target language is Mexican Spanish, and for this purpose a speech database was created. The approach consists in the phoneme acoustic modelling of emotion-specific vowels. For this, a standard phoneme-based Automatic Speech Recognition (ASR) system was built with Hidden Markov Models (HMMs), where different phoneme HMMs were built for the consonants and emotion-specific vowels associated with four emotional states (anger, happiness, neutral, sadness). Then, estimation of the emotional state from a spoken sentence is performed by counting the number of emotion-specific vowels found in the ASR's output for the sentence. With this approach, accuracy of 87–100% was achieved for the recognition of emotional state of Mexican Spanish speech. PMID:23935410
Directory of Open Access Journals (Sweden)
Yasir Hassan Ali
2015-01-01
Full Text Available The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ. The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.
National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....
Kuttruff, Heinrich; Mommertz, Eckard
The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.
Akiyama, Iwaki
2009-01-01
The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...
... in June 1969 at Karolinska Hospital in Stockholm, Sweden. Since then, more than 10,000 acoustic neuroma ... of neurosurgeons, radiation oncologists, medical physicists and a nursing staff. Specialists in neuroimaging join the team when ...
Damarla, Thyagaraju
2015-01-01
This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...
Pashazadeh, Saeid; Sharifi, Mohsen
2009-01-01
Existing 3-dimensional acoustic target tracking methods that use wired/wireless networked sensor nodes to track targets based on four sensing coverage do not always compute the feasible spatio-temporal information of target objects. To investigate this discrepancy in a formal setting, we propose a geometric model of the target tracking problem alongside its equivalent geometric dual model that is easier to solve. We then study and prove some properties of dual model by exploiting its relationship with algebra. Based on these properties, we propose a four coverage axis line method based on four sensing coverage and prove that four sensing coverage always yields two dual correct answers; usually one of them is infeasible. By showing that the feasible answer can be only sometimes identified by using a simple time test method such as the one proposed by ourselves, we prove that four sensing coverage fails to always yield the feasible spatio-temporal information of a target object. We further prove that five sensing coverage always gives the feasible position of a target object under certain conditions that are discussed in this paper. We propose three extensions to four coverage axis line method, namely, five coverage extent point method, five coverage extended axis lines method, and five coverage redundant axis lines method. Computation and time complexities of all four proposed methods are equal in the worst cases as well as on average being equal to Θ(1) each. Proposed methods and proved facts about capabilities of sensing coverage degree in this paper can be used in all other methods of acoustic target tracking like Bayesian filtering methods.
Directory of Open Access Journals (Sweden)
Mohsen Sharifi
2009-08-01
Full Text Available Existing 3-dimensional acoustic target tracking methods that use wired/wireless networked sensor nodes to track targets based on four sensing coverage do not always compute the feasible spatio-temporal information of target objects. To investigate this discrepancy in a formal setting, we propose a geometric model of the target tracking problem alongside its equivalent geometric dual model that is easier to solve. We then study and prove some properties of dual model by exploiting its relationship with algebra. Based on these properties, we propose a four coverage axis line method based on four sensing coverage and prove that four sensing coverage always yields two dual correct answers; usually one of them is infeasible. By showing that the feasible answer can be only sometimes identified by using a simple time test method such as the one proposed by ourselves, we prove that four sensing coverage fails to always yield the feasible spatiotemporal information of a target object. We further prove that five sensing coverage always gives the feasible position of a target object under certain conditions that are discussed in this paper. We propose three extensions to four coverage axis line method, namely, five coverage extent point method, five coverage extended axis lines method, and five coverage redundant axis lines method. Computation and time complexities of all four proposed methods are equal in the worst cases as well as on average being equal to Θ(1 each. Proposed methods and proved facts about capabilities of sensing coverage degree in this paper can be used in all other methods of acoustic target tracking like Bayesian filtering methods.
Hwang, H. D.; Maxit, L.; Ege, K.; Gerges, Y.; Guyader, J.-L.
2017-04-01
Vibro-acoustic simulation in the mid-frequency range is of interest for automotive and truck constructors. The dissipative treatments used for noise and vibration control such as viscoelastic patches and acoustic absorbing materials must be taken into account in the problem. The Statistical modal Energy distribution Analysis (SmEdA) model consists in extending Statistical Energy Analysis (SEA) to the mid-frequency range by establishing power balance equations between the modes of the different subsystems. The modal basis of uncoupled-subsystems that can be estimated by the finite element method in the mid-frequency range is used as input data. SmEdA was originally developed by considering constant modal damping factors for each subsystem. However, this means that it cannot describe the local distribution of dissipative materials. To overcome this issue, a methodology is proposed here to take into account the effect of these materials. This methodology is based on the finite element models of the subsystems that include well-known homogenized material models of dissipative treatments. The Galerkin method with subsystem normal modes is used to estimate the modal damping loss factors. Cross-modal coupling terms which appear in the formulation due to the dissipative materials are assumed to be negligible. An approximation of the energy sharing between the subsystems damped by dissipative materials is then described by SmEdA. The different steps of the method are validated experimentally by applying it to a laboratory test case composed of a plate-cavity system with different configurations of dissipative treatments. The comparison between the experimental and the simulation results shows good agreement in the mid-frequency range.
Fedosov, V. P.; Lomakina, A. V.; Legin, A. A.; Voronin, V. V.
2016-05-01
In this paper the system of wireless transmission of data based on the use an adaptive algorithm for processing spatial-time signals using antenna arrays is presented. In the transmission of data in a multipath propagation of signals have been used such technologies as a MIMO (Multiple input-Multiple output) and OFDM (Orthogonal frequency division multiplexing) to solve the problem of increasing the maximum speed of data transfer and the low probability of errors. The adaptation process is based on the formation of the directional pattern equivalent to the amplitude antenna array in the signal arrival direction with the highest capacity on one of propagation paths in the channel. The simulation results showed that the use of an adaptive algorithm on the reception side can significantly reduce the probability of bit errors, thus to increase throughput in an underwater acoustic data channel.
Predicting and auralizing acoustics in classrooms
DEFF Research Database (Denmark)
Christensen, Claus Lynge
2005-01-01
Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...
Issiaka Traore, Oumar; Cristini, Paul; Favretto-Cristini, Nathalie; Pantera, Laurent; Viguier-Pla, Sylvie
2018-01-01
In a context of nuclear safety experiment monitoring with the non destructive testing method of acoustic emission, we study the impact of the test device on the interpretation of the recorded physical signals by using spectral finite element modeling. The numerical results are validated by comparison with real acoustic emission data obtained from previous experiments. The results show that several parameters can have significant impacts on acoustic wave propagation and then on the interpretation of the physical signals. The potential position of the source mechanism, the positions of the receivers and the nature of the coolant fluid have to be taken into account in the definition a pre-processing strategy of the real acoustic emission signals. In order to show the relevance of such an approach, we use the results to propose an optimization of the positions of the acoustic emission sensors in order to reduce the estimation bias of the time-delay and then improve the localization of the source mechanisms.
Energy Technology Data Exchange (ETDEWEB)
Santos, Roberto Hugo Melo dos; Figueiro, Wilson Mouzer [Bahia Univ., Salvador, BA (Brazil). Inst. de Geociencias]. E-mail: rms@cpgg.ufba.br; fgueiro@cpgg.ufba.br
2003-07-01
The developed algorithm in this work was based on the finite difference method applied to the wave equation, assuming that the Earth has an acoustic behavior. The seismic modeling was implemented numerically by means of the finite differences method (MDF), employing regular nets, and applied to the derivatives of time and fourth order to derivatives of the space. Two-dimensional geological models was represented by two distinct kind of parametrizations: in blocs (P B) and using trigonometric polynomials (PPT). With the objective of jumping the advantages of using the PPT front P B, mainly in what it tells respect the economy of space of memory in program of finite difference and simplification of the equation in the inversion strategies, simulations of the propagation of waves ware presented in several models acted by different parametrizations (P B and PPT) using applied MDF the equation of the wave and generating synthetic seismograms that they are compared amongst themselves. As a result of this work we can detach the great economy of space of memory in the use of PPT, in whole PPT the model is defined for the coefficients of the polynomial that start to be the parameters of the model, and PPT simplifies the representation of more complicated models. (author)
Martinez, Josue G.
2013-06-01
We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible.
Sarens, Bart; Verstraeten, Bert; Glorieux, Christ; Kalogiannakis, Georgios; Van Hemelrijck, Danny
2010-06-01
Full-field dynamic shearography and laser Doppler vibrometric scanning are used to investigate the local contact acoustic nonlinear generation of delamination-induced effects on the vibration of a harmonically excited composite plate containing an artificial defect. Nonlinear elastic behavior caused by the stress-dependent boundary conditions at the delamination interfaces of a circular defect is also simulated by a 3-D second-order, finite-difference, staggered-grid model (displacement-stress formulation). Both the experimental and simulated data reveal an asymmetric motion of the layer above the delamination, which acts as a membrane vibrating with enhanced displacement amplitude around a finite offset displacement. The spectrum of the membrane motion is enriched with clapping-induced harmonics of the excitation frequency. In case of a sufficiently thin and soft membrane, the simulations reveal clear modal behavior at sub-harmonic frequencies caused by inelastic clapping.
Duifhuis, H
This letter concerns the paper "An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity" [E. A. Lopez-Poveda, J. Acoust. Soc. Am. 114, 2112-2117 (2003)]. It proposes a correction of the historical framework in which the paper is presented.
Xu, Shigang; Liu, Yang
2018-03-01
The conventional pseudo-acoustic wave equations (PWEs) in arbitrary orthorhombic anisotropic (OA) media usually have coupled P- and SV-wave modes. These coupled equations may introduce strong SV-wave artifacts and numerical instabilities in P-wave simulation results and reverse-time migration (RTM) profiles. However, pure acoustic wave equations (PAWEs) completely decouple the P-wave component from the full elastic wavefield and naturally solve all the aforementioned problems. In this article, we present a novel PAWE in arbitrary OA media and compare it with the conventional coupled PWEs. Through decomposing the solution of the corresponding eigenvalue equation for the original PWE into an ellipsoidal differential operator (EDO) and an ellipsoidal scalar operator (ESO), the new PAWE in time-space domain is constructed by applying the combination of these two solvable operators and can effectively describe P-wave features in arbitrary OA media. Furthermore, we adopt the optimal finite-difference method (FDM) to solve the newly derived PAWE. In addition, the three-dimensional (3D) hybrid absorbing boundary condition (HABC) with some reasonable modifications is developed for reducing artificial edge reflections in anisotropic media. To improve computational efficiency in 3D case, we adopt graphic processing unit (GPU) with Compute Unified Device Architecture (CUDA) instead of traditional central processing unit (CPU) architecture. Several numerical experiments for arbitrary OA models confirm that the proposed schemes can produce pure, stable and accurate P-wave modeling results and RTM images with higher computational efficiency. Moreover, the 3D numerical simulations can provide us with a comprehensive and real description of wave propagation.
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A
2016-06-30
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Sree, Dave
2015-01-01
Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.
Noguchi, Yuki; Yamamoto, Takashi; Yamada, Takayuki; Izui, Kazuhiro; Nishiwaki, Shinji
2017-09-01
This papers proposes a level set-based topology optimization method for the simultaneous design of acoustic and structural material distributions. In this study, we develop a two-phase material model that is a mixture of an elastic material and acoustic medium, to represent an elastic structure and an acoustic cavity by controlling a volume fraction parameter. In the proposed model, boundary conditions at the two-phase material boundaries are satisfied naturally, avoiding the need to express these boundaries explicitly. We formulate a topology optimization problem to minimize the sound pressure level using this two-phase material model and a level set-based method that obtains topologies free from grayscales. The topological derivative of the objective functional is approximately derived using a variational approach and the adjoint variable method and is utilized to update the level set function via a time evolutionary reaction-diffusion equation. Several numerical examples present optimal acoustic and structural topologies that minimize the sound pressure generated from a vibrating elastic structure.
Zhu, Ze-Nan; Zhu, Xiao-Hua; Guo, Xinyu; Fan, Xiaopeng; Zhang, Chuanzheng
2017-09-01
For the first time, we present the application of an unstructured triangular grid to the Finite-Volume Community Ocean Model using the ensemble Kalman filter scheme, to assimilate coastal acoustic tomography (CAT) data. The fine horizontal and vertical current field structures around the island inside the observation region were both reproduced well. The assimilated depth-averaged velocities had better agreement with the independent acoustic Doppler current profiler (ADCP) data than the velocities obtained by inversion and simulation. The root-mean-square difference (RMSD) between depth-averaged current velocities obtained by data assimilation and those obtained by ADCPs was 0.07 m s-1, which was less than the corresponding difference obtained by inversion and simulation (0.12 and 0.17 m s-1, respectively). The assimilated vertical layer velocities also exhibited better agreement with ADCP than the velocities obtained by simulation. RMSDs between assimilated and ADCP data in vertical layers ranged from 0.02 to 0.14 m s-1, while RMSDs between simulation and ADCP data ranged from 0.08 to 0.27 m s-1. These results indicate that assimilation had the highest accuracy. Sensitivity experiments involving the elimination of sound transmission lines showed that missing data had less impact on assimilation than on inversion. Sensitivity experiments involving the elimination of CAT stations showed that the assimilation with four CAT stations was the relatively economical and reasonable procedure in this experiment. These results indicate that, compared with inversion and simulation, data assimilation of CAT data with an unstructured triangular grid is more effective in reconstructing the current field.
Acoustic Replication in Smart Structures Using Active Structural/acoustic Control
Griffin, Steven Fulton
1995-01-01
There has been a great deal of research on the use of active vibration control with the goal of changing the vibration characteristics of structures. These vibration characteristics may result in undesirable acoustic fields that radiate from the structure. Traditional active noise control approaches center around canceling the offensive acoustic field using loudspeakers to set up opposing fields. A more recent approach is to use active vibration control techniques to directly modify the vibration characteristics and thus the acoustically radiative properties of the structure. A very effective way of achieving this structural/acoustic control is through the use of smart structures in which sensors and actuators are integrated into the structure itself. The subject of this thesis is to explore the potential for the use of active structural/acoustic control and smart structures in acoustic replication. In acoustic replication, an offensive acoustic response of an acoustically radiative smart structure is modified to match a desired acoustic response using active structural/acoustic control. The desired goal, in this case, is not necessarily suppression but to match the acoustic response of a similar structure that has desired acoustic properties. The model that is developed in detail is an elastic plate with piezoceramic sensors and actuators backed by a rigid, vented cavity. One specific application explored is the acoustic guitar. Detailed information on desired acoustic response of guitars is readily available in the literature, and experimental specimens are relatively easy to obtain. The way such an instrument vibrates in response to excitation of the strings determines the acoustic field that results. The feasibility of changing these vibrational characteristics using active structural/acoustic control is examined in detail including analytical and experimental results. The feasibility of applying acoustic replication to an aircraft cockpit is also examined
DEFF Research Database (Denmark)
Cutanda Henríquez, Vicente; Andersen, Peter Risby; Jensen, Jacob Søndergaard
2017-01-01
to an acoustic metamaterial. Metamaterials are structures formed by smaller, usually periodic, units showing remarkable physical properties when observed as a whole. Acoustic losses are relevant in metamaterials in the millimeter scale. In addition, their geometry is intricate and challenging for numerical...
Effects of damping on the low-frequency acoustics of listening rooms based on an analytical model
Dance, Stephen M.; Van Buuren, Gil
2013-12-01
A study of the effects of damping on the low-frequency acoustics of listening rooms has been undertaken. The study was carried out using a new numerical implementation of an analytical solution based on a model developed by Bistafa and Morrissey. The model was designed to simulate the sound field in rectangular enclosures below the Schroeder cut-off frequency. Four hypothetical rooms were studied, a lightly damped room, a well damped room, a statistically compliant European Broadcast Union control room and a compliant European Broadcast Union control room. The most important result from the study using the proposed model was the influence of modes above the Schroeder cut-off frequency on reverberation time. This was caused by the variations in damping between mode types and variations in the modal coupling between the source and receiver. The research suggests that Schroeder's 1954 cut-off frequency for the influence of modes was more correct for highly damped rooms, in comparison with the Schroeder's 1964 relation.
Briggs, Andrew
2010-01-01
For many years 'Acoustic Microscopy' has been the definitive book on the subject. A key development since it was first published has been the development of ultrasonic force microscopy. This edition has a major new chapter on this technique and its applications.
Energy Technology Data Exchange (ETDEWEB)
Lakhin, V. P.; Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com, E-mail: vilkiae@gmail.com; Ilgisonis, V. I. [National Research Centre Kurchatov Institute (Russian Federation); Konovaltseva, L. V. [Peoples’ Friendship University of Russia (Russian Federation)
2015-12-15
A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.
DEFF Research Database (Denmark)
Xie, Zhinan; Matzen, René; Cristini, Paul
2016-01-01
A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent a......A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range......-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique....... The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation...
Rhazi, Dilal
In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt
Investigating the acoustic effect of the descended larynx with articulatory models
de Boer, B.
2010-01-01
A strongly simplified articulatory model, as well as three more realistic models are investigated for the effect of larynx height on the extent of vowel signaling space. The models explore a larger range of larynx positions than previous models, and the use of the convex hull for measuring
Robust acoustic wave manipulation of bubbly liquids
Energy Technology Data Exchange (ETDEWEB)
Gumerov, N. A., E-mail: gumerov@umiacs.umd.edu [Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742 (United States); Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Akhatov, I. S. [Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Ohl, C.-D. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Sametov, S. P. [Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Khazimullin, M. V. [Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Institute of Molecule and Crystal Physics, Ufa Research Center of Russian Academy of Sciences, Ufa 450054 (Russian Federation); Gonzalez-Avila, S. R. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
2016-03-28
Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.
4th Pacific Rim Underwater Acoustics Conference
Xu, Wen; Cheng, Qianliu; Zhao, Hangfang
2016-01-01
These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.
Intelligent Engine Systems: Acoustics
Wojno, John; Martens, Steve; Simpson, Benjamin
2008-01-01
An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.
Orduña-Bustamante, Felipe; Rendón, Pablo Luis; Martínez-Montejo, Erika
2017-10-01
A progressive spherical or spheroidal wavefront approximation has previously been found to be a necessary step for a more accurate application of Webster's wave equation to rapidly flaring horns. This leads to a necessary transformation of the horn area function, from the usual flat cross-sectional area in terms of the axial coordinate, into a curved cap-like wavefront area as a function of either the axial coordinate, the arc-length coordinate along the horn profile, the leading curved wavefront coordinate, or still other possible longitudinal coordinates. In this article, horn functions, and related frequency potential functions are calculated from the measured horn profiles of a trombone and a trumpet for several of the above parameterizations. From them, cutoff frequencies and effective lengths are determined. A comparison is drawn between theoretical results using different parameterizations, results calculated via transfer-matrix models, and experimental measurements of the acoustical input impedance and reflection function of both instruments. Results indicate that one-dimensional models accurately predict the effective lengths, and consequently the fundamental resonance frequency of the instruments within ±25 cents, but fail noticeably in predicting cutoff frequencies, leading to what is probably an inaccurate representation of perceived timbre.
Siwabessy, P. Justy W.; Tran, Maggie; Picard, Kim; Brooke, Brendan P.; Huang, Zhi; Smit, Neil; Williams, David K.; Nicholas, William A.; Nichol, Scott L.; Atkinson, Ian
2017-05-01
Spatial information on the distribution of seabed substrate types in high use coastal areas is essential to support their effective management and environmental monitoring. For Darwin Harbour, a rapidly developing port in northern Australia, the distribution of hard substrate is poorly documented but known to influence the location and composition of important benthic biological communities (corals, sponges). In this study, we use angular backscatter response curves to model the distribution of hard seabed in the subtidal areas of Darwin Harbour. The angular backscatter response curve data were extracted from multibeam sonar data and analysed against backscatter intensity for sites observed from seabed video to be representative of "hard" seabed. Data from these sites were consolidated into an "average curve", which became a reference curve that was in turn compared to all other angular backscatter response curves using the Kolmogorov-Smirnov goodness-of-fit. The output was used to generate interpolated spatial predictions of the probability of hard seabed (p-hard) and derived hard seabed parameters for the mapped area of Darwin Harbour. The results agree well with the ground truth data with an overall classification accuracy of 75% and an area under curve measure of 0.79, and with modelled bed shear stress for the Harbour. Limitations of this technique are discussed with attention to discrepancies between the video and acoustic results, such as in areas where sediment forms a veneer over hard substrate.
Heitmann, Adam Arthur
electromechanical properties of ferroelectric solid solutions based on barium titanate and lead titanate. From the computed binary solid solution phase diagrams, the theory is extended to ternary systems. The ternary solid solutions of PMN-PZT and PZN-PZT are explored, electromechanical properties of targeted compositions for use in next generation acoustic transducers are computed, and the predictive capability of the theory is established. In addition, thermal and electromechanical properties are measured for several compositions adjacent to the morphotropic boundary in the ferroelectric solid solution PZN-PT and used to verify the core assumptions of the theory.
Deep-Water Ambient Noise Profiling; Marine Sediment Acoustics; and Doppler Geo-Acoustic Spectroscopy
2013-09-30
Acoustics; and Doppler Geo-Acoustic Spectroscopy Michael J. Buckingham Marine Physical Laboratory, Scripps Institution of Oceanography University...second-order spatial statistics of the noise. 2) Marine sediment acoustics Develop a unified, physics -based model of sound wave and shear wave...T. K. Berger and M. J. Buckingham, “Sensitivity of an underwater acoustic array to ultra-high energy neutrinos,” Astroparticle Phys., 697, 1-14
National Research Council Canada - National Science Library
Auvermann, Harry
2001-01-01
The objective of one portion of the Army Research Laboratory program on acoustic propagation on the battlefield is to develop an advanced method of accounting for the effects of anisotropic inhomogeneous turbulence...
DEFF Research Database (Denmark)
Kreutzfeldt, Jacob
2011-01-01
Under the heading of "Gang i København" a number of initiatives was presented by the Lord Mayer and the Technical and Environmental Mayer of Copenhagen in May 2006. The aim of the initiative, which roughly translates to Lively Copenhagen, was both to make Copenhagen a livelier city in terms of ci...... this article outline a few approaches to a theory of acoustic territoriality....
2016-05-24
systematic and rigorous means for comparison. Introduction The issue of combustion instability is a common recurring problem for bi- propellant rocket...the combustion of propellants to the acoustic energy field is the primary mechanism that creates acoustically coupled combustion instability. Chamber...T. and Sattelmayer, T., “On the Use of OH Radiation as a Marker for the Heat Release Rate in High- Pressure Hydrogen-Oxygen Liquid Rocket Combustion
Raczkowska, A.; Gorska, N.
2012-12-01
Puck Bay is an area of high species biodiversity belonging to the Coastal Landscape Park of Baltic Sea Protected Areas (BSPA) and is also included in the list of the World Wide Fund for Nature (WWF) and covered by the protection program "Natura 2000". The underwater meadows of the Puck Bay are important for Europe's natural habitats due to their role in enhancing the productivity of marine ecosystems and providing shelter and optimal feeding conditions for many marine organisms. One of the dominant species comprising the underwater meadows of the Southern Baltic Sea is the seagrass Zostera marina. The spatial extent of underwater seagrass meadows is altered by pollution and eutrophication; therefore, to properly manage the area one must monitor its ecological state. Remote acoustic methods are useful tools for the monitoring of benthic habitats in many marine areas because they are non-invasive and allow researchers to obtain data from a large area in a short period of time. Currently there is a need to apply these methods in the Baltic Sea. Here we present an analysis of the mechanism of scattering of acoustic waves on seagrass in the Southern Baltic Sea based on the numerical modeling of acoustic wave scattering by the biological tissues of plants. The study was conducted by adapting a model developed on the basis of DWBA (Distorted Wave Born Approximation) developed by Stanton and Chu (2005) for fluid-like objects, including the characteristics of the Southern Baltic seagrass. Input data for the model, including the morphometry of seagrass leaves, their angle of inclination and the density plant cover, was obtained through the analysis of biological materials collected in the Puck Bay in the framework of a research project financed by the Polish Government (Development of hydroacoustic methods for studies of underwater meadows of Puck Bay, 6P04E 051 20). On the basis of the developed model, we have analyzed the dependence of the target strength of a single
Practical modeling of acoustic losses in air due to heat conduction and viscosity
DEFF Research Database (Denmark)
Christensen, René; Juhl, Peter Møller; Cutanda Henríquez, Vicente
2008-01-01
line modelling, ii) numerical methods implemented into commercial packages, such as the low reduced frequency models as proposed by W. M. Beltman and implemented in ACTRAN and the linearized Navier-Stokes equations used in COMSOL Multiphysics, and iii) an implementation specifically made...
Schippers, P.
2009-01-01
Since the late eighties the sonar performance model ALMOST for active and passive sonar has been under development at TNO. Modelling of active detection performance was first started for a point target, with a single Target Strength value dependent on parameters like aspect angle and frequency,
A KLM-circuit model of a multi-layer transducer for acoustic bladder volume measurements.
Merks, E J W; Borsboom, J M G; Bom, N; van der Steen, A F W; de Jong, N
2006-12-22
In a preceding study a new technique to non-invasively measure the bladder volume on the basis of non-linear wave propagation was validated. It was shown that the harmonic level generated at the posterior bladder wall increases for larger bladder volumes. A dedicated transducer is needed to further verify and implement this approach. This transducer must be capable of both transmission of high-pressure waves at fundamental frequency and reception of up to the third harmonic. For this purpose, a multi-layer transducer was constructed using a single element PZT transducer for transmission and a PVDF top-layer for reception. To determine feasibility of the multi-layer concept for bladder volume measurements, and to ensure optimal performance, an equivalent mathematical model on the basis of KLM-circuit modeling was generated. This model was obtained in two subsequent steps. Firstly, the PZT transducer was modeled without PVDF-layer attached by means of matching the model with the measured electrical input impedance. It was validated using pulse-echo measurements. Secondly, the model was extended with the PVDF-layer. The total model was validated by considering the PVDF-layer as a hydrophone on the PZT transducer surface and comparing the measured and simulated PVDF responses on a wave transmitted by the PZT transducer. The obtained results indicated that a valid model for the multi-layer transducer was constructed. The model showed feasibility of the multi-layer concept for bladder volume measurements. It also allowed for further optimization with respect to electrical matching and transmit waveform. Additionally, the model demonstrated the effect of mechanical loading of the PVDF-layer on the PZT transducer.
Directory of Open Access Journals (Sweden)
Hiekata Takashi
2006-01-01
Full Text Available A new two-stage blind source separation (BSS method for convolutive mixtures of speech is proposed, in which a single-input multiple-output (SIMO-model-based independent component analysis (ICA and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources in their original form at the microphones. Thus, the separated signals of SIMO-model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property, our novel SIMO-model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method compared with that achieved by conventional BSS methods. In addition, the real-time implementation of the proposed BSS is illustrated.
Analysis of Acoustic Modeling and Sound Propagation in Aircraft Noise Prediction
Plotkin, Kenneth J.; Shepherd, Kevin P. (Technical Monitor)
2006-01-01
An analysis has been performed of measured and predicted aircraft noise levels around Denver International Airport. A detailed examination was made of 90 straight-out departures that yielded good measurements on multiple monitors. Predictions were made with INM 5, INM 6 and the simulation model NMSIM. Predictions were consistently lower than measurements, less so for the simulation model than for the integrated models. Lateral directivity ("installation effect") patterns were seen which are consistent with other recent measurements. Atmospheric absorption was determined to be a significant factor in the underprediction. Calculations of atmospheric attenuation were made over a full year of upper air data at seven locations across the United States. It was found that temperature/humidity effects could cause variations of up to +/-4 dB, depending on season, for the sites examined. It was concluded that local temperature and humidity should be accounted for in aircraft noise modeling.
NORDA (Naval Ocean Research and Development Activity) Code 323 Acoustic Models and Databases.
1983-07-01
for his help in identi- fication of input and output parameters. iii I :PROPAGATION LOSS MODELS I. ASTRAL ASTRAL (ASEPS Transmission Loss model) i. a...loss predictions, typically averaged over 30-40 nautical miles (fin). The calculations of ASTRAL are carried out in two parts; a near field (R < Ro...and a far field (R > Ro). In the near field, rays are traced out to the first environmental change (at R = Ro), taking into account the slope of the
Modeling of surface acoustic wave strain sensors using coupling-of-modes analysis.
Mc Cormack, Brian; Geraghty, Dermot; O'Mahony, Margaret
2011-11-01
SAW devices may be configured as strain sensors, providing passive, wireless strain measurement in demanding conditions. A key consideration is the modeling of the sensors, enabling different device designs to be considered. This paper presents a simulation scheme using coupling-of-modes (COM) analysis which allows both the frequency response of a SAW strain sensor and its bias sensitivity to be evaluated. Example applications are presented to demonstrate the use of the model.
... EVENTS DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Brain Freeze ? READ MORE Read More What is acoustic neuroma? Identifying an AN Learn More Get Info ...
Energy Technology Data Exchange (ETDEWEB)
Tamagawa, T.; Matsuoka, T.; Sato, T. [Japan Petroleum Exploration Corp., Tokyo (Japan); Minegishi, M.; Tsuru, T. [Japan National Oil Corp., Tokyo (Japan)
1996-05-01
A large amplitude event difficult to interpret was discovered in the overlap section in offset data beyond 10km targeting at deep structures, and the event was examined. A wave field modeling was carried out by use of a simplified synclinal structure model because it had been estimated that the large amplitude event had something to do with a synclinal structure. A pseudospectral program was used for modeling the wave field on the assumption that the synclinal structure model would be an acoustic body and that the surface would contain free boundaries and multiple reflection. It was found as the result that a discontinuous large amplitude event is mapped out in the synclinal part of the overlap section when a far trace is applied beyond the structure during a CMP overlap process. This can be attributed to the concentration of energy produced by multiple reflection in the synclinal part and by the reflection waves beyond the critical angle. Accordingly, it is possible that phenomena similar to those encountered in the modeling process are emerging during actual observation. 2 refs., 8 figs.
Generalization of a 3-D Acoustic Resonator Model for the Simulation of Spherical Enclosures
Directory of Open Access Journals (Sweden)
Pierre Dutilleux
2001-03-01
Full Text Available A rectangular enclosure has such an even distribution of resonances that it can be accurately and efficiently modelled using a feedback delay network. Conversely, a nonrectangular shape such as a sphere has a distribution of resonances that challenges the construction of an efficient model. This work proposes an extension of the already known feedback delay network structure to model the resonant properties of a sphere. A specific frequency distribution of resonances can be approximated, up to a certain frequency, by inserting an allpass filter of moderate order after each delay line of a feedback delay network. The structure used for rectangular boxes is therefore augmented with a set of allpass filters allowing parametric control over the enclosure size and the boundary properties. This work was motivated by informal listening tests which have shown that it is possible to identify a basic shape just from the distribution of its audible resonances.
Acoustic source localization model using in-skull reverberation and time reversal
Catheline, Stefan; Fink, Mathias; Quieffin, Nicolas; Ing, Ros Kiri
2007-02-01
A processing model of localization based on time reversal of the reverberated sound in a human skull is proposed. The underlying general idea is that bones act as antenna, gathering and conducting information about spatial positioning. Decoding this information is achieved with a time reversal analysis. Tested in a model experiment, the localization works in the azimuthal and sagittal plans, for single or multiple sound sources. Its efficiency is also demonstrated for one sided hearing people. The authors anticipate that this general antennalike concept can be applied to many animals that use sound localization as well as to future design for microphone devices or sonars.
Construction of kidney phantom model with acoustic shadow by rib bones and respiratory organ motion
Lee, Dongjun; Koizumi, Norihiro; Tsukihara, Hiroyuki; Azuma, Takashi; Nomiya, Akira; Yoshinaka, Kiyoshi; Sugita, Naohiko; Homma, Yukio; Matsumoto, Yoichiro; Mitsuishi, Mamoru
2017-03-01
We have been studying the Non-Invasive Ultrasound Theragnostic System (NIUTS), which tracks and follows the affected area while irradiating High Intensity Focused Ultrasound (HIFU). In this report, we propose a phantom model that includes rib bones and respiratory motion.
Whitaker, R. W.; Jones, K. R.; Arrowsmith, S.
2013-12-01
One of the primary goals of the Source Physics Experiment is to improve upon and develop new physics based models for underground nuclear explosions using scaled, underground chemical explosions as proxies. Jones et. al, (AGU 2012) previously presented results describing the use of the Rayleigh integral (RI) to model the source region of the SPE explosions. While these results showed that the source region could be modeled using the RI, there were some complexities in the produced, synthetic waveforms that were unaccounted for when compared to the observed data. To gain insight into these complexities and to verify the results of the RI method, we used CAVEAT, a two-dimensional computational fluid dynamics, time-domain finite-difference code developed at Los Alamos National Labs (LANL). CAVEAT has been used in the solution of high speed and low speed fluid problems. While the RI uses the observed acceleration records from the 12 vertical surface accelerometers installed above ground zero, CAVEAT employs a synthetic source-time function, based on the acceleration records, that varies with range and time. This model provides a velocity boundary condition at the bottom boundary of the CAVEAT computation mesh that drives the atmospheric pressure wave into the atmosphere.
Room acoustics modeling using a point-cloud representation of the room geometry
DEFF Research Database (Denmark)
Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte
2013-01-01
geometry acquisition is presented. The method exploits a depth sensor of the Kinect device that provides a point based information of a scanned room interior. After post-processing of the Kinect output data, a 3D point-cloud model of the room is obtained. Sound transmission between two selected points...
2015-09-30
information on fish school distributions by monitoring the direction of birds returning to the colony or the behavior of other birds at sea through...active sonar. Toward this goal, fundamental advances in the understanding of fish behavior , especially in aggregations, will be made under conditions...relevant to the echo statistics problem. OBJECTIVES To develop new models of behavior of fish aggregations, including the fission/fusion process
Boutillon, Xavier
2013-01-01
In string musical instruments, the sound is radiated by the soundboard, subject to the strings excitation. This vibration of this rather complex structure is described here with models which need only a small number of parameters. Predictions of the models are compared with results of experiments that have been presented in Ege et al. [Vibroacoustics of the piano soundboard: (Non)linearity and modal properties in the low- and mid- frequency ranges, Journal of Sound and Vibration 332 (5) (2013) 1288-1305]. The apparent modal density of the soundboard of an upright piano in playing condition, as seen from various points of the structure, exhibits two well-separated regimes, below and above a frequency flim that is determined by the wood characteristics and by the distance between ribs. Above flim, most modes appear to be localised, presumably due to the irregularity of the spacing and height of the ribs. The low-frequency regime is predicted by a model which consists of coupled sub-structures: the two ribbed ar...
Soobbarayen, K.; Sinou, J.-J.; Besset, S.
2014-10-01
This paper presents a numerical study of the influence of loading conditions on the vibrational and acoustic responses of a disc brake system subjected to squeal. A simplified model composed of a circular disc and a pad is proposed. Nonlinear effects of contact and friction over the frictional interface are modelled with a cubic law and a classical Coulomb's law with a constant friction coefficient. The stability analysis of this system shows the presence of two instabilities with one and two unstable modes that lead to friction-induced nonlinear vibrations and squeal noise. Nonlinear time analysis by temporal integration is conducted for two cases of loadings and initial conditions: a static load near the associated sliding equilibrium and a slow and a fast ramp loading. The analysis of the time responses shows that a sufficiently fast ramp loading can destabilize a stable configuration and generate nonlinear vibrations. Moreover, the fast ramp loading applied for the two unstable cases generates higher amplitudes of velocity than for the static load cases. The frequency analysis shows that the fast ramp loading generates a more complex spectrum than for the static load with the appearance of new resonance peaks. The acoustic responses for these cases are estimated by applying the multi-frequency acoustic calculation method based on the Fourier series decomposition of the velocity and the Boundary Element Method. Squeal noise emissions for the fast ramp loading present lower or higher levels than for the static load due to the different amplitudes of velocities. Moreover, the directivity is more complex for the fast ramp loading due to the appearance of new harmonic components in the velocity spectrum. Finally, the sound pressure convergence study shows that only the first harmonic components are sufficient to well describe the acoustic response.
Pollard, Thomas B
Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity
Directory of Open Access Journals (Sweden)
H. Ekhlas
2014-05-01
.Conclusion: The presented model is easy and practical and allows managers to model scenarios of noise pollution reduction in indoor environments, before huge expenses of actual control measures. This method is faster comparing to numerical modeling methods. Furthermore, its accuracy is also acceptable.
Maxit, Laurent; C. Yang; Cheng, Li; Guyader, Jean-Louis
2012-01-01
International audience; The micro-perforated panel (MPP) with a backing cavity is a well known efficient device for noise absorption. This device has been thoroughly studied in the experimental conditions of an acoustic tube (Kundt tube), in which the MPP is excited by a normal incident plane wave in one dimension. In an industrial situation, the efficiency of MPP may be influenced by the vibro-acoustic behaviour of the surrounding systems as well as excitation. To deal with this problem, a v...
DEFF Research Database (Denmark)
Torres-Arredondo, M.A.; Tibaduiza, D.-A.; McGugan, Malcolm
2013-01-01
of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively...... measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures....
Treeby, Bradley E; Cox, B T
2010-05-01
The efficient simulation of wave propagation through lossy media in which the absorption follows a frequency power law has many important applications in biomedical ultrasonics. Previous wave equations which use time-domain fractional operators require the storage of the complete pressure field at previous time steps (such operators are convolution based). This makes them unsuitable for many three-dimensional problems of interest. Here, a wave equation that utilizes two lossy derivative operators based on the fractional Laplacian is derived. These operators account separately for the required power law absorption and dispersion and can be efficiently incorporated into Fourier based pseudospectral and k-space methods without the increase in memory required by their time-domain fractional counterparts. A framework for encoding the developed wave equation using three coupled first-order constitutive equations is discussed, and the model is demonstrated through several one-, two-, and three-dimensional simulations.
Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.
2015-10-01
An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit
Experimental Acoustic Evaluation of an Auditorium
Directory of Open Access Journals (Sweden)
Marina Dana Ţopa
2012-01-01
Full Text Available The paper presents a case history: the acoustical analysis of a rectangular auditorium. The following acoustical parameters were evaluated: early decay time, reverberation time, clarity, definition, and center time. The excitation signal was linear sweep sine and additional analysis was carried out: peak-to-noise ratio, reverberation time for empty and occupied room, standard deviation of acoustical parameters, diffusion, and just noticeable differences analysis. Conclusions about room’s destination and modeling were drawn in the end.
Spatiotemporally resolved granular acoustics
Owens, Eli; Daniels, Karen
2011-03-01
Acoustic techniques provide a non-invasive method of characterizing granular material properties; however, there are many challenges in formulating accurate models of sound propagation due to the inherently heterogeneous nature of granular materials. In order to quantify acoustic responses in space and time, we perform experiments in a photoelastic granular material in which the internal stress pattern (in the form of force chains) is visible. We utilize two complementary methods, high-speed imaging and piezoelectric transduction, to provide particle-scale measurements of the amplitude of the acoustic wave. We observe that the average wave amplitude is largest within particles experiencing the largest forces. The force-dependence of this amplitude is in qualitative agreement with a simple Hertzian-like model for contact area. In addition, we investigate the power spectrum of the propagating signal using the piezoelectric sensors. For a Gaussian wave packet input, we observe a broad spectrum of transmitted frequencies below the driving frequency, and we quantify the characteristic frequencies and corresponding length scales of our material as the system pressure is varied.
Aslan, Murat Šamil
2013-10-01
Tracking ground targets using low cost ground-based sensors is a challenging field because of the limited capabilities of such sensors. Among the several candidates, including seismic and magnetic sensors, the acoustic sensors based on microphone arrays have a potential of being useful: They can provide a direction to the sound source, they can have a relatively better range, and the sound characteristics can provide a basis for target classification. However, there are still many problems. One of them is the difficulty to resolve multiple sound sources, another is that they do not provide distance, a third is the presence of background noise from wind, sea, rain, distant air and land traffic, people, etc., and a fourth is that the same target can sound very differently depending on factors like terrain type, topography, speed, gear, distance, etc. Use of sophisticated signal processing and data fusion algorithms is the key for compensating (to an extend) the limited capabilities and mentioned problems of these sensors. It is hard, if not impossible, to evaluate the performance of such complex algorithms analytically. For an effective evaluation, before performing expensive field trials, well-designed laboratory experiments and computer simulations are necessary. Along this line, in this paper, we present an object-oriented modeling and simulation framework which can be used to generate simulated data for the data fusion algorithms for tracking multiple on-road targets in an unattended acoustic sensor network. Each sensor node in the network is a circular microphone array which produces the direction of arrival (DOA) (or bearing) measurements of the targets and sends this information to a fusion center. We present the models for road networks, targets (motion and acoustic power) and acoustic sensors in an object-oriented fashion where different and possibly time-varying sampling periods for each sensor node is possible. Moreover, the sensor's signal processing and
Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging
Energy Technology Data Exchange (ETDEWEB)
Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL
2016-01-01
Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.
Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging
Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector
2016-02-01
Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1
Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging
Energy Technology Data Exchange (ETDEWEB)
Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL
2015-01-01
Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.
U-rans model for the prediction of the acoustic sound power generated in a whistling corrugated pipe
Golliard, J.; González Díez, N.; Belfroid, S.P.C.; Nakiboǧlu, G.; Hirschberg, A.
2013-01-01
Corrugated pipes, as used in flexible risers for gas production or in domestic appliances, can whistle when a flow is imposed through the pipe. Nakiboglu et al [1, 2] have developed a method to compute the acoustic source term for axi-symmetric cavities. The method is based on the resolution of
Drumheller, Douglas S.
2000-01-01
An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.
Use of acoustic vortices in acoustic levitation
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller
2009-01-01
Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...
Energy Technology Data Exchange (ETDEWEB)
Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.
2003-08-01
Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.
Acoustic levitation of a large solid sphere
Energy Technology Data Exchange (ETDEWEB)
Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)
2016-07-25
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Acoustic propagation within a surface duct in the western Bay of Bengal
Digital Repository Service at National Institute of Oceanography (India)
PrasannaKumar, S.; Navelkar, G.S.; Murty, T.V.R.; Murty, C.S.
Sound speed structure forms a surface duct in the upper 50 m layer in the western Bay of Bengal during late July. A range-dependent acoustic ray computation shows that some rays emanating from a source within the upper 30 m, get trapped within...
Energy Technology Data Exchange (ETDEWEB)
Fasold, W. (Fraunhofer-Inst. fuer Bauphysik, Stuttgart (Germany)); Stephenson, U. (Fraunhofer-Inst. fuer Bauphysik, Stuttgart (Germany))
1993-03-01
The field of knowledge concerning ''good acoustics'' of auditoria which is the aim of roomacoustic design will be discussed. A comparison between measurements and subjective judgements received in two concert halls of the same mean reverberation time underlines that this alone cannot be enough for characterizing rooms for music performances. Sufficient criteria can be derived above all from the impulse response of the room. This can be predicted exactly with respect to roomacoustic optimization by the use of methods for computer simultion (especially sound particle simulation method) and for model measurement. (orig.)
DEFF Research Database (Denmark)
Peters, Brady; Tamke, Martin; Nielsen, Stig Anton
2011-01-01
Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....
Springer Handbook of Acoustics
Rossing, Thomas D
2007-01-01
Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...
Estimation of acoustic resonances for room transfer function equalization
DEFF Research Database (Denmark)
Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc
2010-01-01
Strong acoustic resonances create long room impulse responses (RIRs) which may harm the speech transmission in an acoustic space and hence reduce speech intelligibility. Equalization is performed by cancelling the main acoustic resonances common to multiple room transfer functions (RTFs), i.......e., common-acoustical-poles, in the room. This paper discusses the utilization of different norms (i.e., 2-norm and 1-norm) and models (i.e., all-pole and pole-zero) for RTF modelling and then equalization. Acoustic resonances may be modelled by means of the poles of the RTF. In the literature, however...
2015-09-30
transmission and scattering from schools of swim bladder fish Christopher Feuillade Instituto de Física, Pontificia Universidad Católica de Chile Avenida...bladder fish (FY15 Final Report) Christopher Feuillade Pontificia Universidad Católica de Chile Instituto de Fı́sica Av. Vicuña Mackenna 4860...Pontificia Universidad Católica de Chile); Assistant: Maria Paz Raveau - Civil Engineer in Sound and Acoustics - INACAP, Chile, 2009. (Doctoral student
Directory of Open Access Journals (Sweden)
Mohammad Faraji Rad
2011-01-01
Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment. In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.
Directory of Open Access Journals (Sweden)
Brandon LaBelle
2012-06-01
Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.
Directory of Open Access Journals (Sweden)
Pierre-Philippe J. Beaujean
2012-01-01
Full Text Available A computer-efficient model for underwater acoustic propagation in a shallow, three-dimensional rectangular duct closed at one end has been developed using the method of images. The duct simulates a turning basin located in a port, surrounded with concrete walls, and filled with sea water. The channel bottom is composed of silt. The modeled impulse response is compared with the impulse response measured between 15 kHz and 33 kHz. Despite small sensor-position inaccuracies and an approximated duct geometry, the impulse response can be modeled with a relative echo magnitude error of 1.62 dB at worst and a relative echo location error varying between 0% and 4% when averaged across multiple measurements and sensor locations. This is a sufficient level of accuracy for the simulation of an acoustic communication system operating in the same frequency band and in shallow waters, as time fluctuations in echo magnitude commonly reach 10 dB in this type of environment.
Electromagnetically generated acoustic determination of delamination
Imaino, W.
1991-04-01
Previous work has demonstrated a technique for acoustically detecting localized delamination of metallized patterns on insulating substrates [W. Imaino, L. Crawforth, A. C. Munce, and A. Julaiana, in Proceedings of the IEEE Ultrasonics Symposium, edited by B. R. McAvoy (IEEE, New York, 1986), p. 1065]. Employing a high-spatial-resolution permeable electromagnetic acoustic transducer to preferentially excite the metallization, the acoustic coupling between the metal foil and substrate may be probed. Scanning, then, provides a map of delaminations. To extend and generalize these results, the detailed generation mechanism and acoustic response of the substrate has been studied. A computer program developed previously [W. Imaino, J. Acoust. Soc. Am. Suppl. 1 80, S7 (1986)] was used to model the acoustic source. In this investigation, a finite-element calculation is used to provide a more detailed description of the acoustic behavior of the delaminated plate. The effects of source size relative to defect dimensions and acoustic properties of the substrate have been studied. The determination of the localized coupling is complicated by structural resonances of the substrate, which make single frequency measurements unfavorable. However, the analysis shows that the spectral acoustic behavior provides an indication of metallization to substrate coupling. A signal-processing algorithm based on this analysis has been formulated and will be described.
Directory of Open Access Journals (Sweden)
Xuefeng Zhu
2014-09-01
Full Text Available We introduce here the concept of acoustic parity-time (PT symmetry and demonstrate the extraordinary scattering characteristics of the acoustic PT medium. On the basis of exact calculations, we show how an acoustic PT-symmetric medium can become unidirectionally transparent at given frequencies. Combining such a PT-symmetric medium with transformation acoustics, we design two-dimensional symmetric acoustic cloaks that are unidirectionally invisible in a prescribed direction. Our results open new possibilities for designing functional acoustic devices with directional responses.
Prospectives to tractor cabin design with computational acoustics tools
Mönkölä, Sanna; Airaksinen, Tuomas; Makkonen, Pekka; Tuovinen, Tero; Neittaanmäki, Pekka
2011-01-01
Computational acoustical models allow automated optimization of tractor design with respect to acoustic properties, which could speed up significantly the design process of tractor cabin prototypes. This article gives insightful prospectives to the tractor design process by considering modern computational acoustics technology. Mathematical formulation for a system consisting of vibrating elastic tractor structure and airfilled acoustic enclosure are given and a related numerical solution tec...
Acoustic source for generating an acoustic beam
Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian
2016-05-31
An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.
Goeransson, P.; Green, I.
1986-03-01
In order to verify an acoustic finite element package, measured and calculated eigenmodes and eigenfrequencies for Saab SF 340 cabin acoustics were compared. The measurements were performed in an acoustic mockup. For the analysis, a two dimensional model of the cross section of the fuselage was used. The comparison shows quite good agreement, the discrepancies being due to the representation of the flexible wall of the fuselage as rigid in the analysis.
Liquid rocket combustion chamber acoustic characterization
Directory of Open Access Journals (Sweden)
Cândido Magno de Souza
2010-09-01
Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.
Manoylov, Anton; Lebon, Bruno; Djambazov, Georgi; Pericleous, Koulis
2017-11-01
The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters' breakup by cavitation.
Lacroix, Arthur; Farges, Thomas; Marchiano, Regis; Coulouvrat, François
2017-04-01
Thunder is composed of complex acoustic waves with a rich infrasonic and audible frequency spectrum. This complexity depends both on the source and the propagation of the wave to the observer. However there is no mutual agreement on the link between the observed spectral content and the generation mechanisms. The objective of this study is to provide new experimental results and their comparison to theoretical investigations. An acoustic station was deployed in Fall 2012 during the first Special Operation Period of the HyMeX project in South of France. This station was composed of 4 microphones arranged in a triangle of 50-m side with one of them at the center and 4 microbarometers arranged in a triangle of 500-m side with one of them co-localized with the central microphone (Defer et al., 2015). During more than 2 months, about ten thunderstorms occurred over the station producing many cloud-to-ground and intracloud flashes. Several thousands of acoustic signals and electromagnetic detections from research and operational lightning location networks were recorded. Our database contains a sufficient number of flashes close to the source (lightning channel joining the cloud to the ground and produced during the return stroke phase of the flashes (Gallin et al., 2016). These observations are compatible with a source mechanism due to the thermal expansion associated to the sudden heating of the air in the lightning channel. An original model inspired by Few's string pearl theory (Few, 1969) has been developed. It shows that the tortuous channel geometry explains at least partly the low frequency content of observed thunder spectrum.
Wei, Yingsan; Wang, Yongsheng
2013-04-01
This study presents the unsteady hydrodynamics of the excitations from a 5-bladed propeller at two rotating speeds running in the wake of a small-scaled submarine and the behavior of the submarine's structure and acoustic responses under the propeller excitations. Firstly, the propeller flow and submarine flows are independently validated. The propulsion of the hull-propeller is simulated using computational fluid dynamics (CFD), so as to obtain the transient responses of the propeller excitations. Finally, the structure and acoustic responses of the submarine under propeller excitations are predicted using a finite element/boundary element model in the frequency domain. Results show that (1) the propeller excitations are tonal at the propeller harmonics, and the propeller transversal force is bigger than vertical force. (2) The structure and acoustic responses of the submarine hull is tonal mainly at the propeller harmonics and the resonant mode frequencies of the hull, and the breathing mode in axial direction as well as the bending modes in vertical and transversal directions of the hull can generate strong structure vibration and underwater noise. (3) The maximum sound pressure of the field points increases with the increasing propeller rotating speed at structure resonances and propeller harmonics, and the rudders resonant mode also contributes a lot to the sound radiation. Lastly, the critical rotating speeds of the submarine propeller are determined, which should be carefully taken into consideration when match the propeller with prime mover in the propulsion system. This work shows the importance of the propeller's tonal excitation and the breathing mode plus the bending modes in evaluating submarine's noise radiation.
Acoustic Neuroma Educational Video
Full Text Available ... more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic ... Stories Keywords Shop ANA Discussion Forum About Back Learn more about ANA About ANA Mission, Vision & Values ...
Tethys Acoustic Metadata Database
National Oceanic and Atmospheric Administration, Department of Commerce — The Tethys database houses the metadata associated with the acoustic data collection efforts by the Passive Acoustic Group. These metadata include dates, locations...
Acoustic Neuroma Educational Video
Full Text Available ... is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions to ask Choosing a healthcare provider Request a ... What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation Radiation ...
Acoustic Neuroma Educational Video
Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions to ask Choosing a healthcare provider ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...
Acoustic Neuroma Educational Video
Full Text Available ... resource Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN ... sponsors Become a Sponsor Acoustic Neuroma Association Latest News Join / Renew Login Contact Us Become a Sponsor ...
Atlantic Herring Acoustic Surveys
National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...
Acoustic Neuroma Educational Video
Full Text Available ... more Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN ... a Sponsor Patient Events Acoustic Neuroma Association Latest News Join / Renew Login Contact Us Become a Sponsor ...
Acoustic impedance of materials from reverberation time
Carocho, Antonio J.
1991-01-01
Approved for public release; distribution is unlimited A theoretical model is derived to calculate the specific acoustic impedance of the absorptive material covering the walls of a cavity. This model will allow the experimental determination of the specific acoustic impedance from the measurement of the reverberation time in a water-filled cavity. The model assumes a wall of low absorption. It can not be used for rigid or pressure release walls and grazzing incidence is excluded. h...
Acoustic design by topology optimization
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Jensen, Jakob Søndergaard; Sigmund, Ole
2008-01-01
To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions...... in the density and bulk modulus. The objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a design domain along the ceiling...
Subscale Acoustic Testing: Comparison of ALAT and ASMAT
Houston, Janice D.; Counter, Douglas
2014-01-01
The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option. This paper compares the acoustic measurements of two different subscale tests: the 2% Ares Liftoff Acoustic Test conducted at Stennis Space Center and the 5% Ares I Scale Model Acoustic Test conducted at Marshall Space Flight Center.
2015-08-01
ER D C TR -1 5- 5 Remote Assessment of Critical Infrastructure Persistent Monitoring of Urban Infrasound Phenomenology Report 1...ERDC TR-15-5 August 2015 Persistent Monitoring of Urban Infrasound Phenomenology Report 1: Modeling an Urban Environment for Acoustical Analyses...From - To) 4. TITLE AND SUBTITLE Persistent Monitoring of Urban Infrasound Phenomenology ; Report 1: Modeling an Urban Environment for
Tutorial on architectural acoustics
Shaw, Neil; Talaske, Rick; Bistafa, Sylvio
2002-11-01
This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).
Acoustic Neuroma Educational Video
Full Text Available Acoustic Neuroma Association 600 Peachtree Parkway Suite 108 Cumming, GA 30041 770-205-8211 info@ANAUSA.org The world's #1 acoustic ... Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree Parkway Suite 108 Cumming, GA 30041 ...
Acoustic constituents of prosodic typology
Komatsu, Masahiko
Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The
Air Coupled Acoustic Thermography (ACAT) Inspection Technique
Zalameda, Joseph; Winfree, William P.; Yost, William T.
2007-01-01
The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.
Acoustic rainbow trapping by coiling up space
Ni, Xu
2014-11-13
We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.
Hofmann, Matthias; Pflanzer, Ralph; Habib, Anowarul; Shelke, Amit; Bereiter-Hahn, Jürgen; Bernd, August; Kaufmann, Roland; Sader, Robert; Kippenberger, Stefan
2016-06-01
Elevated tumor interstitial fluid pressure (TIFP) is a prominent feature of solid tumors and hampers the transmigration of therapeutic macromolecules, for example, large monoclonal antibodies, from tumor-supplying vessels into the tumor interstitium. TIFP values of up to 40 mm Hg have been measured in experimental solid tumors using two conventional invasive techniques: the wick-in-needle and the micropuncture technique. We propose a novel noninvasive method of determining TIFP via ultrasonic investigation with scanning acoustic microscopy at 30-MHz frequency. In our experimental setup, we observed for the impedance fluctuations in the outer tumor hull of A431-vulva carcinoma-derived tumor xenograft mice. The gain dependence of signal strength was quantified, and the relaxation of tissue was calibrated with simultaneous hydrostatic pressure measurements. Signal patterns from the acoustical images were translated into TIFP curves, and a putative saturation effect was found for tumor pressures larger than 3 mm Hg. This is the first noninvasive approach to determine TIFP values in tumors. This technique can provide a potentially promising noninvasive assessment of TIFP and, therefore, can be used to determine the TIFP before treatment approach as well to measure therapeutic efficacy highlighted by lowered TFP values. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Matthias Hofmann
2016-06-01
Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a prominent feature of solid tumors and hampers the transmigration of therapeutic macromolecules, for example, large monoclonal antibodies, from tumor-supplying vessels into the tumor interstitium. TIFP values of up to 40 mm Hg have been measured in experimental solid tumors using two conventional invasive techniques: the wick-in-needle and the micropuncture technique. We propose a novel noninvasive method of determining TIFP via ultrasonic investigation with scanning acoustic microscopy at 30-MHz frequency. In our experimental setup, we observed for the impedance fluctuations in the outer tumor hull of A431-vulva carcinoma–derived tumor xenograft mice. The gain dependence of signal strength was quantified, and the relaxation of tissue was calibrated with simultaneous hydrostatic pressure measurements. Signal patterns from the acoustical images were translated into TIFP curves, and a putative saturation effect was found for tumor pressures larger than 3 mm Hg. This is the first noninvasive approach to determine TIFP values in tumors. This technique can provide a potentially promising noninvasive assessment of TIFP and, therefore, can be used to determine the TIFP before treatment approach as well to measure therapeutic efficacy highlighted by lowered TFP values.
Andrä, Jörg; Böhling, Arne; Gronewold, Thomas M A; Schlecht, Ulrich; Perpeet, Markus; Gutsmann, Thomas
2008-08-19
Surface acoustic wave biosensors are a powerful tool for the study of biomolecular interactions. The modulation of a surface-confined acoustic wave is utilized here for the analysis of surface binding. Phase and amplitude of the wave correspond roughly to mass loading and viscoelastic properties of the surface, respectively. We established a procedure to reconstitute phospholipid and lipopolysaccharide bilayers on the surface of a modified gold sensor chip to study the mode of action of membrane-active peptides. The procedure included the formation of a self-assembled monolayer of 11-mercaptoundecanol, covalent coupling of carboxymethyl-dextran, and subsequent coating with a poly- l-lysine layer. The lipid coverage of the surface is highly reproducible and homogeneous as demonstrated in atomic force micrographs. Ethanol/triton treatment removed the lipids completely, which provided the basis for continuous sequences of independent experiments. The setup was applied to investigate the binding of human cathelicidin-derived peptide LL32, as an example for antimicrobial peptides, to immobilized phosphatidylserine membranes. The peptide-membrane interaction results in a positive phase shift and an increase in amplitude, indicating a mass increase along with a loss in viscosity. This suggests that the bilayer becomes more rigid upon interaction with LL32.
W-8 Acoustic Casing Treatment Test Overview
Bozak, Rick; Podboy, Gary; Dougherty, Robert
2017-01-01
During February 2017, aerodynamic and acoustic testing was performed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. An overview of the testing completed is presented.
Graphical Acoustic Liner Design and Analysis Tool
Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)
2016-01-01
An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.
National Research Council Canada - National Science Library
Stoll, R
2001-01-01
... variables such as porosity and grain-size distribution. The model is based on the classical Biot theory extended to take into account various mechanisms of energy loss that are known to be important in marine sediments...
Energy Technology Data Exchange (ETDEWEB)
Atitoaie, Alexandru, E-mail: atitoaie@phys-iasi.ro [National Institute of Research and Development for Technical Physics, Iasi (Romania); Department of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Stancu, Alexandru [Department of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Ovari, Tibor-Adrian; Lupu, Nicoleta; Chiriac, Horia [National Institute of Research and Development for Technical Physics, Iasi (Romania)
2016-04-01
Magnetic nanowires are potential candidates for substituting, within enhanced cochlear implants, the role played by hair cilia from the inner ear, which are responsible for the transduction of acoustic vibrations into electric signals. The sound waves pressure that is bending the magnetic wires induces stresses that are leading to changes in magnetic properties, such as magnetization and permeability. These changes can be detected by a GMR sensor placed below the nanowire array or, in the case of different designs, by a pick-up coil wrapped around the fixed-end of the wires. For the latter case, we are studying the stress distributions caused by bending deformations using the COMSOL finite element software package. We are also proposing a theoretical method for the evaluation of magnetic permeability variation vs. induced stress dependence. The study is performed on CoFeSiB amorphous micro- and nanowires subjected to mechanical perturbations similar to the ones produced by sound pressure waves.
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T.; Sassa, K. [Kyoto University, Kyoto (Japan); Uesaka, S. [Kyoto University, Kyoto (Japan). Faculty of Engineering
1996-10-01
The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.
Bemani, F.; Roknizadeh, R.; Naderi, M. H.
2018-01-01
We present a theoretical scheme to simulate quantum field theory in a discrete curved spacetime based on the Bose-Hubbard model describing a Bose-Einstein condensate trapped inside an optical lattice. Using the Bose-Hubbard Hamiltonian, we first introduce a hydrodynamic presentation of the system evolution in discrete space. We then show that the phase (density) fluctuations of the trapped bosons inside an optical lattice in the superfluid (Mott insulator) state obey the Klein-Gordon equation for a massless scalar field propagating in a discrete curved spacetime. We derive the effective metrics associated with the superfluid and Mott-insulator phases and, in particular, we find that in the superfluid phase the metric exhibits a singularity which can be considered as the manifestation of an analog acoustic black hole. The proposed approach is found to provide a suitable platform for quantum simulation of various spacetime metrics through adjusting the system parameters.
The Energy Spectrum of the Acoustic Emission Signals of Nanoscale Objects
V.V. Marasanov; A.A. Sharko
2017-01-01
A one-dimensional discrete-continuum model of the energy spectrum of the acoustic emission signal, allowing filter oscillating components of the acoustic emission signals. The mathematical formalism describing the environment, initiating the signals of acoustic emission, in which the problem of spectral analysis and synthesis of acoustic emission signals is solved by the Fourier transform. The dependence of the spectrum of acoustic vibrations on the size of the parameters, microstructure. The...
Acoustic backscatter from turbulent microstructure
Energy Technology Data Exchange (ETDEWEB)
Seim, H.E.; Gregg, M.C.; Miyamoto, R.T. [Univ. of Washington, Seattle, WA (United States)
1995-04-01
Acoustic backscatter has produced spectacular images of internal ocean processes for nearly two decades, but interpretation of the images remains ambiguous because several mechanisms can generate measurable backscatter. The authors present what is thought to be the first simultaneous measurements of calibrated acoustic returns and turbulent microstructure, collected in a set of 20-m-tall billows. The observations are from Admiralty Inlet, a salt-stratified tidal channel near Puget Sound. Scattering due to turbulent microstructure alone is strong enough to explain the measured backscatter at specific sites within the billows. Existing formulations underestimate the strength of acoustic backscatter from turbulent microstructure. Due to a misinterpretation of the high-wavenumber temperature spectrum, some previous formulations underestimate the differential scattering cross section (sigma) when scattering from the viscous-convective subrange. Also, the influence of salinity on refractive-index fluctuations can be as large as or greater than that of temperature when the density stratification is dominated by salinity. Using temperature alone to estimate sigma in coastal and estuarine waters may lead to significant underestimates. A simple formulation is derived that takes these two factors into account. Because of high ambient scattering from zooplankton in Admiralty Inlet, the acoustic data are conditionally sampled along modeled profiler trajectories to avoid using bulk statistics.
Springer handbook of acoustics
2014-01-01
Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays and acoustic emission. Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...
Nilsson, Anders
2015-01-01
This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...
Broadband source localization using horizontal-beam acoustic intensity striations.
Turgut, Altan; Orr, Marshall; Rouseff, Daniel
2010-01-01
Waveguide invariant theory is applied to horizontal line array (HLA) beamformer output to localize moving broadband noise sources from measured acoustic intensity striation patterns. Acoustic signals emitted by ships of opportunity (merchant ships) were simultaneously recorded on a HLA and three hydrophones separated by 10 km during the RAGS03 (relationship between array gain and shelf-break fluid processes) experiment. Hough transforms are used to estimate both the waveguide invariant parameter "beta" and the ratio of source range at the closest point of approach to source speed from the observed striation patterns. Broadband (50-150-Hz) acoustic data-sets are used to demonstrate source localization capability as well as inversion capability of waveguide invariant parameter beta. Special attention is paid to bathymetric variability since the acoustic intensity striation patterns seem to be influenced by range-dependent bathymetry of the experimental area. The Hough transform method is also applied to the HLA beam-time record data and to the acoustic intensity data from three distant receivers to validate the estimation results from HLA beamformer output. Good agreement of the results from all three approaches suggests the feasibility of locating broadband noise sources and estimating waveguide invariant parameter beta in shallow waters.
Envelope Solitons in Acoustically Dispersive Vitreous Silica
Cantrell, John H.; Yost, William T.
2012-01-01
Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or dc waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 plus or minus 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 plus or minus 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model.
Laboratory for Structural Acoustics
Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...