WorldWideScience

Sample records for range systems based

  1. The research of binocular vision ranging system based on LabVIEW

    Science.gov (United States)

    Li, Shikuan; Yang, Xu

    2017-10-01

    Based on the study of the principle of binocular parallax ranging, a binocular vision ranging system is designed and built. The stereo matching algorithm is realized by LabVIEW software. The camera calibration and distance measurement are completed. The error analysis shows that the system fast, effective, can be used in the corresponding industrial occasions.

  2. Acquisition And Processing Of Range Data Using A Laser Scanner-Based 3-D Vision System

    Science.gov (United States)

    Moring, I.; Ailisto, H.; Heikkinen, T.; Kilpela, A.; Myllyla, R.; Pietikainen, M.

    1988-02-01

    In our paper we describe a 3-D vision system designed and constructed at the Technical Research Centre of Finland in co-operation with the University of Oulu. The main application fields our 3-D vision system was developed for are geometric measurements of large objects and manipulator and robot control tasks. It seems to be potential in automatic vehicle guidance applications, too. The system has now been operative for about one year and its performance has been extensively tested. Recently we have started a field test phase to evaluate its performance in real industrial tasks and environments. The system consists of three main units: the range finder, the scanner and the computer. The range finder is based on the direct measurement of the time-of-flight of a laser pulse. The time-interval between the transmitted and the received light pulses is converted into a continuous analog voltage, which is amplified, filtered and offset-corrected to produce the range information. The scanner consists of two mirrors driven by moving iron galvanometers. This system is controlled by servo amplifiers. The computer unit controls the scanner, transforms the measured coordinates into a cartesian coordinate system and serves as a user interface and postprocessing environment. Methods for segmenting the range image into a higher level description have been developed. The description consists of planar and curved surfaces and their features and relations. Parametric surface representations based on the Ferguson surface patch are studied, too.

  3. Measurement based scenario analysis of short-range distribution system planning

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2009-01-01

    This paper focuses on short-range distribution system planning using a probabilistic approach. Empirical probabilistic distributions of load demand and distributed generations are derived from the historical measurement data and incorporated into the system planning. Simulations with various...... feasible scenarios are performed based on a local distribution system at Støvring in Denmark. Simulation results provide more accurate and insightful information for the decision-maker when using the probabilistic analysis than using the worst-case analysis, so that a better planning can be achieved....

  4. An underwater ranging system based on photoacoustic effect occurring on target surface

    Science.gov (United States)

    Ni, Kai; Hu, Kai; Li, Xinghui; Wang, Lidai; Zhou, Qian; Wang, Xiaohao

    2016-11-01

    In this paper, an underwater ranging system based on photoacoustic effect occurring on target surface is proposed. In this proposal, laser pulse generated by blue-green laser is directly incident on target surface, where the photoacoustic effect occurs and a sound source is formed. And then the sound wave which is also called photoacoustic signal is received by the ultrasonic receiver after passing through water. According to the time delay between transmitting laser and receiving photoacoustic signal, and sound velocity in water, the distance between the target and the ultrasonic receiver can be calculated. Differing from underwater range finding by only laser, this approach can avoid backscattering of laser beam, so easier to implement. Experimental system according to this principle has been constructed to verify the feasibility of this technology. The experimental results showed that a ranging accuracy of 1 mm can be effectively achieved when the target is close to the ultrasonic receiver.

  5. An interactive system for creating object models from range data based on simulated annealing

    International Nuclear Information System (INIS)

    Hoff, W.A.; Hood, F.W.; King, R.H.

    1997-01-01

    In hazardous applications such as remediation of buried waste and dismantlement of radioactive facilities, robots are an attractive solution. Sensing to recognize and locate objects is a critical need for robotic operations in unstructured environments. An accurate 3-D model of objects in the scene is necessary for efficient high level control of robots. Drawing upon concepts from supervisory control, the authors have developed an interactive system for creating object models from range data, based on simulated annealing. Site modeling is a task that is typically performed using purely manual or autonomous techniques, each of which has inherent strengths and weaknesses. However, an interactive modeling system combines the advantages of both manual and autonomous methods, to create a system that has high operator productivity as well as high flexibility and robustness. The system is unique in that it can work with very sparse range data, tolerate occlusions, and tolerate cluttered scenes. The authors have performed an informal evaluation with four operators on 16 different scenes, and have shown that the interactive system is superior to either manual or automatic methods in terms of task time and accuracy

  6. Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mittra, J. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Murty, B.S. [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Pabi, S.K. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur 721 302 (India); Kulkarni, U.D.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer A methodology was proposed to predict amorphous forming compositions (AFCs). Black-Right-Pointing-Pointer Chemical contribution to enthalpy of mixing {proportional_to} enthalpy of amorphous for AFCs. Black-Right-Pointing-Pointer Accuracy in the prediction of AFC-range was noticed in Al-Ni-Ti system. Black-Right-Pointing-Pointer Mechanical alloying (MA) results of Al-Ni-Ti followed the predicted AFC-range. Black-Right-Pointing-Pointer Earlier MA results of Al-Ni-Ti also conformed to the predicted AFC-range. - Abstract: From the earlier works on the prediction of amorphous forming composition range (AFCR) using Miedema based model and also, on mechanical alloying experiments it has been observed that all amorphous forming compositions of a given alloy system falls within a linear band when the chemical contribution to enthalpy of the solid solution ({Delta}H{sup ss}) is plotted against the enthalpy of mixing in the amorphous phase ({Delta}H{sup amor}). On the basis of this observation, a methodology has been proposed in this article to identify the AFCR of a ternary system that is likely to be more precise than what can be obtained using {Delta}H{sup amor} - {Delta}H{sup ss} < 0 criterion. MA experiments on various compositions of Al-Ni-Ti system, producing amorphous, crystalline, and mixture of amorphous plus crystalline phases have been carried out and the phases have been characterized using X-ray diffraction and transmission electron microscopy techniques. Data from the present MA experiments and, also, from the literature have been used to validate the proposed approach. Also, the proximity of compositions, producing a mixture of amorphous and crystalline phases to the boundary of AFCR in the Al-Ni-Ti ternary has been found useful to validate the effectiveness of the prediction.

  7. A Practical, Robust and Fast Method for Location Localization in Range-Based Systems.

    Science.gov (United States)

    Huang, Shiping; Wu, Zhifeng; Misra, Anil

    2017-12-11

    Location localization technology is used in a number of industrial and civil applications. Real time location localization accuracy is highly dependent on the quality of the distance measurements and efficiency of solving the localization equations. In this paper, we provide a novel approach to solve the nonlinear localization equations efficiently and simultaneously eliminate the bad measurement data in range-based systems. A geometric intersection model was developed to narrow the target search area, where Newton's Method and the Direct Search Method are used to search for the unknown position. Not only does the geometric intersection model offer a small bounded search domain for Newton's Method and the Direct Search Method, but also it can self-correct bad measurement data. The Direct Search Method is useful for the coarse localization or small target search domain, while the Newton's Method can be used for accurate localization. For accurate localization, by utilizing the proposed Modified Newton's Method (MNM), challenges of avoiding the local extrema, singularities, and initial value choice are addressed. The applicability and robustness of the developed method has been demonstrated by experiments with an indoor system.

  8. Model-based restoration using light vein for range-gated imaging systems.

    Science.gov (United States)

    Wang, Canjin; Sun, Tao; Wang, Tingfeng; Wang, Rui; Guo, Jin; Tian, Yuzhen

    2016-09-10

    The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical model of the imaging system according to the laser transmission theory, and estimate the static point spread function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress ringing artifacts and achieve better performance in a range-gated imaging system.

  9. Efficient and Fast Implementation of Embedded Time-of-Flight Ranging System Based on FPGAs

    DEFF Research Database (Denmark)

    Zhou, Weiguo; Lyu, Congyi; Jiang, Xin

    2017-01-01

    Time-of-flight cameras perceive depth information about the surrounding environment with an amplitude-modulated near-infrared light source. The distance between the sensor and objects is calculated through measuring the time the light needs to travel. To be used in fast and embedded applications......, such as 3-D reconstruction, visual SLAM, human-robot interactions, and object detection, the 3-D imaging must be performed at high frame rates and accuracy. Thus, this paper presents a real-time field programmable gate arrays platform that calculates the phase shift and then the distance. Experimental...... results shown that the platform can acquire ranging images at the maximum frame rate of 131fps with a fine measurement precision (appropriately 5.1mm range error at 1.2m distance with the proper integration time). Low resource utilization and power consumption of the proposed system make it very suitable...

  10. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  11. Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm

    Directory of Open Access Journals (Sweden)

    Joon Heo

    2009-06-01

    Full Text Available Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.

  12. A short-range weather prediction system for South Africa based on a ...

    African Journals Online (AJOL)

    The accurate prediction of rainfall events, in terms of their timing, location and rainfall depth, is important to a wide range of social and economic applications. At many operational weather prediction centres, as is also the case at the South African Weather Service, forecasters use deterministic model outputs as guidance to ...

  13. Future Short Range Ground-Based Air Defence: System Drivers, Characteristics and Architectures

    Science.gov (United States)

    2001-03-01

    vulnerable being on the right. Although for completeness the defended asset characteristics shown in Table 1 are based upon a conventional armoured formation...Camouflage scrimmed draped visual full/thermal EMCON 4 3 2 1 Visibility line of sight occulting/obscured non line of sight "Contact static FLOT fluid...confused mel~e Armour soft semi-hard hard defensive aids Protection Digging in open under cover dug in full o/h protection AD none AAAD CAD fully

  14. FORAGES AND PASTURES SYMPOSIUM: Improving efficiency of production in pasture- and range-based beef and dairy systems.

    Science.gov (United States)

    Mulliniks, J T; Rius, A G; Edwards, M A; Edwards, S R; Hobbs, J D; Nave, R L G

    2015-06-01

    Despite overall increased production in the last century, it is critical that grazing production systems focus on improving beef and dairy efficiency to meet current and future global food demands. For livestock producers, production efficiency is essential to maintain long-term profitability and sustainability. This continued viability of production systems using pasture- and range-based grazing systems requires more rapid adoption of innovative management practices and selection tools that increase profitability by optimizing grazing management and increasing reproductive performance. Understanding the genetic variation in cow herds will provide the ability to select cows that require less energy for maintenance, which can potentially reduce total energy utilization or energy required for production, consequently improving production efficiency and profitability. In the United States, pasture- and range-based grazing systems vary tremendously across various unique environments that differ in climate, topography, and forage production. This variation in environmental conditions contributes to the challenges of developing or targeting specific genetic components and grazing systems that lead to increased production efficiency. However, across these various environments and grazing management systems, grazable forage remains the least expensive nutrient source to maintain productivity of the cow herd. Beef and dairy cattle can capitalize on their ability to utilize these feed resources that are not usable for other production industries. Therefore, lower-cost alternatives to feeding harvested and stored feedstuffs have the opportunity to provide to livestock producers a sustainable and efficient forage production system. However, increasing production efficiency within a given production environment would vary according to genetic potential (i.e., growth and milk potential), how that genetic potential fits the respective production environment, and how the grazing

  15. IMPLEMENTATION AND EVALUATION OF A MOBILE MAPPING SYSTEM BASED ON INTEGRATED RANGE AND INTENSITY IMAGES FOR TRAFFIC SIGNS LOCALIZATION

    Directory of Open Access Journals (Sweden)

    M. Shahbazi

    2012-07-01

    Full Text Available Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83 % in RMS of range error and 72 % in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90 % true positive recognition and the average of 12 centimetres 3D positioning accuracy.

  16. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    Science.gov (United States)

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  17. Wide range neutron detection system

    International Nuclear Information System (INIS)

    Todt, W.H. Sr.

    1978-01-01

    A neutron detection system for reactor control is described which is operable over a wide range of neutron flux levels. The system includes a fission type ionization chamber neutron detector, means for gamma and alpha signal compensation, and means for operating the neutron detector in the pulse counting mode for low neutron flux levels, and in the direct current mode for high neutron flux levels

  18. Development of a 3D optical scanning-based automatic quality assurance system for proton range compensators

    International Nuclear Information System (INIS)

    Kim, MinKyu; Ju, Sang Gyu; Chung, Kwangzoo; Hong, Chae-Seon; Kim, Jinsung; Ahn, Sung Hwan; Jung, Sang Hoon; Han, Youngyih; Chung, Yoonsun; Cho, Sungkoo; Choi, Doo Ho; Kim, Jungkuk; Shin, Dongho

    2015-01-01

    Purpose: A new automatic quality assurance (AutoRCQA) system using a three-dimensional scanner (3DS) with system automation was developed to improve the accuracy and efficiency of the quality assurance (QA) procedure for proton range compensators (RCs). The system performance was evaluated for clinical implementation. Methods: The AutoRCQA system consists of a three-dimensional measurement system (3DMS) based on 3DS and in-house developed verification software (3DVS). To verify the geometrical accuracy, the planned RC data (PRC), calculated with the treatment planning system (TPS), were reconstructed and coregistered with the measured RC data (MRC) based on the beam isocenter. The PRC and MRC inner surfaces were compared with composite analysis (CA) using 3DVS, using the CA pass rate for quantitative analysis. To evaluate the detection accuracy of the system, the authors designed a fake PRC by artificially adding small cubic islands with side lengths of 1.5, 2.5, and 3.5 mm on the inner surface of the PRC and performed CA with the depth difference and distance-to-agreement tolerances of [1 mm, 1 mm], [2 mm, 2 mm], and [3 mm, 3 mm]. In addition, the authors performed clinical tests using seven RCs [computerized milling machine (CMM)-RCs] manufactured by CMM, which were designed for treating various disease sites. The systematic offsets of the seven CMM-RCs were evaluated through the automatic registration function of AutoRCQA. For comparison with conventional technique, the authors measured the thickness at three points in each of the seven CMM-RCs using a manual depth measurement device and calculated thickness difference based on the TPS data (TPS-manual measurement). These results were compared with data obtained from 3DVS. The geometrical accuracy of each CMM-RC inner surface was investigated using the TPS data by performing CA with the same criteria. The authors also measured the net processing time, including the scan and analysis time. Results: The Auto

  19. Short-range communication system

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  20. A strategy for systemic toxicity assessment based on non-animal approaches: The Cosmetics Europe Long Range Science Strategy programme.

    Science.gov (United States)

    Desprez, Bertrand; Dent, Matt; Keller, Detlef; Klaric, Martina; Ouédraogo, Gladys; Cubberley, Richard; Duplan, Hélène; Eilstein, Joan; Ellison, Corie; Grégoire, Sébastien; Hewitt, Nicola J; Jacques-Jamin, Carine; Lange, Daniela; Roe, Amy; Rothe, Helga; Blaauboer, Bas J; Schepky, Andreas; Mahony, Catherine

    2018-03-02

    When performing safety assessment of chemicals, the evaluation of their systemic toxicity based only on non-animal approaches is a challenging objective. The Safety Evaluation Ultimately Replacing Animal Test programme (SEURAT-1) addressed this question from 2011 to 2015 and showed that further research and development of adequate tools in toxicokinetic and toxicodynamic are required for performing non-animal safety assessments. It also showed how to implement tools like thresholds of toxicological concern (TTCs) and read-across in this context. This paper shows a tiered scientific workflow and how each tier addresses the four steps of the risk assessment paradigm. Cosmetics Europe established its Long Range Science Strategy (LRSS) programme, running from 2016 to 2020, based on the outcomes of SEURAT-1 to implement this workflow. Dedicated specific projects address each step of this workflow, which is introduced here. It tackles the question of evaluating the internal dose when systemic exposure happens. The applicability of the workflow will be shown through a series of case studies, which will be published separately. Even if the LRSS puts the emphasis on safety assessment of cosmetic relevant chemicals, it remains applicable to any type of chemical. Copyright © 2018. Published by Elsevier Ltd.

  1. Development of a Locomotion Interface for Portable Virtual Environment Systems Using an Inertial/Magnetic Sensor-Based System and a Ranging Measurement System

    Science.gov (United States)

    2014-03-01

    is no obstacle within the maximum sensing range of the system, the max range value will be represented. The filled circle represents the user...dimensional 3D three-dimensional AHRS attitude heading reference system API application programming interface CAVE cave automatic virtual...such as doors, windows, and furniture ) contained in this environment. The form and structure of a virtual environment entirely depends on the purpose

  2. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  3. A short-range weather prediction system for South Africa based on a multi-model approach

    CSIR Research Space (South Africa)

    Landman, S

    2012-10-01

    Full Text Available stream_source_info Landman5_2012.pdf.txt stream_content_type text/plain stream_size 44898 Content-Encoding ISO-8859-1 stream_name Landman5_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 1 A short... to be skillful. Moreover, the system outscores the forecast skill of the individual models. Keywords: short-range, ensemble, forecasting, precipitation, multi-model, verification Tel: +27 12 367 6054...

  4. Prototype firing range air cleaning system

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1984-07-01

    PNL's study proceeded by examining the characteristics of the aerosol challenge to the filtration system and the operating experience at similar firing ranges. Candidate filtration systems were proposed; including baghouses, cartridge houses, electrostatic precipitators, cleanable high efficiency filters, rolling filters and cyclones--each followed by one or more of the existing filter banks. Methodology was developed to estimate the operating costs of the candidate systems. Costs addressed included the frequency (based on fractional efficiency and loading data) and cost of media replacement, capital investment, maintenance, waste disposal and electrical power consumption. The recommended system will be installed during calendar year 1984

  5. Long range position and Orientation Tracking System

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.

    1996-01-01

    The long range Position and Orientation Tracking System is an active triangulation-based system that is being developed to track a target to a resolution of 6.35 mm (0.25 in.) and 0.009 degrees(32.4 arcseconds) over a range of 13.72 m (45 ft.). The system update rate is currently set at 20 Hz but can be increased to 100 Hz or more. The tracking is accomplished by sweeping two pairs of orthogonal line lasers over infrared (IR) sensors spaced with known geometry with respect to one another on the target (the target being a rigid body attached to either a remote vehicle or a remote manipulator arm). The synchronization and data acquisition electronics correlates the time that an IR sensor has been hit by one of the four lasers and the angle of the respective mirror at the time of the hit. This information is combined with the known geometry of the IR sensors on the target to determine position and orientation of the target. This method has the advantage of allowing the target to be momentarily lost due to occlusions and then reacquired without having to return the target to a known reference point. The system also contains a camera with operator controlled lighting in each pod that allows the target to be continuously viewed from either pod, assuming their are no occlusions

  6. Long-Range WindScanner System

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Courtney, Michael

    2016-01-01

    The technical aspects of a multi-Doppler LiDAR instrument, the long-range WindScanner system, are presented accompanied by an overview of the results from several field campaigns. The long-range WindScanner system consists of three spatially-separated, scanning coherent Doppler LiDARs and a remote......-rangeWindScanner system measures the wind field by emitting and directing three laser beams to intersect, and then scanning the beam intersection over a region of interest. The long-range WindScanner system was developed to tackle the need for high-quality observations of wind fields on scales of modern wind turbine...

  7. Long range position and orientation tracking system

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.; Bernacki, B.E.; Nypaver, D.J.

    1995-01-01

    The long range position and orientation tracking system (LRPOTS) will consist of two measurement pods, a VME-based computer system, and a detector array. The system is used to measure the position and orientation of a target that may be attached to a robotic arm, teleoperated manipulator, or autonomous vehicle. The pods have been designed to be mounted in the man-ways of the domes of the Fernald K-65 waste silos. Each pod has two laser scanner subsystems as well as lights and camera systems. One of the laser scanners will be oriented to scan in the pan direction, the other in the tilt direction. As the lasers scan across the detector array, the angles of incidence with each detector are recorded. Combining measurements from each of the four lasers yields sufficient data for a closed-form solution of the transform describing the location and orientation of the Content Mobilization System (CMS). Redundant detectors will be placed on the CMS to accommodate occlusions, to provide improved measurement accuracy, and to determine the CMS orientation

  8. A GPU-based large-scale Monte Carlo simulation method for systems with long-range interactions

    Science.gov (United States)

    Liang, Yihao; Xing, Xiangjun; Li, Yaohang

    2017-06-01

    In this work we present an efficient implementation of Canonical Monte Carlo simulation for Coulomb many body systems on graphics processing units (GPU). Our method takes advantage of the GPU Single Instruction, Multiple Data (SIMD) architectures, and adopts the sequential updating scheme of Metropolis algorithm. It makes no approximation in the computation of energy, and reaches a remarkable 440-fold speedup, compared with the serial implementation on CPU. We further use this method to simulate primitive model electrolytes, and measure very precisely all ion-ion pair correlation functions at high concentrations. From these data, we extract the renormalized Debye length, renormalized valences of constituent ions, and renormalized dielectric constants. These results demonstrate unequivocally physics beyond the classical Poisson-Boltzmann theory.

  9. Autonomous system for launch vehicle range safety

    Science.gov (United States)

    Ferrell, Bob; Haley, Sam

    2001-02-01

    The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .

  10. Definition by modelling, optimization and characterization of a neutron spectrometry system based on Bonner spheres extended to the high-energy range

    International Nuclear Information System (INIS)

    Serre, S.

    2010-01-01

    This research thesis first describes the problematic of the effects of natural radiation on micro- and nano-electronic components, and the atmospheric-radiative stress of atmospheric neutrons from cosmic origin: issue of 'Single event upsets', present knowledge of the atmospheric radiative environment induced by cosmic rays. The author then presents the neutron-based detection and spectrometry by using the Bonner sphere technique: principle of moderating spheres, definition and mathematical formulation of neutron spectrometry using Bonner spheres, active sensors of thermal neutrons, response of a system to conventional Bonner spheres, extension to the range of high energies. Then, he reports the development of a Bonner sphere system extended to the high-energy range for the spectrometry of atmospheric neutrons: definition of a conventional system, Monte Carlo calculation of response functions, development of the response matrix, representation and semi-empirical verification of fluence response, uncertainty analysis, extension to high energies, and measurement tests of the spectrometer. He reports the use of a Monte Carlo simulation to characterize the spectrometer response in the high-energy range

  11. Distance Ranging Based on Quantum Entanglement

    International Nuclear Information System (INIS)

    Xiao Jun-Jun; Han Xiao-Chun; Zeng Gui-Hua; Fang Chen; Zhao Jian-Kang

    2013-01-01

    In the quantum metrology, applications of quantum techniques based on entanglement bring in some better performances than conventional approaches. We experimentally investigate an application of entanglement in accurate ranging based on the second-order coherence in the time domain. By a fitting algorithm in the data processing, the optimization results show a precision of ±200 μm at a distance of 1043.3m. In addition, the influence of jamming noise on the ranging scheme is studied. With some different fitting parameters, the result shows that the proposed scheme has a powerful anti-jamming capability for white noise

  12. Determining roof surfaces suitable for the installation of PV (photovoltaic) systems, based on LiDAR (Light Detection And Ranging) data, pyranometer measurements, and distribution network configuration

    International Nuclear Information System (INIS)

    Srećković, Nevena; Lukač, Niko; Žalik, Borut; Štumberger, Gorazd

    2016-01-01

    Proliferation of distributed generation units, integrated within the distribution network requires increased attention to their proper placements. In urban areas, buildings' rooftops are expected to have greater involvement in the deployment of PV (photovoltaic) systems. This paper proposes a novel procedure for determining roof surfaces suitable for their installation. The PV potential of roof surfaces is assessed based on Light Detection And Ranging (LiDAR) data and pyranometer measurements. Then, the time-dependent PV generation profiles, electricity distribution network configuration, and time-dependent loading profiles are used together over time-steps for selecting those roof surfaces with the highest PV potential, which would lead to the highest reduction of network losses per year. The presented procedure was implemented within a real urban area distribution network. The results obtained confirmed that PV potential assessment could be an insufficient criterion when selecting those roof surfaces suitable for the installation of PV systems. In order to obtain relevant results, network configuration and time-dependent loading and generation profiles must be considered as well. - Highlights: • Roof surfaces, suitable for installation of PV systems are evaluated and ranked. • Improved PV potential based procedure is proposed for their selection in urban areas. • Time-dependent network loading and PV generation profiles are considered. • Losses in a real electricity network are minimized in the optimization procedure. • Final selection of ranked roof surfaces is based on results of optimization.

  13. Challenges in miniaturized automotive long-range lidar system design

    Science.gov (United States)

    Fersch, Thomas; Weigel, Robert; Koelpin, Alexander

    2017-05-01

    This paper discusses the current technical limitations posed on endeavors to miniaturize lidar systems for use in automotive applications and how to possibly extend those limits. The focus is set on long-range scanning direct time of flight LiDAR systems using APD photodetectors. Miniaturization evokes severe problems in ensuring absolute laser safety while maintaining the systems' performance in terms of maximum range, signal-to-noise ratio, detection probability, pixel density, or frame rate. Based on hypothetical but realistic specifications for an exemplary system the complete lidar signal path is calculated. The maximum range of the system is used as a general performance indicator. It is determined with the minimum signal-to-noise ratio required to detect an object. Various system parameters are varied to find their impact on the system's range. The reduction of the laser's pulse width and the right choice for the transimpedance amplifier's amplification have shown to be practicable measures to double the system's range.

  14. Ultrasonic Ranging System With Increased Resolution

    Science.gov (United States)

    Meyer, William E.; Johnson, William G.

    1987-01-01

    Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.

  15. Free Range, Organic? Polish Consumers Preferences Regarding Information on Farming System and Nutritional Enhancement of Eggs: A Discrete Choice Based Experiment

    Directory of Open Access Journals (Sweden)

    Sylwia Żakowska-Biemans

    2017-11-01

    Full Text Available The main purpose of this study was to determine the structure of consumer preferences regarding information on farming system and nutritional enhancement of eggs to verify if consumers are willing to accept products combing sustainability and nutrition related claims. The data was collected within a CAPI (Computer Assisted Personal Interviews survey on a representative sample of 935 consumers responsible for food shopping. A discrete choice-based conjoint method was selected in eliciting consumer preferences among different product profiles with varying levels of attributes. A hierarchical cluster analysis was used to identify four distinct clusters that differed significantly in terms of importance attached to production system attributes and socio-demographic profiles. The results of the experiment showed that price and farming system had the most significant mean relative importance in shaping consumers’ preferences, while other attributes such as nutrition and health claims, egg size, package size and hen breed were far less important. Free range eggs had the highest relative importance for consumers despite the fact that organic egg production systems are governed by much stricter animal welfare standards. Our segmentation revealed that two of our four clusters may be more easily reached by information on animal welfare related attributes in egg production than the others. The results of our study provide the policy makers and marketing practitioners with insights applicable for communication and pricing strategies for eggs with sustainability claims.

  16. Validity of eyeball estimation for range of motion during the cervical flexion rotation test compared to an ultrasound-based movement analysis system.

    Science.gov (United States)

    Schäfer, Axel; Lüdtke, Kerstin; Breuel, Franziska; Gerloff, Nikolas; Knust, Maren; Kollitsch, Christian; Laukart, Alex; Matej, Laura; Müller, Antje; Schöttker-Königer, Thomas; Hall, Toby

    2018-08-01

    Headache is a common and costly health problem. Although pathogenesis of headache is heterogeneous, one reported contributing factor is dysfunction of the upper cervical spine. The flexion rotation test (FRT) is a commonly used diagnostic test to detect upper cervical movement impairment. The aim of this cross-sectional study was to investigate concurrent validity of detecting high cervical ROM impairment during the FRT by comparing measurements established by an ultrasound-based system (gold standard) with eyeball estimation. Secondary aim was to investigate intra-rater reliability of FRT ROM eyeball estimation. The examiner (6 years experience) was blinded to the data from the ultrasound-based device and to the symptoms of the patients. FRT test result (positive or negative) was based on visual estimation of range of rotation less than 34° to either side. Concurrently, range of rotation was evaluated using the ultrasound-based device. A total of 43 subjects with headache (79% female), mean age of 35.05 years (SD 13.26) were included. According to the International Headache Society Classification 23 subjects had migraine, 4 tension type headache, and 16 multiple headache forms. Sensitivity and specificity were 0.96 and 0.89 for combined rotation, indicating good concurrent reliability. The area under the ROC curve was 0.95 (95% CI 0.91-0.98) for rotation to both sides. Intra-rater reliability for eyeball estimation was excellent with Fleiss Kappa 0.79 for right rotation and left rotation. The results of this study indicate that the FRT is a valid and reliable test to detect impairment of upper cervical ROM in patients with headache.

  17. The analysis on dynamic range of industrial CT system

    International Nuclear Information System (INIS)

    Wang Huiqian; Wang Jue; Tan Hui

    2011-01-01

    Concerning the limitations of the definition of the dynamic range of industrial computed tomography (ICT) system, it researches the definition, measuring method and influencing factors of the dynamic range of industrial computed tomography (ICT) system from the concept of quantization and system. First, the character of the input-output curve was analyzed, and the method of obtaining the dynamic range of industrial computed tomography (ICT) system was proposed. Then, an experiment model was designed to gain dynamic range, based on 6 MeV high-energy industrial computed tomography (ICT) system. The results show that the larger the photosurface is, the smaller the dynamic range is, when the other parameters are unchanged. (authors)

  18. Long range inductive power transfer system

    International Nuclear Information System (INIS)

    Lawson, James; Pinuela, Manuel; Yates, David C; Lucyszyn, Stepan; Mitcheson, Paul D

    2013-01-01

    We report upon a recently developed long range inductive power transfer system (IPT) designed to power remote sensors with mW level power consumption at distances up to 7 m. In this paper an inductive link is established between a large planar (1 × 1 m) transmit coil (Tx) and a small planer (170 × 170 mm) receiver coil (Rx), demonstrating the viability of highly asymmetrical coil configurations that real-world applications such as sensor networks impose. High Q factor Tx and Rx coils required for viable power transfer efficiencies over such distances are measured using a resonant method. The applicability of the Class-E amplifier in very low magnetic coupling scenarios and at the high frequencies of operation required for high Q operation is demonstrated by its usage as the Tx coil driver

  19. Evaluation of Hematocrit Influence on Self-Monitoring of Blood Glucose Based on ISO 15197:2013: Comparison of a Novel System With Five Systems With Different Hematocrit Ranges.

    Science.gov (United States)

    Hattemer, Andrew; Wardat, Sami

    2018-03-01

    ISO 15197:2013 recommends testing procedures and acceptance criteria for the evaluation of influence quantities such as hematocrit on measurement results with systems for self-monitoring of blood glucose (SMBG). In this study, hematocrit influence was evaluated for a novel SMBG system (system A) and five other systems with different hematocrit ranges based on ISO 15197:2013. Test procedures were performed with one test strip lot for each system. Each system was tested within the hematocrit range indicated in the manufacturer's labeling (system A: 10-65%, B: 15-65%, C: 20-60%, D: 35-60%, E: 30-60%, F: 30-55%). According to ISO 15197:2013, clause 6.4.2, venous blood samples were used for the evaluation of hematocrit influence. The evaluation was performed for three glucose concentration categories (30-50 mg/dL, 96-144 mg/dL, and 280-420 mg/dL). For each glucose concentration category, at least five different hematocrit levels were investigated. The novel system A and systems B, E, and F complied with the tested lot with the defined criteria and showed ≤10 mg/dL and ≤10% difference between the test sample and the respective control sample with a hematocrit value of 42% ± 2% for BG concentrations 10% difference at glucose concentrations ≥100 mg/dL. Remarkable hematocrit influence within the labeled hematocrit range was obtained in two systems with the tested reagent system lot. Adequate SMBG systems should be carefully chosen by patients and their health care professionals, particularly for patients with increased and decreased hematocrit values.

  20. Range-Image Acquisition for Discriminated Objects in a Range-gated Robot Vision System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Kyu; Ahn, Yong-Jin; Park, Nak-Kyu; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    demonstrated 3D imaging based on range-gated imaging. Robot vision is a key technology to remotely monitor structural safety in radiation area of nuclear industry. Especially, visualization technique in low-visibility areas, such as smoking and fog areas, is essential to monitor structural safety in emergency smoking areas. In this paper, a range acquisition technique to discriminate objects is developed. The developed technique to acquire object range images is adapted to a range-gated vision system. Visualization experiments are carried out to detect objects in low-visibility fog environment. The experimental result of this newly approach vision system is described in this paper.

  1. Range-Image Acquisition for Discriminated Objects in a Range-gated Robot Vision System

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Ahn, Yong-Jin; Park, Nak-Kyu; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    demonstrated 3D imaging based on range-gated imaging. Robot vision is a key technology to remotely monitor structural safety in radiation area of nuclear industry. Especially, visualization technique in low-visibility areas, such as smoking and fog areas, is essential to monitor structural safety in emergency smoking areas. In this paper, a range acquisition technique to discriminate objects is developed. The developed technique to acquire object range images is adapted to a range-gated vision system. Visualization experiments are carried out to detect objects in low-visibility fog environment. The experimental result of this newly approach vision system is described in this paper

  2. Range Information Systems Management (RISM) Phase 1 Report

    Science.gov (United States)

    Bastin, Gary L.; Harris, William G.; Nelson, Richard A.

    2002-01-01

    RISM investigated alternative approaches, technologies, and communication network architectures to facilitate building the Spaceports and Ranges of the future. RISM started by document most existing US ranges and their capabilities. In parallel, RISM obtained inputs from the following: 1) NASA and NASA-contractor engineers and managers, and; 2) Aerospace leaders from Government, Academia, and Industry, participating through the Space Based Range Distributed System Working Group (SBRDSWG), many of whom are also; 3) Members of the Advanced Range Technology Working Group (ARTWG) subgroups, and; 4) Members of the Advanced Spaceport Technology Working Group (ASTWG). These diverse inputs helped to envision advanced technologies for implementing future Ranges and Range systems that builds on today s cabled and wireless legacy infrastructures while seamlessly integrating both today s emerging and tomorrow s building-block communication techniques. The fundamental key is to envision a transition to a Space Based Range Distributed Subsystem. The enabling concept is to identify the specific needs of Range users that can be solved through applying emerging communication tech

  3. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  4. Hybrid gesture recognition system for short-range use

    Science.gov (United States)

    Minagawa, Akihiro; Fan, Wei; Katsuyama, Yutaka; Takebe, Hiroaki; Ozawa, Noriaki; Hotta, Yoshinobu; Sun, Jun

    2012-03-01

    In recent years, various gesture recognition systems have been studied for use in television and video games[1]. In such systems, motion areas ranging from 1 to 3 meters deep have been evaluated[2]. However, with the burgeoning popularity of small mobile displays, gesture recognition systems capable of operating at much shorter ranges have become necessary. The problems related to such systems are exacerbated by the fact that the camera's field of view is unknown to the user during operation, which imposes several restrictions on his/her actions. To overcome the restrictions generated from such mobile camera devices, and to create a more flexible gesture recognition interface, we propose a hybrid hand gesture system, in which two types of gesture recognition modules are prepared and with which the most appropriate recognition module is selected by a dedicated switching module. The two recognition modules of this system are shape analysis using a boosting approach (detection-based approach)[3] and motion analysis using image frame differences (motion-based approach)(for example, see[4]). We evaluated this system using sample users and classified the resulting errors into three categories: errors that depend on the recognition module, errors caused by incorrect module identification, and errors resulting from user actions. In this paper, we show the results of our investigations and explain the problems related to short-range gesture recognition systems.

  5. Range-Based Localization in Mobile Sensor Networks

    NARCIS (Netherlands)

    Dil, B.J.; Dil, B.; Dulman, S.O.; Havinga, Paul J.M.; Romer, K.; Karl, H.; Mattern, F.

    2006-01-01

    Localization schemes for wireless sensor networks can be classified as range-based or range-free. They differ in the information used for localization. Range-based methods use range measurements, while range-free techniques only use the content of the messages. None of the existing algorithms

  6. Passive ranging using a filter-based non-imaging method based on oxygen absorption.

    Science.gov (United States)

    Yu, Hao; Liu, Bingqi; Yan, Zongqun; Zhang, Yu

    2017-10-01

    To solve the problem of poor real-time measurement caused by a hyperspectral imaging system and to simplify the design in passive ranging technology based on oxygen absorption spectrum, a filter-based non-imaging ranging method is proposed. In this method, three bandpass filters are used to obtain the source radiation intensities that are located in the oxygen absorption band near 762 nm and the band's left and right non-absorption shoulders, and a photomultiplier tube is used as the non-imaging sensor of the passive ranging system. Range is estimated by comparing the calculated values of band-average transmission due to oxygen absorption, τ O 2 , against the predicted curve of τ O 2 versus range. The method is tested under short-range conditions. Accuracy of 6.5% is achieved with the designed experimental ranging system at the range of 400 m.

  7. High dynamic range image acquisition based on multiplex cameras

    Science.gov (United States)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  8. Long-range interaction of anisotropic systems

    KAUST Repository

    Zhang, Junyi

    2015-02-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.

  9. Long-range interaction of anisotropic systems

    KAUST Repository

    Zhang, Junyi; Schwingenschlö gl, Udo

    2015-01-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.

  10. Dual-range linearized transimpedance amplifier system

    Science.gov (United States)

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  11. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale

    International Nuclear Information System (INIS)

    Chen, Sheng-Jui; Pan, Sheau-Shi

    2011-01-01

    This paper introduces a force measurement system recently established at the Center for Measurement Standards, Industrial Technology Research Institute for calibrating forces in a micronewton range with a resolution of a few nanonewtons. The force balance consists of a monolithic flexure stage and a specially made capacitor for electrostatic sensing and actuating. The capacitor is formed by three electrodes which can be utilized as a capacitive position sensor and an electrostatic force actuator at the same time. Force balance control is implemented with a digital controller by which the signal of the stage deflection is acquired, filtered and fed back to the electrostatic force driver to bring the flexure stage to the null position. The detailed description of the apparatus including the design of a monolithic flexure stage, principle of capacitive position sensing/electrostatic actuation and the force balance control is given in the paper. Finally, we present the results of electrostatic force calibration and the weighing of a 1 mg wire weight

  12. A novel track imaging system as a range counter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. [National Institute of Radiological Sciences (Japan); Matsufuji, N. [National Institute of Radiological Sciences (Japan); Tokyo Institute of Technology (Japan); Kanayama, S. [Chiba University (Japan); Ishida, A. [National Institute of Radiological Sciences (Japan); Tokyo Institute of Technology (Japan); Kohno, T. [Tokyo Institute of Technology (Japan); Koba, Y.; Sekiguchi, M.; Kitagawa, A.; Murakami, T. [National Institute of Radiological Sciences (Japan)

    2016-05-01

    An image-intensified, camera-based track imaging system has been developed to measure the tracks of ions in a scintillator block. To study the performance of the detector unit in the system, two types of scintillators, a dosimetrically tissue-equivalent plastic scintillator EJ-240 and a CsI(Tl) scintillator, were separately irradiated with carbon ion ({sup 12}C) beams of therapeutic energy from HIMAC at NIRS. The images of individual ion tracks in the scintillators were acquired by the newly developed track imaging system. The ranges reconstructed from the images are reported here. The range resolution of the measurements is 1.8 mm for 290 MeV/u carbon ions, which is considered a significant improvement on the energy resolution of the conventional ΔE/E method. The detector is compact and easy to handle, and it can fit inside treatment rooms for in-situ studies, as well as satisfy clinical quality assurance purposes.

  13. POTENTIALS OF IMAGE BASED ACTIVE RANGING TO CAPTURE DYNAMIC SCENES

    Directory of Open Access Journals (Sweden)

    B. Jutzi

    2012-09-01

    Full Text Available Obtaining a 3D description of man-made and natural environments is a basic task in Computer Vision and Remote Sensing. To this end, laser scanning is currently one of the dominating techniques to gather reliable 3D information. The scanning principle inherently needs a certain time interval to acquire the 3D point cloud. On the other hand, new active sensors provide the possibility of capturing range information by images with a single measurement. With this new technique image-based active ranging is possible which allows capturing dynamic scenes, e.g. like walking pedestrians in a yard or moving vehicles. Unfortunately most of these range imaging sensors have strong technical limitations and are not yet sufficient for airborne data acquisition. It can be seen from the recent development of highly specialized (far-range imaging sensors – so called flash-light lasers – that most of the limitations could be alleviated soon, so that future systems will be equipped with improved image size and potentially expanded operating range. The presented work is a first step towards the development of methods capable for application of range images in outdoor environments. To this end, an experimental setup was set up for investigating these proposed possibilities. With the experimental setup a measurement campaign was carried out and first results will be presented within this paper.

  14. Pulse Based Time-of-Flight Range Sensing.

    Science.gov (United States)

    Sarbolandi, Hamed; Plack, Markus; Kolb, Andreas

    2018-05-23

    Pulse-based Time-of-Flight (PB-ToF) cameras are an attractive alternative range imaging approach, compared to the widely commercialized Amplitude Modulated Continuous-Wave Time-of-Flight (AMCW-ToF) approach. This paper presents an in-depth evaluation of a PB-ToF camera prototype based on the Hamamatsu area sensor S11963-01CR. We evaluate different ToF-related effects, i.e., temperature drift, systematic error, depth inhomogeneity, multi-path effects, and motion artefacts. Furthermore, we evaluate the systematic error of the system in more detail, and introduce novel concepts to improve the quality of range measurements by modifying the mode of operation of the PB-ToF camera. Finally, we describe the means of measuring the gate response of the PB-ToF sensor and using this information for PB-ToF sensor simulation.

  15. Upgrading NASA/DOSE laser ranging system control computers

    Science.gov (United States)

    Ricklefs, Randall L.; Cheek, Jack; Seery, Paul J.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Mcgarry, Jan F.

    1993-01-01

    Laser ranging systems now managed by the NASA Dynamics of the Solid Earth (DOSE) and operated by the Bendix Field Engineering Corporation, the University of Hawaii, and the University of Texas have produced a wealth on interdisciplinary scientific data over the last three decades. Despite upgrades to the most of the ranging station subsystems, the control computers remain a mix of 1970's vintage minicomputers. These encompass a wide range of vendors, operating systems, and languages, making hardware and software support increasingly difficult. Current technology allows replacement of controller computers at a relatively low cost while maintaining excellent processing power and a friendly operating environment. The new controller systems are now being designed using IBM-PC-compatible 80486-based microcomputers, a real-time Unix operating system (LynxOS), and X-windows/Motif IB, and serial interfaces have been chosen. This design supports minimizing short and long term costs by relying on proven standards for both hardware and software components. Currently, the project is in the design and prototyping stage with the first systems targeted for production in mid-1993.

  16. Development of an X-ray imaging system within 10-30 keV spectral range based on organic or inorganic scintillator

    International Nuclear Information System (INIS)

    Turk, G.

    2011-01-01

    This thesis aims at developing an x-ray imaging system intended for the Laser Mega Joule, within the framework of Inertial Confinement Fusion (ICF) experiments. ICF aims at yielding thermonuclear energy through laser-driven fusion of a deuterium-tritium mix. The operational function of our system is to acquire an image of the 10-30 keV x-rays emitted by the maximally compressed micro-balloon, with spatial resolution better than 10 μm. The presented system is only a part of a complete diagnostic system, which normally includes an x-ray optical subsystem. Our system conception largely takes vulnerability into account. The ignition phase of ICF yields 10 16 neutrons, with energies scaling up to 14 MeV. The neutrons generate such a hard surrounding with effects scaling down from image degradation up to instrumentation destruction. The presented system consists in a scintillator which is focused on a CCD camera through a catadioptric image transport system. An innovation work has been lead on scintillators to provide an answer to specifications greatly influenced by vulnerability. Those thesis works lead to an imaging system allowing to deport the CCD camera by 4 meters from the scintillator, with 100 μm spatial resolution in the scintillator plane. Those works have paved the way to outlooks such as enhancement of organic loaded scintillators compositions and improvement of optical relay system. (author) [fr

  17. Continuous limit of discrete systems with long-range interaction

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2006-01-01

    Discrete systems with long-range interactions are considered. Continuous medium models as continuous limit of discrete chain system are defined. Long-range interactions of chain elements that give the fractional equations for the medium model are discussed. The chain equations of motion with long-range interaction are mapped into the continuum equation with the Riesz fractional derivative. We formulate the consistent definition of continuous limit for the systems with long-range interactions. In this paper, we consider a wide class of long-range interactions that give fractional medium equations in the continuous limit. The power-law interaction is a special case of this class

  18. A Wide Spectral Range Reflectance and Luminescence Imaging System

    Directory of Open Access Journals (Sweden)

    Tapani Hirvonen

    2013-10-01

    Full Text Available In this study, we introduce a wide spectral range (200–2500 nm imaging system with a 250 μm minimum spatial resolution, which can be freely modified for a wide range of resolutions and measurement geometries. The system has been tested for reflectance and luminescence measurements, but can also be customized for transmittance measurements. This study includes the performance results of the developed system, as well as examples of spectral images. Discussion of the system relates it to existing systems and methods. The wide range spectral imaging system that has been developed is however highly customizable and has great potential in many practical applications.

  19. Note: A wide temperature range MOKE system with annealing capability.

    Science.gov (United States)

    Chahil, Narpinder Singh; Mankey, G J

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  20. Long-range position and orientation tracking system

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.

    1995-01-01

    The long-range position and orientation tracking system will consist of two measurement pods, a VME-based computer system, and a detector array. The system is used to measure the position and orientation of a target that may be attached to a robotic arm, teleoperated manipulator, or autonomous vehicle. The pods have been designed to be mounted in the manways of the domes of the Fernald K-65 waste silos. Each pod has two laser scanner subsystems as well as lights and camera systems. One of the laser scanners will be oriented to scan in the pan direction, the other in the tilt direction. As the lasers scan across the detector array, the angles of incidence with each detector are recorded. Combining measurements from each of the four lasers yields sufficient data for a closed-form solution of the transform describing the location and orientation of the content mobilization system (CMS). Redundant detectors will be placed on the CMS to accommodate occlusions, to provide improved measurement accuracy, and to determine the CMS orientation

  1. Realized range-based estimation of integrated variance

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark

    2007-01-01

    We provide a set of probabilistic laws for estimating the quadratic variation of continuous semimartingales with the realized range-based variance-a statistic that replaces every squared return of the realized variance with a normalized squared range. If the entire sample path of the process is a...

  2. A Range-Based Multivariate Model for Exchange Rate Volatility

    NARCIS (Netherlands)

    B. Tims (Ben); R.J. Mahieu (Ronald)

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are

  3. Long-range interactions in dilute granular systems

    NARCIS (Netherlands)

    Müller, M.K

    2008-01-01

    In this thesis, on purpose, we focussed on the most challenging, longest ranging potentials. We analyzed granular media of low densities obeying 1/r long-range interaction potentials between the granules. Such systems are termed granular gases and differ in their behavior from ordinary gases by

  4. Long-Range Nondestructive Testing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of a long range, multi-point non-destructive system for the detection of subsurface flaws in metallic and composite materials of...

  5. A high-resolution full-field range imaging system

    Science.gov (United States)

    Carnegie, D. A.; Cree, M. J.; Dorrington, A. A.

    2005-08-01

    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution.

  6. Challenges in the Acceptance/Licensing of a Mobile Ballistic Missile Range Safety Technology (BMRST) System

    National Research Council Canada - National Science Library

    Bartone, Chris

    2001-01-01

    ...), Space Vehicle Directorate, Ballistic Missile Technology program. The BMRST Program is to develop and to demonstrate a "certifiable" mobile launch range tracking and control system based upon the Global Positioning System (GPS...

  7. A Range-Based Multivariate Model for Exchange Rate Volatility

    OpenAIRE

    Tims, Ben; Mahieu, Ronald

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are interpreted as the underlying currency specific components. Due to the normality of logarithmic volatilities the model can be estimated conveniently with standard Kalman filter techniques. Our resu...

  8. University of Hawaii Lure Observatory. [lunar laser ranging system construction

    Science.gov (United States)

    Carter, W. E.; Williams, J. D.

    1973-01-01

    The University of Hawaii's Institute for Astronomy is currently constructing a lunar laser ranging observatory at the 3050-meter summit of Mt. Haleakala, Hawaii. The Nd YAG laser system to be employed provides three pulses per second, each pulse being approximately 200 picoseconds in duration. The energy contained in one pulse at 5320 A lies in the range from 250 to 350 millijoules. Details of observatory construction are provided together with transmitter design data and information concerning the lunastat, the feed telescope, the relative pointing system, the receiver, and the event timer system.

  9. Medium-range dielectric order in systems with collectivized electrons

    International Nuclear Information System (INIS)

    Ismagilov, A.M.; Kopaev, Yu.V.

    1993-01-01

    The problem of formation of a medium-range dielectric order (on a scale much larger than the interatomic one) due to electron-electron correlations and to scattering by an impurity in a system near a phase transition into a long-range order state is solved by a microscopic approach. It is shown that for a weak impurity potential the effect of medium-range order formation is stronger than the effect of long-range order suppression related to scattering by an impurity. The influence of medium-range order on the one-particle excitation spectrum and on the density of states is considered. It is found that since the medium-range order in a system is due to correlations of electron and hole states open-quotes coupledclose quotes by a continuous set of inhomogeneity vectors (in contrast to the long-range order formed on a discrete set of such vectors), the density of states varies on an energy scale determined by the mean absolute value of these vectors. Therefore in a system undergoing phase transition into an inhomogeneous state with the modulus q 0 of inhomogeneity vectors the medium-range order forms in the density of states a pseudogap of scale length v F q 0 (v F is the Fermi velocity). This distinguishes such a system substantially from one, which tends to a phase transition into a homogeneous state (q 0 ≡0), where the medium-range order forms a pseudogap of scale length v F /ξ much-lt v F q 0 (ξ is the correlation length). The possible role of medium dielectric order effects in high-T c superconductors is discussed. 30 refs., 6 figs

  10. A method of short range system analysis for nuclear utilities

    International Nuclear Information System (INIS)

    Eng, R.; Mason, E.A.; Benedict, M.

    1976-01-01

    An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)

  11. Model-based uncertainty in species range prediction

    DEFF Research Database (Denmark)

    Pearson, R. G.; Thuiller, Wilfried; Bastos Araujo, Miguel

    2006-01-01

    Aim Many attempts to predict the potential range of species rely on environmental niche (or 'bioclimate envelope') modelling, yet the effects of using different niche-based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions...

  12. New focal plane detector system for the broad range spectrometer

    International Nuclear Information System (INIS)

    Sjoreen, T.P.

    1984-01-01

    A focal plane detector system consisting of a vertical drift chamber, parallel plate avalanche counters, and an ionization chamber with segmented anodes has been installed in the Broad Range Spectrometer at the Holifield Facility at Oak Ridge. The system, which has been designed for use with light-heavy ions with energies ranging from 10 to 25 MeV/amu, has a position resolution of approx. 0.1 mm, a scattering angle resolution of approx. 3 mrad, and a mass resolution of approx. 1/60

  13. Automated tracking for advanced satellite laser ranging systems

    Science.gov (United States)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  14. Towards a medium-range coastal station fog forecasting system

    CSIR Research Space (South Africa)

    Landman, S

    2013-09-01

    Full Text Available -1 29th Annual conference of South African Society for Atmospheric Sciences (SASAS) 2013 http://sasas.ukzn.ac.za/homepage.aspx Towards a Medium-Range Coastal Station Fog Forecasting System Stephanie Landman*1, Estelle Marx1, Willem A. Landman2...

  15. A micro-controller based wide range survey meter

    International Nuclear Information System (INIS)

    Bhingare, R.R.; Bajaj, K.C.; Kannan, S.

    2004-01-01

    Wide range survey meters (1μSv/h -10 Sv/h) with the detector(s) mounted at the end of a two-to-four meter-long extendable tube are widely used for radiation protection survey of difficult to reach locations and high dose rate areas, The commercially available survey meters of this type use two GM counters to cover a wide range of dose rate measurement. A new micro-controller based wide range survey meter using two Si diode detectors has been developed. The use of solid state detectors in the survey meter has a number of advantages like low power consumption, lighter battery powered detector probe, elimination of high voltage for the operation of the detectors, etc. The design uses infrared communication between the probe and the readout unit through a light-weight collapsible extension tube for high reliability. The design details and features are discussed in detail. (author)

  16. Model Based Verification of Cyber Range Event Environments

    Science.gov (United States)

    2015-11-13

    that may include users, applications, operating systems, servers, hosts, routers, switches, control planes , and instrumentation planes , many of...which lack models for their configuration. Our main contributions in this paper are the following. First, we have developed a configuration ontology...configuration errors in environment designs for several cyber range events. The rest of the paper is organized as follows. Section 2 provides an overview of

  17. A short-range ensemble prediction system for southern Africa

    CSIR Research Space (South Africa)

    Park, R

    2012-10-01

    Full Text Available system for southern Africa R PARK, WA LANDMAN AND F ENGELBRECHT CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: xxxxxxxxxxxxxx@csir.co.za ? www.csir.co.za INTRODUCTION This research has been conducted in order to develop a short-range ensemble... stream_source_info Park_2012.pdf.txt stream_content_type text/plain stream_size 7211 Content-Encoding ISO-8859-1 stream_name Park_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A short-range ensemble prediction...

  18. Range use and dynamics in the agropastoral system of ...

    African Journals Online (AJOL)

    Occurrence of equilibrium and non equilibrium system dynamics in semiarid environments present serious management challenges. In these areas, resource management strategies are increasingly based on equilibrium rather than non equilibrium dynamics that assume simple system dynamics and strong coupling of ...

  19. Analysis and solution of spike current of intermediate range for nuclear instrumentation system

    International Nuclear Information System (INIS)

    Li Xingqiang; Xiao Yu; Xue Bin; Wang Yinli

    2015-01-01

    During the initial start-up of HYH NPP unit 1, spike currents occurred in intermediate range channel of RPN system and reactor trip was triggered. After analyzing the operation principle of intermediate range channel and site inspection, and doing simulating test, the root cause was fixed on the bug of range switching of intermediate range channel. Then a solution based on parameters optimizing was made and executed on site. (authors)

  20. The precision of today's satellite laser ranging systems

    Science.gov (United States)

    Dunn, Peter J.; Torrence, Mark H.; Hussen, Van S.; Pearlman, Michael R.

    1993-06-01

    Recent improvements in the accuracy of modern satellite laser ranging (SLR) systems are strengthened by the new capability of many instruments to track an increasing number of geodetic satellite targets without significant scheduling conflict. This will allow the refinement of some geophysical parameters, such as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth orientation and station position. Better time resolution for the locations of fixed observatories will allow us to monitor more subtle motions at the stations, and transportable systems will be able to provide indicators of long term trends with shorter occupations. If we are to take advantage of these improvements, care must be taken to preserve the essential accuracy of an increasing volume of range observations at each stage of the data reduction process.

  1. Sensitivity and Dynamic Range Considerations for Homodyne Detection Systems

    DEFF Research Database (Denmark)

    Jaggard, Dwight L.; King, Ray J

    1973-01-01

    The effects of modulation frequency, RF reference power, and external bias upon the sensitivity and dynamic range of microwave homodyne detection systems was measured for point contact diodes and low l/f noise Schottky and backward diodes. The measurements were made at 4.89 GHz using a signal...... to noise ratio of 3 dB and a detection system bandwidth of 10 Hz. Maximum sensitivities of -135, -150, and -145 dBm, and dynamic ranges of 92, 110, and 124 dB were measured for the point contact, Schottky, and backward diodes at modulation frequencies of 30, 30, and 3 kHz, respectively. It was found...... that the level of RF reference signal needed to obtain the maximum sensitivity was equal to or somewhat above the point where the diode changes from square law to linear detection. The results are significant in that previously reported homodyne sensitivities (not necessarily maximum) were on the order of -90...

  2. Long-range analysis of density fitting in extended systems

    Science.gov (United States)

    Varga, Scarontefan

    Density fitting scheme is analyzed for the Coulomb problem in extended systems from the correctness of long-range behavior point of view. We show that for the correct cancellation of divergent long-range Coulomb terms it is crucial for the density fitting scheme to reproduce the overlap matrix exactly. It is demonstrated that from all possible fitting metric choices the Coulomb metric is the only one which inherently preserves the overlap matrix for infinite systems with translational periodicity. Moreover, we show that by a small additional effort any non-Coulomb metric fit can be made overlap-preserving as well. The problem is analyzed for both ordinary and Poisson basis set choices.

  3. Analysis of pattern formation in systems with competing range interactions

    International Nuclear Information System (INIS)

    Zhao, H J; Misko, V R; Peeters, F M

    2012-01-01

    We analyzed pattern formation and identified various morphologies in a system of particles interacting through a non-monotonic potential with a competing range interaction characterized by a repulsive core (r c ) and an attractive tail (r > r c ), using molecular-dynamics simulations. Depending on parameters, the interaction potential models the inter-particle interaction in various physical systems ranging from atoms, molecules and colloids to vortices in low κ type-II superconductors and in recently discovered ‘type-1.5’ superconductors. We constructed a ‘morphology diagram’ in the plane ‘critical radius r c -density n’ and proposed a new approach to characterizing the different types of patterns. Namely, we elaborated a set of quantitative criteria in order to identify the different pattern types, using the radial distribution function (RDF), the local density function and the occupation factor. (paper)

  4. Marine: a new wide range neutron monitoring system concept

    Energy Technology Data Exchange (ETDEWEB)

    Trama, J.C.; Lescop, B.; Lefevre, J.; Nguyen, T.; Sudres, C. [CEA Saclay, 91 - Gif sur Yvette (France). Dept. d' Electronique et d' Instrumentation Nucleaire; Pasdeloup, P. [Technicatome, 13 - Les Milles (France)

    2001-07-01

    In a Nuclear Power Plant, the developed power is proportional to the emitted neutron flux. The 10 to 11 decades measurement range from source to power generally needs 3 distinct neutron measurement chains to be monitored. A wide range neutron monitoring system may cover this range with only one sensor followed by adequate electronics. In the past this concept has been developed with an analogue technology which was presenting some drawbacks (slow log amplifier, components perenniality). In this paper, we introduce a completely new design, that makes use of a recent technology, including full linear input electronics, and advanced digital signal processing. As far as the sensor is concerned, both a well known commercial fission chamber, or an innovative wide range sensor presenting a high sensitivity may be used. The basic concept is that the single signal is continuously processed by three different electronic stages, each one being dedicated to approximately one third of the full range: pulse, Campbelling and current modes. After amplification, appropriate shaping, this signal is numerically filtered by a Kalman filter algorithm to compute the neutron flux as well as the reactor period. A specifically developed test module allows the surveillance of the sensor and the electronics via stimuli injections and characteristic curves plotting. A computerised simulation of the whole chain is used to validate the signal processing algorithms evolutions. In the paper we will specifically develop the metrological performances of this chain and the general agreement that exists between simulated and measured values. (authors)

  5. Nonequilibrium statistical mechanics of systems with long-range interactions

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Yan, E-mail: levin@if.ufrgs.br; Pakter, Renato, E-mail: pakter@if.ufrgs.br; Rizzato, Felipe B., E-mail: rizzato@if.ufrgs.br; Teles, Tarcísio N., E-mail: tarcisio.teles@fi.infn.it; Benetti, Fernanda P.C., E-mail: fbenetti@if.ufrgs.br

    2014-02-01

    Systems with long-range (LR) forces, for which the interaction potential decays with the interparticle distance with an exponent smaller than the dimensionality of the embedding space, remain an outstanding challenge to statistical physics. The internal energy of such systems lacks extensivity and additivity. Although the extensivity can be restored by scaling the interaction potential with the number of particles, the non-additivity still remains. Lack of additivity leads to inequivalence of statistical ensembles. Before relaxing to thermodynamic equilibrium, isolated systems with LR forces become trapped in out-of-equilibrium quasi-stationary states (qSSs), the lifetime of which diverges with the number of particles. Therefore, in the thermodynamic limit LR systems will not relax to equilibrium. The qSSs are attained through the process of collisionless relaxation. Density oscillations lead to particle–wave interactions and excitation of parametric resonances. The resonant particles escape from the main cluster to form a tenuous halo. Simultaneously, this cools down the core of the distribution and dampens out the oscillations. When all the oscillations die out the ergodicity is broken and a qSS is born. In this report, we will review a theory which allows us to quantitatively predict the particle distribution in the qSS. The theory is applied to various LR interacting systems, ranging from plasmas to self-gravitating clusters and kinetic spin models.

  6. Estimate of the influence of muzzle smoke on function range of infrared system

    Science.gov (United States)

    Luo, Yan-ling; Wang, Jun; Wu, Jiang-hui; Wu, Jun; Gao, Meng; Gao, Fei; Zhao, Yu-jie; Zhang, Lei

    2013-09-01

    Muzzle smoke produced by weapons shooting has important influence on infrared (IR) system while detecting targets. Based on the theoretical model of detecting spot targets and surface targets of IR system while there is muzzle smoke, the function range for detecting spot targets and surface targets are deduced separately according to the definition of noise equivalent temperature difference(NETD) and minimum resolution temperature difference(MRTD). Also parameters of muzzle smoke affecting function range of IR system are analyzed. Base on measured data of muzzle smoke for single shot, the function range of an IR system for detecting typical targets are calculated separately while there is muzzle smoke and there is no muzzle smoke at 8-12 micron waveband. For our IR system function range has reduced by over 10% for detecting tank if muzzle smoke exists. The results will provide evidence for evaluating the influence of muzzle smoke on IR system and will help researchers to improve ammo craftwork.

  7. Chasing Salmonella Typhimurium in free range egg production system.

    Science.gov (United States)

    Chousalkar, Kapil; Gole, Vaibhav; Caraguel, Charles; Rault, Jean-Loup

    2016-08-30

    Free range production systems are becoming a major source of egg production in Australia and worldwide. This study investigated shedding and ecology of Salmonella Typhimurium and Salmonella species in a free range layer flock, wild birds and foxes in the vicinity of the free range farm in different seasons. Shedding of Salmonella was significantly higher in summer. Within the shed, overall, Salmonella prevalence was highest in dust. Corticosterone level in faeces was highest in spring and lowest in winter. There was no direct association between the Salmonella shedding (MPN/gm) and corticosterone levels in faeces. Salmonella Typhimurium MLVA types isolated from fox and wild birds were similar to MLVA types isolated from layer flock and reported during human food borne illness. Wild birds and foxes appear to play an important role in S. Typhimurium ecology and food safety. Environmental factors could play a role in evolution of S. Typhimurium in free range environment. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  9. Fluctuation-induced long-range interactions in polymer systems

    International Nuclear Information System (INIS)

    Semenov, A N; Obukhov, S P

    2005-01-01

    We discover a new universal long-range interaction between solid objects in polymer media. This polymer-induced interaction is directly opposite to the van der Waals attraction. The predicted effect is deeply related to the classical Casimir interactions, providing a unique example of universal fluctuation-induced repulsion rather than normal attraction. This universal repulsion comes from the subtracted soft fluctuation modes in the ideal counterpart of the real polymer system. The effect can also be interpreted in terms of subtracted (ghost) large-scale polymer loops. We establish the general expressions for the energy of polymer-induced interactions for arbitrary solid particles in a concentrated polymer system. We find that the correlation function of the polymer density in a concentrated solution of very long chains follows a scaling law rather than an exponential decay at large distances. These novel universal long-range interactions can be of importance in various polymer systems. We discuss the ways to observe/simulate these fluctuation-induced effects

  10. A range-based predictive localization algorithm for WSID networks

    Science.gov (United States)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  11. Model-based cartilage thickness measurement in the submillimeter range

    International Nuclear Information System (INIS)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-01-01

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  12. FEL based photon collider of TeV energy range

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    Physical principles of operation of high energy photon linear colliders (PLC) based on the Compton backscattering of laser photons on high energy electrons are discussed. The main emphasis is put on the analysis of a possibility to construct the PLC with the center of mass energy 0.5-2 TeV. Free electron laser (FEL) is considered as a source of primary photons. Proposed FEL system consists of a tunable FEL oscillator (output power ∼ 1 - 10 MW) with subsequent amplification of the master signal in a FEL amplifier up to the power ∼ 3 x 10 11 W. The FEL parameters are optimized, restrictions on the electron beam and FEL magnetic system parameters are formulated and problems of technical realization are discussed. It is shown that the FEL technique provides the most suitable way to construct photon linear collider on the base of future generation linear collider. 22 refs., 10 figs., 2 tabs

  13. Improvements in medium range weather forecasting system of India

    Indian Academy of Sciences (India)

    system is based on the latest Grid Statistical Interpolation (GSI) scheme and it has the provision to use most of .... ified Simplified-Arakawa Scheme (SAS) (Han and. Pan 2010). ..... Kim Y-J and Arakawa A 1995 Improvement of orographic gravity wave ... Yang F, Mitchell K, Hou Y-T, Dai Y, Deng X, Wang Z and. Liang X-Z ...

  14. Los Alamos Scientific Laboratory long-range alarm system

    International Nuclear Information System (INIS)

    DesJardin, R.; Machanik, J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) Long-Range Alarm System is described. The last few years have brought significant changes in the Department of Energy regulations for protection of classified documents and special nuclear material. These changes in regulations have forced a complete redesign of the LASL security alarm system. LASL covers many square miles of varying terrain and consists of separate technical areas connected by public roads and communications. A design study over a period of 2 years produced functional specifications for a distributed intelligence, expandable alarm system that will handle 30,000 alarm points from hundreds of data concentrators spread over a 250-km 2 area. Emphasis in the design was on nonstop operation, data security, data communication, and upward expandability to incorporate fire alarms and the computer-aided dispatching of security and fire vehicles. All aspects of the alarm system were to be fault tolerant from the central computer system down to but not including the individual data concentrators. Redundant communications lines travel over public domain from the alarmed area to the central alarm station

  15. Method of high precision interval measurement in pulse laser ranging system

    Science.gov (United States)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  16. Measuring Systems for Thermometer Calibration in Low-Temperature Range

    Science.gov (United States)

    Szmyrka-Grzebyk, A.; Lipiński, L.; Manuszkiewicz, H.; Kowal, A.; Grykałowska, A.; Jancewicz, D.

    2011-12-01

    The national temperature standard for the low-temperature range between 13.8033 K and 273.16 K has been established in Poland at the Institute of Low Temperature and Structure Research (INTiBS). The standard consists of sealed cells for realization of six fixed points of the International Temperature Scale of 1990 (ITS-90) in the low-temperature range, an adiabatic cryostat and Isotech water and mercury triple-point baths, capsule standard resistance thermometers (CSPRT), and AC and DC bridges with standard resistors for thermometers resistance measurements. INTiBS calibrates CSPRTs at the low-temperature fixed points with uncertainties less than 1 mK. In lower temperature range—between 2.5 K and about 25 K — rhodium-iron (RhFe) resistance thermometers are calibrated by comparison with a standard which participated in the EURAMET.T-K1.1 comparison. INTiBS offers a calibration service for industrial platinum resistance thermometers and for digital thermometers between 77 K and 273 K. These types of thermometers may be calibrated at INTiBS also in a higher temperature range up to 550°C. The Laboratory of Temperature Standard at INTiBS acquired an accreditation from the Polish Centre for Accreditation. A management system according to EN ISO/IEC 17025:2005 was established at the Laboratory and presented on EURAMET QSM Forum.

  17. Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System

    Science.gov (United States)

    Yang, Wanpeng; Leng, Jianxiao; Zhang, Shuangyou; Zhao, Jianye

    2016-01-01

    In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length. PMID:27389642

  18. Short range spread-spectrum radiolocation system and method

    Science.gov (United States)

    Smith, Stephen F.

    2003-04-29

    A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.

  19. Binaural model-based dynamic-range compression.

    Science.gov (United States)

    Ernst, Stephan M A; Kortlang, Steffen; Grimm, Giso; Bisitz, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2018-01-26

    Binaural cues such as interaural level differences (ILDs) are used to organise auditory perception and to segregate sound sources in complex acoustical environments. In bilaterally fitted hearing aids, dynamic-range compression operating independently at each ear potentially alters these ILDs, thus distorting binaural perception and sound source segregation. A binaurally-linked model-based fast-acting dynamic compression algorithm designed to approximate the normal-hearing basilar membrane (BM) input-output function in hearing-impaired listeners is suggested. A multi-center evaluation in comparison with an alternative binaural and two bilateral fittings was performed to assess the effect of binaural synchronisation on (a) speech intelligibility and (b) perceived quality in realistic conditions. 30 and 12 hearing impaired (HI) listeners were aided individually with the algorithms for both experimental parts, respectively. A small preference towards the proposed model-based algorithm in the direct quality comparison was found. However, no benefit of binaural-synchronisation regarding speech intelligibility was found, suggesting a dominant role of the better ear in all experimental conditions. The suggested binaural synchronisation of compression algorithms showed a limited effect on the tested outcome measures, however, linking could be situationally beneficial to preserve a natural binaural perception of the acoustical environment.

  20. Zero-range approximation for two-component boson systems

    International Nuclear Information System (INIS)

    Sogo, T.; Fedorov, D.V.; Jensen, A.S.

    2005-01-01

    The hyperspherical adiabatic expansion method is combined with the zero-range approximation to derive angular Faddeev-like equations for two-component boson systems. The angular eigenvalues are solutions to a transcendental equation obtained as a vanishing determinant of a 3 x 3 matrix. The eigenfunctions are linear combinations of Jacobi functions of argument proportional to the distance between pairs of particles. We investigate numerically the influence of two-body correlations on the eigenvalue spectrum, the eigenfunctions and the effective hyperradial potential. Correlations decrease or increase the distance between pairs for effectively attractive or repulsive interactions, respectively. New structures appear for non-identical components. Fingerprints can be found in the nodal structure of the density distributions of the condensates. (author)

  1. NATO Advanced Research Workshop on Smart Materials for Ranging Systems

    CERN Document Server

    Franse, Jaap; Sirenko, Valentyna

    2006-01-01

    The problem of determining the location of an object (usually called ranging) attracts at present much attention in different areas of applications, among them in ecological and safety devices. Electromagnetic waves along with sound waves are widely used for these purposes. Different aspects of materials with specific magnetic, electric and elastic properties are considered in view of potential application in the design and manufacturing of smart materials. Progress is reported in the fabrication and understanding of in-situ formation and characterization of solid state structures with specified properties. Attention is paid to the observation and study of the mobility of magnetic structures and of the kinetics of magnetic ordering transitions. Looking from a different perspective, one of the outcomes of the ARW is the emphasis on the important role that collective phenomena (like spin waves in systems with a magnetically ordered ground state, or critical currents in superconductors) could play at the design ...

  2. Task path planning, scheduling and learning for free-ranging robot systems

    Science.gov (United States)

    Wakefield, G. Steve

    1987-01-01

    The development of robotics applications for space operations is often restricted by the limited movement available to guided robots. Free ranging robots can offer greater flexibility than physically guided robots in these applications. Presented here is an object oriented approach to path planning and task scheduling for free-ranging robots that allows the dynamic determination of paths based on the current environment. The system also provides task learning for repetitive jobs. This approach provides a basis for the design of free-ranging robot systems which are adaptable to various environments and tasks.

  3. Composite Broadcasting and Ranging via a Satellite Dual-Frequency MPPSK System

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2013-01-01

    Full Text Available Since digital video broadcasting via satellite (DVB-S signals are “inefficient”, regarding the amount of information they convey on the bandwidth they occupy, a joint broadcasting and ranging system would constitute a unique platform for future digital video broadcasting satellite services effecting the essential tasks of satellite navigation system and direct to home (DTH services, in terms of both spectrum efficiency and cost effectiveness. In this paper, the design of dual frequency M-ary position phase shift keying (MPPSK system which is suitable for, respectively, performing both data transmission and range measurement is proposed. The approach is based on MPPSK modulation waveforms utilized in digital video broadcasting. In particular, requirements that allow for employing such signals for range measurements with high accuracy and high range are investigated. Also, the relationship between the frequency difference of dual frequency MPPSK system and range accuracy is discussed. Moreover, the selection of MPPSK modulation parameter for data rate and ranging is considered. In addition to theoretical considerations, the paper presents system simulations and measurement results of new systems, demonstrating the high spectral utilization of integrated broadcasting and ranging applications.

  4. Influence of range-gated intensifiers on underwater imaging system SNR

    Science.gov (United States)

    Wang, Xia; Hu, Ling; Zhi, Qiang; Chen, Zhen-yue; Jin, Wei-qi

    2013-08-01

    Range-gated technology has been a hot research field in recent years due to its high effective back scattering eliminating. As a result, it can enhance the contrast between a target and its background and extent the working distance of the imaging system. The underwater imaging system is required to have the ability to image in low light level conditions, as well as the ability to eliminate the back scattering effect, which means that the receiver has to be high-speed external trigger function, high resolution, high sensitivity, low noise, higher gain dynamic range. When it comes to an intensifier, the noise characteristics directly restrict the observation effect and range of the imaging system. The background noise may decrease the image contrast and sharpness, even covering the signal making it impossible to recognize the target. So it is quite important to investigate the noise characteristics of intensifiers. SNR is an important parameter reflecting the noise features of a system. Through the use of underwater laser range-gated imaging prediction model, and according to the linear SNR system theory, the gated imaging noise performance of the present market adopted super second generation and generation Ⅲ intensifiers were theoretically analyzed. Based on the active laser underwater range-gated imaging model, the effect to the system by gated intensifiers and the relationship between the system SNR and MTF were studied. Through theoretical and simulation analysis to the image intensifier background noise and SNR, the different influence on system SNR by super second generation and generation Ⅲ ICCD was obtained. Range-gated system SNR formula was put forward, and compared the different effect influence on the system by using two kind of ICCDs was compared. According to the matlab simulation, a detailed analysis was carried out theoretically. All the work in this paper lays a theoretical foundation to further eliminating back scattering effect, improving

  5. Hydrogeology of Pico Frentes Karst system (Iberian range, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, P.; Sanz, E.; Menendez-Pidal, I.

    2016-07-01

    The karst system of Pico Frentes has developed within an Upper Cretaceous calcareous series whose welldefined folded geometry determines that its aquifer reserves are held mainly in three hydraulically-connected synclines, with a groundwater capacity of between 5 and 7 hm3 . The recharge to this unconfined peneplain aquifer is autogenous and diffuse. On a large scale, groundwater flow is directed by the base of the synclines, while on a small scale, it flows along groundwater conduits towards the Fuentetoba Spring (210 l/s) and source of the River Mazos (50 l/s), following a highly variable flow regime of low inertia, with other smaller discharges emanating during periods of high water. Analysis of hydrographs of these springs indicates a very variable rate system and little power regulating natural, characteristic of a typical karstic aquifer, with great capacity for renewal and low residence time. Using hydrogram simulations of these upwellings using a mathematical rainfall-runoff model, a detailed quantification of the average water balance was made for a twenty-year time series. This water balance consists of 16,86 hm3 rainfall (100%); natural recharge, 8,35 hm3 (49,53%); EVT 8,50 hm3 (50,41%); pumped groundwater abstractions, 0,01hm3 (0,06%); surface runoff, 0 hm3, groundwater transfers to other aquifer, 0 hm3. (Author)

  6. 10.23  Mcps laser pseudo-code ranging system with 0.33  mm (1σ) pseudo-range measurement precision.

    Science.gov (United States)

    Yu, Xiaonan; Tong, Shoufeng; Zhang, Lei; Dong, Yan; Zhao, Xin; Qiao, Yue

    2017-07-01

    The inter-satellite laser link is the backbone of the next inter-satellite information network, and ranging and communication are the main functions of the inter-satellite laser link. This study focuses on the inter-satellite laser ranging based on the pseudo-code correlation technology. In this paper, several typical laser-ranging methods have been compared and we determined that the laser pseudo-code ranging architecture is more suitable for the inter-satellite laser communication link. The pseudo-code ranging system is easy to combine with a digital communication system, and we used it to calculate integer ambiguity by modulating the time information. The main challenge of the ranging system is range precision, which is the main focus of this paper. First, the framework of the pseudo-code ranging system is introduced; the ranging architecture of dual one-way ranging is used to eliminate the clock error between the two transceivers, and then the uncertainty of the phase detector is analyzed. In the analysis, the carrier to noise ratio and the ranging code rate are constrained by the laser communication link margin and the electronic hardware limitation. Therefore, the relationship between the sampling depth and the phase detector uncertainty is verified. A series of optical fiber channel laser pseudo-code ranging experiments demonstrated the effects of sampling depth on the ranging precision. By adjusting the depth of storage, such as the depth of 1.6 Mb, we obtained a pseudo-range measurement precision of 0.33 mm (1σ), which is equivalent to 0.0001 times code subdivision of 10.23 Mcps pseudo-code. This paper has achieved high precision in a pseudo-range measurements, which is the foundation of the inter-satellite laser link.

  7. 110 °C range athermalization of wavefront coding infrared imaging systems

    Science.gov (United States)

    Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong

    2017-09-01

    110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.

  8. Development and evaluation of automatic registration system for multi-range fiducials applied to augmented reality

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Yang, Shoufeng; Yan, Weida; Shimoda, Hiroshi; Izumi, Masanori

    2009-01-01

    In this study, an automatic registration system was developed that can measure 3 dimensional position and orientation of multi-range fiducials automatically using a camera, laser range finder and motion bases connected to a computer. Result of the experimental evaluation shows that the measurement takes about 50 seconds per marker and RMSE (Root Mean Square Error) of the position and orientation measurement are 3.5 mm and 1.2 degrees respectively. (author)

  9. Range based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-08-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in Wireless Mesh Networks (WMNs). In this paper, researchers present a range based dynamic power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified...

  10. Improved optical ranging for space based gravitational wave detection

    International Nuclear Information System (INIS)

    Sutton, Andrew J; Shaddock, Daniel A; McKenzie, Kirk; Ware, Brent; De Vine, Glenn; Spero, Robert E; Klipstein, W

    2013-01-01

    The operation of 10 6  km scale laser interferometers in space will permit the detection of gravitational waves at previously unaccessible frequency regions. Multi-spacecraft missions, such as the Laser Interferometer Space Antenna (LISA), will use time delay interferometry to suppress the otherwise dominant laser frequency noise from their measurements. This is accomplished by performing sub-sample interpolation of the optical phase measurements recorded at each spacecraft for synchronization and cancellation of the otherwise dominant laser frequency noise. These sub-sample interpolation time shifts are dependent upon the inter-spacecraft range and will be measured using a pseudo-random noise ranging modulation upon the science laser. One limit to the ranging performance is mutual interference between the outgoing and incoming ranging signals upon each spacecraft. This paper reports on the demonstration of a noise cancellation algorithm which is shown to providing a factor of ∼8 suppression of the mutual interference noise. Demonstration of the algorithm in an optical test bed showed an rms ranging error of 0.06 m, improved from 0.19 m in previous results, surpassing the 1 m RMS LISA specification and potentially improving the cancellation of laser frequency noise. (paper)

  11. User Guide for Unmanned Aerial System (UAS) Operations on the National Ranges

    Science.gov (United States)

    2007-11-01

    WARFARE CENTER WEAPONS DIVISION, PT. MUGU NAVAL AIR WARFARE CENTER WEAPONS DIVISION, CHINA LAKE NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION, PATUXENT...with IFR Instrument Flight Rules MRTFB Major Range and Test Facility Base NAS National Airspace System NM nautical mile NTIA National...sectional charts, Instrument Flight Rules ( IFR ) enroute charts, and terminal area charts. The floor and ceiling, operating hours, and controlling

  12. Global stereo matching algorithm based on disparity range estimation

    Science.gov (United States)

    Li, Jing; Zhao, Hong; Gu, Feifei

    2017-09-01

    The global stereo matching algorithms are of high accuracy for the estimation of disparity map, but the time-consuming in the optimization process still faces a curse, especially for the image pairs with high resolution and large baseline setting. To improve the computational efficiency of the global algorithms, a disparity range estimation scheme for the global stereo matching is proposed to estimate the disparity map of rectified stereo images in this paper. The projective geometry in a parallel binocular stereo vision is investigated to reveal a relationship between two disparities at each pixel in the rectified stereo images with different baselines, which can be used to quickly obtain a predicted disparity map in a long baseline setting estimated by that in the small one. Then, the drastically reduced disparity ranges at each pixel under a long baseline setting can be determined by the predicted disparity map. Furthermore, the disparity range estimation scheme is introduced into the graph cuts with expansion moves to estimate the precise disparity map, which can greatly save the cost of computing without loss of accuracy in the stereo matching, especially for the dense global stereo matching, compared to the traditional algorithm. Experimental results with the Middlebury stereo datasets are presented to demonstrate the validity and efficiency of the proposed algorithm.

  13. Rabbit System. Low cost, high reliability front end electronics featuring 16 bit dynamic range

    International Nuclear Information System (INIS)

    Drake, G.; Droege, T.F.; Nelson, C.A. Jr.; Turner, K.J.; Ohska, T.K.

    1985-10-01

    A new crate-based front end system has been built which features low cost, compact packaging, command capability, 16 bit dynamic range digitization, and a high degree of redundancy. The crate can contain a variety of instrumentation modules, and is designed to be situated close to the detector. The system is suitable for readout of a large number of channels via parallel multiprocessor data acquisition

  14. EPICS based DAQ system

    International Nuclear Information System (INIS)

    Cheng Weixing; Chen Yongzhong; Zhou Weimin; Ye Kairong; Liu Dekang

    2002-01-01

    EPICS is the most popular developing platform to build control system and beam diagnostic system in modern physics experiment facilities. An EPICS based data acquisition system was built in Redhat 6.2 operation system. The system is successfully used in the beam position monitor mapping, it improves the mapping process a lot

  15. Middle Range Sea Ice Prediction System of Voyage Environmental Information System in Arctic Sea Route

    Science.gov (United States)

    Lim, H. S.

    2017-12-01

    Due to global warming, the sea ice in the Arctic Ocean is melting dramatically in summer, which is providing a new opportunity to exploit the Northern Sea Route (NSR) connecting Asia and Europe ship route. Recent increases in logistics transportation through NSR and resource development reveal the possible threats of marine pollution and marine transportation accidents without real-time navigation system. To develop a safe Voyage Environmental Information System (VEIS) for vessels operating, the Korea Institute of Ocean Science and Technology (KIOST) which is supported by the Ministry of Oceans and Fisheries, Korea has initiated the development of short-term and middle range prediction system for the sea ice concentration (SIC) and sea ice thickness (SIT) in NSR since 2014. The sea ice prediction system of VEIS consists of AMSR2 satellite composite images (a day), short-term (a week) prediction system, and middle range (a month) prediction system using a statistical method with re-analysis data (TOPAZ) and short-term predicted model data. In this study, the middle range prediction system for the SIC and SIT in NSR is calibrated with another middle range predicted atmospheric and oceanic data (NOAA CFSv2). The system predicts one month SIC and SIT on a daily basis, as validated with dynamic composite SIC data extracted from AMSR2 L2 satellite images.

  16. LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range

    DEFF Research Database (Denmark)

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 mu mol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based...... for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used...... measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized "sensing chemistry" that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded...

  17. Thermal and dynamic range characterization of a photonics-based RF amplifier

    Science.gov (United States)

    Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.

    2018-05-01

    This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.

  18. Ultrafast and Doppler-free femtosecondoptical ranging based on dispersivefrequency-modulated interferometry.

    Science.gov (United States)

    Xia, Haiyun; Zhang, Chunxi

    2010-03-01

    An ultrafast and Doppler-free optical ranging system based on dispersive frequency-modulated interferometry is demonstrated. The principle is similar to the conventional frequency-modulated continuous-wave interferometry where the range information is derived from the beat frequency between the object signal and the reference signal. However, a passive and static frequency scanning is performed based on the chromatic dispersion of a transform-limited femtosecond pulse in the time domain. We point out that the unbalanced dispersion introduced in the Mach-Zehnder interferometer can be optimized to eliminate the frequency chirp in the temporal interferograms pertaining to the third order dispersion of the all-fiber system, if the dynamic range being considered is small. Some negative factors, such as the polarization instability of the femtosecond pulse, the power fluctuation of the optical signal and the nonuniform gain spectrum of the erbium-doped fiber amplifier lead to an obvious envelope deformation of the temporal interferograms from the Gaussian shape. Thus a new data processing method is proposed to guarantee the range resolution. In the experiment, the vibration of a speaker is measured. A range resolution of 1.59 microm is achieved with an exposure time of 394 fs at a sampling rate of 48.6 MHz.

  19. Face recognition based on matching of local features on 3D dynamic range sequences

    Science.gov (United States)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  20. Heart rate, multiple body temperature, long-range and long-life telemetry system for free-ranging animals

    Science.gov (United States)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.

    1980-01-01

    The design details and rationale for a versatile, long-range, long-life telemetry data acquisition system for heart rates and body temperatures at multiple locations from free-ranging animals are presented. The design comprises an implantable transmitter for short to medium range transmission, a receiver retransmitter collar to be worn for long-range transmission, and a signal conditioner interface circuit to assist in signal discrimination and demodulation of receiver or tape-recorded audio outputs. Implanted electrodes are used to obtain an ECG, from which R-wave characteristics are selected to trigger a short RF pulse. Pulses carrying heart rate information are interrupted periodically by a series of pulse interval modulated RF pulses conveying temperature information sensed at desired locations by thermistors. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as radio frequency interference. The implanted transmitter may be used alone for medium and short-range tracking, or with a receiver-transmitter collar that employs commercial tracking equipment for transmissions of up to 12 km. A system prototype has been tested on a dog.

  1. Towards an Automated Acoustic Detection System for Free Ranging Elephants.

    Science.gov (United States)

    Zeppelzauer, Matthias; Hensman, Sean; Stoeger, Angela S

    The human-elephant conflict is one of the most serious conservation problems in Asia and Africa today. The involuntary confrontation of humans and elephants claims the lives of many animals and humans every year. A promising approach to alleviate this conflict is the development of an acoustic early warning system. Such a system requires the robust automated detection of elephant vocalizations under unconstrained field conditions. Today, no system exists that fulfills these requirements. In this paper, we present a method for the automated detection of elephant vocalizations that is robust to the diverse noise sources present in the field. We evaluate the method on a dataset recorded under natural field conditions to simulate a real-world scenario. The proposed method outperformed existing approaches and robustly and accurately detected elephants. It thus can form the basis for a future automated early warning system for elephants. Furthermore, the method may be a useful tool for scientists in bioacoustics for the study of wildlife recordings.

  2. Actuated polymer based dielectric mirror for visual spectral range applications

    Science.gov (United States)

    Vergara, Pedro P.; Lunardi, Leda

    2017-08-01

    Miniature dielectric mirrors are useful components for lasers, thin film beam splitters and high quality mirrors in optics. These mirrors usually made from rigid inorganic materials can achieve a reflectance of almost one hundred percent. Being structural components, as soon as fabricated their reflectance and/or bandwidth remains constant. Here it is presented a novel fabrication process of a dielectric mirror based on free standing polymer layers. By applying an electrostatic force between the top and the bottom layers the reflectance can be changed. The large difference between the polymers refractive index and the air allows to achieve a reflectance of more than 85% using only six pairs of nanolayers. Preliminary simulations indicate an actuation speed of less than 1ms. Experimental optical characterization of fabricated structures agrees well with simulation results. Furthermore, structures can be designed to reflect a particular set of colors and/or isolated by using color filters, so a color pixel is fabricated, where the reflectance for each isolated color can be voltage controlled. Potential applications include an active component in a reflective screen display.

  3. Extended capture range for focus-diverse phase retrieval in segmented aperture systems using geometrical optics.

    Science.gov (United States)

    Jurling, Alden S; Fienup, James R

    2014-03-01

    Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an algorithm for estimating segment tips and tilts from multiple point spread functions in different defocused planes. We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts. Monte Carlo simulations produced a rate of success better than 98% for the combined approach.

  4. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.

    Science.gov (United States)

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao

    2016-12-16

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.

  5. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing

    Science.gov (United States)

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao

    2016-01-01

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250

  6. Prospecting for a Blind Geothermal System Utilizing Geologic and Geophysical Data, Seven Troughs Range, Northwestern Nevada

    Science.gov (United States)

    Forson, Corina

    To aid in the discovery and evaluation of blind resources, it is important to utilize geologic, geophysical, and geochemical techniques to find the required elements (e.g., heat source, fluid to transport the heat, and permeability in a reservoir) for geothermal energy production. Based on a regional low resistivity anomaly discovered through a reconnaissance magnetotelluric (MT) survey, detailed geologic mapping, structural analysis, and a 2 m temperature survey were conducted to delineate the most likely areas for blind geothermal activity in the Seven Troughs Range, Nevada. The Seven Troughs Range resides in the northwestern Basin and Range province 190 km northeast of Reno and 50 km northwest of Lovelock in western Nevada. There is no known geothermal system in the area. Mesozoic metasedimentary strata and intrusions dominate the northern and southern parts of the range but are nonconformably overlain by a thick sequence (~ 1.5 km) of Oligocene to Miocene volcanic and volcaniclastic rocks and Quaternary sediments in the central part of the range. The southern part of the range consists of a basement horst block bounded by two major range-front faults, with Holocene fault scarps marking the more prominent fault on the east side of the range. In contrast, several gently to moderately west-tilted fault blocks, with good exposures of the Tertiary volcanic strata and bounded by a series of steeply east-dipping normal faults, characterize the central part of the range. Kinematic analysis of faults in the range and regional relations indicate a west-northwest-trending extension direction. Accordingly, slip and dilation tendency analyses suggest that north-northeast striking faults are the most favorably oriented for reactivation and fluid flow under the current stress field. Two areas in the Seven Troughs Range have a favorable structural setting for generating permeability and channeling geothermal fluids to the near surface: 1) A major right step in the range

  7. Potentiometric Measurement of Transition Ranges and Titration Errors for Acid/Base Indicators

    Science.gov (United States)

    Flowers, Paul A.

    1997-07-01

    Sophomore analytical chemistry courses typically devote a substantial amount of lecture time to acid/base equilibrium theory, and usually include at least one laboratory project employing potentiometric titrations. In an effort to provide students a laboratory experience that more directly supports their classroom discussions on this important topic, an experiment involving potentiometric measurement of transition ranges and titration errors for common acid/base indicators has been developed. The pH and visually-assessed color of a millimolar strong acid/base system are monitored as a function of added titrant volume, and the resultant data plotted to permit determination of the indicator's transition range and associated titration error. Student response is typically quite positive, and the measured quantities correlate reasonably well to literature values.

  8. a Range Based Method for Complex Facade Modeling

    Science.gov (United States)

    Adami, A.; Fregonese, L.; Taffurelli, L.

    2011-09-01

    3d modelling of Architectural Heritage does not follow a very well-defined way, but it goes through different algorithms and digital form according to the shape complexity of the object, to the main goal of the representation and to the starting data. Even if the process starts from the same data, such as a pointcloud acquired by laser scanner, there are different possibilities to realize a digital model. In particular we can choose between two different attitudes: the mesh and the solid model. In the first case the complexity of architecture is represented by a dense net of triangular surfaces which approximates the real surface of the object. In the other -opposite- case the 3d digital model can be realized by the use of simple geometrical shapes, by the use of sweeping algorithm and the Boolean operations. Obviously these two models are not the same and each one is characterized by some peculiarities concerning the way of modelling (the choice of a particular triangulation algorithm or the quasi-automatic modelling by known shapes) and the final results (a more detailed and complex mesh versus an approximate and more simple solid model). Usually the expected final representation and the possibility of publishing lead to one way or the other. In this paper we want to suggest a semiautomatic process to build 3d digital models of the facades of complex architecture to be used for example in city models or in other large scale representations. This way of modelling guarantees also to obtain small files to be published on the web or to be transmitted. The modelling procedure starts from laser scanner data which can be processed in the well known way. Usually more than one scan is necessary to describe a complex architecture and to avoid some shadows on the facades. These have to be registered in a single reference system by the use of targets which are surveyed by topography and then to be filtered in order to obtain a well controlled and homogeneous point cloud of

  9. A RANGE BASED METHOD FOR COMPLEX FACADE MODELING

    Directory of Open Access Journals (Sweden)

    A. Adami

    2012-09-01

    Full Text Available 3d modelling of Architectural Heritage does not follow a very well-defined way, but it goes through different algorithms and digital form according to the shape complexity of the object, to the main goal of the representation and to the starting data. Even if the process starts from the same data, such as a pointcloud acquired by laser scanner, there are different possibilities to realize a digital model. In particular we can choose between two different attitudes: the mesh and the solid model. In the first case the complexity of architecture is represented by a dense net of triangular surfaces which approximates the real surface of the object. In the other -opposite- case the 3d digital model can be realized by the use of simple geometrical shapes, by the use of sweeping algorithm and the Boolean operations. Obviously these two models are not the same and each one is characterized by some peculiarities concerning the way of modelling (the choice of a particular triangulation algorithm or the quasi-automatic modelling by known shapes and the final results (a more detailed and complex mesh versus an approximate and more simple solid model. Usually the expected final representation and the possibility of publishing lead to one way or the other. In this paper we want to suggest a semiautomatic process to build 3d digital models of the facades of complex architecture to be used for example in city models or in other large scale representations. This way of modelling guarantees also to obtain small files to be published on the web or to be transmitted. The modelling procedure starts from laser scanner data which can be processed in the well known way. Usually more than one scan is necessary to describe a complex architecture and to avoid some shadows on the facades. These have to be registered in a single reference system by the use of targets which are surveyed by topography and then to be filtered in order to obtain a well controlled and

  10. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    International Nuclear Information System (INIS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-01-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems

  11. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  12. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ge; Wang, Jun [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Fang, Wen, E-mail: fangwen@bjtu.edu.cn [School of Economics and Management, Beijing Jiaotong University, Beijing 100044 (China)

    2015-04-15

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  13. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a

  14. Low pressure EGR system having full range capability

    Science.gov (United States)

    Easley, Jr., William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir

    2009-09-22

    An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.

  15. A High Dynamic-Range Beam Position Measurement System for ELSA-2

    CERN Document Server

    Balleyguier, P; Guimbal, P; Borrion, H

    2003-01-01

    New beamlines are presently under construction for ELSA, a 20 MeV electron linac located at Bruyères-le-Châtel. These lines need a beam position measurement system filling the following requirements: small footprint, wide dynamic range, single-bunch/multi-bunch capability, simple design. We designed a compact 4-stripline sensor and an electronic treatment chain based on logarithmic amplifiers. This paper presents the design, cold and hot test results.

  16. Mobile network architecture of the long-range WindScanner system

    OpenAIRE

    Vasiljevic, Nikola; Lea, Guillaume; Hansen, Per; Jensen, Henrik M.

    2016-01-01

    In this report we have presented the network architecture of the long-range WindScanner system that allows utilization of mobile network connections without the use of static public IP addresses. The architecture mitigates the issues of additional fees and contractual obligations that are linked to the acquisition of the mobile network connections with static public IP addresses. The architecture consists of a hardware VPN solution based on the network appliances Z1 and MX60 from Cisco Meraki...

  17. Toward 1-mm depth precision with a solid state full-field range imaging system

    Science.gov (United States)

    Dorrington, Adrian A.; Carnegie, Dale A.; Cree, Michael J.

    2006-02-01

    Previously, we demonstrated a novel heterodyne based solid-state full-field range-finding imaging system. This system is comprised of modulated LED illumination, a modulated image intensifier, and a digital video camera. A 10 MHz drive is provided with 1 Hz difference between the LEDs and image intensifier. A sequence of images of the resulting beating intensifier output are captured and processed to determine phase and hence distance to the object for each pixel. In a previous publication, we detailed results showing a one-sigma precision of 15 mm to 30 mm (depending on signal strength). Furthermore, we identified the limitations of the system and potential improvements that were expected to result in a range precision in the order of 1 mm. These primarily include increasing the operating frequency and improving optical coupling and sensitivity. In this paper, we report on the implementation of these improvements and the new system characteristics. We also comment on the factors that are important for high precision image ranging and present configuration strategies for best performance. Ranging with sub-millimeter precision is demonstrated by imaging a planar surface and calculating the deviations from a planar fit. The results are also illustrated graphically by imaging a garden gnome.

  18. Effective sampling range of a synthetic protein-based attractant for Ceratitis capitata (Diptera: Tephritidae).

    Science.gov (United States)

    Epsky, Nancy D; Espinoza, Hernán R; Kendra, Paul E; Abernathy, Robert; Midgarden, David; Heath, Robert R

    2010-10-01

    Studies were conducted in Honduras to determine effective sampling range of a female-targeted protein-based synthetic attractant for the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Multilure traps were baited with ammonium acetate, putrescine, and trimethylamine lures (three-component attractant) and sampled over eight consecutive weeks. Field design consisted of 38 traps (over 0.5 ha) placed in a combination of standard and high-density grids to facilitate geostatistical analysis, and tests were conducted in coffee (Coffea arabica L.),mango (Mangifera indica L.),and orthanique (Citrus sinensis X Citrus reticulata). Effective sampling range, as determined from the range parameter obtained from experimental variograms that fit a spherical model, was approximately 30 m for flies captured in tests in coffee or mango and approximately 40 m for flies captured in orthanique. For comparison, a release-recapture study was conducted in mango using wild (field-collected) mixed sex C. capitata and an array of 20 baited traps spaced 10-50 m from the release point. Contour analysis was used to document spatial distribution of fly recaptures and to estimate effective sampling range, defined by the area that encompassed 90% of the recaptures. With this approach, effective range of the three-component attractant was estimated to be approximately 28 m, similar to results obtained from variogram analysis. Contour maps indicated that wind direction had a strong influence on sampling range, which was approximately 15 m greater upwind compared with downwind from the release point. Geostatistical analysis of field-captured insects in appropriately designed trapping grids may provide a supplement or alternative to release-recapture studies to estimate sampling ranges for semiochemical-based trapping systems.

  19. Two-way laser ranging and time transfer experiments between LOLA and an Earth-based satellite laser ranging station

    Science.gov (United States)

    Mao, D.; Sun, X.; Neumann, G. A.; Barker, M. K.; Mazarico, E. M.; Hoffman, E.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    Satellite Laser Ranging (SLR) has established time-of-flight measurements with mm precision to targets orbiting the Earth and the Moon using single-ended round-trip laser ranging to passive optical retro-reflectors. These high-precision measurements enable advances in fundamental physics, solar system dynamics. However, the received signal strength suffers from a 1/R4 decay, which makes it impractical for measuring distances beyond the Moon's orbit. On the other hand, for a two-way laser transponder pair, where laser pulses are both transmitted to and received from each end of the laser links, the signal strength at both terminals only decreases by 1/R2, thus allowing a greater range of distances to be covered. The asynchronous transponder concept has been previously demonstrated by a test in 2005 between the Mercury Laser Altimeter (MLA) aboard the MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft and NASA's Goddard Geophysical and Astronomical Observatory (GGAO) at a distance of ˜0.16 AU. In October 2013, regular two-way transponder-type range measurements were obtained over 15 days between the Lunar Laser Communication Demonstration (LLCD) aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and NASA's ground station at White Sands, NM. The Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) provides us a unique capability to test time-transfer beyond near Earth orbit. Here we present results from two-way transponder-type experiments between LOLA and GGAO conducted in March 2014 and 2017. As in the time-transfer by laser link (T2L2) experiments between a ground station and an earth-orbiting satellite, LOLA and GGAO ranged to each other simultaneously in these two-way tests at lunar distance. We measured the time-of-flight while cross-referencing the spacecraft clock to the ground station time. On May 4th, 2017, about 20 minutes of two-way measurements were collected. The

  20. The Range of Initial 10Be/9Be Ratios in the Early Solar System: A Re-Assessment Based on Analyses of New CAIs and Melilite Composition Glass Standards

    Science.gov (United States)

    Dunham, E.; Wadhwa, M.; Liu, M.-C.

    2017-07-01

    We report a more accurate range of initial 10Be/9Be in CAIs including FUN CAI CMS-1 from Allende (CV3) and a new CAI from NWA 5508 (CV3) using melilite composition glass standards; we suggest 10Be is largely produced by irradiation in the nebula.

  1. Prediction of failures in linear systems with the use of tolerance ranges

    International Nuclear Information System (INIS)

    Gadzhiev, Ch.M.

    1993-01-01

    The problem of predicting the technical state of an object can be stated in a general case as that of predicting potential failures on the basis of a quantitative evaluation of the predicted parameters in relation to the set of tolerances on these parameters. The main stages in the prediction are collecting and preparing source data on the prehistory of the predicted phenomenon, forming a mathematical model of this phenomenon, working out the algorithm for the prediction, and adopting a solution from the prediction results. The final two stages of prediction are considered in this article. The prediction algorithm is proposed based on construction of the tolerance range for the signal of error between output coordinates of the system and its mathematical model. A solution regarding possible occurrence of failure in the system is formulated as a result of comparison of the tolerance range and the found confidence interval. 5 refs

  2. Advanced technologies in the ASI MLRO towards a new generation laser ranging system

    Science.gov (United States)

    Varghese, Thomas; Bianco, Giuseppe

    1994-01-01

    Matera Laser Ranging Observatory (MLRO) is a high performance, highly automated optical and astronomical observatory currently under design and development by AlliedSignal for the Italian Space Agency (ASI). It is projected to become operational at the Centro Geodesia Spaziale in Matera, Italy, in 1997. MLRO, based on a 1.5-meter astronomical quality telescope, will perform ranging to spacecraft in earthbound orbits, lunar reflectors, and specially equipped deep space missions. The primary emphasis during design is to incorporate state-of-the-art technologies to produce an intelligent, automated, high accuracy ranging system that will mimic the characteristic features of a fifth generation laser ranging system. The telescope has multiple ports and foci to support future experiments in the areas of laser communications, lidar, astrometry, etc. The key features providing state-of-the-art ranging performance include: a diode-pumped picosecond (50 ps) laser, high speed (3-5 GHz) optoelectronic detection and signal processing, and a high accuracy (6 ps) high resolution (less than 2 ps) time measurement capability. The above combination of technologies is expected to yield millimeter laser ranging precision and accuracy on targets up to 300,000 km, surpassing the best operational instrument performance to date by a factor of five or more. Distributed processing and control using a state-of-the-art computing environment provides the framework for efficient operation, system optimization, and diagnostics. A computationally intelligent environment permits optimal planning, scheduling, tracking, and data processing. It also supports remote access, monitor, and control for joint experiments with other observatories.

  3. Linear response theory for long-range interacting systems in quasistationary states.

    Science.gov (United States)

    Patelli, Aurelio; Gupta, Shamik; Nardini, Cesare; Ruffo, Stefano

    2012-02-01

    Long-range interacting systems, while relaxing to equilibrium, often get trapped in long-lived quasistationary states which have lifetimes that diverge with the system size. In this work, we address the question of how a long-range system in a quasistationary state (QSS) responds to an external perturbation. We consider a long-range system that evolves under deterministic Hamilton dynamics. The perturbation is taken to couple to the canonical coordinates of the individual constituents. Our study is based on analyzing the Vlasov equation for the single-particle phase-space distribution. The QSS represents a stable stationary solution of the Vlasov equation in the absence of the external perturbation. In the presence of small perturbation, we linearize the perturbed Vlasov equation about the QSS to obtain a formal expression for the response observed in a single-particle dynamical quantity. For a QSS that is homogeneous in the coordinate, we obtain an explicit formula for the response. We apply our analysis to a paradigmatic model, the Hamiltonian mean-field model, which involves particles moving on a circle under Hamiltonian dynamics. Our prediction for the response of three representative QSSs in this model (the water-bag QSS, the Fermi-Dirac QSS, and the Gaussian QSS) is found to be in good agreement with N-particle simulations for large N. We also show the long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium state. © 2012 American Physical Society

  4. Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry

    Science.gov (United States)

    Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun

    2018-06-01

    The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.

  5. A UHF RFID system with on-chip-antenna tag for short range communication

    International Nuclear Information System (INIS)

    Peng Qi; Zhang Chun; Zhao Xijin; Wang Zhihua

    2015-01-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm 2 , which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna. (paper)

  6. A numerical investigation on the efficiency of range extending systems using Advanced Vehicle Simulator

    Science.gov (United States)

    Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan

    2011-03-01

    Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.

  7. A digitized wide range channel for new instrumentation and control system of PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Izhar Abu Hussin; Mohd Idris Taib; Nurfarhana Ayuni Joha; Roslan Md Dan

    2010-01-01

    Wide Range Channel is one of very important part of Reactor Instrumentation and Control system. Current system is using all analog system. The main functions of the new system are to provide Wide-log power and Multi-range linear power. The other functions are to provide Percent power and Power rate of change. The linear power level range is up to 125 % and the log power system to cover from below source level to 150 %. The main function of digital signal processor is for pulse shaping, pulse counting and root mean square signal processing. The system employs automatic on-line self diagnostics and calibration verification. (author)

  8. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    Science.gov (United States)

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  9. Shack-Hartmann centroid detection method based on high dynamic range imaging and normalization techniques

    International Nuclear Information System (INIS)

    Vargas, Javier; Gonzalez-Fernandez, Luis; Quiroga, Juan Antonio; Belenguer, Tomas

    2010-01-01

    In the optical quality measuring process of an optical system, including diamond-turning components, the use of a laser light source can produce an undesirable speckle effect in a Shack-Hartmann (SH) CCD sensor. This speckle noise can deteriorate the precision and accuracy of the wavefront sensor measurement. Here we present a SH centroid detection method founded on computer-based techniques and capable of measurement in the presence of strong speckle noise. The method extends the dynamic range imaging capabilities of the SH sensor through the use of a set of different CCD integration times. The resultant extended range spot map is normalized to accurately obtain the spot centroids. The proposed method has been applied to measure the optical quality of the main optical system (MOS) of the mid-infrared instrument telescope smulator. The wavefront at the exit of this optical system is affected by speckle noise when it is illuminated by a laser source and by air turbulence because it has a long back focal length (3017 mm). Using the proposed technique, the MOS wavefront error was measured and satisfactory results were obtained.

  10. Linearity improvement on wide-range log signal of neutron measurement system for HANARO

    International Nuclear Information System (INIS)

    Kim, Young-Ki; Tuetken, Jeffrey S.

    1998-01-01

    This paper discusses engineering activities for improving the linearity characteristics of the Log Power signal from the neutron measurement system for HANARO. This neutron measurement system uses a fission chamber based detector which covers 10.3 decade-wide range from 10 -8 % full power(FP) up to 200%FP, The Log Power signal is designed to control the reactor at low power levels where most of the reactor physics tests are carried out. Therefore, the linearity characteristics of the Log Power signal is the major factor for accurate reactor power control. During the commissioning of the neutron measurement system, it was found that the linearity characteristics of the Log Power signal, especially near 10 -2 %FP, were not accurate enough for controlling the reactor during physics testing. Analysis of the system linearity data directly measured with reactor operating determined that the system was not operating per the design characteristics established from previous installations. The linearity data, which were taken as the reactor was increased in power, were sent to manufacturer's engineering group and a follow-up measures based on the analysis were then fed back to the field. Through step by step trouble-shooting activities, which included minor circuit modifications and alignment procedure changes, the linearity characteristics have been successfully improved and now exceed minimum performance requirements. This paper discusses the trouble-shooting techniques applied, the changes in the linearity characteristics, special circumstances in the HANARO application and the final resolution. (author)

  11. Computer Based Expert Systems.

    Science.gov (United States)

    Parry, James D.; Ferrara, Joseph M.

    1985-01-01

    Claims knowledge-based expert computer systems can meet needs of rural schools for affordable expert advice and support and will play an important role in the future of rural education. Describes potential applications in prediction, interpretation, diagnosis, remediation, planning, monitoring, and instruction. (NEC)

  12. Expert system based radionuclide identification

    International Nuclear Information System (INIS)

    Aarnio, P.A.; Ala-Heikkil, J.J.; Hakulinen, T.T.; Nikkinen, M.T.

    1998-01-01

    An expert system coupled with the gamma spectrum analysis system SAMPO has been developed for automating the qualitative identification of radionuclides as well as for determining the quantitative parameters of the spectrum components. The program is written in C-language and runs in various environments ranging from PCs to UNIX workstations. The expert system utilizes a complete gamma library with over 2600 nuclides and 80,000 lines, and a rule base of about fifty criteria including energies, relative peak intensities, genesis modes, half lives, parent-daughter relationships, etc. The rule base is furthermore extensible by the user. This is not an original contribution but a somewhat updated version of papers and reports previously published elsewhere. (author)

  13. Performance analysis of a full-field and full-range swept-source OCT system

    Science.gov (United States)

    Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.

    2015-09-01

    In recent years, optical coherence tomography (OCT) became gained importance in medical disciplines like ophthalmology, due to its noninvasive optical imaging technique with micrometer resolution and short measurement time. It enables e. g. the measurement and visualization of the depth structure of the retina. In other medical disciplines like dermatology, histopathological analysis is still the gold standard for skin cancer diagnosis. The EU-funded project VIAMOS (Vertically Integrated Array-type Mirau-based OCT System) proposes a new type of OCT system combined with micro-technologies to provide a hand-held, low-cost and miniaturized OCT system. The concept is a combination of full-field and full-range swept-source OCT (SS-OCT) detection in a multi-channel sensor based on a micro-optical Mirau-interferometer array, which is fabricated by means of wafer fabrication. This paper presents the study of an experimental proof-of-concept OCT system as a one-channel sensor with bulk optics. This sensor is a Linnik-interferometer type with similar optical parameters as the Mirau-interferometer array. A commercial wavelength tunable light source with a center wavelength at 845nm and 50nm spectral bandwidth is used with a camera for parallel OCT A-Scan detection. In addition, the reference microscope objective lens of the Linnik-interferometer is mounted on a piezo-actuated phase-shifter. Phase-shifting interferometry (PSI) techniques are applied for resolving the conjugate complex artifact and consequently contribute to an increase of image quality and depth range. A suppression ratio of the complex conjugate term of 36 dB is shown and a system sensitivity greater than 96 dB could be measured.

  14. Application of the NAVSTAR/GLOBAL positioning system on instrumented ranges

    OpenAIRE

    Reinhart, William L.

    1981-01-01

    Approved for public release; distribution is unlimited This report treats the application of the NAVSTAR/Global Positioning System as the Position/Location System in Real Time Casualty Assessment experiments. The desirable characteristics of a position/location system are listed. A current position/location system, the Range Measuring System, is used as a comparison reference for the Global Positioning System. Operation and parameters of the Global Positioning System are presented. A d...

  15. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    Directory of Open Access Journals (Sweden)

    Won-Jae Park

    2017-06-01

    Full Text Available In this paper, a high dynamic range (HDR imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method.

  16. Practice of building production planning system of company with a wide range of products - case study

    Directory of Open Access Journals (Sweden)

    Łukasz Hadaś

    2012-09-01

    Full Text Available Background: The complexity of the manufacturing environments of today's mechanical engineering companies and the number of both internal and external restrictions affecting to need of building tailored production planning and control systems. This statement is particularly important in conditions of companies with a wide range of products and different customer service strategies (different locations of the logistics decoupling point otherwise called "order penetration point". Streams of materials in these conditions require different management what is the main reason for carrying out research in business conditions by the authors. Material and methods: The research was carried out in industrial engineering in complex environmental conditions of production. This was a specializing in technology, multi-departments environment, with multiple streams of values and a wide range of products (about 500 items. The work was carried out under the transformation of the production system from the "push" logic of flow to "pull" logic of flow and building a dedicated system based on the best practice approach. Results: The paper describes the process of building tailored hybrid systems in the area of planning and shop flow control of production. The authors present the theoretical considerations on the issue and practical experiences. The authors present factors of selection of the transformation path and its road map. The article describes the part of the authors' own experience in the work on the methodology of transformation of Polish companies in the running business condition. Conclusions: Establishing the methodology of transformation of the production system is not a simple task. This paper presents only selected aspects of complex decision-making process. However, the authors presented work shows the important aspect of the transformation of production systems for these organizational conditions.

  17. Multi-channel, passive, short-range anti-aircraft defence system

    Science.gov (United States)

    Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew

    2018-01-01

    The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.

  18. Real-time image processing of TOF range images using a reconfigurable processor system

    Science.gov (United States)

    Hussmann, S.; Knoll, F.; Edeler, T.

    2011-07-01

    During the last years, Time-of-Flight sensors achieved a significant impact onto research fields in machine vision. In comparison to stereo vision system and laser range scanners they combine the advantages of active sensors providing accurate distance measurements and camera-based systems recording a 2D matrix at a high frame rate. Moreover low cost 3D imaging has the potential to open a wide field of additional applications and solutions in markets like consumer electronics, multimedia, digital photography, robotics and medical technologies. This paper focuses on the currently implemented 4-phase-shift algorithm in this type of sensors. The most time critical operation of the phase-shift algorithm is the arctangent function. In this paper a novel hardware implementation of the arctangent function using a reconfigurable processor system is presented and benchmarked against the state-of-the-art CORDIC arctangent algorithm. Experimental results show that the proposed algorithm is well suited for real-time processing of the range images of TOF cameras.

  19. Design of tracking mount and controller for mobile satellite laser ranging system

    Science.gov (United States)

    Park, Cheol Hoon; Son, Young Su; Kim, Byung In; Ham, Sang Young; Lee, Sung Whee; Lim, Hyung Chul

    2012-01-01

    In this study, we have proposed and implemented a design for the tracking mount and controller of the ARGO-M (Accurate Ranging system for Geodetic Observation - Mobile) which is a mobile satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute (KASI) and Korea Institute of Machinery and Materials (KIMM). The tracking mount comprises a few core components such as bearings, driving motors and encoders. These components were selected as per the technical specifications for the tracking mount of the ARGO-M. A three-dimensional model of the tracking mount was designed. The frequency analysis of the model predicted that the first natural frequency of the designed tracking mount was high enough. The tracking controller is simulated using MATLAB/xPC Target to achieve the required pointing and tracking accuracy. In order to evaluate the system repeatability and tracking accuracy of the tracking mount, a prototype of the ARGO-M was fabricated, and repeatability tests were carried out using a laser interferometer. Tracking tests were conducted using the trajectories of low earth orbit (LEO) and high earth orbit (HEO) satellites. Based on the test results, it was confirmed that the prototype of the tracking mount and controller of the ARGO-M could achieve the required repeatability along with a tracking accuracy of less than 1 arcsec.

  20. Development of a Compact Range-gated Vision System to Monitor Structures in Low-visibility Environments

    International Nuclear Information System (INIS)

    Ahn, Yong-Jin; Park, Seung-Kyu; Baik, Sung-Hoon; Kim, Dong-Lyul; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    Image acquisition in disaster area or radiation area of nuclear industry is an important function for safety inspection and preparing appropriate damage control plans. So, automatic vision system to monitor structures and facilities in blurred smoking environments such as the places of a fire and detonation is essential. Vision systems can't acquire an image when the illumination light is blocked by disturbance materials, such as smoke, fog and dust. To overcome the imaging distortion caused by obstacle materials, robust vision systems should have extra-functions, such as active illumination through disturbance materials. One of active vision system is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from the blurred and darken light environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and range image data is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through disturbance materials, such as smoke particles and dust particles. In contrast to passive conventional vision systems, the RGI active vision technology enables operation even in harsh environments like low-visibility smoky environment. In this paper, a compact range-gated vision system is developed to monitor structures in low-visibility environment. The system consists of illumination light, a range-gating camera and a control computer. Visualization experiments are carried out in low-visibility foggy environment to see imaging capability

  1. Development of a Compact Range-gated Vision System to Monitor Structures in Low-visibility Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yong-Jin; Park, Seung-Kyu; Baik, Sung-Hoon; Kim, Dong-Lyul; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Image acquisition in disaster area or radiation area of nuclear industry is an important function for safety inspection and preparing appropriate damage control plans. So, automatic vision system to monitor structures and facilities in blurred smoking environments such as the places of a fire and detonation is essential. Vision systems can't acquire an image when the illumination light is blocked by disturbance materials, such as smoke, fog and dust. To overcome the imaging distortion caused by obstacle materials, robust vision systems should have extra-functions, such as active illumination through disturbance materials. One of active vision system is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from the blurred and darken light environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and range image data is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through disturbance materials, such as smoke particles and dust particles. In contrast to passive conventional vision systems, the RGI active vision technology enables operation even in harsh environments like low-visibility smoky environment. In this paper, a compact range-gated vision system is developed to monitor structures in low-visibility environment. The system consists of illumination light, a range-gating camera and a control computer. Visualization experiments are carried out in low-visibility foggy environment to see imaging capability.

  2. Multi-input wide dynamic range ADC system for use with nuclear detectors

    Energy Technology Data Exchange (ETDEWEB)

    Austin, R W [National Aeronautics and Space Administration, Huntsville, Ala. (USA). George C. Marshall Space Flight Center

    1976-04-15

    A wide dynamic range, eight input analog-to-digital converter system has been developed for use in nuclear experiments. The system consists of eight dual-range sample and hold modules, an eight input multiplexer, a ten-bit analog-to-digital converter, and the associated control logic.

  3. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-09-01

    Full Text Available A Fourier transform spectrometer (FTS that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work.

  4. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    Science.gov (United States)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  5. Registration-Based Range-Dependence Compensation for Bistatic STAP Radars

    Directory of Open Access Journals (Sweden)

    Lapierre Fabian D

    2005-01-01

    Full Text Available We address the problem of detecting slow-moving targets using space-time adaptive processing (STAP radar. Determining the optimum weights at each range requires data snapshots at neighboring ranges. However, in virtually all configurations, snapshot statistics are range dependent, meaning that snapshots are nonstationary with respect to range. This results in poor performance. In this paper, we propose a new compensation method based on registration of clutter ridges and designed to work on a single realization of the stochastic snapshot at each range. The method has been successfully tested on simulated, stochastic snapshots. An evaluation of performance is presented.

  6. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system.

    Science.gov (United States)

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  7. Demonstration of micro-projection enabled short-range communication system for 5G.

    Science.gov (United States)

    Chou, Hsi-Hsir; Tsai, Cheng-Yu

    2016-06-13

    A liquid crystal on silicon (LCoS) based polarization modulated image (PMI) system architecture using red-, green- and blue-based light-emitting diodes (LEDs), which offers simultaneous micro-projection and high-speed data transmission at nearly a gigabit, serving as an alternative short-range communication (SRC) approach for personal communication device (PCD) application in 5G, is proposed and experimentally demonstrated. In order to make the proposed system architecture transparent to the future possible wireless data modulation format, baseband modulation schemes such as multilevel pulse amplitude modulation (M-PAM), M-ary phase shift keying modulation (M-PSK) and M-ary quadrature amplitude modulation (M-QAM) which can be further employed by more advanced multicarrier modulation schemes (such as DMT, OFDM and CAP) were used to investigate the highest possible data transmission rate of the proposed system architecture. The results demonstrated that an aggregative data transmission rate of 892 Mb/s and 900 Mb/s at a BER of 10^(-3) can be achieved by using 16-QAM baseband modulation scheme when data transmission were performed with and without micro-projection simultaneously.

  8. Fast methods for long-range interactions in complex systems. Lecture notes

    International Nuclear Information System (INIS)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas

    2011-01-01

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  9. Fast methods for long-range interactions in complex systems. Lecture notes

    Energy Technology Data Exchange (ETDEWEB)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas (eds.)

    2011-10-13

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  10. Darwin: Dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, T.; Satoh, D.; Endo, A.; Yamaguchi, Y.

    2007-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a Phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities. (authors)

  11. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Yamaguchi, Yasuhiro

    2005-01-01

    A new inventive radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for monitoring doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. Scintillations from the detector induced by thermal and fast neutrons, photons and muons were discriminated by analyzing their waveforms, and their light outputs were directly converted into the corresponding doses by applying the G-function method. Characteristics of DARWIN were studied by both calculation and experiment. The calculated results indicate that DARWIN gives reasonable estimations of doses in most radiation fields. It was found from the experiment that DARWIN has an excellent property of measuring doses from all particles that significantly contribute to the doses in surrounding environments of accelerator facilities - neutron, photon and muon with wide energy ranges. The experimental results also suggested that DARWIN enables us to monitor small fluctuation of neutron dose rates near the background-level owing to its high sensitivity. (author)

  12. New Structural Interpretation of the Central Confusion Range, Western Utah, Based On Balanced Cross Sections

    Science.gov (United States)

    Yezerski, D.; Greene, D. C.

    2009-12-01

    The Confusion Range is a topographically low mountain range in the Basin and Range of west-central Utah, located east of and in the hanging wall of the Snake Range core complex. Previous workers have used a gravity sliding model to interpret the Confusion Range as a large structural trough or synclinorium (e.g. Hose, 1977). Based on existing mapping (Hose, 1965; Hintze, 1974) and new field data, we use balanced and restored cross sections to reinterpret the structure of the Confusion Range as an east-vergent fold-and-thrust belt formed during the Sevier Orogeny. The Confusion Range consists of Cambro-Ordovician through Triassic strata, with predominantly thick-bedded, competent carbonate rocks in the lower Paleozoic (lPz) section and incompetent shales and thin-bedded carbonates in the upper Paleozoic (uPz) section. The contrasting mechanical behavior of these stratigraphic sections results in faulted folds within uPz carbonates above detachments in shale-rich units, deforming in response to ramp-flat thrust faulting of the underlying lPz units. East of the axis of the Conger Mountain (Mtn) syncline, we attribute the increase in structural elevation of lPz rocks to a subsurface thrust sheet consisting of lPz strata that advanced eastward via a high-angle ramp from a lower detachment in the Kanosh Shale to an upper detachment in the Pilot Shale. The doubling of lPz strata that resulted continues through the eastern Confusion Range where a series of small-displacement thrust faults comprising the Kings Canyon thrust system gently tilt strata to the west. In the Conger Range, west of the Conger Mtn syncline, our analysis focuses on reinterpreting the geometrically unlikely folding depicted in previous cross sections as more admissible, fault-cored, asymmetric, detached folding. In our interpretation, resistance created by a steeply-dipping thrust ramp in the lPz section west of Conger Mtn resulted in folding of uPz strata into an east-vergent anticline. Continued east

  13. Technology based Education System

    DEFF Research Database (Denmark)

    Kant Hiran, Kamal; Doshi, Ruchi; Henten, Anders

    2016-01-01

    Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded in the acad......Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded...... in the academic institutions. Thus, there is a need of comprehensive technology support system to cater the demands of all educational actors. Cloud Computing is one such comprehensive and user-friendly technology support environment that is the need of an hour. Cloud computing is the emerging technology that has...

  14. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

    Science.gov (United States)

    Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine

    2016-06-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.

  15. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    Science.gov (United States)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  16. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range

    Directory of Open Access Journals (Sweden)

    Lujiang Liu

    2016-06-01

    Full Text Available Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective.

  17. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  18. Comparison of three different concepts of high dynamic range and dependability optimised current measurement digitisers for beam loss systems

    CERN Document Server

    Viganò, W; Effinger, E; Venturini, G G; Zamantzas, C

    2012-01-01

    Three Different Concepts of High Dynamic Range and Dependability Optimised Current Measurement Digitisers for Beam Loss Systems will be compared on this paper. The first concept is based on Current to Frequency Conversion, enhanced with an ADC for extending the dynamic range and decreasing the response time. A summary of 3 years’ worth of operational experience with such a system for LHC beam loss monitoring will be given. The second principle is based on an Adaptive Current to Frequency Converter implemented in an ASIC. The basic parameters of the circuit are discussed and compared with measurements. Several measures are taken to harden both circuits against single event effects and to make them tolerant for operation in radioactive environments. The third circuit is based on a Fully Differential Integrator for enhanced dynamic range, where laboratory and test installation measurements will be presented. All circuits are designed to avoid any dead time in the acquisition and have reliability and fail safe...

  19. The use of long range identification and tracking (LRIT) for modelling the risk of ship-based oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, Andrew [Canadian Coast Guard (Canada)], email: andrew.szeto@dfo-mpo.gc.ca; Pelot, Ronald [Dalhousie University (Canada)], email: ronald.pelot@dal.ca

    2011-07-01

    Accidents involving oil tankers have caused many and sometimes very large oil spills. Such spills to marine areas have a significant impact on environmental quality affecting all aspects of marine ecosystems. Based on valid shipping traffic data as a very important factor that must be considered in modeling the risk of ship-based oil spills, this paper shows the importance of use of the long-range identification and tracking (LRIT) system and looks at how it can be implemented to better assess ship-based oil pollution. The system is a new, accurate and reliable world-wide vessel tracking system with a range of data extended out to 1000 nm from Canadian shores and currently tracks up to about 900 vessels a day in real-time. It is believed that traffic data and effective monitoring can assist with search planning for detection of mystery spills, better resource deployment for spill mitigation, and improving information for research and management.

  20. Multi-objective optimization to improve the product range of baking systems

    NARCIS (Netherlands)

    Hadiyanto, M.; Boom, R.M.; Straten, van G.; Boxtel, van A.J.B.; Esveld, D.C.

    2009-01-01

    The operational range of a food production system can be used to obtain a variation in certain product characteristics. The range of product characteristics that can be simultaneously realized by an optimal choice of the process conditions is inherently limited. Knowledge of this feasible product

  1. 26 CFR 12.4 - Election of Class Life Asset Depreciation Range System (ADR).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Election of Class Life Asset Depreciation Range... Election of Class Life Asset Depreciation Range System (ADR). (a) Elections filed before February 1, 1972... tax return in accordance with § 1.167(a)-11 of this chapter (relating to depreciation allowances using...

  2. Assessment of tidal range energy resources based on flux conservation in Jiantiao Bay, China

    Science.gov (United States)

    Du, Min; Wu, He; Yu, Huaming; Lv, Ting; Li, Jiangyu; Yu, Yujun

    2017-12-01

    La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.

  3. Laser Range Profiling for Active Protection System Target Classification and Aim-Point Selection

    National Research Council Canada - National Science Library

    Jones, Michael

    2004-01-01

    ...) is currently developing the Close-In Active Protection System (CIAPS). The distinguishing capability of CIAPS is its ability to provide self-protection against missiles and projectiles launched at close range...

  4. Effects of short range ΔN interaction on observables of the πNN system

    International Nuclear Information System (INIS)

    Alexandrou, C.; Blankleider, B.

    1990-01-01

    The inadequacy of standard few-body approaches in describing the πNN system has motivated searches for the responsible missing mechanism. In the case of πd scattering, it has recently been asserted that an additional short range ΔN interaction can account for essentially all the discrepancies between a few-body calculation and experimental data. This conclusion, however, has been based on calculations where a phenomenological ΔN interaction is added only in Born term to background few-body amplitudes. In the present work we investigate the effect of including such a ΔN interaction to all orders within a unitary few-body calculation of the πNN system. Besides testing the validity of adding the ΔN interaction in Born term in πd scattering, our fully coupled approach also enables us to see the influence of the same ΔN interaction on the processes NN→πd and NN→NN. For πd elastic scattering, we find that the higher order ΔN interaction terms can have as much influence on πd observables as the lowest order contribution alone. Moreover, we find that the higher order contributions tend to cancel the effect obtained by adding the ΔN interaction in Born term only. The effect of the same ΔN interaction on NN→πd and NN→NN appears to be as significant as in πd→πd, suggesting that future investigations of the short range ΔN interaction should be done in the context of the fully coupled πNN system

  5. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    Science.gov (United States)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  6. On the use of small integrating spheres to improve the linearity range of RASNIKS systems

    International Nuclear Information System (INIS)

    Alberdi, J.; Burgos, C.; Ferrando, A.; Molinero, A.; Schvachkin, V.; Figueroa, C.F.; Matorras, F.; Rodrigo, T.; Ruiz, A.; Vila, I.

    1997-10-01

    Rasniks elements will be used in the CMS alignment system. The large displacements of the different sub detectors expected in the CMS experiment demands large linearity response of this system. By the use of a small integrating sphere we have optimized the source definition such that a factor three improvement in the linearity range with respect to conventional Rasniks configurations is obtained. The response range reached coincides with the maximum one can get with the components used in the test

  7. Studying Sensing-Based Systems

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2013-01-01

    Recent sensing-based systems involve a multitude of users, devices, and places. These types of systems challenge existing approaches for conducting valid system evaluations. Here, the author discusses such evaluation challenges and revisits existing system evaluation methodologies....

  8. Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar

    Directory of Open Access Journals (Sweden)

    Xikun Hu

    2016-11-01

    Full Text Available The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse radio ultra-wideband (IR-UWB radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD and a vital sign separation method based on the continuous-wavelet transform (CWT are proposed jointly to improve the signal-to-noise ratio (SNR in order to acquire accurate respiration and heartbeat rates. Experimental results illustrate that respiration and heartbeat signals can be extracted accurately under different conditions. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications.

  9. Simple Wide Frequency Range Impedance Meter Based on AD5933 Integrated Circuit

    Directory of Open Access Journals (Sweden)

    Chabowski Konrad

    2015-03-01

    Full Text Available As it contains elements of complete digital impedance meter, the AD5933 integrated circuit is an interesting solution for impedance measurements. However, its use for measurements in a wide range of impedances and frequencies requires an additional digital and analogue circuitry. This paper presents the design and performance of a simple impedance meter based on the AD5933 IC. Apart from the AD5933 IC it consists of a clock generator with a programmable prescaler, a novel DC offset canceller for the excitation signal based on peak detectors and a current to voltage converter with switchable conversion ratios. The authors proposed a simple method for choosing the measurement frequency to minimalize errors resulting from the spectral leakage and distortion caused by a lack of an anti-aliasing filter in the DDS generator. Additionally, a novel method for the AD5933 IC calibration was proposed. It consists in a mathematical compensation of the systematic error occurring in the argument of the value returned from the AD5933 IC as a result. The performance of the whole system is demonstrated in an exemplary measurement.

  10. A high dynamic range pulse counting detection system for mass spectrometry.

    Science.gov (United States)

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  11. TU-FG-BRB-05: A 3 Dimensional Prompt Gamma Imaging System for Range Verification in Proton Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, E; Chen, H; Polf, J [University of Maryland School of Medicine, Baltimore, MD (United States); Mackin, D; Beddar, S [MD Anderson Cancer Center, Houston, TX (United States); Avery, S [University of Cape Town, Rondebosch (South Africa); Peterson, S

    2016-06-15

    Purpose: To report on the initial developments of a clinical 3-dimensional (3D) prompt gamma (PG) imaging system for proton radiotherapy range verification. Methods: The new imaging system under development consists of a prototype Compton camera to measure PG emission during proton beam irradiation and software to reconstruct, display, and analyze 3D images of the PG emission. For initial test of the system, PGs were measured with a prototype CC during a 200 cGy dose delivery with clinical proton pencil beams (ranging from 100 MeV – 200 MeV) to a water phantom. Measurements were also carried out with the CC placed 15 cm from the phantom for a full range 150 MeV pencil beam and with its range shifted by 2 mm. Reconstructed images of the PG emission were displayed by the clinical PG imaging software and compared to the dose distributions of the proton beams calculated by a commercial treatment planning system. Results: Measurements made with the new PG imaging system showed that a 3D image could be reconstructed from PGs measured during the delivery of 200 cGy of dose, and that shifts in the Bragg peak range of as little as 2 mm could be detected. Conclusion: Initial tests of a new PG imaging system show its potential to provide 3D imaging and range verification for proton radiotherapy. Based on these results, we have begun work to improve the system with the goal that images can be produced from delivery of as little as 20 cGy so that the system could be used for in-vivo proton beam range verification on a daily basis.

  12. PRODUCTIVITY OF LAYERS AND EGG QUALITY IN FREE RANGE AND CAGE SYSTEM OF HOUSING

    Directory of Open Access Journals (Sweden)

    Đ. Senčić

    2006-12-01

    Full Text Available The research was conducted with two groups of Lohmann Brown hybrid layers. Production of eggs lasted for 52 weeks. A control group of layers was kept in the conventional housing system, that is, in cages, while experimental group was kept in the free range system. Layers from the free range system, compared to those kept in cages, laid fewer eggs, (266:295, they consumed more feed on daily basis (129 g : 115 g, more feed per kilogram of egg weight (2.83 kg : 2.35 kg, they had higher mortality rate (6.80 % : 5.50 % and lower end of lay body weight (1.95 kg : 2.10 kg. Eggs from free range layers, compared to those from the cages system, had significantly (P0.05 were determined between the free range and the cages system of housing hens. Considering somewhat lower productivity and higher mortality rate of hens, higher feed consumption per kilogram of egg mass, but also better quality of eggs, profitability of egg production in the free range system will depend, to the maximum extent, on market evaluation of the production.

  13. PRODUCTIVITY OF LAYERS AND EGG QUALITY IN FREE RANGE AND CAGE SYSTEM OF HOUSING

    OpenAIRE

    Đ. Senčić; Danijela Butko

    2006-01-01

    The research was conducted with two groups of Lohmann Brown hybrid layers. Production of eggs lasted for 52 weeks. A control group of layers was kept in the conventional housing system, that is, in cages, while experimental group was kept in the free range system. Layers from the free range system, compared to those kept in cages, laid fewer eggs, (266:295), they consumed more feed on daily basis (129 g : 115 g), more feed per kilogram of egg weight (2.83 kg : 2.35 kg), they had higher mor...

  14. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability

    Science.gov (United States)

    Mamidi, Venkata Reddy; Kamineni, Srimannarayana; Ravinuthala, Lakshmi Narayana Sai Prasad; Tumu, Venkatappa Rao

    2017-09-01

    Fiber Bragg grating (FBG)-based high-temperature sensor with enhanced-temperature range and stability has been developed and tested. The sensor consists of an FBG and a mechanical transducer, which furnishes a linear temperature-dependent tensile strain on FBG by means of differential linear thermal expansion of two different ceramic materials. The designed sensor is tested over a range: 20°C to 1160°C and is expected to measure up to 1500°C.

  15. Laser-ranging scanning system to observe topographical deformations of volcanoes.

    Science.gov (United States)

    Aoki, T; Takabe, M; Mizutani, K; Itabe, T

    1997-02-20

    We have developed a laser-ranging system to observe the topographical structure of volcanoes. This system can be used to measure the distance to a target by a laser and shows the three-dimensional topographical structure of a volcano with an accuracy of 30 cm. This accuracy is greater than that of a typical laser-ranging system that uses a corner-cube reflector as a target because the reflected light jitters as a result of inclination and unevenness of the target ground surface. However, this laser-ranging system is useful for detecting deformations of topographical features in which placement of a reflector is difficult, such as in volcanic regions.

  16. Highly modular high-brightness diode laser system design for a wide application range

    Science.gov (United States)

    Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ullrich; Ehm, Einar; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang

    2015-03-01

    For an economic production it is important to serve as many applications as possible while keeping the product variations minimal. We present our modular laser design, which is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking. Those emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100W with BPP of BPP. These "500W building blocks" are consequently designed in a way that without any system change new wavelengths can be implemented by only exchanging parts but without change of the production process. This design principal offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR. From laser pumping and scientific applications to materials processing such as cutting and welding of copper aluminum or steel and also medical application. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant pumping of Erbium lasers.[1] Furthermore, the fully integrated electronic concept allows addressing further applications, as it is capable of very short μs pulses up to cw mode operation by simple software commands.

  17. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    2006-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV, and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision, and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and rapid response of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. With these properties, we conclude that DARWIN will be able to play a very important role for improving radiation safety in high energy accelerator facilities. (author)

  18. Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor

    Directory of Open Access Journals (Sweden)

    Krug Johannes W.

    2016-09-01

    Full Text Available During a magnetic resonance imaging (MRI exam, a respiratory signal can be required for different purposes, e.g. for patient monitoring, motion compensation or for research studies such as in functional MRI. In addition, respiratory information can be used as a biofeedback for the patient in order to control breath holds or shallow breathing. To reduce patient preparation time or distortions of the MR imaging system, we propose the use of a contactless approach for gathering information about the respiratory activity. An experimental setup based on a commercially available laser range sensor was used to detect respiratory induced motion of the chest or abdomen. This setup was tested using a motion phantom and different human subjects in an MRI scanner. A nasal airflow sensor served as a reference. For both, the phantom as well as the different human subjects, the motion frequency was precisely measured. These results show that a low cost, contactless, laser-based approach can be used to obtain information about the respiratory motion during an MRI exam.

  19. Close-range laser scanning in forests: towards physically based semantics across scales.

    Science.gov (United States)

    Morsdorf, F; Kükenbrink, D; Schneider, F D; Abegg, M; Schaepman, M E

    2018-04-06

    Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.

  20. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    Energy Technology Data Exchange (ETDEWEB)

    Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji [Department of Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2016-04-15

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.

  1. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    International Nuclear Information System (INIS)

    Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji

    2016-01-01

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.

  2. Highly efficient holograms based on c-Si metasurfaces in the visible range.

    Science.gov (United States)

    Martins, Augusto; Li, Juntao; da Mota, Achiles F; Wang, Yin; Neto, Luiz G; do Carmo, João P; Teixeira, Fernando L; Martins, Emiliano R; Borges, Ben-Hur V

    2018-04-16

    This paper reports on the first hologram in transmission mode based on a c-Si metasurface in the visible range. The hologram shows high fidelity and high efficiency, with measured transmission and diffraction efficiencies of ~65% and ~40%, respectively. Although originally designed to achieve full phase control in the range [0-2π] at 532 nm, these holograms have also performed well at 444.9 nm and 635 nm. The high tolerance to both fabrication and wavelength variations demonstrate that holograms based on c-Si metasurfaces are quite attractive for diffractive optics applications, and particularly for full-color holograms.

  3. Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Wei Qian

    2013-01-01

    Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.

  4. Development of prompt gamma measurement system for in vivo proton beam range verification

    International Nuclear Information System (INIS)

    Min, Chul Hee

    2011-02-01

    entire energy range, it is from calcium. Second, to verify the relationship between the proton dose distribution and the prompt gamma distribution, the present study developed a proof-of-principle measurement system (the PGS system) employing a scanning process. The first-time experimental study verified not only that prompt gammas can be measured during treatment, but also that their distribution has a clear relationship with the proton dose distribution for therapeutic proton beams. Third, for the clinical application, a small array-type prompt gamma measurement system for use without the problematic scanning process was designed, and its optimal dimensions for effective reduction of background gammas were determined (by Monte Carlo simulations): 3-mm scintillation thickness: 2-mm slit width: 2-mm septal thickness: 150-mm slit length. To accelerate the simulations, the present study employed the parameterized source term that improved the calculation speed by a factor of 300. Finally, the performance of the array-type measurement system for clinical applications was evaluated with the test measurement system composed of a multislit collimation system, a CsI(Tl) scintillation detector, and a precise motion system. To quantitatively determine the location of the distal dose edge from the prompt gamma distribution, a methodology based on a sigmoidal curve fitting is here proposed, and this methodology proves that the distal dose edge could be accurately determined within about 4 mm for therapeutic proton beams. Additionally, the phantom effect on the prompt gamma distribution and the analysis of background gammas are studied by Monte Carlo simulations

  5. An emittance measurement system for a wide range of bunch charges

    International Nuclear Information System (INIS)

    Dunham, B.; Engwall, D.; Hofler, A.; Keesee, M.; Legg, R.

    1997-01-01

    As a part of the emittance measurements planned for the FEL injector at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), the authors have developed an emittance measurement system that covers the wide dynamic range of bunch charges necessary to fully characterize the high-DC-voltage photocathode gun. The measurements are carried out with a variant of the classical two-slit method using a slit to sample the beam in conjunction with a wire scanner to measure the transmitted beam profile. The use of commercial, ultra-low noise picoammeters makes it possible to cover the wide range of desired bunch charges, with the actual measurements made over the range of 0.25 pC to 125 pC. The entire system, including its integration into the EPICS control system, is discussed

  6. PROCESSING OF UAV BASED RANGE IMAGING DATA TO GENERATE DETAILED ELEVATION MODELS OF COMPLEX NATURAL STRUCTURES

    Directory of Open Access Journals (Sweden)

    T. K. Kohoutek

    2012-07-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are more and more used in civil areas like geomatics. Autonomous navigated platforms have a great flexibility in flying and manoeuvring in complex environments to collect remote sensing data. In contrast to standard technologies such as aerial manned platforms (airplanes and helicopters UAVs are able to fly closer to the object and in small-scale areas of high-risk situations such as landslides, volcano and earthquake areas and floodplains. Thus, UAVs are sometimes the only practical alternative in areas where access is difficult and where no manned aircraft is available or even no flight permission is given. Furthermore, compared to terrestrial platforms, UAVs are not limited to specific view directions and could overcome occlusions from trees, houses and terrain structures. Equipped with image sensors and/or laser scanners they are able to provide elevation models, rectified images, textured 3D-models and maps. In this paper we will describe a UAV platform, which can carry a range imaging (RIM camera including power supply and data storage for the detailed mapping and monitoring of complex structures, such as alpine riverbed areas. The UAV platform NEO from Swiss UAV was equipped with the RIM camera CamCube 2.0 by PMD Technologies GmbH to capture the surface structures. Its navigation system includes an autopilot. To validate the UAV-trajectory a 360° prism was installed and tracked by a total station. Within the paper a workflow for the processing of UAV-RIM data is proposed, which is based on the processing of differential GNSS data in combination with the acquired range images. Subsequently, the obtained results for the trajectory are compared and verified with a track of a UAV (Falcon 8, Ascending Technologies carried out with a total station simultaneously to the GNSS data acquisition. The results showed that the UAV's position using differential GNSS could be determined in the centimetre to the decimetre

  7. Capability-based computer systems

    CERN Document Server

    Levy, Henry M

    2014-01-01

    Capability-Based Computer Systems focuses on computer programs and their capabilities. The text first elaborates capability- and object-based system concepts, including capability-based systems, object-based approach, and summary. The book then describes early descriptor architectures and explains the Burroughs B5000, Rice University Computer, and Basic Language Machine. The text also focuses on early capability architectures. Dennis and Van Horn's Supervisor; CAL-TSS System; MIT PDP-1 Timesharing System; and Chicago Magic Number Machine are discussed. The book then describes Plessey System 25

  8. A wide dynamic range BF3 neutron monitor with front-end electronics based on a logarithmic amplifier

    International Nuclear Information System (INIS)

    Ferrarini, M.; Varoli, V.; Favalli, A.; Caresana, M.; Pedersen, B.

    2010-01-01

    This paper describes a wide dynamic range neutron monitor based on a BF 3 neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10 6 s -1 . It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  9. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  10. X-γ dose rate continuous monitor with wide range based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Wu Debo; Ling Qiu; Guo Lanying; Yang Binhua

    2007-01-01

    This paper describes a concept about circuit designing of X-γ dose rate continuous monitor with wide range based on single-chip microcomputer, and also presents the design procedure of hardware and software, and gives several methods for solving the design procedure of hardware and software with emphasis. (authors)

  11. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun; Kavusi, Sam; Salama, Khaled N.

    2012-01-01

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo

  12. Emerging infectious diseases in free-ranging wildlife-Australian zoo based wildlife hospitals contribute to national surveillance.

    Directory of Open Access Journals (Sweden)

    Keren Cox-Witton

    Full Text Available Emerging infectious diseases are increasingly originating from wildlife. Many of these diseases have significant impacts on human health, domestic animal health, and biodiversity. Surveillance is the key to early detection of emerging diseases. A zoo based wildlife disease surveillance program developed in Australia incorporates disease information from free-ranging wildlife into the existing national wildlife health information system. This program uses a collaborative approach and provides a strong model for a disease surveillance program for free-ranging wildlife that enhances the national capacity for early detection of emerging diseases.

  13. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    Science.gov (United States)

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  14. System Based Code: Principal Concept

    International Nuclear Information System (INIS)

    Yasuhide Asada; Masanori Tashimo; Masahiro Ueta

    2002-01-01

    This paper introduces a concept of the 'System Based Code' which has initially been proposed by the authors intending to give nuclear industry a leap of progress in the system reliability, performance improvement, and cost reduction. The concept of the System Based Code intends to give a theoretical procedure to optimize the reliability of the system by administrating every related engineering requirement throughout the life of the system from design to decommissioning. (authors)

  15. Studies for determining the optimum propulsion system characteristics for use in a long range transport aircraft

    Science.gov (United States)

    Brines, G. L.

    1972-01-01

    A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.

  16. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

    Science.gov (United States)

    Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán

    2014-11-01

    Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.

  17. Driving range estimation for electric vehicles based on driving condition identification and forecast

    Science.gov (United States)

    Pan, Chaofeng; Dai, Wei; Chen, Liao; Chen, Long; Wang, Limei

    2017-10-01

    With the impact of serious environmental pollution in our cities combined with the ongoing depletion of oil resources, electric vehicles are becoming highly favored as means of transport. Not only for the advantage of low noise, but for their high energy efficiency and zero pollution. The Power battery is used as the energy source of electric vehicles. However, it does currently still have a few shortcomings, noticeably the low energy density, with high costs and short cycle life results in limited mileage compared with conventional passenger vehicles. There is great difference in vehicle energy consumption rate under different environment and driving conditions. Estimation error of current driving range is relatively large due to without considering the effects of environmental temperature and driving conditions. The development of a driving range estimation method will have a great impact on the electric vehicles. A new driving range estimation model based on the combination of driving cycle identification and prediction is proposed and investigated. This model can effectively eliminate mileage errors and has good convergence with added robustness. Initially the identification of the driving cycle is based on Kernel Principal Component feature parameters and fuzzy C referring to clustering algorithm. Secondly, a fuzzy rule between the characteristic parameters and energy consumption is established under MATLAB/Simulink environment. Furthermore the Markov algorithm and BP(Back Propagation) neural network method is utilized to predict the future driving conditions to improve the accuracy of the remaining range estimation. Finally, driving range estimation method is carried out under the ECE 15 condition by using the rotary drum test bench, and the experimental results are compared with the estimation results. Results now show that the proposed driving range estimation method can not only estimate the remaining mileage, but also eliminate the fluctuation of the

  18. Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities

    Science.gov (United States)

    Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.

    2015-12-01

    Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be

  19. Exergy analysis of thermal management system for range-extended electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hamut, H. S.; Dincer, I.; Naterer, G. F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: Ibrahim.Dincer@uoit.ca

    2011-07-01

    In the last few decades, the energy crisis, increasing gas prices and concerns over environmental pollution have encouraged the development of electric vehicle (EV) and hybrid electric vehicle (HEV) technologies. In this paper, a thermal management system (TMS) installed in a range-extended electric vehicle is examined and is found to have a substantial impact on battery efficiency and vehicle performance. An exergy analysis was conducted on the refrigeration and coolant circuits and the Coefficient of Performance (COP) of the baseline system was determined to be 2.0 with a range of 1.8 to 2.4. The overall exergy was found to be 32% with a range of 26% to 39%. Ambient temperature had the largest impact on overall exergy efficiency but there is a need to further investigate temperature effects on battery efficiency, since the battery's performance has such a high impact on vehicle performance overall.

  20. Pilot Signal Design and Direct Ranging Methods for Radio Localization Using OFDM Systems

    DEFF Research Database (Denmark)

    Jing, Lishuai

    Having accurate localization capability is becoming important for existing and future terrestrial wireless communication systems, in particular for orthogonal frequency-division multiplexing (OFDM) systems, such as WiMAX, wireless local area network, long-term evolution (LTE) and its extension LTE......-Advanced. To obtain accurate position estimates, not only advanced estimation algorithms are needed but also the transmitted signals should be scrutinized. In this dissertation, we investigate how to design OFDM pilot signals and propose and evaluate high accuracy ranging techniques with tractable computational....... For scenarios where the number of path components is unknown and these components are not necessary separable, we propose a direct ranging technique using the received frequency-domain OFDM pilot signals. Compared to conventional (two-step) ranging methods, which estimate intermediate parameters...

  1. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    Science.gov (United States)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.

  2. Range walk error correction and modeling on Pseudo-random photon counting system

    Science.gov (United States)

    Shen, Shanshan; Chen, Qian; He, Weiji

    2017-08-01

    Signal to noise ratio and depth accuracy are modeled for the pseudo-random ranging system with two random processes. The theoretical results, developed herein, capture the effects of code length and signal energy fluctuation are shown to agree with Monte Carlo simulation measurements. First, the SNR is developed as a function of the code length. Using Geiger-mode avalanche photodiodes (GMAPDs), longer code length is proven to reduce the noise effect and improve SNR. Second, the Cramer-Rao lower bound on range accuracy is derived to justify that longer code length can bring better range accuracy. Combined with the SNR model and CRLB model, it is manifested that the range accuracy can be improved by increasing the code length to reduce the noise-induced error. Third, the Cramer-Rao lower bound on range accuracy is shown to converge to the previously published theories and introduce the Gauss range walk model to range accuracy. Experimental tests also converge to the presented boundary model in this paper. It has been proven that depth error caused by the fluctuation of the number of detected photon counts in the laser echo pulse leads to the depth drift of Time Point Spread Function (TPSF). Finally, numerical fitting function is used to determine the relationship between the depth error and the photon counting ratio. Depth error due to different echo energy is calibrated so that the corrected depth accuracy is improved to 1cm.

  3. Cooperative multi-user detection and ranging based on pseudo-random codes

    Directory of Open Access Journals (Sweden)

    C. Morhart

    2009-05-01

    Full Text Available We present an improved approach for a Round Trip Time of Flight distance measurement system. The system is intended for the usage in a cooperative localisation system for automotive applications. Therefore, it is designed to address a large number of communication partners per measurement cycle. By using coded signals in a time divison multiple access order, we can detect a large number of pedestrian sensors with just one car sensor. We achieve this by using very short transmit bursts in combination with a real time correlation algorithm. Futhermore, the correlation approach offers real time data, concerning the time of arrival, that can serve as a trigger impulse for other comunication systems. The distance accuracy of the correlation result was further increased by adding a fourier interpolation filter. The system performance was checked with a prototype at 2.4 GHz. We reached a distance measurement accuracy of 12 cm at a range up to 450 m.

  4. Functional framework and hardware platform for dependability study in short range wireless embedded systems

    NARCIS (Netherlands)

    Senouci, B.; Annema, Anne J.; Bentum, Marinus Jan; Kerkhoff, Hans G.

    2011-01-01

    A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of a few meters. Behind these embedded applications, a complex Hardware/Software architecture is built. Dependability is one of the major challenges in these systems.

  5. Neotectonics of the San Andreas Fault system, basin and range province juncture

    Science.gov (United States)

    Estes, J. E.; Crowell, J. C.

    1982-01-01

    The development, active processes, and tectonic interplay of the southern San Andreas fault system and the basin and range province were studied. The study consist of data acquisition and evaluation, technique development, and image interpretation and mapping. Potentially significant geologic findings are discussed.

  6. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.

    Science.gov (United States)

    Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling

    2018-06-12

    An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.

  7. Geographical constraints to range-based attacks on links in complex networks

    International Nuclear Information System (INIS)

    Gong Baihua; Liu Jun; Huang Liang; Yang Kongqing; Yang Lei

    2008-01-01

    In this paper, we studied range-based attacks on links in geographically constrained scale-free networks and found that there is a continuous switching of roles of short- and long-range attacks on links when tuning the geographical constraint strength. Our results demonstrate that the geography has a significant impact on the network efficiency and security; thus one can adjust the geographical structure to optimize the robustness and the efficiency of the networks. We introduce a measurement of the impact of links on the efficiency of the network, and an effective attacking strategy is suggested

  8. Knowledge of Chemical Indicators of Eggs from Hens Reared in Conventional and Free Range System

    Directory of Open Access Journals (Sweden)

    Lucia Iuliana Cotfas

    2014-11-01

    Full Text Available Introduction Many consumers prefer nowadays eggs from alternative production systems because of their concerns about its own food safety and welfare of laying hens (Anderson. K. E., 2009. According to the regulations, a free range egg is obtained in poultry farms were laying hens have access to outdoor paddock, where they can show all the instincts of physiological and ethological (Usturoi M.G., 2004. Aims: The aim of this research was the correct information on the quality of these products and comparative study of chemical characteristics of eggs obtain from different production systems (conventional and free range. Materials and Methods: Chemical indicators’ determination was made through specific methods, in according with actual standards and consists in establishing of water, proteins, fats, ash and non-nitrogenous extractive substances contents. The biological material was represented by 90 eggs produced by Lohmann Brown laying hens aged 33 weeks: 45 gathered from birds exploited in free range system and 45 from birds reared in cages agreed by EU. Results: Egg obtained from free range system have a slightly higher content of protein (10.35±0.12 % vs. 9.97±0.03 % compared with conventional system, from albumen and from yolk (17.46±0.00 % vs. 17.19±0.01 %, this fact was happened because of aport of green grass from the outside paddock (Morris T.R., 2004. Comparative with conventional system, eggs from free range system have a higher content of lipids of yolk with 2.23%.Chemical analysis of melange from studied eggs showed a higher rate of dry matter at free range eggs (23.374% vs. 22.969%, but also for proteins (12.952% vs. 12.520% and lipids (7.676% vs. 7.398%. Conclusions: The increase in freedom of laying hens (free range caused a qualitative improvement of dry components of both the egg components (yolk and albumen but also the quantitative one, and eggs obtained has a high nutritional value  

  9. A Comprehensive Evaluation of Joint Range and Angle Estimation in Indoor Ultrawideband Location Systems

    Directory of Open Access Journals (Sweden)

    Gentile Camillo

    2008-01-01

    Full Text Available Abstract Fine time resolution enables ultrawideband (UWB ranging systems to extract the first multipath arrival corresponding to the range between a transmitter and receiver, even when attenuated in strength compared to later arrivals. Bearing systems alone lack any notion of time and in general select the strongest arrival which is rarely the first one in nonline-of-sight conditions. Complementing UWB ranging systems with bearing capabilities allows indexing the arrivals as a function of both time and angle in order to isolate the first, providing precision range and angle. However, that precision degrades with the increasing presence of walls and other objects which distort the properties of the first arrival. In order to gauge the physical limits of the joint UWB system, we design and assemble a spatial-temporal channel sounder using a vector network analyzer coupled to a virtual antenna array, and conduct 200 experiments to measure the time- and angle-of-flight. The experiments are carried out in both line-of-sight and nonline-of-sight conditions up to an unprecedented 45 meters throughout four separate buildings with dominant wall material varying from sheet rock to steel. In addition, we report performance for varying bandwidth and center frequency of the system. We find that operating at a bandwidth of 4 GHz suffices in resolving multipath in most buildings and in excess shows virtually no improvement. While the range error decreases at lower center frequencies, the higher frequencies offer better angular resolution and so smaller angle error.

  10. Field testing and applications of the Ultrasonic Ranging and Data (USRAD) System

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Pickering, D.A.; Blair, M.S.; Espegren, M.L.; Nyquist, J.E.

    1989-01-01

    The Ultrasonic Ranging and Data (USRAD) System is a patented, computerized data acquisition system developed to relate the radiological surveyor's precise physical location to instantaneous radiation data taken during walk-on surveys. The USRAD System incorporates three technologies: radio frequency communications, ultrasonics, and microcomputers. Initial field testing of the USRAD System has resulted in several improvements to walk-on radiological surveys including real-time position data, reproducible survey results, on-site verification of survey coverage, on-site data reduction and graphics, and permanent data storage on magnetic media. Although the USRAD System was developed specifically for use with a gamma-ray detector, it is adaptable to other instruments. Applications of the USRAD System may include verification of remediated and uncontaminated areas, emergency response in mapping pollutant locations after accidents, and characterization of hazardous waste areas. 2 refs., 8 figs

  11. Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities

    Directory of Open Access Journals (Sweden)

    Shao-Hui Zhang

    2017-11-01

    Full Text Available Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%, good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave.

  12. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    Science.gov (United States)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  13. Enlarging the operation range of a centrifugal compressor by cutting vanes based on CFD

    International Nuclear Information System (INIS)

    Mo, J T; Pan, X H; Gu, C H; Zheng, S Y

    2013-01-01

    Many centrifugal compressors are liable to insufficient operation range. The purpose of this paper is to enlarge the operation range of a centrifugal compressor used in turbocharger by cutting vanes. Some numerical works have been done based on CFD. The comparison of the calculated and measured results shows good agreement. The overall performance characteristics of the centrifugal compressor with different cutted vanes are observed and analyzed. The performance characteristic curves show that cutting vanes can increase the operation range by more than 50% with the loss of the highest efficiency limited in 1%. The flow fields are also shown in this paper and related explanations about the change of the performance characteristics curves are given. Shock wave is also detected in the simulation, and some related characteristics are summed up

  14. The Ansel Adams zone system: HDR capture and range compression by chemical processing

    Science.gov (United States)

    McCann, John J.

    2010-02-01

    We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.

  15. Optical timing receiver for the NASA laser ranging system. Part I. Constant-fraction discriminator

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1975-01-01

    Position-resolution capabilities of the NASA laser ranging system are essentially determined by time-resolution capabilities of its optical timing receiver. The optical timing receiver consists of a fast photoelectric device, primarily a standard of microchannel-plate-type photomultiplier or an avalanche photodiode detector, a timing discriminator, a high-precision time-interval digitizer, and a signal-processing system. The time-resolution capabilities of the receiver are determined by the photoelectron time spread of the photoelectric device, the time walk and resolution characteristics of the timing discriminator, and the time-interval digitizer. It is thus necessary to evaluate available fast photoelectronic devices with respect to their time-resolution capabilities, and to design a very low time walk timing discriminator and a high-precision time digitizer which will be used in the laser ranging system receiver. (auth)

  16. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    Science.gov (United States)

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  17. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    Directory of Open Access Journals (Sweden)

    Eugin Hyun

    2016-01-01

    Full Text Available For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  18. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    International Nuclear Information System (INIS)

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian; Fox, Tim; Zhu, X. Ronald; Dong, Lei; Dhabaan, Anees

    2015-01-01

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts

  19. Avalanching Systems with Longer Range Connectivity: Occurrence of a Crossover Phenomenon and Multifractal Finite Size Scaling

    Directory of Open Access Journals (Sweden)

    Simone Benella

    2017-07-01

    Full Text Available Many out-of-equilibrium systems respond to external driving with nonlinear and self-similar dynamics. This near scale-invariant behavior of relaxation events has been modeled through sand pile cellular automata. However, a common feature of these models is the assumption of a local connectivity, while in many real systems, we have evidence for longer range connectivity and a complex topology of the interacting structures. Here, we investigate the role that longer range connectivity might play in near scale-invariant systems, by analyzing the results of a sand pile cellular automaton model on a Newman–Watts network. The analysis clearly indicates the occurrence of a crossover phenomenon in the statistics of the relaxation events as a function of the percentage of longer range links and the breaking of the simple Finite Size Scaling (FSS. The more complex nature of the dynamics in the presence of long-range connectivity is investigated in terms of multi-scaling features and analyzed by the Rank-Ordered Multifractal Analysis (ROMA.

  20. Object Based Systems Engineering

    Science.gov (United States)

    2011-10-17

    practically impossible where the original SMEs are unavailable or lack perfect recall. 7. Capture the precious and transient logic behind this...complex system. References 1. FITCH, J. Exploiting Decision-to-Requirements Traceability, briefing to NDIA CMMI Conference, November, 2009 2

  1. Development of photonic-crystal-fiber-based optical coupler with a broad operating wavelength range of 800 nm

    International Nuclear Information System (INIS)

    Yoon, Min-Seok; Kwon, Oh-Jang; Kim, Hyun-Joo; Chu, Su-Ho; Kim, Gil-Hwan; Lee, Sang-Bae; Han, Young-Geun

    2010-01-01

    We developed a broadband optical coupler based on a photonic crystal fiber (PCF), which is very useful for applications to optical coherence tomography (OCT). The PCF-based coupler is fabricated by using a fused biconical tapering (FBT) method. The PCF has six hexagonally-stacked layers of air holes. The PCF-based coupler has a nearly-flat 50/50 coupling ratio in a broad bandwidth range of 800 nm, which is much wider than that previously reported for a PCF-based coupler and a singlemode-fiber-based coupler. The bandwidth and the bandedge wavelength of the broadband coupler are controlled by changing the elongation length. The fabricated broadband optical coupler has great potential for realizing a broadband interferogram with a high resolution in an OCT system.

  2. Multi-functional measurement systems for studying photon-hadron interactions in the intermediate energy range

    International Nuclear Information System (INIS)

    Baranov, P.S.; Vol'nov, M.I.; Eliseev, A.N.

    1983-01-01

    The PION multifunctional time-of-flight measurement system operating on-line with the D-116 computer is described. The system is designed to study proton-hadron interaction processes using the PACHRA synchrotron beam. The following devices are involved into the basic permanent system equipment: two gamma telescope counters, neutron spectrometer, scintillation mass spectrometer, and also cryogenic liquid hydrogen and liquid deuterium targets, ionization chambers, and quantometer. The time-of-flight neutron spectrometer consists of 4 coordinate-sensitive scintillation counters, before which the logic detector operating in the anticoincidence regime is placed. Information acquisition and measurement system control are accomplished by the computer using the CAMAK modules. The above system allows one to observe at the same time different physical processes and to carry out simultaneous measurements in a wide energy range

  3. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  4. Range-based volatility, expected stock returns, and the low volatility anomaly

    Science.gov (United States)

    2017-01-01

    One of the foundations of financial economics is the idea that rational investors will discount stocks with more risk (volatility), which will result in a positive relation between risk and future returns. However, the empirical evidence is mixed when determining how volatility is related to future returns. In this paper, we examine this relation using a range-based measure of volatility, which is shown to be theoretically, numerically, and empirically superior to other measures of volatility. In a variety of tests, we find that range-based volatility is negatively associated with expected stock returns. These results are robust to time-series multifactor models as well as cross-sectional tests. Our findings contribute to the debate about the direction of the relationship between risk and return and confirm the presence of the low volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatility stocks. In other tests, we find that the lower returns associated with range-based volatility are driven by stocks with lottery-like characteristics. PMID:29190652

  5. Range-based volatility, expected stock returns, and the low volatility anomaly.

    Science.gov (United States)

    Blau, Benjamin M; Whitby, Ryan J

    2017-01-01

    One of the foundations of financial economics is the idea that rational investors will discount stocks with more risk (volatility), which will result in a positive relation between risk and future returns. However, the empirical evidence is mixed when determining how volatility is related to future returns. In this paper, we examine this relation using a range-based measure of volatility, which is shown to be theoretically, numerically, and empirically superior to other measures of volatility. In a variety of tests, we find that range-based volatility is negatively associated with expected stock returns. These results are robust to time-series multifactor models as well as cross-sectional tests. Our findings contribute to the debate about the direction of the relationship between risk and return and confirm the presence of the low volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatility stocks. In other tests, we find that the lower returns associated with range-based volatility are driven by stocks with lottery-like characteristics.

  6. Range-based volatility, expected stock returns, and the low volatility anomaly.

    Directory of Open Access Journals (Sweden)

    Benjamin M Blau

    Full Text Available One of the foundations of financial economics is the idea that rational investors will discount stocks with more risk (volatility, which will result in a positive relation between risk and future returns. However, the empirical evidence is mixed when determining how volatility is related to future returns. In this paper, we examine this relation using a range-based measure of volatility, which is shown to be theoretically, numerically, and empirically superior to other measures of volatility. In a variety of tests, we find that range-based volatility is negatively associated with expected stock returns. These results are robust to time-series multifactor models as well as cross-sectional tests. Our findings contribute to the debate about the direction of the relationship between risk and return and confirm the presence of the low volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatility stocks. In other tests, we find that the lower returns associated with range-based volatility are driven by stocks with lottery-like characteristics.

  7. Home ranges of brown hares in a natural salt marsh: comparisons with agricultural systems

    NARCIS (Netherlands)

    Kunst, P.; Wal, van der R.; Wieren, van S.E.

    2001-01-01

    This is the first study on spatial behaviour of brown hares Lepus europaeus Pallas, 1778 based on radio-telemetry in a natural system, which we contrast with data from agricultural systems. Radio tracking took place in a Dutch salt marsh over a 10-month period, with intensive tracking sessions

  8. Home ranges of brown hares in a natural salt marsh : comparisons with agricultural systems

    NARCIS (Netherlands)

    Kunst, PJG; van der Wal, R; van Wieren, Sip

    This is the first study on spatial behaviour of brown hares Lepus europaeus Pallas, 1778 based on radio-telemetry in a natural system, which we contrast with data from agricultural systems. Radio tracking took place in a Dutch salt marsh over a 10-month period, with intensive tracking sessions

  9. Measurement of peak impact loads differ between accelerometers - Effects of system operating range and sampling rate.

    Science.gov (United States)

    Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C

    2017-06-14

    A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Calibration Standards for Surface Topography Measuring Systems down to Nanometric Range

    DEFF Research Database (Denmark)

    Trumpold, H.; De Chiffre, Leonardo; Andreasen, Jan Lasson

    compression and injection moulded plastic negatives and Ni-negatives have been made from which again Ni-positives were produced. The replication processes showed negligible deviations from the Pt and Pa values compared to the primary standards. An important prerequisite is the cleanliness of the surfaces......Background For the precise and accurate measurement of surface topography a whole range of surface detection systems is available. With their application in research and production problems arise due to the lack of traceable standard artefacts for the instrument calibration in X, Y and Z directions...... and for the calibration of filters. Existing ISO standards on calibration specimens are inadequate and limited in that they only cover contacting instruments and only partially the measuring ranges for these instruments. The whole range of non-contacting instruments are not covered despite their increasing use...

  11. Systemic range shift lags among a pollinator species assemblage following rapid climate change

    DEFF Research Database (Denmark)

    Bedford, Felicity E.; Whittaker, Robert J.; Kerr, Jeremy T.

    2012-01-01

    Contemporary climate change is driving widespread geographical range shifts among many species. If species are tracking changing climate successfully, then leading populations should experience similar climatic conditions through time as new populations establish beyond historical range margins....... Here, we investigate geographical range shifts relative to changing climatic conditions among a particularly well-sampled assemblage of butterflies in Canada. We assembled observations of 81 species and measured their latitudinal displacement between two periods: 1960–1975 (a period of little climate...... change) and 1990–2005 (a period with large climate change). We find an unexpected trend for species’ northern borders to shift progressively less relative to increasing minimum winter temperatures in northern Canada. This study demonstrates a novel, systemic latitudinal gradient in lags among a large...

  12. SU-C-207A-04: Accuracy of Acoustic-Based Proton Range Verification in Water

    International Nuclear Information System (INIS)

    Jones, KC; Sehgal, CM; Avery, S; Vander Stappen, F

    2016-01-01

    Purpose: To determine the accuracy and dose required for acoustic-based proton range verification (protoacoustics) in water. Methods: Proton pulses with 17 µs FWHM and instantaneous currents of 480 nA (5.6 × 10 7 protons/pulse, 8.9 cGy/pulse) were generated by a clinical, hospital-based cyclotron at the University of Pennsylvania. The protoacoustic signal generated in a water phantom by the 190 MeV proton pulses was measured with a hydrophone placed at multiple known positions surrounding the dose deposition. The background random noise was measured. The protoacoustic signal was simulated to compare to the experiments. Results: The maximum protoacoustic signal amplitude at 5 cm distance was 5.2 mPa per 1 × 10 7 protons (1.6 cGy at the Bragg peak). The background random noise of the measurement was 27 mPa. Comparison between simulation and experiment indicates that the hydrophone introduced a delay of 2.4 µs. For acoustic data collected with a signal-to-noise ratio (SNR) of 21, deconvolution of the protoacoustic signal with the proton pulse provided the most precise time-of-flight range measurement (standard deviation of 2.0 mm), but a systematic error (−4.5 mm) was observed. Conclusion: Based on water phantom measurements at a clinical hospital-based cyclotron, protoacoustics is a potential technique for measuring the proton Bragg peak range with 2.0 mm standard deviation. Simultaneous use of multiple detectors is expected to reduce the standard deviation, but calibration is required to remove systematic error. Based on the measured background noise and protoacoustic amplitude, a SNR of 5.3 is projected for a deposited dose of 2 Gy.

  13. Determination of the exact range of the value of the parameter corresponding to chaos based on the Silnikov criterion

    International Nuclear Information System (INIS)

    Wei-Yi, Li; Qi-Chang, Zhang; Wei, Wang

    2010-01-01

    Based on the Silnikov criterion, this paper studies a chaotic system of cubic polynomial ordinary differential equations in three dimensions. Using the Cardano formula, it obtains the exact range of the value of the parameter corresponding to chaos by means of the centre manifold theory and the method of multiple scales combined with Floque theory. By calculating the manifold near the equilibrium point, the series expression of the homoclinic orbit is also obtained. The space trajectory and Lyapunov exponent are investigated via numerical simulation, which shows that there is a route to chaos through period-doubling bifurcation and that chaotic attractors exist in the system. The results obtained here mean that chaos occurred in the exact range given in this paper. Numerical simulations also verify the analytical results. (general)

  14. The Design Concept of the First Mobile Satellite Laser Ranging System (ARGO-M in Korea

    Directory of Open Access Journals (Sweden)

    Jung Hyun Jo

    2011-03-01

    Full Text Available Korea Astronomy and Space Science Institute (KASI launched the development project of two satellite laser ranging (SLR systems in early 2008 after the government fund approval of the SLR systems in 2007. One mobile SLR system and one permanent SLR station will be developed with the completion of the project. The main objectives of these systems will be focused on the Space Geodetic researches. A system requirement review was held in the second half of the same year. Through the following system design review meeting and other design reviews, many unsolved technical and engineering issues would be discussed and resolved. However, the design of the mobile SLR system is a corner stone of whole project. The noticeable characteristics of Korea’s first SLR system are 1 use of light weight main mirror, 2 design of compact optical assembly, 3 use of KHz laser pulse, 4 use of commercial laser generator, 5 remote operation capability, 6 automatic tracking, 7 state of art operation system, etc. In this paper, the major user requirement and pre-defined specification are presented and discussed.

  15. 26 CFR 1.167(l)-4 - Public utility property; election to use asset depreciation range system.

    Science.gov (United States)

    2010-04-01

    ... depreciation range system. 1.167(l)-4 Section 1.167(l)-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT... Individuals and Corporations § 1.167(l)-4 Public utility property; election to use asset depreciation range system. (a) Application of section 167(l) to certain property subject to asset depreciation range system...

  16. Improved linearity using harmonic error rejection in a full-field range imaging system

    Science.gov (United States)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2008-02-01

    Full field range imaging cameras are used to simultaneously measure the distance for every pixel in a given scene using an intensity modulated illumination source and a gain modulated receiver array. The light is reflected from an object in the scene, and the modulation envelope experiences a phase shift proportional to the target distance. Ideally the waveforms are sinusoidal, allowing the phase, and hence object range, to be determined from four measurements using an arctangent function. In practice these waveforms are often not perfectly sinusoidal, and in some cases square waveforms are instead used to simplify the electronic drive requirements. The waveforms therefore commonly contain odd harmonics which contribute a nonlinear error to the phase determination, and therefore an error in the range measurement. We have developed a unique sampling method to cancel the effect of these harmonics, with the results showing an order of magnitude improvement in the measurement linearity without the need for calibration or lookup tables, while the acquisition time remains unchanged. The technique can be applied to existing range imaging systems without having to change or modify the complex illumination or sensor systems, instead only requiring a change to the signal generation and timing electronics.

  17. Control system developments for a range of kinematically redundant hydraulic manipulators

    International Nuclear Information System (INIS)

    Smith, A.L.; Rice, P.S.; Thiruarooran, C.

    2000-01-01

    This paper describes a range of control system improvements developed and implemented for in-reactor use during the last three years. Novel control techniques have been developed to provide accurate closed-loop velocity control of pumped hydraulic manipulator joints under a wide range of operating conditions. As a result the supervisory computer system can provide accurate trajectory following, even when more than ten joints are required to move simultaneously. Accurately coordinated motion has given rise to some spectacular gains in in-reactor performance in terms of deployment time, safety and accessibility. The same low-level control improvements have made it feasible to integrate and use the 'geometric controller' to provide accurate resolved motion control of a kinematically redundant manipulator. Examples of recent in-reactor use of all these techniques are given. (author)

  18. Analog VLSI Models of Range-Tuned Neurons in the Bat Echolocation System

    Directory of Open Access Journals (Sweden)

    Horiuchi Timothy

    2003-01-01

    Full Text Available Bat echolocation is a fascinating topic of research for both neuroscientists and engineers, due to the complex and extremely time-constrained nature of the problem and its potential for application to engineered systems. In the bat's brainstem and midbrain exist neural circuits that are sensitive to the specific difference in time between the outgoing sonar vocalization and the returning echo. While some of the details of the neural mechanisms are known to be species-specific, a basic model of reafference-triggered, postinhibitory rebound timing is reasonably well supported by available data. We have designed low-power, analog VLSI circuits to mimic this mechanism and have demonstrated range-dependent outputs for use in a real-time sonar system. These circuits are being used to implement range-dependent vocalization amplitude, vocalization rate, and closest target isolation.

  19. Modeling Control Strategies and Range Impacts for Electric Vehicle Integrated Thermal Management Systems with MATLAB/Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Titov, Gene; Lustbader, Jason Aaron

    2017-03-28

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was used to explore control strategies for an electric vehicle combined loop system. Three system variants of increased complexity and efficiency were explored: a glycol-based positive temperature coefficient heater (PTC), PTC with power electronics and electric motor (PEEM) waste heat recovery, and PTC with PEEM waste heat recovery plus heat pump versions. Additionally, the benefit of electric motor preheating was considered. A two-level control strategy was developed where the mode selection and component control were treated separately. Only the parameters typically available by vehicle sensors were used to control the system. The control approach included a mode selection algorithm and controllers for the compressor speed, cabin blower flow rate, coolant flow rate, and the front-end heat exchanger coolant bypass rate. The electric motor was bypassed by the cooling circuit until its temperature exceeded the coolant inlet temperature. The impact of these thermal systems on electric vehicle range during warmup was simulated for the Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWFET2X) drive cycles weighted 45%/55% respectively. A range of ambient temperatures from -20 degrees C to +20 degrees C was considered. NREL's Future Automotive Systems Technology Simulator (FASTSim) vehicle modeling tool showed up to a 10.9% improvement in range for the full system over the baseline during warmup from cold soak. The full system with preheat showed up to 17% improvement in range.

  20. Range and Image Based Modelling: a way for Frescoed Vault Texturing Optimization

    Science.gov (United States)

    Caroti, G.; Martínez-Espejo Zaragoza, I.; Piemonte, A.

    2015-02-01

    In the restoration of the frescoed vaults it is not only important to know the geometric shape of the painted surface, but it is essential to document its chromatic characterization and conservation status. The new techniques of range-based and image-based modelling, each with its limitations and advantages, offer a wide range of methods to obtain the geometric shape. In fact, several studies widely document that laser scanning enable obtaining three-dimensional models with high morphological precision. However, the quality level of the colour obtained with built-in laser scanner cameras is not comparable to that obtained for the shape. It is possible to improve the texture quality by means of a dedicated photographic campaign. This procedure, however, requires to calculate the external orientation of each image identifying the control points on it and on the model through a costly step of post processing. With image-based modelling techniques it is possible to obtain models that maintain the colour quality of the original images, but with variable geometric precision, locally lower than the laser scanning model. This paper presents a methodology that uses the camera external orientation parameters calculated by image based modelling techniques to project the same image on the model obtained from the laser scan. This methodology is tested on an Italian mirror (a schifo) frescoed vault. In the paper the different models, the analysis of precision and the efficiency evaluation of proposed methodology are presented.

  1. Range of expert system for control, modeling and safely operation in nuclear energy

    International Nuclear Information System (INIS)

    Gorlin, A.; Semenov, S.

    1990-01-01

    The paper describes expert system projects which had been developed formerly and are under the development now in NVIIAES Institute, Moscow. One of the accomplished systems (PEX) is a ES-shell of classical type able to manipulate fuzzy expert assessments. The system is used as a shell for ES-advisor for MCP failures diagnostics and in some applications of the same sort. Another realized system (EDES) is on-line express-diagnostical ES for NPP unit emergency regimes identification. EDES is implemented now as a component of NPP system of control and operation conditions diagnostics. Both systems are realized on conventional programming languages Pascal and C, respectively. The presentation describes current developments in ES as well, including classification system for material researches, the project of training ES for second circuit diagnostics based on event tree generating and expert planner for neutron-physical three-dimensional reactor calculations. All this projects are implemented on different versions of PROLOG programming language

  2. Link Design Rules for Cost-Effective Short-Range Radio Over Multimode Fiber Systems

    DEFF Research Database (Denmark)

    Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal

    2010-01-01

    Referring to short-range radio over multimode fiber links, we find out important guidelines for the realization of cost-effective intensity modulated directly detected systems. Since the quality of today's connectors is considerably higher than in the past, we demonstrate that two important...... parameters of the system are the finite detecting area of the photodiode and the laser frequency chirp. Furthemore, we show that the use of the central launch technique inherently determines a lower impact of modal noise fluctuations with respect to the offset launch one. This makes CL more convenient...

  3. Long-range order between the planets in the Solar system

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2010-01-01

    The Solar System is investigated for positional correlations between the planets using a logarithmic distance scale. The pair correlation function for the logarithm of the semimajor axis shows a regular distribution with 5-7 consecutive peaks, and the Fourier transform hereof shows reciprocal peaks...... the number of data points is small. The pair correlation function of the permutated planets lacks the sequence of equidistant peaks and its Fourier transform has no second order peak. This analysis demonstrates the existence of longer ranged correlations in the Solar System....

  4. Report on the lunar ranging at McDonald Observatory. [spark gap configuration and photomultiplier system

    Science.gov (United States)

    Silverberg, E. C.

    1977-01-01

    Range measurements to an accuracy of 5 cm were achieved following improvements in the laser oscillator configuration and the photomultiplier system. Modifications to the laser include a redesigned pockel cell mount to eliminate stressing of the cell crystal; an improved electrically triggered spark gap for sharpening the electrical pulse; the use of a brewster plate in the cavity to eliminate pre-pulsing; improved alignment for the oscillator system; and increased cavity lifetime through thin film polarizer technology. Laser calibration data are presented along with the lunar laser operations log for June to October 1977.

  5. The Value Range of Contact Stiffness Factor between Pile and Soil Based on Penalty Function

    Science.gov (United States)

    Chen, Sandy H. L.; Wu, Xinliu

    2018-03-01

    The value range of contact stiffness factor based on penalty function is studied when we use finite element software ANSYS to analyze contact problems, take single pile and soil of a certain project for example, the normal contact between pile and soil is analyzed with 2D simplified model in horizontal load. The study shows that when adopting linear elastic model to simulate soil, the maximum contact pressure and penetration approach steady value as the contact stiffness factor increases. The reasonable value range of contact stiffness factor reduces as the underlying element thickness decreases, but the rule reverses when refers to the soil stiffness. If choose DP model to simulate soil, the stiffness factor should be magnified 100 times compares to the elastic model regardless of the soil bears small force and still in elastic deformation stage or into the plastic deformation stage. When the soil bears big force and into plastic deformation stage, the value range of stiffness factor relates to the plastic strain range of the soil, and reduces as the horizontal load increases.

  6. Habitat-based conservation strategies cannot compensate for climate-change-induced range loss

    Science.gov (United States)

    Wessely, Johannes; Hülber, Karl; Gattringer, Andreas; Kuttner, Michael; Moser, Dietmar; Rabitsch, Wolfgang; Schindler, Stefan; Dullinger, Stefan; Essl, Franz

    2017-11-01

    Anthropogenic habitat fragmentation represents a major obstacle to species shifting their range in response to climate change. Conservation measures to increase the (meta-)population capacity and permeability of landscapes may help but the effectiveness of such measures in a warming climate has rarely been evaluated. Here, we simulate range dynamics of 51 species from three taxonomic groups (vascular plants, butterflies and grasshoppers) in Central Europe as driven by twenty-first-century climate scenarios and analyse how three habitat-based conservation strategies (establishing corridors, improving the landscape matrix, and protected area management) modify species' projected range size changes. These simulations suggest that the conservation strategies considered are unable to save species from regional extinction. For those persisting, they reduce the magnitude of range loss in lowland but not in alpine species. Protected area management and corridor establishment are more effective than matrix improvement. However, none of the conservation strategies evaluated could fully compensate the negative impact of climate change for vascular plants, butterflies or grasshoppers in central Europe.

  7. An isotherm-based thermodynamic model of multicomponent aqueous solutions, applicable over the entire concentration range.

    Science.gov (United States)

    Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L

    2013-04-18

    In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).

  8. Local thermodynamics and the generalized Gibbs-Duhem equation in systems with long-range interactions.

    Science.gov (United States)

    Latella, Ivan; Pérez-Madrid, Agustín

    2013-10-01

    The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

  9. AUTOMATIC SHAPE-BASED TARGET EXTRACTION FOR CLOSE-RANGE PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    X. Guo

    2016-06-01

    Full Text Available In order to perform precise identification and location of artificial coded targets in natural scenes, a novel design of circle-based coded target and the corresponding coarse-fine extraction algorithm are presented. The designed target separates the target box and coding box totally and owns an advantage of rotation invariance. Based on the original target, templates are prepared by three geometric transformations and are used as the input of shape-based template matching. Finally, region growing and parity check methods are used to extract the coded targets as final results. No human involvement is required except for the preparation of templates and adjustment of thresholds in the beginning, which is conducive to the automation of close-range photogrammetry. The experimental results show that the proposed recognition method for the designed coded target is robust and accurate.

  10. MTA Computer Based Evaluation System.

    Science.gov (United States)

    Brenner, Lisa P.; And Others

    The MTA PLATO-based evaluation system, which has been implemented by a consortium of schools of medical technology, is designed to be general-purpose, modular, data-driven, and interactive, and to accommodate other national and local item banks. The system provides a comprehensive interactive item-banking system in conjunction with online student…

  11. Sparse Representation Based Range-Doppler Processing for Integrated OFDM Radar-Communication Networks

    Directory of Open Access Journals (Sweden)

    Bo Kong

    2017-01-01

    Full Text Available In an integrated radar-communication network, multiuser access techniques with minimal performance degradation and without range-Doppler ambiguities are required, especially in a dense user environment. In this paper, a multiuser access scheme with random subcarrier allocation mechanism is proposed for orthogonal frequency division multiplexing (OFDM based integrated radar-communication networks. The expression of modulation Symbol-Domain method combined with sparse representation (SR for range-Doppler estimation is introduced and a parallel reconstruction algorithm is employed. The radar target detection performance is improved with less spectrum occupation. Additionally, a Doppler frequency detector is exploited to decrease the computational complexity. Numerical simulations show that the proposed method outperforms the traditional modulation Symbol-Domain method under ideal and realistic nonideal scenarios.

  12. Stabilizing lead bullets in shooting range soil by phosphate-based surface coating

    Directory of Open Access Journals (Sweden)

    Bin Hua

    2016-08-01

    Full Text Available Soil lead (Pb is well known as a threat to human health and ecosystem. Although relatively insoluble, lead bullets in shooting range soil can be readily released into soluble forms through natural weathering processes and thus pose significant human and environmental risks. In this study, laboratory experiments were conducted to investigate if the Pb bullets in shooting range soil can be stabilized through surface coating of phosphate-based materials. Results indicated that FePO4 or AlPO4 coatings, insoluble metal phosphates, have been successfully formed on the surface of the Pb bullets. The EPA Toxicity Characteristic Leaching Procedure (TCLP test showed that FePO4 or AlPO4 surface coating would effectively reduce the Pb solubility or leachability of the bullets. The surface coating under pH of <5.5 for 7 days could achieve 92–100% reduction, with 85–98% by FePO4 coating and 77–98% by AlPO4 coating as compared with the non-coating. Leachable Pb concentration in the contaminated shooting range soil was reduced by 85–98% or 77–98% as a result of the FePO4 or AlPO4 solution treatment. This study demonstrated that the FePO4 or AlPO4–based surface coating on lead bullets can effectively inhibit the Pb weathering and significantly reduce the Pb release from soil through in situ chemical stabilization, which could be potentially applicable as a cost-effective and environmental-sound technology for the remediation of Pb-contaminated shooting range soil.

  13. Effective sampling range of food-based attractants for female Anastrepha suspensa (Diptera: Tephritidae).

    Science.gov (United States)

    Kendra, Paul E; Epsky, Nancy D; Heath, Robert R

    2010-04-01

    Release-recapture studies were conducted with both feral and sterile females of the Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Tephritidae), to determine sampling range for a liquid protein bait (torula yeast/borax) and for a two-component synthetic lure (ammonium acetate and putrescine). Tests were done in a guava, Psidium guajava L., grove and involved releasing flies at a central point and recording the numbers captured after 7 h and 1, 2, 3, and 6 d in an array of 25 Multilure traps located 9-46 m from the release point. In all tests, highest rate of recapture occurred within the first day of release, so estimations of sampling range were based on a 24-h period. Trap distances were grouped into four categories (30 m from release point) and relative trapping efficiency (percentage of capture) was determined for each distance group. Effective sampling range was defined as the maximum distance at which relative trapping efficiency was > or = 25%. This corresponded to the area in which 90% of the recaptures occured. Contour analysis was also performed to document spatial distribution of fly dispersal. In tests with sterile flies, immature females dispersed farther and were recovered in higher numbers than mature females, regardless of attractant, and recapture of both cohorts was higher with torula yeast. For mature feral flies, range of the synthetic lure was determined to be 30 m. With sterile females, effective range of both attractants was 20 m. Contour maps indicated that wind direction had a strong influence on the active space of attractants, as reflected by distribution of captured flies.

  14. Multi-Range Conditional Random Field for Classifying Railway Electrification System Objects Using Mobile Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Jaewook Jung

    2016-12-01

    Full Text Available Railways have been used as one of the most crucial means of transportation in public mobility and economic development. For safe railway operation, the electrification system in the railway infrastructure, which supplies electric power to trains, is an essential facility for stable train operation. Due to its important role, the electrification system needs to be rigorously and regularly inspected and managed. This paper presents a supervised learning method to classify Mobile Laser Scanning (MLS data into ten target classes representing overhead wires, movable brackets and poles, which are key objects in the electrification system. In general, the layout of the railway electrification system shows strong spatial regularity relations among object classes. The proposed classifier is developed based on Conditional Random Field (CRF, which characterizes not only labeling homogeneity at short range, but also the layout compatibility between different object classes at long range in the probabilistic graphical model. This multi-range CRF model consists of a unary term and three pairwise contextual terms. In order to gain computational efficiency, MLS point clouds are converted into a set of line segments to which the labeling process is applied. Support Vector Machine (SVM is used as a local classifier considering only node features for producing the unary potentials of the CRF model. As the short-range pairwise contextual term, the Potts model is applied to enforce a local smoothness in the short-range graph; while long-range pairwise potentials are designed to enhance the spatial regularities of both horizontal and vertical layouts among railway objects. We formulate two long-range pairwise potentials as the log posterior probability obtained by the naive Bayes classifier. The directional layout compatibilities are characterized in probability look-up tables, which represent the co-occurrence rate of spatial relations in the horizontal and vertical

  15. Numerical simulation of base flow of a long range flight vehicle

    Science.gov (United States)

    Saha, S.; Rathod, S.; Chandra Murty, M. S. R.; Sinha, P. K.; Chakraborty, Debasis

    2012-05-01

    Numerical exploration of base flow of a long range flight vehicle is presented for different flight conditions. Three dimensional Navier-Stokes equations are solved along with k-ɛ turbulence model using commercial CFD software. Simulation captured all essential flow features including flow separation at base shoulder, shear layer formation at the jet boundary, recirculation at the base region etc. With the increase in altitude, the plume of the rocket exhaust is seen to bulge more and more and caused more intense free stream and rocket plume interaction leading to higher gas temperature in the base cavity. The flow field in the base cavity is investigated in more detail, which is found to be fairly uniform at different instant of time. Presence of the heat shield is seen to reduce the hot gas entry to the cavity region due to different recirculation pattern in the base region. Computed temperature history obtained from conjugate heat transfer analysis is found to compare very well with flight measured data.

  16. A system for using the air radioactivity measurements in a long range model to forecast cloud evolution

    Energy Technology Data Exchange (ETDEWEB)

    Galmarini, S.; Graziani, G. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Grippa, G.; De Cort, M. (Maind srl, Milan (Italy))

    1993-01-01

    A procedure was developed in the past to reduce uncertainties in long range transport model predictions mainly due to inputing windfield data to atmospheric transport models which are the result of the forecasts of global or regional circulation models. Measurements available in real-time of the air concentrations from national monitoring grids have been used to reduce the uncertainties. The system is based on a long range transport model which can run using a limited amount of meteorological information, and an interpolation routine which generates a new area source from the air measurements, available in real-time, at ground level. The procedure has now been fully automated and is available on a PC, with graphical output, to ease its use in emergency situations. The system requires a connection to the ECMWF network for meteorological input data and to a radiological data bank (ECURIE) or national monitoring networks for monitoring data. (author).

  17. Fluctuations in medium-range structure of Bi-based metallic liquid alloys

    International Nuclear Information System (INIS)

    Ueno, H; Takeda, S; Kawakita, Y; Ohara, K; Kohara, S; Itou, M; Tahara, S

    2012-01-01

    Liquid structure of Bi 50 Zn 50 , which is situated at around the Bi-rich end of miscibility gap in Bi-Zn system, has been investigated by neutron and x-ray diffraction experiments and following analysis using reverse Monte Carlo (RMC) structural modelling. Among the partial correlations calculated from the structural model obtained by RMC, the Zn-Zn partial has a large temperature variation. It is found that there are medium-range fluctuations in Zn distribution which have a scale of 10 Å.

  18. Long range Debye-Hückel correction for computation of grid-based electrostatic forces between biomacromolecules

    International Nuclear Information System (INIS)

    Mereghetti, Paolo; Martinez, Michael; Wade, Rebecca C

    2014-01-01

    Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme. We found that the inclusion of the long-range electrostatic correction increased the accuracy of both the protein-protein interaction profiles and the protein diffusion coefficients at low ionic strength. An advantage of this method is the low additional computational cost required to treat long-range electrostatic interactions in large biomacromolecular systems. Moreover, the implementation described here for BD simulations of protein solutions can also be applied in implicit solvent molecular dynamics simulations that make use of gridded interaction potentials

  19. A low cost automatic detection and ranging system for space surveillance in the medium Earth orbit region and beyond.

    Science.gov (United States)

    Danescu, Radu; Ciurte, Anca; Turcu, Vlad

    2014-02-11

    The space around the Earth is filled with man-made objects, which orbit the planet at altitudes ranging from hundreds to tens of thousands of kilometers. Keeping an eye on all objects in Earth's orbit, useful and not useful, operational or not, is known as Space Surveillance. Due to cost considerations, the space surveillance solutions beyond the Low Earth Orbit region are mainly based on optical instruments. This paper presents a solution for real-time automatic detection and ranging of space objects of altitudes ranging from below the Medium Earth Orbit up to 40,000 km, based on two low cost observation systems built using commercial cameras and marginally professional telescopes, placed 37 km apart, operating as a large baseline stereovision system. The telescopes are pointed towards any visible region of the sky, and the system is able to automatically calibrate the orientation parameters using automatic matching of reference stars from an online catalog, with a very high tolerance for the initial guess of the sky region and camera orientation. The difference between the left and right image of a synchronized stereo pair is used for automatic detection of the satellite pixels, using an original difference computation algorithm that is capable of high sensitivity and a low false positive rate. The use of stereovision provides a strong means of removing false positives, and avoids the need for prior knowledge of the orbits observed, the system being able to detect at the same time all types of objects that fall within the measurement range and are visible on the image.

  20. Impedance Based Analysis and Design of Harmonic Resonant Controller for a Wide Range of Grid Impedance

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    This paper investigates the effect of grid impedance variation on harmonic resonant current controllers for gridconnected voltage source converters by means of impedance-based analysis. It reveals that the negative harmonic resistances tend to be derived from harmonic resonant controllers...... in the closed-loop output admittance of converter. Such negative resistances may interact with the grid impedance resulting in steady state error or unstable harmonic compensation. To deal with this problem, a design guideline for harmonic resonant controllers under a wide range of grid impedance is proposed...

  1. Evaluation of Range-based Methods for Localization in Grain Storages

    DEFF Research Database (Denmark)

    Juul, Jakob Pilegaard; Green, Ole; Jacobsen, Rune Hylsberg

    2016-01-01

    sensor nodes embedded in a grain storage. A path loss model that takes into account the temperature and moisture content of the grain at each sensor node was used for estimating distance based on received signal strength. The average error of the position estimates was 6.3 m. Tests using near......-field electromagnetic ranging were performed to evaluate the performance of the method. It was found that the experimental setup worked best between 2 - 7 m where the average error was 4.9% of the actual distance....

  2. Expanding the range of 'druggable' targets with natural product-based libraries: an academic perspective.

    Science.gov (United States)

    Bauer, Renato A; Wurst, Jacqueline M; Tan, Derek S

    2010-06-01

    Existing drugs address a relatively narrow range of biological targets. As a result, libraries of drug-like molecules have proven ineffective against a variety of challenging targets, such as protein-protein interactions, nucleic acid complexes, and antibacterial modalities. In contrast, natural products are known to be effective at modulating such targets, and new libraries are being developed based on underrepresented scaffolds and regions of chemical space associated with natural products. This has led to several recent successes in identifying new chemical probes that address these challenging targets. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    Energy Technology Data Exchange (ETDEWEB)

    Yin Jiangwei; Li Ning; Zheng Renliang; Li Wei; Ren Junyan, E-mail: lining@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-05-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 mum RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 x 0.28 mm{sup 2}. The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  4. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    International Nuclear Information System (INIS)

    Yin Jiangwei; Li Ning; Zheng Renliang; Li Wei; Ren Junyan

    2009-01-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 μm RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 x 0.28 mm 2 . The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  5. Higher-order glass-transition singularities in systems with short-ranged attractive potentials

    International Nuclear Information System (INIS)

    Goetze, W; Sperl, M

    2003-01-01

    Within the mode-coupling theory for the evolution of structural relaxation, the A 4 -glass-transition singularities are identified for systems of particles interacting with a hard-sphere repulsion complemented by different short-ranged potentials: Baxter's singular potential regularized by a large-wavevector cut-off, a model for the Asakura-Oosawa depletion attraction, a triangular potential, a Yukawa attraction, and a square-well potential. The regular potentials yield critical packing fractions, critical Debye-Waller factors, and critical amplitudes very close to each other. The elastic moduli and the particle localization lengths for corresponding states of the Yukawa system and the square-well system may differ by up to 20 and 10%, respectively

  6. A study on the excore neutron flux monitoring system for the wide range measurement

    International Nuclear Information System (INIS)

    Han, Sang Jun; Jeong, Dae Won; Baek, Kwang Il; Lee, Jeong Yang; Ha, Jae Hong

    1995-11-01

    This paper describes a study in which only one kind of neutron detector were used in the advanced ENFMS. The conceptual design was performed for overall system with unified fission chamber. The system consists of detector, junction box, wide-range amplifier and signal processing device. Also the requirements of 10CFR50 App. R were considered in design. On the other hand, through computer simulation, the characteristics of pulse-count mode and MSV mode was scrutinized and each noise withstanding capability was analyzed. The results say that 3rd moment has the more stable characteristics to background noise than MSV method. Also, to remain the integrity of information against noise, during installation and operation, the overall system of KSNP was analyzed from a view of noise. By administration for the cause of noise and noise-coupling paths, through the full understanding of noise characteristics, the transfer of the noise source can be minimized. (Author)

  7. Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system

    International Nuclear Information System (INIS)

    Ellis, W.H.

    1975-01-01

    An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)

  8. Spin-image surface matching based target recognition in laser radar range imagery

    International Nuclear Information System (INIS)

    Li, Wang; Jian-Feng, Sun; Qi, Wang

    2010-01-01

    We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the range imagery of Ladar is time-consuming, owing to its complicated procedure, which violates the requirement of real-time target recognition in practical applications. To simplify the troublesome procedures, we improve the spin-image algorithm by introducing a statistical correlated coefficient into target recognition in range imagery of Ladar. The system performance is demonstrated on sixteen simulated noise range images with targets rotated through an arbitrary angle in plane. A high efficiency and an acceptable recognition rate obtained herein testify the validity of the improved algorithm for practical applications. The proposed algorithm not only solves the problem of in-plane rotation-invariance rationally, but also meets the real-time requirement. This paper ends with a comparison of the proposed method and the previous one. (classical areas of phenomenology)

  9. From conventional software based systems to knowledge based systems

    International Nuclear Information System (INIS)

    Bologna, S.

    1995-01-01

    Even if todays nuclear power plants have a very good safety record, there is a continuous search for still improving safety. One direction of this effort address operational safety, trying to improve the handling of disturbances and accidents partly by further automation, partly by creating a better control room environment, providing the operator with intelligent support systems to help in the decision making process. Introduction of intelligent computerised operator support systems has proved to be an efficient way of improving the operators performance. A number of systems have been developed worldwide, assisting in tasks like process fault detection and diagnosis, selection and implementation of proper remedial actions. Unfortunately, the use of Knowledge Based Systems (KBSs), introduces a new dimension to the problem of the licensing process. KBSs, despite the different technology employed, are still nothing more than a computer program. Unfortunately, quite a few people building knowledge based systems seem to ignore the many good programming practices that have evolved over the years for producing traditional computer programs. In this paper the author will try to point out similarities and differences between conventional software based systems, and knowledge based systems, introducing also the concept of model based reasoning. (orig.) (25 refs., 2 figs.)

  10. Temperature range extension of an organically crosslinked polymer system and its successful field application for water and gas shutoff

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, Julio; Eoff, Larry; Dalrymple, Dwyann [Halliburton, Rio de Janeiro. RJ (Brazil)

    2008-07-01

    Excessive water production from hydrocarbon reservoirs is one of the most serious problems in the oil industry. Water production greatly affects the economic life of producing wells and brings along secondary problems such as sand production, corrosion, and tubular scale. Remediation techniques for controlling water production, generally referred to as conformance control, include the use of polymer systems to reduce or plug permeability to water. This paper presents the laboratory evaluation of an organically crosslinked polymer (OCP) system used as a sealant for water control problems in hydrocarbon wells. Originally, the OCP system had a limited working temperature range (140 deg to 260 deg F). Recently, an alternative base polymer (for low temperatures) and a retarder (for high temperatures) have been introduced to expand the temperature range of applicability of the OCP system from 70 deg F to 350 deg F without compromising its effectiveness or thermal stability. More than 400 jobs have been performed with the OCP system around the world to address conformance problems such as water coning/cresting, high-permeability streaks, gravel pack isolation, fracture shutoff, and casing leak repairs. This paper presents an overview of case histories that used the OCP system in various regions of the world for a wide variety of applications. (author)

  11. DROUGHT FORECASTING BASED ON MACHINE LEARNING OF REMOTE SENSING AND LONG-RANGE FORECAST DATA

    Directory of Open Access Journals (Sweden)

    J. Rhee

    2016-06-01

    Full Text Available The reduction of drought impacts may be achieved through sustainable drought management and proactive measures against drought disaster. Accurate and timely provision of drought information is essential. In this study, drought forecasting models to provide high-resolution drought information based on drought indicators for ungauged areas were developed. The developed models predict drought indices of the 6-month Standardized Precipitation Index (SPI6 and the 6-month Standardized Precipitation Evapotranspiration Index (SPEI6. An interpolation method based on multiquadric spline interpolation method as well as three machine learning models were tested. Three machine learning models of Decision Tree, Random Forest, and Extremely Randomized Trees were tested to enhance the provision of drought initial conditions based on remote sensing data, since initial conditions is one of the most important factors for drought forecasting. Machine learning-based methods performed better than interpolation methods for both classification and regression, and the methods using climatology data outperformed the methods using long-range forecast. The model based on climatological data and the machine learning method outperformed overall.

  12. Rescue dose orders as an alternative to range orders: an evidence-based practice project.

    Science.gov (United States)

    Yi, Cassia

    2015-06-01

    Relief of pain is a fundamental aspect of optimal patient care. However, pain management in the inpatient setting is often constrained by concerns related to regulatory oversight, particularly with regard to the use of opioid dose range orders. These concerns can inadvertently result in the development of policies and practices that can negatively impact the health care team's ability to deliver optimal and individualized pain management. An evidence-based practice project was undertaken to address concerns about regulatory oversight of pain management processes by changing the way pain was managed in a large academic hospital setting. A novel pain management approach using rescue dose medications was established as an alternative to opioid dose range orders. The use of the rescue dose protocol was successfully implemented. Outcomes included an overall reduction in the administration of inappropriate intravenous opioids and opioid-acetaminophen combination medications, with a subsequent increase in single-entity first-line opioid analgesics. Rescue dose protocols may offer an alternative to opioid dose range orders as a means of effectively managing pain. Copyright © 2015 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  13. New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective

    International Nuclear Information System (INIS)

    Wu, Jili; Pan, Ye; Li, Xingzhou; Wang, Xianfei

    2014-01-01

    Highlights: • The equation, T rg = T g /T l , was rotationally modified to T rg = κ(T m /T l ) + C/T l . • The newly generalized equation suggests a way for describing glass-forming ability. • Several new Cu-based bulk metallic glasses were discovered by solidification range. - Abstract: In this paper, a new equation was rationally generalized from the reduced glass transition temperature. This equation indicates that solidification range can be used for describing glass-forming ability, which can be calculated with the aid of computational thermodynamic approach. Based on this scenario, several new Cu-based bulk metallic glasses in the ternary Cu–Zr–Ti alloy system were discovered. The as-cast samples were characterized by X-ray diffraction and transmission electronic microscopy. The results indicate that as-cast samples have monolithic amorphous nature. Thermal analysis validates that the smaller solidification range is closely related to the higher glass-forming ability, which is contributed to the effect of solidification time on the formation of bulk metallic glasses. This work also suggests that solidus can influence glass formation

  14. Energy System Expectations for Nuclear in the 21. Century: A Plausible Range

    International Nuclear Information System (INIS)

    Langlois, Lucille M.; McDonald, Alan; Rogner, Hans-Holger; Vera, Ivan

    2002-01-01

    This paper outlines a range of scenarios describing what the world's energy system might look like in the middle of the century, and what nuclear energy's most profitable role might be. The starting point is the 40 non-greenhouse-gas-mitigation scenarios in the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change (IPCC, 2000). Given their international authorship and comprehensive review by governments and scientific experts, the SRES scenarios are the state of the art in long-term energy scenarios. However, they do not present the underlying energy system structures in enough detail for specific energy technology and infrastructure analyses. This paper therefore describes initial steps within INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles of the International Atomic Energy Agency) to translate the SRES results into a range of possible nuclear energy technology requirements for mid-century. The paper summarizes the four SRES scenarios that will be used in INPRO and the reasons for their selection. It provides illustrative examples of the sort of additional detail that is being developed about the overall energy system implied by each scenario, and about specific scenario features particularly relevant to nuclear energy. As recommended in SRES, the selected scenarios cover all four SRES 'story-line families'. The energy system translations being developed in INPRO are intended to indicate how energy services may be provided in mid-century and to delineate likely technology and infrastructure implications. They will indicate answers to questions like the following. The list is illustrative, not comprehensive. - What kind of nuclear power plants will best fit the mid-century energy system? - What energy forms and other products and services provided by nuclear reactors will best fit the mid-century energy system? - What would be their market shares? - How difficult will it be to site new nuclear

  15. New segmentation-based tone mapping algorithm for high dynamic range image

    Science.gov (United States)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  16. Event-Based Color Segmentation With a High Dynamic Range Sensor

    Directory of Open Access Journals (Sweden)

    Alexandre Marcireau

    2018-04-01

    Full Text Available This paper introduces a color asynchronous neuromorphic event-based camera and a methodology to process color output from the device to perform color segmentation and tracking at the native temporal resolution of the sensor (down to one microsecond. Our color vision sensor prototype is a combination of three Asynchronous Time-based Image Sensors, sensitive to absolute color information. We devise a color processing algorithm leveraging this information. It is designed to be computationally cheap, thus showing how low level processing benefits from asynchronous acquisition and high temporal resolution data. The resulting color segmentation and tracking performance is assessed both with an indoor controlled scene and two outdoor uncontrolled scenes. The tracking's mean error to the ground truth for the objects of the outdoor scenes ranges from two to twenty pixels.

  17. Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology

    Science.gov (United States)

    Wang, Yiguang; Huang, Xingxing; Shi, Jianyang; Wang, Yuan-quan; Chi, Nan

    2016-05-01

    Visible light communication (VLC) has no doubt become a promising candidate for future wireless communications due to the increasing trends in the usage of light-emitting diodes (LEDs). In addition to indoor high-speed wireless access and positioning applications, VLC usage in outdoor scenarios, such as vehicle networks and intelligent transportation systems, are also attracting significant interest. However, the complex outdoor environment and ambient noise are the key challenges for long-range high-speed VLC outdoor applications. To improve system performance and transmission distance, we propose to use receiver diversity technology in an outdoor VLC system. Maximal ratio combining-based receiver diversity technology is utilized in two receivers to achieve the maximal signal-to-noise ratio. A 400-Mb/s VLC transmission using a phosphor-based white LED and a 1-Gb/s wavelength division multiplexing VLC transmission using a red-green-blue LED are both successfully achieved over a 100-m outdoor distance with the bit error rate below the 7% forward error correction limit of 3.8×10-3. To the best of our knowledge, this is the highest data rate at 100-m outdoor VLC transmission ever achieved. The experimental results clearly prove the benefit and feasibility of receiver diversity technology for long-range high-speed outdoor VLC systems.

  18. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  19. Long-range Transport Modeling System and its Application over the Northeast Asia

    Directory of Open Access Journals (Sweden)

    Il-Soo Park

    2006-06-01

    Full Text Available A Comprehensive Acid Deposition Modeling (CADM was developed at the National Institute of Environmental Research (NIER and Yonsei University in South Korea in order to simulate the long-range transboundary air pollutants and regional acid deposition processes over the Northeast Asia. The modeling system CADM is composed of a real-time numerical weather forecasting model (RAMS and an Eulerian air pollution transport/dispersion/deposition model including gas- and aqueous-phase atmospheric chemical processes for the real-time acquisition of model results and prediction of acidic pollutants. The main objective of CADM is to facilitate an efficient assessment tools by providing the explicit information on the acidic deposition processes. This paper introduces the components of CADM, and describes the comprehensive atmospheric modeling system including atmospheric chemistry for the simulation of acidic processes over the Eastern Asia. The presently developed modeling system CADM has been used to simulate long-range transport over the Northeast Asian region during the spring season from March 5 to 15 2002. For the model validation, the simulated results are compared with both aircraft measurements and surface monitoring observations, and discussed for its operational consideration in Korea

  20. Long-range force and moment calculations in multiresolution simulations of molecular systems

    International Nuclear Information System (INIS)

    Poursina, Mohammad; Anderson, Kurt S.

    2012-01-01

    Multiresolution simulations of molecular systems such as DNAs, RNAs, and proteins are implemented using models with different resolutions ranging from a fully atomistic model to coarse-grained molecules, or even to continuum level system descriptions. For such simulations, pairwise force calculation is a serious bottleneck which can impose a prohibitive amount of computational load on the simulation if not performed wisely. Herein, we approximate the resultant force due to long-range particle-body and body-body interactions applicable to multiresolution simulations. Since the resultant force does not necessarily act through the center of mass of the body, it creates a moment about the mass center. Although this potentially important torque is neglected in many coarse-grained models which only use particle dynamics to formulate the dynamics of the system, it should be calculated and used when coarse-grained simulations are performed in a multibody scheme. Herein, the approximation for this moment due to far-field particle-body and body-body interactions is also provided.

  1. Fermi-edge singularity in one-dimensional electron systems with long-range Coulomb interactions

    International Nuclear Information System (INIS)

    Otani, H.; Ogawa, T.

    1996-01-01

    Effects of long-range Coulomb interactions on the Fermi-edge singularity in optical spectra are investigated theoretically for one-dimensional spin-1/2 fermion systems with the use of the Tomonaga-Luttinger bosonization technique. Low-energy excitation spectrum near the Fermi level shows that dispersion of the charge-density fluctuation remains gapless but is nonlinear when the electron-electron (e-e) Coulomb interaction is of the x -1 type (i.e., an infinite force range). Temporal behavior of the current-current correlation function is calculated analytically for arbitrary force ranges, λ e and λ h , of the e-e and the electron-hole (e-h) Coulomb interactions. (i) When both the e-e and the e-h interactions have large but finite force ranges (λ e h max[λ e ,λ h ]/v F . Corresponding optical spectrum near the Fermi edge (within an energy range of ℎv F /max[λ e ,λ h ]) exhibits the power-law divergence or the power-law convergence, which is an ordinary Fermi-edge singularity. (ii) When either the e-e or the e-h interaction is of the x -1 type (i.e., λ e →∞ and/or λ h →∞), an exponent of the correlation function is dependent on time to lead the faster decay than that of any power laws. Then the optical spectra show no power law dependence and always converge (become zero) at the Fermi edge, which is in striking contrast to the ordinary power-law singularity

  2. Stability of medium range order in Al-based metallic glass compacted by severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Zs.; Henits, P. [Department of Materials Physics, Eötvös University, P.O.B. 32, H-1518 Budapest (Hungary); Varga, L.K. [Research Institute for Solid state Physics and Optics, Hungarian Academy of Sciences, P.O.B. 49, H-1525 Budapest (Hungary); Schafler, E. [Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Révész, Á., E-mail: reveszadam@ludens.elte.hu [Department of Materials Physics, Eötvös University, P.O.B. 32, H-1518 Budapest (Hungary)

    2013-06-05

    Highlights: ► High pressure torsion has been applied to produce low-porosity bulk Al-based amorphous specimens. ► The compacted disks possess higher hardness than the original glass. ► Mechanical and thermal impacts have only minor effects on the glassy structure. ► Medium range order is an inherent feature of the amorphous state. -- Abstract: High pressure torsion has successfully been applied to produce low-porosity, bulk specimens from Al-based metallic glass ribbons (Al{sub 85}Y{sub 8}Ni{sub 5}Co{sub 2}, Al{sub 85}Ce{sub 8}Ni{sub 5}Co{sub 2} and Al{sub 85}Gd{sub 8}Ni{sub 5}Co{sub 2}). The compacted disks possess higher hardness than the original glass and have substantial glass fraction with nanocrystalline precipitations. Mechanical and thermal impacts have only minor effects on the glassy structure as demonstrated by the stability of the X-ray diffraction halo positions. Unchanged halos reveal that medium range order is a key characteristic of the amorphous state.

  3. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun

    2012-10-16

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo-diode current were analyzed in detail. The proposed architecture can extend the DR for about 20N log2 dB at the high end of Photo-diode current with an N bit Up-Down counter. At the low end, it can compensate for the larger readout noise by employing Extended Counting. The Adaptive Delta-Sigma architecture employing a 4-bit Up-Down counter achieved about 160dB in the DR, with a Peak SNR (PSNR) of 80dB at the high end. Compared to the other HDR architectures, the Adaptive Delta-Sigma based architecture provides the widest DR with the best SNR performance in the extended range.

  4. Radon monitoring using long-range alpha detector-based technology

    International Nuclear Information System (INIS)

    Bolton, R.D.

    1994-01-01

    Long-Range Alpha Detector (LRAD) technology is being studied for monitoring radon gas concentrations. LRAD-based instruments collect and measure the ionization produced in air by alpha decays. These ions can be moved to a collection grid via electrostatic ion-transport design collected approximately 95% of the radon produced ions, while instruments using an airflow transport design collected from 44% to 77% of these ions, depending on detector geometry. The current produced by collecting this ionization is linear with respect to 222 Rn concentration over the available test range of 0.07 to 820 pCi/L. In the absence of statistical limitations due to low radon concentrations, the speed of response of LRAD-based instruments is determined by the air exchange rate, and therefore changes in radon concentration can be detected in just a few seconds. Recent tests show that at radon concentrations below 20 pCi/L current pulses produced by individual alpha decays can be counted, thus improving detector sensitivity and stability even further. Because these detectors are simple, rugged, and do not consume much power, they are natural candidates for portable, battery operation

  5. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems

    Science.gov (United States)

    Gole, Vaibhav C.; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret

    2016-01-01

    ABSTRACT The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates (n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA, ironA, and misL. There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella

  6. HiRes camera and LIDAR ranging system for the Clementine mission

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G.; Kordas, J.F.; Lewis, I.T. [and others

    1995-04-01

    Lawrence Livermore National Laboratory developed a space-qualified High Resolution (HiRes) imaging LIDAR (Light Detection And Ranging) system for use on the DoD Clementine mission. The Clementine mission provided more than 1.7 million images of the moon, earth, and stars, including the first ever complete systematic surface mapping of the moon from the ultra-violet to near-infrared spectral regions. This article describes the Clementine HiRes/LIDAR system, discusses design goals and preliminary estimates of on-orbit performance, and summarizes lessons learned in building and using the sensor. The LIDAR receiver system consists of a High Resolution (HiRes) imaging channel which incorporates an intensified multi-spectral visible camera combined with a Laser ranging channel which uses an avalanche photo-diode for laser pulse detection and timing. The receiver was bore sighted to a light-weight McDonnell-Douglas diode-pumped ND:YAG laser transmitter that emmitted 1.06 {micro}m wavelength pulses of 200 mJ/pulse and 10 ns pulse-width, The LIDAR receiver uses a common F/9.5 Cassegrain telescope assembly. The optical path of the telescope is split using a color-separating beamsplitter. The imaging channel incorporates a filter wheel assembly which spectrally selects the light which is imaged onto a custom 12 mm gated image intensifier fiber-optically-coupled into a 384 x 276 pixel frame transfer CCD FPA. The image intensifier was spectrally sensitive over the 0.4 to 0.8 {micro}m wavelength region. The six-position filter wheel contained 4 narrow spectral filters, one broadband and one blocking filter. At periselene (400 km) the HiRes/LIDAR imaged a 2.8 km swath width at 20-meter resolution. The LIDAR function detected differential signal return with a 40-meter range accuracy, with a maximum range capability of 640 km, limited by the bit counter in the range return counting clock.

  7. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems.

    Science.gov (United States)

    Gole, Vaibhav C; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret; Chousalkar, Kapil

    2017-03-01

    The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates ( n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA , ironA , and misL There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella serovars in

  8. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    OpenAIRE

    Md. Rajibur Rahaman Khan; Shin-Won Kang

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal?s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The...

  9. Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range

    Science.gov (United States)

    Zolotov, P.; Divochiy, A.; Vakhtomin, Yu.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.

    2018-02-01

    We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.

  10. Digitization and simulation realization of full range control system for steam generator water level

    International Nuclear Information System (INIS)

    Qian Hong; Ye Jianhua; Qian Fei; Li Chao

    2010-01-01

    In this paper, a full range digital control system for the steam generator water level is designed by a control scheme of single element control and three-element cascade feed-forward control, and the method to use the software module configuration is proposed to realize the water level control strategy. This control strategy is then applied in the operation of the nuclear power simulation machine. The simulation result curves indicate that the steam generator water level maintains constant at the stable operation condition, and when the load changes, the water level changes but finally maintains the constant. (authors)

  11. Development of computer-aided auto-ranging technique for a computed radiography system

    International Nuclear Information System (INIS)

    Ishida, M.; Shimura, K.; Nakajima, N.; Kato, H.

    1988-01-01

    For a computed radiography system, the authors developed a computer-aided autoranging technique in which the clinically useful image data are automatically mapped to the available display range. The preread image data are inspected to determine the location of collimation. A histogram of the pixels inside the collimation is evaluated regarding characteristic values such as maxima and minima, and then the optimal density and contrast are derived for the display image. The effect of the autoranging technique was investigated at several hospitals in Japan. The average rate of films lost due to undesirable density or contrast was about 0.5%

  12. Microbiological quality of air in free-range and box-stall stable horse keeping systems.

    Science.gov (United States)

    Wolny-Koładka, Katarzyna

    2018-04-07

    The aim of this study was to assess the microbiological quality of air in three horse riding centers differing in the horse keeping systems. The air samples were collected in one facility with free-range horse keeping system and two with box stalls of different sizes. The samples were collected over a period of 3 years (2015-2017), four times per year (spring, summer, autumn, winter) to assess the effect of seasonal changes. The prevalence of aerobic mesophilic bacteria, mold fungi, actinomycetes, Staphylococcus spp., and Escherichia coli was determined by the air collision method on Petri dishes with appropriate microbiological media. At the same time, air temperature, relative humidity, and particulate matter concentration (PM 10 , PM 2.5 ) were measured. It was found that the horse keeping system affects the occurrence of the examined airborne microorganisms. Over the 3-year period of study, higher temperature and humidity, as well as particulate matter concentration-which notoriously exceeded limit values-were observed in the facilities with the box-stall system. The air sampled from the largest horse riding center, with the largest number of horses and the box-stall system of horse keeping, was also characterized by the heaviest microbiological contamination. Among others, bacteria from the following genera: Staphylococcus spp., Streptococcus spp., Bacillus spp., and E. coli and fungi from the genera Aspergillus, Fusarium, Mucor, Rhizopus, Penicillium, Trichothecium, Cladosporium, and Alternaria were identified in the analyzed samples.

  13. Multi-sensors multi-baseline mapping system for mobile robot using stereovision camera and laser-range device

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-06-01

    Full Text Available Countless applications today are using mobile robots, including autonomous navigation, security patrolling, housework, search-and-rescue operations, material handling, manufacturing, and automated transportation systems. Regardless of the application, a mobile robot must use a robust autonomous navigation system. Autonomous navigation remains one of the primary challenges in the mobile-robot industry; many control algorithms and techniques have been recently developed that aim to overcome this challenge. Among autonomous navigation methods, vision-based systems have been growing in recent years due to rapid gains in computational power and the reliability of visual sensors. The primary focus of research into vision-based navigation is to allow a mobile robot to navigate in an unstructured environment without collision. In recent years, several researchers have looked at methods for setting up autonomous mobile robots for navigational tasks. Among these methods, stereovision-based navigation is a promising approach for reliable and efficient navigation. In this article, we create and develop a novel mapping system for a robust autonomous navigation system. The main contribution of this article is the fuse of the multi-baseline stereovision (narrow and wide baselines and laser-range reading data to enhance the accuracy of the point cloud, to reduce the ambiguity of correspondence matching, and to extend the field of view of the proposed mapping system to 180°. Another contribution is the pruning the region of interest of the three-dimensional point clouds to reduce the computational burden involved in the stereo process. Therefore, we called the proposed system multi-sensors multi-baseline mapping system. The experimental results illustrate the robustness and accuracy of the proposed system.

  14. Validation of a photography-based goniometry method for measuring joint range of motion.

    Science.gov (United States)

    Blonna, Davide; Zarkadas, Peter C; Fitzsimmons, James S; O'Driscoll, Shawn W

    2012-01-01

    A critical component of evaluating the outcomes after surgery to restore lost elbow motion is the range of motion (ROM) of the elbow. This study examined if digital photography-based goniometry is as accurate and reliable as clinical goniometry for measuring elbow ROM. Instrument validity and reliability for photography-based goniometry were evaluated for a consecutive series of 50 elbow contractures by 4 observers with different levels of elbow experience. Goniometric ROM measurements were taken with the elbows in full extension and full flexion directly in the clinic (once) and from digital photographs (twice in a blinded random manner). Instrument validity for photography-based goniometry was extremely high (intraclass correlation coefficient: extension = 0.98, flexion = 0.96). For extension and flexion measurements by the expert surgeon, systematic error was negligible (0° and 1°, respectively). Limits of agreement were 7° (95% confidence interval [CI], 5° to 9°) and -7° (95% CI, -5° to -9°) for extension and 8° (95% CI, 6° to 10°) and -7° (95% CI, -5° to -9°) for flexion. Interobserver reliability for photography-based goniometry was better than that for clinical goniometry. The least experienced observer's photographic goniometry measurements were closer to the reference measurements than the clinical goniometry measurements. Photography-based goniometry is accurate and reliable for measuring elbow ROM. The photography-based method relied less on observer expertise than clinical goniometry. This validates an objective measure of patient outcome without requiring doctor-patient contact at a tertiary care center, where most contracture surgeries are done. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  15. Study on The Extended Range Weather Forecast of Low Frequency Signal Based on Period Analysis Method

    Science.gov (United States)

    Li, X.

    2016-12-01

    Although many studies have explored the MJO and its application for weather forecasting, low-frequency oscillation has been insufficiently studied for the extend range weather forecasting over middle and high latitudes. In China, low-frequency synoptic map is a useful tool for meteorological operation department to forecast extend range weather. It is therefore necessary to develop objective methods to serve the need for finding low-frequency signal, interpretation and application of this signal in the extend range weather forecasting. In this paper, method of Butterworth band pass filter was applied to get low-frequency height field at 500hPa from 1980 to 2014 by using NCEP/NCAR daily grid data. Then period analysis and optimal subset regression methods were used to process the low frequency data of 150 days before the first forecast day and extend the low frequency signal of 500hPa low-frequency high field to future 30 days in the global from June to August during 2011-2014. Finally, the results were test. The main results are as follows: (1) In general, the fitting effect of low frequency signals of 500hPa low-frequency height field by period analysis in the northern hemisphere was better than that in the southern hemisphere, and was better in the low latitudes than that in the high latitudes. The fitting accuracy gradually reduced with the increase of forecast time length, which tended to be stable during the late forecasting period. (2) The fitting effects over the 6 key regions in China showed that except filtering result over Xinjiang area in the first 10 days and 30 days, filtering results over the other 5 key regions throughout the whole period have passed reliability test with level more than 95%. (3) The center and scope of low and high low frequency systems can be fitted well by using the methods mentioned above, which is consist with the corresponding use of the low-frequency synoptic map for the prediction of the extended period. Application of the

  16. Ionization induced by strong electromagnetic field in low dimensional systems bound by short range forces

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, P.A., E-mail: peminov@mail.ru [Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 2107996 (Russian Federation); National Research University Higher School of Economics, 3/12 Bolshoy Trekhsvyatskiy pereulok, Moscow 109028 (Russian Federation)

    2013-10-01

    Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term.

  17. LSI-11 based multiparameter system

    International Nuclear Information System (INIS)

    Patwardhan, P.K.; Chatur, C.G.; Gupta, J.D.; Kumar, Sudhir

    1981-01-01

    This paper describes a LSI-11 based nuclear data processing system having four parameter capability. The system features simultaneous data acquisition and processing in independent memory zones. It also incorporates useful resident application programs and a built-in dual trace display. (author)

  18. Ramjet Application Possibilities for Increasing Fire Range of the Multiple Launch Rocket Systems Ammunition

    Directory of Open Access Journals (Sweden)

    V. N. Zubov

    2015-01-01

    Full Text Available The article considers a possibility to increase a flying range of the perspective rockets equipped with the control unit with aerodynamic controllers for the multiple launch rocket systems “Smerch”.To increase a flying range and reduce a starting mass of the rocket, the paper studies a possibility to replace the single-mode rocket engine used in the solid-fuel rocket motor for the direct-flow propulsion jet engine (DFPJE with not head sector air intakes. The DFPJE is implemented according to the classical scheme with a fuel charged in the combustion chamber. A separated solid propellant starting accelerator provides the rocket acceleration to reach a speed necessary for the DFPJE to run.When designing the DFPJE a proper choice of not head air intake parameters is one of the most difficult points. For this purpose a COSMOS Flow Simulation software package and analytical dependences were used to define the following: a boundary layer thickness where an air intake is set, maximum permissible and appropriate angles of attack and deviation angles of controllers at the section where the DFPJE works, and some other parameters as well.Calculation of DFPJE characteristics consisted in determining parameters of an air-gas path of the propulsion system, geometrical sizes of the pipeline flow area, sizes of a fuel charge, and dependence of the propulsion system impulse on the flight height and speed. Calculations were performed both in thermodynamic statement of problem and in using software package of COSMOS Flow Simulation.As a result of calculations and design engineering activities the air intake profile is created and mass-dimensional characteristics of DFPJE are defined. Besides, calculations of the starting solid fuel accelerator were carried out. Further design allowed us to create the rocket shape, estimate its mass-dimensional characteristics, and perform ballistic calculations, which proved that achieving a range of 120 km for the rocket is

  19. Digital predistortion of 75–110 GHz W-band frequency multiplier for fiber wireless short range access systems

    DEFF Research Database (Denmark)

    Zhao, Ying; Deng, Lei; Pang, Xiaodan

    2011-01-01

    be effectively pre-compensated. Without using costly W-band components, a transmission system with 26km fiber and 4m wireless transmission operating at 99.6GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission......We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can...... performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems....

  20. Structure and dielectric properties in the radio frequency range of polymer composites based on vanadium dioxide

    Directory of Open Access Journals (Sweden)

    Kolbunov V.R.

    2015-06-01

    Full Text Available Polymer composites with active fillers are recently considered to be promising materials for the design of new functional devices with controllable properties and are intensively investigated. Dielectric studies are one of the most effective methods for studying structural features and mechanisms of conductivity formation for this type of two-component systems. The paper presents research results of the dielectric characteristics in the range of radio frequency of 50 kHz — 10 MHz and temperature range of 30—60°C of polyethylene composites of vanadium dioxide with different volume fractions of filler. Two dispersion areas were found: a high-frequency area caused by the Maxwell charge separation on the boundaries of the polyethylene matrix — conductive filler of VI2 crystallites, and a low frequency area associated with the presence of the transition layer at this boundary. The relative permittivity of the composite has a tendency to a decrease in absolute value with increasing temperature. The analysis of the low-frequency dependence of the dielectric constant of the value of the filler’s volume fraction revealed that the investigated composite belongs to two-component statistical mixtures with a transition layer between the components.

  1. Assumption-versus data-based approaches to summarizing species' ranges.

    Science.gov (United States)

    Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Gordillo, Alejandro

    2018-06-01

    For conservation decision making, species' geographic distributions are mapped using various approaches. Some such efforts have downscaled versions of coarse-resolution extent-of-occurrence maps to fine resolutions for conservation planning. We examined the quality of the extent-of-occurrence maps as range summaries and the utility of refining those maps into fine-resolution distributional hypotheses. Extent-of-occurrence maps tend to be overly simple, omit many known and well-documented populations, and likely frequently include many areas not holding populations. Refinement steps involve typological assumptions about habitat preferences and elevational ranges of species, which can introduce substantial error in estimates of species' true areas of distribution. However, no model-evaluation steps are taken to assess the predictive ability of these models, so model inaccuracies are not noticed. Whereas range summaries derived by these methods may be useful in coarse-grained, global-extent studies, their continued use in on-the-ground conservation applications at fine spatial resolutions is not advisable in light of reliance on assumptions, lack of real spatial resolution, and lack of testing. In contrast, data-driven techniques that integrate primary data on biodiversity occurrence with remotely sensed data that summarize environmental dimensions (i.e., ecological niche modeling or species distribution modeling) offer data-driven solutions based on a minimum of assumptions that can be evaluated and validated quantitatively to offer a well-founded, widely accepted method for summarizing species' distributional patterns for conservation applications. © 2016 Society for Conservation Biology.

  2. Sub-OBB based object recognition and localization algorithm using range images

    International Nuclear Information System (INIS)

    Hoang, Dinh-Cuong; Chen, Liang-Chia; Nguyen, Thanh-Hung

    2017-01-01

    This paper presents a novel approach to recognize and estimate pose of the 3D objects in cluttered range images. The key technical breakthrough of the developed approach can enable robust object recognition and localization under undesirable condition such as environmental illumination variation as well as optical occlusion to viewing the object partially. First, the acquired point clouds are segmented into individual object point clouds based on the developed 3D object segmentation for randomly stacked objects. Second, an efficient shape-matching algorithm called Sub-OBB based object recognition by using the proposed oriented bounding box (OBB) regional area-based descriptor is performed to reliably recognize the object. Then, the 3D position and orientation of the object can be roughly estimated by aligning the OBB of segmented object point cloud with OBB of matched point cloud in a database generated from CAD model and 3D virtual camera. To detect accurate pose of the object, the iterative closest point (ICP) algorithm is used to match the object model with the segmented point clouds. From the feasibility test of several scenarios, the developed approach is verified to be feasible for object pose recognition and localization. (paper)

  3. Laboratory piping system vibration tests to determine parametric effects on damping in the seismic frequency range

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-01-01

    A pipe damping research program is being conducted for the United States Nuclear Regulatory Commission at the Idaho National Engineering Laboratory to establish more realistic, best-estimate damping values for use in dynamic structural analyses of piping systems. As part of this program, tests were conducted on a 5-in. (128 mm ID) laboratory piping system to determine the effects of pressure, support configuration, insulation and response amplitude on damping. The tests were designed to produce a wide range of damping values, from very low damping in lightly excited uninsulated systems with few supports, to higher damping under conditions of either/or insulation, high level excitation, and various support arrangements. The effect of pressure at representative seismic levels was considered to be minimal. The supports influence damping at all excitation levels; damping was highest when a mechanical snubber was present in the system. The addition of insulation produced a large increase in damping for the hydraulic shaker excitation tests, but there was no comparable increase for the snapback excitation tests. Once a response amplitude of approximately one-half yield stress was reached, overall damping increased to relatively high levels (>10% of critical)

  4. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  5. Use of agent-based modelling in emergency management under a range of flood hazards

    Directory of Open Access Journals (Sweden)

    Tagg Andrew

    2016-01-01

    Full Text Available The Life Safety Model (LSM was developed some 15 years ago, originally for dam break assessments and for informing reservoir evacuation and emergency plans. Alongside other technological developments, the model has evolved into a very useful agent-based tool, with many applications for a range of hazards and receptor behaviour. HR Wallingford became involved in its use in 2006, and is now responsible for its technical development and commercialisation. Over the past 10 years the model has been applied to a range of flood hazards, including coastal surge, river flood, dam failure and tsunami, and has been verified against historical events. Commercial software licences are being used in Canada, Italy, Malaysia and Australia. A core group of LSM users and analysts has been specifying and delivering a programme of model enhancements. These include improvements to traffic behaviour at intersections, new algorithms for sheltering in high-rise buildings, and the addition of monitoring points to allow detailed analysis of vehicle and pedestrian movement. Following user feedback, the ability of LSM to handle large model ‘worlds’ and hydrodynamic meshes has been improved. Recent developments include new documentation, performance enhancements, better logging of run-time events and bug fixes. This paper describes some of the recent developments and summarises some of the case study applications, including dam failure analysis in Japan and mass evacuation simulation in England.

  6. Comparison of physically based constitutive models characterizing armor steel over wide temperature and strain rate ranges

    International Nuclear Information System (INIS)

    Xu, Zejian; Huang, Fenglei

    2012-01-01

    Both descriptive and predictive capabilities of five physically based constitutive models (PB, NNL, ZA, VA, and RK) are investigated and compared systematically, in characterizing plastic behavior of the 603 steel at temperatures ranging from 288 to 873 K, and strain rates ranging from 0.001 to 4500 s −1 . Determination of the constitutive parameters is introduced in detail for each model. Validities of the established models are checked by strain rate jump tests performed under different loading conditions. The results show that the RK and NNL models have better performance in the description of material behavior, especially the work-hardening effect, while the PB and VA models predict better. The inconsistency that is observed between the capabilities of description and prediction of the models indicates the existence of the minimum number of required fitting data, reflecting the degree of a model's requirement for basic data in parameter calibration. It is also found that the description capability of a model is dependent to a large extent on both its form and the number of its constitutive parameters, while the precision of prediction relies largely on the performance of description. In the selection of constitutive models, the experimental data and the constitutive models should be considered synthetically to obtain a better efficiency in material behavior characterization

  7. A Newly Designed Fiber-Optic Based Earth Pressure Transducer with Adjustable Measurement Range

    Directory of Open Access Journals (Sweden)

    Hou-Zhen Wei

    2018-03-01

    Full Text Available A novel fiber-optic based earth pressure sensor (FPS with an adjustable measurement range and high sensitivity is developed to measure earth pressures for civil infrastructures. The new FPS combines a cantilever beam with fiber Bragg grating (FBG sensors and a flexible membrane. Compared with a traditional pressure transducer with a dual diaphragm design, the proposed FPS has a larger measurement range and shows high accuracy. The working principles, parameter design, fabrication methods, and laboratory calibration tests are explained in this paper. A theoretical solution is derived to obtain the relationship between the applied pressure and strain of the FBG sensors. In addition, a finite element model is established to analyze the mechanical behavior of the membrane and the cantilever beam and thereby obtain optimal parameters. The cantilever beam is 40 mm long, 15 mm wide, and 1 mm thick. The whole FPS has a diameter of 100 mm and a thickness of 30 mm. The sensitivity of the FPS is 0.104 kPa/με. In addition, automatic temperature compensation can be achieved. The FPS’s sensitivity, physical properties, and response to applied pressure are extensively examined through modeling and experiments. The results show that the proposed FPS has numerous potential applications in soil pressure measurement.

  8. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    Science.gov (United States)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  9. Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber.

    Science.gov (United States)

    Liu, Zhengyong; Htein, Lin; Lee, Kang-Kuen; Lau, Kin-Tak; Tam, Hwa-Yaw

    2018-01-08

    This paper presents a sensitive and large dynamic range pressure sensor based on a novel birefringence microstructured optical fiber (MOF) deployed in a Sagnac interferometer configuration. The MOF has two large semicircle holes in the cladding and a rectangular strut with germanium-doped core in the center. The fiber structure permits surrounding pressure to induce large effective index difference between the two polarized modes. The calculated and measured group birefringence of the fiber are 1.49 × 10 -4 , 1.23 × 10 -4 , respectively, at the wavelength of 1550 nm. Experimental results shown that the pressure sensitivity of the sensor varied from 45,000 pm/MPa to 50,000 pm/MPa, and minimum detectable pressure of 80 Pa and dynamic range of better than 116 dB could be achieved with the novel fiber sensor. The proposed sensor could be used in harsh environment and is an ideal candidate for downhole applications where high pressure measurement at elevated temperature up to 250 °C is needed.

  10. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    Science.gov (United States)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  11. A plasmid-transposon hybrid mutagenesis system effective in a broad range of Enterobacteria

    Directory of Open Access Journals (Sweden)

    Rita eMonson

    2015-12-01

    Full Text Available Random transposon mutagenesis is a powerful technique used to generate libraries of genetic insertions in many different bacterial strains. Here we develop a system facilitating random transposon mutagenesis in a range of different Gram-negative bacterial strains, including Pectobacterium atrosepticum, Citrobacter rodentium, Serratia sp. ATCC39006, Serratia plymuthica, Dickeya dadantii and many more. Transposon mutagenesis was optimized in each of these strains and three studies are presented to show the efficacy of this system. Firstly, the important agricultural pathogen D. dadantii was mutagenized. Two mutants that showed reduced protease production and one mutant producing the previously cryptic pigment, indigoidine, were identified and characterized. Secondly, the enterobacterium, Serratia sp. ATCC39006 was mutagenized and mutants incapable of producing gas vesicles, proteinaceous intracellular organelles, were identified. One of these contained a β-galactosidase transcriptional fusion within the gene gvpA1, essential for gas vesicle production. Finally, the system was used to mutate the biosynthetic gene clusters of the antifungal, anti-oomycete and anticancer polyketide, oocydin A, in the plant-associated enterobacterium, Dickeya solani MK10. The mutagenesis system was developed to allow easy identification of transposon insertion sites by sequencing, after facile generation of a replicon encompassing the transposon and adjacent DNA, post-excision. Furthermore, the system can also create transcriptional fusions with either β-galactosidase or β-glucuronidase as reporters, and exploits a variety of drug resistance markers so that multiple selectable fusions can be generated in a single strain. This system of various transposons has wide utility and can be combined in many different ways.

  12. Delay-Range-Dependent H∞ Control for Automatic Mooring Positioning System with Time-Varying Input Delay

    Directory of Open Access Journals (Sweden)

    Xiaoyu Su

    2014-01-01

    Full Text Available Aiming at the economy and security of the positioning system in semi-submersible platform, the paper presents a new scheme based on the mooring line switching strategy. Considering the input delay in switching process, H∞ control with time-varying input delay is designed to calculate the control forces to resist disturbing forces. In order to reduce the conservativeness, the information of the lower bound of delay is taken into account, and a Lyapunov function which contains the range of delay is constructed. Besides, the input constraint is considered to avoid breakage of mooring lines. The sufficient conditions for delay-range-dependent stabilization are derived in terms of LMI, and the controller is also obtained. The effectiveness of the proposed approach is illustrated by a realistic design example.

  13. Soliton microcomb range measurement

    Science.gov (United States)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.

  14. Qt based GUI system for EPICS control systems

    International Nuclear Information System (INIS)

    Rhyder, A.; Fernandes, R.N.; Starritt, A.

    2012-01-01

    The Qt-based GUI system developed at the Australian Synchrotron for use on EPICS control systems has recently been enhanced to including support for imaging, plotting, user login, logging and configuration recipes. Plans are also being made to broaden its appeal within the wider EPICS community by expanding the range of development options and adding support for EPICS V4. Current features include graphical and non-graphical application development as well as simple 'code-free' GUI design. Additional features will allow developers to let the GUI system handle its own data using Qt-based EPICS-aware classes or, as an alternative, use other control systems data such as PSI's CAFE. (author)

  15. Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation

    Directory of Open Access Journals (Sweden)

    Dirk Cannon

    2017-06-01

    Full Text Available State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are identified within which global ensemble forecasts provide skilful information for system-wide wind power applications. An upper bound on forecast range is associated with the limit of predictability, beyond which forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind power response to a given large-scale state.The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems. The power system of Great Britain (GB is used as an example because independent verifying data is available from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp event were found to possess a shorter limit of predictability (4.5–5.5 days. The upper bound on this forecast range can only be extended by improving the global forecast system (outside the control of most users or by changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the wind farm response may act to decrease the lower bound. The potential gain from such improvements have diminishing returns beyond the short-range (out to around 2 days.

  16. Scintillator-CCD camera system light output response to dosimetry parameters for proton beam range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Daftari, Inder K., E-mail: idaftari@radonc.ucsf.edu [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States); Castaneda, Carlos M.; Essert, Timothy [Crocker Nuclear Laboratory,1 Shields Avenue, University of California-Davis, Davis, CA 95616 (United States); Phillips, Theodore L.; Mishra, Kavita K. [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States)

    2012-09-11

    The purpose of this study is to investigate the luminescence light output response in a plastic scintillator irradiated by a 67.5 MeV proton beam using various dosimetry parameters. The relationship of the visible scintillator light with the beam current or dose rate, aperture size and the thickness of water in the water-column was studied. The images captured on a CCD camera system were used to determine optimal dosimetry parameters for measuring the range of a clinical proton beam. The method was developed as a simple quality assurance tool to measure the range of the proton beam and compare it to (a) measurements using two segmented ionization chambers and water column between them, and (b) with an ionization chamber (IC-18) measurements in water. We used a block of plastic scintillator that measured 5 Multiplication-Sign 5 Multiplication-Sign 5 cm{sup 3} to record visible light generated by a 67.5 MeV proton beam. A high-definition digital video camera Moticam 2300 connected to a PC via USB 2.0 communication channel was used to record images of scintillation luminescence. The brightness of the visible light was measured while changing beam current and aperture size. The results were analyzed to obtain the range and were compared with the Bragg peak measurements with an ionization chamber. The luminescence light from the scintillator increased linearly with the increase of proton beam current. The light output also increased linearly with aperture size. The relationship between the proton range in the scintillator and the thickness of the water column showed good linearity with a precision of 0.33 mm (SD) in proton range measurement. For the 67.5 MeV proton beam utilized, the optimal parameters for scintillator light output response were found to be 15 nA (16 Gy/min) and an aperture size of 15 mm with image integration time of 100 ms. The Bragg peak depth brightness distribution was compared with the depth dose distribution from ionization chamber measurements

  17. Expected Range of Cooperation Between Transmission System Operators and Distribution System Operators After Implementation of ENTSO-E Grid Codes

    Directory of Open Access Journals (Sweden)

    Tomasz Pakulski

    2015-06-01

    Full Text Available The authors present the prospects of cooperation between transmission system operators (TSO and distribution system operators (DSO after entry into force ENTSO-E (European Network of Transmission System Operators for Electricity grid codes. New areas of DSO activities, associated with offering TSO aggregated services for national power system regulation based on the regulation resources connected to the distribution grid, and services on the distribution system level as part of the creation of local balancing areas (LBA are presented. The paper also presents the possibilities of providing ancillary services by different types of distributed generation sources in the distribution network. The LBA concept, which involves integrated management of local regulation resources including generation, demand, and energy storage is described. The options of the renewable energy sources (RES using for voltage and reactive power control in the distribution network with the use of wind farms (WF connected to the distribution system are characterized.

  18. Thermal effects of an ICL-based mid-infrared CH4 sensor within a wide atmospheric temperature range

    Science.gov (United States)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; Girija, Aswathy V.; He, Qixin; Zheng, Huadan; Griffin, Robert J.; Tittel, Frank K.

    2018-03-01

    The thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ∼25 °C was measured for 5 h and its Allan deviation was ∼2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to minimize these effects. An environmental test chamber was employed to investigate the thermal effects that occur in the sensor system with variation of the test chamber temperature between 10 and 30 °C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH4 standard gas sample. Indoor/outdoor CH4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.

  19. Underwater Ranging

    OpenAIRE

    S. P. Gaba

    1984-01-01

    The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  20. Rapid response and wide range neutronic power measuring systems for fast pulsed reactors

    International Nuclear Information System (INIS)

    Sumita, Kenji; Iida, Toshiyuki; Wakayama, Naoaki.

    1976-01-01

    This paper summarizes our investigation on design principles of the rapid, stable and wide range neutronic power measuring system for fast pulsed reactors. The picoammeter, the logarithmic amplifier, the reactivity meter and the neutron current chamber are the items of investigation. In order to get a rapid response, the method of compensation for the stray capacitance of the feedback circuits and the capacitance of signal cables is applied to the picoammeter, the logarithmic amplifier and the reactivity meter with consideration for the stability margin of a whole detecting system. The response of an ionization current chamber and the method for compensating the ion component of the chamber output to get optimum responses high pass filters are investigated. Statistical fluctuations of the current chamber output are also considered in those works. The optimum thickness of the surrounding moderator of the neutron detector is also discussed from the viewpoint of the pulse shape deformation and the neutron sensitivity increase. The experimental results are reported, which were observed in the pulse operations of the one shot fast pulsed reactor ''YAYOI'' and the one shot TRIGA ''NSRR'' with the measuring systems using those principles. (auth.)

  1. Indoor radiation mapping using the Laser Assisted Ranging and Data System (LARADS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facilities require characterization and documentation of the results as part of planning and decision-making for decontamination and decommissioning (D and D) projects and to release areas that have been cleaned up. Conducting radiation surveys of indoor and outdoor surfaces and generating accurate survey reports is an important component of the D and D program. The Laser Assisted Ranging and Data System (LARADS) is a characterization technology that provides real-time data on the location and concentration levels of radiological contamination. The system can be utilized with a number of available detection instruments and can be integrated with existing data analysis and mapping software technologies to generate superior quality survey data reports. This innovative technology is competitive with baseline technologies in terms of cost and survey times, but is much more flexible and provides more useful reports. The system also has the capability of electronically logging survey data, making it easy to store and retrieve. Such data are scientifically derived and not subject to interpretation. The LARADS is an extremely attractive alternative to manually generated survey data reports

  2. At Home Photography-Based Method for Measuring Wrist Range of Motion.

    Science.gov (United States)

    Trehan, Samir K; Rancy, Schneider K; Johnsen, Parker H; Hillstrom, Howard J; Lee, Steve K; Wolfe, Scott W

    2017-11-01

    Purpose  To determine the reliability of wrist range of motion (WROM) measurements based on digital photographs taken by patients at home compared with traditional measurements done in the office with a goniometer. Methods  Sixty-nine postoperative patients were enrolled in this study at least 3 months postoperatively. Active and passive wrist flexion/extension and radial/ulnar deviation were recorded by one of the two attending surgeons with a 1-degree resolution goniometer at the last postoperative office visit. Patients were provided an illustrated instruction sheet detailing how to take digital photographic images at home in six wrist positions (active and passive flexion/extension, and radial/ulnar deviation). Wrist position was measured from digital images by both the attending surgeons in a randomized, blinded fashion on two separate occasions greater than 2 weeks apart using the same goniometer. Reliability analysis was performed using the intraclass correlation coefficient to assess agreement between clinical and photography-based goniometry, as well as intra- and interobserver agreement. Results  Out of 69 enrolled patients, 30 (43%) patients sent digital images. Of the 180 digital photographs, only 9 (5%) were missing or deemed inadequate for WROM measurements. Agreement between clinical and photography-based measurements was "almost perfect" for passive wrist flexion/extension and "substantial" for active wrist flexion/extension and radial/ulnar deviation. Inter- and intraobserver agreement for the attending surgeons was "almost perfect" for all measurements. Discussion  This study validates a photography-based goniometry protocol allowing accurate and reliable WROM measurements without direct physician contact. Passive WROM was more accurately measured from photographs than active WROM. This study builds on previous photography-based goniometry literature by validating a protocol in which patients or their families take and submit their own

  3. Nanocomposite-Based Microstructured Piezoresistive Pressure Sensors for Low-Pressure Measurement Range

    Directory of Open Access Journals (Sweden)

    Vasileios Mitrakos

    2018-01-01

    Full Text Available Piezoresistive pressure sensors capable of detecting ranges of low compressive stresses have been successfully fabricated and characterised. The 5.5 × 5 × 1.6 mm3 sensors consist of a planar aluminium top electrode and a microstructured bottom electrode containing a two-by-two array of truncated pyramids with a piezoresistive composite layer sandwiched in-between. The responses of two different piezocomposite materials, a Multiwalled Carbon Nanotube (MWCNT-elastomer composite and a Quantum Tunneling Composite (QTC, have been characterised as a function of applied pressure and effective contact area. The MWCNT piezoresistive composite-based sensor was able to detect pressures as low as 200 kPa. The QTC-based sensor was capable of detecting pressures as low as 50 kPa depending on the contact area of the bottom electrode. Such sensors could find useful applications requiring the detection of small compressive loads such as those encountered in haptic sensing or robotics.

  4. Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network

    Directory of Open Access Journals (Sweden)

    Lihe Xi

    2017-11-01

    Full Text Available The extended range electric vehicle (EREV can store much clean energy from the electric grid when it arrives at the charging station with lower battery energy. Consuming minimum gasoline during the trip is a common goal for most energy management controllers. To achieve these objectives, an intelligent energy management controller for EREV based on dynamic programming and neural networks (IEMC_NN is proposed. The power demand split ratio between the extender and battery are optimized by DP, and the control objectives are presented as a cost function. The online controller is trained by neural networks. Three trained controllers, constructing the controller library in IEMC_NN, are obtained from training three typical lengths of the driving cycle. To determine an appropriate NN controller for different driving distance purposes, the selection module in IEMC_NN is developed based on the remaining battery energy and the driving distance to the charging station. Three simulation conditions are adopted to validate the performance of IEMC_NN. They are target driving distance information, known and unknown, changing the destination during the trip. Simulation results using these simulation conditions show that the IEMC_NN had better fuel economy than the charging deplete/charging sustain (CD/CS algorithm. More significantly, with known driving distance information, the battery SOC controlled by IEMC_NN can just reach the lower bound as the EREV arrives at the charging station, which was also feasible when the driver changed the destination during the trip.

  5. Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers

    KAUST Repository

    Nikolka, Mark

    2017-12-13

    Over the past 25 years, various design motifs have emerged for the development of organic semiconductors for demanding applications in flexible organic light emitting diode display backplanes or even printed organic logic. Due to their large area uniformity paired with high charge carrier mobilities, conjugated polymers have attracted increasing attention in this respect. However, the performances delivered by current generation conjugated polymers still fall short of many industrial requirements demanding devices with ideal transistor characteristics and higher mobilities. The discovery of conjugated polymers with low energetic disorder, such as the indacenodithiophene-based polymer indacenodithiophene-co-benzothiadiazole, represent an exciting opportunity to breach this chasm if these materials can be further optimized while maintaining their low disorder. Here, it is shown how both the charge transport properties as well as the energetic disorder are affected by tuning the molecular structure of a large range of indacenodithiophene-based semiconducting polymer derivatives. This study allows to understand better the interplay between molecular design and structure of the polymer backbone and the degree of energetic disorder that governs the charge transport properties in thin polymer films.

  6. Rangelands Vegetation under Different Management Systems and Growth Stages in North Darfur State, Sudan (Range Attributes

    Directory of Open Access Journals (Sweden)

    Mohamed AAMA Mohamed

    2014-09-01

    Full Text Available This study was conducted at Um Kaddada, North Darfur State, Sudan, at two sites (closed and open for two consecutive seasons 2008 and 2009 during flowering and seed setting stages to evaluate range attributes at the locality. A split plot design was used to study vegetation attributes. Factors studied were management systems (closed and open and growth stages (flowering and seed setting. Vegetation cover, plant density, carrying capacity, and biomass production were assessed. Chemical analyses were done for selected plants to determine their nutritive values. The results showed high significant differences in vegetation attributes (density, cover and biomass production between closed and open areas. Closed areas had higher carrying capacity compared to open rangelands. Crude protein (CP and ash contents of range vegetation were found to decrease while Crude fiber (CF and Dry matter yield (DM had increased with growth. The study concluded that closed rangelands are better than open rangelands because it fenced and protected. Erosion index and vegetation degradation rate were very high. Future research work is needed to assess rangelands characteristics and habitat condition across different ecological zones in North Darfur State, Sudan.DOI: http://dx.doi.org/10.3126/ije.v3i3.11093 International Journal of Environment Vol.3(3 2014: 332-343

  7. Coulomb corrections to nuclear scattering lengths and effective ranges for weakly bound systems

    International Nuclear Information System (INIS)

    Mur, V.D.; Popov, V.S.; Sergeev, A.V.

    1996-01-01

    A procedure is considered for extracting the purely nuclear scattering length as and effective range rs (which correspond to a strong-interaction potential Vs with disregarded Coulomb interaction) from the experimentally determined nuclear quantities acs and rcs, which are modified by Coulomb interaction. The Coulomb renormalization of as and rs is especially strong if the system under study involves a level with energy close to zero (on the nuclear scale). This applies to formulas that determine the Coulomb renormalization of the low-energy parameters of s scattering (l=0). Detailed numerical calculations are performed for coefficients appearing in the equations that determine Coulomb corrections for various models of the potential Vs(r). This makes it possible to draw qualitative conclusions that the dependence of Coulomb corrections on the form of the strong-interaction potential and, in particular, on its small-distance behavior. A considerable enhancement of Coulomb corrections to the effective range rs is found for potentials with a barrier

  8. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.

    Science.gov (United States)

    Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai

    2016-11-18

    Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.

  9. Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils

    Science.gov (United States)

    Yang, Dongsheng; Won, Sokhui; Hong, Huan

    2017-05-01

    Wireless Power Transfer (WPT) is a remarkable technology because of its convenience and applicability in harsh environment. Particularly, Magnetic Coupling WPT (MC-WPT) is a proper method to midrange power transfer, but the frequency splitting at over-coupling range, which is related with transfer distance, is challenge of transmission efficiency. In order to overcome this phenomenon, recently the range adaptive WPT is proposed. In this paper, we aim to the type with a set of non-coaxial driving coils, so that this may remove the connection wires from PA (Power Amplifier) to driving coil. And, when the radius of driving coil is changed, on the different gaps between driving and TX coils, coupling coefficient between these is computed in both cases of coaxial and non-coaxial configurations. In addition, the designing steps for 4-coil WPT system using non-coaxial coils are described with the example. Finally, the reliability of this topology has been proved and simulated with PSPICE.

  10. Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games

    Science.gov (United States)

    Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon

    2016-04-01

    The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.

  11. Long-range corrected density functional theory study on static second hyperpolarizabilities of singlet diradical systems.

    Science.gov (United States)

    Kishi, Ryohei; Bonness, Sean; Yoneda, Kyohei; Takahashi, Hideaki; Nakano, Masayoshi; Botek, Edith; Champagne, Benoît; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Tsuneda, Takao

    2010-03-07

    Within the spin-unrestricted density functional theory (DFT) the long-range correction (LC) scheme combined with the Becke-Lee-Yang-Parr exchange-correlation functional, referred to as LC-UBLYP method, has been applied to the calculation of the second hyperpolarizability (gamma) of open-shell singlet diradical systems of increasing complexity and has demonstrated good performance: (i) for the simplest H(2) dissociation model, the gamma values calculated by the LC-UBLYP method significantly overshoot the full configuration interaction result but reproduce qualitatively the evolution of gamma as a function of the diradical character, (ii) for small singlet diradical 1,3-dipole systems, the diradical character dependence of gamma determined by the UCCSD and UCCSD(T) reference methods is reproduced semiquantitatively by the LC-UBLYP method except in the small diradical character region, where the spin-unrestricted solutions coincide with spin-restricted solutions, (iii) the LC-UBLYP method also closely reproduces the UCCSD(T) results on the diradical character dependence of gamma of the p-quinodimethane model system, particularly in the intermediate and large diradical character regions, whereas it shows an abrupt change for a diradical character (y) close to 0.2 originating from the triplet instability, (iv) the reliability of LC-UBLYP to reproduce reference coupled cluster results on open-shell singlet systems with intermediate and large diradical characters has also been substantiated in the case of gamma of 1,4-bis-(imidazol-2-ylidene)-cyclohexa-2,5-diene (BI2Y), then (v), for real systems built from a pair of phenalenyl radicals separated by a conjugated linker, the LC-UBLYP results have been found to closely match the UBHandHLYP values-which, for small systems are in good agreement with those obtained using correlated molecular orbital methods-whereas the UB3LYP results can be much different. These results are not only important from the viewpoint of an efficient

  12. A Static Displacement Monitoring System for VLBI Antenna Using Close-Range Photogrammetry

    Directory of Open Access Journals (Sweden)

    Hyukgil Kim

    2017-11-01

    Full Text Available In this study, a static displacement monitoring program was developed to maintain the accurate performance of a Very Long Baseline Interferometry (VLBI antenna by monitoring its structural stability. The monitoring program was designed to measure static displacement, among the many displacements of the antenna’s main reflector, which can directly affect its performance. The program measures the position of a monitored object with mm-level accuracy through close-range photogrammetry that uses high-resolution Charge Coupled Device (CCD cameras. The developed program will be used to evaluate the structural soundness of an antenna based on continuous displacement measurements, which can also be used as basic data for repair and reinforcement work in the future.

  13. FPGA based Smart Wireless MIMO Control System

    International Nuclear Information System (INIS)

    Ali, Syed M Usman; Hussain, Sajid; Siddiqui, Ali Akber; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-01-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input and Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively

  14. Resolution of issues with renewable energy penetration in a long-range power system demand-supply planning

    International Nuclear Information System (INIS)

    Ogimoto, Kazuhiko; Ikeda, Yuichi; Kataoka, Kazuto; Ikegami, Takashi; Nonaka, Shunsuke; Azuma, Hitoshi

    2012-01-01

    Under the anticipated high penetration of variable renewable energy generation such as photovoltaic, the issue of supply demand balance should be evaluated and fixed. Technologies such as demand activation, and energy storage are expected to solve the issue. Under the situation, a long-range power system supply demand analysis should have the capability for the evaluation in its analysis steps of demand preparation, maintenance scheduling, and economic dispatch analysis. This paper presents results of a parametric analysis of the reduction of PV and Wind generation curtailment reduction by deployment of batteries. Based on a set of scenarios of the prospects of Japan's 10 power system demand-supply condition in 2030, the demand-supply balance capability are analyzed assuming PV and wind generation variation, demand activation and dispatchable batteries. (author)

  15. Beam based systems and controls

    CERN Document Server

    Jacquet, D

    2012-01-01

    This presentation will give a review from the operations team of the performance and issues of the beam based systems, namely RF, ADT, beam instrumentation, controls and injection systems. For each of these systems, statistics on performance and availability will be presented with the main issues encountered in 2012. The possible improvements for operational efficiency and safety will be discussed, with an attempt to answer the question "Are we ready for the new challenges brought by the 25ns beam and increased energy after LSI? ".

  16. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  17. Use of a commercial ranging system in field surveys of radioactively contaminated sites

    International Nuclear Information System (INIS)

    Worth, G.M.; Crowell, J.M.; Meddles, A.D.; Jarrett, J.D.; Wolf, M.A.; Umbarger, C.J.; Moyer, C.

    1984-01-01

    Now, the adaptation of a commercial ranging and tracking system interfaced to these instruments and to an advanced computer graphics system promises another major improvement to the automation of data collection. Contour maps with radiation isopleths and the x-y position of up to eight instrument operators superimposed thereon can be displayed in near real time. A bidirectional data link offers a further improvement in simulation of, and training for, field surveys since previously collected or computer simulated radiation data as a function of position can be transmitted back to the same survey instrument and displayed to the operator in a manner indistinguishable from real-time data. Additionally, simulated instrument malfunctions such as low battery, detector failure, or total failure can be commanded to occur to evaluate operator response to unusual occurrences under the stress of field conditions. This training mode will greatly improve the ability to simulate situations and to train and evaluate operations personnel while eliminating the need to use special sites and potentially hazardous contamination simulants as are used now

  18. Equilibration in long-range quantum spin systems from a BBGKY perspective

    International Nuclear Information System (INIS)

    Paškauskas, Rytis; Kastner, Michael

    2012-01-01

    The time evolution of l-spin reduced density operators is studied for a class of Heisenberg-type quantum spin models with long-range interactions. In the framework of the quantum Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy, we introduce an unconventional representation, different from the usual cluster expansion, which casts the hierarchy into the form of a second-order recursion. This structure suggests a scaling of the expansion coefficients and the corresponding time scales in powers of N 1/2 with the system size N, implying a separation of time scales in the large-system limit. For special parameter values and initial conditions, we can show analytically that closing the BBGKY hierarchy by neglecting l-spin correlations never leads to equilibration, but gives rise to quasi-periodic time evolution with at most l/2 independent frequencies. Moreover, for the same special parameter values and in the large-N limit, we solve the complete recursion relation (the full BBGKY hierarchy), observing a superexponential decay to equilibrium in rescaled time τ = tN −1/2

  19. Variable-range hopping in 2D quasi-1D electronic systems

    International Nuclear Information System (INIS)

    Teber, S.

    2005-12-01

    A semi-phenomenological theory of variable-range hopping (VRH) is developed for two-dimensional (2D) quasi-one-dimensional (quasi-1D) systems such as arrays of quantum wires in the Wigner crystal regime. The theory follows the phenomenology of Efros, Mott and Shklovskii allied with microscopic arguments. We first derive the Coulomb gap in the single-particle density of states, g(ε), where ε is the energy of the charge excitation. We then derive the main exponential dependence of the electron conductivity in the linear (L), i.e. σ(T) ∼ exp [-(T L /T) γL ], and current in the non-linear (NL), i.e. j(E) ∼ [-(E NL /E) γNL ], response regimes (E is the applied electric field). Due to the strong anisotropy of the system and its peculiar dielectric properties we show that unusual, with respect to known results, Coulomb gaps open followed by unusual VRH laws, i.e. with respect to the disorder-dependence of T L and E NL and the values of γ L and γ NL . (author)

  20. The wide range in-core neutron measurement system used in the Windscale AGR concluding experiments

    International Nuclear Information System (INIS)

    Goodings, A.; Budd, J.; Wilson, I.

    1982-06-01

    The Windscale AGR Concluding Experiments included a comparison of theoretical and experimental power transients and required measurements of neutron flux as a function of position and time within the reactor core. These measurements were specified to cover as wide as possible working range and had to be made against the in-core gamma background of up to 4 x 10 7 R(hr) - 1 . The detectors were required to operate in special, channels cooled by reactor inlet carbon dioxide and the overall system needed a response time such that it could follow transients with doubling times down to 2s with an accuracy of 2 or 3%. These problems were solved by the use of gas ion fission chambers operating in the current fluctuation or Campbelling mode with unusually low filling pressures and fitted with special trilaminax mineral insulated cables. Ten detectors were built and nine were installed in the reactor, three in each of three special stringers at different radial positions. The paper describes the specification against which this system was built, the design process for the detectors, and commissioning experiments together with some of the problems which were encountered. (U.K.)

  1. Influence of retardation effects on photodisintegration of a quantum system bound by short-range forces

    International Nuclear Information System (INIS)

    Preobrazhenskii, M.A.; Golovinskii, P.A.

    1996-01-01

    Expressions for cross sections for multiphonon disintegration of quantum systems bound by short-range forces are obtained in the plane-wave approximation taking into account retardation effects. It is shown that, in the region of nonrelativistic energies, their contribution is factored, and the resulting universal factor is expressed for an arbitrary degree of process nonlinearity n in terms of elementary functions. Arguments of functions are determined only by the mode ω, the radiation spectrum width β, and the bound-state energy of a system. The dependence of the contribution of retardation effects on ω, β, and n is studied in detail. Analytical expressions for cross sections for multiquantum disintegration in the first nonvanishing order with respect to correlation interaction, which exactly take into account retardation effects, are obtained. It is shown that for two-quantum processes, the contribution of correlation effects is expressed in terms of a function representing an extension of dipole polarizability, whereas for n>2, it can be described in the dipole approximation

  2. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    Science.gov (United States)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  3. Contributions to reference systems from Lunar Laser Ranging using the IfE analysis model

    Science.gov (United States)

    Hofmann, Franz; Biskupek, Liliane; Müller, Jürgen

    2018-01-01

    Lunar Laser Ranging (LLR) provides various quantities related to reference frames like Earth orientation parameters, coordinates and velocities of ground stations in the Earth-fixed frame and selenocentric coordinates of the lunar retro-reflectors. This paper presents the recent results from LLR data analysis at the Institut für Erdmessung, Leibniz Universität Hannover, based on all LLR data up to the end of 2016. The estimates of long-periodic nutation coefficients with periods between 13.6 days and 18.6 years are obtained with an accuracy in the order of 0.05-0.7 milliarcseconds (mas). Estimations of the Earth rotation phase Δ UT are accurate at the level of 0.032 ms if more than 14 normal points per night are included. The tie between the dynamical ephemeris frame to the kinematic celestial frame is estimated from pure LLR observations by two angles and their rates with an accuracy of 0.25 and 0.02 mas per year. The estimated station coordinates and velocities are compared to the ITRF2014 solution and the geometry of the retro-reflector network with the DE430 solution. The given accuracies represent 3 times formal errors of the parameter fit. The accuracy for Δ UT is based on the standard deviation of the estimates with respect to the reference C04 solution.

  4. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition

    Directory of Open Access Journals (Sweden)

    Yifan Zhang

    2018-05-01

    Full Text Available The High Resolution Range Profile (HRRP recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR. However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  5. 3D DATA ACQUISITION BASED ON OPENCV FOR CLOSE-RANGE PHOTOGRAMMETRY APPLICATIONS

    Directory of Open Access Journals (Sweden)

    L. Jurjević

    2017-05-01

    Full Text Available Development of the technology in the area of the cameras, computers and algorithms for 3D the reconstruction of the objects from the images resulted in the increased popularity of the photogrammetry. Algorithms for the 3D model reconstruction are so advanced that almost anyone can make a 3D model of photographed object. The main goal of this paper is to examine the possibility of obtaining 3D data for the purposes of the close-range photogrammetry applications, based on the open source technologies. All steps of obtaining 3D point cloud are covered in this paper. Special attention is given to the camera calibration, for which two-step process of calibration is used. Both, presented algorithm and accuracy of the point cloud are tested by calculating the spatial difference between referent and produced point clouds. During algorithm testing, robustness and swiftness of obtaining 3D data is noted, and certainly usage of this and similar algorithms has a lot of potential in the real-time application. That is the reason why this research can find its application in the architecture, spatial planning, protection of cultural heritage, forensic, mechanical engineering, traffic management, medicine and other sciences.

  6. D Data Acquisition Based on Opencv for Close-Range Photogrammetry Applications

    Science.gov (United States)

    Jurjević, L.; Gašparović, M.

    2017-05-01

    Development of the technology in the area of the cameras, computers and algorithms for 3D the reconstruction of the objects from the images resulted in the increased popularity of the photogrammetry. Algorithms for the 3D model reconstruction are so advanced that almost anyone can make a 3D model of photographed object. The main goal of this paper is to examine the possibility of obtaining 3D data for the purposes of the close-range photogrammetry applications, based on the open source technologies. All steps of obtaining 3D point cloud are covered in this paper. Special attention is given to the camera calibration, for which two-step process of calibration is used. Both, presented algorithm and accuracy of the point cloud are tested by calculating the spatial difference between referent and produced point clouds. During algorithm testing, robustness and swiftness of obtaining 3D data is noted, and certainly usage of this and similar algorithms has a lot of potential in the real-time application. That is the reason why this research can find its application in the architecture, spatial planning, protection of cultural heritage, forensic, mechanical engineering, traffic management, medicine and other sciences.

  7. Self-Configuring Indoor Localization Based on Low-Cost Ultrasonic Range Sensors

    Directory of Open Access Journals (Sweden)

    Can Basaran

    2014-10-01

    Full Text Available In smart environments, target tracking is an essential service used by numerous applications from activity recognition to personalized infotaintment. The target tracking relies on sensors with known locations to estimate and keep track of the path taken by the target, and hence, it is crucial to have an accurate map of such sensors. However, the need for manually entering their locations after deployment and expecting them to remain fixed, significantly limits the usability of target tracking. To remedy this drawback, we present a self-configuring and device-free localization protocol based on genetic algorithms that autonomously identifies the geographic topology of a network of ultrasonic range sensors as well as automatically detects any change in the established network structure in less than a minute and generates a new map within seconds. The proposed protocol significantly reduces hardware and deployment costs thanks to the use of low-cost off-the-shelf sensors with no manual configuration. Experiments on two real testbeds of different sizes show that the proposed protocol achieves an error of 7.16~17.53 cm in topology mapping, while also tracking a mobile target with an average error of 11.71~18.43 cm and detecting displacements of 1.41~3.16 m in approximately 30 s.

  8. A multi-variate discrimination technique based on range-searching

    International Nuclear Information System (INIS)

    Carli, T.; Koblitz, B.

    2003-01-01

    We present a fast and transparent multi-variate event classification technique, called PDE-RS, which is based on sampling the signal and background densities in a multi-dimensional phase space using range-searching. The employed algorithm is presented in detail and its behaviour is studied with simple toy examples representing basic patterns of problems often encountered in High Energy Physics data analyses. In addition an example relevant for the search for instanton-induced processes in deep-inelastic scattering at HERA is discussed. For all studied examples, the new presented method performs as good as artificial Neural Networks and has furthermore the advantage to need less computation time. This allows to carefully select the best combination of observables which optimally separate the signal and background and for which the simulations describe the data best. Moreover, the systematic and statistical uncertainties can be easily evaluated. The method is therefore a powerful tool to find a small number of signal events in the large data samples expected at future particle colliders

  9. BMRC: A Bitmap-Based Maximum Range Counting Approach for Temporal Data in Sensor Monitoring Networks

    Directory of Open Access Journals (Sweden)

    Bin Cao

    2017-09-01

    Full Text Available Due to the rapid development of the Internet of Things (IoT, many feasible deployments of sensor monitoring networks have been made to capture the events in physical world, such as human diseases, weather disasters and traffic accidents, which generate large-scale temporal data. Generally, the certain time interval that results in the highest incidence of a severe event has significance for society. For example, there exists an interval that covers the maximum number of people who have the same unusual symptoms, and knowing this interval can help doctors to locate the reason behind this phenomenon. As far as we know, there is no approach available for solving this problem efficiently. In this paper, we propose the Bitmap-based Maximum Range Counting (BMRC approach for temporal data generated in sensor monitoring networks. Since sensor nodes can update their temporal data at high frequency, we present a scalable strategy to support the real-time insert and delete operations. The experimental results show that the BMRC outperforms the baseline algorithm in terms of efficiency.

  10. Serum protein electrophoresis values for free-ranging and zoo-based koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Pye, Geoffrey W; Ellis, William; Fitzgibbon, Sean; Opitz, Brian; Keener, Laura; Arheart, Kristopher L; Cray, Carolyn

    2012-03-01

    In a clinical setting, especially with species of special interest, it is important to use all clinical pathology testing options for general health monitoring and diagnosis. Protein electrophoresis (EPH) has previously been shown to be an important adjunct tool in veterinary medicine. Serum samples from 18 free-ranging and 12 zoo-based koalas (Phascolarctos cinereus) were subject to EPH analysis. Significant differences were found between the two groups for the following values: total protein, albumin, beta globulins, and albumin-globulin ratio (P < 0.05). By using the combined data, the minimum-maximum values for the EPH fractions were as follows: total protein 5.0-7.8 g/dl, albumin 2.8-4.7 g/dl, alpha-1 globulins 0.5-1.1 g/dl, alpha-2 globulins 0.3-0.7 g/dl, beta globulins 0.4-1.0 g/dl, gamma globulins 0.2-1.0 g/dl, and albumin-globulin ratio 1.0-2.1.

  11. Assessing behavior in Aseel pullets under free-range, part-time free-range, and cage system during growing phase.

    Science.gov (United States)

    Rehman, M S; Mahmud, A; Mehmood, S; Pasha, T N; Khan, M T; Hussain, J

    2018-03-01

    The objective of this study was to explore the effects of free-range (FR), part-time free-range (PTFR), and cage system (CS) on behavioral repertoire in Lakha (LK), Mushki (MS), Peshawari (PW), and Sindhi (SN) varieties of Aseel chicken during the growing phase (9 to 18 wk of age). In total, 144 Aseel pullets were allotted to 12 treatment groups in a 3 × 4 (rearing system × Aseel variety) factorial arrangement, according to a randomized complete block design (RCBD). Each treatment group was replicated 3 times with 4 birds in each replicate (12 birds per treatment group). The pullets were randomly marked weekly for identification, and their behavior was observed through the focal animal sampling method. Time spent on different behavioral activities was recorded and converted to a percentage. The data were analyzed using 2-way ANOVA under a factorial arrangement using SAS 9.1, and the behavioral parameters were evaluated. The results indicated greater (P < 0.05) sitting, standing, drinking, preening, and aggressiveness in CS; walking, running, and jumping in PTFR; and foraging and dustbathing in both FR and PTFR, whereas feather pecking was found to be reduced in FR compared with PTFR and CS. Among varieties, PW showed the least feeding/foraging and feather pecking behavior, and greater standing, running, and jumping behavior (P < 0.05). However, SN spent less time in walking and preening, and more time in sitting, drinking, and aggressiveness. Dustbathing was found to be similar in all Aseel varieties (P = 0.135). In conclusion, the PTFR system could be suggested as a substitute for conventional housing systems because it better accommodates normal behavior in Aseel pullets.

  12. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  13. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Science.gov (United States)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  14. A STEP TOWARDS DYNAMIC SCENE ANALYSIS WITH ACTIVE MULTI-VIEW RANGE IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Weinmann

    2012-07-01

    Full Text Available Obtaining an appropriate 3D description of the local environment remains a challenging task in photogrammetric research. As terrestrial laser scanners (TLSs perform a highly accurate, but time-dependent spatial scanning of the local environment, they are only suited for capturing static scenes. In contrast, new types of active sensors provide the possibility of simultaneously capturing range and intensity information by images with a single measurement, and the high frame rate also allows for capturing dynamic scenes. However, due to the limited field of view, one observation is not sufficient to obtain a full scene coverage and therefore, typically, multiple observations are collected from different locations. This can be achieved by either placing several fixed sensors at different known locations or by using a moving sensor. In the latter case, the relation between different observations has to be estimated by using information extracted from the captured data and then, a limited field of view may lead to problems if there are too many moving objects within it. Hence, a moving sensor platform with multiple and coupled sensor devices offers the advantages of an extended field of view which results in a stabilized pose estimation, an improved registration of the recorded point clouds and an improved reconstruction of the scene. In this paper, a new experimental setup for investigating the potentials of such multi-view range imaging systems is presented which consists of a moving cable car equipped with two synchronized range imaging devices. The presented setup allows for monitoring in low altitudes and it is suitable for getting dynamic observations which might arise from moving cars or from moving pedestrians. Relying on both 3D geometry and 2D imagery, a reliable and fully automatic approach for co-registration of captured point cloud data is presented which is essential for a high quality of all subsequent tasks. The approach involves using

  15. Economic Viability Study of an On-Road Wireless Charging System with a Generic Driving Range Estimation Method

    Directory of Open Access Journals (Sweden)

    Aditya Shekhar

    2016-01-01

    Full Text Available The economic viability of on-road wireless charging of electric vehicles (EVs strongly depends on the choice of the inductive power transfer (IPT system configuration (static or dynamic charging, charging power level and the percentage of road coverage of dynamic charging. In this paper, a case study is carried out to determine the expected investment costs involved in installing the on-road charging infrastructure for an electric bus fleet. Firstly, a generic methodology is described to determine the driving range of any EV (including electric buses with any gross mass and frontal area. A dynamic power consumption model is developed for the EV, taking into account the rolling friction, acceleration, deceleration, aerodynamic drag, regenerative braking and Li-ion battery behavior. Based on the simulation results, the linear dependence of the battery state of charge (SoC on the distance traveled is proven. Further, the impact of different IPT system parameters on driving range is incorporated. Economic implications of a combination of different IPT system parameters are explored for achieving the required driving range of 400 km, and the cost optimized solution is presented for the case study of an electric bus fleet. It is shown that the choice of charging power level and road coverage are interrelated in the economic context. The economic viability of reducing the capacity of the on-board battery as a trade-off between higher transport efficiency and larger on-road charging infrastructure is presented. Finally, important considerations, like the number of average running buses, scheduled stoppage time and on-board battery size, that make on-road charging an attractive option are explored. The cost break-up of various system components of the on-road charging scheme is estimated, and the final project cost and parameters are summarized. The specific cost of the wireless on-road charging system is found to be more expensive than the conventional

  16. Calculation of glass forming ranges in Al-Ni-RE (Ce, La, Y) ternary alloys and their sub-binaries based on Miedema's model

    International Nuclear Information System (INIS)

    Sun, S.P.; Yi, D.Q.; Liu, H.Q.; Zang, B.; Jiang, Y.

    2010-01-01

    Research highlights: → A method based on semi-empirical Miedema's and Toop's model for predicting glass forming range of ternary alloy system has been systematically described. → The method is superior to conventional models by considering the effect of the thermodynamic asymmetric component when dealing with a ternary alloy system. → The glass forming ranges of Al-Ni-RE (Al-Ni-Ce, Al-Ni-Y and Al-Ni-La) systems and their sub-binaries have been successfully calculated. → The present calculations using the method are in well agreement with experiments. → This model is especially useful for predicting the glass forming range of ternary alloy system because the calculations do not require experimental data. - Abstract: A method based on the semi-empirical Miedema's and Toop's model for calculating the glass forming range of a ternary alloy system was systematically described. The method is superior to conventional models by considering the effect of the thermodynamic asymmetric component when dealing with a ternary alloy system. Using this method, the glass forming ranges of Al-Ni-RE (Ce, La, Y) systems and their sub-binaries were successfully predicted. The mixing enthalpy and mismatch entropy were calculated, and their effects on the glass forming abilities of Al-Ni-RE (Ce, La, Y) systems were also discussed. The glass forming abilities of Al-Ni-Ce, Al-Ni-La and Al-Ni-Y are found to be close. The calculated glass forming ranges agree with experiments well. Meanwhile, the enthalpy change from amorphous phase to solid solution in the glass forming ranges was calculated, and the results suggest that those alloys close to the Ni-RE sub-binary system have higher glass forming abilities.

  17. Capacities of Candidate Herbaceous Plants for Phytoremediation of Soil-based TNT and RDX on Ranges

    National Research Council Canada - National Science Library

    Best, Elly P; Smith, Thomas; Hagen, Frank L; Dawson, Jeffrey O; Torrey, Alan J

    2008-01-01

    .... In these experiments, plants were exposed for periods ranging from 55 to 83 days in the greenhouse, biomass and evapotranspiration characteristics were determined, and residues of explosives' parent...

  18. A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy

    Science.gov (United States)

    Lin, Hsin-Hon; Chang, Hao-Ting; Chao, Tsi-Chian; Chuang, Keh-Shih

    2017-08-01

    In vivo range verification plays an important role in proton therapy to fully utilize the benefits of the Bragg peak (BP) for delivering high radiation dose to tumor, while sparing the normal tissue. For accurately locating the position of BP, camera equipped with collimators (multi-slit and knife-edge collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification. The aim of the work is to compare the performance of multi-slit collimator and knife-edge collimator for non-invasive proton beam range verification. PG imaging was simulated by a validated GATE/GEANT4 Monte Carlo code to model the spot-scanning proton therapy and cylindrical PMMA phantom in detail. For each spot, 108 protons were simulated. To investigate the correlation between the acquired PG profile and the proton range, the falloff regions of PG profiles were fitted with a 3-line-segment curve function as the range estimate. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. Results indicated that both collimator systems achieve reasonable accuracy and good response to the phantom shift. The accuracy of range predicted by multi-slit collimator system is less affected by the proton energy, while knife-edge collimator system can achieve higher detection efficiency that lead to a smaller deviation in predicting range. We conclude that both collimator systems have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the two systems, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.

  19. Image matching for digital close-range stereo photogrammetry based on constraints of Delaunay triangulated network and epipolar-line

    Science.gov (United States)

    Zhang, K.; Sheng, Y. H.; Li, Y. Q.; Han, B.; Liang, Ch.; Sha, W.

    2006-10-01

    In the field of digital photogrammetry and computer vision, the determination of conjugate points in a stereo image pair, referred to as "image matching," is the critical step to realize automatic surveying and recognition. Traditional matching methods encounter some problems in the digital close-range stereo photogrammetry, because the change of gray-scale or texture is not obvious in the close-range stereo images. The main shortcoming of traditional matching methods is that geometric information of matching points is not fully used, which will lead to wrong matching results in regions with poor texture. To fully use the geometry and gray-scale information, a new stereo image matching algorithm is proposed in this paper considering the characteristics of digital close-range photogrammetry. Compared with the traditional matching method, the new algorithm has three improvements on image matching. Firstly, shape factor, fuzzy maths and gray-scale projection are introduced into the design of synthetical matching measure. Secondly, the topology connecting relations of matching points in Delaunay triangulated network and epipolar-line are used to decide matching order and narrow the searching scope of conjugate point of the matching point. Lastly, the theory of parameter adjustment with constraint is introduced into least square image matching to carry out subpixel level matching under epipolar-line constraint. The new algorithm is applied to actual stereo images of a building taken by digital close-range photogrammetric system. The experimental result shows that the algorithm has a higher matching speed and matching accuracy than pyramid image matching algorithm based on gray-scale correlation.

  20. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    Science.gov (United States)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-05-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  1. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-01-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  2. The wide range in-core neutron measurement system used in the Windscale AGR concluding experiments

    International Nuclear Information System (INIS)

    Goodings, A.; Budd, J.; Wilson, I.

    1982-06-01

    The Windscale AGR concluding experiments included a comparison of theoretical and experimental power transients and required measurements of neutron flux as a function of position and time within the reactor core. These measurements were specified to cover a working range as wide as possible and had to be made against the in-core gamma background of up to 4 x 10 7 R(hr) - 1 . The detectors were required to operate in special channels cooled by reactor inlet CO 2 and the overall system needed a response time such that it could follow transients with doubling times down to 2s with an accuracy of 2 or 3%. These problems were solved by the use of gas ion fission chambers operating in the current fluctuation or ''Campbelling'' mode. Their neutron to gamma sensitivity ratio was optimised by the use of unusually low filling pressures and they were fitted with special ''trilaminax'' mineral insulated cables to minimise the effects of electrical interference at the 100 kHz channel centre frequency. Ten detectors were built and nine were installed in the reactor, three in each of three special stringers at different radial positions. All were processed and tested for operation at 350 deg. C and their fissile coatings (430 μg cm - 1 of natural uranium) were matched to give individual neutron sensitivities with a population spread better than +- 6% about the mean. The mean absolute sensitivities were determined to about +- 5% against manganese foils in the NESTOR reactor at AEE Winfrith. The detectors were complemented by special signal processing channels which provided current fluctuation sensitivity and appropriate output signals to the experiment data acquisition system. These channels also permitted dc measurement of chamber current for more precise flux determination near reactor full power

  3. Analysis of four-stroke, Wankel, and microturbine based range extenders for electric vehicles

    International Nuclear Information System (INIS)

    Ribau, João; Silva, Carla; Brito, Francisco P.; Martins, Jorge

    2012-01-01

    Highlights: ► VSP correlates well with the engine use, regenerative braking and boost setting. ► Wankel engine vehicle is the most efficient in urban driving. ► Over-expanded engine vehicle is the most efficient in annual combined use. ► The higher the annual urban commuting driving the lower is energy consumption. ► Over-expanded solution has 5.7% WTW less energy usage and 8.8% less CO 2 emissions. - Abstract: This paper aims to compare the energy efficiency and CO 2 emissions of four different range extender engine solutions deployed in the same baseline series hybrid vehicle, under a combination of driving scenarios aiming to be representative of typical driving instead of standard cycles. Baseline vehicle is roughly based on Chevy VOLT/Opel Ampera. The baseline internal combustion engine is replaced by an over-expanded cycle engine, Wankel engine and microturbine, with respective generator and exhaust after treatment. Weight savings are compensated by introducing additional battery modules, maintaining the original baseline vehicle curb weight. Vehicle Specific Power (VSP) is used for driving cycle analysis and as explanatory variable for energy consumption and CO 2 emissions variations. Upstream fuel energy and CO 2 emissions of gasoline/diesel and electricity are regarded. Average VSP correlates with variation of the percentage of engine off, potential regenerative braking energy and eco/boost operation. Positive wheel energy correlates with energy consumption and electric autonomy adequately. The vehicle with the lightest engine (Wankel) and largest battery shows to be the most efficient in urban driving (when the engine does not have to work), while the vehicle with the highest efficient engine (over-expanded) and with dual eco/boost setting is the most efficient during the charge sustaining operation and in annual combined use.

  4. Registration of partially overlapping surfaces for range image based augmented reality on mobile devices

    Science.gov (United States)

    Kilgus, T.; Franz, A. M.; Seitel, A.; Marz, K.; Bartha, L.; Fangerau, M.; Mersmann, S.; Groch, A.; Meinzer, H.-P.; Maier-Hein, L.

    2012-02-01

    Visualization of anatomical data for disease diagnosis, surgical planning, or orientation during interventional therapy is an integral part of modern health care. However, as anatomical information is typically shown on monitors provided by a radiological work station, the physician has to mentally transfer internal structures shown on the screen to the patient. To address this issue, we recently presented a new approach to on-patient visualization of 3D medical images, which combines the concept of augmented reality (AR) with an intuitive interaction scheme. Our method requires mounting a range imaging device, such as a Time-of-Flight (ToF) camera, to a portable display (e.g. a tablet PC). During the visualization process, the pose of the camera and thus the viewing direction of the user is continuously determined with a surface matching algorithm. By moving the device along the body of the patient, the physician is given the impression of looking directly into the human body. In this paper, we present and evaluate a new method for camera pose estimation based on an anisotropic trimmed variant of the well-known iterative closest point (ICP) algorithm. According to in-silico and in-vivo experiments performed with computed tomography (CT) and ToF data of human faces, knees and abdomens, our new method is better suited for surface registration with ToF data than the established trimmed variant of the ICP, reducing the target registration error (TRE) by more than 60%. The TRE obtained (approx. 4-5 mm) is promising for AR visualization, but clinical applications require maximization of robustness and run-time.

  5. An advanced method to assess the diet of free-ranging large carnivores based on scats.

    Directory of Open Access Journals (Sweden)

    Bettina Wachter

    Full Text Available BACKGROUND: The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1. When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2. No previous study controlled for this second bias. METHODOLOGY/PRINCIPAL FINDINGS: Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus, to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. CONCLUSION/SIGNIFICANCE: Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores.

  6. Feasibility of Close-Range Photogrammetric Models for Geographic Information System

    International Nuclear Information System (INIS)

    2011-01-01

    The objective of this project was to determine the feasibility of using close-range architectural photogrammetry as an alternative three dimensional modeling technique in order to place the digital models in a geographic information system (GIS) at SLAC. With the available equipment and Australis photogrammetry software, the creation of full and accurate models of an example building, Building 281 on SLAC campus, was attempted. After conducting several equipment tests to determine the precision achievable, a complete photogrammetric survey was attempted. The dimensions of the resulting models were then compared against the true dimensions of the building. A complete building model was not evidenced to be obtainable using the current equipment and software. This failure was likely attributable to the limits of the software rather than the precision of the physical equipment. However, partial models of the building were shown to be accurate and determined to still be usable in a GIS. With further development of the photogrammetric software and survey procedure, the desired generation of a complete three dimensional model is likely still feasible.

  7. Space construction base control system

    Science.gov (United States)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  8. Nonlinear ionization of many-electron systems over a broad photon-energy range

    International Nuclear Information System (INIS)

    Karamatskou, Antonia

    2015-11-01

    Rapid developments in laser technology and, in particular, the advances in the realm of free-electron lasers have initiated tremendous progress in both theoretical and experimental atomic, molecular and optical physics. Owing to high intensities in combination with short pulse durations we can enter the utterly nonlinear regime of light-matter interaction and study the dynamics and features of matter under extreme conditions. The capabilities of X-ray free-electron laser sources have promoted the importance of nonlinear optics also in the X-ray regime. I show in my thesis how we can exploit the nonlinear response regime to reveal hidden information about resonance structures that are not resolved in the weak-field regime. This prospect points to many applications for future investigations of various complex systems with free-electron lasers. In the present thesis the interaction of atomic closed-shell systems with ultrashort and strong laser pulses is investigated. Over a broad photon-energy range the characteristics of the atomic shell are studied with a particular focus on the nonlinear response regime and on electron correlation effects. Several computational extensions of the XCID package for multi-electron dynamics are presented and their applications in various studies are demonstrated; a completely new capability of the numerical method is realized by implementing the calculation of photoelectron spectra and by calculating eigenstates of the many-electron Hamiltonian. The field of study within the present work encompasses (1) the strong-field regime, where the question of the adiabatic character in tunneling ionization is discussed and analyzed, especially for the case of few-cycle pulses; (2) the XUV regime, in which we show for the first time that the collectivity in resonant excitation reveals new information; and (3) the (hard) x-ray regime, which is highly relevant for x-ray free-electron laser experiments, and where we show how important two

  9. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  10. Control range: a controllability-based index for node significance in directed networks

    International Nuclear Information System (INIS)

    Wang, Bingbo; Gao, Lin; Gao, Yong

    2012-01-01

    While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks

  11. Study of CT-based positron range correction in high resolution 3D PET imaging

    International Nuclear Information System (INIS)

    Cal-Gonzalez, J.; Herraiz, J.L.; Espana, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J.J.; Udias, J.M.

    2011-01-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  12. Multi-configuration time-dependent density-functional theory based on range separation

    DEFF Research Database (Denmark)

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)10.1063/1.4712019], the description of both the 1D doubly-excited state...

  13. Line Segmentation of 2d Laser Scanner Point Clouds for Indoor Slam Based on a Range of Residuals

    Science.gov (United States)

    Peter, M.; Jafri, S. R. U. N.; Vosselman, G.

    2017-09-01

    Indoor mobile laser scanning (IMLS) based on the Simultaneous Localization and Mapping (SLAM) principle proves to be the preferred method to acquire data of indoor environments at a large scale. In previous work, we proposed a backpack IMLS system containing three 2D laser scanners and an according SLAM approach. The feature-based SLAM approach solves all six degrees of freedom simultaneously and builds on the association of lines to planes. Because of the iterative character of the SLAM process, the quality and reliability of the segmentation of linear segments in the scanlines plays a crucial role in the quality of the derived poses and consequently the point clouds. The orientations of the lines resulting from the segmentation can be influenced negatively by narrow objects which are nearly coplanar with walls (like e.g. doors) which will cause the line to be tilted if those objects are not detected as separate segments. State-of-the-art methods from the robotics domain like Iterative End Point Fit and Line Tracking were found to not handle such situations well. Thus, we describe a novel segmentation method based on the comparison of a range of residuals to a range of thresholds. For the definition of the thresholds we employ the fact that the expected value for the average of residuals of n points with respect to the line is σ / √n. Our method, as shown by the experiments and the comparison to other methods, is able to deliver more accurate results than the two approaches it was tested against.

  14. LINE SEGMENTATION OF 2D LASER SCANNER POINT CLOUDS FOR INDOOR SLAM BASED ON A RANGE OF RESIDUALS

    Directory of Open Access Journals (Sweden)

    M. Peter

    2017-09-01

    Full Text Available Indoor mobile laser scanning (IMLS based on the Simultaneous Localization and Mapping (SLAM principle proves to be the preferred method to acquire data of indoor environments at a large scale. In previous work, we proposed a backpack IMLS system containing three 2D laser scanners and an according SLAM approach. The feature-based SLAM approach solves all six degrees of freedom simultaneously and builds on the association of lines to planes. Because of the iterative character of the SLAM process, the quality and reliability of the segmentation of linear segments in the scanlines plays a crucial role in the quality of the derived poses and consequently the point clouds. The orientations of the lines resulting from the segmentation can be influenced negatively by narrow objects which are nearly coplanar with walls (like e.g. doors which will cause the line to be tilted if those objects are not detected as separate segments. State-of-the-art methods from the robotics domain like Iterative End Point Fit and Line Tracking were found to not handle such situations well. Thus, we describe a novel segmentation method based on the comparison of a range of residuals to a range of thresholds. For the definition of the thresholds we employ the fact that the expected value for the average of residuals of n points with respect to the line is σ / √n. Our method, as shown by the experiments and the comparison to other methods, is able to deliver more accurate results than the two approaches it was tested against.

  15. Laser Range Profiling for Active Protection System Target Classification and Aim-Point Selection

    National Research Council Canada - National Science Library

    Jones, Michael

    2004-01-01

    .... The attractiveness of smaller, faster interceptors precipitated the investigation of a laser radar sensor augmentation for CIAPS that could quickly resolve the range profile of an incoming projectile...

  16. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    Directory of Open Access Journals (Sweden)

    Ali Sabir

    2015-01-01

    Full Text Available Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  17. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  18. A video-rate range sensor based on depth from defocus

    OpenAIRE

    Ghita, Ovidiu; Whelan, Paul F.

    2001-01-01

    Recovering the depth information derived from dynamic scenes implies real-time range estimation. This paper addresses the implementation of a bifocal range sensor which estimates the depth by measuring the relative blurring between two images captured with different focal settings. To recover the depth accurately even in cases when the scene is textureless, one possible solution is to project a structured light on the scene. As a consequence, in the scene's spectrum a spatial frequency derive...

  19. Cellular-based preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  20. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    results from this paper are important for the lunar wireless system link margin analysis in order to determine the limits on the reliable communication range, achievable data rate and RF coverage performance at planned lunar base work sites.

  1. Dependability investigation of wireless short range embedded systems: hardware platform oriented approach

    NARCIS (Netherlands)

    Senouci, B.; Kerkhoff, Hans G.; Annema, Anne J.; Bentum, Marinus Jan

    2015-01-01

    A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of hundreds meters. Behind these embedded applications, a complex heterogeneous architecture is built. Moreover, these short range communications are introduced into

  2. Development of an extended-range electric vehicle : a systems engineering approach

    NARCIS (Netherlands)

    Voorderhake, S.F.

    2013-01-01

    This report presents the complete design (i.e., from product level to implementation level) of a sportive hatchback extended-range electric vehicle, including the design rationales and product creation process used. The project had two main goals: First, the development of a modular extended-range

  3. A Matrix-Based Structure for Vario-Scale Vector Representation over a Wide Range of Map Scales : The Case of River Network Data

    NARCIS (Netherlands)

    Huang, L.; Ai, Tinghua; van Oosterom, P.J.M.; Yan, Xiongfeng; Yang, Min

    2017-01-01

    The representation of vector data at variable scales has been widely applied in geographic information systems and map-based services. When the scale changes across a wide range, a complex generalization that involves multiple operations is required to transform the data. To present such complex

  4. Range-based underwater vehicle localization in the presence of unknown ocean currents: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Bayat, M.; Crasta, N.; Aguiar, A.P.; Pascoal, A.M.

    under- water, due to the high attenuation of electromagnetic signals. The above problem can in principle be overcome by resorting to high-performance inertial navigation systems (INS). However, the cost of such systems may be prohibitive. Moreover, even... that include ultra short baseline (USBL), long baseline (LBL), and GPS intelligent buoy (GIB) systems. In practice, acoustic localization systems are often affected by the presence of outliers, latency, and multipath effects. In spite of this, however, acoustic...

  5. Fractional momentum transfer in incomplete fusion reaction: measurement of recoil range distributions in 20Ne + 159Tb system

    International Nuclear Information System (INIS)

    Ali, R.; Singh, D.; Pachouri, Dipti; Afzal Ansari, M.; Rashid, M.H.

    2007-01-01

    The recoil range distribution (RRD) of several residues have been measured for the system 20 Ne + 159 Tb at 165 MeV beam energy by collecting the recoiling residues in the Al-catcher foils of varying thickness

  6. PC based vibration monitoring system

    International Nuclear Information System (INIS)

    Jain, Sanjay K.; Roy, D.A.; Pithawa, C.K.; Patil, R.K.

    2004-01-01

    Health of large rotating machinery gets reflected in the vibration signature of the rotor and supporting structures and proper recording of these signals and their analysis can give a clear picture of the health of the machine. Using these data and their trending, it is possible to predict an impending trouble in the machine so that preventive action can be taken in time and catastrophic failure can be avoided. Continuous monitoring and analysis can give quick warning and enable operator to take preventive measures. Reactor Control Division, BARC is developing a PC based Vibration monitoring system for turbo generator machinery. The System can acquire 20 vibration signals at a rate of 5000 samples per second and also 15 process signals at a rate of 100 samples/ sec. The software for vibration monitoring system includes acquisition modules, analysis modules and Graphical User Interface module. The acquisition module involves initialization, setting of required parameters and acquiring the data from PC-based data acquisition cards. The acquired raw vibration data is then stored for analysis using various software packages. The display and analysis of acquired data is done in LabVIEW 7.0 where the data is displayed in time as well as frequency domain along with the RMS value of the signal. (author)

  7. Study on the KM capacitor base thermometers in the 42-273 K range

    International Nuclear Information System (INIS)

    Luzganov, V.S.; Mats'ko, A.A.

    1988-01-01

    Thermometric characteristics of the KM-5a-HZ0 monolithic capacitors in the 42-273 K temperature range are studied. Capacitors capacitance - temperature relation is considered in details. The data reproducibility after 5, 23, 34, 50, 51 and 57 days is studied, the accuracy of temperature measurements by the given thermometers is determined. Recommendations on selection of cpacitors, suitable for application as thermometer, are given. These capacitors permit temperature measurement in the 42-225 K range with the error of ± 0.5 K, and above 225 K the error is ± 1K. 8 refs.; 1 fig.; 1 tab

  8. Ring coil optimization with respect to stress, temperature, and system energy over a range of physics requirements

    International Nuclear Information System (INIS)

    Pillsbury, R.D. Jr; Thome, R.J.

    1987-01-01

    The poloidal field coil system for a tokamak can be divided into the central solenoid and the ring coils. A ring coil is defined as one that has a small cross-section compared to its diameter. The size of the central solenoid is usually fixed very early in the design process since its size is directly related to the tokamak size. The sizes of the other (ring) coils are not as critical to determining the basic machine size. It is necessary to know their locations and currents in order to verify the shaping and position control of the plasma. Attention is usually focused only on the baseline plasma of the design point. However, the PF set must also be able to shape and maintain other plasmas. This paper describes a program which evaluates PF coil current scenarios over a range of physics requirements and determines the sizes of the coils necessary to satisfy constraints on the temperature rise and stress levels for the worst case scenario. In addition, the system energy requirements can be assessed and trade-offs between system energy and coil sizes (cost) can be made. Examples are given based on studies performed of CIT (Compact Ignition Tokamak)

  9. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    Science.gov (United States)

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  10. Evaluation of Navigation System Accuracy Indexes for Deviation Reading from Average Range

    Directory of Open Access Journals (Sweden)

    Alexey Boykov

    2017-12-01

    Full Text Available The method for estimating the mean of square error, kurtosis and error correlation coefficient for deviations from the average range of three navigation parameter indications from the outputs of three information sensors is substantiated and developed.

  11. Joint Maneuver Test Range on Eglin Air Force Base, Florida Final Environmental Assessment

    Science.gov (United States)

    2009-12-14

    ir Force B ase, Florida Page 3-2 Final E nvironm ental A ssessm ent A ffected E nvironm ent W ater R esources Figure 3-1. Physical and...nvironm ent W ater R esources Figure 3-2. Physical and Biological Resources Within Range B-9 Existing Components 14. Hills!Qoss Slope Legend --Creek

  12. Feature tracking for visual servo based range regulation on a mobile robot

    CSIR Research Space (South Africa)

    Burke, Michael G

    2009-11-01

    Full Text Available This poster presents a visual servo approach to straight line range and velocity regulation. The difference in velocity between a lead mobile robot and a follower is regulated through velocity control of the follower, in order to maintain a constant...

  13. A wide-range medition system for TRIGA Mark III Reactor

    International Nuclear Information System (INIS)

    Vazquez R, M.

    1995-01-01

    The number of particles emitted by a fission reaction is proportional to the number of fissions generated in the reactor nucleus, what in turn are proportional to the power level of such reactor; this indicates that it is possible could measure the reactor power if the amount of neutrons is measured, or the density of the neutron flux. The power measurement in the reactor is necessary in order to have a control of the same. Several procedures for power measurement exists, one of them is achieved through neutron flux density measurement, that take place in the chain reaction by means of the flow density measurement. The easiest way in order to achieve the neutron flux density measurement is carry out by means of the employment of neutron detectors. To the exit of these detectors an electric pulse taks place every time that a neutron interacts with the sensitive detector part. The work here presented, concrete to the construction of a system of measurement of the nuclear power reactor, that is based on the neutron flux applying some techniques of the neutron noise analysis. (Author)

  14. Self-calibration method for rotating laser positioning system using interscanning technology and ultrasonic ranging.

    Science.gov (United States)

    Wu, Jun; Yu, Zhijing; Zhuge, Jingchang

    2016-04-01

    A rotating laser positioning system (RLPS) is an efficient measurement method for large-scale metrology. Due to multiple transmitter stations, which consist of a measurement network, the position relationship of these stations must be first calibrated. However, with such auxiliary devices such as a laser tracker, scale bar, and complex calibration process, the traditional calibration methods greatly reduce the measurement efficiency. This paper proposes a self-calibration method for RLPS, which can automatically obtain the position relationship. The method is implemented through interscanning technology by using a calibration bar mounted on the transmitter station. Each bar is composed of three RLPS receivers and one ultrasonic sensor whose coordinates are known in advance. The calibration algorithm is mainly based on multiplane and distance constraints and is introduced in detail through a two-station mathematical model. The repeated experiments demonstrate that the coordinate measurement uncertainty of spatial points by using this method is about 0.1 mm, and the accuracy experiments show that the average coordinate measurement deviation is about 0.3 mm compared with a laser tracker. The accuracy can meet the requirements of most applications, while the calibration efficiency is significantly improved.

  15. Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4

    DEFF Research Database (Denmark)

    Sternberg, Claus; Eberl, Leo; Sanchezromero, Juan M.

    1995-01-01

    The multimer resolution system (mrs) of the broad-host-range plasmid RP4 has been exploited to develop a general method that permits the precise excision of chromosomal segments in a variety of gram-negative bacteria. The procedure is based on the site-specific recombination between two directly ...

  16. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1993-01-01

    Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....

  17. Depositional Architecture of Late Pleistocene-Holocene Coastal Alluvial-fan System in the Coastal Range, Taiwan

    Science.gov (United States)

    Chen, S. T.; Chen, W. S.

    2016-12-01

    Since late Pleistocene, the Coastal Range (Philippine Sea plate) collided and overridden on the Central Range (Eurasian Plate) along the Longitudinal Valley Fault. Therefore, the Coastal Range is exposed widely the late Pleistocene-Holocene marine and fluvial terraces caused by the tectonic uplift. Based on the estimation of paleosea-level elevations (Δh), depositional paleodepth, altitude distribution of Holocene deposits (D), altitude of outcrops (H), and 14C dating of marine deposits (t), the uplift rate (=(Δh+H +d-D)/t) is about 5-10 mm/yr in the southern Coastal Range. In this study, we suggest through field logging that the deposits can be divided into alluvial, foreshore (intertidal), shoreface, and offshore environments. In Dulan area in the southern Coastal Range, the uplift rate was 6-7 mm/yr during 16,380-10,000 cal yr BP and 3-4 mm/yr after 7,000 cal yr BP. Results from the Dulan Coastal alluvial-fan system can be divided into five depositional stages: (1) 16,380-14,300 cal yr BP: The rate of global sea level rise (SLR) has averaged about 6-7 mm/yr, similar to the tectonic uplift rate. In this stage, the bedrock was eroded and formed a wide wave-cut platform. (2) 14,300-10,000 cal yr BP: SLR of about 14 mm/yr that was faster than tectonic uplift rate of 6-7 mm/yr. As a result of transgression, the beach-lagoon deposits about 5 m thick were unconformably overlain on the wave-cut platform. (3) 10,000-8,200 cal yr BP: The ongoing sea level rise (SLR: 11 mm/yr), the lagoon deposits were overlain by an offshore slump deposits representing a gradual deepening of the depositional environment. (4) 8,200-7,930 cal yr BP (SLR: 6-7 mm/yr): The tectonic uplift rate may occur at similar SLR. The alluvial-fan deposits have prograded over the shallow marine deposits. (5) After 7,000 cal yr BP (SLR: 1-0 mm/yr): SLR was much slower than tectonic uplift rate of 3-4 mm/yr. Thus, Holocene marine terraces are extensively developed in the coastal region, showing that the

  18. Qualification of FPGA-Based Safety-Related PRM System

    International Nuclear Information System (INIS)

    Miyazaki, Tadashi; Oda, Naotaka; Goto, Yasushi; Hayashi, Toshifumi

    2011-01-01

    Toshiba has developed Non-rewritable (NRW) Field Programmable Gate Array (FPGA)-based safety-related Instrumentation and Control (I and C) system. Considering application to safety-related systems, nonvolatile and non-rewritable FPGA which is impossible to be changed after once manufactured has been adopted in Toshiba FPGA-based system. FPGA is a device which consists only of basic logic circuits, and FPGA performs defined processing which is configured by connecting the basic logic circuit inside the FPGA. FPGA-based system solves issues existing both in the conventional systems operated by analog circuits (analog-based system) and the systems operated by central processing unit (CPU-based system). The advantages of applying FPGA are to keep the long-life supply of products, improving testability (verification), and to reduce the drift which may occur in analog-based system. The system which Toshiba developed this time is Power Range Neutron Monitor (PRM). Toshiba is planning to expand application of FPGA-based technology by adopting this development process to the other safety-related systems such as RPS from now on. Toshiba developed a special design process for NRW-FPGA-based safety-related I and C systems. The design process resolves issues for many years regarding testability of the digital system for nuclear safety application. Thus, Toshiba NRW-FPGA-based safety-related I and C systems has much advantage to be a would standard of the digital systems for nuclear safety application. (author)

  19. Cumulant-Based Coherent Signal Subspace Method for Bearing and Range Estimation

    Directory of Open Access Journals (Sweden)

    Bourennane Salah

    2007-01-01

    Full Text Available A new method for simultaneous range and bearing estimation for buried objects in the presence of an unknown Gaussian noise is proposed. This method uses the MUSIC algorithm with noise subspace estimated by using the slice fourth-order cumulant matrix of the received data. The higher-order statistics aim at the removal of the additive unknown Gaussian noise. The bilinear focusing operator is used to decorrelate the received signals and to estimate the coherent signal subspace. A new source steering vector is proposed including the acoustic scattering model at each sensor. Range and bearing of the objects at each sensor are expressed as a function of those at the first sensor. This leads to the improvement of object localization anywhere, in the near-field or in the far-field zone of the sensor array. Finally, the performances of the proposed method are validated on data recorded during experiments in a water tank.

  20. Novel methodology for wide-ranged multistage morphing waverider based on conical theory

    Science.gov (United States)

    Liu, Zhen; Liu, Jun; Ding, Feng; Xia, Zhixun

    2017-11-01

    This study proposes the wide-ranged multistage morphing waverider design method. The flow field structure and aerodynamic characteristics of multistage waveriders are also analyzed. In this method, the multistage waverider is generated in the same conical flowfield, which contains a free-stream surface and different compression-stream surfaces. The obtained results show that the introduction of the multistage waverider design method can solve the problem of aerodynamic performance deterioration in the off-design state and allow the vehicle to always maintain the optimal flight state. The multistage waverider design method, combined with transfiguration flight strategy, can lead to greater design flexibility and the optimization of hypersonic wide-ranged waverider vehicles.

  1. Tennessee Army National Guard (TNARNG) Range Expansion at Arnold Air Force Base, Tennessee. Environmental Assessment

    Science.gov (United States)

    2012-11-01

    Ecological Services Field Office for the U.S. Fish and Wildlife Service (USFWS). The Tennessee Historical Commission, State Historic Preservation Office...Alternate) 12 SEAVAN sites Prefabricated – no new construction required CACTF (Primary) Road network 0 1,800 n/a n/a Gravel pads for pre-fab...management to prevent undesirable ecosystem changes. Recognizing the ecological NOVEMBER 2012 | EA_2013_TNARNG_Range_Expansion Page 3-6 and economic

  2. Image-Based Compression Method of Three-Dimensional Range Data with Texture

    OpenAIRE

    Chen, Xia; Bell, Tyler; Zhang, Song

    2017-01-01

    Recently, high speed and high accuracy three-dimensional (3D) scanning techniques and commercially available 3D scanning devices have made real-time 3D shape measurement and reconstruction possible. The conventional mesh representation of 3D geometry, however, results in large file sizes, causing difficulties for its storage and transmission. Methods for compressing scanned 3D data therefore become desired. This paper proposes a novel compression method which stores 3D range data within the c...

  3. Expert system for operational personnel support during power unit operation control in regulation range

    International Nuclear Information System (INIS)

    Yanitskij, V.A.

    1992-01-01

    The problems met when developing the systems for NPP operator support in the process of power unit operation are considered. The expert system for NPP personnel intelligent support combining the properties belonging to the artificial intelligence systems including selection of the analysis method taking into account the concrete technological situation and capability of application of algothmic calculations of the equipment characteristics using the information accumulated during the system development, erection and operation is described

  4. Configurable Electronics with Low Noise and 14-bit Dynamic Range for Photodiode-based Photon Detectors

    CERN Document Server

    Müller, H; Yin, Z; Zhou, D; Cao, X; Li, Q; Liu, Y; Zou, F; Skaali, B; Awes, T C

    2006-01-01

    We describe the principles and measured performance characteristics of custom configurable 32-channel shaper/digitizer Front End Electronics (FEE) cards with 14-bit dynamic range for use with gain-adjustable photon detectors. The electronics has been designed for the PHOS calorimeter of ALICE with avalanche photodiode (APD) readout operated at -25 C ambient temperature and a signal shaping time of $1 {\\mu}s$. The electronics has also been adopted by the EMCal detector of ALICE with the same APD readout, but operated at an ambient temperature of +20 C and with a shaping time of 100ns. The CR-RC2 signal shapers on the FEE cards are implemented in discrete logic on a 10-layer board with two shaper sections for each input channel. The two shaper sections with gain ratio of 16:1 are digitized by 10-bit ADCs and provide an effective dynamic range of 14 bits. Gain adjustment for each individual APD is available through 32 bias voltage control registers of 10-bit range. The fixed gains and shaping times of the pole-z...

  5. MATILDA: A Military Laser Range Safety Tool Based on Probabilistic Risk Assessment (PRA) Techniques

    Science.gov (United States)

    2014-08-01

    3 2.1 UK Need for a PRA-Based Approach ............................................................... 3 2.2 A Risk-Based Approach to...Figure 6: MATILDA Coordinate Transformations ....................................................... 22  Figure 7: Geocentric and MICS Coordinates...Star-Shaped Condition ................................................................................. 27  Figure 11: Points of Closest Approach

  6. Validation Of Critical Knowledge-Based Systems

    Science.gov (United States)

    Duke, Eugene L.

    1992-01-01

    Report discusses approach to verification and validation of knowledge-based systems. Also known as "expert systems". Concerned mainly with development of methodologies for verification of knowledge-based systems critical to flight-research systems; e.g., fault-tolerant control systems for advanced aircraft. Subject matter also has relevance to knowledge-based systems controlling medical life-support equipment or commuter railroad systems.

  7. Critical behavior of magnetization in URhAl: Quasi-two-dimensional Ising system with long-range interactions

    Science.gov (United States)

    Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Yamamoto, Etsuji

    2018-02-01

    The critical behavior of dc magnetization in the uranium ferromagnet URhAl with the hexagonal ZrNiAl-type crystal structure has been studied around the ferromagnetic transition temperature TC. The critical exponent β for the temperature dependence of the spontaneous magnetization below TC,γ for the magnetic susceptibility, and δ for the magnetic isotherm at TC, have been obtained with a modified Arrott plot, a Kouvel-Fisher plot, the critical isotherm analysis, and the scaling analysis. We have determined the critical exponents as β =0.287 ±0.005 , γ =1.47 ±0.02 , and δ =6.08 ±0.04 by the scaling analysis and the critical isotherm analysis. These critical exponents satisfy the Widom scaling law δ =1 +γ /β . URhAl has strong uniaxial magnetic anisotropy, similar to its isostructural UCoAl that has been regarded as a three-dimensional (3D) Ising system in previous studies. However, the universality class of the critical phenomenon in URhAl does not belong to the 3D Ising model (β =0.325 , γ =1.241 , and δ =4.82 ) with short-range exchange interactions between magnetic moments. The determined exponents can be explained with the results of the renormalization group approach for a two-dimensional (2D) Ising system coupled with long-range interactions decaying as J (r ) ˜r-(d +σ ) with σ =1.44 . We suggest that the strong hybridization between the uranium 5 f and rhodium 4 d electrons in the U-RhI layer in the hexagonal crystal structure is a source of the low-dimensional magnetic property. The present result is contrary to current understandings of the physical properties in a series of isostructural UTX uranium ferromagnets (T: transition metals, X: p -block elements) based on the 3D Ising model.

  8. Short-range wireless communication fundamentals of RF system design and application

    CERN Document Server

    Bensky, Alan

    2004-01-01

    The Complete "Tool Kit” for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen

  9. Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, G. E., E-mail: gefedorov@mail.ru; Stepanova, T. S.; Gazaliev, A. Sh.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. [Moscow State Pedagogical University (Russian Federation)

    2016-12-15

    Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.

  10. A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    Science.gov (United States)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.

    1979-01-01

    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.

  11. Comparison of hen preference for nesting substrate material, and performance in a free range production system

    Science.gov (United States)

    This project consisted of 200 Hy-Line Brown hens and was conducted utilizing the brood-grow-lay range huts at the North Carolina Department of Agriculture and Consumer Services’ Piedmont Research Station. Fifty hens were placed in each pen/paddock providing 1338 cm2/hen of floor space in the hut an...

  12. The dielectric constant and its role in the long range coherence in biological systems

    International Nuclear Information System (INIS)

    Paul, R.; Chatterjee, R.

    1984-01-01

    An expression for the dielectric constant has been derived, for the Froehlich model of long-range coherence in biological cells. These theoretical expressions are employed to interpret the observed rouleaux formation of red blood cells (erythrocytes). It is concluded that this unusual behaviour of the erythrocytes can be interpreted satisfactorilly by the extended Froehlich model developed by us. (Author) [pt

  13. Neotectonics of the San Andreas fault system: Basin and range province juncture

    Science.gov (United States)

    Estes, J. E.; Crowell, J. C.

    1986-01-01

    Several new details regarding the surficial patterns of neotectonic activity of the Eastern Transverse Ranges and vicinity were discovered. Additionally a number of data display and analysis techniques were developed. These findings will be useful both in the continued development of neotectonic models for southern California and for the future application of remote sensing methodologies elsewhere.

  14. Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction

    NARCIS (Netherlands)

    Kern, N.; Frenkel, D.

    2003-01-01

    We present a systematic numerical study of the phase behavior of square-well fluids with a "patchy" short-ranged attraction. In particular, we study the effect of the size and number of attractive patches on the fluid–fluid coexistence. The model that we use is a generalization of the hard sphere

  15. High resolution axicon-based endoscopic FD OCT imaging with a large depth range

    Science.gov (United States)

    Lee, Kye-Sung; Hurley, William; Deegan, John; Dean, Scott; Rolland, Jannick P.

    2010-02-01

    Endoscopic imaging in tubular structures, such as the tracheobronchial tree, could benefit from imaging optics with an extended depth of focus (DOF). This optics could accommodate for varying sizes of tubular structures across patients and along the tree within a single patient. In the paper, we demonstrate an extended DOF without sacrificing resolution showing rotational images in biological tubular samples with 2.5 μm axial resolution, 10 ìm lateral resolution, and > 4 mm depth range using a custom designed probe.

  16. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications

    Science.gov (United States)

    Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin

    2018-03-01

    An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.

  17. Additive N-step Markov chains as prototype model of symbolic stochastic dynamical systems with long-range correlations

    International Nuclear Information System (INIS)

    Mayzelis, Z.A.; Apostolov, S.S.; Melnyk, S.S.; Usatenko, O.V.; Yampol'skii, V.A.

    2007-01-01

    A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys Rev Lett 2003;90:110601 is generalized to the biased case (non-equal numbers of zeros and unities in the chain). In the model, the conditional probability that the ith symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed

  18. Additive N-step Markov chains as prototype model of symbolic stochastic dynamical systems with long-range correlations

    Energy Technology Data Exchange (ETDEWEB)

    Mayzelis, Z.A. [Department of Physics, Kharkov National University, 4 Svoboda Sq., Kharkov 61077 (Ukraine); Apostolov, S.S. [Department of Physics, Kharkov National University, 4 Svoboda Sq., Kharkov 61077 (Ukraine); Melnyk, S.S. [A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Science, 12 Proskura Street, 61085 Kharkov (Ukraine); Usatenko, O.V. [A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Science, 12 Proskura Street, 61085 Kharkov (Ukraine)]. E-mail: usatenko@ire.kharkov.ua; Yampol' skii, V.A. [A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Science, 12 Proskura Street, 61085 Kharkov (Ukraine)

    2007-10-15

    A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys Rev Lett 2003;90:110601 is generalized to the biased case (non-equal numbers of zeros and unities in the chain). In the model, the conditional probability that the ith symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed.

  19. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system

    Science.gov (United States)

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  20. Thermoluminescence and phosphate glass dosimeter systems in the low dose range

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1978-06-01

    This report describes a standard test program for TLD and RPL systems worked out by the Working Party on 'Dose Measurement of External Radiation' by the Fachverband fuer Strahlenschutz e.V. to demonstrate the performance of dosimeter systems to be employed in environmental monitoring and in personnel dosimetry. The results of an intercomparison study are outlined in which 17 laboratories from the German speaking countries participated with 43 dosimeter systems. (orig.) [de

  1. Long-range electron transfer in zinc-phthalocyanine-oligo(phenylene-ethynylene)-based donor-bridge-acceptor dyads.

    Science.gov (United States)

    Göransson, Erik; Boixel, Julien; Fortage, Jérôme; Jacquemin, Denis; Becker, Hans-Christian; Blart, Errol; Hammarström, Leif; Odobel, Fabrice

    2012-11-05

    In the context of long-range electron transfer for solar energy conversion, we present the synthesis, photophysical, and computational characterization of two new zinc(II) phthalocyanine oligophenylene-ethynylene based donor-bride-acceptor dyads: ZnPc-OPE-AuP(+) and ZnPc-OPE-C(60). A gold(III) porphyrin and a fullerene has been used as electron accepting moieties, and the results have been compared to a previously reported dyad with a tin(IV) dichloride porphyrin as the electron acceptor (Fortage et al. Chem. Commun. 2007, 4629). The results for ZnPc-OPE-AuP(+) indicate a remarkably strong electronic coupling over a distance of more than 3 nm. The electronic coupling is manifested in both the absorption spectrum and an ultrafast rate for photoinduced electron transfer (k(PET) = 1.0 × 10(12) s(-1)). The charge-shifted state in ZnPc-OPE-AuP(+) recombines with a relatively low rate (k(BET) = 1.0 × 10(9) s(-1)). In contrast, the rate for charge transfer in the other dyad, ZnPc-OPE-C(60), is relatively slow (k(PET) = 1.1 × 10(9) s(-1)), while the recombination is very fast (k(BET) ≈ 5 × 10(10) s(-1)). TD-DFT calculations support the hypothesis that the long-lived charge-shifted state of ZnPc-OPE-AuP(+) is due to relaxation of the reduced gold porphyrin from a porphyrin ring based reduction to a gold centered reduction. This is in contrast to the faster recombination in the tin(IV) porphyrin based system (k(BET) = 1.2 × 10(10) s(-1)), where the excess electron is instead delocalized over the porphyrin ring.

  2. Free range and deep litter poultry production systems: effect on performance, carcass yield and meat composition of cockerel chickens.

    Science.gov (United States)

    Sogunle, Olajide Mark; Olaniyi, Olagoke Ayobami; Egbeyale, Lawrence Tokunbo; Akinola, Olufemi Sunday; Shittu, Taofeek A; Abiola, Samuel Soladoye; Ladokun, Abimbola O; Sobayo, Richard Abayomi

    2013-01-01

    This study was carried out on 150 cockerel chickens each of Harco Black and Novogen strains to determine their performance, carcass yield and meat composition on free range and deep litter production systems. The birds were brooded for 4 weeks and thereafter allotted to the different production systems for a period of 12 weeks. Each production system was allotted 150 chicks (75 chicks per strain) with three replicates of 25 chicks. The birds on deep litter production system were fed ad libitum while each bird on free range was fed 50 % of its daily feed requirement. On the 84 th day, a total of 36 birds were randomly selected for analysis of the carcass yield and meat composition. The data generated were subjected to a two-way analysis of variance in a 2 × 2 factorial experimental arrangement. Novogen strain consumed less feed (P free range and had the best feed/gain (2.72). A higher (P free range. The tibia proximal length and breadth, and tibia distal length and breadth were significantly (P free range, Harco black had more meat (85.69 g) than bone (18.07 g) in the breast while Novogen had the lowest meat/bone (2.38). Conclusively, Novogen strain should be raised on free range for a better performance in terms of feed/gain, but for higher meat composition, Harco black is a better strain.

  3. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  4. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    Science.gov (United States)

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  5. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2014-03-01

    Full Text Available How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV and fuel cell electric vehicle (FCEV. Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA of petrol, diesel, fuel cell electric (FCEV, compressed natural gas (CNG, liquefied petroleum gas (LPG, hybrid electric, battery electric (BEV, bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.

  6. Microprocessor based image processing system

    International Nuclear Information System (INIS)

    Mirza, M.I.; Siddiqui, M.N.; Rangoonwala, A.

    1987-01-01

    Rapid developments in the production of integrated circuits and introduction of sophisticated 8,16 and now 32 bit microprocessor based computers, have set new trends in computer applications. Nowadays the users by investing much less money can make optimal use of smaller systems by getting them custom-tailored according to their requirements. During the past decade there have been great advancements in the field of computer Graphics and consequently, 'Image Processing' has emerged as a separate independent field. Image Processing is being used in a number of disciplines. In the Medical Sciences, it is used to construct pseudo color images from computer aided tomography (CAT) or positron emission tomography (PET) scanners. Art, advertising and publishing people use pseudo colours in pursuit of more effective graphics. Structural engineers use Image Processing to examine weld X-rays to search for imperfections. Photographers use Image Processing for various enhancements which are difficult to achieve in a conventional dark room. (author)

  7. Fire Behavior System for the Full Range of Fire Management Needs

    Science.gov (United States)

    Richard C. Rothermel; Patricia L. Andrews

    1987-01-01

    An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...

  8. Food safety in free-range and organic livestock systems: risk management and responsibility

    NARCIS (Netherlands)

    Kijlstra, A.; Meerburg, B. G.; Bos, A. P.

    2009-01-01

    Animal production systems that offer outdoor access to the animals have become increasingly popular in the Western world due to the growing general discontent of consumers with conventional bioindustrial farming practices. These open production systems offer improved animal welfare but may create

  9. Food Safety in Free-Range and Organic Livestock Systems: Risk Management and Responsibility

    NARCIS (Netherlands)

    Kijlstra, A.; Meerburg, B.G.; Bos, A.P.

    2009-01-01

    Animal production systems that offer outdoor access to the animals have become increasingly popular in the Western world due to the growing general discontent of consumers with conventional bioindustrial farming practices. These open production systems offer improved animal welfare but may create

  10. Molecular dynamics simulations of short-range force systems on 1024-node hypercubes

    International Nuclear Information System (INIS)

    Plimpton, S.J.

    1990-01-01

    In this paper, two parallel algorithms for classical molecular dynamics are presented. The first assigns each processor to a subset of particles; the second assigns each to a fixed region of 3d space. The algorithms are implemented on 1024-node hypercubes for problems characterized by short-range forces, diffusion (so that each particle's neighbors change in time), and problem size ranging from 250 to 10000 particles. Timings for the algorithms on the 1024-node NCUBE/ten and the newer NCUBE 2 hypercubes are given. The latter is found to be competitive with a CRAY-XMP, running an optimized serial algorithm. For smaller problems the NCUBE 2 and CRAY-XMP are roughly the same; for larger ones the NCUBE 2 is up to twice as fast. Parallel efficiencies of the algorithms and communication parameters for the two hypercubes are also examined

  11. Characterization of a compliant multi-layer system for tactile sensing with enhanced sensitivity and range

    Science.gov (United States)

    Chen, Ying; Yu, Miao; Bruck, Hugh A.; Smela, Elisabeth

    2018-06-01

    To allow robots to interact with humans via touch, new sensing concepts are needed that can detect a wide range of potential interactions and cover the body of a robot. In this paper, a skin-inspired multi-layer tactile sensing architecture is presented and characterized. The structure consists of stretchable piezoresistive strain-sensing layers over foam layers of different stiffness, allowing for both sufficient sensitivity and pressure range for human contacts. Strip-shaped sensors were used in this architecture to produce a deformation response proportional to pressure. The roles of the foam layers were elucidated by changing their stiffness and thickness, allowing the development of a geometric model to account for indenter interactions with the structure. The advantage of this architecture over other approaches is the ability to easily tune performance by adjusting the stiffness or thickness of the foams to tailor the response for different applications. Since viscoelastic materials were used, the temporal effects were also investigated.

  12. The automotive anti-collision system based on Ultrasonic

    Directory of Open Access Journals (Sweden)

    Qi Qinqin

    2017-08-01

    Full Text Available In the existing system of automobile anti-collision,the radar is mainly used for ranging.However,it can't be widely used because of its high cost.In this paper,based on the existing system of automobile anti-collision,the ultrasonic sensor is used to measure the distance and establish relevant anti-collision model.The experimental results show that the alarming information is accurate within a certain range.

  13. Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance.

    Science.gov (United States)

    Zhang, Zhizhou; Li, Xiaolong

    2018-05-11

    In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement.

  14. Non-metric close range photogrammetric system for mapping geologic structures in mines

    Energy Technology Data Exchange (ETDEWEB)

    Brandow, V D

    1976-01-01

    A stereographic close-range photogrammetric method of obtaining structural data for mine roof stability analyses is described. Stereo pairs were taken with 70 mm and 35 mm non-metric cameras. Photo co-ordinates were measured with a stereo-comparator and reduced by the direct linear transformation method. Field trials demonstrate that the technique is sufficiently accurate for geological work and is a practical method of mapping.

  15. System Estimation of Panel Data Models under Long-Range Dependence

    DEFF Research Database (Denmark)

    Ergemen, Yunus Emre

    A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects...... and innovations, removing the necessity to perform a priori unit-root or stationarity testing. Moreover, persistence in innovations and interactive fixed effects allows for cointegration; innovations can also have vector-autoregressive dynamics; deterministic trends can be featured. Estimations are performed...

  16. Expert systems and computer based industrial systems

    International Nuclear Information System (INIS)

    Dunand, R.

    1989-01-01

    Framentec is the artificial intelligence subsidiary of FRAMATOME. It is involved in expert-system activities of Shells, developments, methodology and software for maintenance (Maintex) and consulting and methodology. Specific applications in the nuclear field are presented. The first is an expert system to assist in the piping support design prototype, the second is an expert system that assists an ultrasonic testing operator in determining the nature of a welding defect and the third is a welding machine diagnosis advisor. Maintex is a software tool to provide assistance in the repair of complex industrial equipment. (author)

  17. System architecture for microprocessor based protection system

    International Nuclear Information System (INIS)

    Gallagher, J.M. Jr.; Lilly, G.M.

    1976-01-01

    This paper discusses the architectural design features to be employed by Westinghouse in the application of distributed digital processing techniques to the protection system. While the title of the paper makes specific reference to microprocessors, this is only one (and the newest) of the building blocks which constitutes a distributed digital processing system. The actual system structure (as realized through utilization of the various building blocks) is established through considerations of reliability, licensability, and cost. It is the intent of the paper to address these considerations licenstions as they relate to the architectural design features. (orig.) [de

  18. Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.

    Science.gov (United States)

    Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T

    2016-05-05

    Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.

  19. Preliminary Performance Evaluation of MEMS-based Piezoelectric Energy Harvesters in Extended Temperature Range

    DEFF Research Database (Denmark)

    Xu, R.; Borregaard, L.M.; Lei, A.

    2012-01-01

    In this work a batch of MEMS-based vibration energy harvesters consisting of a silicon/PZT thick film ntilever with integrated proof mass is characterized. The purpose of a vibration energy harvester is to convert low grade vibrations to useful electrical power. Optimally, the natural frequency...

  20. Computerized integrated data base production system (COMPINDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Marek, D; Buerk, K [Fachinformationszentrum Karlsruhe, Gesellschaft fuer Wissenschaftlich-Technische Information mbH, Eggenstein-Leopoldshafen (Germany)

    1990-05-01

    Based on many years of experience, and with the main objective in mind to guarantee long-term database quality and efficiency of input processes, Fachinformationszentrum Karlsruhe is developing an integrated interactive data management systems for bibliographic and factual databases. Its concept includes the following range of applications: Subject analysis with computer-assisted classification, indexing and translation; technical procedures with online acquisition and management of literature and factual data, recording by means of optical scanning, computer-assisted bibliographic description, control and update procedures; support of the whole process by continuous surveillance of document flow. All these procedures will be performed in an integrated manner. They system is to meet high standards for flexibility, data integrity and effectiveness of system functions. Independent of the type of data, the appropriate database or the subject field to be handled, all data will be stored in one large pool. One main goal is to avoid duplication of work and redundancy of data storage. The system will work online, interactive and conversational. COMPINDAS is being established on the basis of the ADABAS as database management system for storage and retrieval. The applications are being generated by means of aDis of ASTEC in Munich. aDis is used for the definition of the data structures, checking routines, coupling processes, and the design of dialogue and batch routines including masks. (author). 7 figs.

  1. Computerized integrated data base production system (COMPINDAS)

    International Nuclear Information System (INIS)

    Marek, D.; Buerk, K.

    1990-05-01

    Based on many years of experience, and with the main objective in mind to guarantee long-term database quality and efficiency of input processes, Fachinformationszentrum Karlsruhe is developing an integrated interactive data management systems for bibliographic and factual databases. Its concept includes the following range of applications: Subject analysis with computer-assisted classification, indexing and translation; technical procedures with online acquisition and management of literature and factual data, recording by means of optical scanning, computer-assisted bibliographic description, control and update procedures; support of the whole process by continuous surveillance of document flow. All these procedures will be performed in an integrated manner. They system is to meet high standards for flexibility, data integrity and effectiveness of system functions. Independent of the type of data, the appropriate database or the subject field to be handled, all data will be stored in one large pool. One main goal is to avoid duplication of work and redundancy of data storage. The system will work online, interactive and conversational. COMPINDAS is being established on the basis of the ADABAS as database management system for storage and retrieval. The applications are being generated by means of aDis of ASTEC in Munich. aDis is used for the definition of the data structures, checking routines, coupling processes, and the design of dialogue and batch routines including masks. (author). 7 figs

  2. Remote control of microcontroller-based infant stimulating system.

    Science.gov (United States)

    Burunkaya, M; Güler, I

    2000-04-01

    In this paper, a remote-controlled and microcontroller-based cradle is designed and constructed. This system is also called Remote Control of Microcontroller-Based Infant Stimulation System or the RECOMBIS System. Cradle is an infant stimulating system that provides relaxation and sleeping for the baby. RECOMBIS system is designed for healthy full-term newborns to provide safe infant care and provide relaxation and sleeping for the baby. A microcontroller-based electronic circuit was designed and implemented for RECOMBIS system. Electromagnets were controlled by 8-bit PIC16F84 microcontroller, which is programmed using MPASM package. The system works by entering preset values from the keyboard, or pulse code modulated radio frequency remote control system. The control of the system and the motion range were tested. The test results showed that the system provided a good performance.

  3. Test Area C-74 Complex Final Range Environmental Assessment at Eglin Air Force Base, Florida

    Science.gov (United States)

    2015-08-21

    Generally, in riparian areas the fire burns back the aboveground biomass leaving the root systems of riparian woody species such as titi and...such as dense deposits of shell , or clusters of artifacts) are encountered on the ground in the course of any mission activity, Management Practices...addition to chopping plant biomass , this practice created extensive ground disturbance that degraded plant ground cover and exposed soils. Appendix A TA

  4. Effect of production system (barn and free range) and slaughter age on some production traits of guinea fowl.

    Science.gov (United States)

    Yamak, U S; Sarica, M; Boz, M A; Ucar, A

    2018-01-01

    A total of 200 guinea fowl was reared in either barn or free-range systems and slaughtered at 14, 16, or 18 wk of age in order to determine the effects of production system on live weight, feed consumption, and some carcass and slaughter traits. Production system had a significant effect on live weight until 14 wk of age. Live weights were similar between free-range and indoor production systems at 16 (1,150 g vs. 1,152 g) and 18 (1,196 g vs. 1,203 g) wk of age. Guinea fowl reared in a free-range system consumed more feed (7,693 g vs. 6,983 g), and guinea fowl reared in a barn had better feed conversion ratio (5.80 vs. 6.43) (P free-range system had significantly less abdominal fat (P < 0.05). © 2017 Poultry Science Association Inc.

  5. Public Land Survey System (PLSS) Township Range Polygons, California, 2015, Bureau of Land Management

    Data.gov (United States)

    U.S. Environmental Protection Agency — PLSSTownship: This dataset represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for...

  6. The multichannel system of synchronous photon counting of range 50 ns - 100 ms

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, S M [and others

    1996-12-31

    A new type of the multichannel system of synchronous photon counting is designed. The recording past of the analyzer is described and the whole measurement process is considered. Frequency of the master generator is 75 MHz. 1 ref.; 2 figs.

  7. Final Range Environmental Assessment for Test Areas C-87 and D-51 at Eglin Air Force Base, Florida

    Science.gov (United States)

    2015-05-01

    TA C-87 consists of one septic tank and associated leach field. There are nine septic tanks and associated leach fields on TA D-51. Under...storage tank , and septic systems, and connecting the test area to the Okaloosa County water and wastewater utility lines. The existing utility systems on T...8840E Water Treatment Plan 8840F Biological/Chemical Training Area 13 (acres) 8840ST Septic Tank at 8840 8840W Well at 8840 8841 Range Support

  8. Santa Rosa Island Final Range Environmental Assessment, Revision 1. Eglin Air Force Base, Florida

    Science.gov (United States)

    2012-03-01

    west coast; 3) Dry Tortugas , Florida, Subpopulation; 4) Florida Panhandle Subpopulation occurring at Eglin AFB and the beaches near Panama City; and... Tortugas , florida, Subpopulation, (4) Northwest florida Subpopulation occurring at Eglin Ai r Force Base and the beaches near Panama City; and (5...annually from 1995 and 2005 (FWC/FWRI sea turtle nesting database and unpublished data). A nearly complete census of the Dry Tortugas Subpopulation

  9. Lunar Navigator - A Miniature, Fully Autonomous, Lunar Navigation, Surveyor, and Range Finder System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm proposes to design and develop a fully autonomous Lunar Navigator based on our MicroMak miniature star sensor and a gravity gradiometer similar to one on a...

  10. Research on three-phase traffic flow modeling based on interaction range

    Science.gov (United States)

    Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting

    2017-12-01

    On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.

  11. A portable and wide energy range semiconductor-based neutron spectrometer

    International Nuclear Information System (INIS)

    Hoshor, C.B.; Oakes, T.M.; Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R.; Miller, W.H.; Bellinger, S.L.; Sobering, T.J.; Fronk, R.G.; Shultis, J.K.; McGregor, D.S.; Caruso, A.N.

    2015-01-01

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  12. A portable and wide energy range semiconductor-based neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hoshor, C.B. [Department of Physics, University of Missouri, Kansas City, MO (United States); Oakes, T.M. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R. [Department of Physics, University of Missouri, Kansas City, MO (United States); Miller, W.H. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Missouri University Research Reactor, Columbia, MO (United States); Bellinger, S.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Sobering, T.J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS (United States); Fronk, R.G.; Shultis, J.K.; McGregor, D.S. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Caruso, A.N., E-mail: carusoan@umkc.edu [Department of Physics, University of Missouri, Kansas City, MO (United States)

    2015-12-11

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  13. Microcomputer based test system for charge coupled devices

    International Nuclear Information System (INIS)

    Sidman, S.

    1981-02-01

    A microcomputer based system for testing analog charge coupled integrated circuits has been developed. It measures device performance for three parameters: dynamic range, baseline shift due to leakage current, and transfer efficiency. A companion board tester has also been developed. The software consists of a collection of BASIC and assembly language routines developed on the test system microcomputer

  14. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; hide

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  15. Mapping of a river using close range photogrammetry technique and unmanned aerial vehicle system

    International Nuclear Information System (INIS)

    Room, M H M; Ahmad, A

    2014-01-01

    Photogrammetry is a technique that can be used to record the information of any feature without direct contact. Nowadays, a combination of photogrammetry and Unmanned Aerial Vehicle (UAV) systems is widely used for various applications, especially for large scale mapping. UAV systems offer several advantages in terms of cost and image resolution compared to terrestrial photogrammetry and remote sensing system. Therefore, a combination of photogrammetry and UAV created a new term which is UAV photogrammetry. The aim of this study is to investigate the ability of a UAV system to map a river at very close distance. A digital camera is attached to the Hexacopter UAV and it is flown at 2 m above the ground surface to produce aerial photos. Then, the aerial photos are processed to create two photogrammetric products as output. These are mosaicked orthophoto and digital image. Both products are assessed (RSME). The RSME of X and Y coordinates are ±0.009 m and ±0.033 m respectively. As a conclusion, photogrammetry and the UAV system offer a reliable accuracy for mapping a river model and advantages in term of cost-efficient, high ground resolution and rapid data acquisition

  16. A new generic model potential for mesogenic systems: square well line potential of variable range.

    Science.gov (United States)

    Varga, Szabolcs; Vesely, Franz J

    2009-11-21

    A single-site pair potential is derived to approximate the linear n-site square well interaction. The resulting square well line (SWL) potential is analytical, fairly smooth, and reproduces the distance and orientation dependence of the multisite pair energy. It contains only three control parameters n, L, and s(2), in addition to the units of length s(1) and energy epsilon. The advantages of the new model over the traditional potentials such as Gay-Berne and Kihara are that n, L, and s(2) are physically meaningful quantities and that no additional adjustable parameters are introduced. With the SWL potential even very long square well chain molecules may be treated in Monte Carlo (MC) simulations; moreover the model is well suited for perturbation theory. Using Onsager-like theories we test the effect of molecular elongation, temperature, and the range of the square well potential on the vapor-liquid and nematic-smectic A (NS) phase transitions. We find that the vapor-liquid binodal of the SWL fluid is in good agreement with MC results for square well dumbbells. For repulsive SWL particles, varying the interaction range s(2) results in a similar effect on the NS transition as the change in the ionic strength in a real suspension of fd viruses.

  17. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments

    DEFF Research Database (Denmark)

    Zhang, M.; Søndergaard, Rikke Vicki; Ek, Pramod Kumar

    2015-01-01

    Optical pH nanosensors have been applied for monitoring intracellular pH in real-time for about two decades. However, the pH sensitivity range of most nanosensors is too narrow, and measurements that are on the borderline of this range may not be correct. Furthermore, ratiometric measurements...... of acidic intracellular pH (pH sensor, a fluorophore based nanosensor, with an unprecedented broad measurement range from pH 1.4 to 7.0. In this nanosensor, three p......H-sensitive fluorophores (difluoro-Oregon Green, Oregon Green 488, and fluorescein) and one pH-insensitive fluorophore (Alexa 568) were covalently incorporated into a nanoparticle hydrogel matrix. With this broad range quadruple-labelled nanosensor all physiological relevant pH levels in living cells can be measured...

  18. Long Range Active Detection of HEU Based on Thermal Neutron Multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Forman L.; Dioszegi I.; Salwen, C.; and Vanier, P.E.

    2010-05-24

    We report on the results of measurements of proton irradiation on a series of targets at Brookhaven National Laboratory’s (BNL) Alternate Gradient Synchrotron Facility (AGS), in collaboration with LANL and SNL. We examined the prompt radiation environment in the tunnel for the DTRA-sponsored series (E 972), which investigated the penetration of air and subsequent target interaction of 4 GeV proton pulses. Measurements were made by means of an organic scintillator with a 500 MHz bandwidth system. We found that irradiation of a depleted uranium (DU) target resulted in a large gamma-ray signal in the 100-500 µsec time region after the proton flash when the DU was surrounded by polyethylene, but little signal was generated if it was surrounded by boron-loaded polyethylene. Subsequent Monte Carlo (MCNPX) calculations indicated that the source of the signal was consistent with thermal neutron capture in DU. The MCNPX calculations also indicated that if one were to perform the same experiment with a highly enriched uranium (HEU) target there would be a distinctive fast neutron yield in this 100-500 µsec time region from thermal neutron-induced fission. The fast neutrons can be recorded by the same direct current system and differentiated from gamma ray pulses in organic scintillator by pulse shape discrimination.

  19. HBIM and augmented information: towards a wider user community of image and range-based reconstructions

    Science.gov (United States)

    Barazzetti, L.; Banfi, F.; Brumana, R.; Oreni, D.; Previtali, M.; Roncoroni, F.

    2015-08-01

    This paper describes a procedure for the generation of a detailed HBIM which is then turned into a model for mobile apps based on augmented and virtual reality. Starting from laser point clouds, photogrammetric data and additional information, a geometric reconstruction with a high level of detail can be carried out by considering the basic requirements of BIM projects (parametric modelling, object relations, attributes). The work aims at demonstrating that a complex HBIM can be managed in portable devices to extract useful information not only for expert operators, but also towards a wider user community interested in cultural tourism.

  20. HBIM and augmented information: towards a wider user community of image and range-based reconstructions

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2015-08-01

    Full Text Available This paper describes a procedure for the generation of a detailed HBIM which is then turned into a model for mobile apps based on augmented and virtual reality. Starting from laser point clouds, photogrammetric data and additional information, a geometric reconstruction with a high level of detail can be carried out by considering the basic requirements of BIM projects (parametric modelling, object relations, attributes. The work aims at demonstrating that a complex HBIM can be managed in portable devices to extract useful information not only for expert operators, but also towards a wider user community interested in cultural tourism.

  1. Synchrotron radiation based on laser-plasma interaction in the relativistic range

    International Nuclear Information System (INIS)

    Albert, F.

    2007-12-01

    This work illustrates the experimental characterization of a new compact X-ray source: the Betatron X-ray source. It is the first time that collimated hard X-ray source is produced by laser. Through the focusing of an ultra-intense laser radiation (30 TW, 30 fs) on a helium plasma, the ponderomotive force linked to the light intensity gradient expels the plasma electrons forming an accelerating cavity in the wake of the laser plasma. Some electrons trapped in the back of this structure, are accelerated and oscillate to produce X-radiation. This document is composed of 8 chapters. The first one is a presentation of the topic. The second chapter gives an account of the physics behind the laser-plasma interaction in the relativistic range and for ultra-short pulses. The third chapter presents the theoretical characteristics of the Betatron X-ray source. This chapter begins with an analogy with current synchrotron radiation and the radiation emitted by an electron undergoing Betatron oscillations is described in terms of power, spectral intensity and photon flux. The fourth chapter is dedicated to the numerical simulation of the Betatron radiation. The trajectories of the electrons are computed from the equation of motion, taking into account longitudinal and transverse forces. The radiation emission term is then computed from the radiation equation detailed in the previous chapter. The fifth chapter presents the experimental setting to produce Betatron X-rays. The sixth chapter gives the experimental characterization of the source (size, divergence and spectrum) on one hand, and on the other hand studies how source flux and spectra vary when laser and plasma parameters change. The seventh chapter presents experimental methods used to characterize the electrons trajectories in the plasma wiggler. The last chapter draws some perspectives on this source in terms of improvement and uses. (A.C.)

  2. Fat-soluble vitamin and mineral comparisons between zoo-based and free-ranging koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Schmidt, Debra A; Pye, Geoffrey W; Hamlin-Andrus, Chris C; Ellis, William A; Bercovitch, Fred B; Ellersieck, Mark R; Chen, Tai C; Holick, Michael F

    2013-12-01

    As part of a health investigation on koalas at San Diego Zoo, serum samples were analyzed from 18 free-ranging and 22 zoo-based koalas, Phascolarctos cinereus. Serum concentrations of calcium, chloride, cobalt, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, selenium, sodium, zinc, and vitamins A, E, and 25(OH)D3 were quantified. Calcium, chloride, molybdenum, selenium, and vitamin E concentrations were significantly higher in zoo-based koalas than in free-ranging koalas, whereas magnesium, manganese, phosphorus, and zinc concentrations were significantly higher in the free-ranging koalas. No significant differences were found between genders. The results from this study will help to establish a starting point for determining target circulating nutrient concentrations in koalas.

  3. Structural changes and out-of-sample prediction of realized range-based variance in the stock market

    Science.gov (United States)

    Gong, Xu; Lin, Boqiang

    2018-03-01

    This paper aims to examine the effects of structural changes on forecasting the realized range-based variance in the stock market. Considering structural changes in variance in the stock market, we develop the HAR-RRV-SC model on the basis of the HAR-RRV model. Subsequently, the HAR-RRV and HAR-RRV-SC models are used to forecast the realized range-based variance of S&P 500 Index. We find that there are many structural changes in variance in the U.S. stock market, and the period after the financial crisis contains more structural change points than the period before the financial crisis. The out-of-sample results show that the HAR-RRV-SC model significantly outperforms the HAR-BV model when they are employed to forecast the 1-day, 1-week, and 1-month realized range-based variances, which means that structural changes can improve out-of-sample prediction of realized range-based variance. The out-of-sample results remain robust across the alternative rolling fixed-window, the alternative threshold value in ICSS algorithm, and the alternative benchmark models. More importantly, we believe that considering structural changes can help improve the out-of-sample performances of most of other existing HAR-RRV-type models in addition to the models used in this paper.

  4. Designing a Low-Resolution Face Recognition System for Long-Range Surveillance

    NARCIS (Netherlands)

    Peng, Y.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2016-01-01

    Most face recognition systems deal well with high-resolution facial images, but perform much worse on low-resolution facial images. In low-resolution face recognition, there is a specific but realistic surveillance scenario: a surveillance camera monitoring a large area. In this scenario, usually

  5. A short-range multi-model ensemble weather prediction system for South Africa

    CSIR Research Space (South Africa)

    Landman, S

    2010-09-01

    Full Text Available prediction system (EPS) at the South African Weather Service (SAWS) are examined. The ensemble consists of different forecasts from the 12-km LAM of the UK Met Office Unified Model (UM) and the Conformal-Cubic Atmospheric Model (CCAM) covering the South...

  6. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  7. High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Tomas Manez, Kevin; Yudi, Xiao

    2018-01-01

    Bridge (P2DAB) converter, i.e. low-voltage (LV) side parallel and high-voltage (HV) side series, is proposed to achieve high voltage gain and low current stress over switching devices and transformer windings. Given the unmodified P2DAB power stage, by regulating the phase-shift angle between......Developing bidirectional dc-dc converters has become a critical research topic and gains more and more attention in recent years due to the extensive applications of smart grids with energy storages, hybrid and electrical vehicles and dc microgrids. In this paper, a Partial Parallel Dual Active...... the paralleled active bridges, the power equations and voltage gain are then modified, and therefore the operation range can be extended effectively. The operating principles of the proposed converter and its power characteristics under various operation modes are studied, and the design constraints...

  8. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    Science.gov (United States)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  9. Verification of the effects of Schumann frequency range electromagnetic fields on the human cardiovascular system

    Science.gov (United States)

    Tuzhilkin, D. A.; Borodin, A. S.

    2017-11-01

    The results of the study of variations in the electromagnetic background parameters of the Schumann resonator frequency range and the variability indices of the human heart period during its free activity are presented on the basis of 24-hour synchronous monitoring data. It is shown that the integral evaluation of the conjugacy of the heart rate variability indices from the Schumann resonance parameters is extremely weak. In this case, the differential evaluation of this dependence with separation into characteristic time intervals of the day, characterized by different motor activity of the subjects, becomes significantly higher. The number of volunteers whose conjugacy is characterized by a strong correlation in some cases reaches 35 percent of the sample.

  10. Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Science.gov (United States)

    Gendrin, Mathilde; Welchman, David P.; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno

    2009-01-01

    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. PMID:20019799

  11. Bayesian prediction of bacterial growth temperature range based on genome sequences

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Vesth, Tammi Camilla; Hallin, Peter Fischer

    2012-01-01

    Background: The preferred habitat of a given bacterium can provide a hint of which types of enzymes of potential industrial interest it might produce. These might include enzymes that are stable and active at very high or very low temperatures. Being able to accurately predict this based...... on a genomic sequence, would thus allow for an efficient and targeted search for production organisms, reducing the need for culturing experiments. Results: This study found a total of 40 protein families useful for distinction between three thermophilicity classes (thermophiles, mesophiles and psychrophiles...... that protein families associated with specific thermophilicity classes can provide effective input data for thermophilicity prediction, and that the naive Bayesian approach is effective for such a task. The program created for this study is able to efficiently distinguish between thermophilic, mesophilic...

  12. Range Sensor-Based Efficient Obstacle Avoidance through Selective Decision-Making.

    Science.gov (United States)

    Shim, Youngbo; Kim, Gon-Woo

    2018-03-29

    In this paper, we address a collision avoidance method for mobile robots. Many conventional obstacle avoidance methods have been focused solely on avoiding obstacles. However, this can cause instability when passing through a narrow passage, and can also generate zig-zag motions. We define two strategies for obstacle avoidance, known as Entry mode and Bypass mode. Entry mode is a pattern for passing through the gap between obstacles, while Bypass mode is a pattern for making a detour around obstacles safely. With these two modes, we propose an efficient obstacle avoidance method based on the Expanded Guide Circle (EGC) method with selective decision-making. The simulation and experiment results show the validity of the proposed method.

  13. Range Sensor-Based Efficient Obstacle Avoidance through Selective Decision-Making

    Directory of Open Access Journals (Sweden)

    Youngbo Shim

    2018-03-01

    Full Text Available In this paper, we address a collision avoidance method for mobile robots. Many conventional obstacle avoidance methods have been focused solely on avoiding obstacles. However, this can cause instability when passing through a narrow passage, and can also generate zig-zag motions. We define two strategies for obstacle avoidance, known as Entry mode and Bypass mode. Entry mode is a pattern for passing through the gap between obstacles, while Bypass mode is a pattern for making a detour around obstacles safely. With these two modes, we propose an efficient obstacle avoidance method based on the Expanded Guide Circle (EGC method with selective decision-making. The simulation and experiment results show the validity of the proposed method.

  14. Th and U in the Paleozoic and Mesozoic systems of Kitakami range (preliminary report)

    International Nuclear Information System (INIS)

    Katada, Masato; Kanaya, Hiroshi; Sato, Choji.

    1984-01-01

    The research of Th and U in Kitakami range was commenced during the period of late 1950s and early 1960s. Following the exploration, the studies on Th and U in sedimentary rocks in Kitakami have been continued systematically. The data of Th and U covered whole Kitakami range by the addition of the newly obtained analytical data of northern part. The behaviors of Th and U during deposition and their contents in source rocks were studied by the analytical data. 75 samples of mudstone, sandstone, the matrix of conglomerate and limestone from south Kitakami, and 180 samples of mudstone, cherty clay stone, limestone, chert and green rock from northern part of Kitakami were analyzed. U/K 2 O ratio was constant regardless of the stratigraphy in the samples of southern Kitakami. This suggests that the major portion of U was initially dissolved in seawater, adsorbed by sericite, which is the only K 2 O -bearing mineral of sediment, and deposited. The values of Th and U in the sedimentary rocks in southern Kitakami were nearly the same as those of common sedimentary rocks in the world. It is supposed that the formation of K 2 O-bearing mineral was small, and the contents in source rocks affected. On the contrary, the Th values of sedimentary rocks in northern Kitakami, were higher than those of south, and it is supposed that this is attributable to the felsitic nature of source rocks. The mudstone of Matsumae, Hokkaido, differed from that of Kitakami, which means that they were not in same sedimentary basin. (Ishimitsu, A.)

  15. Mobile network architecture of the long-range WindScanner system

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Hansen, Per

    to the acquisition of the mobile network connections with static public IP addresses. The architecture consists of a hardware VPN solution based on the network appliances Z1 and MX60 from Cisco Meraki with additional 3G or 4G dongles. With the presented network architecture and appropriate configuration, we fulfill...

  16. Applying the Training Range Environmental Evaluation and Characterization System (TREECS) (User Guide)

    Science.gov (United States)

    2012-08-01

    calculation of the erosion rate is based on the United States Department of Agriculture (USDA) Universal Soil Loss Equation ( USLE ). ERDC/EL TR-12-16 147...to specifying the USLE input parameters, the user must select which method to use for computing the soil loss type (i.e., “SDR,” or “Without SDR...34  Soil Model

  17. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    Science.gov (United States)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  18. Density of states of two-dimensional systems with long-range logarithmic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, Andrés M.; Ortuño, Miguel; Baturina, Tatyana I.; Vinokur, Valerii M.

    2015-08-03

    We investigate a single-particle density of states (DOS) in strongly disordered two- dimensional high dielectric permittivity systems with logarithmic Coulomb interaction between particles. We derive self-consistent DOS at zero temperature and show that it is appreciably suppressed as compared to the DOS expected from the Efros-Shklovskii approach.We carry out zero- and finite-temperature Monte Carlo numerical studies of the DOS and find the perfect agreement between the numerical and analytical results at zero temperature, observing, in particular, a hardening of the Coulomb gap with the increasing electrostatic screening length. At finite temperatures, we reveal a striking scaling of the DOS as a function of energy normalized to the temperature of the system.

  19. Comprehensive Regional Modeling for Long-Range Planning: Linking Integrated Urban Models and Geographic Information Systems

    OpenAIRE

    Johnston, Robert; de la Barra, Thomas

    2000-01-01

    This study demonstrates the sequential linking of two types of models to permit the comprehensive evaluation of regional transportation and land use policies. First, we operate an integrated urban model (TRANUS), which represents both land and travel markets with zones and networks. The travel and land use projections from TRANUS are outlined, to demonstrate the general reasonableness of the results, as this is the first application of a market-based urban model in the US. Second, the land us...

  20. Characterization of the mutual influence of Ion Cyclotron and Lower Hybrid Range of frequencies systems on EAST

    Directory of Open Access Journals (Sweden)

    Urbanczyk Guillaume

    2017-01-01

    Full Text Available Waves in the Ion Cyclotron (ICRF and Lower Hybrid (LH Range of Frequencies are efficient techniques respectively to heat the plasma and drive current. Main difficulties come from a trade-off between good RF coupling and acceptable level of impurities release. The mutual influence of both systems makes such equilibrium often hard to reach [1]. In order to investigate those interactions based on Scrape-Off Layer (SOL plasma parameters, a new reciprocating probe was designed allying a three tips Langmuir probe with an emissive wire. The emissive filament provides a precise measure of plasma potential [2], which can be used to calibrate Langmuir probe's results. This paper reports on experimental results obtained on EAST, where there are two ICRF antennas and two LH launchers. Among others diagnostics, the new reciprocating probe enabled to evidence the deleterious influence of ICRF power on LHWs coupling in L-mode plasmas. In areas connected with an active ICRF antenna, SOL potentials increase while densities tend to decrease, respectively enhancing impurities release and deteriorating LHWs coupling. This phenomenon has mostly been attributed to RF sheath; the one that forms on top of Plasma Facing Components (PFCs and causes ExB density convections [3]. From those experiments it seems ICRF has a strong influence on magnetically connected areas, both in the near field – influencing ICRF waves coupling – and in farther locations such as in front of LH grills. Moreover, influence of ICRF on LH system was observed both in L and H modes. Those results are consistent with RF sheath rectification process. Concerning the influence of LHWs on ICRF coupling, nothing was observed in L-mode. Besides during H-mode experiments, LHWs have been identified as having a mitigating effect on ELMs [4], which on average lowers the pedestal, increasing edge densities to the profit of ICRF waves coupling.