WorldWideScience

Sample records for range x-ray telescope

  1. Diffractive X-ray Telescopes

    OpenAIRE

    Skinner, Gerald K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super...

  2. Diffractive X-Ray Telescopes

    Science.gov (United States)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  3. Toward active x-ray telescopes II

    Science.gov (United States)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-10-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the observation time required to achieve a given sensitivity has decreased by eight orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope, culminating with the exquisite subarcsecond imaging performance of the Chandra X-ray Observatory. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (technologically challenging—requiring precision fabrication, alignment, and assembly of large areas (x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes current progress toward active x-ray telescopes.

  4. The microchannel x-ray telescope status

    Science.gov (United States)

    Götz, D.; Meuris, A.; Pinsard, F.; Doumayrou, E.; Tourrette, T.; Osborne, J. P.; Willingale, R.; Sykes, J. M.; Pearson, J. F.; Le Duigou, J. M.; Mercier, K.

    2016-07-01

    We present design status of the Microchannel X-ray Telescope, the focussing X-ray telescope on board the Sino- French SVOM mission dedicated to Gamma-Ray Bursts. Its optical design is based on square micro-pore optics (MPOs) in a Lobster-Eye configuration. The optics will be coupled to a low-noise pnCCD sensitive in the 0.2{10 keV energy range. With an expected point spread function of 4.5 arcmin (FWHM) and an estimated sensitivity adequate to detect all the afterglows of the SVOM GRBs, MXT will be able to provide error boxes smaller than 60 (90% c.l.) arc sec after five minutes of observation.

  5. Toward Adaptive X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  6. Filters for soft X-ray solar telescopes

    Science.gov (United States)

    Spiller, Eberhard; Grebe, Kurt; Golub, Leon

    1990-01-01

    Soft X-ray telescopes require filters that block visible and infrared light and have good soft X-ray transmission. The optical properties of possible materials are discussed, and the fabrication and testing methods for the filters used in a 10-inch normal incidence telescope for 63 A are described. The best performances in the 44-114-A wavelength range are obtained with foils of carbon and rhodium.

  7. SIMBOL X, a new generation X-ray telescope for the 0.5-70 keV range

    Science.gov (United States)

    Ferrando, P.

    SIMBOL-X is a high energy ``mini" satellite class mission that is proposed by a French-Italian-English collaboration for a launch in 2009. SIMBOL-X is making use of a classical X-ray mirror, of ~ 600 cm2 maximum effective area, with a 30 m focal length in order to cover energies up to several tens of keV. This focal length will be achieved through the use of two spacecrafts in a formation flying configuration. This will give to SIMBOL-X unprecedented spatial resolution (20" HEW) and sensitivity in the hard X-ray range. By its coverage, from 0.5 to 70 keV, and sensitivity, SIMBOL-X will be an excellent instrument for the study of high energy processes in a large number of sources, as in particular accreting black-holes, extragalactic jets and AGNs.

  8. X-Ray Polarization Measurements with the EXIST Hard X-Ray Survey Telescope

    Science.gov (United States)

    Krawczynski, Henric; Garson, A., III; Hong, J.; Grindlay, J. E.

    2009-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed NASA mission for scanning the entire sky in intermediate and hard X-rays. The EXIST mission includes a wide field of view High Energy Telescope (HET) covering the 5-600 keV energy range, and an infrared telescope. The HET has the capability to measure the energy dependent X-ray polarization properties of moderately bright and bright X-ray sources. Here we report on a study of the polarization sensitivity of EXIST as a function of the integration time. Broadband X-ray polarization measurements with EXIST have the potential to make important contributions to our understanding of a number of astrophysical source types including binary black holes, accreting neutron stars, magnetars, pulsar wind nebulae, active galactic nuclei and gamma-ray bursts. EXIST observations of the X-rays from binary black holes can be used to constrain the spins of black holes. Last but not least, EXIST observations of active galactic nuclei and gamma-ray bursts can be used for extremely sensitive Lorentz Invariance tests.

  9. The X-ray Telescope of CAST

    CERN Document Server

    Kuster, M.; Cebrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F.H.; Hoffmann, D.H.H.; Hoffmeister, G.; Joux, J.N.; Kang, D.; Konigsmann, Kay; Kotthaus, R.; Papaevangelou, T.; Lasseur, C.; Lippitsch, A.; Lutz, G.; Morales, J.; Rodriguez, A.; Struder, L.; Vogel, J.; Zioutas, K.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  10. Soft X-ray focusing Telescope aboard AstroSat

    DEFF Research Database (Denmark)

    Singh, K. P.; Dewangan, G. C.; Chandra, S.

    2017-01-01

    The Soft X-ray focusing Telescope (SXT) is a moderateresolution X-ray imaging spectrometer supplementing the ultraviolet and hard X-ray payloads for broadband studies of cosmic sources with AstroSat. Well suited for observing bright X-ray sources, SXT observations of nearby active galactic nuclei...

  11. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...... and much better angular resolution in the 10 - 100 keV band, and (3) higher sensitivity for detecting gamma ray lines of known energy in the 100 keV to 1 MeV band. This paper emphasizes the mission aspects of the concept study such as the payload configuration and launch vehicle. An engineering team...... at the Marshall Space Center is participating in these two key aspects of the study....

  12. High Precision Assembly of Thin Mirror X-ray Telescopes

    Science.gov (United States)

    Schattenburg, Mark

    Lightweight high resolution x-ray telescope optics are one of the key technologies under development for next-generation x-ray telescopes. The ultimate goal of this effort is to realize optics with spatial resolution rivaling Chandra (glass mirrors which were epoxied into place around a spindle structure. While very light weight, this process resulted in ~1 arc min resolution. We want to achieve ~100 times better with similar mass. A group at NASA GSFC has recently demonstrated an alternative thin-glass assembly procedure that has achieved ~7 arc sec resolution with x-ray tests. Further progress towards 1 arc-sec will require mirrors with improved figure, lower stress coatings, improved alignment, better metrology, and low stress bonding. Many of the difficulties with current mirror assembly practice stem from the use of epoxy as a bonding agent. Epoxy has many disadvantages, including high shrinkage, large CTE and creep, resin aging effects, water absorption, outgassing, low tensile strength, exothermicity, and requiring large amounts of time and/or heat to cure. These effects can cause errors that become â€oefrozen in― to the bond with no possibility of correction. We propose to investigate replacing epoxy with low temperature, low shrinkage solder alloys. We use these solders in conjunction with high power, millisec-long pulses from a fiber IR laser to deliver controlled amounts of heat into the bond area. We have demonstrated that laser pulses can be used to actuate carefully designed bonds by permanently compressing or expanding a very thin and brief surface melt in the solder by amounts controlled in the nanoscale range, allowing post assembly correction of the mirror mount points. We believe this technology will be one of the keys to realize a sub-1 arc-sec thin-glass x-ray telescope.

  13. Adaptive Lobster-Eye Hard X-Ray Telescope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA needs for hard X-ray telescopes for starlight detection and wavefront analysis, Physical Optics Corporation (POC) proposes to develop an Adjustable...

  14. Optical Design for a Survey X-Ray Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  15. Detection of soft X-rays from Alpha Lyrae and Eta Bootis with an imaging X-ray telescope

    Science.gov (United States)

    Topka, K.; Fabricant, D.; Harnden, F. R., Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Results are presented for observations of Alpha Lyr (Vega) and Eta Boo with an imaging X-ray telescope during two rocket flights. It is found that Vega and Eta Boo are soft X-ray sources with respective luminosities of approximately 3 x 10 to the 28th erg/s (0.15-0.8 keV) and 1 x 10 to the 29th erg/s (0.15-1.5 keV). Surface X-ray luminosities of about 640,000 erg/sq cm per sec for Vega and 300,000 erg/sq cm per sec for Eta Boo are estimated and shown to fall within the range of solar coronal X-ray emission. It is concluded that in view of the substantially larger surface areas of these stars, the relatively large total soft X-ray luminosity (as compared with that of the sun) can in both cases be understood as resulting from a moderately active corona, although the Vega observation is in severe conflict with simple models for X-ray emission from single main-sequence stars.

  16. The X-ray Telescope of the CAST Experiment

    CERN Document Server

    Kotthaus, Rainer; Friedrich, P.; Kang, D.; Hartmann, R.; Kuster, M.; Lutz, G.; Strüder, L.

    2005-01-01

    The CERN Axion Solar Telescope (CAST) searches for solar axions employing a 9 Tesla superconducting dipole magnet equipped with 3 independent detection systems for X-rays from axion-photon conversions inside the 10 m long magnetic field. Results of the first 6 months of data taking in 2003 imply a 95 % CL upper limit on the axion-photon coupling constant of 1.16x10(-10) GeV(-1) for axion masses < 0.02 eV. The most sensitive detector of CAST is a X-ray telescope consisting of a Wolter I type mirror system and a fully depleted pn-CCD as focal plane detector. Exploiting the full potential of background suppression by focussing X-rays emerging from the magnet bore, the axion sensitivity obtained with telescope data taken in 2004, for the first time in a controlled laboratory experiment, will supersede axion constraints derived from stellar energy loss arguments.

  17. The soft X-ray telescope for the SOLAR-A mission

    Science.gov (United States)

    Tsuneta, S.; Acton, L.; Bruner, M.; Lemen, J.; Brown, W.; Caravalho, R.; Catura, R.; Freeland, S.; Jurcevich, B.; Owens, J.

    1991-01-01

    The Soft X-ray Telescope (SXT) of the SOLAR-A mission is designed to produce X-ray movies of flares with excellent angular and time resolution as well as full-disk X-ray images for general studies. A selection of thin metal filters provide a measure of temperature discrimination and aid in obtaining the wide dynamic range required for solar observing. The co-aligned SXT aspect telescope will yield optical images for aspect reference, white-light flare and sunspot studies, and, possibly, helioseismology. This paper describes the capabilities and characteristics of the SXT for scientific observing.

  18. The STAR-X X-Ray Telescope Assembly (XTA)

    Science.gov (United States)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  19. Imaging performance and tests of soft x-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Spiller, E.; McCorkle, R.; Wilczynski, J. (International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center); Golub, L.; Nystrom, G. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA)); Takacz, P.Z. (Brookhaven National Lab., Upton, NY (USA)); Welch, C. (Lockheed Missile and Space Co., Las Cruces, NM (USA))

    1990-08-01

    Photos obtained during 5 min. of observation time from the flight of our 10 in. normal incidence soft x-ray ({lambda} = 63.5{Angstrom}) telescope on September 11, 1989 are analyzed and the data are compared to the results expected from tests of the mirror surfaces. These tests cover a range of spatial periods from 25 cm to 1{Angstrom}. The photos demonstrate a reduction in the scattering of the multilayer mirror compared to a single surface for scattering angles above 1 arcmin, corresponding to surface irregularities with spatial periods below 10 {mu}m. Our results are used to predict the possible performance of future flights. Sounding rocket observations might be able to reach a resolution around 0.1 arcsec. Higher resolutions will require flights of longer durations and improvements in mirror testing for the largest spatial periods. 21 refs., 7 figs., 1 tab.

  20. Enhanced dynamic range x-ray imaging.

    Science.gov (United States)

    Haidekker, Mark A; Morrison, Logan Dain-Kelley; Sharma, Ajay; Burke, Emily

    2017-03-01

    X-ray images can suffer from excess contrast. Often, image exposure is chosen to visually optimize the region of interest, but at the expense of over- and underexposed regions elsewhere in the image. When image values are interpreted quantitatively as projected absorption, both over- and underexposure leads to the loss of quantitative information. We propose to combine multiple exposures into a composite that uses only pixels from those exposures in which they are neither under- nor overexposed. The composite image is created in analogy to visible-light high dynamic range photography. We present the mathematical framework for the recovery of absorbance from such composite images and demonstrate the method with biological and non-biological samples. We also show with an aluminum step-wedge that accurate recovery of step thickness from the absorbance values is possible, thereby highlighting the quantitative nature of the presented method. Due to the higher amount of detail encoded in an enhanced dynamic range x-ray image, we expect that the number of retaken images can be reduced, and patient exposure overall reduced. We also envision that the method can improve dual energy absorptiometry and even computed tomography by reducing the number of low-exposure ("photon-starved") projections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Energetic X-ray Imaging Survey Telescope (EXIST)

    Science.gov (United States)

    Grindlay, Jonathan E.

    2009-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed hard X-ray imaging all-sky deep survey mission recommended by the Report of the 2001 Decadal Survey. It is a strong candidate to be the Black Hole Finder Probe, one of the three "Einstein Probes" in the Beyond Einstein Program. In its new more evolved form, the EXIST mission now includes a simplified, but more sensitive, very large area and field of view imaging hard X-ray telescope as well as a 1.1m optical-NIR telescope (0.3-2.5microns) for rapid ( 100sec) followup imaging and spectra and thus prompt redshifts of high-z GRBs. The IRT will also permit identification and galaxy spectra for a significant fraction of the obscured AGNs detected in the EXIST full sky survey. The primary science objectives for EXIST are to: 1) study the earliest stars, re-ionization, and development of structure in the universe with prompt hard X-ray and prompt followup NIR measurements of GRBs at z >7, 2) constrain the accretion luminosity of the universe by measurements of high luminosity obscured AGN at z 0-2.5, low luminosity AGN at z 10X the area of Swift/BAT and much broader energy band, as well deep NIR coverage with a passively cooled mirror, EXIST greatly surpasses any previous or proposed mission for wide-field imaging and spectroscopy of GRBs and black holes on all scales.

  2. X-ray telescope mirrors made of slumped glass sheets

    Science.gov (United States)

    Winter, A.; Breunig, E.; Friedrich, P.; Proserpio, L.

    2017-11-01

    For several decades, the field of X-ray astronomy has been playing a major role in understanding the processes in our universe. From binary stars and black holes up to galaxy clusters and dark matter, high energetic events have been observed and analysed using powerful X-ray telescopes like e.g. Rosat, Chandra, and XMM-Newton [1,2,3], giving us detailed and unprecedented views of the high-energy universe. In November 2013, the theme of "The Hot and Energetic Universe" was rated as of highest importance for future exploration and in June 2014 the ATHENA Advanced Telescope for High Energy Astrophysics was selected by ESA for the second large science mission (L2) in the ESA Cosmic Vision program, with launch foreseen in 2028 [4]. By combining a large X-ray telescope with state-of-the-art scientific instruments, ATHENA will address key questions in astrophysics, including: How and why does ordinary matter assemble into the galaxies and galactic clusters that we see today? How do black holes grow and influence their surroundings? In order to answer these questions, ATHENA needs a powerful mirror system which exceed the capabilities of current missions, especially in terms of collecting area. However, current technologies have reached the mass limits of the launching rocket, creating the need for more light-weight mirror systems in order to enhance the effective area without increasing the telescope mass. Hence new mirror technologies are being developed which aim for low-weight systems with large collecting areas. Light material like glass can be used, which are shaped to form an X-ray reflecting system via the method of thermal glass slumping.

  3. Metrology Requirements of Future X-Ray Telescopes

    Science.gov (United States)

    Gubarev, Mikhail

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness: Programmatic issues are at least as severe

  4. Segmented X-Ray Optics for Future Space Telescopes

    Science.gov (United States)

    McClelland, Ryan S.

    2013-01-01

    Lightweight and high resolution mirrors are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The slumped glass mirror technology in development at NASA GSFC aims to build X-ray mirror modules with an area to mass ratio of approx.17 sq cm/kg at 1 keV and a resolution of 10 arc-sec Half Power Diameter (HPD) or better at an affordable cost. As the technology nears the performance requirements, additional engineering effort is needed to ensure the modules are compatible with space-flight. This paper describes Flight Mirror Assembly (FMA) designs for several X-ray astrophysics missions studied by NASA and defines generic driving requirements and subsequent verification tests necessary to advance technology readiness for mission implementation. The requirement to perform X-ray testing in a horizontal beam, based on the orientation of existing facilities, is particularly burdensome on the mirror technology, necessitating mechanical over-constraint of the mirror segments and stiffening of the modules in order to prevent self-weight deformation errors from dominating the measured performance. This requirement, in turn, drives the mass and complexity of the system while limiting the testable angular resolution. Design options for a vertical X-ray test facility alleviating these issues are explored. An alternate mirror and module design using kinematic constraint of the mirror segments, enabled by a vertical test facility, is proposed. The kinematic mounting concept has significant advantages including potential for higher angular resolution, simplified mirror integration, and relaxed thermal requirements. However, it presents new challenges including low vibration modes and imperfections in kinematic constraint. Implementation concepts overcoming these challenges are described along with preliminary test and analysis results demonstrating the feasibility of kinematically mounting slumped glass mirror segments.

  5. ASTRO-H Soft X-Ray Telescope (SXT)

    Science.gov (United States)

    Soong, Yang; Serlemitsos Peter J.; Okajima, Takashi; Hahne, Devin

    2011-01-01

    ASTRO-H is an astrophysics satellite dedicated for X-ray spectroscopic study non-dispersively and to carry out survey complementally, which will be borne out of US-Japanese collaborative effort. Among the onboard instruments there are four conically approximated Wolter-I X-ray mirrors, among which two of them are soft X-ray mirrors\\ of which the energy range is from a few hundred eV to 15 keY, currently being fabricated in the X-ray Optics Lab at Goddard Space Flight Center. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 micron, 229 micron, and 305 micron of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 micron nominal and surface gold layer of 0.2 micron. Improvements on angular response over the Astro-El/Suzaku mirrors come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. In this paper, we report the results of calibration of the engineering model of SXT (EM), and project the quality of the flight mirrors.

  6. Deposition and characterization of multilayers on thin foil x-ray mirrors for high-throughput x-ray telescopes

    DEFF Research Database (Denmark)

    Hussain, Ahsen M.; Joensen, Karsten D.; Hoeghoej, P.

    1996-01-01

    W/Si and Co/C multilayers have been deposited on epoxy- replicated Au mirrors from the ASTRO-E telescope project, SPectrum Roentgen Gamma (SRG) flight mirrors, DURAN glass substrates and Si witness wafers. A characterization of the multilayers with both hard x-rays and soft x-rays is presented. T....... This clearly indicates the effectiveness of the epoxy-replication process for the production of smooth substrates for multilayer deposition to be used in future x-ray telescopes....

  7. Application of an EMCCD camera for calibration of hard X-ray telescopes

    DEFF Research Database (Denmark)

    Vogel, Julia K.; Pivovaro, Michael J.; Craig, William W.

    2012-01-01

    Recent technological innovations make it feasible to construct effcient hard x-ray telescopes for space-based astronomical missions. Focusing optics are capable of improving the sensitivity in the energy range above 10 keV by orders of magnitude compared to previously used instruments. The last...

  8. Testing multilayer-coated polarizing mirrors for the LAMP soft X-ray telescope

    Science.gov (United States)

    Spiga, D.; Salmaso, B.; She, R.; Tayabaly, K.; Wen, M.; Banham, R.; Costa, E.; Feng, H.; Giglia, A.; Huang, Q.; Muleri, F.; Pareschi, G.; Soffitta, P.; Tagliaferri, G.; Valsecchi, G.; Wang, Z.

    2015-09-01

    The LAMP (Lightweight Asymmetry and Magnetism Probe) X-ray telescope is a mission concept to measure the polarization of X-ray astronomical sources at 250 eV via imaging mirrors that reflect at incidence angles near the polarization angle, i.e., 45 deg. Hence, it will require the adoption of multilayer coatings with a few nanometers dspacing in order to enhance the reflectivity. The nickel electroforming technology has already been successfully used to fabricate the high angular resolution imaging mirrors of the X-ray telescopes SAX, XMM-Newton, and Swift/XRT. We are investigating this consolidated technology as a possible technique to manufacture focusing mirrors for LAMP. Although the very good reflectivity performances of this kind of mirrors were already demonstrated in grazing incidence, the reflectivity and the scattering properties have not been tested directly at the unusually large angle of 45 deg. Other possible substrates are represented by thin glass foils or silicon wafers. In this paper we present the results of the X-ray reflectivity campaign performed at the BEAR beamline of Elettra - Sincrotrone Trieste on multilayer coatings of various composition (Cr/C, Co/C), deposited with different sputtering parameters on nickel, silicon, and glass substrates, using polarized X-rays in the spectral range 240 - 290 eV.

  9. Hard x-ray telescopes to be onboard ASTRO-H.

    Science.gov (United States)

    Awaki, Hisamitsu; Kunieda, Hideyo; Ishida, Manabu; Matsumoto, Hironori; Babazaki, Yasunori; Demoto, Tadatsugu; Furuzawa, Akihiro; Haba, Yoshito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Ishida, Naoki; Itoh, Masayuki; Iwase, Toshihiro; Kosaka, Tatsuro; Kurihara, Daichi; Kuroda, Yuuji; Maeda, Yoshitomo; Meshino, Yoshifumi; Mitsuishi, Ikuyuki; Miyata, Yuusuke; Miyazawa, Takuya; Mori, Hideyuki; Nagano, Housei; Namba, Yoshiharu; Ogasaka, Yasushi; Ogi, Keiji; Okajima, Takashi; Saji, Shigetaka; Shimasaki, Fumiya; Sato, Takuro; Sato, Toshiki; Sugita, Satoshi; Suzuki, Yoshio; Tachibana, Kenji; Tachibana, Sasagu; Takizawa, Shunya; Tamura, Keisuke; Tawara, Yuzuru; Torii, Tatsuharu; Uesugi, Kentato; Yamashita, Koujun; Yamauchi, Shigeo

    2014-11-10

    The new Japanese x-ray astronomy satellite, ASTRO-H, will carry two identical hard x-ray telescopes (HXTs), which cover the energy range of 5 to 80 keV. The HXT mirrors employ tightly nested, conically approximated thin-foil Wolter-I optics, and the mirror surfaces are coated with Pt/C depth-graded multilayers to enhance the hard x-ray effective area by means of Bragg reflection. The HXT comprises foils 120-450 mm in diameter and 200 mm in length, with a focal length of 12 m. To obtain a large effective area, 213 aluminum foils 0.2 mm in thickness are tightly nested confocally. The requirements for HXT are a total effective area of >300  cm2 at 30 keV and an angular resolution of ' in half-power diameter (HPD). Fabrication of two HXTs has been completed, and the x-ray performance of each HXT was measured at a synchrotron radiation facility, SPring-8 BL20B2 in Japan. Angular resolutions (HPD) of 1.9' and 1.8' at 30 keV were obtained for the full telescopes of HXT-1 and HXT-2, respectively. The total effective area of the two HXTs at 30 keV is 349  cm2.

  10. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  11. The x-ray camera of the EXIST/SXI telescope

    Science.gov (United States)

    Uslenghi, Michela; Fiorini, Mauro; Mereghetti, Sandro; Villa, Gabriele E.; Bazzano, Angela; Caraveo, Patrizia A.; Fiorini, Carlo E.; Grindlay, Jonathan E.; Natalucci, Lorenzo; Pareschi, Giovanni; Tagliaferri, Gianpiero; Ubertini, Pietro

    2010-07-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) mission, submitted to the Decadal Survey, is a multiwavelength observatory mainly devoted to the study of Super Massive Black Holes, Gamma Ray Bursts and other transient sources. The set of instruments foreseen for EXIST includes a soft x-ray telescope (SXI), proposed as a contribution of the Italian Space Agency (ASI). We present the baseline design of the X-Ray camera for SXI telescope, that we have finalized under ASI contract. The camera is based on a focal plane detector consisting of a 450 μm thick silicon pixel sensor sensitive, with high QE, in the full SXI range (0.1-10 KeV), and capable of high energy resolution when operated in photon counting mode (E/dE ~ 47 at 6 keV), frame rate ~ 100-200 frames/s (enabling timing in the ms range), and spatial resolution matching the optical characteristics of the mirror module. We provide an overview of the mechanical, thermal and electrical concept of the camera.

  12. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Craig, W.W.; Windt, D.L.

    2000-01-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10 less than or similar to E less......-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution...... than or similar to 80 keV) band. In this paper, we present measurements of the reflectance in the 18-170 keV energy range of a cylindrical prototype nested optic taken at the European Synchrotron Radiation Facility (ESRF). The mirror segments, mounted in a single bounce stack, are coated with depth...

  13. The behavior of subluminous X-ray transients near the Galactic center as observed using the X-ray telescope aboard Swift

    NARCIS (Netherlands)

    Degenaar, N.; Wijnands, R.

    2009-01-01

    In this paper we report on the spectral analysis of seven X-ray transients, which were found to be active during a monitoring campaign of the Galactic center carried out in 2006 and 2007 using the X-ray telescope aboard the Swift satellite. This campaign detected new outbursts of five known X-ray

  14. Optical constants in the hard X-ray/Soft gamma ray range of selected materials for multilayer reflectors

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Romaine, S.; Bruni, R.

    2007-01-01

    Future Astrophysics missions operating in the hard X-ray/Soft Gamma ray range is slated to carry novel focusing telescopes based on the use of depth graded multilayer reflectors. Current design studies show that, at the foreseen focal lengths, it should be feasible to focus X-rays at energies...

  15. Constraints on axino warm dark matter from X-ray observation at the Chandra telescope and SPI

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Paramita [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen, D-52056 Aachen (Germany); Mukhopadhyaya, Biswarup [Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019 (India); Roy, Sourov [Department of Theoretical Physics, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Kolkata 700032 (India); Vempati, Sudhir K., E-mail: paramita@physik.rwth-aachen.de, E-mail: biswarup@hri.res.in, E-mail: tpsr@iacs.res.in, E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)

    2012-05-01

    A sufficiently long lived warm dark matter could be a source of X-rays observed by satellite based X-ray telescopes. We consider axinos and gravitinos with masses between 1 keV and 100 keV in supersymmetric models with small R-parity violation. We show that axino dark matter receives significant constraints from X-ray observations of Chandra and SPI, especially for the lower end of the allowed range of the axino decay constant f{sub a}, while the gravitino dark matter remains unconstrained.

  16. The X-ray mirror telescope and the pn-CCD detector of CAST

    CERN Document Server

    Kuster, M; Englhauser, J; Franz, J; Friedrich, P; Hartmann, R; Kang, D; Kotthaus, R; Lutz, Gerhard; Moralez, J; Serber, W; Strüder, L

    2004-01-01

    The Cern Axion Solar Telescope - CAST - uses a prototype 9 Tesla LHC superconducting dipole magnet to search for a hypothetical pseudoscalar particle, the axion, which was proposed by theory in the 1980s to solve the strong CP problem and which could be a dark matter candidate. In CAST a strong magnetic field is used to convert the solar axions to detectable photons via inverse Primakoff effect. The resulting X-rays are thermally distributed in the energy range of 1-7 keV and can be observed with conventional X-ray detectors. The most sensitive detector system of CAST is a pn-CCD detector originally developed for XMM-Newton combined with a Wolter I type X-ray mirror system. The combination of a focusing X-ray optics and a state of the art pn-CCD detector which combines high quantum efficiency, good spacial and energy resolution, and low background improves the sensitivity of the CAST experiment such that for the first time the axion photon coupling constant can be probed beyond the best astrophysical constrai...

  17. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    Science.gov (United States)

    Šimon, V.

    2017-07-01

    We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.

  18. GLASS AND SILICON FOILS FOR X-RAY SPACE TELESCOPE MIRRORS

    Directory of Open Access Journals (Sweden)

    M. MIKA

    2011-12-01

    Full Text Available Unique observations delivered by space X-ray imaging telescopes have been significantly contributing to important discoveries of current astrophysics. The telescopes’ most crucial part is a high throughput, heavily nested mirror array reflecting X-rays and focusing them to a detector. Future astronomical projects on large X-ray telescopes require novel materials and technologies for the construction of the reflecting mirrors. The future mirrors must be lightweight and precisely shaped to achieve large collecting area with high angular resolution of a few arc sec. The new materials and technologies must be cost-effective as well. Currently, the most promising materials are glass or silicon foils which are commercially produced on a large scale. A thermal forming process was used for the precise shaping of these foils. The forced and free slumping of the foils was studied in the temperature range of hot plastic deformation and the shapes obtained by the different slumping processes were compared. The shapes and the surface quality of the foils were measured by a Taylor Hobson contact profilemeter, a ZYGO interferometer and Atomic Forced Microscopy. In the experiments, both heat-treatment temperature and time were varied following our experiment design. The obtained data and relations can be used for modelling and optimizing the thermal forming procedure.

  19. Application of an EMCCD Camera for Calibration of Hard X-Ray Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J K; Pivovaroff, M J; Nagarkar, V V; Kudrolli, H; Madsen, K K; Koglin, J E; Christensen, F E; Brejnholt, N F

    2011-11-08

    Recent technological innovations now make it feasible to construct hard x-ray telescopes for space-based astronomical missions. Focusing optics are capable of improving the sensitivity in the energy range above 10 keV by orders of magnitude compared to previously used instruments. The last decade has seen focusing optics developed for balloon experiments and they will soon be implemented in approved space missions such as the Nuclear Spectroscopic Telescope Array (NuSTAR) and ASTRO-H. The full characterization of x-ray optics for astrophysical and solar imaging missions, including measurement of the point spread function (PSF) as well as scattering and reflectivity properties of substrate coatings, requires a very high spatial resolution, high sensitivity, photon counting and energy discriminating, large area detector. Novel back-thinned Electron Multiplying Charge-Coupled Devices (EMCCDs) are highly suitable detectors for ground-based calibrations. Their chip can be optically coupled to a microcolumnar CsI(Tl) scintillator via a fiberoptic taper. Not only does this device exhibit low noise and high spatial resolution inherent to CCDs, but the EMCCD is also able to handle high frame rates due to its controllable internal gain. Additionally, thick CsI(Tl) yields high detection efficiency for x-rays. This type of detector has already proven to be a unique device very suitable for calibrations in astrophysics: such a camera was used to support the characterization of the performance for all NuSTAR optics. Further optimization will enable similar cameras to be improved and used to calibrate x-ray telescopes for future space missions. In this paper, we discuss the advantages of using an EMCCD to calibrate hard x-ray optics. We will illustrate the promising features of this detector solution using examples of data obtained during the ground calibration of the NuSTAR telescopes performed at Columbia University during 2010/2011. Finally, we give an outlook on ongoing

  20. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    Science.gov (United States)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  1. Examining the angular resolution of the ASTRO-H's soft x-ray telescopes

    Science.gov (United States)

    Sato, Toshiki; Iizuka, Ryo; Ishida, Manabu; Kikuchi, Naomichi; Maeda, Yoshitomo; Kurashima, Sho; Nakaniwa, Nozomi; Tomikawa, Kazuki; Hayashi, Takayuki; Mori, Hideyuki; Okajima, Takashi; Serlemitsos, Peter J.; Soong, Yang; Izumiya, Takanori; Minami, Sari

    2016-10-01

    The international x-ray observatory ASTRO-H was renamed "Hitomi" after launch. It covers a wide energy range from a few hundred eV to 600 keV. It is equipped with two soft x-ray telescopes (SXTs: SXT-I and SXT-S) for imaging the soft x-ray sky up to ˜12 keV, which focus an image onto the respective focal-plane detectors: CCD camera (SXI) and a calorimeter (SXS). The SXTs are fabricated in a quadrant unit. The angular resolution in half-power diameter (HPD) of each quadrant of the SXTs ranges between 1.1 and 1.4 arc min at 4.51 keV. It was also found that one quadrant has an energy dependence on the HPD. We examine the angular resolution with "spot scan" measurements. In order to understand the cause of imaging capability deterioration and to reflect it to the future telescope development, we carried out spot scan measurements, in which we illuminate all over the aperture of each quadrant with a square beam 8 mm on a side. Based on the scan results, we made "maps" of image blurring and a focus position. The former and the latter reflect figure error and positioning error, respectively, of the foils that are within the incident 8 mm×8 mm beam. As a result, we estimated those errors in a quadrant to be ˜0.9 to 1.0 and ˜0.6 to 0.9 arc min, respectively. We found that the larger the positioning error in a quadrant is, the larger its HPD is. The HPD map, which manifests the local image blurring, is very similar from quadrant to quadrant, but the map of the focus position is different from location to location in each telescope. It is also found that the difference in local performance causes energy dependence of the HPD.

  2. Examining the Angular Resolution of the Astro-H's Soft X-Ray Telescopes

    Science.gov (United States)

    Sato, Toshiki; Iizuka, Ryo; Ishida, Manabu; Kikuchi, Naomichi; Maeda, Yoshitomo; Kurashima, Sho; Nakaniwa, Nozomi; Tomikawa, Kazuki; Hayashi, Takayuki; Mori, Hideyuki; hide

    2016-01-01

    The international x-ray observatory ASTRO-H was renamed Hitomi after launch. It covers a wide energy range from a few hundred eV to 600 keV. It is equipped with two soft x-ray telescopes (SXTs: SXT-I and SXT-S) for imaging the soft x-ray sky up to 12 keV, which focus an image onto the respective focal-plane detectors: CCD camera (SXI) and a calorimeter (SXS). The SXTs are fabricated in a quadrant unit. The angular resolution in half-power diameter (HPD) of each quadrant of the SXTs ranges between 1.1 and 1.4 arc min at 4.51 keV. It was also found that one quadrant has an energy dependence on the HPD. We examine the angular resolution with spot scan measurements. In order to understand the cause of imaging capability deterioration and to reflect it to the future telescope development, we carried out spot scan measurements, in which we illuminate all over the aperture of each quadrant with a square beam 8 mm on a side. Based on the scan results, we made maps of image blurring and a focus position. The former and the latter reflect figure error and positioning error, respectively, of the foils that are within the incident 8 mm x 8 mm beam. As a result, we estimated those errors in a quadrant to be approx. 0.9 to 1.0 and approx. 0.6 to 0.9 arc min, respectively. We found that the larger the positioning error in a quadrant is, the larger its HPD is. The HPD map, which manifests the local image blurring, is very similar from quadrant to quadrant, but the map of the focus position is different from location to location in each telescope. It is also found that the difference in local performance causes energy dependence of the HPD.

  3. CubeSAT X-ray Telescope (CubeX) for Elemental Abundance Mapping of Airless Bodies and X-ray Pulsar Navigation (XNAV)

    Science.gov (United States)

    Romaine, S.; Hong, J.; Elvis, M.

    2017-09-01

    The CubeSAT X-ray Telescope (CubeX) is a concept for a 12U planetary X-ray telescope, which utilizes Miniature Wolter-I X-ray optics (MiXO) and a combination of X-ray CMOS and SDD sensors for the focal plane. CubeX will map the surface elemental composition of diverse airless bodies using X-ray Fluorescence (XRF), which can help us to understand the formation and evolutionary history of the individual bodies and the workings of the Solar system as a whole. CubeX will also conduct a feasibility and performance test of X-ray pulsar timing based deep space navigation (XNAV), which can lower operation costs of space navigation and enable autonomous deep space navigation.

  4. Picosecond X-ray streak camera dynamic range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  5. Geant4 simulations of a wide-angle x-ray focusing telescope

    Science.gov (United States)

    Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Zhang, Shuangnan; Willingale, Richard; Ling, Zhixing

    2017-06-01

    The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.

  6. A novel x-ray circularly polarized ranging method

    Science.gov (United States)

    Song, Shi-Bin; Xu, Lu-Ping; Zhang, Hua; Gao, Na; Shen, Yang-He

    2015-05-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. Projects supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014 CXJJ-DH 12), the Xi’an Science and Technology Plan, China (Grant No. CXY1350(4)), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 201413B, 201412B, and JB141303), and the Open Fund of Key Laboratory of Precision Navigation and Timing Technology, National Time Service Center, Chinese

  7. A hard X-ray telescope/concentrator design based on graded period multilayer coatings

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Joensen, K. D.; Gorenstein, P.

    1995-01-01

    that it is smaller than roughly 1 mm. The design can be realized with foils as thin (≤0.4 mm) as used for ASCA and SODART or with closed, slightly thicker (∼1.0 mm) mirror shells as used for JET-X and XMM. The effect of an increase of the inner radius is quantified on the effective area for multilayered mirrors up...... of the telescope configuration provided that mirrors can be coated to an inner radius of 3 cm. Specifically we find that a change of focal length from 5 to 12 m affects the effective area by less than 10%. In addition the result is insensitive to the thickness of the individual mirror shell provided....../cm2/s/keV which demonstrates the great potential of this hard X-ray imaging telescope in the energy range up to 100 keV....

  8. High resolution large area modular array of reflectors /LAMAR/ Wolter type I X-ray telescope for Spacelab

    Science.gov (United States)

    Catura, R. C.; Acton, L. W.; Brown, W. A.; Gilbreth, C. W.; Springer, L. A.; Vieira, J. R.; Culhane, J. L.; Mason, I. W.; Siegmund, O.; Patrick, T. J.

    1982-01-01

    The Spacelab Wolter type I X-ray telescope, which is intended for both astronomical observations and the functional verification of the future Large Area Modular Array of Reflectors (LAMAR) concept, comprises five mirrors and is designed to have a blur circle radius of 20 arcsec, with effective areas of (1) 400 sq cm at 0.25 keV, (2) 200 sq cm in the 0.5-2.0 keV range, and (3) 50 sq cm between 2 and 5 keV. A rotary interchange mechanism allows either of two imaging proportional counters to be placed at the telescope focus. The telescope's primary objective is the observational study of galactic and extragalactic X-ray sources, extending the work of the Einstein Observatory to fainter sources and higher energies. Secondarily, the costs and performance to be expected from the use of this telescope type in the LAMAR mission will be assessed.

  9. From X-Ray Telescopes to Neutron Focusing

    Science.gov (United States)

    Gubarev, M. V.; Khaykovich, B.; Ramsey, B.; Moncton, D. E.

    2011-01-01

    In the case of neutrons the refractive index is slightly less than unity for most elements and their isotopes. Consequently, thermal and cold neutrons can be reflected from smooth surfaces at grazing-incidence angles. Hence, the optical technologies developed for x-ray astronomy can be applied for neutron focusing. The focusing capabilities of grazing incidence neutron imaging optics have been successfully demonstrated using nickel mirrors. The mirrors were fabricated using an electroformed nickel replication process at Marshall Space Flight Center. Results of the neutron optics experiments will be presented. Challenges of the neutron imaging optics as well as possible applications of the optics will be discussed.

  10. MT_RAYOR: a versatile raytracing tool for x-ray telescopes

    DEFF Research Database (Denmark)

    Westergaard, Niels Jørgen Stenfeldt

    2011-01-01

    for detecting celestial X-ray sources. Monte-Carlo raytracing systems have been used in all X-ray telescope missions. MT RAYOR is a system that can be used to analyze any Wolter-1 optics including simulation of extended sources, celestial or in the laboratory, with position dependent spectral properties....... Examples that explore the MT RAYOR capabilities have been chosen from the future missions NuSTAR and Astrosat....

  11. Design and mathematical analysis of a three-mirror X-ray telescope based on ATM S-056 X-ray telescope hardware

    Science.gov (United States)

    Foreman, J. W., Jr.; Cardone, J. M.

    1973-01-01

    The mathematical design of the aspheric third mirror for the three-mirror X-ray telescope (TMXRT) is presented, along with the imaging characteristics of the telescope obtained by a ray trace analysis. The present design effort has been directed entirely toward obtaining an aspheric third mirror which will be compatible with existing S-056 paraboloidal-hyperboloidal mirrors. This compatability will facilitate the construction of a prototype model of the TMXRT, since it will only be necessary to fabricate one new mirror in order to obtain a working model.

  12. Optical design and simulations of the soft x-ray telescope for Einstein Probe mission

    Science.gov (United States)

    Liao, Yingyu; Shen, Zhengxiang; Huang, Qiushi; Wang, Zhanshan

    2017-08-01

    The Einstein Probe (EP) mission, which aims at discovering transients and monitoring variable objects in 0.5-4 keV Xrays, is a small scientific satellite dedicated to time-domain high-energy astrophysics. For this purpose, a large instantaneous field-of-view (60°×60°) X-ray telescope (WXT) is required in this mission, along with moderate spatial resolution (FWHM 5') and energy resolution. It will also carry a follow-up observation X-ray telescope (FXT) with a smaller field-of-viewcapable of much larger light-collecting power and better energy resolution than the main survey telescope. In this paper, we present the optical design and simulations of the FXT, which include the optimized structure parameters of the FXT and its focusing capabilities. The optical design and simulations are performed based on MATLAB program. The FXT employs conically-approximated Wolter-I geometry with a focal length of 2 m. And thin glasses with 100 mm in length and 0.3 mm in thickness are utilized as mirrors. To obtain a large collective area, the FXT will consist of 66 shells tightly-nested, whose diameters range from 80 mm to 250 mm based on the center of secondary mirrors. Seven different kinds of coatings will be deposited, designed by IMD. Based on such a kind of configuration, the effective area can be 245 cm2 at 1 keV and 196 cm2 at 4 keV, with an image quality to be approximately 56'' in half-power diameter (HPD), and with a field of view (FOV) to be approximately 30', theoretically.

  13. Effects of Contamination Upon the Performance of X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Elsner, Ronald F.; Oosterbroek, Tim

    2010-01-01

    Particulate and molecular contamination can each impact the performance of x-ray telescope systems. Furthermore, any changes in the level of contamination between on-ground calibration and in-space operation can compromise the validity of the calibration. Thus, it is important to understand the sensitivity of telescope performance, especially the net effective area and the wings of the point spread function to contamination. Here, we quantify this sensitivity and discuss the flow-down of science requirements to contamination-control requirements. As an example, we apply this methodology to the International X-ray Observatory (IXO), currently under joint study by ESA, JAXA, and NASA.

  14. Development of the ASTRO-H Soft X-ray Telescope (SXT): Engineering Model Performance

    Science.gov (United States)

    Okajima, Takashi; Serlemitsos, P. J.; Soong, Y.

    2011-01-01

    The X-ray astronomy satellite ASTRO-H, being developed under the collaboration among JAXA, NASA's GSFC and ESA, will have two Soft X-ray Telescopes (SXTs), among other instuments onboard, with a sensitive energy band below 12 keV. One is for an X-ray micorocalorimeter detector and the other for a X-ray CCD detector. The SXT uses a conically approximated Wolter I grazing incidence optic implemented by thin aluminum foil substrates with thickness of 0.152, 0.229, and 0.305 mm. It is similar to the Suzaku XRT, but with larger diameter (45 cm) and longer focal length (5.6 m). Goal of the angular resolution and effective area are 1 arcmin and 390 cm$A2$ at 6 keV, respectively. We made serveral improvements from Suzaku to ASTRO-H, such as thicker substrates, more forming mandrels, thinner epoxy layer for replication, stiffer housings, precise alignment bars, etc. With all these changes, we have fabricated the engineering test unit of the SXT. In this paper, we will discuss all the changes made, their effects, and report X-ray performance of the SXT test unit. An angular resolution of the test unit was measured at new Goddard X-ray calibration facility (100 m X-ray beamline) and was found to be 1.1 arcmin. We will also discuss further improvements toward the flight unit to be delivered to JAXA in 2012.

  15. Thermal forming of glass microsheets for x-ray telescope mirror segments

    DEFF Research Database (Denmark)

    Jimenez-Garate, M.A.; Hailey, C.J.; Craig, W.W.

    2003-01-01

    develop a viscodynamic model for the glass strain as the forming proceeds to find the conditions for repeatability. Thermal forming preserves the x-ray reflectance and scattering properties of the raw glass. The imaging resolution is driven by a large wavelength figure. We discuss the sources of figure......We describe a technology to mass-produce ultrathin mirror substrates for x-ray telescopes of near Wolter-I geometry. Thermal glass forming is a low-cost method to produce high-throughput, spaceborne x-ray mirrors for the 0.1-200-keV energy band. These substrates can provide the collecting area...... envisioned for future x-ray observatories. The glass microsheets are shaped into mirror segments at high temperature by use of a guiding mandrel, without polishing. We determine the physical properties and mechanisms that elucidate the formation process and that are crucial to improve surface quality. We...

  16. Cosmic ray effect on the X-ray Trigger Telescope of UFFO/Lomonosov using YSO scintillation crystal array in space

    DEFF Research Database (Denmark)

    Kim, M. B.; Jeong, S.; Jeong, H. M.

    2017-01-01

    UFFO Burst Alert and Trigger telescope (UBAT) is the X-ray trigger telescope of UFFO/Lomonosov to localize X-ray source with coded mask method and X-ray detector. Its X-ray detector is made up of 36 8×8 pixels Yttrium OxyorthoSilicate (Y2SiO5:Ce, YSO) scintillation crystal arrays and 36 64-channel...... Multi-Anode PhotoMultiplier Tubes (MAPMTs) for space mission. Its effective detection area is 161cm2 and energy range is several keV to 150 keV. It was successfully launched in April 28, 2016. In several calibration run, we got several X-ray background data. We already knew X-ray background flux is 2......-3 counts/cm2/sec in space. However our X-ray background data shows approximately 7-8 times higher than what we know. There are many candidates to explain high X-ray background count in space. One of candidates is cosmic ray. We will report cosmic ray effect on the X-ray detector using YSO scintillation...

  17. SuperHERO: The Next Generation Hard X-Ray Focusing Telescope

    Science.gov (United States)

    Gaskin, Jessica; Wilson-Hodge, Colleen; Ramsey, Brian; Elsner, Ronald; Tennant, Allyn F.; Kilaru, Kiranmayee; Swartz, Douglas A.; Christe, Steven; Shih, Albert Y.; Baganoff, Frederick K.; Seller, Paul; Wilson, Matthew; Stuchlik, David

    2015-01-01

    SuperHERO is a balloon-borne hard x-ray (20-75 keV) telescope that couples high-angular resolution (~20 arcsecs) electroformed-nickel grazing incidence optics to state-of-the-art fine pixel-pitch (250 µm) Cadmium-Telluride detectors with a 6 m focal length. This telescope, currently in the proposal phase, will have the highest angular resolution of any hard x-ray telescope to date, and comparable energy resolution to that of the Nuclear Spectroscopic Telescope Array. The high angular resolution afforded by focusing optics is essential for mitigating source confusion in crowded fields, for direct imaging of extended sources on fine spatial scales, and for efficient observing through greatly-increased sensitivity. As such, the primary astronomical targets are the Galactic Center, pulsar-powered synchrotron nebulae and diffusive shock accelerated sites in supernova remnants. To facilitate solar observations, the SuperHERO detectors have a high processing rate of ~10 kHz over the entire 80x80 pixel array, or over 5M photons per second over the detector area. The current SuperHERO configuration has a total on-axis effective area of 145 cm2 at 30 keV and a field of view of ~7 arcmin FWHM at 30 keV (simulated). The optics, developed at NASA Marshall Space Flight Center, have significant flight heritage as similar mirrors have flown on balloon payloads, sounding rockets and a satellite mission. The detectors, developed at Rutherford Appleton Laboratory (RAL), utilize the novel HEXITEC Application Specific Integrated Circuit. RAL has been working on these and similar detectors for over a decade for applications ranging from medical to defense. NASA Goddard Space Flight Center, working with RAL and MSFC has been adapting these detectors for flight, with good progress. The telescope will reside on a carbon-composite frame that will integrate the Wallops Arc Second Pointer. This design will allow for Long Duration Balloon flights from Antarctica that can last up to 4 weeks

  18. Reflectivity around the gold L-edges of X-ray reector of the soft X-ray telescope onboard ASTRO-H

    DEFF Research Database (Denmark)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho

    2017-01-01

    We report the atomic scattering factor in the 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. I...

  19. X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR)

    DEFF Research Database (Denmark)

    Krawczynski, Henric S.; Stern, Daniel; Harrison, Fiona A.

    2016-01-01

    This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter...

  20. Hard X-ray/soft gamma-ray telescope designs for future astrophysics missions

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Pivovaroff, Michael J.

    2013-01-01

    We present several concept designs of hard X-ray/soft λ-ray focusing telescopes for future astrophysics missions. The designs are based on depth graded multilayer coatings. These have been successfully employed on the NuSTAR mission for energies up to 80 keV. Recent advances in demonstrating...

  1. Soft X-ray Focusing Telescope Aboard AstroSat: Design ...

    Indian Academy of Sciences (India)

    K. P. Singh

    2017-06-19

    Jun 19, 2017 ... Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance. K. P. SINGH1,∗ ... Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational ..... products using the SXT pipeline software. The pipeline requires Level-1 data files and ...

  2. Overview of segmented glass optics development for the Constellation-X hard X-ray telescope

    DEFF Research Database (Denmark)

    Hailey, C.J; Christensen, Finn Erland; Craig, W.W.

    2002-01-01

    We report recent work on segmented glass optics for the Constellation-H hard x-ray telescope. This effort seeks to both improve the figure of the free-standing glass substrates, and to refine a newly-developed mounting technology for the substrates. We discuss metrology on recently characterized...

  3. Calibration of the Nustar High-Energy Focusing X-Ray Telescope

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Markwardt, Craig B.

    2015-01-01

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles...

  4. Soft X-ray Focusing Telescope Aboard AstroSat: Design ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 38; Issue 2. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance. K. P. Singh G. C. Stewart N. J. Westergaard S. Bhattacharayya S. Chandra V. R. Chitnis G. C. Dewangan A. T. Kothare I. M. Mirza K. Mukerjee V. Navalkar ...

  5. Development of grazing incidence multilayer mirrors for hard X-ray focusing telescopes

    DEFF Research Database (Denmark)

    Mao, Peter H.; Harrison, Fiona A.; Platonov, Yuriy Y.

    1997-01-01

    We are developing depth-graded, multilayer-coated mirrors for astrophysical hard X-ray focusing telescopes. In this paper, we discuss the primary technical challenges associated with the multilayer coatings, and report on progress to date. We have sputtered constant d-spacing and depth-graded W/S...

  6. Performance of ASTRO-H Hard X-Ray Telescope (HXT)

    Science.gov (United States)

    Awaki, Hisamitsu; Kunieda, Hideyo; Ishida, Manabu; Matsumoto, Hironori; Furuzawa, Akihiro; Haba, Yohsito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Itoh, Masayuki; hide

    2016-01-01

    The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carries hard X-ray imaging system, covering the energy band from 5 keV to 80 keV. The hard X-ray imaging system consists of two hard X-ray telescopes (HXT) and two hard X-ray imagers (HXI). The HXT employs tightly-nested, conically-approximated thin foil Wolter-I optics. The mirror surfaces of HXT were coated with PtC depth-graded multilayers. We carried out ground calibrations of HXTs at the synchrotron radiation facility SPring-8 BL20B2 in Japan, and found that total effective area of two HXTs was about 350 sq cm at 30 keV, and the half power diameter of HXT was about 1.9. After the launch of Hitomi, Hitomi observed several targets during the initial functional verification of the onboard instruments. The Hitomi software and calibration team (SCT) provided the Hitomis data of G21.5-0.9, a pulsar wind nebula, to the hardware team for the purpose of the instrument calibration. Through the analysis of the in-flight data, we have confirmed that the X-ray performance of HXTs in orbit was consistent with that estimated by the ground calibrations.

  7. Multilayer coating facility for the HEFT hard x-ray telescope

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Christensen, Finn Erland; Chen, Hubert

    2001-01-01

    A planar magnetron sputtering facility has been established at the Danish Space Research Institute (DSRI) for the production coating of depth graded multilayers on the thermally slumped glass segments which form the basis for the hard X-ray telescope on the HEFT balloon project. The facility...... is capable of coating 20-45 mirrors segments in each run. The coatings are optimized W/Si coatings. The paper describes the facility, the results of the calibration and presents data for the X-ray testing of flight mirrors....

  8. A Preliminary Research on the Development of the Hard X-ray Imaging Telescope

    Science.gov (United States)

    Zheng, Chun-Xiao; Cai, Ming-Sheng; Hu, Yi-Ming; Huang, Yong-Yi; Gong, Yi-Zhong

    2014-10-01

    The hard X-ray imaging telescope based on the Fourier transform imaging technique is introduced. The double-layer parallel gratings are used to make the modulation and coding on the light emerging from a celestial X-ray source, the modulated light is acquired, to make the optoelectronic conversion by scintillation crystal detectors, and finally read out by the electronic system. The modulation collimator X-ray telescopes can be divided into two types: the spatial modulation and temporal modulation. The temporal modulation system requires the scanning motion of the detector system, but the spatial modulation system requires no motion. The technology of grating fabrication is investigated, and the basic structure design of the collimators is given. The principal compo- nents of the prototype hard X-ray imaging telescope of spatial modulation type are successfully developed, including the 8 CsI crystal detector modules (contain- ing photomultipliers or PMTs), 8-channel shaping amplifiers (two of them are prepared for experiments), and the data acquisition system. And the preliminary test results of the electronic system are also given.

  9. Theoretical analysis of segmented Wolter/LSM X-ray telescope systems

    Science.gov (United States)

    Shealy, D. L.; Chao, S. H.

    1986-01-01

    The Segmented Wolter I/LSM X-ray Telescope, which consists of a Wolter I Telescope with a tilted, off-axis convex spherical Layered Synthetic Microstructure (LSM) optics placed near the primary focus to accommodate multiple off-axis detectors, has been analyzed. The Skylab ATM Experiment S056 Wolter I telescope and the Stanford/MSFC nested Wolter-Schwarzschild x-ray telescope have been considered as the primary optics. A ray trace analysis has been performed to calculate the RMS blur circle radius, point spread function (PSF), the meridional and sagittal line functions (LST), and the full width half maximum (PWHM) of the PSF to study the spatial resolution of the system. The effects on resolution of defocussing the image plane, tilting and decentrating of the multilayer (LSM) optics have also been investigated to give the mounting and alignment tolerances of the LSM optic. Comparison has been made between the performance of the segmented Wolter/LSM optical system and that of the Spectral Slicing X-ray Telescope (SSXRT) systems.

  10. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    DEFF Research Database (Denmark)

    Singh, K; Stewart, G.; Westergaard, Niels Jørgen Stenfeldt

    2017-01-01

    medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei...... and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its...

  11. Silicon pore optics for future x-ray telescopes

    DEFF Research Database (Denmark)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska

    2017-01-01

    arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor...... industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested...

  12. Aberrations in square pore micro-channel optics used for x-ray lobster eye telescopes

    Science.gov (United States)

    Willingale, R.; Pearson, J. F.; Martindale, A.; Feldman, C. H.; Fairbend, R.; Schyns, E.; Petit, S.; Osborne, J. P.; O'Brien, P. T.

    2016-07-01

    We identify all the significant aberrations that limit the performance of square pore micro-channel plate optics (MPOs) used as an X-ray lobster eye. These include aberrations intrinsic to the geometry, intrinsic errors associated with the slumping process used to introduce a spherical form to the plates and imperfections associated with the plate manufacturing process. The aberrations are incorporated into a comprehensive software model of the X-ray response of the optics and the predicted imaging response is compared with the measured X-ray performance obtained from a breadboard lobster eye. The results reveal the manufacturing tolerances which limit the current performance of MPOs and enable us to identify particular intrinsic aberrations which will limit the ultimate performance we can expect from MPO-lobster eye telescopes.

  13. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    Science.gov (United States)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  14. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Science.gov (United States)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  15. Development of mirrors made of chemically tempered glass foils for future X-ray telescopes

    OpenAIRE

    Salmaso, B.; Civitani, M.; Brizzolari, B.; Basso, S.; Ghigo, M.; Pareschi, G.; Spiga, D.; Proserpio, L.; Suppiger, Y.

    2015-01-01

    Thin slumped glass foils are considered good candidates for the realization of future X-ray telescopes with large effective area and high spatial resolution. However, the hot slumping process affects the glass strength, and this can be an issue during the launch of the satellite because of the high kinematical and static loads occurring during that phase. In the present work we have investigated the possible use of Gorilla glass (produced by Corning), a chemical tempered glass that, thanks to...

  16. On X-ray telescopes in general and the Athena optics in particular

    DEFF Research Database (Denmark)

    Westergaard, Niels J.; Ferreira, Desiree D. M.; Massahi, Sonny

    2017-01-01

    The optical design of the most common type of X-ray telescopes is reviewed in this contribution and the imaging properties of these are discussed. Then the newest mostly European large mission, Athena, is presented and some of the most important properties imaging-wise are reviewed. Finally...... the science program for Athena is described where the emphasis is on the cosmic web and the population of AGNs....

  17. SuperHERO: The Next Generation Hard X-Ray HEROES Telescope

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tenant, Allyn F.; hide

    2014-01-01

    SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.

  18. The Hitomi (ASTRO-H) hard x-ray telescope (HXT): current status of calibration

    Science.gov (United States)

    Awaki, Hisamitsu; Matsumoto, Hironori; Ishida, Manabu; Furuzawa, Akihiro; Yamauchi, Shigeo; Maeda, Yoshitomo; Kunieda, Hideyo; Haba, Yoshito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mori, Hideyuki; Okajima, Takashi; Sugita, Satoshi; Tamura, Keisuke; Tawara, Yuzuru; Yoshida, Tessei

    2017-08-01

    The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carried two hard X-ray telescopes (HXT), covering the energy band from 5 keV to 80 keV. In the initial functional verification phase of the onboard instruments, G21.5-0.9 and Crab nebula were observed with HXT. The data of G21.5-0.9 observation indicated that the hard X-ray imaging system worked well. Detail calibration of the Hitomi HXTs was performed with the observation data of Crab nebula. We extracted X-ray images of the Crab pulsar excluding the nebular emission, and confirmed that the imaging performance in orbit was satisfied with the requirement of the HXT. The 8-80 keV Crab spectrum was well fitted with a power-law model with the absorbed column of NH=3×1021 cm-2 . The estimated photon index of 2.122+/-0.003 was consistent with previous results of Crab observation, while the observed 2-10 keV flux of 2.3×10-8 erg s-1 cm-2 was slightly larger than the previous observation. We note that there was discrepancy between the simulated and the measured effective area on ground. Thus, we introduced a fudge factor to reproduce the effective area obtained in the ground calibration. The fudge factor of HXTs are included in the latest calibration database of Hitomi.

  19. Optical performance of grazing incidence X-ray/EUV telescopes for space science applications

    Science.gov (United States)

    Thompson, Patrick Louis

    In order to improve and expand the field of X-ray astronomy, and imaging in general, we find that these days a comprehensive systems engineering approach to X-ray image formation must be undertaken. While some industrial interests have taken steps in this direction, any academic approach is lacking from within the archival literature to date, and there are virtually no established university courses. Indeed, it would seem that top level, optical-systems-engineering is exclusively reserved for those seasoned professionals who have accumulated (though somewhat artistically) the ``know-how'' to efficiently conceive and implement excellent optical designs. Such expert knowledge is not and should not be mysterious. To this end, we attempt to formulate a highly comprehensive approach to X-ray optical systems engineering and implement it within the context of the Wolter Type-I and Type-II (grazing incidence) telescopes currently utilized for practical X-ray/EUV astronomy. In addition, we will transform the classical paraboloid- hyperboloid designs into `aplanatic' and `isoplanatic', hyperboloid-hyperboloid systems, where certain coma conditions are minimized. As will be shown, one gains little improvement in performance when choosing a quasi-aplanatic mirror design over a classical one, owing to scatter and other image degradation effects. Next we will show that a generalized hyperboloid-hyperboloid design can be comprehensively optimized for any imaging requirement, where the operational field-of-view is weighted according to spatial information content. Our H-H design has been optimized for the GOES Solar X-ray Imager mission and adopted by NASA and NOAA. It is currently undergoing fabrication by Raytheon Optical Systems Inc. who is under subcontract to the Lockheed-Martin Solar and Astrophysics Laboratory. Our design is expected to result in an 80% increase in optical system performance over the original SXI baseline design.

  20. First peek of ASTRO-H Soft X-ray Telescope (SXT) in-orbit performance

    Science.gov (United States)

    Okajima, Takashi; Soong, Yang; Serlemitsos, Peter; Mori, Hideyuki; Olsen, Larry; Robinson, David; Koenecke, Richard; Chang, Bill; Hahne, Devin; Iizuka, Ryo; Ishida, Manabu; Maeda, Yoshitomo; Sato, Toshiki; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Hayashi, Takayuki; Ishibashi, Kazunori; Miyazawa, Takuya; Tachibana, Kenji; Tamura, Keisuke; Furuzawa, Akihiro; Tawara, Yuzuru; Sugita, Satoshi

    2016-07-01

    ASTRO-H (Hitomi) is a Japanese X-ray astrophysics satellite just launched in February, 2016, from Tanegashima, Japan by a JAXA's H-IIA launch vehicle. It has two Soft X-ray Telescopes (SXTs), among other instruments, that were developed by NASA's Goddard Space Flight Center in collaboration with ISAS/JAXA and Nagoya University. One is for an X-ray micro-calorimeter instrument (Soft X-ray Spectrometer, SXS) and the other for an X-ray CCD camera (Soft X-ray Imager, SXI), both covering the X-ray energy band up to 15 keV. The two SXTs were fully characterized at the 30-m X-ray beamline at ISAS/JAXA. The combined SXT+SXS system effective area is about 250 and 300 cm2 at 1 and 6 keV, respectively, although observations were performed with the gate valve at the dewar entrance closed, which blocks most of low energy X-rays and some of high energy ones. The angular resolution for SXS is 1.2 arcmin (Half Power Diameter, HPD). The combined SXT+SXI system effective area is about 370 and 350 cm2 at 1 and 6 keV, respectively. The angular resolution for SXI is 1.3 arcmin (HPD). The both SXTs have a field of view of about 16 arcmin (FWHM of their vignetting functions). The SXT+SXS field of view is limited to 3 x 3 arcmin by the SXS array size. In-flight data available to the SXT team was limited at the time of this conference and a point-like source data is not available for the SXT+SXS. Although due to lack of attitude information we were unable to reconstruct a point spread function of SXT+SXI, according to RXJ1856.5-3754 data, the SXT seems to be working as expected in terms of imaging capability. As for the overall effective area response for both SXT+SXS and SXT+SXI, consistent spectral model fitting parameters with the previous measurements were obtained for Crab and G21.5-0.9 data. On the other hand, their 2-10 keV fluxes differ by about 20% at this point. Calibration work is still under progress. The SXT is the latest version of the aluminum foil X-ray mirror, which is

  1. First Peek of ASTRO-H Soft X-Ray Telescope (SXT) In-Orbit Performance

    Science.gov (United States)

    Okajima, Takashi; Soong, Yang; Serlemitsos, Peter J.; Mori, Hideyuki; Olsen, Lawrence; Robinson, David; Koenecke, Richard; Chang, William; Hahne, David; Iisuka, Ryo; hide

    2016-01-01

    ASTRO-H (Hitomi) is a Japanese X-ray astrophysics satellite just launched in February, 2016, from Tanegashima, Japan by a JAXA's H-IIA launch vehicle. It has two Soft X-ray Telescopes (SXTs), among other instruments, that were developed by the NASA Goddard Space Flight Center in collaboration with ISAS/JAXA and Nagoya University. One is for an X-ray micro-calorimeter instrument (Soft X-ray Spectrometer, SXS) and the other for an X-ray CCD camera (Soft X-ray Imager, SXI), both covering the X-ray energy band up to 15 keV. The two SXTs were fully characterized at the 30-m X-ray beam line at ISAS/JAXA. The combined SXT+SXS system effective area is about 250 and 300 cm(exp 2) at 1 and 6 keV, respectively, although observations were performed with the gate valve at the dewar entrance closed, which blocks most of low energy X-rays and some of high energy ones. The angular resolution for SXS is 1.2 arcmin (Half Power Diameter, HPD). The combined SXT+SXI system effective area is about 370 and 350 cm (exp 2) at 1 and 6 keV, respectively. The angular resolution for SXI is 1.3 arcmin (HPD). The both SXTs have a field of view of about 16 arcmin (FWHM of their vignetting functions).The SXT+SXS field of view is limited to 3 x 3 arcmin by the SXS array size. In-flight data available to the SXT team was limited at the time of this conference and a point-like source data is not available for the SXT+SXS. Although due to lack of attitude information we were unable to reconstruct a point spread function of SXT+SXI, according to RXJ1856.5-3754 data, the SXT seems to be working as expected in terms of imaging capability. As for the overall effective area response for both SXT+SXS and SXT+SXI, consistent spectral model fitting parameters with the previous measurements were obtained for Crab and G21.5-0.9 data. On the other hand, their 2-10 keV fluxes differ by about 20% at this point. Calibration work is still under progress. The SXT is the latest version of the aluminum foil X-ray

  2. The x-ray mirrors for the EXIST/SXI telescope

    Science.gov (United States)

    Basso, Stefano; Tagliaferri, Gianpiero; Natalucci, Lorenzo; Parodi, Giancarlo; Villa, Gabriele E.; Bazzano, Angela; Caraveo, Patrizia A.; Conconi, Paolo; Della Ceca, Roberto; Grindlay, Jonathan E.; Pareschi, Giovanni; Ramsey, Brian D.; Ubertini, Pietro; Uslenghi, Michela C. A.

    2010-07-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) will continuously survey the full sky in scanning mode for 2- years followed by a 3-years pointing phase. The mission includes three instruments: a High Energy coded mask Telescope; a 1.1m aperture optical-IR Telescope; and a Soft X-ray Imager (SXI), sensitive in the 0.1-10 keV band. SXI is proposed as a contribution of ASI-Italy, fully developed by Italian institutes. Here we will present the optical and mechanical design of the SXI mirror module, that includes also a pre-collimator and a magnetic diverter to ensure a low background on the detector. In particular we will describe the mirror module characteristics in term of effective area, imaging capability, thermal requirement and mechanical properties. The current optical design foresees 26 shells providing an effective area comparable to one XMM-Newton mirror module up to 3 keV. The realization of these shells is based on the well-proven Nickel replication-process technology.

  3. HERO: A Balloon-Borne Hard-X-Ray Focusing Telescope

    Science.gov (United States)

    Ramsey, Brian

    2008-01-01

    HERO, for High Energy Replicated Optics, is an evolutionary balloon payload featuring hard-x-ray grazing-incidence nickel optics. The HERO payload is designed to perform high-sensitivity, fine spatial resolution observations of galactic and extragalactic sources in an energy range that is as yet unexplored with grazing-incidence optics. A proof-of-concept flight with just 6 x-ray mirrors was completed in 2001 and captured the first focused hard-x-ray images galactic sources. Since that time, the payload has been greatly expanded and now features 100, in-house-fabricated mirror shells with an attendant large increase in sensitivity. In its current form, HERO was flown in 2007, from Fort Sumner, NM, and is schedules to fly again in September 2009, from Alice Springs, NT. Full details of the HERO payload will be provided in this presentation together with a discussion of the challenges of flying moderate resolution x-ray optics from a balloon platform.

  4. Ground-based X-ray calibration of the telescopes onboard Astro-E2 satellite

    Science.gov (United States)

    Misaki, Kazutami; Kunieda, Hideyo; Maeda, Yoshitomo; Haba, Yoshito; Itoh, Kei; Mori, Hideyuki; Iizuka, Ryo; Itoh, Akiharu; Inoue, Hirohiko; Okada, Shunsaku; Yokoyama, Yuushi; Ogasaka, Yasushi; Tamura, Keisuke; Furuzawa, Akihiro; Shibata, Ryo; Tanaka, Takeshi; Naitou, Masataka; Ishida, Manabu; Hayakawa, Akira; Inoue, Chiaki; Hayashi, Atsushi; Shimizu, Tomohiro; Serlemitsos, Peter J.; Soong, Yang; Chan, Kai-Wing; Okajima, Takashi; Lehan, John P.

    2004-02-01

    Astro-E2, to be launched in early 2005, will carry five X-ray Telescopes (XRT). The design of the XRT is the same as the previous original mission Astro-E, that is a conical approximation of Wolter Type-I optics, where about 170 thin-foil reflectors are nested confocally. Some modifications from Astro-E are adopted within the severe constraints due to the policy of "re-build" instruments. One of the major changes is the addition of pre-collimators for the stray light protection. Several modifications on the fabrication processes are also made. The replication glass mandrels are screened carefully, which is expected to reduce the figure error of replicated reflectors. We thus expect better performance than Astro-E especially in imaging capability. In order to qualify the performance of the Astro-E2 XRT, we have started ground calibration program of XRT at 30 meter X-ray beam facility of the Institute of Space and Astronautical Science (ISAS). We have found positive improvements on the telescope performance from the Astro-E, which probably arise from the applied modifications. The on-axis half-power diameter (HPD) has been evaluated to be 1.6-1.7 arcmin, which is improved from the Astro-E (2.0 ~ 2.1 arcmin HPD). The on-axis effective areas of quadrants are larger than the average of Astro-E by about 5%. The on-axis effective areas of the XRT for X-ray Imaging Spectrometers (XIS) are approximately 460, 340, 260, and 190 cm2 at energies of 1.49, 4.51, 8.04, and 9.44 keV, respectively. The present paper describes the recent results of the performance of the first flight assembly of the Astro-E2 XRT.

  5. SuperHERO: the next generation hard x-ray HEROES telescope

    Science.gov (United States)

    Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Kilaru, Kiranmayee; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tennant, Allyn F.; Weddendorf, Bruce; Wilson, Matthew D.; Wilson-Hodge, Colleen A.

    2014-07-01

    SuperHERO is a new high-resolution, Long Duration Balloon-capable, hard-x-ray (20-75 keV) focusing telescope for making novel astrophysics and heliophysics observations. The SuperHERO payload, currently in its proposal phase, is being developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center and the Solar Physics Laboratory and the Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently flew from Fort Sumner, NM in September of 2013, and will utilize many of the same features. Significant enhancements to the HEROES payload will be made, including the addition of optics, novel solid-state multi-pixel CdTe detectors, integration of the Wallops Arc-Second Pointer and a significantly lighter gondola suitable for Long Duration Flights.

  6. EXIST (Energetic X-ray Imaging Survey Telescope): The Next Large GRB Observatory

    Science.gov (United States)

    Fishman, G. J.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Studies have begun on the EXIST (Energetic X-ray Imaging Survey Telescope) Mission. It is planned as a very wide-field, sensitive coded aperture telescope with a sensitive area of the order of 6-8 m^2 and having a positional accuracy for GRBs (Gamma ray bursts) better than one arc-minute. EXIST will use SWIFT as a pathfinder mission; the findings of SWIFT will refine the scientific objectives of EXIST and will help to determine many of its design parameters. It would study early star formation and early galaxy formation at very high redshifts through observations of thousands of GRBs, their afterglows and environments. It is intended that the international GRB community will play as large role in EXIST through direct participation as well as with complementary observational programs, both space-based and ground-based. Some preliminary design features and capabilities of the EXIST Mission will be presented.

  7. Development of mirrors made of chemically tempered glass foils for future X-ray telescopes

    Science.gov (United States)

    Salmaso, Bianca; Civitani, Marta; Brizzolari, Claudia; Basso, Stefano; Ghigo, Mauro; Pareschi, Giovanni; Spiga, Daniele; Proserpio, Laura; Suppiger, Yves

    2015-10-01

    Thin slumped glass foils are considered good candidates for the realization of future X-ray telescopes with large effective area and high spatial resolution. However, the hot slumping process affects the glass strength, and this can be an issue during the launch of the satellite because of the high kinematical and static loads occurring during that phase. In the present work we have investigated the possible use of Gorilla® glass (produced by Corning®), a chemical tempered glass that, thanks to its strength characteristics, would be ideal. The un-tempered glass foils were curved by means of an innovative hot slumping technique and subsequently chemically tempered. In this paper we show that the chemical tempering process applied to Gorilla® glass foils does not affect the surface micro-roughness of the mirrors. On the other end, the stress introduced by the tempering process causes a reduction in the amplitude of the longitudinal profile errors with a lateral size close to the mirror length. The effect of the overall shape changes in the final resolution performance of the glass mirrors was studied by simulating the glass foils integration with our innovative approach based on glass reinforcing ribs. The preliminary tests performed so far suggest that this approach has the potential to be applied to the X-ray telescopes of the next generation.

  8. Search for Solar Axions with the CCD Detector and X-ray Telescope at CAST Experiment

    CERN Document Server

    Rosu, Madalin Mihai; Zioutas, Konstantin

    2015-06-09

    The CERN Axion Solar Telescope (CAST) is an experiment that uses the world’s highest sensitivity Helioscope to date for solar Axions searches. Axions are weakly interacting pseudoscalar particles proposed to solve the so-called Strong Charge-Parity Problem of the Standard Model. The principle of detection is the inverse Primakoff Effect, which is a mechanism for converting the Axions into easily detectable X-ray photons in a strong transverse magnetic field. The solar Axions are produced due to the Primakoff effect in the hot and dense core of from the coupling of a real and a virtual photon. The solar models predict a peak Axion luminosity at an energy of 3 keV originating mostly from the inner 20% of the solar radius. Thus an intensity peak at an energy of 3 keV is also expected in the case of the X-ray radiation resulting from Axion conversion. CAST uses a high precision movement system for tracking the Sun twice a day with a LHC dipole twin aperture prototype magnet, 9.26 meters long and with a field of...

  9. CALIBRATION OF THE NuSTAR HIGH-ENERGY FOCUSING X-RAY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Kristin K.; Harrison, Fiona A.; Grefenstette, Brian W.; Miyasaka, Hiromasa; Forster, Karl; Fuerst, Felix; Rana, Vikram; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Markwardt, Craig B. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); An, Hongjun [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Bachetti, Matteo [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Kitaguchi, Takao [RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bhalerao, Varun [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boggs, Steve; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektronvej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, NY 10027 (United States); Perri, Matteo; Puccetti, Simonetta [ASI Science Data Center, via Galileo Galilei, I-00044, Frascati (Italy); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2015-09-15

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%–10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ∼10% for all instruments with respect to NuSTAR.

  10. The Hitomi (ASTRO-H) Soft X-ray Telescope (SXT): current status of calibration

    Science.gov (United States)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; Sato, Toshiki; Tachibana, Sasagu; Mori, Hideyuki; Christensen, Finn; Brejnholt, Nicolai; Nitta, Kiyofumi; Uruga, Tomoya

    2017-08-01

    We report the atomic scattering factor in the 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4 - 0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the gold' s L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor.

  11. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z ≲ 2) by surveying selected regions of the sky; (2) study the population of hard X......-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and Te......V telescopes, as well as with Fermi and Swift , to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake...

  12. Moduli Dark Matter and the Search for Its Decay Line using Suzaku X-Ray Telescope

    Science.gov (United States)

    Kusenko, Alexander; Loewenstein, Michael; Yanagida, Tsutomu T.

    2013-01-01

    Light scalar fields called moduli arise from a variety of different models involving supersymmetry and/or string theory; thus their existence is a generic prediction of leading theories for physics beyond the standard model. They also present a formidable, long-standing problem for cosmology. We argue that an anthropic solution to the moduli problem exists in the case of small moduli masses and that it automatically leads to dark matter in the form of moduli. The recent discovery of the 125 GeV Higgs boson implies a lower bound on the moduli mass of about a keV. This form of dark matter is consistent with the observed properties of structure formation, and it is amenable to detection with the help of x-ray telescopes. We present the results of a search for such dark matter particles using spectra extracted from the first deep x-ray observations of the Draco and Ursa Minor dwarf spheroidal galaxies, which are darkmatter- dominated systems with extreme mass-to-light ratios and low intrinsic backgrounds. No emission line is positively detected, and we set new constraints on the relevant new physics.

  13. High Dynamic Range X-Ray Detector Pixel Architectures Utilizing Charge Removal

    Science.gov (United States)

    Weiss, Joel T.; Shanks, Katherine S.; Philipp, Hugh T.; Becker, Julian; Chamberlain, Darol; Purohit, Prafull; Tate, Mark W.; Gruner, Sol M.

    2017-04-01

    Several charge integrating CMOS pixel front ends utilizing charge removal techniques have been fabricated to extend dynamic range for X-ray diffraction applications at synchrotron sourcesand X-ray free electron lasers (XFELs). The pixels described herein build on the mixed mode pixel array detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging. These new pixels boast several orders of magnitude improvement in maximum flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 X-rays/pixel/s while maintaining sensitivity to smaller signals, down to single X-rays. To extend dynamic range, charge is removed from the integration node of the frontend amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is, thereby, shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux > 1011 X-rays/pixel/s. Pixel front-end linearity was evaluated by direct current injection and results are presented. A small-scale readout ASIC utilizing these pixel architectures has been fabricated and the use of these architectures to increase single X-ray pulse dynamic range at XFELs is discussed briefly.

  14. ATHENA: system design and implementation for a next-generation x-ray telescope

    Science.gov (United States)

    Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Lumb, D.; Linder, M.; Stefanescu, A.

    2017-08-01

    ATHENA, Europe's next generation x-ray telescope, is currently under Assessment Phase study with parallel candidate industrial Prime contractors after selection for the 'L2' slot in ESA's Cosmic Vision Programme, with a mandate to address the 'Hot and Energetic Universe' Cosmic Vision science theme. This paper will consider the main technical requirements of the mission, and their mapping to resulting design choices at both mission and spacecraft level. The reference mission architecture and current reference spacecraft design will then be described, with particular emphasis given to description of the Science Instrument Module (SIM) design, currently under the responsibility of the ESA Study Team. The SIM is a very challenging item due primarily to the need to provide to the instruments (i) a soft ride during launch, and (ii) a very large ( 3 kW) heat dissipation capability at varying interface temperatures and locations.

  15. SuperHERO: Design of a New Hard X-Ray Focusing Telescope

    Science.gov (United States)

    Gaskin, Jessica; Elsner, Ronald; Ramsey, Brian; Wilson-Hodge, Colleen; Tennant, Allyn; Christe, Steven; Shih, Albert; Kiranmayee, Kilaru; Swartz, Douglas; Seller, Paul; hide

    2015-01-01

    SuperHERO is a hard x-ray (20-75 keV) balloon-borne telescope, currently in its proposal phase, that will utilize high angular-resolution grazing-incidence optics, coupled to novel CdTe multi-pixel, fine-pitch (250 micrometers) detectors. The high-resolution electroformed-nickel, grazing-incidence optics were developed at MSFC, and the detectors were developed at the Rutherford Appleton Laboratory in the UK, and are being readied for flight at GSFC. SuperHERO will use two active pointing systems; one for carrying out astronomical observations and another for solar observations during the same flight. The telescope will reside on a light-weight, carbon-composite structure that will integrate the Wallops Arc Second Pointer into its frame, for arcsecond or better pointing. This configuration will allow for Long Duration Balloon flights that can last up to 4 weeks. This next generation design, which is based on the High Energy Replicated Optics (HERO) and HERO to Explore the Sun (HEROES) payloads, will be discussed, with emphasis on the core telescope components.

  16. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    Science.gov (United States)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  17. Reflectivity Around the Gold M-Edges of X-ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H

    Science.gov (United States)

    Kurashimaa, Sho; Furuzawa, Akihiro; Sato, Toshiki; Kikuchia, Naomichi; Nakaniwaa, Nozomi; Maeda, Yoshitomo; Ishida, Manabu; Izuka, Ryo; Okajima, Takashi; Mori, Hideyuki; hide

    2016-01-01

    The X-ray astronomy satellite ASTRO-H are equipped with two equivalent soft X-ray telescopes (SXT-I and SXT-S) which cover the energy band 0.3-12 keV. The X-ray reflectors of the SXTs are coated with a gold monolayer by means of the replication technique. A series of gold M absorption edges in the 2-4 keV band causes complex structures in the energy response of the SXTs. In the same band, there are astrophysically important emission lines from Si, Ar and S. Since the SXS has unprecedentedly high spectral resolution, we have measured the reflectivity around the gold M-edges in an extremely fine energy pitch at the synchrotron radiation facility KEK PF BL11-B, with the 2 eV pitch in 2100 eV to 4100 eV band that covers the entire series of the absorption edges (M-I through M-V) at grazing incident angles to the reflectors of 0.5, 0.8, 1.0, 1.2, 1.4 degree, and with a finer pitch of 0.25 eV in the 2200 eV to 2350 eV band where the two deepest M-IV and M-V edges are included. In the resultant reflectivity curves, we have clearly identified the fine structures associated with all the M-edges. Using these data, we calculated atomic scattering factor f1 as a function of X-ray energy, with which we have built the mirror response function which can be applied to the Suzaku spectra. As a result, we have found that discrepancy of the spectral model to the Suzaku data of 4U1630-472 (a black hole transient) and the Crab nebula around the M-edges are significantly reduced from those with the official Suzaku response.

  18. Slumping monitoring of glass and silicone foils for x-ray space telescopes

    Science.gov (United States)

    Mika, M.; Pina, L.; Landova, M.; Sveda, L.; Havlikova, R.; Semencova, V.; Hudec, R.; Inneman, A.

    2011-09-01

    We developed a non-contact method for in-situ monitoring of the thermal slumping of glass and silicone foils to optimize this technology for the production of high quality mirrors for large aperture x-ray space telescopes. The telescope's crucial part is a high throughput, heavily nested mirror array with the angular resolution better than 5 arcsec. Its construction requires precise and light-weight segmented optics with surface micro-roughness on the order of 0.1 nm. Promising materials are glass or silicon foils shaped by thermal forming. The desired parameters can be achieved only through optimizing the slumping process. We monitored the slumping by taking the snapshots of the shapes every five minutes at constant temperature and the final shapes we measured with the Taylor Hobson profilometer. The shapes were parabolic and the deviations from a circle had the peak-to-valley values of 20-30 μm. The observed hot plastic deformation of the foils was controlled by viscous flow. We calculated and plotted the relations between the middle part deflection, viscosity, and heat-treatment time. These relations have been utilized for the development of a numerical model enabling computer simulation. By the simulation, we verify the material's properties and generate new data for the thorough optimization of the slumping process.

  19. Point Spread Function of ASTRO-H Soft X-Ray Telescope (SXT)

    Science.gov (United States)

    Hayashi, Takayuki; Sato, Toshiki; Kikuchi, Naomichi; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; Mori, Hideyuki; hide

    2016-01-01

    ASTRO-H (Hitomi) satellite equips two Soft X-ray Telescopes (SXTs), one of which (SXT-S) is coupled to Soft-X-ray Spectrometer (SXS) while the other (SXT-I) is coupled to Soft X-ray Imager (SXI). Although SXTs are lightweight of approximately 42 kgmodule1 and have large on-axis effective area (EA) of approximately 450 cm(exp 2) at 4.5 keV module(sub 1) by themselves, their angular resolutions are moderate approximately 1.2 arcmin in half power diameter. The amount of contamination into the SXS FOV (3.05 times 3.05 arcmin(exp 2) from nearby sources was measured in the ground-based calibration at the beamline in Institute of Space and Astronautical Science. The contamination at 4.5 keV were measured with sources distant from the SXS center by one width of the FOV in perpendicular and diagonal directions, that is, 3 and 4.5 arcmin-off, respectively. The average EA of the contamination in the four directions with the 3 and 4.5 arcmin-off were measured to be 2 and 0.6% of the on-axis EA of 412 cm (exp) for the SXS FOV, respectively. The contamination from a source distant by two FOV widths in a diagonal direction, that is, 8.6 arcmin-off was measured to be 0.1% of the on-axis at 4.5 keV. The contamination amounts were also measured at 1.5 keV and 8.0 keV which indicated that the ratio of the contamination EA to that of on-axis hardly depended on the source energy. The off-axis SXT-I images from 4.5 to 27 arcmin were acquired at intervals of -4.5 arcmin for the SXI FOV of 38 times 38 arcmin(exp 2). The image shrinked as the off-axis angle increased. Above 13.5 arcmin of off-angle, a stray appeared around the image center in the off-axis direction. As for the on-axis image, a ring-shaped stray appeared at the edge of SXI of approximately 18 arcmin distant from the image center.

  20. UBAT of UFFO/ Lomonosov: The X-Ray Space Telescope to Observe Early Photons from Gamma-Ray Bursts

    Science.gov (United States)

    Jeong, S.; Panasyuk, M. I.; Reglero, V.; Connell, P.; Kim, M. B.; Lee, J.; Rodrigo, J. M.; Ripa, J.; Eyles, C.; Lim, H.; Gaikov, G.; Jeong, H.; Leonov, V.; Chen, P.; Castro-Tirado, A. J.; Nam, J. W.; Svertilov, S.; Yashin, I.; Garipov, G.; Huang, M.-H. A.; Huang, J.-J.; Kim, J. E.; Liu, T.-C.; Petrov, V.; Bogomolov, V.; Budtz-Jørgensen, C.; Brandt, S.; Park, I. H.

    2018-02-01

    The Ultra-Fast Flash Observatory (UFFO) Burst Alert and Trigger Telescope (UBAT) has been designed and built for the localization of transient X-ray sources such as Gamma Ray Bursts (GRBs). As one of main instruments in the UFFO payload onboard the Lomonosov satellite (hereafter UFFO/ Lomonosov), the UBAT's roles are to monitor the X-ray sky, to rapidly locate and track transient sources, and to trigger the slewing of a UV/optical telescope, namely Slewing Mirror Telescope (SMT). The SMT, a pioneering application of rapid slewing mirror technology has a line of sight parallel to the UBAT, allowing us to measure the early UV/optical GRB counterpart and study the extremely early moments of GRB evolution. To detect X-rays, the UBAT utilizes a 191.1 cm2 scintillation detector composed of Yttrium Oxyorthosilicate (YSO) crystals, Multi-Anode Photomultiplier Tubes (MAPMTs), and associated electronics. To estimate a direction vector of a GRB source in its field of view, it employs the well-known coded aperture mask technique. All functions are written for implementation on a field programmable gate array to enable fast triggering and to run the device's imaging algorithms. The UFFO/ Lomonosov satellite was launched on April 28, 2016, and is now collecting GRB observation data. In this study, we describe the UBAT's design, fabrication, integration, and performance as a GRB X-ray trigger and localization telescope, both on the ground and in space.

  1. UBAT of UFFO/Lomonosov: The X-Ray Space Telescope to Observe Early Photons from Gamma-Ray Bursts

    DEFF Research Database (Denmark)

    Jeong, S.; Panasyuk, M. I.; Reglero, V.

    2018-01-01

    The Ultra-Fast Flash Observatory (UFFO) Burst Alert and Trigger Telescope (UBAT) has been designed and built for the localization of transient X-ray sources such as Gamma Ray Bursts (GRBs). As one of main instruments in the UFFO payload onboard the Lomonosov satellite (hereafter UFFO/Lomonosov), ...

  2. Reflectivity Around the Gold L-Edges of X-Ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H

    Science.gov (United States)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; hide

    2016-01-01

    We report the atomic scattering factor in the 11.215.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4-0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the golds L-I, II, and III transitions are identified, of which the depths are found to be roughly 60 percent shallower than those expected from the Henke's atomic scattering factor.

  3. Hybrid setup for micro- and nano-computed tomography in the hard X-ray range

    Science.gov (United States)

    Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon

    2017-12-01

    With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.

  4. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    Science.gov (United States)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  5. The Czech Contribution to Future Large X-Ray Astronomy Telescopes: Recent Progress

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-01-01

    Full Text Available We briefly review the recent status of the Czech contribution to future space X-ray astronomy missions with emphasis on the development of new technologies and test samples of X-ray mirrors with precise surfaces based on new materials and alternative designs. We report on further investigations and tests of X-ray optical arrangements, such as Kirkpatrick-Baez systems and Multi-Foil Optics.

  6. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation

    Science.gov (United States)

    Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki

    2017-06-01

    Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10-7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.

  7. Optics Requirements For The Generation-X X-Ray Telescope

    Science.gov (United States)

    O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.; hide

    2008-01-01

    US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.

  8. Aplanatic telescopes based on Schwarzschild optical configuration: from grazing incidence Wolter-like x-ray optics to Cherenkov two-mirror normal incidence telescopes

    Science.gov (United States)

    Sironi, Giorgia

    2017-09-01

    At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements

  9. The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range.

    Science.gov (United States)

    Rueff, J P; Ablett, J M; Céolin, D; Prieur, D; Moreno, Th; Balédent, V; Lassalle-Kaiser, B; Rault, J E; Simon, M; Shukla, A

    2015-01-01

    The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic X-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard X-ray range. These two techniques offer powerful complementary methods of characterization of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, the beamline capabilities are demonstrated through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed.

  10. X-ray study of a SODART flight telescope using the expanded beam x-ray optics beamline at the Daresbury synchrotron

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P. K.

    1995-01-01

    The on- and off-axis imaging properties of the first of two SODART flight telescopes have been studied using the expanded beam x-ray facility at the Daresbury synchrotron. From on- axis measurements the encircled power distribution and the point spread function at three energies 6.627 keV, 8.837 ke......V, and 11.046 keV have been measured using a one dimensional position sensitive detector. The data have been used to calculate the half power diameter (HPD) for three different SODART focal plane detectors, the high energy proportional counter (HEPC), the low energy proportional counter (LEPC) and the 19...... to contribute to the HPD by approximately 10%. If 33% of the geometric telescope area near the edges of the quadrants are covered a reduction of 10% of the HPD can be obtained. On- and off-axis images generated from the one dimensional intensity distribution are presented. Finally the data have been used...

  11. X-ray study of a test quadrant of the SODART telescopes using the expanded beam x-ray optics facility at the Daresbury synchrotron

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P.

    1994-01-01

    The imaging properties of a test model of the SODART telescopes have been studied using an expanded beam X-ray facility at the Daresbury synchrotron. The encircled power and the point spread function at three energies 6.627 keV, 8.837 keV and 11.046 keV have been measured using 1D and 2D position...... sensitive detectors. The data have been used to calculate the Half Power Diameter (HPD) for three different SODART focal plane detectors. The High Energy Proportional Counter (HEPC), the Low Energy Proportional Counter (LEPC) and the 19 element solid state array detector (SIXA). At 6.627 keV and 8.837 ke......V the HPD is 2.5 - 3.0 arcmin for all detectors whereas it is somewhat larger at 11.046 keV for HEPC and LEPC but essentially unchanged for SIXA. Finally, the data are used to point to improvements that can be introduced during the manufacture of the flight telescopes....

  12. The impact of the in-orbit background and the X-ray source intensity on the centroiding accuracy of the Swift X-ray telescope

    CERN Document Server

    Ambrosi, R M; Hill, J; Cheruvu, C; Abbey, A F; Short, A D T

    2002-01-01

    The optical components of the Swift Gamma Ray Burst Explorer X-ray Telescope (XRT), consisting of the JET-X spare flight mirror and a charge coupled device of the type used in the EPIC program, were used in a re-calibration study carried out at the Panter facility, which is part of the Max Planck Institute for Extraterrestrial Physics. The objective of this study was to check the focal length and the off axis performance of the mirrors and to show that the half energy width (HEW) of the on-axis point spread function (PSF) was of the order of 16 arcsec at 1.5 keV (Nucl. Instr. and Meth. A 488 (2002) 543; SPIE 4140 (2000) 64) and that a centroiding accuracy better that 1 arcsec could be achieved within the 4 arcmin sampling area designated by the Burst Alert Telescope (Nucl. Instr. and Meth. A 488 (2002) 543). The centroiding accuracy of the Swift XRT's optical components was tested as a function of distance from the focus and off axis position of the PSF (Nucl. Instr. and Meth. A 488 (2002) 543). The presence ...

  13. Measurement of a wide-range of X-ray doses using specialty doped silica fibres

    Science.gov (United States)

    Abdul Sani, S. F.; Hammond, R.; Jafari, S. M.; Wahab, Norfadira; Amouzad Mahdiraji, G.; Siti Shafiqah, A. S.; Abdul Rashid, H. A.; Maah, M. J.; Aldousari, H.; Alkhorayef, M.; Alzimami, M.; Bradley, D. A.

    2017-08-01

    Using six types of tailor-made doped optical fibres, we carry out thermoluminescent (TL) studies of X-rays, investigating the TL yield for doses from 20 mGy through to 50 Gy. Dosimetric parameters were investigated for nominal 8 wt% Ge doped fibres that in two cases were co-doped, using B in one case and Br in the other. A comparative measurement of surface analysis has also been made for non-annealed and annealed capillary fibres, use being made of X-ray Photoelectron Spectroscopy (XPS) analysis. Comparison was made with the conventional TL phosphor LiF in the form of the proprietary product TLD-100, including dose response and glow curves investigated for X-rays generated at 60 kVp over a dose range from 2 cGy to 50 Gy. The energy response of the fibres was also performed for X-rays generated at peak accelerating potentials of 80 kVp, 140 kVp, 250 kVp and 6 MV photons for an absorbed dose of 2 Gy. Present results show the samples to be suitable for use as TL dosimeters, with good linearity of response and a simple glow curve (simple trap) distribution. It has been established that the TL performance of an irradiated fibre is not only influenced by radiation parameters such as energy, dose-rate and total dose but also the type of fibre.

  14. Low-Stress Iridium Coatings for Thin-Shell X-Ray Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and commercialize a new type of low-stress iridium (Ir) X-ray mirror coating technology that can be used for the construction of...

  15. The spectrometer/telescope for imaging X-rays on board the ESA Solar Orbiter spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, S. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Benz, A.O. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Hurford, G.J. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Arnold, N.G. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Orleański, P. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Research Center of Polish Academy of Sciences (Poland); Gröbelbauer, H.-P.; Casadei, D.; Kobler, S.; Iseli, L.; Wiehl, H.J.; Csillaghy, A.; Etesi, L.; Hochmuth, N.; Battaglia, M. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Bednarzik, M.; Resanovic, R. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, Villigen (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.ch [ETH Zürich (Switzerland); Viertel, G.; Commichau, V.; Howard, A. [ETH Zürich (Switzerland); and others

    2013-12-21

    Solar Orbiter is a Sun-observing mission led by the European Space Agency, addressing the interaction between the Sun and the heliosphere. It will carry ten instruments, among them the X-ray imaging spectrometer STIX. STIX will determine the intensity, spectrum, timing, and location of thermal and accelerated electrons near the Sun through their bremsstrahlung X-ray emission. This report gives a brief overview of the STIX scientific goals and covers in more detail the instrument design and challenges.

  16. Artificial Temperature Anisotropy of Crystals in X-Ray Frequency Range

    Science.gov (United States)

    Mkrtchyan, Vahram P.; Gasparyan, Laura G.; Balyan, Minas K.

    2010-04-01

    The effect of artificial temperature anisotropy of crystals in X-ray frequency range was observed for the first time and an effort to theoretically interpret this effect in Bragg-Laue diffraction case was made. It was established that an isotropic crystal optically turns into an artificially anisotropic one with optical axis along the direction of applied external influence as a symmetry axis, giving rise to the double refraction.

  17. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    Science.gov (United States)

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.

  18. ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    Science.gov (United States)

    Arefiev, V.; Pavlinsky, M.; Lapshov, I.; Thachenko, A.; Sazonov, S.; Revnivtsev, M.; Semena, N.; Buntov,M.; Vikhlinin, A.; Gubarev, M.; hide

    2008-01-01

    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs.

  19. GIXRF in the soft X-Ray range used for the characterization of ultra shallow junctions

    Energy Technology Data Exchange (ETDEWEB)

    Beckhoff, Burkhard; Hoenicke, Philipp [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Giubertoni, Damiano; Pepponi, Giancarlo [Fondazione Bruno Kessler, Povo, Trento (Italy)

    2010-07-01

    Grazing incidence X-Ray fluorescence (GIXRF) analysis in the soft X-ray range provides excellent conditions for exciting B-K and As-L{sub iii,ii} shells. The X-ray Standing Wave field (XSW) associated with GIXRF on flat samples is used as a tunable depth sensor to gain information about the implantation profile. This technique is very sensitive to near surface layers. It is therefore well suited for the study of ultra shallow dopant distributions. Arsenic implanted (implantation energies between 0.5 keV and 5.0 keV) and Boron implanted (implantation energies between 0.2 keV and 3.0 keV) Si wafers have been used to compare SIMS analysis with GIXRF analysis. The measurements have been carried out at the electron storage ring BESSY II using monochromatized undulator radiation of well-known radiant power and spectral purity. The use of an absolutely calibrated energy-dispersive detector for the registration of the B-K{alpha} and As-L{alpha} fluorescence radiation allows for the absolute determination of the retained dose. An estimate of the concentration profile has been obtained by fitting the measurements with profiles derived by simulation of the implantation process. A good match among the total retained dose measured with the different techniques has been observed.

  20. Indirect glass slumping of grazing incidence mirror segments for lightweight x-ray telescopes

    Science.gov (United States)

    Stehlíková, Veronika; Proserpio, Laura; Friedrich, Peter; Madarasz, Emanuel; Breunig, Elias; Burwitz, Vadim; Döhring, Thorsten; Probst, Anne-Catherine

    2017-08-01

    The paper provides a description of recent progress in the development of lightweight, precision and highthroughput grazing-incidence mirrors for X-ray astronomy made of glass. In particular, the indirect slumping technology under investigation at the Max Planck Institute for Extraterrestrial Physics (MPE) is reviewed and recent activities are presented together with the research approach. The glass slumping technique foresees several steps: a thermal forming process using a suitable mould; a reflective layer application; the alignment and integration of mirror segments into a supporting structure; and the final verification of prototype modules using X-rays. Each step is considered at MPE, with the involvement of partner institutes and universities. The last year of activities was mainly dedicated to the procurement of new moulds and to the application of Iridium coating. The main results will be presented.

  1. GREEN BANK TELESCOPE AND SWIFT X-RAY TELESCOPE OBSERVATIONS OF THE GALACTIC CENTER RADIO MAGNETAR SGR J1745–2900

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.; Scholz, Paul, E-mail: rlynch@physics.mcgill.ca [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2015-06-20

    We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, most notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.

  2. THE SWIFT X-RAY TELESCOPE CLUSTER SURVEY. III. CLUSTER CATALOG FROM 2005-2012 ARCHIVAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Teng; Wang, Jun-Xian [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, 230026 Hefei, Anhui (China); Tozzi, Paolo; Tundo, Elena [INAF, Osservatorio Astrofisico di Firenze, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Moretti, Alberto [INAF, Osservatorio Astronomico di Brera, Via Brera 28, I-20121 Milano (Italy); Rosati, Piero [Università degli Studi di Ferrara, Dipartimento di Fisica e Scienze della Terra, Via Saragat 1, I-44121 Ferrara (Italy); Tagliaferri, Gianpiero; Campana, Sergio [INAF, Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy); Giavalisco, Mauro, E-mail: liuteng@ustc.edu.cn [Department of Astronomy, University of Massachusetts, LGRT-B 619E, 710 North Pleasant Street, Amherst, MA (United States)

    2015-02-01

    We present the Swift X-ray Cluster Survey (SWXCS) catalog obtained using archival data from the X-ray telescope (XRT) on board the Swift satellite acquired from 2005 February to 2012 November, extending the first release of the SWXCS. The catalog provides positions, soft fluxes, and, when possible, optical counterparts for a flux-limited sample of X-ray group and cluster candidates. We consider the fields with Galactic latitude |b| > 20° to avoid high H I column densities. We discard all of the observations targeted at groups or clusters of galaxies, as well as particular extragalactic fields not suitable to search for faint extended sources. We finally select ∼3000 useful fields covering a total solid angle of ∼400 deg{sup 2}. We identify extended source candidates in the soft-band (0.5-2 keV) images of these fields using the software EXSdetect, which is specifically calibrated for the XRT data. Extensive simulations are used to evaluate contamination and completeness as a function of the source signal, allowing us to minimize the number of spurious detections and to robustly assess the selection function. Our catalog includes 263 candidate galaxy clusters and groups down to a flux limit of 7 × 10{sup –15} erg cm{sup –2} s{sup –1} in the soft band, and the logN-logS is in very good agreement with previous deep X-ray surveys. The final list of sources is cross-correlated with published optical, X-ray, and Sunyaev-Zeldovich catalogs of clusters. We find that 137 sources have been previously identified as clusters in the literature in independent surveys, while 126 are new detections. Currently, we have collected redshift information for 158 sources (60% of the entire sample). Once the optical follow-up and the X-ray spectral analysis of the sources are complete, the SWXCS will provide a large and well-defined catalog of groups and clusters of galaxies to perform statistical studies of cluster properties and tests of cosmological models.

  3. Quantitative spectromicroscopy from inelastically scattered photoelectrons in the hard X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Renault, O., E-mail: olivier.renault@cea.fr; Zborowski, C.; Risterucci, P. [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Wiemann, C.; Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Grenet, G. [Institut des Nanotechnologies de Lyon, Ecole Centrale, 69134 Ecully Cedex (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2016-07-04

    We demonstrate quantitative, highly bulk-sensitive x-ray photoelectron emission microscopy by analysis of inelastically scattered photoelectrons in the hard X-ray range, enabling elemental depth distribution analysis in deeply buried layers. We show results on patterned structures used in electrical testing of high electron mobility power transistor devices with an epitaxial Al{sub 0.25}Ga{sub 0.75}N channel and a Ti/Al metal contact. From the image series taken over an energy range of up to 120 eV in the Ti 1s loss feature region and over a typical 100 μm field of view, one can accurately retrieve, using background analysis together with an optimized scattering cross-section, the Ti depth distribution from 14 nm up to 25 nm below the surface. The method paves the way to multi-elemental, bulk-sensitive 3D imaging and investigation of phenomena at deeply buried interfaces and microscopic scales by photoemission.

  4. HERO: A Hard-X-Ray Balloon-Borne Focusing Telescope

    Science.gov (United States)

    Ramsey, Brian; Stahl, H. Philip

    2008-01-01

    HERO, for High Energy Replicated Optics, is an evolutionary balloon payload featuring hard-X-ray grazing-incidence nickel optics. The payload provides a scientific instrument capable of high-sensitivity observations in an energy regime that is relatively unexplored at fine spatial scales, and also serves as a demonstration vehicle for in-house fabricated optics and focal plane detectors. After a proof-of-concept flight in 2001, which captured the first focused hard-X-ray images galactic sources, HERO has been significantly expanded from just 6, 3-m-focal length mirror shells to its current complement of nearly 100, 6-m-focal length mirrors. HERO was flown in 2007, from Fort Sumner, NM, and is scheduled to fly again in September 2009, from Alice Springs, NT. Full details of the payload will be provided along with preliminary data from the previous flight and science targets for the next flight, where the galactic center region will be imaged.

  5. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    ANTARES is currently the largest neutrino telescope operating in the NorthernHemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources.Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and arethus well-suited to detect neutrinos

  6. Small d-spacing WC/SiC multilayers for future hard X-ray telescope designs

    DEFF Research Database (Denmark)

    Jensen, C.P.; Madsen, K.K.; Christensen, Finn Erland

    2005-01-01

    Multilayer coatings for reflecting hard X-rays up to 80keV, like W/Si and Pt/C, have been studied for several years. To go to higher energies, in the range of 100 keV to 250 keV, one needs coatings with smaller d-spacings than can currently be made with these material combinations, and a lower...... with reasonable focal lengths and throughput up to 250 keV....

  7. Conception of broadband stigmatic high-resolution spectrometers for the soft X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, E A; Shatokhin, A N; Ragozin, E N [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    We formulate an approach to the development of stigmatic high-resolution spectral instruments for the soft X-ray range (λ ≤ 300 Å), which is based on the combined operation of normalincidence multilayer mirrors (including broadband aperiodic ones) and grazing-incidence reflection gratings with nonequidistant grooves (so-called VLS gratings). A concave multilayer mirror serves to produce a slightly astigmatic image of the radiation source (for instance, an entrance slit), and the diffraction grating produces a set of its dispersed stigmatic spectral images. The width of the operating spectral region is determined by the aperiodic structure of the multilayer mirror and may range up to an octave in wavelength. (laser applications and other topics in quantum electronics)

  8. Preliminary results of a feasibility study for a hard x-ray Kirkpatrick-Baez telescope

    DEFF Research Database (Denmark)

    Joensen, Karsten D.; Gorenstein, Paul; Wood, James L.

    1994-01-01

    Multilayers as coatings for grazing incidence telescopes have the potential of effectively improving the performance of telescopes coated with high-Z elements. For broad-band high energy (+10 keV) applications the multilayers, called supermirrors, are ideal. In this presentation we present the pr...... that a coating reflectors for a 1200 cm2 aperture telescope would take 8.5 months. The only remaining unanswered question is whether these thin supermirror-coated reflected can be configured to a 2 - 3' tolerance....

  9. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Science.gov (United States)

    Mathur, S.; Gupta, A.; Page, K.; Pogge, R. W.; Krongold, Y.; Goad, M. R.; Adams, S. M.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Beatty, T. G.; Bentz, M. C.; Bigley, A.; Bisogni, S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brown, J. E.; Brown, J. S.; Cackett, E. M.; Canalizo, G.; Carini, M. T.; Clubb, K. I.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Crenshaw, D. M.; Croft, S.; Croxall, K. V.; Dalla Bontà, E.; Deason, A. J.; Denney, K. D.; De Lorenzo-Cáceres, A.; De Rosa, G.; Dietrich, M.; Edelson, R.; Ely, J.; Eracleous, M.; Evans, P. A.; Fausnaugh, M. M.; Ferland, G. J.; Filippenko, A. V.; Flatland, K.; Fox, O. D.; Gates, E. L.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gorjian, V.; Greene, J. E.; Grier, C. J.; Grupe, D.; Hall, P. B.; Henderson, C. B.; Hicks, S.; Holmbeck, E.; Holoien, T. W.-S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Jensen, J. J.; Johnson, C. A.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kelly, P. L.; Kennea, J. A.; Kim, M.; Kim, S.; Kim, S. C.; King, A.; Klimanov, S. A.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Lau, M. W.; Lee, J. C.; Leonard, D. C.; Li, M.; Lira, P.; Ma, Z.; MacInnis, F.; Manne-Nicholas, E. R.; Malkan, M. A.; Mauerhan, J. C.; McGurk, R.; McHardy, I. M.; Montouri, C.; Morelli, L.; Mosquera, A.; Mudd, D.; Muller-Sanchez, F.; Musso, R.; Nazarov, S. V.; Netzer, H.; Nguyen, M. L.; Norris, R. P.; Nousek, J. A.; Ochner, P.; Okhmat, D. N.; Ou-Yang, B.; Pancoast, A.; Papadakis, I.; Parks, J. R.; Pei, L.; Peterson, B. M.; Pizzella, A.; Poleski, R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Runnoe, J.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Shappee, B. J.; Shivvers, I.; Siegel, M.; Simonian, G. V.; Siviero, A.; Skielboe, A.; Somers, G.; Spencer, M.; Starkey, D.; Stevens, D. J.; Sung, H.-I.; Tayar, J.; Tejos, N.; Turner, C. S.; Uttley, P.; Van Saders, J.; Vestergaard, M.; Vican, L.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Yuk, H.; Zheng, W.; Zhu, W.; Zu, Y.

    2017-09-01

    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray (Radiography) - ...

  12. X-ray laser resonator for the kilo-electron-volt range

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie [Department of Chemistry, University of California, Irvine, California 92697 (United States); Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Tomov, Ivan V.; Er, Ali O.; Rentzepis, Peter M. [Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2013-04-29

    We have designed, constructed, and tested an x-ray laser resonator operating in the hard x-ray, keV energy region. This ring x-ray laser cavity is formed by four highly oriented pyrolytic graphite crystals. The crystals are set at the Bragg angles that allow for the complete 360 Degree-Sign round trip of the 2.37 A, 5.23 keV L{sub {alpha}} line of neodymium. In addition, we also present experimental data of a similar ring laser resonator that utilizes the Cr K{sub {alpha}}, 5.41 keV, x-ray line to propagate through the four mirrors of the cavity. The specific properties of these x-ray laser resonator mirrors, including reflection losses and cavity arrangement, are presented.

  13. X-ray Optics Development at MSFC

    Science.gov (United States)

    Sharma, Dharma P.

    2017-01-01

    Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.

  14. Thin fused silica shells for high-resolution and large collecting area x-ray telescopes (like Lynx/XRS)

    Science.gov (United States)

    Civitani, M. M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Citterio, O.; Ghigo, M.; Pareschi, G.; Parodi, G.; Incorvaia, S.

    2017-09-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (technological task of the mirror fabrication, different approaches are considered, based on monolithic and segmented shells. Starting from the experience done on the glass prototypal shell realized in the past years, the direct polishing of thin (2 mm thick) fused silica monolithic shells is being investigated as a possible solution. A temporary stiffening structure is designed to support the shell during the figuring and polishing operations and to manage the handling up to its integration in the telescope structure. After the grinding and the polishing phases, in order to achieve the required surface accuracy, a final ion beam figuring correction is foreseen. In this paper, we present the technological process and the results achieved so far on a prototypal shell under development.

  15. Simulated Solar Flare X-Ray and Thermal Cycling Durability Evaluation of Hubble Space Telescope Thermal Control Candidate Replacement Materials

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Sechkar, Edward A.; Scheiman, David A.

    1998-01-01

    During the Hubble Space Telescope (HST) second servicing mission (SM2), astronauts noticed that the multilayer insulation (MLI) covering the telescope was damaged. Large pieces of the outer layer of MLI (aluminized Teflon fluorinated ethylene propylene (Al-FEP)) were torn in several locations around the telescope. A piece of curled up Al-FEP was retrieved by the astronauts and was found to be severely embrittled, as witnessed by ground testing. Goddard Space Flight Center (GSFC) organized a HST MLI Failure Review Board (FRB) to determine the damage mechanism of FEP in the HST environment, and to recommend replacement insulation material to be installed on HST during the third servicing mission (SM3) in 1999. Candidate thermal control replacement materials were chosen by the FRB and tested for environmental durability under various exposures and durations. This paper describes durability testing of candidate materials which were exposed to charged particle radiation, simulated solar flare x-ray radiation and thermal cycling under load. Samples were evaluated for changes in solar absorptance and tear resistance. Descriptions of environmental exposures and durability evaluations of these materials are presented.

  16. The measured performance of a grazing incidence relay optics telescope for solar X-ray astronomy

    Science.gov (United States)

    Moses, Dan; Krieger, Allen S.; Davis, John M.

    1986-01-01

    The design, fabrication, and test performance of a grazing-incidence diverging magnifier (GIDM) for use in high-resolution X-ray imaging of the solar corona are described. The GIDM, designed to be mounted in front of the focus of a 30.48-cm Wolter-Schwarzschild primary, is an Ni-coated Be hyperboloid-hyperboloid structure of principal diameter 3.15 cm; the two components are mounted on a central steel plate which acts as a support and spacer. The combined instrument has overall length 1.9 m, effective focal length 5.4 m, and plate scale 26.0 micron/arcsec. In point- and line-source measurements in an 89.5-m vacuum test facility, the on-axis resolution is shown to be equal to that of the primary alone. The field of view for 1-arcsec resolution is limited to 1.25 arcmin in radius, but the effective-area limitation is less significant when CCD detectors of high quantum efficiency are used instead of film.

  17. A graded d-spacing multilayer telescope for high-energy x-ray astronomy

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; WESTERGAARD, NJ

    1992-01-01

    A high energy telescope design is presented which combines grazing incidence geometry with Bragg reflection in a graded d-spacing multilayer coating to obtain significant sensitivity up to --6O keV. The concept utilizes total reflection and first order Bragg reflection in a graded d-spacing multi...

  18. Development of thermally formed glass optics for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Craig, W.W.; Hailey, C.J.; Jimenez-Garate, M.

    2000-01-01

    . The recent development of depth-graded multilayer coatings has made the design of telescopes for this bandpass practical, however the ability to manufacture inexpensive substrates with appropriate surface quality and figure to achieve sub-arcminute performance has remained an elusive goal. In this paper, we...

  19. Multi-Spectral Solar Telescope Array. IV - The soft X-ray and extreme ultraviolet filters

    Science.gov (United States)

    Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Powell, Forbes R.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    NASA's Multi-Spectral Solar Telescope Array uses various combinations of thin foil filters composed of Al, C, Te, Be, Mo, Rh, and phthalocyanine to achieve the requisite radiation-rejection characteristics. Such rejection is demanded by the presence of strong EUV radiation at longer wavelengths where the specular reflectivity of multilayer mirrors can cause 'contamination' of the image in the narrow band defined by the Bragg condition.

  20. Magneto-optical reflection spectroscopy on graphene/Co in the soft x-ray range

    Science.gov (United States)

    Mertins, H.-Ch.; Jansing, C.; Gilbert, M.; Krivenkov, M.; Sanchez-Barriga, J.; Varykhalov, A.; Rader, O.; Wahab, H.; Timmers, H.; Gaupp, A.; Tesch, M.; Sokolov, A.; Legut, D.; Oppeneer, P. M.

    2017-10-01

    The existence of ferromagnetic ordering in graphene on cobalt is demonstrated by means of resonant magnetic reflection spectroscopy exploiting the transversal magneto-optical Kerr-effect (T-MOKE). Using linearly polarized synchrotron radiation in the soft x-ray range with energies spanning the carbon 1s edge, the π- and σ- bonds of graphene were excited individually, showing that magnetism in graphene is carried by the π – orbitals. Magnetic signals were detected over a wide energy range from 257 – 340 eV with a T-MOKE peak value of 1.1 % at the π – resonance energy near 285 eV. By comparison with corresponding spectra measured at the 2p edges of the Co substrate, a large induced magnetic moment of 0.14 μB was derived for graphene. Individual hysteresis curves monitored at the Co 2p and C 1s edges show that the carbon magnetism is induced by the Co substrate.

  1. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.|info:eu-repo/dai/nl/08747610X

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  2. Status Of The Development Of A Thin Foil High Throughput X-Ray Telescope For The Soviet Spectrum X-Gamma Mission

    DEFF Research Database (Denmark)

    WESTERGAARD, NJ; BYRNAK, BP; Christensen, Finn Erland

    1989-01-01

    modification of this design is optimized with respect to high energy throughput of the telescope. The mechanical design and the status of the surface preparation technologies are described. Various X-ray and optical test facilities for the measurement of surface roughness, "orange peel", and figure errors...

  3. pn-CCDs in a Low-Background Environment: Detector Background of the CAST X-ray Telescope

    CERN Document Server

    Kuster, M.; Rodriquez, A.; Kotthaus, R.; Brauninger, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Kang, D.; Lutz, G.; Struder, L.

    2005-01-01

    The CAST experiment at CERN (European Organization of Nuclear Research) searches for axions from the sun. The axion is a pseudoscalar particle that was motivated by theory thirty years ago, with the intention to solve the strong CP problem. Together with the neutralino, the axion is one of the most promising dark matter candidates. The CAST experiment has been taking data during the last two years, setting an upper limit on the coupling of axions to photons more restrictive than from any other solar axion search in the mass range below 0.1 eV. In 2005 CAST will enter a new experimental phase extending the sensitivity of the experiment to higher axion masses. The CAST experiment strongly profits from technology developed for high energy physics and for X-ray astronomy: A superconducting prototype LHC magnet is used to convert potential axions to detectable X-rays in the 1-10 keV range via the inverse Primakoff effect. The most sensitive detector system of CAST is a spin-off from space technology, a Wolter I ty...

  4. Instrumental technique in X-ray astronomy

    Science.gov (United States)

    Peterson, L. E.

    1975-01-01

    A detailed review of the development of instruments for X-ray astronomy is given with major emphasis on nonfocusing high-sensitivity counter techniques used to detect cosmic photons in the energy range between 0.20 and 300 keV. The present status of X-ray astronomy is summarized together with significant results of the Uhuru observations, and photon interactions of importance for the detection of X-rays in space are noted. The three principal devices used in X-ray astronomy (proportional, scintillation, and solid-state counters) are described in detail, data-processing systems for these devices are briefly discussed, and the statistics of nuclear counting as applied to X-ray astronomy is outlined analytically. Effects of the near-earth X-ray environment and atmospheric gamma-ray production on X-ray detection by low-orbit satellites are considered. Several contemporary instruments are described (proportional-counter systems, scintillation-counter telescopes, modulation collimators), and X-ray astronomical satellite missions are tabulated.

  5. Controlled X-ray pumping in a wide range of piezo-electric oscillation frequencies

    CERN Document Server

    Navasardyan, M A; Galoyan, K G

    1986-01-01

    In case of Laue diffraction the transmitted X-ray reflection in shown to be effectively controllable in the perfect quartz single crystal when it generates ultrasonic oscillations at the resonance frequency or in its vicinity. The maximum effective amplitude of applied sinusoidal oscillations is equal to 70 V. The pumping degree depends on the voltage amplitude. In this work monochromatic K subalpha sub 1 and K subalpha sub 2 molybdenum lines satisfying the thin crystal condition, mu t<=1, are used (mu is the linear absorption coefficient of the sample for the given wavelength and t is its thickness). The radiation was reflected from different planes such as (1011), (1011), (2022) etc. The complete pumping strongly restricts the structural factor possibilities in estimating the intensity of diffracted X-rays in case of considerable deformations in the bulk of perfect single crystal.

  6. A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

    CERN Document Server

    Aznar, F; Christensen, F E; Dafni, T; Decker, T A; Ferrer-Ribas, E; Garcia, J A; Giomataris, I; Gracia, J G; Hailey, C J; Hill, R M; Iguaz, F J; Irastorza, I G; Jakobsen, A C; Luzon, G; Mirallas, H; Papaevangelou, T; Pivovaroff, M J; Ruz, J; Vafeiadis, T; Vogel, J K

    2015-01-01

    We report on the design, construction and operation of a low background x-ray detection line composed of a shielded Micromegas (micromesh gaseous structure) detector of the microbulk technique. The detector is made from radiopure materials and is placed at the focal point of a $\\sim$~5 cm diameter, 1.3 m focal-length, cone-approximation Wolter I x-ray telescope (XRT) comprised of thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector) proposed in the conceptual design of the project. It is innovative for two reasons: it is the first time an x-ray optic has been designed and fabricated specifically for axion research, and the first time a Micromegas detector has been operated with an x-ray optic. The line has been installed at one end of the CERN Axion Solar Telescope (CAST) magnet and is currently looking for s...

  7. Investigation of multilayer X-ray optics for the 6 keV to 20 keV energy range.

    Science.gov (United States)

    Oberta, P; Platonov, Y; Flechsig, U

    2012-09-01

    The X-ray optics group at the Swiss Light Source in co-operation with RIT (Rigaku Innovative Technologies) have investigated seven different multilayer samples. The goal was to find an ideal multilayer structure for the energy range between 6 keV and 20 keV in terms of energy resolution and reflectivity. Such multilayer structures deposited on substrates can be used as X-ray monochromators or reflecting synchrotron mirrors. The measured reflectivities agree with the simulated ones. They cover a reflectivity range from 45% to 80% for energies between 6 keV and 10 keV, and 80% to 90% for energies between 10 keV and 20 keV. The experimentally measured energy resolution of the samples lies between 0.3% and 3.5%.

  8. A high-pressure vessel for X-ray diffraction experiments for liquids in a wide temperature range

    CERN Document Server

    Hosokawa, S

    2001-01-01

    An internally heated high-pressure vessel was developed for angle-dispersive X-ray scattering experiments on liquids at high-temperatures and high-pressures. It consists of a closed-end Al cylinder and a steel flange. Continuous windows made of Be cover a scattering angle range up to 55 deg. In combination with a single-crystal sapphire cell and a small heating system inside the vessel, we were able to carry out diffraction measurements for liquids in a wide temperature range up to 2000 K at high pressures up to 150 bars. Some of our recent X-ray scattering experiments using synchrotron radiation, such as inelastic scattering, high-energy elastic scattering, and anomalous scattering, are also reported.

  9. JEUMICO: Czech-Bavarian astronomical X-ray optics project

    Science.gov (United States)

    Hudec, R.; Döhring, T.

    2017-07-01

    Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  10. Characterizations of MCP performance in the hard x-ray range (6-25 keV).

    Science.gov (United States)

    Wu, Ming; Moy, Ken; Kruschwitz, Craig; Rochau, Greg

    2014-11-01

    MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with ∼10 μm in diameter pores, ∼12 μm center-center spacing, an L/D ratio of 46, and a bias angle of 8°. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

  11. A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

    DEFF Research Database (Denmark)

    Aznar, F.; Castel, J.; Christensen, F. E.

    2015-01-01

    -approximation Wolter I x-ray telescope (XRT) assembled from thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector...... of the CERN Axion Solar Telescope (CAST) magnet and is currently looking for solar axions. The combination of the XRT and Micromegas detector provides the best signal-to-noise ratio obtained so far by any detection system of the CAST experiment with a background rate of 5.4×10−3 counts per hour in the energy...

  12. X-ray telescope onboard Astro-E. III. Guidelines to performance improvements and optimization of the ray-tracing simulator.

    Science.gov (United States)

    Misaki, Kazutami; Hidaka, Yasuhiro; Ishida, Manabu; Shibata, Ryo; Furuzawa, Akihiro; Haba, Yoshito; Itoh, Kei; Mori, Hideyuki; Kunieda, Hideyo

    2005-02-20

    We present a detailed study of the performance of the Astro-E x-ray telescope (XRT) onboard the Astro-E satellite. As described in preceding papers the ground-based calibrations of the Astro-E XRT revealed that its image quality and effective area are somewhat worse than that expected from the original design. Conceivable causes for such performance degradation are examined by x-ray and optical microscopic measurements at various levels, such as individual reflectors, sectors, and quadrants of the XRT and their alignments. We can attribute, based on detailed measurements, the degradation of the image quality to a slope error in the individual reflectors and the positioning error of reflectors. As for the deficit of the effective area, the shadowing of x rays within the XRT body is the dominant factor. Error budgets for the performance degradation of the Astro-E XRT are summarized. The ray-tracing simulator, which is needed to construct the response function for arbitrary off-axis angles and spatial distributions of any celestial x-ray sources, has been developed and tuned based on the results of detailed measurements. The ray-tracing simulation provides results that are consistent within 3% with the real measurement except for large off-axis angles and higher energies. We propose, based on knowledge obtained from all the measurements and simulations, several plans for future developments to improve the performance of the nested thin-foil mirrors.

  13. Predicted image quality of a CMOS APS X-ray detector across a range of mammographic beam qualities

    Science.gov (United States)

    Konstantinidis, A.

    2015-09-01

    Digital X-ray detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been introduced in the early 2000s in medical imaging applications. In a previous study the X-ray performance (i.e. presampling Modulation Transfer Function (pMTF), Normalized Noise Power Spectrum (NNPS), Signal-to-Noise Ratio (SNR) and Detective Quantum Efficiency (DQE)) of the Dexela 2923MAM CMOS APS X-ray detector was evaluated within the mammographic energy range using monochromatic synchrotron radiation (i.e. 17-35 keV). In this study image simulation was used to predict how the mammographic beam quality affects image quality. In particular, the experimentally measured monochromatic pMTF, NNPS and SNR parameters were combined with various mammographic spectral shapes (i.e. Molybdenum/Molybdenum (Mo/Mo), Rhodium/Rhodium (Rh/Rh), Tungsten/Aluminium (W/Al) and Tungsten/Rhodium (W/Rh) anode/filtration combinations at 28 kV). The image quality was measured in terms of Contrast-to-Noise Ratio (CNR) using a synthetic breast phantom (4 cm thick with 50% glandularity). The results can be used to optimize the imaging conditions in order to minimize patient's Mean Glandular Dose (MGD).

  14. Techniques in X-ray Astronomy

    Indian Academy of Sciences (India)

    ray telescopes in space, leading to a veritable revolution. Stich telescopes require distortion free focusing of X-rays and the use of position sensitive X- ray detectors. In this article I shall describe the importance of X-ray imaging, the optical ...

  15. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D. (IdRS); (Purdue); (Colorado); (UIC)

    2011-09-06

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  16. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors.

    Science.gov (United States)

    Pegan, Scott D; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A; Mesecar, Andrew D

    2011-07-01

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC₅₀ values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands. Copyright © 2011 The Protein Society.

  17. HERO: Program Status and Fist Images from a Balloon-Borne Focusing Hard-X-ray Telescope

    Science.gov (United States)

    Ramsey, B. D.; Alexander, C. D.; Apple, J. A.; Benson, C. M.; Dietz, K. L.; Elsner, R. F.; Engelhaupt. D. E.; Ghosh, K. K.; Kolodziejczak, J. J.; ODell, S. L.; hide

    2001-01-01

    HERO is a balloon payload featuring shallow-graze angle replicated optics for hard-x-ray imaging. When completed, the instrument will offer unprecedented sensitivity in the hard-x-ray region, giving thousands of sources to choose from for detailed study on long flights. A recent proof-of-concept flight captured the first hard-x-ray focused images of the Crab Nebula, Cygnus X-1 and GRS 1915+105. Full details of the HERO program are presented, including the design and performance of the optics, the detectors and the gondola. Results from the recent proving flight are discussed together with expected future performance when the full science payload is completed.

  18. The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, S. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Bednarzik, M. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, Villigen (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.ch [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); ETH Zürich (Switzerland); Hurford, G.J. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Limousin, O.; Meuris, A. [CEA Saclay (France); Orleański, P. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Seweryn, K.; Skup, K.R. [Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland)

    2016-07-11

    STIX is the X-ray spectral imaging instrument on-board the Solar Orbiter space mission of the European Space Agency, and together with nine other instruments will address questions of the interaction between the Sun and the heliosphere. STIX will study the properties of thermal and accelerated electrons near the Sun through their Bremsstrahlung X-ray emission, addressing in particular the emission from flaring regions on the Sun. The design phase of STIX has been concluded. This paper reports the final flight design of the instrument, focusing on design challenges that were faced recently and how they were addressed.

  19. Diverse Long-Term Variability of Five Candidate High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Science.gov (United States)

    Corbet, Robin H. D.; Coley, Joel B.; Krimm, Hans A.

    2017-01-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope (SWIFT-BAT). IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 seconds. For AX J1700.2-4220, 54 second-pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090,which was previously proposed to be a Be star system with an orbital period of approximately 30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although theymight be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be starmass donors.

  20. Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope

    Science.gov (United States)

    Limousin, O.; Meuris, A.; Lugiez, F.; Gevin, Olivier; Pinsard, F.; Blondel, C.; Le Mer, I.; Delagnes, E.; Vassal, M. C.; Soufflet, F.; Bocage, R.; Penquer, A.; Billot, M.

    2017-11-01

    In the frame of the hard X-ray Simbol-X observatory, a joint CNES-ASI space mission to be flown in 2014, a prototype of miniature Cd(Zn)Te camera equipped with 64 pixels has been designed. The device, called Caliste 64, is a spectro-imager with high resolution event timetagging capability. Caliste 64 integrates a Cd(Zn)Te semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analog readout channels. This 1 × 1 × 2 cm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of Caliste 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs, perpendicular to the detection plane. We achieved good noise performances, with a mean Equivalent Noise Charge of 65 electrons rms over the 64 channels. For the first prototypes, we chose Pt//CdTe//Al/Ti/Au Schottky detectors because of their very low dark current and excellent spectroscopic performances. Recently a Caliste 64 prototype has been also equipped with a 2 mm thick Au//CdZnTe//Au detector. This paper presents the performances of these four prototypes and demonstrates spectral performances better than 1 keV fwhm at 59.54 keV when the samples are moderately cooled down to -10°C.

  1. Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope

    DEFF Research Database (Denmark)

    Spiga, D.; Della Monica Ferreira, Desiree; Shortt, B.

    2017-01-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA’s optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto...

  2. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    Science.gov (United States)

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  3. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    Science.gov (United States)

    MacPhee, A. G.; Dymoke-Bradshaw, A. K. L.; Hares, J. D.; Hassett, J.; Hatch, B. W.; Meadowcroft, A. L.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V.; Hilsabeck, T. J.; Kilkenny, J. D.

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  4. Study of unfolding methods for X-ray spectra obtained with CDTE detectors in the mammography energy range

    Energy Technology Data Exchange (ETDEWEB)

    Querol, A.; Gallardo, S.; Rodenas, J.; Verdu, G.; Barrachina, T. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Cami de Vera, s/n 46022 Valencia (Spain)

    2010-07-01

    Quality control parameters for an X-ray tube strongly depend on the accurate knowledge of the primary spectrum, but it is difficult to obtain it experimentally by direct measurements. Indirect spectrometry techniques such as Compton scattering can be used in X-ray spectrum assessment avoiding the pile-up effect in detectors. However, an unfolding method is required for this kind of measurements. In previous works, a methodology to assess primary X-ray spectra in the diagnostic energy range by means of the Compton scattering technique has been analysed. This methodology included a Monte Carlo simulation model, using the MCNP5 code, of the actual experimental set-up providing a Pulse Height Distribution (PHD) for a given primary spectrum. It reproduced the interaction of photons and electrons with the Compton spectrometer and with a High Purity Germanium detector. In this work, a CdTe detector is proposed instead of the HP Germanium. CdTe detector does not require a liquid nitrogen cooling system, but its resolution is poor for the same energy range and its efficiency comes down for energies greater than 55 keV being 70% at 90 keV. In despite of these disadvantages, CdTe detector has been considered due to its low cost and easy handling and portability. The model can provide a PHD and a Response Matrix, for different X-ray spectra, taken from the IPEM 78 catalogue. The primary spectrum can be estimated applying the MTSVD (Modified Truncated Singular Value Decomposition) and the Tikhonov unfolding method. Both unfolding methods cause some loss of information on the reconstructed primary spectra. In this paper, a comparison of the ability to obtain primary spectra using both MTSVD and Tikhonov unfolding methods has been done. As well a sensitivity analysis in order to test the proposed unfolding methods when they are applied to PHDs obtained with the MCNP model has been developed. A variation on parameters such as target materials and voltages over the mammography

  5. VZLUSAT-1: Nanosatellite with miniature lobster eye X-ray telescope and qualification of the radiation shielding composite for space application

    Science.gov (United States)

    Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika; Baca, Tomas; Daniel, Vladimir; Hudec, Rene

    2017-11-01

    In the upcoming generation of small satellites there is a great potential for testing new sensors, processes and technologies for space and also for the creation of large in situ sensor networks. It plays a significant role in the more detailed examination, modelling and evaluation of the orbital environment. Scientific payloads based on the CubeSat technology are also feasible and the miniature X-ray telescope described in this paper may serve as an example. One of these small satellites from CubeSat family is a Czech CubeSat VZLUSAT-1, which is going to be launched during QB50 mission in 2017. This satellite has dimensions of 100 mm × 100 mm × 230 mm. The VZLUSAT-1 has three main payloads. The tested Radiation Hardened Composites Housing (RHCH) has ambitions to be used as a structural and shielding material to protect electronic devices in space or for constructions of future manned and unmanned spacecraft as well as Moon or Martian habitats. The novel miniaturized X-ray telescope with a Lobster Eye (LE) optics represents an example of CubeSat's scientific payload. The telescope has a wide field of view and such systems may be essential in detecting the X-ray sources of various physical origin. VZLUSAT-1 also carries the FIPEX payload which measures the molecular and atomic oxygen density among part of the satellite group in QB50 mission. The VZLUSAT-1 is one of the constellation in the QB50 mission that create a measuring network around the Earth and provide multipoint, in-situ measurements of the atmosphere.

  6. THE SECOND ULTRALUMINOUS X-RAY SOURCE TRANSIENT IN M31: CHANDRA, HUBBLE SPACE TELESCOPE, AND XMM OBSERVATIONS, AND EVIDENCE FOR AN EXTENDED CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.; Garcia, M.; Murray, S. S. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-08-01

    XMMU J004243.6+412519 is a transient X-ray source in M31, first discovered 2012 January 15. Different approaches to fitting the brightest follow-up observation gave luminosities 1.3-2.5 Multiplication-Sign 10{sup 39} erg s{sup -1}, making it the second ultraluminous X-ray source (ULX) in M31, with a probable black hole accretor. These different models represent different scenarios for the corona: optically thick and compact, or optically thin and extended. We obtained Chandra ACIS and Hubble Space Telescope Advanced Camera for Surveys observations of this object as part of our transient monitoring program, and also observed it serendipitously in a 120 ks XMM-Newton observation. We identify an optical counterpart at J2000 position 00:42:43.70 +41:25:18.54; its F435W ({approx}B band) magnitude was 25.97 {+-} 0.03 in the 2012 March 7 observation, and >28.4 at the 4{sigma} level during the 2012 September 7 observation, indicating a low-mass donor. We created two alternative light curves, using the different corona scenarios, finding linear decay for the compact corona and exponential decay for the extended corona; linear decay implies a disk that is >5 mag brighter than we observed. We therefore favor the extended corona scenario, but caution that there is no statistical preference for this model in the X-ray spectra alone. Using two empirical relations between the X-ray to optical ratio and the orbital period, we estimate a period of {approx}9-30 hr; this period is consistent with that of the first ULX in M31 (18{sup +5}{sub -6} hr)

  7. X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fenster, A. [Univ. of Western Ontario, J.P. Robarts Institute, London, Ontario (Canada); Yaffe, M.J. [Univ. of Toronto, Depts. of Medical Biophysics and Medical Imaging, North York, Ontario (Canada)

    1995-09-01

    In this article, we briefly review the principles of x-ray imaging, consider some of its applications in medicine and describe some of the developments in this area which have taken place in Canada. X rays were first used for diagnosis and therapy in medicine almost immediately after the report of their discovery by Roentgen in 1895. X-ray imaging has remained the primary tool for the investigation of structures within the body up to the present time (Johns and Cunningham 1983). Medical x rays are produced in a vacuum tube by the electron bombardment of a metallic target. Electrons emitted from a heated cathode are accelerated through an electric field to energies of 20-150 keV (wavelength 6.2-0.83 nm) and strike a target anode. X rays appear in a spectrum of bremsstrahlung radiation with energies ranging from 0 to a value that is numerically equal to the peak voltage applied between the cathode and anode of the x-ray tube (Figure 1). In addition, where the energy of the impinging electrons exceeds the binding energy of inner atomic orbitals of the target material, electrons may be ejected from those shells. Filling of these shells by more loosely-bound electrons gives rise to x rays whose energies are equal to the difference of the binding energies of the donor and acceptor shells. The energies of these characteristic x rays are unique to the target material. Less than 1% of the energy of the incident electrons is converted to that of x rays, while the remainder is dissipated as heat in the target. For this reason, a tremendous amount of engineering has gone into the design of x-ray tubes that can yield a large fluence rate of quanta from a small effective source size, while withstanding the enormous applied heat loading (e.g. 10 kJ per exposure). Tungsten is by far the most common material used for targets in tubes for diagnostic radiology, because of its high melting point and its high atomic number; the efficiency of x-ray production is proportional to Z of the

  8. A laboratory-based Laue X-ray diffraction system for enhanced imaging range and surface grain mapping.

    Science.gov (United States)

    Whitley, William; Stock, Chris; Huxley, Andrew D

    2015-08-01

    Although CCD X-ray detectors can be faster to use, their large-area versions can be much more expensive than similarly sized photographic plate detectors. When indexing X-ray diffraction patterns, large-area detectors can prove very advantageous as they provide more spots, which makes fitting an orientation easier. On the other hand, when looking for single crystals in a polycrystalline sample, the speed of CCD detectors is more useful. A new setup is described here which overcomes some of the limitations of limited-range CCD detectors to make them more useful for indexing, whilst at the same time making it much quicker to find single crystals within a larger polycrystalline structure. This was done by combining a CCD detector with a six-axis goniometer, allowing the compilation of images from different angles into a wide-angled image. Automated scans along the sample were coupled with image processing techniques to produce grain maps, which can then be used to provide a strategy to extract single crystals from a polycrystal.

  9. Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data

    Directory of Open Access Journals (Sweden)

    Thomas R. Caulfield

    2011-01-01

    Full Text Available We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16.

  10. Prototyping iridium coated mirrors for x-ray astronomy

    Science.gov (United States)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Emmerich, Florian; Stehlíková, Veronika; Inneman, Adolf

    2017-05-01

    X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth's atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  11. Application of the Monte Carlo codes PENELOPE and MCNP5 to unfold X-ray spectra in the diagnostic energy range

    Science.gov (United States)

    Gallardo, Sergio; Querol, Andrea; Pozuelo, Fausto; Verdú, Gumersindo; Ródenas, José

    2014-02-01

    Obtaining primary X-ray spectra is a complex task, mainly due to the high fluence of X-rays. In order to avoid the pile up effect in the detector, an indirect method based on the Compton scattering interactions in a low density rod material can be successfully applied in the diagnostic energy range. In this work, the Monte Carlo codes PENELOPE and MCNP5 have been used to simulate the indirect method based on a simplified Compton spectrometry technique. Both models include the X-ray focus, a poly(mehtylmethacrylate) (PMMA) rod and an HPGe detector. Because the probability that primary photons scattered in the PMMA will be emitted towards the detector is small, it is necessary to consider appropriate values for cut-offs and other simulation parameters. With these models, a response function can be determined, relating the response of the detector to the primary X-ray spectrum. This function can be normally expressed as a matrix, which can be calculated by simulating the response detector to several monochromatic X-ray beams. The main goal of this work is to test the capability of the Monte Carlo codes PENELOPE and MCNP5, together with unfolding methods to estimate the primary spectrum when the response matrix and the response of the detector for a given conditions are known. The reliability of unfolded X-ray spectra is studied by comparing them with theoretical spectra obtained from the IPEM 78 catalog and calculating the Root Mean Squared (RMS) and Quality parameters.

  12. VERY LARGE TELESCOPE/X-SHOOTER SPECTROSCOPY OF THE CANDIDATE BLACK HOLE X-RAY BINARY MAXI J1659-152 IN OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Ramanpreet; Kaper, Lex; Ellerbroek, Lucas E.; Russell, David M.; Altamirano, Diego; Wijnands, Rudy; Yang Yijung; Van der Horst, Alexander; Van der Klis, Michiel [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); D' Avanzo, Paolo [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (Italy); De Ugarte Postigo, Antonio; Fynbo, Johan P. U. [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, Copenhagen 2100 (Denmark); Flores, Hector [GEPI, Paris Observatory, CNRS, University of Paris-Diderot, 5 Place Jules Janssen, 92195 Meudon (France); Goldoni, Paolo [Laboratoire Astroparticule et Cosmologie, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13 (France); Thoene, Christina C. [IAA-CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Kouveliotou, Chryssa [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Wiersema, Klaas [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Kuulkers, Erik, E-mail: r.kaur@uva.nl [European Space Agency, European Space Astronomy Centre, P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain)

    2012-02-20

    We present the optical to near-infrared spectrum of MAXI J1659-152 during the onset of its 2010 X-ray outburst. The spectrum was obtained with X-shooter on the ESO Very Large Telescope early in the outburst simultaneous with high-quality observations at both shorter and longer wavelengths. At the time of the observations, the source was in the low-hard state. The X-shooter spectrum includes many broad ({approx}2000 km s{sup -1}), double-peaked emission profiles of H, He I, and He II, characteristic signatures of a low-mass X-ray binary during outburst. We detect no spectral signatures of the low-mass companion star. The strength of the diffuse interstellar bands results in a lower limit to the total interstellar extinction of A{sub V} {approx_equal} 0.4 mag. Using the neutral hydrogen column density obtained from the X-ray spectrum we estimate A{sub V} {approx_equal} 1 mag. The radial velocity structure of the interstellar Na I D and Ca II H and K lines results in a lower limit to the distance of {approx}4 {+-} 1 kpc, consistent with previous estimates. With this distance and A{sub V} , the dereddened spectral energy distribution represents a flat disk spectrum. The two 10 minute X-shooter spectra show significant variability in the red wing of the emission-line profiles, indicating a global change in the density structure of the disk, though on a timescale much shorter than the typical viscous timescale of the disk.

  13. SWIFT X-RAY TELESCOPE TIMING OBSERVATIONS OF THE BLACK HOLE BINARY SWIFT J1753.5-0127: DISK-DILUTED FLUCTUATIONS IN THE OUTBURST PEAK

    Energy Technology Data Exchange (ETDEWEB)

    Kalamkar, M.; Van der Klis, M.; Uttley, P.; Altamirano, Diego; Wijnands, Rudy, E-mail: m.n.kalamkar@uva.nl [Astronomical Institute, ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands)

    2013-04-01

    After a careful analysis of the instrumental effects on the Poisson noise to demonstrate the feasibility of detailed stochastic variability studies with the Swift X-Ray Telescope (XRT), we analyze the variability of the black hole X-ray binary SWIFT J1753.5-0127 in all XRT observations during 2005-2010. We present the evolution of the power spectral components along the outburst in two energy bands: soft (0.5-2 keV) and hard (2-10 keV), and in the hard band we find results consistent with those from the Rossi X-Ray Timing Explorer (RXTE). The advantage of the XRT is that we can also explore the soft band not covered by RXTE. The source has previously been suggested to host an accretion disk extending down to close to the black hole in the low hard state, and to show low-frequency variability in the soft-band intrinsic to this disk. Our results are consistent with this, with stronger low-frequency variability at low intensities in the soft than in the hard band. From our analysis, we are able to present the first measurements of the soft-band variability in the peak of the outburst. We find the soft band to be less variable than the hard band, especially at high frequencies, opposite to what is seen at low intensity. Both results can be explained within the framework of a simple two emission-region model where the hot flow is more variable in the peak of the outburst and the disk is more variable at low intensities.

  14. Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope (Conference Presentation)

    Science.gov (United States)

    Spiga, D.; Della Monica Ferreira, D.; Shortt, B.; Bavdaz, M.; Bergback Knudsen, E.; Bianucci, G.; Christensen, F.; Civitani, M.; Collon, M.; Conconi, P.; Fransen, S.; Marioni, F.; Massahi, S.; Pareschi, G.; Salmaso, B.; Jegers, A. S.; Tayabaly, K.; Valsecchi, G.; Westergaard, N.; Wille, E.

    2017-09-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In the current configuration, the optical assembly has a 3 m diameter and a 2 m2 effective area at 1 keV, with a required angular resolution of 5 arcsec. The angular resolution that can be achieved is chiefly the combination of 1) the focal spot size determined by the pore diffraction, 2) the focus degradation caused by surface and profile errors, 3) the aberrations introduced by the misalignments between primary and secondary segments, 4) imperfections in the co-focality of the mirror modules in the optical assembly. A detailed simulation of these aspects is required in order to assess the fabrication and alignment tolerances; moreover, the achievable effective area and angular resolution depend on the mirror module design. Therefore, guaranteeing these optical performances requires: a fast design tool to find the most performing solution in terms of mirror module geometry and population, and an accurate point spread function simulation from local metrology and positioning information. In this paper, we present the results of simulations in the framework of ESA-financed projects (SIMPOSiuM, ASPHEA, SPIRIT), in preparation of the ATHENA X-ray telescope, analyzing the mentioned points: 1) we deal with a detailed description of diffractive effects in an SPO mirror module, 2) we show ray-tracing results including surface and profile defects of the reflective surfaces, 3) we assess the effective area and angular resolution degradation caused by alignment errors between SPO mirror module's segments, and 4) we simulate the effects of co-focality errors in X-rays and in the UV optical bench used to study the mirror module alignment

  15. Point spread function and centroiding accuracy measurements with the JET-X mirror and MOS CCD detector of the Swift gamma ray burst explorer's X-ray telescope

    CERN Document Server

    Ambrosi, R M; Hutchinson, I B; Willingale, R; Wells, A; Short, A D T; Campana, S; Citterio, O; Tagliaferri, G; Burkert, W; Bräuninger, H

    2002-01-01

    The optical components of the Swift X-ray telescope (XRT) are already developed items. They are the flight spare X-ray mirror from the JET-X/Spectrum-X program and an MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on XMM-Newton (SPIE 4140 (2000) 64). The JET-X mirrors were first calibrated at the Max Planck Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996 (SPIE 2805 (1996) 56; SPIE 3114 (1997) 392). Half-energy widths of 16 arcsec at 1.5 keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the 4 yr that the mirror had been in storage at the OAB, Milan, Italy. The results reported in this paper confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the fo...

  16. Design of an ultrahigh-energy-resolution and wide-energy-range soft X-ray beamline.

    Science.gov (United States)

    Xue, L; Reininger, R; Wu, Y-Q; Zou, Y; Xu, Z-M; Shi, Y-B; Dong, J; Ding, H; Sun, J-L; Guo, F-Z; Wang, Y; Tai, R-Z

    2014-01-01

    A new ultrahigh-energy-resolution and wide-energy-range soft X-ray beamline has been designed and is under construction at the Shanghai Synchrotron Radiation Facility. The beamline has two branches: one dedicated to angle-resolved photoemission spectroscopy (ARPES) and the other to photoelectron emission microscopy (PEEM). The two branches share the same plane-grating monochromator, which is equipped with four variable-line-spacing gratings and covers the 20-2000 eV energy range. Two elliptically polarized undulators are employed to provide photons with variable polarization, linear in every inclination and circular. The expected energy resolution is approximately 10 meV at 1000 eV with a flux of more than 3 × 10(10) photons s(-1) at the ARPES sample positions. The refocusing of both branches is based on Kirkpatrick-Baez pairs. The expected spot sizes when using a 10 µm exit slit are 15 µm × 5 µm (horizontal × vertical FWHM) at the ARPES station and 10 µm × 5 µm (horizontal × vertical FWHM) at the PEEM station. The use of plane optical elements upstream of the exit slit, a variable-line-spacing grating and a pre-mirror in the monochromator that allows the influence of the thermal deformation to be eliminated are essential for achieving the ultrahigh-energy resolution.

  17. Soft x-ray free-electron laser imaging by LiF crystal and film detectors over a wide range of fluences.

    Science.gov (United States)

    Pikuz, Tatiana A; Faenov, Anatoly Ya; Fukuda, Yuji; Kando, Masaki; Bolton, Paul; Mitrofanov, Alexander; Vinogradov, Alexander V; Nagasono, Mitsuru; Ohashi, Haruhiko; Yabashi, Makina; Tono, Kensuke; Senba, Yasunori; Togashi, Tadashi; Ishikawa, Tetsuya

    2013-01-20

    LiF crystal and film detectors were used to measure the far-field fluence profile of a self-amplified spontaneous-emission free-electron laser beam and diffraction imaging with high spatial resolution. In these measurements the photoluminescence (PL) response of LiF crystal and film was compared over a wide range of soft x-ray fluences. It was found that the soft x-ray fluence dependences of LiF crystal and film differ. At low fluence, the LiF crystal shows higher PL response compared to LiF film, while this comparison is the opposite at higher fluence. Accurate measurement of LiF crystal and film PL response is important for precise characterization of the spatial, spectral, and coherence features of x-ray beams across the full profile and in localized areas. For such measurements, crucial LiF detector attributes are high spatial resolution and high dynamic range.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... diagnosis and treatment. No radiation remains in a patient's body after an x-ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  19. Hard X-ray Optics Technology Development for Astronomy at the Marshall Space Flight Center

    Science.gov (United States)

    Gubarev, Mikhail; Ramsey, Brian; Kilaru, Kiranmayee

    2009-01-01

    Grazing-incidence telescopes based on Wolter 1 geometry have delivered impressive advances in astrophysics at soft-x-ray wavelengths, while the hard xray region remains relatively unexplored at fine angular resolution and high sensitivities. The ability to perform ground-breaking science in the hard-x-ray energy range had been the motivation for technology developments aimed at fabricating low-cost, light-weight, high-quality x-ray mirrors. Grazing-incidence x-ray optics for high-energy astrophysical applications is being developed at MSFC using the electroform-nickel replication process.

  20. A portable Compton spectrometer for clinical X-ray beams in the energy range 20-150 keV

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, A.A. [Departamento de Fisica, Pontificia Universidade Catolica de Sao Paulo (PUC-SP), Rua Marques de Paranagua, 111-01303-050 Sao Paulo, SP (Brazil); Linke, A. [Instituto de Fisica-Universidade de Sao Paulo, Rua do Matao, 187-Travessa R-05508-900 Sao Paulo, SP (Brazil); Yoshimura, E.M., E-mail: e.yoshimura@dfn.if.usp.b [Instituto de Fisica-Universidade de Sao Paulo, Rua do Matao, 187-Travessa R-05508-900 Sao Paulo, SP (Brazil); Terini, R.A., E-mail: rterini@pucsp.b [Departamento de Fisica, Pontificia Universidade Catolica de Sao Paulo (PUC-SP), Rua Marques de Paranagua, 111-01303-050 Sao Paulo, SP (Brazil); Instituto de Eletrotecnica e Energia-Universidade de Sao Paulo, Av. Prof. Luciano Gualberto, 1289-05508-900 Sao Paulo, SP (Brazil); Herdade, S.B., E-mail: sherdade@iee.usp.b [Instituto de Fisica-Universidade de Sao Paulo, Rua do Matao, 187-Travessa R-05508-900 Sao Paulo, SP (Brazil); Instituto de Eletrotecnica e Energia-Universidade de Sao Paulo, Av. Prof. Luciano Gualberto, 1289-05508-900 Sao Paulo, SP (Brazil)

    2011-02-15

    Primary beam spectra were obtained for an X-ray industrial equipment (40-150 kV), and for a clinical mammography apparatus (25-35 kV) from beams scattered at angles close to 90{sup o}, measured with a CdTe Compton spectrometer. Actual scattering angles were determined from the Compton energy shift of characteristic X-rays or spectra end-point energy. Evaluated contribution of coherent scattering amounts to more than 15% of fluence in mammographic beams. This technique can be used in clinical environments.

  1. Imaging X-ray detector front-end with high dynamic range: IDeF-X HD

    Science.gov (United States)

    Gevin, O.; Lemaire, O.; Lugiez, F.; Michalowska, A.; Baron, P.; Limousin, O.; Delagnes, E.

    2012-12-01

    Presented circuit, IDeF-X HD (Imaging Detector Front-end) is a member of the IDeF-X ASICs family for space applications. It has been optimized for a half millimeter pitch CdTe or CdZnTe pixelated detector arranged in 16×16 array. It is aimed to operate in the hard X-ray range from few keV up to 250 keV or more. The ASIC has been realized in AMS 0.35 μm CMOS process. The IDeF-X HD is a 32 channel analog front-end with self-triggering capability. The architecture of the analog channel includes a chain of charge sensitive amplifier with continuous reset system and non-stationary noise suppressor, adjustable gain stage, pole-zero cancellation stage, adjustable shaping time low pass filter, baseline holder and peak detector with discriminator. The power consumption of the IDeF-X HD is 800 μW per channel. With the in-channel variable gain stage the nominal 250 keV dynamic range of the ASIC can be extended up to 1 MeV anticipating future applications using thick sensors. Measuring the noise performance without a detector at the input with minimized leakage current (programmable) at the input, we achieved ENC of 33 electrons rms at 10.7 μs peak time. Measurements with CdTe detector show good energy resolution FWHM of 1.1 keV at 60 keV and 4.3 keV at 662 keV with detection threshold below 4 keV. In addition, an absolute temperature sensor has been integrated with resolution of 1.5 °C.

  2. Joint x-ray

    Science.gov (United States)

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  3. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Soman, M.R., E-mail: m.r.soman@open.ac.uk [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hall, D.J.; Tutt, J.H.; Murray, N.J.; Holland, A.D. [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Schmitt, T.; Raabe, J.; Schmitt, B. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2013-12-11

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 µm from the current 24 µm spatial resolution (FWHM). The 400 eV–1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 µm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  4. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  5. Testing for X-Ray-SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters

    Science.gov (United States)

    Nurgaliev, D.; McDonald, M.; Benson, B. A.; Bleem, L.; Bocquet, S.; Forman, W. R.; Garmire, G. P.; Gupta, N.; Hlavacek-Larrondo, J.; Mohr, J. J.; Nagai, D.; Rapetti, D.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.

    2017-05-01

    We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters at 0.35Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ({A}{phot}). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of z˜ 0.3 to z˜ 1, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.

  6. Search for solar axions with the X-ray telescope of the CAST experiment (phase II); Suche nach solaren Axionen mit dem Roentgenteleskop des CAST-Experiments (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Nordt, Annika

    2009-10-14

    The CAST (CERN Solar Axion Telescope) experiment is searching for solar axions by their conversion into photons inside a transverse magnetic field. So far, no solar axionsignal has been detected, but a new upper limit could be given (CAST Phase I). Since 2005, CAST entered in its second phase where it operates with a buffer gas ({sup 4}He) in the conversion region to extend the sensitivity of the experiment to higher axionmasses. For the first time it is possible to enter the theoretically favored axion massrange and to give an upper limit for this solar axion mass-range (>0.02 eV). This thesis is about the analysis of the X-ray telescope data Phase II with {sup 4}He inside the magnet. The result for the coupling constant of axions to photons is: g{sub {alpha}}{sub {gamma}}{sub {gamma}}<1.6-6.0 x 10{sup -10} GeV{sup -1} (95%C.L.) for m{sub a}=0.02-0.4 eV. (2) This result is better than any result that has been given before in this mass range for solar axions. (orig.)

  7. Developing fine-pixel CdTe detectors for the next generation of high-resolution hard x-ray telescopes

    Science.gov (United States)

    Christe, Steven

    Over the past decade, the NASA Marshall Space Flight Center (MSFC) has been improving the angular resolution of hard X-ray (HXR; 20 "70 keV) optics to the point that we now routinely manufacture optics modules with an angular resolution of 20 arcsec Half Power Diameter (HDP), almost three times the performance of NuSTAR optics (Ramsey et al. 2013; Gubarev et al. 2013a; Atkins et al. 2013). New techniques are currently being developed to provide even higher angular resolution. High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For the HERO mirrors, where the HPD is 26 arcsec over a 6-m focal length converts to 750 μm, the optimum pixel size is around 250 μm. At a 10-m focal length these detectors can support a 16 arcsec HPD. Of course, the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage (Ramsey 2001). The ability to handle high counting rates is also desirable for efficient calibration. A collaboration between Goddard Space Flight Center (GSFC), MSFC, and Rutherford Appleton Laboratory (RAL) in the UK is developing precisely such detectors under an ongoing, funded APRA program (FY2015 to FY2017). The detectors use the RALdeveloped Application Specific Integrated Circuit (ASIC) dubbed HEXITEC, for High Energy X-Ray Imaging Technology. These HEXITEC ASICs can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) to create a fine (250 μm pitch) HXR detector (Jones et al. 2009; Seller et al. 2011). The objectives of this funded effort are to develop and test a HEXITEC

  8. Lamination of ultra-thin silicon wafers for producing high-quality and low-cost x-ray telescope mirrors

    Science.gov (United States)

    Yao, Youwei; Schattenburg, Mark L.

    2017-08-01

    We present a thin wafer lamination method for producing X-ray telescope mirrors aiming at 1-10'' optics quality and low fabrication cost. Traditional grinding/polishing and hot slumping methods find difficulty to meet the required figure accuracy when the mirror thickness is below 1 mm. In this paper, we introduce a new fabrication procedure to satisfy those requirements: first, we laminate flat and ultra-thin silicon wafers on a well polished mandrel via direct bonding until the wafer stack achieves the designed thickness. Second, we release the stack from the mandrel since the direct bonding is temporary. Third, we anneal the stack to create permanent bonding and stabilize the deformation. In such a manner, the intrinsic waviness of each wafer can be alleviated. Our FEA simulation shows the RMS slope error of the stack surface released from a flat mandrel is improved by a factor of 6 when the layer number is doubled, regardless of the total thickness. In the case of a cylindrical mandrel, the local waviness could be improved by a factor of 4000, while a cone angle problem appears and needs to be resolved in future work. We also developed the fabrication method and successfully optimized our wafer cleaning process.

  9. Constellation-X to Generation-X: evolution of large collecting area moderate resolution grazing incidence x-ray telescopes to larger area high-resolution adjustable optics

    Science.gov (United States)

    Reid, Paul B.; Cameron, Robert A.; Cohen, Lester; Elvis, Martin; Gorenstein, Paul; Jerius, Diab; Petre, Robert; Podgorski, William A.; Schwartz, Daniel A.; Zhang, William W.

    2004-10-01

    Large collecting area x-ray telescopes are designed to study the early Universe, trace the evolution of black holes, stars and galaxies, study the chemical evolution of the Universe, and study matter in extreme environments. The Constellation-X mission (Con-X), planned for launch in 2016, will provide ~ 10^4 cm^2 collecting area with 15 arc-sec resolution, with a goal of 5 arc-sec. Future missions require larger collecting area and finer resolution. Generation-X (Gen-X), a NASA Visions Mission, will achieve 100 m^2 effective area at 1 keV and angular resolution of 0.1 arc-sec, half power diameter. We briefly describe the Con-X flowdown of imaging requirements to reflector figure error. To meet requirements beyond Con-X, Gen-X optics will be thinner and more accurately shaped than has ever been accomplished. To meet these challenging goals, we incorporate for the first time active figure control with grazing incidence optics. Piezoelectric material will be deposited in discrete cells directly on the back surface of the optical segments, with the strain directions oriented parallel to the surface. Differential strain between the two layers of the mirror causes localized bending in two directions, enabling local figure control. Adjusting figure on-orbit eases fabrication and metrology. The ability to make changes to mirror figure adds margin by mitigating risk due to launch-induced deformations and/or on-orbit degradation. We flowdown the Gen-X requirements to mirror figure and four telescope designs, and discuss various trades between the designs.

  10. Local and long range order in promoted iron-based Fischer–Tropsch catalysts: a combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study

    NARCIS (Netherlands)

    de Smit, E.|info:eu-repo/dai/nl/304824232; Beale, A.M.|info:eu-repo/dai/nl/325802068; Nikitenko, S.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2009-01-01

    The structural properties of three Fe-based Fischer–Tropsch synthesis (FTS) catalysts containing different amounts of Cu, K and SiO2 additives were investigated during pretreatment and FTS in a fixed bed-like reactor using combined in situ X-ray absorption fine structure (XAFS)/wide angle X-ray

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ... in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer ...

  12. Short-range order of undercooled melts of PdZr 2 intermetallic compound studied by X-ray and neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.

    2013-05-01

    The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.

  13. K-, L- and M-shell X-ray productions induced by krypton ions in the 0.8-1.6 MeV/amu range

    Science.gov (United States)

    Gorlachev, I.; Gluchshenko, N.; Ivanov, I.; Kireyev, A.; Alexandrenko, V.; Kurakhmedov, A.; Platov, A.; Zdorovets, M.

    2017-09-01

    The K-, L- and M-shells X-ray production cross sections induced by krypton ions for a range target elements from Ti to Bi were measured. In the experiments the thin films were irradiated by 84Kr particles with projectile energies of 67.2, 84.0, 100.8, 117.6 and 134.4 MeV. An approach based on the use of Mo grid with 500 nm deposited bismuth layer as a beam monitor was developed to determine the amount of particles delivered on the sample. The efficiency of the X-ray detector was determined using the calibration radioactive sources. The experimental results were compared to the predictions of the ECPSSR and PWBA theories calculated with the ISICS code.

  14. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    Energy Technology Data Exchange (ETDEWEB)

    Troussel, Ph., E-mail: philippe.troussel@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Dennetiere, D. [Synchrotron Soleil, L’orme des Merisiers, 91190 Saint-Aubin (France); Maroni, R. [CEA, DAM, DIF, F-91297 Arpajon (France); Høghøj, P.; Hedacq, S. [Xenocs SA, 19, rue François Blumet, F-38360 Sassenage (France); Cibik, L.; Krumrey, M. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)

    2014-12-11

    The “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin.

  15. The Einstein Observatory catalog of IPC x ray sources. Volume 6E: Right ascension range 16h 00m to 19h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2 launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics, which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  16. The Einstein Observatory catalog of IPC x ray sources. Volume 3E: Right ascension range 04h 00m to 07h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers and data useful for calculating upper limits and fluxes.

  17. The Einstein Observatory catalog of IPC x ray sources. Volume 4E: Right ascension range 08h 00m to 11h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images, The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentaion describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  18. The Einstein Observatory catalog of IPC x ray sources. Volume 5E: Right ascension range 12h 00m to 15h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics, which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  19. The Einstein Observatory catalog of IPC x ray sources. Volume 7E: Right ascension range 20h 00m to 23h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  20. The Einstein Observatory catalog of IPC x ray sources. Volume 2E: Right ascension range 00h 00m to 03h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers and data useful for calculating upper limits and fluxes.

  1. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Gorkhover, T. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Technische Universität, 10623 Berlin (Germany); Bachmann, B.; Hau-Riege, S. P.; Pardini, T.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bucher, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Argonne National Lab, Lemont, Illinois 60439 (United States); Carron, S. [California Lutheran University, Thousand Oaks, California 91360 (United States); Coffee, R. N.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Göde, S.; Krzywinski, J.; O’Grady, C. P.; Osipov, T.; Swiggers, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Ferguson, K. R. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford University, Stanford, California 94305 (United States); Kraus, D. [University of California, Berkeley, California 94720 (United States); and others

    2016-11-15

    Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  3. Hand x-ray

    Science.gov (United States)

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  4. X-Ray

    Science.gov (United States)

    ... show up on chest X-rays. Breast cancer. Mammography is a special type of X-ray test used to examine breast tissue. Enlarged heart. This sign of congestive heart failure shows up clearly on X-rays. Blocked blood vessels. Injecting a contrast material that contains iodine can help highlight sections ...

  5. A multiwavelength study of the massive GLIMPSE-C01 cluster with the Hubble Space Telescope and Chandra X-ray Observatory

    Science.gov (United States)

    Hare, Jeremy; Kargaltsev, Oleg; Rangelov, Blagoy

    2018-01-01

    GLIMPSE-C01 is a heavily obscured, intermediate-age cluster that has been suggested to be one of the most massive clusters in the Milky Way. We observed GLIMPSE-C01 with both HST WFC3 IR and UVIS to look for NIR/Optical counterparts to the X-ray sources discovered by the Chandra X-ray Observatory. We present the results of the HST observations, analyze the stellar population of the cluster, and classify X-ray sources using multiwavelength information. We identify several X-ray binary candidates including one likely CV and one likely LMXB. The multi-band HST data also constrain the somewhat controversial distance and age of the cluster. The impact of confusion, affecting the WFC3/IR images of the cluster's core, is also evaluated. The presented observations and their analyses demonstrate the limitations of current instruments and the potential of JWST's superior angular resolution and sensitivety in crowded fields. We also discuss the potential of HST and JWST for multiwavelength X-ray source classification.

  6. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    Science.gov (United States)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  7. X-ray Lobster Eye all-sky monitor for rocket experiment

    Science.gov (United States)

    Dániel, V.; Inneman, A.; Pína, L.; Zadražil, V.; Báča, T.; Stehlíková, V.; Nentvich, O.; Urban, M.; Maršíková, V.; McEntaffer, R.; Tutt, J.; Schulz, T.

    2017-05-01

    This paper presents a Lobster Eye (LE) X-ray telescope developed for the Water Recovery X-ray Rocket (WRX-R) experiment. The primary payload of the rocket experiment is a soft X-ray spectroscope developed by the Pennsylvania State University (PSU), USA. The Czech team participates by hard LE X-ray telescope as a secondary payload. The astrophysical objective of the rocket experiment is the Vela Supernova of size about 8deg x 8deg. In the center of the nebula is a neutron star with a strong magnetic field, roughly the mass of the Sun and a diameter of about 20 kilometers forming the Vela pulsar. The primary objective of WRX-R is the spectral measurement of the outer part of the nebula in soft X-ray and FOV of 3.25deg x 3.25deg. The secondary objective (hard LE X-ray telescope) is the Vela neutron star observation. The hard LE telescope consists of two X-ray telescopes with the Timepix detector. First telescope uses 2D LE Schmidt optics (2DLE- REX) with focal length over 1m and 4 Timepix detectors (2x2 matrix). The telescope FOV is 1.5deg x 1.5deg with spectral range from 3keV to 60keV. The second telescope uses 1D LE Schmidt optics (1D-LE-REX) with focal length of 25 cm and one Timepix detector. The telescope is made as a wide field with FOV 4.5deg x 3.5deg and spectral range from 3keV to 40keV. The rocket experiment serves as a technology demonstration mission for the payloads. The LE X-ray telescopes can be in the future used as all-sky monitor/surveyor. The astrophysical observation can cover the hard X-ray observation of astrophysical sources in time-domain, the GRBs surveying or the exploration of the gravitational wave sources.

  8. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    , the team in Leicester have determined accurately the distance to the dust sheets by measuring the size of the expanding rings. The nearest dust sheet is located 2900 light years away and is probably part of the Gum nebula, a bubble of hot gas resulting from many supernova explosions. The other dust layer is about 4500 light years away. Understanding how dust is distributed in our Galaxy is important because dust favours the collapse of cool gas clouds, which can then form stars and planets. Knowing where dust is located helps astronomers to determine where star and planet formation is likely to occur. Expanding X-ray dust scattering rings, such as those around GRB 031203, have never been seen before. Slower-moving rings, caused by a similar effect, have been seen in visible light around a very few exploding stars, mostly supernovae. The expanding rings also provide much needed information on the gamma-ray burst itself. Gamma-ray bursts are the most powerful explosive events in the Universe, but astronomers are still trying to understand the mystery that surrounds their origin. Some occur with the supernova explosion of a massive star when it has used up all of its fuel, although only stars which have lost their outer layers and which collapse to make a black hole seem able to make a gamma-ray burst. The delayed X-rays from the echo of GRB 031203 are very useful because they tell astronomers how bright the burst was in the X-ray spectrum when it went off on 3 December. The only direct data available from that moment are those obtained by ESA's Integral observatory in the gamma-ray range. "XMM-Newton's measurements are thus crucial to better understand the nature of the burst," said Dr. Fred Jansen, XMM-Newton's project scientist. "The more details we gather of the burst, the more we can learn on how black holes are made." Today, ESA's Integral and XMM-Newton observatories provide astronomers with their most powerful facilities for studying gamma-ray bursts. In 2004 a

  9. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  10. Radiation exposure due to cosmic rays and solar X-ray photons at various atmospheric heights in aviation range over India

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Bhattacharya, Arnab

    2016-07-01

    In this presentation we present our work on the continuous monitoring of radiation exposure in terms of effective dose rates, due to galactic cosmic rays (GCR) and solar X-rays at various altitudes within aviation range over India. As India belongs to equatorial region, there is negligible contribution from solar energetic particles (SEP). The calculation of cosmic ray counts as well as the solar X-ray photons are performed on the basis of the observation of various Dignity series balloon experiments on cosmic ray and solar high energy radiation studies, conducted by ICSP and Monte Carlo simulations performed with GEANT4 detector simulation software. The information on solar activity level from Geostationary Operational Environmental Satellite system (GOES) are employed in the calculations. A program, which is done entirely in MATLAB is employed to update regularly in a website, where we show images of dose rate (μSv) distribution over India at four different heights within the aviation range (updating at an interval of 30 minutes) and the approximate dose rates thats should be experienced by a pilot in an entire flight time between pairs of stations distributed all over India.

  11. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ...

  14. X-ray tensor tomography

    Science.gov (United States)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  15. X-ray microdiffraction of biominerals.

    Science.gov (United States)

    Tamura, Nobumichi; Gilbert, Pupa U P A

    2013-01-01

    Biominerals have complex and heterogeneous architectures, hence diffraction experiments with spatial resolutions between 500 nm and 10 μm are extremely useful to characterize them. X-ray beams in this size range are now routinely produced at many synchrotrons. This chapter provides a review of the different hard X-ray diffraction and scattering techniques, used in conjunction with efficient, state-of-the-art X-ray focusing optics. These include monochromatic X-ray microdiffraction, polychromatic (Laue) X-ray microdiffraction, and microbeam small-angle X-ray scattering. We present some of the most relevant discoveries made in the field of biomineralization using these approaches. © 2013 Elsevier Inc. All rights reserved.

  16. Thermal expansion of CuInSe{sub 2} in the 11-1,073 K range: an X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Paszkowicz, W.; Minikayev, R.; Wojciechowski, T. [Institute of Physics PAS, Warsaw (Poland); Piszora, P. [A. Mickiewicz University, Faculty of Chemistry, Poznan (Poland); Trots, D. [Universitaet Bayreuth, Bayerisches Geoinstitut, Bayreuth (Germany); Knapp, M. [Institute for Applied Materials-Energy Storage Systems, Karlsruhe Institute of Technology, Karlsruhe (Germany); Bacewicz, R. [Warsaw University of Technology, Faculty of Physics, Warsaw (Poland)

    2014-08-15

    Structural and elastic properties of chalcopyrite-type CuInSe{sub 2} are determined in almost full stability range of temperature from 11 to 1,073 K, by in situ X-ray diffraction, employing a synchrotron-radiation source. The studied polycrystalline sample was prepared from a stoichiometric single crystal. Phase analysis reveals the formation of a trace amount of indium oxide impurity phase at the highest temperatures studied. From the obtained smooth lattice-parameter dependencies on temperature, the temperature dependencies of thermal expansion coefficients are derived. These coefficients are found to follow the trends previously reported for narrow temperature intervals. The present results provide a clear experimental evidence that the linear expansion coefficient is slightly negative below 47 K in both, a and c, directions; this temperature limit is in between the previously reported theoretical value (35 K) and the experimental ones (60 and 80 K) of such limit. (orig.)

  17. INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth

    DEFF Research Database (Denmark)

    Churazov, E.; Sunyaev, R.; Revnivtsev, M.

    2007-01-01

    Aims. We study the spectrum of the cosmic X-ray background (CXB) in energy range similar to 5-100 keV. Methods. Early in 2006 the INTEGRAL observatory performed a series of four 30 ks observations with the Earth disk crossing the field of view of the instruments. The modulation of the aperture fl...... release of supermassive black holes in the Universe and their growth at the epoch of the CXB origin........ This difference in normalization can ( at least partly) be traced to the different assumptions on the absolute flux from the Crab Nebulae. The increase relative to the earlier adopted value of the absolute flux of the CXB near the energy of maximum luminosity (20-50 keV) has direct implications for the energy...

  18. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  1. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight March is National Colorectal Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  4. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight February is American Heart Month Recently posted: Carotid Intima-Media Thickness Test ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  8. Sinus x-ray

    Science.gov (United States)

    ... an infection and inflammation of the sinuses called sinusitis . A sinus x-ray is ordered when you have any of the following: Symptoms of sinusitis Other sinus disorders, such as a deviated septum ( ...

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... and You Take our survey Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You ...

  12. X-ray

    Science.gov (United States)

    ... X-ray References Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard ... Updated by: C. Benjamin Ma, MD, Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... and use a very small dose of ionizing radiation to produce pictures of the inside of the ... x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. ... University in Durham, North Carolina. I’d like to talk with you about chest radiography also known ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight October is National Breast Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  16. Recent progress on air-bearing slumping of segmented thin-shell mirrors for x-ray telescopes: experiments and numerical analysis

    Science.gov (United States)

    Zuo, Heng E.; Yao, Youwei; Chalifoux, Brandon D.; DeTienne, Michael D.; Heilmann, Ralf K.; Schattenburg, Mark L.

    2017-08-01

    Slumping (or thermal-shaping) of thin glass sheets onto high precision mandrels was used successfully by NASA Goddard Space Flight Center to fabricate the NuSTAR telescope. But this process requires long thermal cycles and produces mid-range spatial frequency errors due to the anti-stick mandrel coatings. Over the last few years, we have designed and tested non-contact horizontal slumping of round flat glass sheets floating on thin layers of nitrogen between porous air-bearings using fast position control algorithms and precise fiber sensing techniques during short thermal cycles. We recently built a finite element model with ADINA to simulate the viscoelastic behavior of glass during the slumping process. The model utilizes fluid-structure interaction (FSI) to understand the deformation and motion of glass under the influence of air flow. We showed that for the 2D axisymmetric model, experimental and numerical approaches have comparable results. We also investigated the impact of bearing permeability on the resulting shape of the wafers. A novel vertical slumping set-up is also under development to eliminate the undesirable influence of gravity. Progress towards generating mirrors for good angular resolution and low mid-range spatial frequency errors is reported.

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  2. First-order convex feasibility algorithms for iterative image reconstruction in limited angular-range X-ray CT

    CERN Document Server

    Sidky, Emil Y; Pan, Xiaochuan

    2012-01-01

    Iterative image reconstruction (IIR) algorithms in Computed Tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times, however, it is impractical to achieve accurate solution to the optimization of interest, which complicates design of IIR algorithms. This issue is particularly acute for CT with a limited angular-range scan, which leads to poorly conditioned system matrices and difficult to solve optimization problems. In this article, we develop IIR algorithms which solve a certain type of optimization called convex feasibility. The convex feasibility approach can provide alternatives to unconstrained optimization approaches and at the same time allow for efficient algorithms for their solution -- thereby facilitating the IIR algorithm design process. An accelerated version of the Chambolle-Pock (CP) algorithm is adapted to various convex fea...

  3. Polishing X-ray Mirror Mandrel

    Science.gov (United States)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. MSFC's Space Optics Manufacturing Technology Center (SOMTC) has grinding and polishing equipment ranging from conventional spindles to custom-designed polishers. These capabilities allow us to grind precisely and polish a variety of optical devices, including x-ray mirror mandrels. This image shows Charlie Griffith polishing the half-meter mandrel at SOMTC.

  4. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  5. Hard X-ray Imaging Polarimeter for PolariS

    Science.gov (United States)

    Hayashida, Kiyoshi

    2016-07-01

    We present the current status of development of hard X-ray imaging polarimeters for the small satellite mission PolariS. The primary aim of PolariS is hard X-ray (10-80keV) polarimetry of sources brighter than 10mCrab. Its targets include stellar black holes, neutron stars, super nova remnants, and active galactic nuclei. This aim is enabled with three sets of hard X-ray telescopes and imaging polarimeters installed on their focal planes. The imaging polarimeter consists of two kinds of (plastic and GSO) scintillator pillars and multi-anode photo multiplier tubes (MAPMTs). When an X-ray photon incident to a plastic scintillator cause a Compton scattering, a recoiled electron makes a signal on the corresponding MAPMT pixel, and a scatted X-rays absorbed in surrounding GSO makes another signal. This provide information on the incident position and the scattered direction. The latter information is employed for polarimetry. For 20keV X-ray incidence, the recoiled electron energy is as low as 1keV. Thus, the performance of this imaging polarimeter is primarily determined by the efficiency that we can detect low level signal of recoiled electrons generated in plastic scintillators. The efficiency could depend on multiple factors, e.g. quenching of light in scintillators, electric noise, pedestal error, cross talk of the lights to adjacent MAPMT pixels, MAPMT dark current etc. In this paper, we examined these process experimentally and optimize the event selection algorithm, in which single photo-electron events are selected. We then performed an X-ray (10-80keV monochromatic polarized beam) irradiation test at a synchrotron facility. The modulation contrast (M) is about 60% in 15-80keV range. We succeeded in detecting recoiled electrons for 10-80keV X-ray incidence, though detection efficiency is lower at lowest end of the energy range. Expected MDP will also be shown.

  6. Preparation and characterization of pixelated phosphor screens for high-resolution linear imaging in the vacuum ultraviolet and x-ray ranges

    Science.gov (United States)

    Rodríguez-Barquero, L.; Zurro, B.; Martin, P.; McCarthy, K. J.; Baciero, A.

    2004-10-01

    Indirect digital imaging sensors employ tailored phosphors screens to convert incident x-ray or vacuum-ultraviolet (VUV) photons to visible light quanta A convenient method to prepare pixelated phosphor screens that can be easily tailored in thickness, type, and spatial resolution is presented. The characterization and evaluation of these screens in the laboratory is addressed and their application to high-resolution VUV and x-ray cameras is discussed.

  7. Adjustable Grazing-Incidence X-Ray Optics

    Science.gov (United States)

    O'Dell, Stephen L.; Reid, Paul B.

    2015-01-01

    With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.

  8. Hybrid scintillators for x-ray imaging

    Science.gov (United States)

    Bueno, Clifford; Rairden, Richard L.; Betz, Robert A.

    1996-04-01

    The objective of this effort is to improve x-ray absorption and light production while maintaining high spatial resolution in x-ray imaging phosphor screens. Our current target is to improve screen absorption efficiency and screen brightness by factors of 2 or greater over existing screens that have 10-1p/mm resolution. In this program, commercial phosphor screens are combined with highly absorbing, high-resolution scintillating fiber-optic (SFO) face plates to provide a hybrid sensor that exhibits superior spatial resolution, x-ray absorption, and brightness values over the phosphor material alone. These characteristics of hybrid scintillators can be adjusted to meet specific x-ray imaging requirements over a wide range of x-ray energy. This paper discusses the design, fabrication, and testing of a new series of hybrid scintillators.

  9. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  10. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  11. A study of gunshot residue distribution for close-range shots with a silenced gun using optical and scanning electron microscopy, X-ray microanalysis and infrared spectroscopy.

    Science.gov (United States)

    Brożek-Mucha, Zuzanna

    2017-03-01

    Detailed physical and chemical analysis of gunshot residue deposited in the nearest vicinity of a submachine gun alone and with a sound suppressor was performed. The studies were inspired by recent shooting cases with the use of a firearm with a silencer and the need to estimate the shooting distance to human body naked and covered with clothing. A series of experiments were performed in the shooting range using a machine pistol and the appropriate ammunition cal. 7.65mm Browning. Targets were placed in the range of 0-30cm from the gun and covered either with white cotton fabric or a porcine skin that mocked people's clothing and the naked skin. Both the organic and inorganic residue were examined by means of optical microscopy, infrared spectrometry as well as scanning electron microscopy and energy dispersive X-ray spectrometry. The influence of factors, such as sound suppressor, shooting distance and the substrate type on the mechanism of particles spread and their availability for research was established and discussed. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  12. Monte Carlo Simulations of High-speed, Time-gated MCP-based X-ray Detectors: Saturation Effects in DC and Pulsed Modes and Detector Dynamic Range

    Energy Technology Data Exchange (ETDEWEB)

    Craig Kruschwitz, Ming Wu, Ken Moy, Greg Rochau

    2008-10-31

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)–based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. We have developed a new model of charge buildup on the walls of the MCP channels and measured its effect on MCP gain. The results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser; these results clearly demonstrate MCP saturation behavior in both DC and pulsed modes. The simulations compare favorably to the experimental results. The dynamic range of the detectors in pulsed operation is of particular interest when fielding an MCP–based camera. By adjusting the laser flux we study the linear range of the camera. These results, too, are compared to our simulations.

  13. Hard X-ray mirrors for Nuclear Security

    Energy Technology Data Exchange (ETDEWEB)

    Descalle, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brejnholt, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hill, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Decker, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alameda, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soufli, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pivovaroff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pardini, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-07

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a new type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally

  14. Spectral filter for splitting a beam with electromagnetic radiation having wavelengths in the extreme ultraviolet (EUV) or soft X-Ray (Soft X) and the infrared (IR) wavelength range

    NARCIS (Netherlands)

    van Goor, F.A.; Bijkerk, Frederik; van den Boogaard, Toine; van den Boogaard, A.J.R.; van der Meer, R.

    2012-01-01

    Spectral filter for splitting the primary radiation from a generated beam with primary electromagnetic radiation having a wavelength in the extreme ultraviolet (EUV radiation) or soft X-ray (soft X) wavelength range and parasitic radiation having a wavelength in the infrared wavelength range (IR

  15. X-ray detectors of the CAST experiment

    Science.gov (United States)

    Yildiz, S. C.

    2014-03-01

    CERN Axion Solar Telescope (CAST) is an experiment probing hypothetical particles: the axions, created in the solar core. Inside the transverse magnetic field of the CAST magnet, axions can be converted into x-rays, and be detected by four x-ray detectors at CAST. The expected x-ray signal in CAST is in 1-10 keV range, intensity depending strongly on the coupling constant of axion-photon conversion gaγ, which is expected to be low. This requires CAST to have detectors with very low background levels. The CAST Experiment makes use of three Micromesh Gaseous Structure (micromegas) detectors, which are gaseous detectors, derived from ideas of Multiwire Proportional Chambers (MWPC). CAST Micromegas detectors show perfect stability, good spatial and energy resolution. The intense study on Micromegas has enabled CAST to understand the nature of its background level, and improve it by a factor of 102 over ten years. New detector design, new readout system, better cosmic veto and addition of x-ray telescope will further improve the background in the next data taking of the experiment. The Charge-Coupled Device (CCD) of CAST is a pn-CCD detector with 200 × 64 pixels. The CAST CCD is coupled to an X-ray telescope, focusing all the parallel x-rays into a 9 mm diameter spot. The CCD will be replaced by the InGrid detector, a special manufactured micromegas detector. It is able to detect single electrons, and the low energy capabilities will open new frontiers on search of axions and other exotic particles. Another option is the Silicon Drift Detector (SDD), which is being tested in 2013, and has an energy threshold as low as 250 eV. The CAST experiment is the pioneering helioscope that excludes an important part of axion mass-coupling constant parameter space, and expects to exclude more in the following years. To succeed CAST, a new experiment, the International AXion Observatory (IAXO) is being designed and optimised, comprising the construction of a magnet specially built

  16. Analysis of Sunyaev-Zel'dovich effect mass-observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Mohr, J.; Saro, A.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.;  uhada, R.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-02-25

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev–Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg2 of the XMM–Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (≥1042 erg s-1) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y_500 mass relations. The former is in good agreement with an extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8σ with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8σ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17 ± 9)per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter

  17. Analysis of Sunyaev–Zel'dovich effect mass–observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Mohr, J.; Saro, A.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.; Šuhada, R.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-02-26

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev-Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from similar to 6 deg(2) of the XMM-Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (>= 10(42) erg s(-1)) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y-500 mass relations. The former is in good agreement with an extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8 sigma with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8 sigma significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y-500 signal that is (17 +/- 9) per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on these SZE mass

  18. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) ... top of page What are some common uses of the procedure? A bone x-ray is used ...

  20. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  1. Reabsorption of soft x-ray emission at high x-ray free-electron laser fluences.

    Science.gov (United States)

    Schreck, Simon; Beye, Martin; Sellberg, Jonas A; McQueen, Trevor; Laksmono, Hartawan; Kennedy, Brian; Eckert, Sebastian; Schlesinger, Daniel; Nordlund, Dennis; Ogasawara, Hirohito; Sierra, Raymond G; Segtnan, Vegard H; Kubicek, Katharina; Schlotter, William F; Dakovski, Georgi L; Moeller, Stefan P; Bergmann, Uwe; Techert, Simone; Pettersson, Lars G M; Wernet, Philippe; Bogan, Michael J; Harada, Yoshihisa; Nilsson, Anders; Föhlisch, Alexander

    2014-10-10

    We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.

  2. Application of commercial MOSFET detectors for in vivo dosimetry in the therapeutic x-ray range from 80 kV to 250 kV.

    Science.gov (United States)

    Ehringfeld, Christian; Schmid, Susanne; Poljanc, Karin; Kirisits, Christian; Aiginger, Hannes; Georg, Dietmar

    2005-01-21

    The purpose of this study was to investigate the dosimetric characteristics (energy dependence, linearity, fading, reproducibility, etc) of MOSFET detectors for in vivo dosimetry in the kV x-ray range. The experience of MOSFET in vivo dosimetry in a pre-clinical study using the Alderson phantom and in clinical practice is also reported. All measurements were performed with a Gulmay D3300 kV unit and TN-502RDI MOSFET detectors. For the determination of correction factors different solid phantoms and a calibrated Farmer-type chamber were used. The MOSFET signal was linear with applied dose in the range from 0.2 to 2 Gy for all energies. Due to fading it is recommended to read the MOSFET signal during the first 15 min after irradiation. For long time intervals between irradiation and readout the fading can vary largely with the detector. The temperature dependence of the detector signal was small (0.3% degrees C(-1)) in the temperature range between 22 and 40 degrees C. The variation of the measuring signal with beam incidence amounts to +/-5% and should be considered in clinical applications. Finally, for entrance dose measurements energy-dependent calibration factors, correction factors for field size and irradiated cable length were applied. The overall accuracy, for all measurements, was dominated by reproducibility as a function of applied dose. During the pre-clinical in vivo study, the agreement between MOSFET and TLD measurements was well within 3%. The results of MOSFET measurements, to determine the dosimetric characteristics as well as clinical applications, showed that MOSFET detectors are suitable for in vivo dosimetry in the kV range. However, some energy-dependent dosimetry effects need to be considered and corrected for. Due to reproducibility effects at low dose levels accurate in vivo measurements are only possible if the applied dose is equal to or larger than 2 Gy.

  3. High-Resolution Detector for At-Wavelength Metrology of X-Ray Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Since the launch of the first X-ray focusing telescope in 1963, the development of grazing incidence X-ray optics has been crucial to the development of the field of...

  4. Chest X-Ray

    Medline Plus

    Full Text Available ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ...

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions ... Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, ...

  6. Pelvis x-ray

    Science.gov (United States)

    The x-ray is used to look for: Fractures Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... Abnormal results may suggest: Pelvic fractures Arthritis of the hip joint ... spondylitis (abnormal stiffness of the spine and joint) ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... Radiology (IDoR) Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound November 8 is ...

  8. JEM-X: Joint European X-ray monitor

    DEFF Research Database (Denmark)

    Lund, Niels; Westergaard, Niels Jørgen Stenfeldt; Budtz-Jørgensen, Carl

    1998-01-01

    JEM-X is the X-ray monitor for INTEGRAL. It is being built by a large European consortium led by the Danish Space Research Institute. It consists of two identical, independent coded mask X-ray telescopes with an energy span from 3 keV to 60 keV. Each system has a microstrip gas detector and a mask...

  9. SphinX Measurements of the 2009 Solar Minimum X-Ray Emission

    Science.gov (United States)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 1047 cm-3 and 1.1 × 1048 cm-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  10. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B. [Space Research Centre, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Kuzin, S. [P. N. Lebedev Physical Institute (FIAN), Russian Academy of Sciences, Leninsky Prospect 53, Moscow 119991 (Russian Federation); Farnik, F. [Astronomical Institute, Ondrejov Observatory (Czech Republic); Reale, F. [Dipartimento di Fisica, Universita di Palermo, Palermo, Italy, and INAF, Osservatorio Astronomico di Palermo, Palermo (Italy); Phillips, K. J. H., E-mail: js@cbk.pan.wroc.pl [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 Multiplication-Sign 10{sup 47} cm{sup -3} and 1.1 Multiplication-Sign 10{sup 48} cm{sup -3}. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  11. K-, L- and M-shell X-ray productions induced by oxygen ions in the 0.8–1.6 MeV/amu range

    Energy Technology Data Exchange (ETDEWEB)

    Gorlachev, I., E-mail: Igor.Gorlachev@gmail.com [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Gluchshenko, N. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Ivanov, I. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Kireyev, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Kozin, S.; Kurakhmedov, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Platov, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Zdorovets, M. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Ural Federal University, Yekaterinburg 620002 (Russian Federation)

    2016-08-15

    The X-ray production cross sections induced by oxygen ions with projectile energies from 12.8 to 25.6 MeV for the elements from Al to Bi were measured. The applied approach is based on calculation of X-ray production cross sections through the cross section of Rutherford backscattering, which can be calculated with high accuracy using the Rutherford formula. The experimental results are compared to the predictions of ECPSSR and PWBA theories calculated with the ISICS code.

  12. Materials for refractive x-ray optics.

    Science.gov (United States)

    Lund, M W

    1997-01-01

    An X-ray lens using refraction has been proposed by Tomie, and demonstrated for 14 keV X-rays by Snigirev et al. This type of lens is made from a series of very weak lens elements. I calculate the properties of such lenses constructed of various chemical elements and compounds over the range of 1 to 30 keV. In general, I find that X-ray optics made from low density, low Z materials have the widest useful apertures, but require more lens elements than denser and higher Z materials.

  13. X-ray filter for x-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  14. X-Ray Point-source Populations Constituting the Galactic Ridge X-Ray Emission

    Science.gov (United States)

    Morihana, Kumiko; Tsujimoto, Masahiro; Yoshida, Tessei; Ebisawa, Ken

    2013-03-01

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above ≈10-14 erg cm-2 s-1, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe Kα emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  15. Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

    Science.gov (United States)

    Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, Meng P.; Fujimoto, R. J.; Haas, D.; Den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.; hide

    2016-01-01

    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0.3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.

  16. Search for Infrared Counterparts to X-Ray Point Sources in M 51 and NGC 4559

    Science.gov (United States)

    Clark, David M.; Eikenberry, Stephen S.; Brandl, Bernhard

    2006-02-01

    We propose to use the KPNO-4m telescope to take near-infrared (IR) images of the star-forming galaxies M51 and NGC 4559 to study the environments of their X-ray point sources. We chose these galaxies because of the extensive archival HST optical and Chandra X-ray observations of them. With our proposed observations, we will search for IR counterparts to X-ray binary sources. Many of these point sources are X-ray binaries containing a compact object that is left after the violent death of a massive star. By studying compact objects residing in the young stellar clusters where they formed, we can obtain the most interesting constraints on their environments and progenitor. Using these proposed observations along with HST and Chandra archival images, we will perform multi-wavelength studies on the stellar clusters associated with these X-ray sources. Fitting the photometry to Bruzual- Charlot spectral evolution models, we will estimate cluster mass, age and metallicity range. We will use this to constrain theories of compact object formation and evolution, particularly for the origins of the intermediate-mass black holes (IMBH) thought to power ultra-luminous X-ray sources (ULX). In future observations, we will acquire follow up spectra of the IR counterparts to study the cluster dynamics as well as rule out the possibility some ULXs are background quasars. We are requesting two nights on the KPNO-4m using FLAMINGOS to take J and K_s observations.

  17. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  18. All-Sky Hard X-Ray Spectral Line Survey with EXIST

    Science.gov (United States)

    Fishman, G. J.; Grindlay, J. E.; Hong, J.; Hartmann, D. H.; Vadawale, S.; Wilson-Hodge, C. A.

    2006-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST), under study to be the Black Hole Finder Probe in NASA's Beyond Einstein Program, would image the sky every 95 min in the energy range 10-600 keV. Although the main scientific objectives of EXIST are the systematic, all-sky survey of heavily obscured AGNs and gamma-ray bursts, there is a substantial capability of EXIST for the observation of transient and persistent hard X-ray lines from several astrophysical sources.

  19. Handbook of X-Ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  20. Size Optimization for Mirror Segments for X-Ray Optics

    Science.gov (United States)

    Biskach, Michael P.; McClelland, Ryan S.; Saha, Timo; Zhang, William W.

    2011-01-01

    The flight mirror assemblies (FMA) for X-ray telescopes similar to that of the International X-ray Observatory (IXO) concept consist of several thousands of individual mirror segments. The size, shape, and location of these mirrors affect many characteristics of the telescope design. Mission requirements among other factors in turn restrict mirror segment parameters such as thickness, axial- length, azimuthal span, and mass density. This paper provides an overview of the critical relationships relating to mirror segment size and configuration throughout the design and analysis of an X-ray mirror assembly. A computational analysis is presented in the form of ray tracing pairs of thin X-ray mirror segments of varying sizes aligned in gravity and supported using kinematic constraints with corresponding self weight distortions calculated using finite element analysis (FEA). The work in this paper may be used as a starting point for determining mirror segment sizes for X-ray missions like that of IXO and beyond.

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... shades of gray and air appears black. Until recently, x-ray images were maintained on large film ... assist you in finding the most comfortable position possible that still ensures x-ray image quality. top ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  5. Coherent x-ray optics

    CERN Document Server

    Paganin, David M

    2006-01-01

    'Coherent X-Ray Optics' gives a thorough treatment of the rapidly expanding field of coherent x-ray optics, which has recently experienced something of a renaissance with the availability of third-generation synchrotron sources.

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissues around or in bones. top of page How should I prepare? Most bone x-rays require ... is placed beneath the patient. top of page How does the procedure work? X-rays are a ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ... and procedures may vary by geographic region. Discuss the fees associated with your prescribed ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used ... placed beneath the patient. top of page How does the procedure work? X-rays are a form ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of ionizing radiation to produce pictures of the inside of the body. X-rays are the oldest ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray technologist if there is any possibility that they are pregnant. Many imaging tests are not performed during pregnancy ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  19. Experimental X-Ray Ghost Imaging.

    Science.gov (United States)

    Pelliccia, Daniele; Rack, Alexander; Scheel, Mario; Cantelli, Valentina; Paganin, David M

    2016-09-09

    We report an experimental proof of principle for ghost imaging in the hard-x-ray energy range. We use a synchrotron x-ray beam that is split using a thin crystal in Laue diffraction geometry. With an ultrafast imaging camera, we are able to image x rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam is correlated with the spatially resolved intensity measured in the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x rays may open the way to protocols to reduce radiation damage in medical imaging and in nondestructive structural characterization using free electron lasers.

  20. 14th International Conference on X-Ray Lasers

    CERN Document Server

    Menoni, Carmen; Marconi, Mario

    2016-01-01

    These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered.  The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray ge...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... be taken to minimize radiation exposure to the baby. See the Safety page for more information about pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of an x-ray tube suspended over a table on which the patient ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  3. X-Ray Exam: Forearm

    Science.gov (United States)

    ... recorded on a computer or special X-ray film. This image shows the soft tissues and bones of the forearm. The X-ray image is black and white. Dense structures that block the passage of the X-ray beam through the body, such as the bones, appear white on the ...

  4. Rapid X-ray variability properties during the unusual very hard state in neutron-star low-mass X-ray binaries

    Science.gov (United States)

    Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.

    2017-11-01

    Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.

  5. Detection of short range order in SiO{sub 2} thin-films by grazing-incidence wide and small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Kohki, E-mail: nagata.koki@iri-tokyo.jp [Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064 (Japan); School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Ogura, Atsushi [School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Hirosawa, Ichiro [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Suwa, Tomoyuki; Teramoto, Akinobu; Ohmi, Tadahiro [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramakiazaaoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2016-04-21

    The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO{sub 2} thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure in an amorphous thin film was not revealed owing to detection difficulties.

  6. Optical and X-ray rebrightening in NS X-ray Nova Aql X-1

    Science.gov (United States)

    Meshcheryakov, A.; Bikmaev, I.; Irtuganov, E.; Sakhibullin, N.; Vlasyuk, V. V.; Spiridonova, O. I.; Khamitov, I.; Medvedev, P.; Pavlinsky, M. N.; Tsygankov, S. S.

    2017-06-01

    The current outburst in NS X-ray Nova Aql X-1 has started 28 May 2017, as it was reported earlier (see ATel#10441, #10450, #10452). During optical monitoring campaign of Aql X-1, performed at 1.5-m Russian-Turkish telescope (TUBITAK National Observatory) and 1-m SAO RAS optical telescope (Special Astrophysical Observatory) we report a substantial increase of optical brightness of Aql X-1 in the last few days.

  7. Measurement of x-ray attenuation coefficients for elements in the range 79 less than or equal to Z less than or equal to 92

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, N.S.; Sharif, M.A.; Al-Saleh, K.A.

    A method for measuring the X-ray attenuation coefficients for elements with 79 less than or equal to Z less than or equal to 92 at the excitation energy of 121.9 keV (Gamma-rays emitted by Co-57 radioisotope source) is described. The accuracy is greatly improved by intensity ratio measurements of infinitely thin and thick targets; thus the uncertainties in the fundamental parameters are eliminated.

  8. SphinX: The Solar Photometer in X-Rays

    Science.gov (United States)

    Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Kordylewski, Zbigniew; Podgorski, Piotr; Plocieniak, Stefan; Siarkowski, Marek; Sylwester, Barbara; Trzebinski, Witold; Kuzin, Sergey V.; Pertsov, Andrey A.; Kotov, Yurij D.; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2013-04-01

    Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0.4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed.

  9. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  10. Jovian X-ray emissions

    Science.gov (United States)

    Waite, J. H.; Lewis, W. S.; Gladstone, G. R.; Fabian, A. C.; Brandt, W. N.

    1996-01-01

    The Einstein and Rosat observations of X-ray emissions from Jupiter are summarized. Jupiter's soft X-ray emission is observed to originate from the planet's auroral zones, and specifically, from its equatorial region. The processes responsible for these emissions are not established. The brightness distribution of the Jovian X-rays is characterized by the dependence on central meridian longitude and by north-south and morning-afternoon asymmetries. The X-rays observed during the impact of the comet Shoemaker-Levy 9 are believed to be impact-induced brightenings of the X-ray aurora.

  11. Clustering of X-Ray-Selected AGN

    Directory of Open Access Journals (Sweden)

    N. Cappelluti

    2012-01-01

    that galaxy mergers may constitute the main AGN-triggering mechanism. However, detailed analysis of observational data, acquired with modern telescopes, and the use of the new halo occupation formalism has revealed that the triggering of an AGN could also be attributed to phenomena-like tidal disruption or disk instability and to galaxy evolution. This paper reviews results from 1988 to 2011 in the field of X-ray-selected AGN clustering.

  12. Soft X-ray variability over the present minimum of solar activity as observed by SphinX

    Science.gov (United States)

    Gburek, S.; Siarkowski, M.; Kepa, A.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Podgorski, P.; Kordylewski, Z.; Plocieniak, S.; Sylwester, B.; Trzebinski, W.; Kuzin, S.

    2011-04-01

    Solar Photometer in X-rays (SphinX) is an instrument designed to observe the Sun in X-rays in the energy range 0.85-15.00 keV. SphinX is incorporated within the Russian TESIS X and EUV telescope complex aboard the CORONAS-Photon satellite which was launched on January 30, 2009 at 13:30 UT from the Plesetsk Cosmodrome, northern Russia. Since February, 2009 SphinX has been measuring solar X-ray radiation nearly continuously. The principle of SphinX operation and the content of the instrument data archives is studied. Issues related to dissemination of SphinX calibration, data, repository mirrors locations, types of data and metadata are discussed. Variability of soft X-ray solar flux is studied using data collected by SphinX over entire mission duration.

  13. The universe in X-rays

    CERN Document Server

    Hasinger, Günther

    2008-01-01

    In the last 45 years, X-ray astronomy has become an integral part of modern astrophysics and cosmology. There is a wide range of astrophysical objects and phenomena, where X-rays provide crucial diagnostics. In particular they are well suited to study hot plasmas and matter under extreme physical conditions in compact objects. This book summarizes the present status of X-ray astronomy in terms of observational results and their astrophysical interpretation. It is written for students, astrophysicists as well a growing community of physicists interested in the field. An introduction including historical material is followed by chapters on X-ray astronomical instrumentation. The next two parts summarize in 17 chapters the present knowledge on various classes of X-ray sources in the galactic and extragalactic realm. While the X-ray astronomical highlights discussed in this book are mainly based on results from ROSAT, ASCA, RXTE, BeppoSAX, Chandra and XMM-Newton, a final chapter provides an outlook on observation...

  14. X-Ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Baldassare, Vivienne F.; Gallo, Elena [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Reines, Amy E. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2017-02-10

    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies ( z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad H α emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad H α and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L {sub 0.5–7keV} ≈ 5 × 10{sup 39} to 1 × 10{sup 42} ergs{sup −1}. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 10{sup 4} to 1 × 10{sup 6} M {sub ⊙}), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α {sub OX} values an average of 0.36 lower than expected based on the relation between α {sub OX} and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.

  15. Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center

    Science.gov (United States)

    Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don

    2017-01-01

    Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.

  16. The restless universe understanding X-ray astronomy in the age of Chandra and Newton

    CERN Document Server

    Schlegel, Eric M

    2002-01-01

    This title tells the story of the development and launch of a major space-based telescope, and explains the discoveries of the nature of the universe in the X-ray spectre. The author looks at the brief history of X-ray astronomy to explore what can and has been learnt by using X-ray.

  17. X-ray optics at NASA Marshall Space Flight Center

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; Swartz, Douglas A.; Tennant, Allyn F.; Weisskopf, Martin C.; Zavlin, Vyacheslav E.

    2015-05-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce highstrength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications—namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  18. X-Ray Optics at NASA Marshall Space Flight Center

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  19. Observation and theory of X-ray mirages.

    Science.gov (United States)

    Magnitskiy, Sergey; Nagorskiy, Nikolay; Faenov, Anatoly; Pikuz, Tatiana; Tanaka, Mamoko; Ishino, Masahiko; Nishikino, Masaharu; Fukuda, Yuji; Kando, Masaki; Kawachi, Tetsuya; Kato, Yoshiaki

    2013-01-01

    The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell-Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography.

  20. XMM-Newton X-Ray Observation of Jupiter

    Science.gov (United States)

    Waite, J. Hunter

    2005-01-01

    Soft X-ray emission has been observed from the disk of both Jupiter and Saturn as well as from the auroral regions of these planets. The low-latitude disk emission as observed by ROSAT, the Chandra X-Ray Observatory, and XMM-Newton appears to be uniformly distributed across the disk and to be correlated with solar activity. These characteristics suggest that the disk x-rays are produced by: (1) the elastic scattering of solar X-rays by atmospheric neutrals and (2) the absorption of solar X-rays in the carbon K-shell followed by fluorescent emission. The carbon atoms are found in methane molecules located below the homopause. In this paper we present the results of calculations of the scattering albedo for soft x-rays. We also show the calculated x-ray intensity for a range of atmospheric abundances for Jupiter and Saturn and for a number of solar irradiance spectra. The model calculations are compared with recent x-ray observations of Jupiter and Saturn. We conclude that the emission of soft x-rays from the disks of Jupiter and Saturn can be largely explained by the scattering and fluorescence of soft x-rays. We suggest that measured x-ray intensities from the disk regions of Jupiter

  1. Characterizing a discrete-to-discrete X-ray transform for iterative image reconstruction with limited angular-range scanning in CT

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    Iterative image reconstruction in computed tomography often employs a discrete-to-discrete (DD) linear data model, and many of the aspects of the image recovery relate directly to the properties of this linear model. While much is known about the properties of the continuous X-ray, the correspond......Iterative image reconstruction in computed tomography often employs a discrete-to-discrete (DD) linear data model, and many of the aspects of the image recovery relate directly to the properties of this linear model. While much is known about the properties of the continuous X...

  2. X-ray optics of gold nanoparticles.

    Science.gov (United States)

    Letfullin, Renat R; Rice, Colin E W; George, Thomas F

    2014-11-01

    Gold nanoparticles have been investigated as contrast agents for traditional x-ray medical procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance the contrast of the detected x-ray image. Here we use the Kramers-Kronig relation for complex atomic scattering factors to find the real and imaginary parts of the index of refraction for the medium composed of single-element materials or compounds in the x-ray range of the spectrum. These complex index of refraction values are then plugged into a Lorenz-Mie theory to calculate the absorption efficiency of various size gold nanoparticles for photon energies in the 1-100 keV range. Since the output from most medical diagnostic x-ray devices follows a wide and filtered spectrum of photon energies, we introduce and compute the effective intensity-absorption-efficiency values for gold nanoparticles of radii varying from 5 to 50 nm, where we use the TASMIP model to integrate over all spectral energies generated by typical tungsten anode x-ray tubes with kilovolt potentials ranging from 50 to 150 kVp.

  3. Study of Radiation Shielding Properties of selected Tropical Wood Species for X-rays in the 50-150 keV Range

    Directory of Open Access Journals (Sweden)

    S. Aggrey-Smith

    2016-03-01

    Full Text Available This paper compares the attenuation coefficients of 20 tropical hard wood species based on their linear and mass attenuation and half value layer (HVL properties for X-rays of energy 50–150 keV using a narrow collimated beam from a Cs-137 source. The narrow collimated beam method made corrections from multiple and small-angle scatterings of photons unnecessary. The attenuation depended on the chemical composition and densities of the wood species. The linear attenuation coefficients of wood species at 50–150 keV were highest for Pterygota macrocarpa (4.53 m−1 and lowest for Antiaris africana (1.24 m−1; the mass attenuation coefficient was highest for Triplochiton scleroxylon (17.62 m2/kg and lowest for Nesogordonia papaverifera (2.27 m2/kg.The HVL was highest for Antiaris africana (0.27 m and lowest for Pterygota macrocarpa (0.149 m. Pterygota macrocarpa of about 0.36 m thickness could serve as a more affordable radiation shielding material against secondary scatter and leakage radiations in place of lead, copper or concrete for low X-ray radiations up to 150 keV.

  4. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  5. COSMOLOGICAL CONSTRAINTS FROM SUNYAEV-ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg{sup 2} OF THE SOUTH POLE TELESCOPE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); De Haan, T.; Dudley, J. P. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Reichardt, C. L. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Andersson, K.; Bazin, G.; Desai, S. [Department of Physics, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Armstrong, R. [National Center for Supercomputing Applications, University of Illinois, 1205 West Clark Street, Urbana, IL 61801 (United States); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bautz, M. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bayliss, M. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Brodwin, M. [Department of Physics, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Cho, H. M. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Clocchiatti, A., E-mail: bbenson@kicp.uchicago.edu [Departamento de Astronoma y Astrofsica, PUC Casilla 306, Santiago 22 (Chile); and others

    2013-02-15

    We use measurements from the South Pole Telescope (SPT) Sunyaev-Zel'dovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while jointly fitting for cosmology. The method is generalizable to multiple cluster observables, and self-consistently accounts for the effects of the cluster selection and uncertainties in cluster mass calibration on the derived cosmological constraints. We apply this method to a data set consisting of an SZ-selected catalog of 18 galaxy clusters at z > 0.3 from the first 178 deg{sup 2} of the 2500 deg{sup 2} SPT-SZ survey, with 14 clusters having X-ray observations from either Chandra or XMM-Newton. Assuming a spatially flat {Lambda}CDM cosmological model, we find the SPT cluster sample constrains {sigma}{sub 8}({Omega} {sub m}/0.25){sup 0.30} = 0.785 {+-} 0.037. In combination with measurements of the cosmic microwave background (CMB) power spectrum from the SPT and the seven-year Wilkinson Microwave Anisotropy Probe data, the SPT cluster sample constrains {sigma}{sub 8} = 0.795 {+-} 0.016 and {Omega} {sub m} = 0.255 {+-} 0.016, a factor of 1.5 improvement on each parameter over the CMB data alone. We consider several extensions beyond the {Lambda}CDM model by including the following as free parameters: the dark energy equation of state (w), the sum of the neutrino masses ({Sigma}m {sub {nu}}), the effective number of relativistic species (N {sub eff}), and a primordial non-Gaussianity (f {sub NL}). We find that adding the SPT cluster data significantly improves the constraints on w and {Sigma}m {sub {nu}} beyond those found when using measurements of the CMB, supernovae, baryon acoustic oscillations, and the Hubble constant. Considering each extension independently, we best constrain w = -0.973 {+-} 0.063 and the sum of neutrino masses {Sigma}m {sub {nu}} < 0.28 eV at 95

  6. The Rainwater Memorial Calibration Facility for X-Ray Optics

    DEFF Research Database (Denmark)

    Brejnholt, Nicolai; Christensen, Finn Erland; Hailey, Charles J.

    2011-01-01

    The Nuclear Spectroscopic Telescope ARray (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5–80 keV) telescope to orbit. The ground calibration of the optics posed a challenge as the need to suppress finite source distance effects over the full optic...

  7. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  8. Soft X-ray optics

    CERN Document Server

    Spiller, Eberhard A

    1993-01-01

    This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction.

  9. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  10. The Sun's X-ray Emission During the Recent Solar Minimum

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  11. The Astro-H High Resolution Soft X-Ray Spectrometer

    Science.gov (United States)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarell, Phillip; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; hide

    2016-01-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  12. X-Ray Optics for the 2020s

    Science.gov (United States)

    Zhang, William

    2011-01-01

    Three factors characterize an X-ray optics technology: angular resolution, effective area per unit mass, and production cost per unit effective area. In general, these three factors are always in conflict with one another. Every telescope that has flown so far represents an astronomically useful compromise of these factors. Of three operating X-ray telescopes, Chandra has been optimized for angular resolution (0.5); Suzaku for effective area per unit mass; and both were optimized in its own way to minimize production cost. Optics for the decade of2020 requires a combination of Chandra's angular resolution and Suzaku's effective area per unit mass. In this talk I will briefly review X -ray optics fabrication techniques that have been used in the past three decades and then present my expectations for the 2020s. In particular I will propose a couple of new techniques that should be investigated for making lightweight and high resolution X-ray optics.

  13. Ion track filters in imaging X-ray astronomy

    Science.gov (United States)

    Mitrofanov, A. V.; Apel, P. Yu.

    2006-04-01

    The application of ion track filters as blocking cut-off filters for solar telescopes in imaging X-ray astronomy is presented. Ion track membranes (ITMs) of high-porosity constitute a randomly inhomogeneous medium with sub-micrometer or micrometer open pores which not only transmits X-ray or extreme ultra violet (EUV) radiation and blocks long-wavelength UV radiation, but also transfers a focused imaging pattern with high-quality for further registration by means of CCD or imaging detectors of other types. X-ray and EUV filters based on ITMs with cylindrical parallel pores were successfully used as detector filters in the solar X-ray telescopes designed and manufactured at the Lebedev Physical Institute of the Russian Academy of Sciences (LPI, Moscow).

  14. Exploring The Transient X-ray Sky With Exist

    Science.gov (United States)

    Soderberg, Alicia Margarita; EXIST Transient Science Working Group

    2009-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed hard X-ray imaging all-sky deep survey mission that will provide an unprecedented sensitivity as well as monitoring and localization capabilities to X-ray transients. One of the three major science cases for EXIST is the discovery and study of X-ray transients in the local Universe. This includes shock breakout emission from core-collapse supernovae, outbursts from ULXs and SSSs, coronal activity from flare stars, tidal disruption events, QPOs and SGR superflares. The unique optical/IR follow-up capabilities provided by EXIST's on-board IR Telescope will revolutionize our broadband understanding of these transient high-energy phenomena, in conjunction with ground-based surveys such as Pan-STARRS and LSST.

  15. Start of Eta Car's X-ray Minimum

    Science.gov (United States)

    Corcoran, Michael F.; Liburd, Jamar; Hamaguchi, Kenji; Gull, Theodore; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; hide

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using quicklook data from the XRay Telescope on Swift shows that the flux on July 30, 2014 was 4.9 plus or minus 2.0×10(exp-12) ergs s(exp-1)cm(exp-2). This flux is nearly equal to the X-ray minimum flux seen by RXTE in 2009, 2003.5, and 1998, and indicates that Eta Car has reached its X-ray minimum, as expected based on the 2024-day period derived from previous 2-10 keV observations with RXTE.

  16. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...... resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission...... measures 1-8 × 1046 cm−3. We do not observe emission above 5 MK, but our short effective exposure times restrict the spectral dynamic range. With few counts above 6 keV, we can place constraints on the presence of an additional hotter component between 5 and 12 MK of∼1046 cm−3 and ∼1043cm−3, respectively...

  17. X-ray detectors for digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, M.J.; Rowlands, J.A. [Imaging Research Program, Sunnybrook Health Science Centre, University of Toronto, Toronto, ON (Canada)

    1997-01-01

    Digital radiography offers the potential of improved image quality as well as providing opportunities for advances in medical image management, computer-aided diagnosis and teleradiology. Image quality is intimately inked to the precise and accurate acquisition of information from the x-ray beam transmitted by the patient, i.e. to the performance of the x-ray detector. Detectors for digital radiography must meet the needs of the specific radiological procedure where they will be used. Key parameters are partial resolution, uniformity of response, contrast sensitivity, dynamic range, acquisition speed and frame rate. The underlying physical considerations defining the performance of x-ray detectors for radiography will be reviewed. Some of the more promising existing and experimental detector technologies which may be suitable for digital radiography will be considered. Devices that can be employed in full-area detectors and also those more appropriate for scanning x-ray systems will be discussed. These include various approaches based on phosphor x-ray converters, where light quanta are produced as an intermediate stage, as well as direct -ray-to-charge conversion materials such as zinc cadmium telluride, amorphous selenium and crystalline silicon. (author)

  18. Discovery of X-ray pulsations from a massive star.

    Science.gov (United States)

    Oskinova, Lidia M; Nazé, Yael; Todt, Helge; Huenemoerder, David P; Ignace, Richard; Hubrig, Swetlana; Hamann, Wolf-Rainer

    2014-06-03

    X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star ξ(1) CMa. This star is a variable of β Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.

  19. XMM-Newton X-ray Observatory Guest Observer program (AO-1) at CASA

    Science.gov (United States)

    Skinner, Stephen L.

    2003-01-01

    In this research program, we obtained and analyzed X-ray observations of the Wolf-Rayet (WR) star WR 110 (HD 165688) using the XMM-Newton space-based observatory. Radio observations were also obtained using the Very Large Array (VLA) radio telescope located in New Mexico and operated by the Natl. Radio Astronomy Observatory (NRAO). This star was targeted for observations primarily because it is believed to be a single WR star without a companion. Single WR stars are thought to emit X-rays from cool plasma in shocks distributed throughout their powerful stellar winds. However, there has been little observational work done to test this idea since single WR stars are relatively weak X-ray sources and have been difficult to detect with previous generation telescopes. The launch of XMM-Newton provides a new telescope that is much more sensitive than its predecessors, allowing single WR stars to be studied in detail for the first time. X-ray emission was clearly detected from WR 110. Analysis of its spectrum yields a surprising result. Its X-ray emitting plasma is distributed over a range of temperatures and is dominated by relatively cool plasma with a characteristic temperature T is approximately 6 million K. Such plasma can be explained by existing theoretical wind shock models. However, the spectrum also shows hotter plasma whose temperature is uncertain but is thought to be in excess of T approximately 30 million K. The origin of this hotter plasma is yet unknown, but possible mechanisms are identified

  20. Development of online quasimonochromatic X-ray backlighter for ...

    Indian Academy of Sciences (India)

    Gold plasma produces continuous X-ray spectrum (M band) in this range. The spectral, spatial and temporal resolutions of the system measured are 30 mÅ, 50 μm and 1.5 ns respectively. The spectral width of the X-ray pulse is 2 Å ( E = 0.39 keV). Keywords. X-ray backlighter; quasimonochromatic; crystal spectrometer.

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both patients and physicians. Because x-ray imaging is fast and easy, it is ... Radiation Exposure Special care is taken during x-ray examinations to use ...

  4. Chandra's X-ray Vision

    Indian Academy of Sciences (India)

    1999-07-23

    Jul 23, 1999 ... GENERAL I ARTICLE. Chandra's X-ray Vision. K P Singh. Chandra X-ray Observatory (CXO) is a scientific satellite (moon/ chandra), named after the Indian-born Nobel laureate. Subrahmanyan Chandrasekhar - one of the foremost astro- physicists of the twentieth century and popularly known as. Chandra.

  5. X-Ray Exam: Ankle

    Science.gov (United States)

    ... radiation through the ankle, and black and white images of the bones and soft tissues are recorded on a computer or special X-ray film. Dense structures that block the passage of the X-ray beam through the body, such as bones, appear white. Softer body tissues, ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ...

  7. X-Ray Tomographic Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  8. Fabrication process for a gradient index x-ray lens

    Science.gov (United States)

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  9. X-RAY POLARIZATION FROM HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, T. [NASA/GSFC, Code 662, Greenbelt, MD 20771 (United States); Dorodnitsyn, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Blondin, J. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2015-12-10

    X-ray astronomy allows study of objects that may be associated with compact objects, i.e., neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically nonspherical, and likely noncircular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. Potential targets for future X-ray polarization observations are the high-mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early-type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature that depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  10. Mystery of Cometary X-Rays Solved

    Science.gov (United States)

    2000-07-01

    On July 14, 2000 NASA's Chandra X-ray Observatory imaged Comet C/1999 S4 (LINEAR) and detected X-rays from oxygen and nitrogen ions. The details of the X-ray emission, as recorded on Chandra's Advanced CCD Imaging Spectrometer, show that they are produced by collisions of ions racing away from the Sun with gas in the comet. "This observation solves one mystery. It proves how comets produce X-rays," said Dr. Carey Lisse of the Space Telescope Science Institute (STScI) leader of a team of scientists from STScI, NASA's Goddard Space Flight Center, Max Planck Institute in Germany, Johns Hopkins University, the University of California, Berkeley, and the Harvard-Smithsonian Center for Astrophysics. "With an instrument like Chandra, we can now study the chemistry of the solar wind, and observe the X-ray glow from the atmospheres of comets as well as planets such as Venus. It may even be possible to observe other, nearby solar systems." Comets, which resemble "dirty snow balls" a few miles in diameter, were thought to be too cold for such energetic emission, so the detection of X-rays by the ROSAT observatory from comet Hyakutake in 1996 was a surprise. Several explanations were suggested, but the source of cometary X-ray emission remained a puzzle until the Chandra observation of Comet C/1999 S4 (LINEAR). Chandra's imaging spectrometer revealed a strong X-ray signal from oxygen and nitrogen ions, clinching the case for the production of X-rays due to the exchange of electrons in collisions between nitrogen and oxygen ions in the solar wind and electrically neutral elements (predominantly hydrogen) in the comets atmosphere. The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on July 14, 2000 for a total of 2 ½ hours. The comet will be re-observed with Chandra during the weeks of July 29 - Aug 13. Comet C/1999 S4 (LINEAR) was discovered in September 1999 by the Lincoln Near Earth Asteroid Research (LINEAR) project, which is operated by the

  11. A multipurpose ultra-high vacuum-compatible chamber for in situ X-ray surface scattering studies over a wide range of temperature and pressure environment conditions

    Science.gov (United States)

    Ferrer, P.; Rubio-Zuazo, J.; Heyman, C.; Esteban-Betegón, F.; Castro, G. R.

    2013-03-01

    A low/high temperature (60-1000K) and pressure (10-10-3x103 mbar) "baby chamber", specially adapted to the grazing-incidence X-ray scattering station, has been designed, developed and installed at the Spanish CRG BM25 SpLine beamline at European Synchrotron Radiation Facility. The chamber has a cylindrical form with 100 mm of diameter, built on a 360° beryllium nipple of 150 mm height. The UHV equipment and a turbo pump are located on the upper part of the chamber to leave a wide solid angle for exploring reciprocal space. The chamber features 4 CF16 and 5 CF40 ports for electrical feed through and leak valves, ion gun, etc. The heat exchanger is a customized compact LN2 (or LHe) continuous flow cryostat. The sample is mounted on a Mo support on the heat exchanger, which has in the back side a BORALECTRIC® Heater Elements. Experiments of surfaces/interfaces/ multilayer materials, thin films or single crystals in a huge variety of environments can be performed, also in situ studies of growth or evolution of the samples. Data measurement can be collected with a punctual and a bi-dimensional detector, being possible to simultaneously use them.

  12. Microscopic structures of tri-n-butyl phosphate/n-octane mixtures by X-ray and neutron scattering in a wide q range.

    Science.gov (United States)

    Motokawa, Ryuhei; Suzuki, Shinichi; Ogawa, Hiroki; Antonio, Mark R; Yaita, Tsuyoshi

    2012-02-02

    Tri-n-butyl phosphate (TBP) is an important extractant for separating hexavalent uranium and tetravalent plutonium from used nuclear fuel by solvent extraction. In such solvent extractions using TBP, the organic phase occasionally separates into two organic phases, namely, light and heavy organic phases. The latter one in particular is called the third phase. The purpose of this work is to elucidate the mechanism whereby the third phase forms in biphasic liquid-liquid solvent extraction of heavy metal ions. Toward this end, small- and wide-angle X-ray and neutron scattering (SWAXS and SWANS) experiments were conducted to examine the microscopic structures of TBP/octane mixtures. These investigations of solute associations in TBP-containing organic phases before extraction of heavy metal ions provide insights into system performance. After the extraction of heavy metal ions, for example, the microscopic structures formed in the organic phase are likely to be correlated with the initial microscopic structures, which are revealed here. SWAXS and SWANS, with accurate estimations of incoherent scattering intensities for all solution samples, revealed the following: (i) TBP self-associates in octane, and the average distance between two TBP molecules in the TBP assemblies is evaluated as 0.9-1.0 nm; (ii) the shape of the TBP assembly is ellipsoidal; and (iii) the attractive interaction among TBP assemblies in octane is miniscule, and thus, they tend to be dispersed homogeneously due to the excluded volume effect.

  13. Development of an XSPEC-Based Spectral Analysis System for the Coded-Aperture Hard X-ray Balloon Payload EXITE2

    OpenAIRE

    Bloser, P.F.; Chou, Y.; Grindlay, J.E.; Narita, T.; Monnelly, G.

    2001-01-01

    We present the spectral analysis system for the second-generation Energetic X-ray Imaging Telescope Experiment (EXITE2) balloon payload. EXITE2 is an imaging hard X-ray telescope using a coded-aperture mask and a NaI/CsI phoswich detector operating in the energy range 20--600 keV. The instrument was flown on a high-altitude scientific balloon from Ft. Sumner, NM on 1997 May 7-8. We describe the details of the EXITE2 spectral analysis system, with emphasis on those aspects peculiar to coded-ap...

  14. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  15. Kβ/Kα X-ray intensity ratios for some elements in the atomic number range 28≤Z≤39 at 16.896 keV

    Directory of Open Access Journals (Sweden)

    R. Yılmaz

    2017-07-01

    Full Text Available The K shell intensity ratios (Kβ/Kα have been experimentally determined for some elements in the atomic number range 28 ≤ Z ≤ 39 by using secondary excitation method. K X-rays emitted by samples have been counted by a Si (Li detector with 160 eV resolutions at 5.9 keV. The measured values were compared with the theoretical and experimental values. In general, the values obtained are in good agreement with the calculated values.

  16. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; hide

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  17. X-Ray Optics Research

    Science.gov (United States)

    1990-09-20

    OF FUNDING NUMBERS Building 410 PORM POET TS OKUI Bolig FBDC2032648ELEMENT NO. NO. NO ACCESiON NO 11. TITLE (include Security Classification) X - Ray Optics Research...by block number) This report describes work conducted during the period I October 1987 through 30 April 1990, under Contract AFOSR-88-00l0, " X - Ray Optics Research...growth and structure of multilayer interfaces. This capability is central to the development of future materials for multilayer x - ray optics , because

  18. Thin Cryogenic X-ray Windows

    CERN Document Server

    Niinikoski, T O; Davenport, M; Elias, N; Aune, S; Franz, J

    2009-01-01

    We describe the construction and tests of cryogenic X-ray windows of 47 mm diameter made of 15 ìm thick polypropylene foil glued on a UHV flange and supported with a strongback mesh machined by electro-erosion. These hermetic windows of the solar axion telescope of the CAST experiment at CERN withstand the static and dynamic pressures of the buffer gas that are normally below 130 mbar, but may reach 1.2 bar when the magnet quenches. They were tested at 60 K up to 3.5 bar static pressure without permanent deformation.

  19. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    Science.gov (United States)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  20. Optical Counterparts of X-ray Sources in the Whirlpool Galaxy

    Science.gov (United States)

    Bichon, Luis

    2018-01-01

    We present preliminary results of our analysis of the optical counterparts of X-ray sources in the Whirlpool Galaxy (M51). We perform a multi-wavelength analysis of the X-ray sources in the Whirlpool Galaxy (M51) with the Hubble Space Telescope and the Chandra X-ray Observatory. We attempt to determine the nature of the X-ray binaries in M51, by estimating the age of the stellar counterparts. Here we present preliminary results of our analysis of the X-ray sources and their optical counterparts.

  1. Diagnostic X-ray sources-present and future

    Science.gov (United States)

    Behling, Rolf; Grüner, Florian

    2018-01-01

    This paper compares very different physical principles of X-ray production to spur ideation. Since more than 120 years, bremsstrahlung from X-ray tubes has been the workhorse of medical diagnostics. Generated by X-ray segments comprised of X-ray tubes and high-voltage generators in the various medical systems, X-ray photons in the spectral range between about 16 keV and 150 keV deliver information about anatomy and function of human patients and in pre-clinical animal studies. Despite of strides to employ the wave nature of X-rays as phase sensitive means, commercial diagnostic X-ray systems available until the time of writing still rely exclusively on measuring the attenuation and scattering of X-rays by matter. Significant activities in research aim at building highly brilliant short pulse X-ray sources, based on e.g. synchrotron radiation, free electron lasers and/or laser wake-field acceleration of electrons followed by wiggling with magnetic structures or Thomson scattering in bunches of light. While both approaches, non-brilliant and brilliant sources, have different scope of application, we speculate that a combination may expand the efficacy in medical application. At this point, however, severe technical and commercial difficulties hinder closing this gap. This article may inspire further development and spark innovation in this important field.

  2. An x-ray study of massive star forming regions with CHANDRA

    Science.gov (United States)

    Wang, Junfeng

    2007-08-01

    Massive stars are characterized by powerful stellar winds, strong ultraviolet (UV) radiation, and consequently devastating supernovae explosions, which have a profound influence on their natal clouds and galaxy evolution. However, the formation and evolution of massive stars themselves and how their low-mass siblings are affected in the wind-swept and UV-radiation-dominated environment are not well understood. Much of the stellar populations inside of the massive star forming regions (MSFRs) are poorly studied in the optical and IR wavelengths because of observational challenges caused by large distance, high extinction, and heavy contamination from unrelated sources. Although it has long been recognized that X-rays open a new window to sample the young stellar populations residing in the MSFRs, the low angular resolution of previous generation X-ray telescopes has limited the outcome from such studies. The sensitive high spatial resolution X-ray observations enabled by the Chandra X- ray Observatory and the Advanced CCD Imaging Spectrometer (ACIS) have significantly improved our ability to study the X-ray-emitting populations in the MSFRs in the last few years. In this thesis, I analyzed seven high spatial resolution Chandra /ACIS images of two massive star forming complexes, namely the NGC 6357 region hosting the 1 Myr old Pismis 24 cluster (Chapter 3) and the Rosette Complex including the 2 Myr old NGC 2244 cluster immersed in the Rosette Nebula (Chapter 4), embedded clusters in the Rosette Molecular Cloud (RMC; Chapter 5), and a triggered cluster NGC 2237 (Chapter 6). The X-ray sampled stars were studied in great details. The unique power of X-ray selection of young stellar cluster members yielded new knowledge in the stellar populations, the cluster structures, and the star formation histories. The census of cluster members is greatly improved in each region. A large fraction of the X-ray detections have optical or near-infrared (NIR) stellar counterparts

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  4. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation ... x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones or joint dislocation. Bone ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine is a compact apparatus that can be taken to the patient in a hospital ... so that any change in a known abnormality can be monitored over time. Follow-up examinations are ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones ... x-rays involves exposing a part of the body to a small dose of ionizing radiation to ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... or in bones. top of page How should I prepare? Most bone x-rays require no special ... to 10 minutes. top of page What will I experience during and after the procedure? A bone ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... examination may also be necessary so that any change in a known abnormality can be monitored over ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the patient in a hospital bed or the emergency room. The x-ray tube is connected to ... equipment is relatively inexpensive and widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... here Images × Image Gallery Radiological technologist preparing to take an arm x-ray on a patient. View ... and/or your insurance provider to get a better understanding of the possible charges you will incur. ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in evaluating the hips of children with congenital problems. top of page This page was reviewed on ... Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... white on the x-ray, soft tissue shows up in shades of gray and air appears black. ... who will discuss the results with you. Follow-up examinations may be necessary. Your doctor will explain ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... little information about muscles, tendons or joints. An MRI may be more useful in identifying bone and ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media Arthritis X-ray, Interventional Radiology and ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very small dose of ionizing radiation to produce pictures of any bone in the body. It is ... a small dose of ionizing radiation to produce pictures of the inside of the body. X-rays ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page What are some common uses ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and easiest ... is used to: diagnose fractured bones or joint dislocation. demonstrate proper alignment and stabilization of bony fragments ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects in soft ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... radiation dose for this procedure varies. See the Safety page for more information about radiation dose. Women ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a form of radiation like light or radio waves. X-rays pass through most objects, including the ... individual patient's condition. Ultrasound imaging, which uses sound waves instead of ionizing radiation to create diagnostic images, ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. top of page What does ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ... radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and ... to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to no special ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... information you were looking for? Yes No Please type your comment or suggestion into the following text ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... x-ray tube is connected to a flexible arm that is extended over the patient while an ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pass through them. As a result, bones appear white on the x-ray, soft tissue shows up ... for a physician to view and assess bone injuries, including fractures, and joint abnormalities, such as arthritis. ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... abnormal bone growths and bony changes seen in metabolic conditions. assist in the detection and diagnosis of ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... may also be asked to remove jewelry, removable dental appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. Women should always inform their physician and ...

  3. Neutron Stars in X-ray Binaries and their Environments

    Indian Academy of Sciences (India)

    Biswajit Paul

    2017-09-07

    Sep 7, 2017 ... Abstract. Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary ...

  4. Search for X rays from the planet Jupiter.

    Science.gov (United States)

    Hurley, K. C.

    1972-01-01

    Actively collimated balloon-borne scintillation counters employing a special phoswich anticoincidence technique were flown a total of 5 times from Palestine, Texas. Jupiter was observed for a total of 133 min, and an upper limit to the flux of X rays present at the observation time is .016 X rays/sq cm sec in the energy range 30-100 keV. Three separate calculations are made to estimate the flux of Jovian X rays at the earth. These estimates range from .000000001 to .1 X rays/sq cm sec in the energy range 30-100 keV. It is concluded that, since there was no decametric emission at the time of the flight and there had been no significant solar activity for several days prior to the flight, no X rays were being generated at the time of the observation.

  5. Harmonic lasing in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-05-15

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned X-ray FEL facilities. In particular, LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other X-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact X-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the

  6. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  7. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  8. Design of MiSolFA Hard X-Ray Imager

    Science.gov (United States)

    Lastufka, Erica; Casadei, Diego

    2017-08-01

    Advances in the study of coronal electron-accelerating regions have so far been limited by the dynamic range of X-ray instruments. A quick and economical alternative to desirable focusing optics technology is stereo observation. The micro-satellite MiSolFA (Micro Solar-Flare Apparatus) is designed both as a stand-alone X-ray imaging spectrometer and a complement to the Spectrometer/Telescope for Imaging X-rays (STIX) mission. These instruments will be the first pair of cross-calibrated X-ray imaging spectrometers to look at solar flares from very different points of view. MiSolFA will achieve indirect imaging between 10 and 60 keV and provide spectroscopy up to 100 keV, equipped with grids producing moiré patterns in a similar way to STIX. New manufacturing techniques produce gold gratings on a graphite or silicon substrate, with periods ranging from 15 to 225 micrometers, separated by a distance of 15.47 cm, to achieve a spatial resolutions from 10" to 60" (as compared to RHESSI's separation of 150 cm and 1" resolution). We present the progress of the imager design, the performance of the first prototypes, and reach out to the community for further scientific objectives to consider in optimizing the final design.

  9. JEM-X: The X-ray monitor on INTEGRAL

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Lund, Niels; Westergaard, Niels Jørgen Stenfeldt

    2004-01-01

    The INTEGRAL X-ray monitor, JEM-X, (together with the two gamma ray instruments, SPI and IBIS) provides simultaneous imaging with arcminute angular resolution in the 3-35 keV band. The good angular resolution and low energy response of JEM-X plays an important role in the detection...... and identification of gamma ray sources as well as in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture X-ray telescope consisting of two identical detectors. Each detector has a sensitive area of 500 cm(2), and views the sky through its own coded aperture...... mask. The coded masks are located 3.4 m above the detector windows. The detector field of view is constrained by X-ray collimators (6.6degrees FOV, FWHM)....

  10. JEM-X: The X-ray monitor on INTEGRAL

    DEFF Research Database (Denmark)

    Lund, Niels; Budtz-Jørgensen, Carl; Westergaard, Niels Jørgen Stenfeldt

    1999-01-01

    The INTEGRAL X-ray monitor, JEM-X, (together with the two gamma ray instruments, SPI and IBIS) will provide simultaneous imaging with arcminute angular resolution in the 3-60 keV band. The unique angular resolution and low energy response of JEM-X will play a crucial role in the detection...... and identification of gamma ray sources as well as in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture X-ray telescope consisting of two identical detectors. Each detector has a sensitive area of 500 cm(2), and views the sky (6.6 deg FOV, FWHM) through...... its own coded aperature mask. The coded cm masks are located 3.4 m above the detector windows. The detector field of view is constrained by X-ray collimators....

  11. Flight Programs and X-ray Optics Development at MSFC

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, Martin

    2012-01-01

    The X-ray astronomy group at the Marshall Space Flight Center is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HERO balloon payload. Our current orbital program is the fabrication of a series of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG.) The details and status of these various programs are presented. A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin shell optics to the arcsecond-level. The status of these x-ray optics technology developments is also presented.

  12. The Water Recovery X-ray Rocket (WRX-R)

    Science.gov (United States)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  13. New trends in space x-ray optics

    Science.gov (United States)

    Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.

    2017-11-01

    The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface

  14. Why Do I Need X-Rays?

    Science.gov (United States)

    ... Child at Risk for Early Childhood Tooth Decay? Pacifiers Have Negative and Positive Effects The History of ... Sets the Record Straight on Dental X-Rays Types of X-Rays X-Rays Help Predict Permanent ...

  15. Hard X-ray Vela supernova observation on rocket experiment WRX-R

    Science.gov (United States)

    Stehlikova, V.; Urban, M.; Nentvich, O.; Daniel, V.; Sieger, L.; Tutt, J.

    2017-07-01

    This paper presents a hard X-ray telescope for the Vela nebula observation during a sounding rocket flight. The Water Recovery X-ray Rocket (WRX-R) experiment is organised by the Pennsylvania State University (PSU), USA with a primary payload of a soft X-ray spectroscope. The Czech team developed a hard X-ray Lobster-eye telescope as a secondary payload. The Czech experiment’s astrophysical object of study is the Vela pulsar in the centre of the Vela nebula.

  16. Nanometer x-ray lithography

    Science.gov (United States)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  17. A hard X-ray study of the ultraluminous X-ray source NGC 5204 X-1 with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mukherjee, E. S.; Walton, D. J.; Bachetti, M.

    2015-01-01

    We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by the Nuclear Spectroscopic Telescope Array and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the broadband...

  18. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    Science.gov (United States)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  19. Center for X-Ray Optics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  20. High-resolution x-ray characterization of mosaic crystals for hard x-ray astronomy

    Science.gov (United States)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2012-04-01

    GaAs, Cu, CdTe, and CdZnTe crystals have been studied as optical elements for lenses for hard x-ray astronomy. High-resolution x-ray diffraction at 8 keV in Bragg geometry and at synchrotron at energies up to 500 keV in Laue geometry has been used. A good agreement was found between the mosaicity evaluated in Bragg geometry at 8 keV with x-ray penetration of the order of few tens of micrometers and that derived at synchrotron in transmission Laue geometry at higher x-ray energies. Mosaicity values in a range between a few to 150 arcsec were found in all the samples but, due to the presence of crystal grains in the cm range, CdTe and CdZnTe crystals were found not suitable. Cu crystals exhibit a mosaicity of the order of several arcmin; they indeed were found to be severely affected by cutting damage which could only be removed with a very deep etching. The full width at half maximum of the diffraction peaks decreased at higher x-ray energies showing that the peak broadening is affected by crystallite size. GaAs crystals grown by Czochralski method showed a mosaic spread up to 30 arcsec and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread was also evaluated.

  1. X-ray Cryogenic Facility (XRCF) Handbook

    Science.gov (United States)

    Kegley, Jeffrey R.

    2016-01-01

    The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama

  2. X-Ray and optical study of low core density globular clusters NGC6144 and E3

    NARCIS (Netherlands)

    Lan, S.-H.; Kong, A.K.H.; Verbunt, F.W.M.|info:eu-repo/dai/nl/068970374; Lewin, W.H.G.; Bassa, C.G.; Anderson, S.F.; Pooley, D.

    2010-01-01

    We report on the Chandra X-ray Observatory and Hubble Space Telescope (HST) observations of two low coredensity globular clusters, NGC6144 and E3. By comparing the number of X-ray sources inside the half-mass radius to those outside, we found six X-ray sources within the half-mass radius of NGC6144,

  3. Space Telescopes

    Science.gov (United States)

    2010-01-01

    Proc 6317:OT1–OT9 Serlemitsos PJ, Jahota L, Soong Y (plus 14 authors) (1995) The X-ray telescope on board ASCA. Pub Astron Soc Jap 47:105–114...Serlemitsos PJ, Soong Y, Chan K-W (plus 31 authors) (2007) The X-ray telescope on board Suzaku. Pub Astron Soc Jap 59:9–21 Shimizu T (2004) Solar-B solar

  4. Automatic Identification of Solar X-Ray Bright Points in Hinode X-Ray Data

    Science.gov (United States)

    Adams, M. L.; Tennant, Allyn F.; Cirtain, J. W.

    2010-01-01

    We have automated a method that is used to find point sources in Chandra X-ray telescope data, to identify solar bright points in Hinode X-ray data. This tool, called lextrct, first identifies candidate sources that are brighter than the surrounding background. The algorithm also allows selected pixels to be excluded from the source-finding, thus allowing saturated pixels (from flares and/or active regions) to be ignored. We then use lextrct to fit the sources to two-dimensional, elliptical Gaussians. The size and orientation give an approximation of the shape of the bright points. We are in the process of analyzing observations through the Al_poly filter with a four-second exposure time, to obtain a catalogue of bright points, which will include their sizes, lifetimes, intensities, and position on the solar disk

  5. Einstein X-ray observations of M101

    Science.gov (United States)

    Trinchieri, G.; Fabbiano, G.; Romaine, S.

    1990-01-01

    The Einstein X-ray observations of the face-on spiral galaxy M101 are presented. The global X-ray luminosity L(x) of M101 is about 1.2 x 10 to the 40th ergs/s for D = 7.2 Mpc, consistent with the expected X-ray luminosity of normal spiral galaxies of its optical magnitude. The X-ray emission is mostly due to very luminous individual sources, with L(x) greater than 10 to the 38th ergs/s each, most likely very massive accreting binary systems. The data suggest a deficiency of sources in the luminosity range of L(x) from about 10 to the 37th to about 10 to the 38th ergs/s, which would indicate that the luminosity distribution of the X-ray sources in M101 might be different from that of M31 or M33.

  6. Classification of X-ray point sources in external galaxies

    Science.gov (United States)

    Vrtilek, Saeqa Dil; Islam, Nazma; Kim, Dong-Woo; McCollough, Michael

    2017-08-01

    The exquisite spatial resolution of the Chandra X-ray satellite allows us to resolve individual X-ray point sources in external galaxies. We have extracted data on extragalactic X-ray binary candidates from 150 external galaxies including a selection of elliptical, spiral, and starburst galaxies with a range of metallicities. By using X-ray binaries containing neutron stars or black holes from our own Galaxy that were multiply observed by Chandra as a training set we classify the accretion type of each object individually identified in the external galaxies. We find systematic differences in the binary populations of different classes of galaxy. Our study provides information on populations of X-ray sources in different galaxy types which has implications for the evolution of galaxies, as well as clues about how the different classes of XRBs are related to each other.

  7. X-ray characterization by energy-resolved powder diffraction

    Directory of Open Access Journals (Sweden)

    G. Cheung

    2016-08-01

    Full Text Available A method for single-shot, nondestructive characterization of broadband x-ray beams, based on energy-resolved powder diffraction, is described. Monte-Carlo simulations are used to simulate data for x-ray beams in the keV range with parameters similar to those generated by betatron oscillations in a laser-driven plasma accelerator. The retrieved x-ray spectra are found to be in excellent agreement with those of the input beams for realistic numbers of incident photons. It is demonstrated that the angular divergence of the x rays can be deduced from the deviation of the detected photons from the Debye-Scherrer rings which would be produced by a parallel beam. It is shown that the angular divergence can be measured as a function of the photon energy, yielding the angularly resolved spectrum of the input x-ray beam.

  8. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    (and two computing hurdles that result from the corresponding increase in data volume) for the detector community to overcome in order to realize the full potential of BES neutron and X-ray facilities. Resolving these detector impediments will improve scientific productivity both by enabling new types of experiments, which will expand the scientific breadth at the X-ray and neutron facilities, and by potentially reducing the beam time required for a given experiment. These research priorities are summarized in the table below. Note that multiple, simultaneous detector improvements are often required to take full advantage of brighter sources. High-efficiency hard X-ray sensors: The fraction of incident particles that are actually detected defines detector efficiency. Silicon, the most common direct-detection X-ray sensor material, is (for typical sensor thicknesses) 100% efficient at 8 keV, 25%efficient at 20 keV, and only 3% efficient at 50 keV. Other materials are needed for hard X-rays. Replacement for 3He for neutron detectors: 3He has long been the neutron detection medium of choice because of its high cross section over a wide neutron energy range for the reaction 3He + n —> 3H + 1H + 0.764 MeV. 3He stockpiles are rapidly dwindling, and what is available can be had only at prohibitively high prices. Doped scintillators hold promise as ways to capture neutrons and convert them into light, although work is needed on brighter, more efficient scintillator solutions. Neutron detectors also require advances in speed and resolution. Fast-framing X-ray detectors: Today’s brighter X-ray sources make time-resolved studies possible. For example, hybrid X-ray pixel detectors, initially developed for particle physics, are becoming fairly mature X-ray detectors, with considerable development in Europe. To truly enable time-resolved studies, higher frame rates and dynamic range are required, and smaller pixel sizes are desirable. High-speed spectroscopic X-ray detectors

  9. X-ray framing camera for pulsed, high current, electron beam x-ray sources

    CERN Document Server

    Failor, B H; Riordan, j c; Lojewski, D Y

    2007-01-01

    High power x-ray sources built for nuclear weapons effects testing are evolving toward larger overall diameters and smaller anode cathode gaps. We describe a framing camera developed to measure the time-evolution of these 20-50 ns pulsed x-ray sources produced by currents in the 1.5-2.5 MA range and endpoint voltages between 0.2 and 1.5 MV. The camera has up to 4 frames with 5 ns gate widths; the frames are separated by 5 ns. The image data are recorded electronically with a gated intensified CCD camera and the data are available immediately following a shot. A fast plastic scintillator (2.1 ns decay time) converts the x-rays to visible light and, for high sensitivity, a fiber optic imaging bundle carries the light to the CCD input. Examples of image data are shown.

  10. Soft x-ray excitonics

    Science.gov (United States)

    Moulet, A.; Bertrand, J. B.; Klostermann, T.; Guggenmos, A.; Karpowicz, N.; Goulielmakis, E.

    2017-09-01

    The dynamic response of excitons in solids is central to modern condensed-phase physics, material sciences, and photonic technologies. However, study and control have hitherto been limited to photon energies lower than the fundamental band gap. Here we report application of attosecond soft x-ray and attosecond optical pulses to study the dynamics of core-excitons at the L2,3 edge of Si in silicon dioxide (SiO2). This attosecond x-ray absorption near-edge spectroscopy (AXANES) technique enables direct probing of the excitons’ quasiparticle character, tracking of their subfemtosecond relaxation, the measurement of excitonic polarizability, and observation of dark core-excitonic states. Direct measurement and control of core-excitons in solids lay the foundation of x-ray excitonics.

  11. Exploring transient X-ray sky with Einstein Probe

    Science.gov (United States)

    Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.

    2017-10-01

    The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.

  12. Nanofocusing refractive X-ray lenses

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Pit

    2010-02-05

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  13. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    Science.gov (United States)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Gubarev, M.; Schwartz, R. A.; Steslicki, M.; Ryan, D.; Turin, P.; Warmuth, A.; White, S. M.; Veronig, A.; Vilmer, N.; Dennis, B. R.

    2016-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a recently proposed Small Explorer (SMEX) mission that will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of two individual x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This SMEX mission is made possible by past experience with similar instruments on two sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI will image the Sun with a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 to 100 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  14. Enhancement of coherent X-ray diffraction from nanocrystals by introduction of X-ray optics.

    Science.gov (United States)

    Robinson, Ian; Pfeiffer, Franz; Vartanyants, Ivan; Sun, Yugang; Xia, Younan

    2003-09-22

    Coherent X-ray Diffraction is applied to investigate the structure of individual nanocrystalline silver particles in the 100nm size range. In order to enhance the available signal, Kirkpatrick-Baez focusing optics have been introduced in the 34-ID-C beamline at APS. Concerns about the preservation of coherence under these circumstances are addressed through experiment and by calculations.

  15. Monte Carlo simulations of high-speed, time-gated microchannel-plate-based x-ray detectors: saturation effects in dc and pulsed modes and detector dynamic range.

    Science.gov (United States)

    Kruschwitz, Craig A; Wu, Ming; Moy, Ken; Rochau, Greg

    2008-10-01

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)-based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. A new model of charge buildup on the walls of the MCP channels is briefly described. The simulation results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser, and good agreement is found. These results indicate that a weak saturation can change the exponent of gain with voltage and that a strong saturation leads to a gain plateau. These results also demonstrate that the dynamic range of a MCP in pulsed mode has a value of between 10(2) and 10(3).

  16. Determining the short-range spin correlations in the spin-chain Li2CuO2 and CuGeO3 compounds using resonant inelastic x-ray scattering.

    Science.gov (United States)

    Monney, Claude; Bisogni, Valentina; Zhou, Ke-Jin; Kraus, Roberto; Strocov, Vladimir N; Behr, Günter; Málek, Jiři; Kuzian, Roman; Drechsler, Stefan-Ludwig; Johnston, Steve; Revcolevschi, Alexandre; Büchner, Bernd; Rønnow, Henrik M; van den Brink, Jeroen; Geck, Jochen; Schmitt, Thorsten

    2013-02-22

    We report a high-resolution resonant inelastic soft x-ray scattering study of the quantum magnetic spin-chain materials Li(2)CuO(2) and CuGeO(3). By tuning the incoming photon energy to the oxygen K edge, a strong excitation around 3.5 eV energy loss is clearly resolved for both materials. Comparing the experimental data to many-body calculations, we identify this excitation as a Zhang-Rice singlet exciton on neighboring CuO(4) plaquettes. We demonstrate that the strong temperature dependence of the inelastic scattering related to this high-energy exciton enables us to probe short-range spin correlations on the 1 meV scale with outstanding sensitivity.

  17. Soft X-ray multilayers and filters

    CERN Document Server

    Wang Zhan Shan; Tang Wei Xing; Qin Shuji; Zhou Bing; Chen Ling Ya

    2002-01-01

    The periodic and non-periodic multilayers were designed by using a random number to change each layer and a suitable merit function. Ion beam sputtering and magnetron sputtering were used to fabricate various multilayers and beam splitters in soft X-ray range. The characterization of multilayers by small angle X-ray diffraction, Auger electron spectroscopy, Rutherford back scattering spectroscopy and reflectivity illustrated the multilayers had good structures and smooth interlayers. The reflectivity and transmission of a beam splitter is about 5%. The fabrication and transmission properties of Ag, Zr were studied. The Rutherford back scattering spectroscopy and auger electron spectroscopy were used to investigate the contents and distributions of impurities and influence on qualities of filters. The attenuation coefficients were corrected by the data obtained by measurements

  18. X-Ray Polarimetry with GEMS

    Science.gov (United States)

    Strohmayer, Tod

    2011-01-01

    The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges

  19. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... An x-ray (radiograph) is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dislocations. In elderly or patients with osteoporosis, a hip fracture may be clearly seen on a CT scan, while it may be barely seen, if at all, on a hip x-ray. For suspected spine injury or other ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... This ensures that those parts of a patient's body not being imaged receive minimal radiation ... x-ray images are among the clearest, most detailed views of ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... may be placed over your pelvic area or breasts when feasible to protect from ... chance of cancer from excessive exposure to radiation. However, the benefit ...

  5. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and easiest way for your doctor ... shin), ankle or foot. top of page What are some common uses of the ... bones or joint dislocation. demonstrate proper alignment and stabilization of bony ...

  7. X-rays and magnetism.

    Science.gov (United States)

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... bear denotes child-specific content. Related Articles and Media ... Images related to X-ray (Radiography) - Bone Sponsored by ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluated). MRI can also detect subtle or occult fractures or bone bruises (also called bone contusions or microfractures) not visible on x-ray images. CT is being used widely to assess trauma patients in ... fractures, subtle fractures or dislocations. In elderly or patients ...

  11. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... pelvis and an image is recorded on special film or a computer. This image shows the bones of the pelvis, which include the two hip bones, plus the sacrum and the coccyx (tailbone). The X-ray image is black and white. Dense body parts that block the passage of the X- ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... any possibility that they are pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. A Word About Minimizing ... imaging tests and treatments have special pediatric considerations. The teddy ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... way for your doctor to view and assess bone fractures, injuries and joint abnormalities. This exam requires little ... way for a physician to view and assess bone injuries, including fractures, and joint abnormalities, such as arthritis. X-ray ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for a physician to view and assess bone injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it ...

  15. Eosinophilic granuloma - x-ray of the skull (image)

    Science.gov (United States)

    ... x-ray of the skull shows an eosinophilic granuloma (a lesion made-up of a type of ... This condition can range from a single eosinophilic granuloma to massive infiltration of skin, bone, and body ...

  16. Light Weight, Scalable Manufacturing of Telescope Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future X-ray astronomy missions will require X-ray optics that have large effective areas, are lightweight, and cost effective. Recent X-ray telescopes, such...

  17. Spectral and timing properties of neutron-star low-mass X-ray binaries

    NARCIS (Netherlands)

    Lyu, Ming

    2016-01-01

    In this thesis I analyzed the neutron-star low-mass X-ray binaries using data from several X-ray telescopes. I found that the relations of fluxes of different radiation components in 4U 1636-53 is more complicated than what the simple reflction model predicts. This may be due to either changes in

  18. The Athena X-ray Integral Field Unit (X-IFU)

    NARCIS (Netherlands)

    Barret, Didier; Lam Trong, Thien; den Herder, Jan-Willem; Piro, Luigi; Barcons, Xavier; Huovelin, Juhani; Kelley, Richard; Mas-Hesse, J. Miguel; Mitsuda, Kazuhisa; Paltani, Stéphane; Rauw, Gregor; RoŻanska, Agata; Wilms, Joern; Barbera, Marco; Bozzo, Enrico; Ceballos, Maria Teresa; Charles, Ivan; Decourchelle, Anne; den Hartog, Roland; Duval, Jean-Marc; Fiore, Fabrizio; Gatti, Flavio; Goldwurm, Andrea; Jackson, Brian; Jonker, Peter; Kilbourne, Caroline; Macculi, Claudio; Mendez, Mariano; Molendi, Silvano; Orleanski, Piotr; Pajot, François; Pointecouteau, Etienne; Porter, Frederick; Pratt, Gabriel W.; Prêle, Damien; Ravera, Laurent; Renotte, Etienne; Schaye, Joop; Shinozaki, Keisuke; Valenziano, Luca; Vink, Jacco; Webb, Natalie; Yamasaki, Noriko; Delcelier-Douchin, Françoise; Le Du, Michel; Mesnager, Jean-Michel; Pradines, Alice; Branduardi-Raymont, Graziella; Dadina, Mauro; Finoguenov, Alexis; Fukazawa, Yasushi; Janiuk, Agnieszka; Miller, Jon; Nazé, Yaël; Nicastro, Fabrizio; Sciortino, Salvatore; Torrejon, Jose Miguel; Geoffray, Hervé; Hernandez, Isabelle; Luno, Laure; Peille, Philippe; André, Jérôme; Daniel, Christophe; Etcheverry, Christophe; Gloaguen, Emilie; Hassin, Jérémie; Hervet, Gilles; Maussang, Irwin; Moueza, Jérôme; Paillet, Alexis; Vella, Bruno; Campos Garrido, Gonzalo; Damery, Jean-Charles; Panem, Chantal; Panh, Johan; Bandler, Simon; Biffi, Jean-Marc; Boyce, Kevin; Clénet, Antoine; DiPirro, Michael; Jamotton, Pierre; Lotti, Simone; Schwander, Denis; Smith, Stephen; van Leeuwen, Bert-Joost; van Weers, Henk; Brand, Thorsten; Cobo, Beatriz; Dauser, Thomas; de Plaa, Jelle; Cucchetti, Edoardo

    2016-01-01

    The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5" pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5

  19. "{Deposition and characterization of multilayers on thin foil x-ray

    DEFF Research Database (Denmark)

    Hussain, A.M.; Joensen, K.D.; Hoeghoej, P.

    1996-01-01

    W/Si and Co/C multilayers have been deposited on epoxy- replicated Au mirrors from the ASTRO-E telescope project, SPectrum Roentgen Gamma (SRG) flight mirrors, DURAN glass substrates and Si witness wafers. A characterization of the multilayers with both hard x-rays and soft x-rays is presented. T...

  20. AGN Science With The EXIST Hard X-ray Satellite

    Science.gov (United States)

    Coppi, Paolo S.; EXIST AGN Science Working Group

    2009-01-01

    With its large collection area, broad-band energy coverage from 10 to 600 keV, and all-sky monitoring capability, the proposed EXIST hard X-ray satellite mission will provide an unrivaled census of transient AGN activity in the nearby( zEXIST AGN hard X-ray survey coupled with a follow-up survey using the on-board optical/near-infrared telescope (IRT) will significantly advance our understanding of AGN physics and of how the AGN phenomenon fits into the overall process of galaxy formation.

  1. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  2. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    Science.gov (United States)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  3. Dual energy X-ray absorptiometry reference data for Greek population The impact on diagnosis of using various normal ranges for comparison

    Energy Technology Data Exchange (ETDEWEB)

    Molyvda-Athanasopoulou, E. E-mail: moly@med.auth.gr; Sioundas, A.; Hatziioannou, K

    2000-10-01

    Introduction: The interpretation of bone mineral density (BMD) measurements and the individual classification of a patient is based on a normal reference range. Unfortunately, not all the manufacturers include in their analysis-software reference values specific for each population. Methods and patients: In our study, using Lunar's DPX-L densitometer, we measured BMD of the lumbar spine and the femur of 4400 healthy women aged (25-80) years and we calculated the corresponding T- and Z-scores. Multiple regression analysis was applied to examine the dependence of BMD on age and weight. Greek data was compared with American and Italian. Results: There was a statistically significant difference between Greek and American mean values of all age groups. The Italian normal range is closer to our data and can be reliably used at least as T-scores are concerned. Still, there is a small discrepancy in Z-scores, which might influence patient management. Conclusion: We conclude that Greek reference range should be used for the assessment of osteoporosis of Greek population for better evaluation of bone status and appropriate treatment.

  4. Parabolic refractive X-ray lenses: a breakthrough in X-ray optics

    CERN Document Server

    Lengeler, B; Benner, B; Guenzler, T F; Kuhlmann, M; Tümmler, J; Simionovici, A S; Drakopoulos, M; Snigirev, A; Snigireva, I

    2001-01-01

    Refractive X-ray lenses, considered for a long time as unfeasible, have been realized with a rotational parabolic profile at our institute: The main features of the new lenses are: they focus in two directions and are free of spherical aberration. By varying the number of individual lenses in the stack the focal length can be chosen in a typical range from 0.5 to 2 m for photon energies between about 6 and 60 keV. The aperture of the lens is about 1 mm matching the angular divergence of undulator beams at 3d generation synchrotron radiation sources. They cope without problems with the heat load from the white beam of an undulator. Finally, they are easy to align and to operate. Refractive X-ray lenses can be used with hard X-rays in the same way as glass lenses can be used for visible light, if it is take into account that the numerical aperture is small (of the order 10 sup - sup 4). Being high-quality optical elements, the refractive X-ray lenses can be used for generating a focal spot in the mu m range wit...

  5. Axion mass limits from pulsar x rays

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.E.

    1984-12-01

    Axions thermally emitted by a neutron star would be converted into x rays in the strong magnetic field surrounding the star. An improvement in the observational upper limit of pulsed x rays from the Vela pulsar (PSR 0833-45) by a factor of 12 would constrain the axion mass M/sub a/ < 2 x 10/sup -3/eV if the core is non-superfluid and at temperature T/sub c/ greater than or equal to 2 x 10/sup 8/K. If the core is superfluid throughout, an improvement factor of 240 would be needed to provide the same constraint on the axion mass, while in the absence of superfluidity, an improvement factor of 200 could constrain M/sub a/ < 6 x 10/sup -4/eV. A search for modulated hard x rays from PSR 1509-58 or other young pulsars at presently attainable sensitivities may enable the setting of an upper limit for the axion mass. Observation of hard x rays from a very young hot pulsar with T/sub c/ greater than or equal to 7 x 10/sup 8/K could set a firm bound on the axion mass, since neutron superfluidity is not expected above this temperature. The remaining axion mass range 6 x 10/sup -4/eV > M/sub a/ > 10/sup -5/eV (the cosmological lower bound) can be covered by an improved Sikivie type laboratory cavity detector for relic axions constituting the galactic halo. 48 refs.

  6. A simple X-ray emitter.

    Science.gov (United States)

    Murakami, Hiroaki; Ono, Ryoichi; Hirai, Atsuhiko; Hosokawa, Yoshinori; Kawai, Jun

    2005-07-01

    A compact X-ray emission instrument is made, and the X-ray spectra are measured by changing the applied electric potential. Strong soft X-rays are observed when evacuating roughly and applying a high voltage to an insulator settled in this device. The X-ray intensity is higher as the applied voltage is increased. A light-emitting phenomenon is observed when this device emits X-rays. The present X-ray emitter is made of a small cylinder with a radius of 20 mm and a height of 50 mm. This X-ray generator has a potential to be used as an X-ray source in an X-ray fluorescence spectrometer.

  7. Space Optic Manufacturing - X-ray Mirror

    Science.gov (United States)

    1998-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. This image shows a lightweight replicated x-ray mirror with gold coatings applied.

  8. The proposed high-energy telescope (HET) for EXIST

    Science.gov (United States)

    Hong, J.; Grindlay, J.; Allen, B.; Skinner, G.; Barthelmy, S.; Gehrels, N.; Garson, A.; Krawczynski, H.; Cook, W.; Harrison, F.; Natalucci, L.; Ubertini, P.

    2010-07-01

    The hard X-ray sky now being studied by INTEGRAL and Swift and soon by NuSTAR is rich with energetic phenomena and highly variable non-thermal phenomena on a broad range of timescales. The High Energy Telescope (HET) on the proposed Energetic X-ray Imaging Survey Telescope (EXIST) mission will repeatedly survey the full sky for rare and luminous hard X-ray phenomena at unprecedented sensitivities. It will detect and localize (<20", at 5σ threshold) X-ray sources quickly for immediate followup identification by two other onboard telescopes - the Soft X-ray imager (SXI) and Optical/Infrared Telescope (IRT). The large array (4.5 m2) of imaging (0.6 mm pixel) CZT detectors in the HET, a coded-aperture telescope, will provide unprecedented high sensitivity (~0.06 mCrab Full Sky in a 2 year continuous scanning survey) in the 5 - 600 keV band. The large field of view (90° × 70°) and zenith scanning with alternating-orbital nodding motion planned for the first 2 years of the mission will enable nearly continuous monitoring of the full sky. A 3y followup pointed mission phase provides deep UV-Optical-IR-Soft X-ray and Hard X-ray imaging and spectroscopy for thousands of sources discovered in the Survey. We review the HET design concept and report the recent progress of the CZT detector development, which is underway through a series of balloon-borne wide-field hard X-ray telescope experiments, ProtoEXIST. We carried out a successful flight of the first generation of fine pixel large area CZT detectors (ProtoEXIST1) on Oct 9, 2009. We also summarize our future plan (ProtoEXIST2 & 3) for the technology development needed for the HET.

  9. New clues to the local atomic structure of short-range ordered ferric arsenate from extended X-ray absorption fine structure spectroscopy.

    Science.gov (United States)

    Mikutta, Christian; Mandaliev, Petar N; Kretzschmar, Ruben

    2013-04-02

    Short-range ordered ferric arsenate (FeAsO4 · xH2O) is a secondary As precipitate frequently encountered in acid mine waste environments. Two distinct structural models have recently been proposed for this phase. The first model is based on the structure of scorodite (FeAsO4 · 2H2O) where isolated FeO6 octahedra share corners with four adjacent arsenate (AsO4) tetrahedra in a three-dimensional framework (framework model). The second model consists of single chains of corner-sharing FeO6 octahedra being bridged by AsO4 bound in a monodentate binuclear (2)C complex (chain model). In order to rigorously test the accuracy of both structural models, we synthesized ferric arsenates and analyzed their local (absorption fine structure (EXAFS) spectroscopy. We found that both As and Fe K-edge EXAFS spectra were most compatible with isolated FeO6 octahedra being bridged by AsO4 tetrahedra (RFe-As = 3.33 ± 0.01 Å). Our shell-fit results further indicated a lack of evidence for single corner-sharing FeO6 linkages in ferric arsenate. Wavelet-transform analyses of the Fe K-edge EXAFS spectra of ferric arsenates complemented by shell fitting confirmed Fe atoms at an average distance of ∼5.3 Å, consistent with crystallographic data of scorodite and in disagreement with the chain model. A scorodite-type local structure of short-range ordered ferric arsenates provides a plausible explanation for their rapid transformation into scorodite in acid mining environments.

  10. X-Ray Emissions from Accreting White Dwarfs: A Review

    Science.gov (United States)

    Mukai, K.

    2017-01-01

    Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.

  11. Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method

    Energy Technology Data Exchange (ETDEWEB)

    Gherase, Mihai R., E-mail: mgherase@csufresno.edu; Vargas, Andres Felipe

    2017-03-15

    Size measurements of an X-ray beam produced by an integrated polycapillary X-ray lens (PXL) and X-ray tube system were performed by means of a scanning X-ray fluorescence (SXRF) method using three different metallic wires. The beam size was obtained by fitting the SXRF data with the analytical convolution between a Gaussian and a constant functions. For each chemical element in the wire an effective energy was calculated based on the incident X-ray spectrum and its photoelectric cross section. The proposed method can be used to measure the effective X-ray beam size in XRF microscopy studies.

  12. X-rays from Magnetic B-type Stars

    Science.gov (United States)

    Fletcher, Corinne; Petit, Véronique; Caballero-Nieves, Saida Maria; Nazé, Yaël; Owocki, Stan; Wade, Gregg; Cohen, David; Townsend, Richard; David-Uraz, Alexandre; Shultz, Matt

    2018-01-01

    Recent surveys have found that ~10% of OB-type stars host strong (~1kG), mostly dipolar magnetic fields. The prominent idea describing the interaction between the stellar winds and the magnetic field is the magnetically confined wind shock model. In this model, the ionized wind material is forced to move along the closed magnetic field loops and collides at the magnetic equator creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the wind material confined by the magnetic fields of these stars. Some of these magnetic B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force is predicted to cause faster wind outflows along the field lines, which could lead to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this question from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere model, developed for slow rotators and implement the physics of rapid rotation. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role an added centrifugal acceleration plays in the magnetospheres of these stars.

  13. Hard x-ray imaging polarimeter for PolariS

    Science.gov (United States)

    Hayashida, Kiyoshi; Kim, Juyong; Sadamoto, Masaaki; Yoshinaga, Keigo; Gunji, Shuichi; Mihara, Tatehiro; Kishimoto, Yuji; Kubo, Hidetoshi; Mizuno, Tsunefumi; Takahashi, Hiromitsu; Dotani, Tadayasu; Yonetoku, Daisuke; Nakamori, Takeshi; Yoneyama, Tomokage; Ikeyama, Yuki; Kamitsukasa, Fumiyoshi

    2016-07-01

    Hard X-ray imaging polarimeters are developed for the X-ray γ-ray polaeimtery satellite PolariS. The imaging polarimter is scattering type, in which anisotropy in the direction of Compton scattering is employed to measure the hard X-ray (10-80 keV) polarization, and is installed on the focal planes of hard X-ray telescopes. We have updated the design of the model so as to cover larger solid angles of scattering direction. We also examine the event selection algorithm to optimize the detection efficiency of recoiled electrons in plastic scintillators. We succeed in improving the efficiency by factor of about 3-4 from the previous algorithm and criteria for 18-30 keV incidence. For 23 keV X-ray incidence, the recoiled electron energy is about 1 keV. We measured the efficiency to detect recoiled electrons in this case, and found about half of the theoretical limit. The improvement in this efficiency directly leads to that in the detection efficiency. In other words, however, there is still a room for improvement. We examine various process in the detector, and estimate the major loss is primarily that of scintillation light in a plastic scintillator pillar with a very small cross section (2.68mm squared) and a long length (40mm). Nevertheless, the current model provides the MDP of 6% for 10mCrab sources, which are the targets of PolariS.

  14. Novel ultra-lightweight and high-resolution MEMS x-ray optics

    Science.gov (United States)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro

    2009-05-01

    We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.

  15. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    Science.gov (United States)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  16. Long-range interactions in the effective low-energy Hamiltonian of Sr2IrO4 : A core-to-core resonant inelastic x-ray scattering study

    Science.gov (United States)

    Agrestini, S.; Kuo, C.-Y.; Moretti Sala, M.; Hu, Z.; Kasinathan, D.; Ko, K.-T.; Glatzel, P.; Rossi, M.; Cafun, J.-D.; Kvashnina, K. O.; Matsumoto, A.; Takayama, T.; Takagi, H.; Tjeng, L. H.; Haverkort, M. W.

    2017-05-01

    We have investigated the electronic structure of Sr2IrO4 using core-to-core resonant inelastic x-ray scattering. The experimental spectra can be well reproduced using ab initio density functional theory based multiplet ligand field theory calculations, thereby validating these calculations. We found that the low-energy, effective Ir t2 g orbitals are practically degenerate in their crystal-field energy. We uncovered that Sr2IrO4 and iridates in general are negative charge transfer systems with large covalency and a substantial oxygen ligand hole character in the Ir t2 g Wannier orbitals. This has far reaching consequences, as not only the on-site crystal-field energies are determined by the long-range crystal structure, but, more significantly, magnetic exchange interactions will have long-range distance dependent anisotropies in the spin direction. These findings set constraints and show pathways for the design of d5 materials that can host compasslike magnetic interactions.

  17. Thin Films for X-ray Optics

    Science.gov (United States)

    Conley, Raymond

    Laue lens, however my advancements in MLL fabrication technology led to new generations of deposition instruments that were better suited. In order to re-purpose the APS Rotary Deposition System, a concept to upgrade the machine with a suborbital planetary is discussed. The APS Modular Deposition System (MDS) is the state of the art instrument that was designed to keep APS at the forefront of x-ray optics technology for the foreseeable future. By including flexibility in the design, the machine is ideally suited for research on all types of multilayers and thin-films for x-ray optics applications. A new method for in-situ surface metrology is presented which relies on the infrastructure provided by the MDS. The chapter concludes with discussion on several types of reflective multilayers that span a broad range of x-ray wavelengths, from soft x-rays (below 5-10 keV) to hard x-rays (above 5-10keV). A method for fabrication of precision elliptically-figured mirrors called profile coating (conceived at the APS) is covered in Chapter 3. Profile-coating is a technique where a specially shaped mask is designed to partially obscure the sputtering source in order to produce a coating with a specially defined film thickness profile perpendicular to substrate translation. Source shape modeling and mask calculation is presented. Initially, Au was used as the filler material for profile coating, however I found that Pt offered better performance. Rh has also been used to fabricate profile-coated KB mirrors. Performance and commissioning results for the APS profile-coating deposition system (another machine designed by myself) is included. Chapter 4 covers my work on multilayer Laue lens. Motivation and current status are presented, and the nomenclature we devised to name the various MLL types is listed. Following this, a theoretical overview is provided. Important advancements I have spearhead in this field are included, such as the introduction of metal silicides, reactive

  18. Effect of X-Rays on the Mechanical Properties of Aluminized FEP Teflon(trademark)

    Science.gov (United States)

    Gaier, James R.; Brinkmeier, Michael R.; Gaier, Elizabeth M.

    1999-01-01

    Pieces of the multilayer insulation (MLI) that is integral to the thermal control of the Hubble Space Telescope (HST) have been returned by two servicing missions after 3.6 and 6.8 years in orbit. They reveal that the outer layer, which is made from 5 mil (0.13 mm) thick aluminized fluorinated ethylenepropylene (FEP) Teflon. has become severely embrittled. Although possible agents of this embrittlement include electromagnetic radiation across the entire solar spectrum, trapped particle radiation, atomic oxygen, and thermal cycling, intensive investigations have not yielded unambiguous causes. Previous studies utilizing monoenergetic photons in the 69-1900 eV range did not cause significant embrittlement, even at much higher doses than were experienced by the HST MLI. Neither did x-rays in the 3 to 10 keV range generated in a modified electron bean evaporator. An antidotal aluminized FEP sample that was exposed to an intensive dose from unfiltered Mo x-ray radiation from a rotating anode generator, however, did show the requisite embrittlement. Thus, a study was undertaken to determine the effects of x-ray exposure on the embrittlement of aluminized FEP in hopes that it might elucidate the HST MLI degradation mechanism. Tensile specimens of aluminized 5 mil thick FEP were exposed to a constant fluence of unfiltered x-ray radiation from a Mo target whose maximum energy ranged from 20-60 kV. Other samples were annealed, thermally cycled (100x) between 77-333 K, or cycled and irradiated. Tensile tests and density measurements were then performed on the samples. Only the samples which had been irradiated had the drastically reduced elongation-to-break, characteristic of the HST samples. Thermal cycling may accelerate the embrittlement, but the effect was near the scatter in the measurements. Annealing and thermal cycling had no apparent effect. Only the samples which had been irradiated and annealed showed significant density increases, likely implicating polymer chain

  19. Cryotomography x-ray microscopy state

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  20. Center for X-ray Optics, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  1. X-Ray Exam: Scoliosis (For Parents)

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Scoliosis KidsHealth / For Parents / X-Ray Exam: Scoliosis What's in this article? What It Is Why ... You Have Questions Print What It Is A scoliosis X-ray is a relatively safe and painless ...

  2. SIXE: An X-ray experiment for a minisatellite

    Science.gov (United States)

    Isern, Jordi; Bravo, Eduardo; Gómez-Gomar, Jordi; Hernanz, Margarida; García-Berro, Enrique; Giovannelli, Franco; La Padula, Cesare D.; Sabau, Lola; Gutiérrez, Jordi; José, Jordi; García-Senz, Domingo; Bausells, Joan; Cabestany, Joan; Madrenas, Jordi; Angulo, Manuel; Fernández-Valbuena, Manuel; Herrera, Erardo; Reina, Manuel; Talavera, Antonio

    1999-12-01

    SIXE (Spanish Italian X-ray Experiment) is an X-ray detector with geometric area of 2300 cm2, formed by four identical gas-filled Multicell Proportional Counters, and devoted to study the long term spectroscopy of selected X-ray sources in the energy range 3-50 keV. The main characteristics of SIXE are: time accuracy of 1 microsecond, spectral resolution of 5% for E>35 keV and 46/E% for ESpanish MINISAT-02 satellite, in a 3 years long mission starting about 2002-2004. The main scientific goal is the study of the short and long term variability of a selected set of X-ray sources, such as quasars, Seyfert galaxies, high and low mass X-ray binaries, etc. The philosophy of the mission will provide the unique opportunity for the study of X-ray sources with a temporal accuracy of 1 microsecond all through the time range 10-5:107 s.

  3. Observational Aspects of Hard X-ray Polarimetry

    Science.gov (United States)

    Chattopadhyay, Tanmoy

    2016-04-01

    of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a focal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant-4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomultiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant-4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this scenario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization measurements but could be sensitive to it. There have been several attempts in past in

  4. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10...... range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle...

  5. Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59-25.26 keV photon energy range and their density profile using x-ray computed tomography.

    Science.gov (United States)

    Marashdeh, M W; Bauk, S; Tajuddin, A A; Hashim, R

    2012-04-01

    The mass attenuation coefficients of Rhizophora spp. binderless particleboard with four different particle sizes (samples A, B, C and D) and natural raw Rhizophora spp. wood (sample E) were determined using single-beam photon transmission in the energy range between 16.59 and 25.26 keV. This was done by determining the attenuation of K(α1) X-ray fluorescent (XRF) photons from niobium, molybdenum, palladium, silver and tin targets. The results were compared with theoretical values of young-age breast (Breast 1) and water calculated using a XCOM computer program. It was found that the mass attenuation coefficient of Rhizophora spp. binderless particleboards to be close to the calculated XCOM values in water than natural Rhizophora spp. wood. Computed tomography (CT) scans were then used to determine the density profile of the samples. The CT scan results showed that the Rhizophora spp. binderless particleboard has uniform density compared to natural Rhizophora spp. wood. In general, the differences in the variability of the profile density decrease as the particle size of the pellet samples decreases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  7. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  8. NIKOLA TESLA AND THE X-RAY

    OpenAIRE

    Rade R. Babic

    2005-01-01

    After professor Wilhelm Konrad Röntgen published his study of an x-ray discovery (Academy Bulletin, Berlin, 08. 11. 1895.), Nikola Tesla published his first study of an x-ray on the 11th of March in 1896. (X-ray, Electrical Review). Until the 11th of August in 1897 he had published ten studies on this subject. All Tesla,s x-ray studies were experimental, which is specific to his work. Studying the nature of the x-ray, he established a new medical branch-radiology. He wrote:” There’s no doubt...

  9. X-ray Spectroscopy of Cooling Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  10. Lightweight and High Angular Resolution X-Ray Optics

    Science.gov (United States)

    Zhang, William W.

    2009-01-01

    The International X-ray Observatory (IXO) mission requires a lightweight and high throughput spectroscopic telescope. The fabrication, alignment, and integration of this mirror assembly require breakthroughs in many areas. In this paper we report on our recent progress in all these areas, including mirror fabrication, coating, metrology, alignment, mechanical characteristics, and their integration into mirror modules. In particular, we will also outline our plan for the next few of years, showing approaches that will progress toward reaching the 5" HPD requirement.

  11. The Relation Between Magnetic Fields and X-ray Emission for Solar Microflares and Active Regions

    Science.gov (United States)

    Kirichenko, A. S.; Bogachev, S. A.

    2017-09-01

    We present the result of a comparison between magnetic field parameters and the intensity of X-ray emission for solar microflares with Geosynchronous Operational Environmental Satellites (GOES) classes from A0.02 to B5.1. For our study, we used the monochromatic MgXII Imaging Spectroheliometer (MISH), the Full-disk EUV Telescope (FET), and the Solar PHotometer in X-rays (SphinX) instruments onboard the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon CORONAS- Photon spacecraft because of their high sensitivity in soft X-rays. The peak flare flux (PFF) for solar microflares was found to depend on the strength of the magnetic field and on the total unsigned magnetic flux as a power-law function. In the spectral range 2.8 - 36.6 Å, which shows very little increase related to microflares, the power-law index of the relation between the X-ray flux and magnetic flux for active regions is 1.48 ±0.86, which is close to the value obtained previously by Pevtsov et al. ( Astrophys. J. 598, 1387, 2003) for different types of solar and stellar objects. In the spectral range 1 - 8 Å, the power-law indices for PFF(B) and PFF(Φ) for microflares are 3.87 ±2.16 and 3 ±1.6, respectively. We also make suggestions on the heating mechanisms in active regions and microflares under the assumption of loops with constant pressure and heating using the Rosner-Tucker-Vaiana scaling laws.

  12. Cosmic X-ray Flashes Reveal Their Distance

    Science.gov (United States)

    2003-09-01

    Astronomers using X-ray, radio, and optical telescopes have announced a big leap in solving the origin of mysterious objects known as X-ray flashes (XRFs) by finding that they originate from blue star forming galaxies. This discovery of the cosmic distance scale effectively ends the widely-held speculation that XRFs are the death-cries from stars exploding in the infant universe. X-ray flashes resemble a lower energy and longer-duration version of a gamma-ray burst, an energetic explosion thought to signal the death of a massive star. The properties of XRFs led to speculation that they were gamma-ray bursts that occurred less than a few billion years after the Big Bang, and whose light had been subsequently weakened and time-stretched by the expansion of the universe. "Now that the very distant origin has been ruled out, X-ray flashes could be due to exploding massive stars, just like gamma-ray bursts" explained Dr. Joshua Bloom at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author on the paper announcing the results to be published in The Astrophysical Journal. Bloom continued: "But the explosion from an X-ray flash would need to contain less matter or less energy than a typical gamma-ray burst. Alternatively, X-ray flashes could be gamma-ray bursts viewed off-axis." These results are being discussed at the "30th Anniversary of the Discovery of Gamma-ray Bursts" conference currently being held in Sante Fe, New Mexico. The location of the sources studied by Bloom's group required a careful coordination of NASA's Chandra X-ray Observatory and Hubble Space Telescope, along with the National Radio Astronomy Observatory's Very Large Array (VLA) in Socorro, New Mexico. Chandra and the VLA provided a precise location of the fading X-ray and radio "afterglow" of two X-ray flashes known as XRF 011030 and XRF 020427. The Hubble Space Telescope was used to identify and study galaxies at these locations and estimate their distances to between

  13. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  14. A short working distance multiple crystal x-ray spectrometer

    Science.gov (United States)

    Dickinson, B.; Seidler, G.T.; Webb, Z.W.; Bradley, J.A.; Nagle, K.P.; Heald, S.M.; Gordon, R.A.; Chou, I.-Ming

    2008-01-01

    For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed ???1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K?? x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L??2 partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary. ?? 2008 American Institute of Physics.

  15. Should we X-ray Halloween candy? Revisited.

    Science.gov (United States)

    Calvanese, J

    1988-04-01

    The well-intentioned program of X-raying Halloween candy is costly. The annual expense to the 3 local hospitals in the Reno/Sparks area was $1625.62. The price to X-ray each bag ranged from $2.01 to $5.23 (average $3.38). On the basis of our total regional population statistics, the nation could be spending as much as $0.8-$1.4 million to screen Halloween candy. Radiographic screening of Halloween candy is not effective. Of the 394 X-rays taken in the 3 local hospitals, and the 669 taken in 18 outlying hospitals, no films were positive for hidden radio-opaque forein bodies. Not only is X-raying Halloween candy costly and ineffective, it also creates several problems. Children taking their candy to the hospital on Halloween night risk involvement in traffic accidents. The implication that X-rayed candy is "safe" carries potential liability. Additional drawbacks and risks arise from crowds composed mostly of children in the Radiology Dept and Emergency Room, and from disruption of vital hospital functions. In October, 1986, a program for community education and cooperation among all 3 area hospitals was developed. No X-rays were offered in the Reno/Sparks area. There were no police reports of contaminated candy for this Halloween following implementation of this program, compared to 4 reports for the preceding 2 years.

  16. Lasers, extreme UV and soft X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  17. On stellar X-ray emission

    Science.gov (United States)

    Rosner, R.; Golub, L.; Vaiana, G. S.

    1985-01-01

    Stellar X-ray astronomy represents an entirely new astronomical discipline which has emerged during the past five years. It lies at the crossroads of solar physics, stellar physics, and general astrophysics. The present review is concerned with the main physical problems which arise in connection with a study of the stellar X-ray data. A central issue is the extent to which the extrapolation from solar physics is justified and the definition (if possible) of the limits to such extrapolation. The observational properties of X-ray emission from stars are considered along with the solar analogy and the modeling of X-ray emission from late-type stars, the modeling of X-ray emission from early-type stars, the physics of stellar X-ray emission, stellar X-ray emission in the more general astrophysical context, and future prospects.

  18. AXIS - Advanced X-ray Imaging Sarellite

    Science.gov (United States)

    Loewenstein, Michael; AXIS Team

    2018-01-01

    We present an overview of the Advanced X-ray Imaging Satellite (AXIS), a probe mission concept under study to the 2020 Decadal survey. AXIS follows in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10 keV band over a 15' field of view. These capabilities are designed to attain a wide range of science goals such as (i) measuring the event horizon scale structure in AGN accretion disks and the spin of supermassive black holes through monitoring of gravitationally microlensed quasars; (ii) understanding AGN and starburst feedback in galaxies and galaxy clusters through direct imaging of winds and interaction of jets and via spatially resolved imaging of galaxies at high-z; (iii) probing the fueling of AGN by resolving the SMBH sphere of influence in nearby galaxies; (iv) investigating hierarchical structure formation and the SMBH merger rate through measurement of the occurrence rate of dual AGN and occupation fraction of SMBHs; (v) advancing SNR physics and galaxy ecology through large detailed samples of SNR in nearby galaxies; (vi) measuring the Cosmic Web through its connection to cluster outskirts. With a nominal 2028 launch, AXIS benefits from natural synergies with LSST, ELTs, ALMA, WFIRST and ATHENA, and will be a valuable precursor to Lynx. AXIS utilizes breakthroughs in the construction of light-weight X-ray optics from mono-crystalline silicon blocks, and developments in the fabrication of large format, small pixel, high readout detectors.

  19. Adjustment of a goniometer for X-rays optics calibration in the spectral range 1.5-20 KeV; Mise au point d`un goniometre pour l`etalonnage d`optiques X dans le domaine d`energie 1.5-20 KeV

    Energy Technology Data Exchange (ETDEWEB)

    Legistre, S.

    1992-10-01

    The aim of this memoir is the adjustment of a ({theta}, 2{theta}) goniometer coupled to X-rays source to calibrate mirrors (single layers like C, Ni, Au, etc... and multilayers like C/W, Si/W, etc...) in the spectral range 1.5 - 20 keV. For each kind of tested optics the adjustment of the goniometer include the procedure alignment of the different components (X-ray source, collimation slits, optics, detectors) and the first reflectivity measurements. Those measurements are compared those realized at LURE, using synchrotron radiation provided by SUPER ACO storage ring, and to a theoretical simulation.

  20. Hard X-ray Spectroscopy of Obscured AGN with NuSTAR

    Science.gov (United States)

    Balokovic, Mislav; Harrison, Fiona; NuSTAR Extragalactic Surveys Team

    2017-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has enabled studies of the local active galactic nuclei (AGN) to extend into the hard X-ray band, up to 79 keV, with unprecedented spatial resolution and sensitivity. As a part of its extragalactic program, NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift Burst Alert Telescope (Swift/BAT), selecting even the most obscured local AGN. I will highlight some of the results based on broadband X-ray spectroscopy of individual targets and present my work on the large representative sample of more than a hundred nearby obscured AGN, which constitutes the largest available atlas of hard X-ray spectra of obscured AGN to date. The high quality of the data allows us to probe the details of AGN structures such as the X-ray-emitting corona and the toroidal obscurer in the under-explored spectral window above 10 keV. I will present both phenomenological results important for synthesis models of the cosmic X-ray background, and a novel approach for constraining the geometry of the gas surrounding the supermassive black hole (including the accretion disk, the broad-line region, and the torus) from the hard X-ray band. Finally, I will discuss how what we learned from this survey of local AGN relates to deeper high-redshift X-ray surveys and AGN structure probes at other wavelengths.