WorldWideScience

Sample records for range stress fields

  1. Electromagnetic fields stress living cells.

    Science.gov (United States)

    Blank, Martin; Goodman, Reba

    2009-08-01

    Electromagnetic fields (EMF), in both ELF (extremely low frequency) and radio frequency (RF) ranges, activate the cellular stress response, a protective mechanism that induces the expression of stress response genes, e.g., HSP70, and increased levels of stress proteins, e.g., hsp70. The 20 different stress protein families are evolutionarily conserved and act as 'chaperones' in the cell when they 'help' repair and refold damaged proteins and transport them across cell membranes. Induction of the stress response involves activation of DNA, and despite the large difference in energy between ELF and RF, the same cellular pathways respond in both frequency ranges. Specific DNA sequences on the promoter of the HSP70 stress gene are responsive to EMF, and studies with model biochemical systems suggest that EMF could interact directly with electrons in DNA. While low energy EMF interacts with DNA to induce the stress response, increasing EMF energy in the RF range can lead to breaks in DNA strands. It is clear that in order to protect living cells, EMF safety limits must be changed from the current thermal standard, based on energy, to one based on biological responses that occur long before the threshold for thermal changes.

  2. Individual differences in BEV drivers' range stress during first encounter of a critical range situation.

    Science.gov (United States)

    Franke, Thomas; Rauh, Nadine; Krems, Josef F

    2016-11-01

    It is commonly held that range anxiety, in the form of experienced range stress, constitutes a usage barrier, particularly during the early period of battery electric vehicle (BEV) usage. To better understand factors that play a role in range stress during this critical period of adaptation to limited-range mobility, we examined individual differences in experienced range stress in the context of a critical range situation. In a field experiment, 74 participants drove a BEV on a 94-km round trip, which was tailored to lead to a critical range situation (i.e., small available range safety buffer). Higher route familiarity, trust in the range estimation system, system knowledge, subjective range competence, and internal control beliefs in dealing with technology were clearly related to lower experienced range stress; emotional stability (i.e., low neuroticism) was partly related to lower range stress. These results can inform strategies aimed at reducing range stress during early BEV usage, as well as contribute to a better understanding of factors that drive user experience in low-resource systems, which is a key topic in the field of green ergonomics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Stress field models from Maxwell stress functions: southern California

    Science.gov (United States)

    Bird, Peter

    2017-08-01

    shallow stress maxima and discontinuous horizontal compression at the Moho, which the new model can only approximate. The new model also lacks the spatial resolution to portray the localized stress states that may occur near the central surfaces of weak faults; instead, the model portrays the regional or background stress field which provides boundary conditions for weak faults. Peak shear stresses in one registered model and one alternate model are 120 and 150 MPa, respectively, while peak vertically integrated shear stresses are 2.9 × 1012 and 4.1 × 1012 N m-1. Channeling of deviatoric stress along the strong Great Valley and the western slope of the Peninsular Ranges is evident. In the neotectonics of southern California, it appears that deviatoric stress and long-term strain rate have a negative correlation, because regions of low heat flow are strong and act as stress guides, while undergoing very little internal deformation. In contrast, active faults lie preferentially in areas with higher heat flow, and their low strength keeps deviatoric stresses locally modest.

  4. Absolute stress measurements at the rangely anticline, Northwestern Colorado

    Science.gov (United States)

    de la Cruz, R. V.; Raleigh, C.B.

    1972-01-01

    Five different methods of measuring absolute state of stress in rocks in situ were used at sites near Rangely, Colorado, and the results compared. For near-surface measurements, overcoring of the borehole-deformation gage is the most convenient and rapid means of obtaining reliable values for the magnitude and direction of the state of stress in rocks in situ. The magnitudes and directions of the principal stresses are compared to the geologic features of the different areas of measurement. The in situ stresses are consistent in orientation with the stress direction inferred from the earthquake focal-plane solutions and existing joint patterns but inconsistent with stress directions likely to have produced the Rangely anticline. ?? 1972.

  5. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun

    2016-03-03

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low and high stress levels; all updated models involve four parameters. Compiled consolidation data for remolded and natural clays are used to test the models and to develop correlations between model parameters and index properties. Models can adequately fit soil compression data for a wide range of stresses and soil types; in particular, models that involve the power of the stress σ\\'β display higher flexibility to capture the brittle response of some natural soils. The use of a single continuous function avoids numerical discontinuities or the need for ad hoc procedures to determine the yield stress. The tangent stiffness-readily computed for all models-should not be mistaken for the small-strain constant-fabric stiffness. © 2016 American Society of Civil Engineers.

  6. Effect of stress on field dependence.

    Science.gov (United States)

    Sarris, V; Heineken, E; Peters, H

    1976-08-01

    60 subjects were tested in the rod-and-frame test under flicker conditions (stress). As compared to scores in a control situation (no flicker), the rod-and-frame scores were large under stress and increased monotonically during the session. Futhermore, both intra- and interindividual variability of rod-and-frame performance changed under stress conditions in a consistent manner. The general results, which clearly point to a reliable influence of stress on field dependency, are discussed within the methodological framework of Witkin's theory of perception and personality.

  7. home range and reproduction of rodents in maynugus irrigation field

    African Journals Online (AJOL)

    ADMIN

    observations were outside irrigated fields. Population dynamics of small mammals in irrigated fields is unique due to the continuous supply of food. Hence this investigation was carried out in agricultural fields at Maynugus, in northern Ethiopia, to understand the home range and reproductive patterns of rodents, and to.

  8. Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    in the lithosphere, induced by lateral density variation. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column, which is related to horizontal stresses by the Equations of Equilibrium. The Geopotential Energy can be furthermore linearly related to the Geoid under...... assumption of local isostasy. Satellite Geoid measurements contain, however, deeper mantle responses of most likely longwavelength. Still after filtering, the Geoid can't be satisfyingly corrected. Existing shallow signals can be hereby extinguished as well, for instance the somewhat age dependent signal...... response to Geopotential Energy and the Geoid. A linearized inverse method fits a lithospheric reference model to reproduce measured data sets, such as topography and surface heat flow, while assuming isostasy and solving the steady state heat equation. A FEM code solves the equations of equilibrium...

  9. Crustal Stress in the Flinders Ranges, South Australia, From Earthquake First Motion Data

    Science.gov (United States)

    Cummins, P. R.; Balfour, N.; Love, D.

    2010-12-01

    We have used data recorded by a temporary seismograph deployment to infer constraints on the state of crustal stress in the Flinders Ranges in south-central Australia. Previous stress estimates for the region have been poorly constrained due to the lack of large events and limited station coverage for focal mechanisms. New data allowed 65 events with 544 first motions to be used in a stress inversion to estimate the principal stress directions and stress ratio.While our initial inversion suggested that stress in the region was not homogeneous, we found that discarding data for events in the top 2km of the crust resulted in a well-constrained stress orientation that is consistent with the assumption of homogeneous stress throughout the Flinders Ranges. We speculate that the need to screen out shallow events may be due to the presence in the shallow crust of either: (1) small-scale velocity heterogeneity that would bias the ray parameter estimates, or (2) heterogeneity in the stress field itself, possibly due to the influence of the relatively pronounced topographic relief. The stress derived from earthquakes in the Flinders Ranges show an oblique reverse faulting stress regime, which contrasts with the pure thrust and pure strike slip regimes suggested by earlier studies. However, the roughly E-W direction of maximum horizontal compressive stress we obtain supports the conclusion of virtually all previous studies that the Flinders Ranges are undergoing E-W compression due to orogenic events at the boundaries of the Australian and Indian Plates.

  10. Imaging using long range dipolar field effects Nuclear magnetic resonance

    CERN Document Server

    Gutteridge, S

    2002-01-01

    The work in this thesis has been undertaken by the except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. Thes...

  11. Stress field reconstruction in an active mudslide

    Science.gov (United States)

    Baroň, Ivo; Kernstocková, Markéta; Melichar, Rostislav

    2017-07-01

    Meso-scale structures from gravitational slope deformation observed in landslides and deep-seated gravitational slope failures are very similar to those of endogenous ones. Therefore we applied palaeostress analysis of fault-slip data for reconstructing the stress field of an active mudslide in Pechgraben, Austria. This complex compound landslide has developed in clayey colluvium and shale and was activated after a certain period of dormancy in June 2013. During the active motion on June 12, 2013, 73 fault-slip traces at 9 locations were measured within the landslide body. The heterogeneous fault-slip data were processed in term of palaeostresses, the reconstructed palaeostress tensor being characterized by the orientations of the three principal stress axes and the stress ratio (which provides the shape of the stress ellipsoid). The results of the palaeostress analysis were compared to airborne laser scan digital terrain models that revealed dynamics and superficial displacements of the moving mass prior and after our survey. The results were generally in good agreement with the observed landslide displacement pattern and with the anticipated stress regime according to Mohr-Coulomb failure criteria and Anderson's theory. The compressional regime was mostly registered at the toe in areas, where a compressional stress field is expected during previous mass-movement stages, or at margins loaded by subsequent landslide bodies from above. On the other hand, extension regimes were identified at the head scarps of secondary slides, subsequently on bulged ridges at the toe and in the zone of horst-and-graben structures in the lower central part of the main landslide body, where the basal slip surface probably had locally convex character. Strike-slip regimes, as well as oblique normal or oblique reverse regimes were observed at the lateral margins of the landslide bodies. The directions of principal stresses could be used as markers of landslide movement directions

  12. Environment Assessment for Grand Bay Range, Bemiss Field, and Moody Explosive Ordnance Disposal Range Operations

    Science.gov (United States)

    2013-06-01

    longleaf pine (Pinus palustris), and slash pine (Moody AFB 2007a). The Grand Bay Range impact area and Bemiss Field are managed to provide a Bahia ...Bemiss Field or immigration has occurred in this area. No confirmed sightings of indigo snakes have occurred since 1996, despite intensive monitoring

  13. Determining the stress field in active volcanoes using focal mechanisms

    Directory of Open Access Journals (Sweden)

    Bruno Massa

    2016-11-01

    Full Text Available Stress inversion of seismological datasets became an essential tool to retrieve the stress field of active tectonics and volcanic areas. In particular, in volcanic areas, it is able to put constrains on volcano-tectonics and in general in a better understanding of the volcano dynamics. During the last decades, a wide range of stress inversion techniques has been proposed, some of them specifically conceived to manage seismological datasets. A modern technique of stress inversion, the BRTM, has been applied to seismological datasets available at three different regions of active volcanism: Mt. Somma-Vesuvius (197 Fault Plane Solutions, FPSs, Campi Flegrei (217 FPSs and Long Valley Caldera (38,000 FPSs. The key role of stress inversion techniques in the analysis of the volcano dynamics has been critically discussed. A particular emphasis was devoted to performances of the BRTM applied to volcanic areas.

  14. Determining the stress field in active volcanoes using focal mechanisms

    Science.gov (United States)

    Massa, Bruno; D'Auria, Luca; Cristiano, Elena; De Matteo, Ada

    2016-11-01

    Stress inversion of seismological datasets became an essential tool to retrieve the stress field of active tectonics and volcanic areas. In particular, in volcanic areas, it is able to put constrains on volcano-tectonics and in general in a better understanding of the volcano dynamics. During the last decades, a wide range of stress inversion techniques has been proposed, some of them specifically conceived to manage seismological datasets. A modern technique of stress inversion, the BRTM, has been applied to seismological datasets available at three different regions of active volcanism: Mt. Somma-Vesuvius (197 Fault Plane Solutions, FPSs), Campi Flegrei (217 FPSs) and Long Valley Caldera (38,000 FPSs). The key role of stress inversion techniques in the analysis of the volcano dynamics has been critically discussed. A particular emphasis was devoted to performances of the BRTM applied to volcanic areas.

  15. Minimum shear stress range: a criterion for crack path determination

    Science.gov (United States)

    Pereira, K.; Abdel Wahab, M.

    2017-05-01

    For problems under proportional mixed-mode conditions, various criteria are used to predict fatigue crack growth directions, most achieving reasonable accuracy. The crack propagation angle is often obtained by maximizing a quantity (for instance, energy or stresses) as function of the stress intensity factors KI and KII. This maximization is generally performed at the instant of maximum fatigue loading and a stress analysis at this instant is sufficient to predict the crack propagation angle and thus the fatigue crack growth direction. However, under non-proportional loading, the maximum values of KI and KII may occur at different instants of the fatigue cycle and so a simple analysis at the maximum loading instant is not appropriate; it is necessary to consider the entire loading cycle history. One possible criterion to treat problems under these circumstances is the minimum shear stress range criterion (MSSR). This paper presents a brief discussion of the most common criteria used for determination of crack propagation direction, focusing on an implementation of MSSR. Its performance is assessed in different conditions and the results are compared to literature data.

  16. Beltrami stress fields in an elastic body

    Science.gov (United States)

    Aristov, S. N.; Keller, I. E.

    2016-07-01

    It is proposed to search for solutions to the equation of continuum equilibrium satisfying additionally the Beltrami tensor equation, which describes self-transformation of a solenoidal field and is well-known in hydrodynamics for the velocity vector field; however, it has apparently still not been considered for tensor fields. A series of localized stress distributions twisting the material continuum are obtained as well as the stress distribution in the form of periodic structures in the space caused by the regular distribution of incompatible plastic deformation in an elasto-plastic solid. The obtained solutions are not known in the theory of elasticity and represent a certain interest in connection with the description of defects in a solid.

  17. Inertial range spectrum of field-aligned whistler turbulence

    DEFF Research Database (Denmark)

    Dwivedi, Navin Kumar; Singh, Shobhana

    2017-01-01

    An analytical model to study the whistler turbulence spectrum and inertial range spectral scalings related with the electric and magnetic field spectra in a weakly non-collisional magnetized plasma is developed. In the present model, the dispersion relation of whistler wave propagating along...

  18. Stress Intensity Factor calculation from displacement fields

    Directory of Open Access Journals (Sweden)

    S. Beretta

    2017-07-01

    Full Text Available In the last two decades, visual image techniques such as Digital Image Correlation (DIC enabled to experimentally determine the crack tip displacement and strain fields at small scales. The displacements are tracked during loading, and parameters as the Stress Intensity Factor (SIF, opening and closing loads, T-stress can be readily measured. In particular, the SIFs and the T-stress can be obtained by fitting the analytical equation of the Williamstype expansion with the experimentally-determined displacement fields. The results in terms of fracture mechanics parameters strictly depend on the dimension of the area considered around the crack tip in conjunction with the crack length, the maximum SIF (and thus the plastic tip radius, and the number of terms to be considered in the Williams-type expansion. This work focuses in understanding the accuracy of the SIF calculation based on these factors. The study is based on Finite Element Analysis simulations where purely elastic material behavior is considered. The accuracy of the estimation of the SIF is investigated and a guide-line is provided to properly set the DIC measurements. The analysis is then experimentally validated for crack closure measurements adopting the SENT specimen geometry.

  19. Capturing range of a near-field optical trap

    Science.gov (United States)

    Zaman, Mohammad Asif; Padhy, Punnag; Hesselink, Lambertus

    2017-10-01

    A study on the spatial characteristics of a near-field optical trap is presented. For analysis, a plasmonic near-field trap consisting of a C-shaped engraving is considered. Numerical simulations are performed to calculate the optical force exerted on a spherical nanoparticle by the trap. A Brownian dynamics model is used to simulate a large number of independent trajectories of a nanoparticle submerged in the optical force field. Statistical analysis is performed on the trajectory data to calculate the trapping probability at different points in space. The points with equal trapping probabilities are enclosed in a surface to visualize the influence domain of the trap. The metric capturing range is defined and calculated from the spatial extent of such surfaces. The possible applications of the defined metric are discussed. Some design examples from the literature are also analyzed and are found to be consistent with the proposed analysis.

  20. Multi-phase-field analysis of short-range forces between diffuse interfaces

    Science.gov (United States)

    Wang, N.; Spatschek, R.; Karma, A.

    2010-05-01

    We characterize both analytically and numerically short-range forces between spatially diffuse interfaces in multi-phase-field models of polycrystalline materials. During late-stage solidification, crystal-melt interfaces may attract or repel each other depending on the degree of misorientation between impinging grains, temperature, composition, and stress. To characterize this interaction, we map the multiphase-field equations for stationary interfaces to a multidimensional classical mechanical scattering problem. From the solution of this problem, we derive asymptotic forms for short-range forces between interfaces for distances larger than the interface thickness. The results show that forces are always attractive for traditional models where each phase-field represents the phase fraction of a given grain. Those predictions are validated by numerical computations of forces for all distances. Based on insights from the scattering problem, we propose a multi-phase-field formulation that can describe both attractive and repulsive forces in real systems. This model is then used to investigate the influence of solute addition and a uniaxial stress perpendicular to the interface. Solute addition leads to bistability of different interfacial equilibrium states, with the temperature range of bistability increasing with strength of partitioning. Stress in turn, is shown to be equivalent to a temperature change through a standard Clausius-Clapeyron relation. The implications of those results for understanding grain boundary premelting are discussed.

  1. Long-range interactions in lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.

  2. Active stabilization of error field penetration via control field and bifurcation of its stable frequency range

    Science.gov (United States)

    Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.

    2017-11-01

    An active stabilization effect of a rotating control field against an error field penetration is numerically studied. We have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’, which can simulate plasma responses to rotating/static external magnetic field. Adopting non-uniform flux coordinates system, the AEOLUS-IT simulation can employ high magnetic Reynolds number condition relevant to present tokamaks. By AEOLUS-IT, we successfully clarified the stabilization mechanism of the control field against the error field penetration. Physical processes of a plasma rotation drive via the control field are demonstrated by the nonlinear simulation, which reveals that the rotation amplitude at a resonant surface is not a monotonic function of the control field frequency, but has an extremum. Consequently, two ‘bifurcated’ frequency ranges of the control field are found for the stabilization of the error field penetration.

  3. Stress-free states of continuum dislocation fields: Rotations, grain boundaries, and the Nye dislocation density tensor

    OpenAIRE

    Limkumnerd, Surachate; Sethna, James P.

    2006-01-01

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose stress fields vanish. We explain that a grain boundary (a dislocation wall satisfying Frank's formula) has vanishing stress in the continuum limit. We show that the general stress-free state can be wri...

  4. A new barometer from stress fields around inclusions

    Science.gov (United States)

    Avadanii, Diana; Hansen, Lars; Wallis, David; Waters, David

    2017-04-01

    A key step in understanding geological and geodynamic processes is modelling the pressure-temperature paths of metamorphic rocks. Traditional thermobarometry relies on mineral assemblage equilibria and thermodynamic modelling to infer the pressures and temperatures of chemical equilibration. This approach requires the presence of specific mineral assemblages and compositions, which narrows its applicability. In this study we aim to develop a geobarometer based on mechanical interactions between inclusions and their host grains. Exhumation of minerals with inclusions causes heterogeneous residual stress fields due to the different, and often anisotropic, elastic properties of the inclusion and host. Recent studies measure residual mean stresses within inclusions using Raman spectroscopy and use those stresses as a barometer. In contrast, we map each component of the stress tensor around inclusions using high angular-resolution electron backscatter diffraction (HR-EBSD). This technique provides both higher spatial resolution and increased sensitivity to elastic strains relative to Raman spectroscopy. We focus on quartz inclusions in garnet, a common feature in metamorphic rocks. This assemblage also provides an opportunity to test our results with compositional thermobarometry. We analyse samples metamorphosed at pressures ranging from ˜ 300 MPa to ˜ 1600 MPa, as recorded by independent geobarometers. HR-EBSD reveals symmetric and lobate signals around inclusions, with elastic strains and residual stresses of the order 10-3 and ±102 -103 MPa, respectively. We solve Eshelby's problem for the 'inhomogeneous inclusion' case to simulate the elastic strain/stress field around an anisotropic ellipsoidal inclusion surrounded by an isotropic, homogeneous, infinite matrix. This model calculates the stress disturbances caused by differential expansion of an inclusion and host subjected to decompression. We additionally account for differential expansion related to cooling

  5. Stress field control during large caldera-forming eruptions

    Directory of Open Access Journals (Sweden)

    Antonio Costa

    2016-10-01

    Full Text Available Crustal stress field can have a significant influence on the way magma is channelled through the crust and erupted explosively at the surface. Large Caldera Forming Eruptions (LCFEs can erupt hundreds to thousands of cubic kilometres of magma in a relatively short time along fissures under the control of a far-field extensional stress. The associated eruption intensities are estimated in the range 109 - 1011 kg/s. We analyse syn-eruptive dynamics of LCFEs, by simulating numerically explosive flow of magma through a shallow dyke conduit connected to a magma chamber that in turn is fed by a deeper magma reservoir, both under the action of an extensional far-field stress. Results indicate that huge amounts of high viscosity silicic magma can be erupted over timescales of a few to several hours. Our study provides answers to outstanding questions relating to the intensity and duration of catastrophic volcanic eruptions in the past. In addition, it presents far-reaching implications for the understanding of dynamics and intensity of large-magnitude volcanic eruptions on Earth and to highlight the necessity of a future research to advance our knowledge of these rare catastrophic events.

  6. Effective field theory for long-range properties of bottomonium

    Science.gov (United States)

    Krein, Gastão

    2017-03-01

    In this communication we present selected results from a recent study [N. Brambilla, G. Krein, J. Tarrús Castellà and A. Vairo, Phys. Rev. D 93, 054002 (2016)] of long-range properties of bottomonium. An analytical expression for the chromopolarizability of 1S bottomonium states is derived within the framework of potential nonrelativistic QCD (pNRQCD). Next, after integrating out the ultrasoft scale associated with the binding energy of bottomonium, the QCD trace anomaly is used to obtain the two-pion production amplitude for the chromopolarizability operator and the result is matched to a chiral effective field theory having bottomonium states and pions as degrees of freedom. We present results for the leading chiral logarithm correction to the mass of the 1S bottomonium and the van der Waals potential between two bottomonium states.

  7. Range-gated imaging for near-field target identification

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; Gallegos, R.A.; McDonald, T.E. [and others

    1996-12-01

    The combination of two complementary technologies developed independently at Los Alamos National Laboratory (LANL) and Sandia National Laboratory (SNL) has demonstrated feasibility of target detection and image capture in a highly light-scattering, medium. The technique uses a compact SNL developed Photoconductive Semiconductor Switch/Laser Diode Array (PCSS/LDA) for short-range (distances of 8 to 10 m) large Field-Of-View (FOV) target illumination. Generation of a time-correlated echo signal is accomplished using a photodiode. The return image signal is recorded with a high-speed shuttered Micro-Channel-Plate Image Intensifier (MCPII), declined by LANL and manufactured by Philips Photonics. The MCPII is rated using a high-frequency impedance-matching microstrip design to produce 150 to 200 ps duration optical exposures. The ultra first shuttering producer depth resolution of a few inches along the optic axis between the MCPII and the target, producing enhanced target images effectively deconvolved from noise components from the scattering medium in the FOV. The images from the MCPII are recorded with an RS-170 Charge-Coupled-Device camera and a Big Sky, Beam Code, PC-based digitizer frame grabber and analysis package. Laser pulse data were obtained by the but jitter problems and spectral mismatches between diode spectral emission wavelength and MCPII photocathode spectral sensitivity prevented the capture of fast gating imaging with this demonstration system. Continued development of the system is underway.

  8. The Ranges Of Subauroral Geomagnetic Field Elements | Rabiu ...

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics ... On quiet condition, the range in j season dominates over d- and e- seasons in all elements. ... Generally, the seasonal range in the D component for all the years as well as in H and Z components - apart from the anomaly - maintain the order e>j>d of seasonal variation which is ...

  9. High dynamic range electric field sensor for electromagnetic pulse detection

    National Research Council Canada - National Science Library

    Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2011-01-01

    ...) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices...

  10. Botanical studies in the Arctic National Wildlife Range: Field report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a botanical study in the Arctic National Wildlife Range during 1970. Cooperative studies on flora and fauna were done on selected sites. Sites include...

  11. Joint development in perturbed stress fields near faults

    Science.gov (United States)

    Rawnsley, K. D.; Rives, T.; Petti, J.-P.; Hencher, S. R.; Lumsden, A. C.

    1992-09-01

    Field evidence is presented for complex spatial and temporal perturbations of an otherwise systematic joint pattern around faults from well exposed faulted rock platforms. Joints propagating in perturbed stress fields will curve to follow the directions of the stress field trajectories. A progressive change in joint direction is observed from unperturbed regions away from faults, to strongly perturbed zones adjacent to faults. This indicates that the joint pattern can reflect perturbations of the regional stress field around faults. In the examples, the stress field perturbations are probably due to points of high friction on the fault plane which concentrate stress and distort the stress field in the surrounding rock. The corresponding joints converge at these points and are sub-parallel to the fault along the remainder of the fault plane. The possibility that a fault plane acts as a free surface contained within an elastic body is considered. In this situation the fault plane induces a rotation of the principal stress axes to become either perpendicular or parallel to the fault. The free surface model seems to explain the metre-scale curvature of joints in the vicinity of existing joints, but at the kilometre scale of a large fault plane the model becomes unrealistic unless the fault is open at the Earth's surface. Two examples are investigated from the Lias of Great Britain; at Nash Point and Robin Hood's Bay. Both comprise sub-horizontal strata of relatively homogeneous lithology and bed thickness, which provide striking examples of joints developed near faults.

  12. Failure of Ceramic Composites in Non-Uniform Stress Fields

    Science.gov (United States)

    Rajan, Varun P.

    the model to correct this deficiency are proposed; the remediated model is subsequently utilized in conjunction with an analytical model to probe stress fields adjacent to holes and notches in CMC panels. However, even the revised model is incapable of capturing the range of experimental behavior reported for CMCs with both stiff and compliant matrices. To ameliorate this deficiency, a new elastic-plastic constitutive model is developed. It extends the deformation theory of plasticity from metals to CMCs, and its predictions of near-notch strain fields in an open-hole tension test compare favorably to strains measured using digital image correlation. Based on these developments, future experimental and modeling work is proposed. With respect to the latter, cohesive interface simulations seem particularly suited for capturing multiple interacting damage mechanisms at multiple length scales in a physically sensible manner. In principle, they can function as virtual tests, guiding both engineering design and materials development.

  13. Evaluation of debonding strength of single lap joint by the intensity of singular stress field

    Science.gov (United States)

    Miyazaki, Tatsujiro; Noda, Nao-Aki

    2017-05-01

    In this paper, the similarity of the singular stress field of the single lap joint (SLJ) is discussed to evaluate the debonding fracture by the intensity of the singular stress field (ISSF). The practical method is proposed for analyzing the ISSF for the SLJ. The analysis method focuses on the FEM stress at the interface end by applying the same mesh pattern to the unknown and reference models. It is found that the independent technique useful for the bonded plate and butt joint cannot be applied to the SLJ because the singular stress field of the SLJ consists of two singular stress terms. The FEM stress is divided to two FEM stresses by applying the unknown and reference models to different minimum element sizes. Then, the practicality of the present method is examined by applying to the previous tensile test results of the SLJ composed of the aluminum alloy and the epoxy resin. The ISSFs for the SLJ were calculated by changing the adhesive thickness t 2 and the overlap length l 2. In the case of the SLJ with 225 mm in total length and 7 mm in adherend thickness, it was found that the similar singular stress fields are formed in the range of 0.15 mm ≤ t 2 ≤ 0.9mm and 15 mm ≤ l 2 ≤ 50 mm. It is shown that the critical ISSFs at the fracture are constant in the range.

  14. Neotectonic stresses in Fennoscandia: field observations and modelling

    Science.gov (United States)

    Pascal, Christophe

    2013-04-01

    The present-day stress state of Fennoscandia is traditionally viewed as the combination of far field sources and residual glacial loading stresses. Investigations were conducted in different regions of Norway with the purpose of detecting and measuring stress-relief features and to derive from them valuable information on the crustal stress state. Stress-relief features are induced by blasting and sudden rock unloading in road construction and quarrying operations and are common in Norway and very likely in other regions of Fennoscandia. Stress relief at the Earth's surface is diagnostic of anomalously high stress levels at shallow depths in the crust and appears to be a characteristic of the formerly glaciated Baltic and Canadian Precambrian shields. The studied stress-relief features are, in general, indicative of NW-SE compression, suggesting ridge-push as the main source of stress. Our derived stress directions are also in excellent agreement with the ones derived from other kinds of stress indicators, including focal mechanisms from deep earthquakes, demonstrating that stress-relief features are valuable for neotectonic research. As a second step we applied numerical modelling techniques to simulate the neotectonic stress field in Fennoscandia with particular emphasis to southern Norway. A numerical method was used to reconstruct the structure of the Fennoscandian lithosphere. The numerical method involves classical steady-state heat equations to derive lithosphere thickness, geotherm and density distribution and, in addition, requires the studied lithosphere to be isostatically compensated at its base. The a priori crustal structure was derived from previous geophysical studies. Undulations of the geoid were used to calibrate the models. Once the density structure of the Fennoscandian lithosphere is reconstructed it is straightforward to quantify its stress state and compare modelling results with existing stress indicators. The modelling suggests that

  15. Investigations of some rock stress measuring techniques and the stress field in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Tor Harald

    1997-12-31

    Rock stresses are important to the safe construction and operation of all man-made structures in rock, whether In mining, civil or petroleum engineering. The crucial issue is their relative magnitude and orientation. This thesis develops equipment and methods for further rock stress assessment and reevaluates existing overcoring rock stress measurements, and relates this information to the present geological setting. Both laboratory work and field work are involved. In the field, rock stresses are measured by the overcoring and the hydraulic fracturing technique. An observation technique for assessing likely high stresses is developed. The field data refer to several hydropower projects and to some offshore hydrocarbon fields. The principal sections are: (1) Tectonic setting in the western Fennoscandia, (2) Triaxial rock stress measurements by overcoring using the NTH cell (a strain gauge cell developed at the Norwegian technical university in Trondheim and based on the CSIR cell of the South African Council for Scientific and Industrial Research), (3) Laboratory testing of the NTH cell, (4) Quality ranking of stresses measured by the NTH cell, (4) Recalculated rock stresses and implications to the regional stress field, (5) Hydraulic fracturing stress measurements. 113 refs., 98 figs., 62 tabs.

  16. Stress-free states of continuum dislocation fields : Rotations, grain boundaries, and the Nye dislocation density tensor

    NARCIS (Netherlands)

    Limkumnerd, Surachate; Sethna, James P.

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose

  17. Which Factors Can Protect Against Range Stress in Everyday Usage of Battery Electric Vehicles? Toward Enhancing Sustainability of Electric Mobility Systems.

    Science.gov (United States)

    Franke, Thomas; Rauh, Nadine; Günther, Madlen; Trantow, Maria; Krems, Josef F

    2016-02-01

    The objective of the present research was to advance understanding of factors that can protect against range anxiety, specifically range stress in everyday usage of battery electric vehicles (BEVs). Range anxiety is a major barrier to the broad adoption of sustainable electric mobility systems. To develop strategies aimed at overcoming range anxiety, a clear understanding of this phenomenon and influencing factors is needed. We examined range anxiety in the form of everyday range stress (ERS) in a field study setting. Seventy-two customers leased a BEV for 3 months. The field study was specifically designed to enable examination of factors that can contribute to lower ERS. In particular, study design and sample recruitment were targeted at generating vehicle usage profiles that would lead to relatively frequent experience of situations requiring active management of range resources and thereby potentially leading to experienced range stress. Less frequent encounter with critical range situations, higher practical experience, subjective range competence, tolerance of low range, and experienced trustworthiness of the range estimation system were related to lower ERS. Moreover, range stress was found to be related to range satisfaction and BEV acceptance. The results underline the importance of the human factors perspective to overcome range anxiety and enhance sustainability of electric mobility systems. Trustworthiness should be employed as a key benchmark variable in the design of range estimation systems, and assistance systems should target increasing drivers' adaptive capacity (i.e., resilience) to cope with critical range situations. © 2015, Human Factors and Ergonomics Society.

  18. Measurement of the stress field of a tunnel through its rock EMR

    Science.gov (United States)

    Qiu, Liming; Wang, Enyuan; Song, Dazhao; Liu, Zhentang; Shen, Rongxi; Lv, Ganggang; Xu, Zhaoyong

    2017-08-01

    In order to quantitatively study the relationship between the disturbance stress of coal mine roadways and the electromagnetic radiation (EMR) of rocks, and further evaluate their internal stress distributions, we first examined the characteristics of EMR signals emitted from rock mass under uniaxial compression, analyzed the relationship between the stress inside the rock mass and its emitted EMR intensity, and put forward a new disturbance stress testing method by monitoring the EMR from the rock mass to retrieve its surrounding stress field. Then, we applied the method to monitor EMR intensity from the no.11803 rock roadway of the Nuodong coal mine, China, and inversely retrieved its stress field. Lastly, we analyzed the causes of local stress anomalies in the Nuodong area by testing the EMR intensity of its nearby areas, and we examined the geology of the whole region. The results showed that: (1) in the rock roadway and the surrounding area of the Nuodong coal mine, the disturbance stress was in the range of 4.8 ∼ 9.1 MPa, the angle between the direction of the stress field and the horizontal plane of the roadway was 35 ± 2.5°, the lateral pressure coefficient was 1.30 ∼ 1.57 (2) the Laoguishan and Yulong anticlines in the vicinity of the Nuodong coal mine caused great horizontal tectonic stress in the region, and the existence of the auxiliary roadway and F12 normal fault resulted in the formation of two high stress zones in the no.11803 rock roadway. Overall, monitoring the EMR from rock mass could ascertain the state, direction, size and distribution of disturbance stress in a roadway and further obtain the distribution of the stress field of an underground structure.

  19. The Sub-Crustal Stress Field in the Taiwan Region

    Directory of Open Access Journals (Sweden)

    Robert Tenzer and Mehdi Eshagh

    2015-01-01

    Full Text Available We investigate the sub-crustal stress in the Taiwan region. A tectonic configuration in this region is dominated by a collision between the Philippine oceanic plate and the Eurasian continental margin. The horizontal components of the sub-crustal stress are computed based on the modified _ formulae in terms of the stress function with a subsequent numerical differentiation. This modification increases the (degree-dependent convergence domain of the asymptotically-convergent series and consequently allows evaluating the stress components to a spectral resolution, which is compatible with currently available global crustal models. Moreover, the solution to the Vening _ (VMM inverse isostasy problem is explicitly incorporated in the stress function definition. The sub-crustal stress is then computed for a variable Moho geometry, instead of assuming only a constant Moho depth. The regional results reveal that the Philippine plate subduction underneath the Eurasian continental margin generates the shear sub-crustal stress along the Ryukyu Trench. Some stress anomalies associated with this subduction are also detected along both sides of the Okinawa Trough. A tensional stress along this divergent tectonic plate boundary is attributed to a back-arc rifting. The sub-crustal stress, which is generated by a (reverse subduction of the Eurasian plate under the Philippine plate, propagates along both sides of the Luzon (volcanic Arc. This stress field has a prevailing compressional pattern.

  20. Stress field modelling from digital geological map data

    Science.gov (United States)

    Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián

    2016-04-01

    To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is

  1. Gene expression under thermal stress varies across a geographical range expansion front.

    Science.gov (United States)

    Lancaster, Lesley T; Dudaniec, Rachael Y; Chauhan, Pallavi; Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt

    2016-03-01

    Many ectothermic species are currently expanding their distributions polewards due to anthropogenic global warming. Molecular genetic mechanisms facilitating range expansion under these conditions are largely unknown, but understanding these could help mitigate expanding pests and disease vectors, or help explain why some species fail to track changing climates. Here, using RNA-seq data, we examine genomewide changes in gene expression under heat and cold stress in the range-expanding damselfly Ischnura elegans in northern Europe. We find that both the number of genes involved and levels of gene expression under heat stress have become attenuated during the expansion, consistent with a previously reported release from selection on heat tolerances as species move polewards. Genes upregulated under cold stress differed between core and edge populations, corroborating previously reported rapid adaptation to cooler climates at the expansion front. Expression of sixty-nine genes exhibited a region x treatment effect; these were primarily upregulated in response to heat stress in core populations but in response to cold stress at the range edge, suggesting that some cellular responses originally adapted to heat stress may switch to cold-stress functionality upon encountering novel thermal selection regimes during range expansion. Transcriptional responses to thermal stress involving heat-shock and neural function genes were largely geographically conserved, while retrotransposon, regulatory, muscle function and defence gene expression patterns were more variable. Flexible mechanisms of cold-stress response and the ability of some genes to shift their function between heat and cold stress might be key mechanisms facilitating rapid poleward expansion in insects. © 2016 John Wiley & Sons Ltd.

  2. Modelling of the Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid...... flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications....

  3. Methodology for Computer-aided, Interactive Rapid Assessment of Local or Regional Stress Fields on Mars

    Science.gov (United States)

    Colton, S. L.; Ferrill, D. A.; Sims, D. W.; Wyrick, D. Y.; Franklin, N. M.

    2003-03-01

    We present a method for rapid assessment of stress fields on Mars: (i) mapping geologic structures, (ii) calculating stress fields, and (iii) determining resolved stresses on faults. Preliminary results are presented for northern Utopia Planitia.

  4. Environmental and Intrinsic Correlates of Stress in Free-Ranging Wolves.

    Directory of Open Access Journals (Sweden)

    Barbara Molnar

    Full Text Available When confronted with a stressor, animals react with several physiological and behavioral responses. Although sustained or repeated stress can result in severe deleterious physiological effects, the causes of stress in free-ranging animals are yet poorly documented. In our study, we aimed at identifying the main factors affecting stress levels in free-ranging wolves (Canis lupus.We used fecal cortisol metabolites (FCM as an index of stress, after validating the method for its application in wolves. We analyzed a total of 450 fecal samples from eleven wolf packs belonging to three protected populations, in Italy (Abruzzo, France (Mercantour, and the United States (Yellowstone. We collected samples during two consecutive winters in each study area. We found no relationship between FCM concentrations and age, sex or social status of individuals. At the group level, our results suggest that breeding pair permanency and the loss of pack members through processes different from dispersal may importantly impact stress levels in wolves. We measured higher FCM levels in comparatively small packs living in sympatry with a population of free-ranging dogs. Lastly, our results indicate that FCM concentrations are associated with endoparasitic infections of individuals.In social mammals sharing strong bonds among group members, the death of one or several members of the group most likely induces important stress in the remainder of the social unit. The potential impact of social and territorial stability on stress levels should be further investigated in free-ranging populations, especially in highly social and in territorial species. As persistent or repeated stressors may facilitate or induce pathologies and physiological alterations that can affect survival and fitness, we advocate considering the potential impact of anthropogenic causes of stress in management and conservation programs regarding wolves and other wildlife.

  5. Environmental and Intrinsic Correlates of Stress in Free-Ranging Wolves.

    Science.gov (United States)

    Molnar, Barbara; Fattebert, Julien; Palme, Rupert; Ciucci, Paolo; Betschart, Bruno; Smith, Douglas W; Diehl, Peter-Allan

    2015-01-01

    When confronted with a stressor, animals react with several physiological and behavioral responses. Although sustained or repeated stress can result in severe deleterious physiological effects, the causes of stress in free-ranging animals are yet poorly documented. In our study, we aimed at identifying the main factors affecting stress levels in free-ranging wolves (Canis lupus). We used fecal cortisol metabolites (FCM) as an index of stress, after validating the method for its application in wolves. We analyzed a total of 450 fecal samples from eleven wolf packs belonging to three protected populations, in Italy (Abruzzo), France (Mercantour), and the United States (Yellowstone). We collected samples during two consecutive winters in each study area. We found no relationship between FCM concentrations and age, sex or social status of individuals. At the group level, our results suggest that breeding pair permanency and the loss of pack members through processes different from dispersal may importantly impact stress levels in wolves. We measured higher FCM levels in comparatively small packs living in sympatry with a population of free-ranging dogs. Lastly, our results indicate that FCM concentrations are associated with endoparasitic infections of individuals. In social mammals sharing strong bonds among group members, the death of one or several members of the group most likely induces important stress in the remainder of the social unit. The potential impact of social and territorial stability on stress levels should be further investigated in free-ranging populations, especially in highly social and in territorial species. As persistent or repeated stressors may facilitate or induce pathologies and physiological alterations that can affect survival and fitness, we advocate considering the potential impact of anthropogenic causes of stress in management and conservation programs regarding wolves and other wildlife.

  6. Environmental and Intrinsic Correlates of Stress in Free-Ranging Wolves

    Science.gov (United States)

    Molnar, Barbara; Fattebert, Julien; Palme, Rupert; Ciucci, Paolo; Betschart, Bruno; Smith, Douglas W.; Diehl, Peter-Allan

    2015-01-01

    Background When confronted with a stressor, animals react with several physiological and behavioral responses. Although sustained or repeated stress can result in severe deleterious physiological effects, the causes of stress in free-ranging animals are yet poorly documented. In our study, we aimed at identifying the main factors affecting stress levels in free-ranging wolves (Canis lupus). Methodology/Principal Findings We used fecal cortisol metabolites (FCM) as an index of stress, after validating the method for its application in wolves. We analyzed a total of 450 fecal samples from eleven wolf packs belonging to three protected populations, in Italy (Abruzzo), France (Mercantour), and the United States (Yellowstone). We collected samples during two consecutive winters in each study area. We found no relationship between FCM concentrations and age, sex or social status of individuals. At the group level, our results suggest that breeding pair permanency and the loss of pack members through processes different from dispersal may importantly impact stress levels in wolves. We measured higher FCM levels in comparatively small packs living in sympatry with a population of free-ranging dogs. Lastly, our results indicate that FCM concentrations are associated with endoparasitic infections of individuals. Conclusions/Significance In social mammals sharing strong bonds among group members, the death of one or several members of the group most likely induces important stress in the remainder of the social unit. The potential impact of social and territorial stability on stress levels should be further investigated in free-ranging populations, especially in highly social and in territorial species. As persistent or repeated stressors may facilitate or induce pathologies and physiological alterations that can affect survival and fitness, we advocate considering the potential impact of anthropogenic causes of stress in management and conservation programs regarding wolves

  7. Stress-induced rise in body temperature is repeatable in free-ranging Eastern chipmunks (Tamias striatus).

    Science.gov (United States)

    Careau, Vincent; Réale, Denis; Garant, Dany; Speakman, John R; Humphries, Murray M

    2012-04-01

    In response to handling or other acute stressors, most mammals, including humans, experience a temporary rise in body temperature (T(b)). Although this stress-induced rise in T(b) has been extensively studied on model organisms under controlled environments, individual variation in this interesting phenomenon has not been examined in the field. We investigated the stress-induced rise in T(b) in free-ranging eastern chipmunks (Tamias striatus) to determine first if it is repeatable. We predicted that the stress-induced rise in T(b) should be positively correlated to factors affecting heat production and heat dissipation, including ambient temperature (T(a)), body mass (M(b)), and field metabolic rate (FMR). Over two summers, we recorded both T(b) within the first minute of handling time (T(b1)) and after 5 min of handling time (T(b5)) 294 times on 140 individuals. The mean ∆T(b) (T(b5) - T(b1)) during this short interval was 0.30 ± 0.02°C, confirming that the stress-induced rise in T(b) occurs in chipmunks. Consistent differences among individuals accounted for 40% of the total variation in ∆T(b) (i.e. the stress-induced rise in T(b) is significantly repeatable). We also found that the stress-induced rise in T(b) was positively correlated to T(a), M(b), and mass-adjusted FMR. These results confirm that individuals consistently differ in their expression of the stress-induced rise in T(b) and that the extent of its expression is affected by factors related to heat production and dissipation. We highlight some research constraints and opportunities related to the integration of this laboratory paradigm into physiological and evolutionary ecology.

  8. Stress Energy Tensor in c=0 Logarithmic Conformal Field Theory

    OpenAIRE

    Kogan, I. I.; Nichols, A.

    2002-01-01

    We discuss the partners of the stress energy tensor and their structure in Logarithmic conformal field theories. In particular we draw attention to the fundamental differences between theories with zero and non-zero central charge. We analyze the OPE for T, \\bar{T} and the logarithmic partners t and \\bar{t} for c=0 theories.

  9. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    Science.gov (United States)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  10. Development of the Stress of Immigration Survey (SOIS): a Field Test among Mexican Immigrant Women

    Science.gov (United States)

    Sternberg, Rosa Maria; Nápoles, Anna Maria; Gregorich, Steven; Paul, Steven; Lee, Kathryn A.; Stewart, Anita L.

    2016-01-01

    The Stress of Immigration Survey (SOIS) is a screening tool used to assess immigration-related stress. The mixed methods approach included concept development, pretesting, field-testing, and psychometric evaluation in a sample of 131 low-income women of Mexican descent. The 21-item SOIS screens for stress related to language; immigrant status; work issues; yearning for family and home country; and cultural dissonance. Mean scores ranged from 3.6 to 4.4 (1-5 scale, higher is more stress). Cronbach's alphas >.80 for all sub-scales. The SOIS may be a useful screening tool for detecting high levels of immigration-related stress in low-income Mexican immigrant women. PMID:26605954

  11. Development of the Stress of Immigration Survey: A Field Test Among Mexican Immigrant Women.

    Science.gov (United States)

    Sternberg, Rosa Maria; Nápoles, Anna Maria; Gregorich, Steven; Paul, Steven; Lee, Kathryn A; Stewart, Anita L

    2016-01-01

    The Stress of Immigration Survey (SOIS) is a screening tool used to assess immigration-related stress. The mixed methods approach included concept development, pretesting, field testing, and psychometric evaluation in a sample of 131 low-income women of Mexican descent. The 21-item SOIS screens for stress related to language, immigrant status, work issues, yearning for family and home country, and cultural dissonance. Mean scores ranged from 3.6 to 4.4 (a scale of 1-5, higher is more stress). Cronbach α values were more than 0.80 for all subscales. The SOIS may be a useful screening tool for detecting high levels of immigration-related stress in low-income Mexican immigrant women.

  12. Restoring range of motion via stress relaxation and static progressive stretch in posttraumatic elbow contractures.

    Science.gov (United States)

    Ulrich, Slif D; Bonutti, Peter M; Seyler, Thorsten M; Marker, David R; Morrey, Bernard F; Mont, Michael A

    2010-03-01

    Loss of range of motion after injury or surgery of the elbow is a common complication. We hypothesized that an orthosis that used progressive stretch and stress relaxation principles would improve elbow range of motion. This study evaluated the result of a patient-directed, bidirectional orthosis that uses static progressive stretch and stress relaxation principles to improve elbow range of motion in patients who had posttraumatic elbow contractures. Treatment in 37 elbows consisted of a 30-minute stretching protocol performed in 1 to 3 sessions daily for a mean of 10 weeks (range, 2-22 weeks). The mean gain in range of motion was 26 degrees (range, 2 degrees -60 degrees ). Gains of motion were noted in 35 of 37 elbows. Patients lowered their analgesic use and were highly satisfied with the device (mean satisfaction score of 8.5 of 10 points possible). This device compared favorably with reports of other devices. Consistent improvements in restoring range of motion can be achieved with short treatment times by using a device based on the principles of static progressive stretch and stress relaxation in patients with posttraumatic elbow contractures. Copyright 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  13. The stress field beneath Mt. Vesuvius (Southern Italy)

    Science.gov (United States)

    D'Auria, Luca; Massa, Bruno; De Matteo, Ada

    2014-05-01

    The Somma-Vesuvius is the smallest and one of the youngest volcanoes of the Neapolitan district. Its origin is linked to a Late Pleistocene-Holocene extension occurred along the entire Tyrrhenian margin of the Apennine chain. Nowadays, Mt. Vesuvius is a quiescent strato-volcano. Using different approaches and a comparison between observations and numerical models we have determined the spatial variations in the stress field beneath the volcano edifice. In order to achieve this target we have analyzed a focal mechanism dataset derived from 197 events recorded from Jan. 1999 to Jan. 2012. The main results highlight the presence of two seismogenic volumes characterized by markedly different stress patterns. The two volumes are separated by a layer where the seismic strain release shows a significant decrease. Previous studies postulated the existence, at about the same depth, of a ductile layer allowing the spreading of the Mt. Vesuvius edifice. We interpreted the difference in the stress pattern within the two volumes as the effect of a mechanical decoupling caused by the aforementioned ductile layer. The stress pattern in the top volume is dominated by a reverse faulting style, which agrees with the hypothesis of a seismicity driven by the spreading process. On the other hand, the stress field determined for the deep volume is consistent with a background regional field locally perturbed by the effects of the topography and of heterogeneities in the volcanic structure. Since the seismicity of the deep volume shows an intermittent behaviour and has shown to be linked to geochemical variations in the fumaroles of the volcano, we hypothesize that it results from the effect of fluid injection episodes, possibly of magmatic origin, perturbing the pore pressure within the hydrothermal system. The retrieved changes in the stress pattern could indicate variations in volcano dynamics potentially linked to the intrusion of magma at shallow depth.

  14. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    Science.gov (United States)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  15. Analysis of the exactness of mean-field theory in long-range interacting systems.

    Science.gov (United States)

    Mori, Takashi

    2010-12-01

    Relationships between general long-range interacting classical systems on a lattice and the corresponding mean-field models (infinitely long-range interacting models) are investigated. We study systems in arbitrary dimension d for periodic boundary conditions and focus on the free energy for fixed value of the total magnetization. As a result, it is shown that the equilibrium free energy of the long-range interacting systems are exactly the same as that of the corresponding mean-field models (exactness of the mean-field theory). Moreover, the mean-field metastable states can be also preserved in general long-range interacting systems. It is found that in the case that the magnetization is conserved, the mean-field theory does not give correct property in some parameter region.

  16. Simulation of the Burridge-Knopoff Model of Earthquakes with Variable Range Stress Transfer

    Science.gov (United States)

    Xia, Junchao; Gould, Harvey; Klein, W.; Rundle, J. B.

    2005-12-01

    Simple models of earthquake faults are important for understanding the mechanisms for their observed behavior, such as Gutenberg-Richter scaling and the relation between large and small events, which is the basis for various forecasting methods. Although cellular automaton models have been studied extensively in the long-range stress transfer limit, this limit has not been studied for the Burridge-Knopoff model, which includes more realistic friction forces and inertia. We find that the latter model with long-range stress transfer exhibits qualitatively different behavior than both the long-range cellular automaton models and the usual Burridge-Knopoff model with nearest-neighbor springs, depending on the nature of the velocity-weakening friction force. These results have important implications for our understanding of earthquakes and other driven dissipative systems.

  17. True stress-strain curves of cold worked stainless steel over a large range of strains

    Science.gov (United States)

    Kamaya, Masayuki; Kawakubo, Masahiro

    2014-08-01

    True stress-strain curves for cold worked stainless steel were obtained over a range of strains that included a large strain exceeding the strain for the tensile strength (post-necking strain). A specified testing method was used to obtain the stress-strain curves in air at room temperature. The testing method employed the digital image correlation (DIC) technique and iterative finite element analyses (FEA) and was referred to as IFD (Iteration FEA procedure based on DIC measurement) method. Although hourglass type specimens have been previously used for the IFD method, in this study, plate specimens with a parallel gage section were used to obtain accurate yield and tensile strengths together with the stress-strain curves. The stress-strain curves including the post-necking strain were successfully obtained by the IFD method, and it was shown that the stress-strain curves for different degrees of cold work collapsed onto a single curve when the offset strain was considered. It was also shown that the Swift type constitutive equation gave good regression for the true stress-strain curves including the post-necking strain regardless of the degree of cold work, although the Ramberg-Osgood type constitutive equation showed poor fit. In the regression for the Swift type constitutive equation, the constant for power law could be assumed to be nS = 0.5.

  18. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobin, E-mail: yangxb@lzu.edu.cn; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-04-15

    Highlights: • The differential equation including temperature and magnetic field was derived for a long cylindrical superconductor. • Thermal stress and electromagnetic stress were studied at the same time under pulse field magnetizing. • The distributions of the magnetic field, the temperature and stresses are studied and compared for two pulse fields of the different duration. • The Role thermal stress and electromagnetic stress play in the process of pulse field magnetizing is discussed. - Abstract: A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  19. Living to the range limit: consumer isotopic variation increases with environmental stress.

    Science.gov (United States)

    Reddin, Carl J; O'Connor, Nessa E; Harrod, Chris

    2016-01-01

    Theoretically, each species' ecological niche is phylogenetically-determined and expressed spatially as the species' range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources. Therefore, we expected individuals at greater shore heights to show greater variation in diet alongside lower indices of physiological condition. We sampled the grazing gastropod Echinolittorina peruviana from the desert coastline of northern Chile at three shore heights, across eighteen regionally-representative shores. Stable isotope values (δ13C and δ15N) were extracted from E. peruviana and its putative food resources to estimate Bayesian ellipse area, carbon and nitrogen ranges and diet. Individual physiological condition was tracked by muscle % C and % N. There was an increase in isotopic variation at high shore levels, where E. peruviana's preferred resource, tide-deposited particulate organic matter (POM), appeared to decrease in dietary contribution, and was expected to be less abundant. Both muscle % C and % N of individuals decreased with height on the shore. Individuals at higher stress levels appear to be less discriminating in diet, likely because of abiotic forcing, which decreases both consumer mobility and the availability of a preferred resource. Abiotic stress might be expected to increase trophic variation in other selective dietary generalist species. Where this coincides with a lower physiological condition may be a direct factor in setting their range limit.

  20. Living to the range limit: consumer isotopic variation increases with environmental stress

    Directory of Open Access Journals (Sweden)

    Carl J. Reddin

    2016-06-01

    Full Text Available Background: Theoretically, each species’ ecological niche is phylogenetically-determined and expressed spatially as the species’ range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources. Therefore, we expected individuals at greater shore heights to show greater variation in diet alongside lower indices of physiological condition. Methods: We sampled the grazing gastropod Echinolittorina peruviana from the desert coastline of northern Chile at three shore heights, across eighteen regionally-representative shores. Stable isotope values (δ13C and δ15N were extracted from E. peruviana and its putative food resources to estimate Bayesian ellipse area, carbon and nitrogen ranges and diet. Individual physiological condition was tracked by muscle % C and % N. Results: There was an increase in isotopic variation at high shore levels, where E. peruviana’s preferred resource, tide-deposited particulate organic matter (POM, appeared to decrease in dietary contribution, and was expected to be less abundant. Both muscle % C and % N of individuals decreased with height on the shore. Discussion: Individuals at higher stress levels appear to be less discriminating in diet, likely because of abiotic forcing, which decreases both consumer mobility and the availability of a preferred resource. Abiotic stress might be expected to increase trophic variation in other selective dietary generalist species. Where this coincides with a lower physiological condition may be a direct factor in setting their range limit.

  1. Plasmonic Antennas Nanocoupler for Telecom Range: Simulation, Fabrication and Near-Field Characterization

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2014-01-01

    We report simulation, fabrication and, for the first time, full amplitude-phase near-field optical characterization in telecom range of the compact and efficient plasmonic nanoantenna based couplers. Near-field data allowed characterizing the subwavelength slot waveguide’s propagation losses...

  2. Near field phased array DOA and range estimation of UHF RFID tags

    NARCIS (Netherlands)

    Huiting, J.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2015-01-01

    This paper presents a near field localization system based on a phased array for UHF RFID tags. To estimate angle and range the system uses a two-dimensional MUSIC algorithm. A four channel phased array is used to experimentally verify the estimation of angle and range for an EPC gen2 tag. The

  3. Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal.

    Science.gov (United States)

    Schneeberger, Karin; Czirják, Gábor Á; Voigt, Christian C

    2013-12-15

    Oxidative stress - the imbalance between reactive oxygen species (ROS) and neutralising antioxidants - has been under debate as the main cause of ageing in aerobial organisms. The level of ROS should increase during infection as part of the activation of an immune response, leading to oxidative damage to proteins, lipids and DNA. Yet, it is unknown how long-lived organisms, especially mammals, cope with oxidative stress. Bats are known to carry a variety of zoonotic pathogens and at the same time are, despite their high mass-specific basal metabolic rate, unusually long lived, which may be partly the result of low oxidative damage of organs. Here, we asked whether an immune challenge causes oxidative stress in free-ranging bats, measuring two oxidative stress markers. We injected 20 short-tailed fruit bats (Carollia perspicillata) with bacterially derived lipopolysaccharide (LPS) and 20 individuals with phosphate-buffered saline solution (PBS) as a control. Individuals injected with LPS showed an immune reaction by increased white blood cell count after 24 h, whereas there was no significant change in leukocyte count in control animals. The biological antioxidant potential (BAP) remained the same in both groups, but reactive oxygen metabolites (ROMs) increased after treatment with LPS, indicating a significant increase in oxidative stress in animals when mounting an immune reaction toward the inflammatory challenge. Control individuals did not show a change in oxidative stress markers. We conclude that in a long-lived mammal, even high concentrations of antioxidants do not immediately neutralise free radicals produced during a cellular immune response. Thus, fighting an infection may lead to oxidative stress in bats.

  4. Determination of full range stress-strain behavior of pipeline steels using tensile characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hertele, Stijn [FWO Flanders Aspirant, Laboratory Soete, Ghent University (Belgium)], email: Stijn.Hertele@UGent.be; Waele, Wim De; Denys, Rudi [Laboratory Soete, Ghent University (Belgium)

    2010-07-01

    In the natural gas sector, the common practice for determining the post-yield behavior of pipelines is to use the Ramberg-Osgood equation, however it is inaccurate for pipelines with a high yield to tensile (Y/T) ratio and the authors have developed a UGent stress strain model to address this issue. This paper aims at providing a methodology for determining the parameter values required for the UGent model. The methodology was tested on 8 stress strain curves for a wide range of steel grades and Y/T ratios. Results showed that the UGent model can accurately predict stress strain curves from Young's modulus, tensile strength, the 0.2% proof stress and the uniform elongation, all common tensile test characteristics, as well as the 1% proof stress using the methodology proposed herein. This study showed that the post-yield behavior of pipelines with a high Y/T ratio can be determined by using common tensile tests and the UGent model.

  5. Definition of the strain-stress distribution of porous glass in the retarded cooling temperature range

    Directory of Open Access Journals (Sweden)

    Grushko Irina

    2017-01-01

    Full Text Available The estimation of the strain-stress distribution (SSD of porous glass (foamed slag glass, FSG is assessed by annealing temperature curves according to the given values of the thermomechanical and thermophysical properties of porous glass, which are in correlation with the properties data of the host glass and its structure. When calculating cooling processes (cooling rate of porous glass products, the A.N. Dauvalter's formula, which takes into account only the stresses arising from the safe product cooling, but does not take into account those that remained there to the cooling start point, is usually used. The cooling rate in the interval of the annealing zone itself should be sufficiently low so that residual stresses, arising after they pass it, have small values. Since methods, that make it possible to determine the residual stresses that appear in the porous glass after passing through the initial annealing zone, are currently poorly developed, numerical simulation methods should be used to determine the porous glass SSD under the influence of thermal loads. Numerical study of the strain-stress distribution of porous glass allowing for thermal loads in the annealing temperature range was carried out in the Ansys Workbench software package.

  6. Dynamics and stress field of the Eurasian plate

    Science.gov (United States)

    Warners-Ruckstuhl, Karin; Govers, Rob; Wortel, Rinus

    2013-04-01

    We address the connection between forces on the Eurasian plate, the plate's motion and the intraplate stress field. Resistive forces along convergent plate boundaries have a major impact on surface deformation, most visibly at collisional plate boundaries. Although quantification of these forces is key to understanding the evolution and present state of mountain belts, they remain highly uncertain due to the complexity of plate boundary structures and rheologies. In this study we analyse the forces along the southern boundary of the Eurasian plate, presently the most prominent suture zone on Earth, resulting from the closure of the Neo-Tethys ocean. We address the dynamics of the Eurasian plate as a whole. This enables us to base our analysis on mechanical equilibrium of a tectonic plate and to evaluate the force distribution along the Tethyan boundary as part of an internally consistent set of forces driving and deforming Eurasia. We evaluate force distributions obeying this mechanical law on the basis of their ability to reproduce observed stress orientations. We incorporate tractions from convective mantle flow modelling in a lithospheric model in which edge and lithospheric body forces are modelled explicitly and compute resulting stresses in a homogeneous elastic thin shell. Our investigation is structured according to two research objectives, pursued in a corresponding step-wise approach: (1) a detailed understanding of the sensitivity of Eurasia's stress field to the distribution of all acting forces; and (2) a quantification of collision-related forces along the southern boundary of Eurasia, including their relation to observed plate boundary structure, in particular plateau height. Intraplate stress observations as compiled in the World Stress Map project are used to constrain the distribution of forces acting on Eurasia. Eurasia's stress field turns out to be sensitive to the distribution of collision forces on the plate's southern margin and, to a lesser

  7. Surface profile and stress field evaluation using digital gradient sensing method

    Science.gov (United States)

    Miao, C.; Sundaram, B. M.; Huang, L.; Tippur, H. V.

    2016-09-01

    Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output such a data accurately. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squares integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.

  8. Numerical modeling of present-day stress field and deformation pattern in Anatolia

    OpenAIRE

    Dwivedi, Sunil Kumar; Hayashi, Daigoro; 林, 大五郎

    2010-01-01

    The present-day stress field in the Earth's crust is important and provides insights into mechanisms that drive plate motions. In this study, an elastic plane stress finite element modeling incorporating realistic rock parameters have been used to calculate the stress field, displacement field and deformation of the plate interactions in Anatolia. Modeled stress data for the African-Arabian-Anatolian plate interactions with fixed Eurasian platform correlate well with observed stress indicator...

  9. Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens

    Science.gov (United States)

    Srawley, J. E.

    1976-01-01

    For each of the two types of specimens, bend and compact, described previously for plane strain fracture toughness of materials, E 399, a polynominal expression is given for calculation of the stress intensity factor, K, from the applied force, P, and the specimen dimensions. It is explicitly stated, however, that these expressions should not be used outside the range of relative crack length, a/W, from 0.45 to 0.55. While this range is sufficient for the purpose of E 399, the same specimen types are often used for other purposes over a much wider range of a/W; for example, in the study of fatigue crack growth. Expressions are presented which are at least as accurate as those in E 399-74, and which cover much wider ranges of a/W: for the three-point bend specimen from 0 to 1; and for the compact specimen from 0.2 to 1. The range has to be restricted for the compact specimen because of the proximity of the loading pin holes to the crackline, which causes the stress intensity factor to be sensitive to small variations in dimensions when a/W is small. This is a penalty inherently associated with the compactness of the specimen.

  10. Numerical analysis of stress fields generated by quenching process

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account mechanical phenomena generated by thermalphenomena and phase transformations. In the model of mechanical phenomena, apart from thermal, plastic and structural strain, alsotransformations plasticity was taken into account. The stress and strain fields are obtained using the solution of the Finite Elements Method of the equilibrium equation in rate form. The thermophysical constants occurring in constitutive relation depend on temperature and phase composite. For determination of plastic strain the Huber-Misses condition with isotropic strengthening was applied whereas fordetermination of transformation plasticity a modified Leblond model was used. In order to evaluate the quality and usefulness of thepresented models a numerical analysis of stresses and strains associated hardening process of a fang lathe of cone shaped made of tool steel was carried out.

  11. The generalized fracture criteria based on the multi-parameter representation of the crack tip stress field

    Science.gov (United States)

    Stepanova, L. V.

    2017-12-01

    The paper is devoted to the multi-parameter asymptotic description of the stress field near the crack tip of a finite crack in an infinite isotropic elastic plane medium subject to 1) tensile stress; 2) in-plane shear; 3) mixed mode loading for a wide range of mode-mixity situations (Mode I and Mode II). The multi-parameter series expansion of stress tensor components containing higher-order terms is obtained. All the coefficients of the multiparameter series expansion of the stress field are given. The main focus is on the discussion of the influence of considering the higher-order terms of the Williams expansion. The analysis of the higher-order terms in the stress field is performed. It is shown that the larger the distance from the crack tip, the more terms it is necessary to keep in the asymptotic series expansion. Therefore, it can be concluded that several more higher-order terms of the Williams expansion should be used for the stress field description when the distance from the crack tip is not small enough. The crack propagation direction angle is calculated. Two fracture criteria, the maximum tangential stress criterion and the strain energy density criterion, are used. The multi-parameter form of the two commonly used fracture criteria is introduced and tested. Thirty and more terms of the Williams series expansion for the near-crack-tip stress field enable the angle to be calculated more precisely.

  12. Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress

    Science.gov (United States)

    Alves, Luiz G. A.; Winter, Peter B.; Ferreira, Leonardo N.; Brielmann, Renée M.; Morimoto, Richard I.; Amaral, Luís A. N.

    2017-08-01

    Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.

  13. Near Field HF Antenna Pattern Measurement Method Using an Antenna Pattern Range

    Science.gov (United States)

    2015-12-01

    TECHNICAL REPORT 3006 December 2015 Near-Field HF Antenna Pattern Measurement Method Using an Antenna Pattern Range Ani Siripuram Michael Daly...link budget. This report focuses on computing absolute gain for HF antennas measured on the APR. Recent research efforts by SSC Pacific’s Applied...Electromagnetics Branch (Code 52250) show that the APR extends to accurate measurement of normalized far-field radiation patterns of HF antennas. The

  14. Correction of stress-depended changes of glucoproteid platelet receptors activity by electromagnetic radiation of terahertz range

    Directory of Open Access Journals (Sweden)

    V.F. Kirichuk

    2010-09-01

    Full Text Available The research goal is correction of stress-depended changes of glucoproteid (Gp platelet receptors activity by electromagnetic radiation of terahertz range. Influence of electromagnetic waves of terahertz range at the frequency of molecular spectrum of radiation and absorption of nitrogen oxide on lectin-induced platelet aggregation of white rats in the stressed condition was investigated

  15. Near tip stress and strain fields for short elastic cracks

    Science.gov (United States)

    Soediono, A. H.; Kardomateas, G. A.; Carlson, R. L.

    1994-01-01

    Recent experimental fatigue crack growth studies have concluded an apparent anomalous behavior of short cracks. To investigate the reasons for this unexpected behavior, the present paper focuses on identifying the crack length circumstances under which the requirements for a single parameter (K(sub I) or delta K(sub I) if cyclic loading is considered) characterization are violated. Furthermore, an additional quantity, the T stress, as introduced by Rice, and the related biaxiality ratio, B, are calculated for several crack lengths and two configurations, the single-edge-cracked and the centrally-cracked specimen. It is postulated that a two-parameter characterization by K and T (or B) is needed for the adequate description of the stress and strain field around a short crack. To further verify the validity of this postulate, the influence of the third term of the Williams series on the stress, strain and displacement fields around the crack tip and in particular on the B parameter is also examined. It is found that the biaxiality ratio would be more negative if the third term effects are included in both geometries. The study is conducted using the finite element method with linearly elastic material and isoparametric elements and axial (mode I) loading. Moreover, it is clearly shown that it is not proper to postulate the crack size limits for 'short crack' behavior as a normalized ratio with the specimen width, a/w; it should instead be stated as an absolute, or normalized with respect to a small characteristic dimension such as the grain size. Finally, implications regarding the prediction of cyclic (fatigue) growth of short cracks are discussed.

  16. Crustal stress field in the Greek region inferred from inversion of moment tensor solutions

    Science.gov (United States)

    Konstantinou, Konstantinos; Mouslopoulou, Vasiliki; Liang, Wen-Tzong; Heidbach, Oliver; Oncken, Onno; Suppe, John

    2016-04-01

    The Hellenic region is the seismically most active area in Europe, having experienced numerous large magnitude catastrophic earthquakes and associated devastating tsunamis. A means of mitigating these potential hazards is by better understanding the patterns of spatial and temporal deformation of the crust across the Hellenic orogenic system, over timescales that range from individual earthquakes to several tens of years. In this study for the first time we make collective use of the Global CMT (GCMT), Regional CMT (RCMT) and National Observatory of Athens (NOA) moment tensor databases in order to extract focal mechanism solutions that will be used to infer crustal stresses in the Greek region at an unprecedented resolution. We focus on the shallow seismicity within the upper plate (down to 42 km) and select solutions with good waveform fits and well-resolved hypocentral depths. In this way we obtained 1,614 focal mechanism solutions covering western Greece up to southern Albania, central and southern Greece, northern Aegean as well as the subduction trench west and east of Crete. These solutions are used as input to a regional-scale damped stress inversion over a grid whose node spacing is 0.35 degrees for the purpose of recovering the three principal stress axes and the stress ratio R for each node. Several sensitivity tests are performed where parameters such as damping, hypocentral depth, magnitude range are varied, in order to ascertain the robustness of our results. The final stress field model is then compared to the GPS-derived strain field revealing an excellent agreement between the two datasets. Additionally, maximum and minimum stress axes orientations are correlated with the strike and dip of known faults in order to improve our understanding of future fault rupture and corresponding seismic hazard.

  17. Magnetostriction of a sphere: stress development during magnetization and residual stresses due to the remanent field

    Science.gov (United States)

    Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.

    2017-03-01

    Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric Lorentz force density vanishes. However, a Lorentz surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use Hooke's law with a small-strain approximation, resulting in the Lamé- Navier equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by Hiramatsu and Oka (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the Lorentz tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the Lorentz tractions are illustrated and discussed.

  18. Antimony retention and release from drained and waterlogged shooting range soil under field conditions

    NARCIS (Netherlands)

    Hockmann, K.; Tandy, S.; Lenz, M.; Reiser, R.; Conesa, H.; Keller, M.; Studer, B.; Schulin, R.

    2015-01-01

    Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions

  19. Simulation, Fabrication and Near-Field Characterization of Nanoantenna Couplers for Telecom Range

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Vladimir A.; Malureanu, Radu

    2014-01-01

    We report a modified bow - tie antenna for light coupling to subwavelength plasmonic slot waveguide . Its effective area is 15 times larger than that of the bare waveguide terminatio n at the wavelength 1.55 μm . We demonstrate numerical simulation, fabrication and , for the first time, full ampl...... amplitude - phase near - field optical characterization of nanocoupler in telecom range ....

  20. Measurement of dragging of inertial frames and gravitomagnetic field using laser-ranged satellites.

    Science.gov (United States)

    Ciufolini, I.; Lucchesi, D.; Vespe, F.; Mandiello, A.

    1996-05-01

    By analysing the observations of the orbits of the laser-ranged satellites LAGEOS and LAGEOS II, using the program GEODYN, the authors have obtained the first direct measurement of the Lense-Thirring effect, or dragging of inertial frames and the first direct experimental evidence for the gravitomagnetic field. The accuracy of their measurement is of about 30%.

  1. Three-dimensional near-field MIMO array imaging using range migration techniques.

    Science.gov (United States)

    Zhuge, Xiaodong; Yarovoy, Alexander G

    2012-06-01

    This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.

  2. Flavour fields in steady state: stress tensor and free energy

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Avik; Kundu, Arnab [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata- 700064 (India); Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York, 14853 (United States)

    2016-02-16

    The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS{sub d+1}-background, for d=2,4, and is related to conformal anomaly. For the special case of d=2, the universal factor has a striking resemblance to the well-known heat current formula in (1+1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d=6.

  3. Effects of a magnetic field on pelvic floor muscle function in women with stress urinary incontinence.

    Science.gov (United States)

    Bergman, Jonathan; Robertson, Jack R; Elia, Giovanni

    2004-01-01

    Magnetic fields have been found to affect neuromuscular function. To study the effect of a magnetic field on measurements of urethral function in women with stress urinary incontinence. Observational comparative study. Consecutive patients in a continence center. Twenty-six consecutive women with diagnosis of stress urinary incontinence (SUI). History and physical examination, neurologic exam, urethrocystoscopy, urodynamic testing with water-filling cystometry, urethral profilometry at rest, during coughing, and during coughing while performing a levator ani contraction (knack maneuver). The same urodynamic procedures were performed again after the subjects were asked to step on specifically designed magnets (magnetic cushion device). Two-tailed student t test. Urethral pressure at rest, during coughing, and during coughing while performing a levator ani contraction. Mean age was 58.3 years (range: 36-81), mean parity 2.8 (range: 0-8). The urodynamic parameters measured without and with the use of the magnetic cushion device were not found to be different except for the knack maneuver. The pressure in the urethra during the knack maneuver while the subjects were stepping on the magnetic device was significantly higher than the 1 obtained without the magnetic field. In our patient population, a magnetic field increases the efficacy of voluntary levator ani contractions.

  4. Full-range stress-strain behaviour of contemporary pipeline steels: Part I. Model description

    Energy Technology Data Exchange (ETDEWEB)

    Hertele, Stijn, E-mail: stijn.hertele@ugent.be [FWO Flanders aspirant, Ghent University, Laboratory Soete, Technologiepark Zwijnaarde 903, 9052 Zwijnaarde (Belgium); De Waele, Wim; Denys, Rudi; Verstraete, Matthias [Ghent University, Laboratory Soete, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium)

    2012-04-15

    The stress-strain relationship of contemporary pipeline steels is often approximated by the relatively simple Ramberg-Osgood equation. However, these steels often show a more complex post-yield behaviour, which can result in significant errors. To address this limitation for cases where an accurate full-range description is needed, the authors developed a new 'UGent' stress-strain model which has two independent strain-hardening exponents. This paper compares the UGent model with the Ramberg-Osgood model for a wide range of experimental data, by means of least-squares curve fitting. A significant improvement is observed for contemporary pipeline steels with a yield-to-tensile ratio above 0.80. These steels typically exhibit two distinct stages of strain hardening. In contrast to the Ramberg-Osgood model, both stages are successfully described by the UGent model. A companion paper (Part II) discusses how to find appropriate model parameter values for the UGent model. - Highlights: Black-Right-Pointing-Pointer Contemporary pipeline steels often show two strain-hardening stages. Black-Right-Pointing-Pointer This phenomenon is progressively apparent as Y/T exceeds 0.80. Black-Right-Pointing-Pointer Both stages cannot be simultaneously described by the Ramberg-Osgood model. Black-Right-Pointing-Pointer A new 'UGent' model provides significantly better descriptions. Black-Right-Pointing-Pointer The improvement becomes more pronounced as Y/T increases.

  5. Stress Field and Seismicity in the Basin of Mexico

    Science.gov (United States)

    Huesca-Perez, E.; Quintanar, L.; Garcia-Palomo, A.

    2007-12-01

    Mexico City is located in the basin of Mexico, inside the so called Trans-Mexican Volcanic Belt. The region in general and the basin in particular, is characterized by local low magnitude seismicity (Mc Milpa Alta outside Mexico City; the rest of the basin presents lower seismic activity. We recorded and located 336 earthquakes with digital seismograms between 1996 and 2007. From them, just 23 focal mechanisms could be evaluated because of low magnitude that creates recording problems in the seismological networks and high frequency background noise. The focal mechanisms are mainly strike-slip and dip-slip (normal) faulting. We used three different techniques (when possible) to calculate the focal mechanisms: simple and composite first motion focal mechanism, Hash's S/P amplitude rate focal mechanism and time domain moment tensor inversion using broadband three components seismograms. The final goal is to find the local and regional stress field for the whole basin.

  6. Mixed mode stress field effect in adhesive fracture

    Science.gov (United States)

    Anderson, G. P.; Devries, K. L.; Williams, M. L.

    1974-01-01

    Numerical or analytical analyses were performed on seven different test specimens including blister test, 90-degree peel test, torsion test, and various cone tests. These specimens are in general subjected to complex stress fields having various amounts of Mode I, Mode II, and Mode III loads. The specimens were then constructed using polymethyl methacrylate for the adherends and a transparent polyurethane elastomer (Solithane 113) for the adhesive. This combination permitted direct observation of the bondline as load was applied. Although initial debonds as well as bond end termination singularities were present in all specimens, in some cases the debond did not initiate at the singularity points as would normally have been expected. An explanation for this behavior is presented, as well as a comparison of loading mode effect on those specimens for which the debond did propagate from a bond terminus singular point.

  7. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current

    Energy Technology Data Exchange (ETDEWEB)

    Cai Zhipeng, E-mail: czpdme@gmail.com [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Huang Xinquan [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2011-07-25

    Highlights: {yields} The combination of magnetic field and current releases stress significantly. {yields} Both magneto and electro-plasticity may exit in the combined treatment. {yields} Stress increase caused by current should be studied later. - Abstract: This paper reports a significant decrease on residual stress by combined treatment of a pulsed magnetic field and a pulse current on steel samples with pre-induced residual stress conditions, compared to a separately single treatment by either the pulsed magnetic field or the pulsed current. Briefly, 10% stress decrease by pulsed magnetic field treatment and 20% increase by pulsed current treatment were observed respectively. While 60% stress release is achieved by the combined treatments, in which the same magnetic field and current parameters were applied. It is supposed that the magnetic field facilitates dislocations depinning and pulsed current provides conduction electrons to drive dislocations to move further and faster. The combined effects lead to electro-magneto-plasticity and further residual stress release.

  8. Zero-range effective field theory for resonant wino dark matter. Part I. Framework

    Science.gov (United States)

    Braaten, Eric; Johnson, Evan; Zhang, Hong

    2017-11-01

    The most dramatic "Sommerfeld enhancements" of neutral-wino-pair annihilation occur when the wino mass is near a critical value where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold. Near such a critical mass, low-energy winos can be described by a zero-range effective field theory in which the winos interact nonperturbatively through a contact interaction. The effective field theory is controlled by a renormalization-group fixed point at which the neutral and charged winos are degenerate in mass and their scattering length is infinite. The parameters of the zero-range effective field theory can be determined by matching wino-wino scattering amplitudes calculated by solving the Schrödinger equation for winos interacting through a potential due to the exchange of weak gauge bosons. If the wino mass is larger than the critical value, the resonance is a wino-pair bound state. The power of the zero-range effective field theory is illustrated by calculating the rate for formation of the bound state in the collision of two neutral winos through the emission of two soft photons.

  9. Zero-Range Effective Field Theory for Resonant Wino Dark Matter

    Science.gov (United States)

    Johnson, Evan; Braaten, Eric; Zhang, Hong

    2017-01-01

    The most dramatic ``Sommerfeld enhancements'' of neutral-wino-pair annihilation occur when the wino mass is tuned to near critical values where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold. If the wino mass is larger than the critical value, the resonance is a wino-pair bound state. If the wino mass is near a critical value, low-energy winos can be described by a zero-range effective field theory in which the winos interact nonperturbatively through a contact interaction. The parameters of the zero-range effective field theory can be determined by matching wino scattering amplitudes calculated by solving the Schrödinger equation for a nonrelativistic effective field theory in which the winos interact nonperturbatively through a potential due to the exchange of weak gauge bosons. The power of the zero-range effective field theory is illustrated by calculating the rate for formation of the bound state in the collision of two neutral winos through the emission of two soft photons. Supported in part by DOE grant DE-FG02-05ER15715.

  10. The distribution of stresses in rigid fractal-like aggregates in a uniform flow field.

    Science.gov (United States)

    Gastaldi, Andrea; Vanni, Marco

    2011-05-01

    The distribution of stresses in rigid fractal-like aggregates moving in a uniform flow field was investigated for particle-cluster and cluster-cluster aggregates with fractal dimensions ranging from 1.7 to 2.3. The method of reflections was used to calculate the drag force on each monomer, while the internal inter-monomer interactions were calculated by applying force and torque balances on each primary particle. The stress distribution was found to be very dissimilar from that of the applied external forces. Although the highest external forces act on the monomers located at the periphery of the aggregate where the drag is more intense, the most stressed inter-monomer bonds are always located in the internal part of the aggregate. This phenomenon is a consequence of the structure of the studied fractal aggregates, which are made mainly of filaments of monomers: the stress generated by the external forces is propagated and progressively accumulated by such filaments up to their roots, which are situated in the inner part of the cluster. Such a behaviour is different from that exhibited by highly connected structures, in which the loads are absorbed locally by the structure and the largest stresses are normally found in the proximity of the highest applied external forces. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Effect of stress fields on magma chamber stability and the formation of collapse calderas

    Science.gov (United States)

    Bosworth, William; Burke, Kevin; Strecker, Manfred

    2003-08-01

    The summits of many of the Earth's and other planets' larger volcanoes are occupied by calderas that formed by collapse into an evacuating, underlying magma chamber. These collapse calderas are typically several tens of square kilometers in area and are commonly elliptical in shape. We show that the long axes of late Quaternary collapse calderas in the Kenya rift valley, the western Basin and Range province, the Snake River-Yellowstone Plateau, and the Iceland rift zone are parallel to the upper crustal minimum horizontal stress direction (Sh) as determined by independent criteria. We suggest that circular magma chambers beneath these volcanoes became elliptical by stress-induced spalling of their chamber walls, by a mechanism that is analogous to the formation of breakouts in boreholes and tunnels. In breakouts, the hole becomes elongate parallel to the far-field minimum stress. In the Kenya rift, Late Pleistocene caldera collapse was accompanied by a 45° rotation of Sh and an increase in the magnitude of the maximum horizontal stress (SH). The breakout model predicts increasingly unstable caldera walls under these conditions, a possible explanation for the sudden appearance of so many collapse events in a volcanic setting that had never experienced them before. This mechanism of stress change-induced collapse may have played a role in other caldera settings.

  12. Field Phenotyping of Soybean Roots for Drought Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Berhanu A. Fenta

    2014-08-01

    Full Text Available Root architecture was determined together with shoot parameters under well watered and drought conditions in the field in three soybean cultivars (A5409RG, Jackson and Prima 2000. Morphology parameters were used to classify the cultivars into different root phenotypes that could be important in conferring drought tolerance traits. A5409RG is a drought-sensitive cultivar with a shallow root phenotype and a root angle of <40°. In contrast, Jackson is a drought-escaping cultivar. It has a deep rooting phenotype with a root angle of >60°. Prima 2000 is an intermediate drought-tolerant cultivar with a root angle of 40°–60°. It has an intermediate root phenotype. Prima 2000 was the best performing cultivar under drought stress, having the greatest shoot biomass and grain yield under limited water availability. It had abundant root nodules even under drought conditions. A positive correlation was observed between nodule size, above-ground biomass and seed yield under well-watered and drought conditions. These findings demonstrate that root system phenotyping using markers that are easy-to-apply under field conditions can be used to determine genotypic differences in drought tolerance in soybean. The strong association between root and nodule parameters and whole plant productivity demonstrates the potential application of simple root phenotypic markers in screening for drought tolerance in soybean.

  13. The ambient stress field in the continental margin around the Korean Peninsula and Japanese islands

    Science.gov (United States)

    Lee, J.; Hong, T. K.; Chang, C.

    2016-12-01

    The ambient stress field is mainly influenced by regional tectonics. The stress field composition is crucial information for seismic hazard assessment. The Korean Peninsula, Japanese Islands and East Sea comprise the eastern margin of the Eurasian plate. The regions are surrounded by the Okhotsk, Pacific, and Philippine Sea plates. We investigate the regional stress field around the Korean Peninsula and Japanese islands using the focal mechanism solutions of regional earthquakes. Complex lateral and vertical variations of regional crustal stress fields are observed around a continental margin. The dominant compression directions are ENE-WSW around the Korean Peninsula and eastern China, E-W in the central East Sea and northern and southern Japan, NW-SE in the central Japan, and N-S around the northern Nankai trough. The horizontal compression directions are observed to be different by fault type, suggesting structure-dependent stress field distortion. The regional stress field change by depth and location, suggesting that the compression and tension stress may alternate in local region. The stress field and structures affect mutually, causing stress field distortion and reactivation of paleo-structures. These observation may be useful for understanding of local stress-field perturbation for seismic hazard mitigation of the region.

  14. Non-axisymmetric Anisotropy of magnetic field fluctuations in the solar wind dissipation range

    Science.gov (United States)

    Gogoberidze, G.; Turner, A. J.; Chapman, S. C.; Hnat, B.; Muller, W.

    2011-12-01

    Anisotropy is a key topic for theoretical, numerical and observational studies of plasma turbulence in the solar wind. A fundamental assumption of many theoretical descriptions of turbulence, both in the inertial and dissipation range, is that of axisymmetry of the anisotropic fluctuations with respect to the background magnetic field. Intriguingly, there is observational evidence that these fluctuations are ordered both with respect to the background field and flow directions. This level of non-axisymmetry is observed to increases as we move from the inertial range to the dissipation range. This is characterized by minimum variance analysis as well as in observations of the ratio of the Power Spectral Density (PSD) in the perpendicular directions, eBxeR : eBx(eBxeR), where eB is a unit vector in the direction of the average magnetic field and eR is a unit vector in the radial direction away from the sun. Here, we show that this observed non-axisymmetry may arise as a data sampling effect rather than as a result of the physical properties of the turbulent plasma. We first quantify the observed non-axisymmetry through the inertial and dissipation ranges via the PSD ratio in the perpendicular plane for in-situ measurements using the Cluster spacecraft in fast wind where both magnetic field instruments, FGM and STAFF, are operating in burst mode. This allows the small scales of the dissipation range to be investigated. We then show that a spacecraft 'fly through' of a simple analytical model for a field composed of a linear superposition of transverse waves, where Taylor's hypothesis is used and the only variable parameter is the power law index, is sufficient to give the observed non-axisymmetry. In particular, we find that the ratio of power in the perpendicular plane, eBxeR : eBx(eBxeR), depends on the exponent of the PSD. Thus we find that the enhanced non-axisymmetry seen in the dissipation range is a result of the steepening of the PSD slope.

  15. Determination of consistent patterns of range of motion in the ankle joint with a computed tomography stress-test

    NARCIS (Netherlands)

    Tuijthof, Gabriëlle Josephine Maria; Zengerink, Maartje; Beimers, Lijkele; Jonges, Remmet; Maas, Mario; van Dijk, Cornelis Niek; Blankevoort, Leendert

    2009-01-01

    Background: Measuring the range of motion of the ankle joint can assist in accurate diagnosis of ankle laxity. A computed tomography-based stress-test (3D CT stress-test) was used that determines the three-dimensional position and orientation of tibial, calcaneal and talar bones. The goal was to

  16. Binocular correspondence and the range of fusible horizontal disparities in the central visual field.

    Science.gov (United States)

    Harrold, Ashleigh L; Grove, Philip M

    2015-01-01

    Binocular disparities underlie precise stereoscopic depth perception but only over a finite range. At large disparities, objects appear diplopic, and depth perception is degraded. Measurements of the range of horizontal disparities for which single vision is experienced have previously been restricted to the horizontal plane of regard. We extended these mappings, in two experiments, to the upper and lower visual fields and eccentric meridians. In Experiment 1, we measured empirical corresponding points and fusional limits at identical elevations in the median plane for 20 participants. We observed a vertical shear in binocular correspondence consistent with a backward inclined empirical vertical horopter and the fusional range centered upon it. In Experiment 2, we mapped the vertical horopter and fusional limits for a second set of elevations in the median plane and at two additional eccentricities and found a similar pattern of results as in Experiment 1. For 23 of 25 participants in this study, we found that the relationship between measurements of the vertical horopter and fusional range is similar to the established relationship between Panum's fusional range and the horizontal horopter. Our data replicate previous findings that the vertical horopter is inclined top back. We are the first to illustrate that the fusional range of horizontal disparities is approximately centered upon the vertical horopter in the median plane and along eccentric meridians.

  17. Comparative Evaluation of Common Savannahgrass on a Range of Soils Subjected to Different Stresses I: Productivity and Quality

    Directory of Open Access Journals (Sweden)

    Raymond Springer

    2014-04-01

    Full Text Available Turfgrass growth, performance and quality are affected by abiotic stress factors and are of primary concern for persons managing turfgrass areas under seasonal tropical climates. Under these conditions, common Savannahgrass (SG may have a performance advantage over imported hybrid turfgrasses. A greenhouse study was conducted to comparatively evaluate the performance of tropical turfgrasses exposed to water and compaction related stresses across a range of soils, with or without the addition of a surface sand layer. Turfgrass productivity and quality was monitored over a four-month growth period. Clipping yield (CY was lower at the higher compaction effort for all turfgrasses, but across all stresses, drought (D and waterlogging (WL resulted in lower CY. Values were significantly lower under D. SG had the highest clipping yield across all soils. The chlorophyll index (CI was lower for all turfgrasses under water-induced stress compared to compaction stresses. SG had a significantly higher CI across all stress treatments. Correlation analysis showed a positive (r² = 0.420 and significant (p < 0.05 relationship between CY and CI. Similar to CI, stress type influenced turfgrass visual quality (VQ, with D stress, resulting in the lowest VQ rating among turfgrasses. Bermudagrass (BG had the lowest VQ across all stress treatments, whilst, comparatively, Zoysiagrass (ZG had significantly higher VQ under high compaction (HC, low compaction (LC and WL stress. Overall, SG showed a higher level of tolerance to applied stresses and warrants greater attention as a potential turfgrass under tropical conditions.

  18. Assessing Maize Foliar Water Stress Levels Under Field Conditions ...

    African Journals Online (AJOL)

    Initially, plant water stress has been measured through destructive approaches that are limited in spatial extent as a result of being labour intensive (Graeff & Claupein,. 2007). The basis of detecting water stress with remote sensing relates to the difference in reflectance properties of plants under different water stress levels ...

  19. Ex-situ field application of electrokinetics for remediation of shooting-range soil.

    Science.gov (United States)

    Lee, Keun-Young; Kim, Hyun-A; Lee, Woo-Chun; Kim, Soon-Oh; Lee, Jong-Un; Kwon, Young-Ho; Kim, Kyoung-Woong

    2012-01-01

    Electrokinetic process for remediation of a shooting-range site was evaluated in this study. By field operation for 100 days, the newly designed electrokinetic system was evaluated for process stability, performance, and efficiency. The field site of this study was an abandoned military shooting range located in the Civilian Control Line of South Korea. The target area, only, was heavily contaminated by Pb and Cu to a depth of 0.5 m. After dry-sieving of the field soil to separate particulate Pb, two cells in a hexagonal (two-dimensional) arrangement, including ten anodes outside the cell and two cathodes in the middle, were prepared. The pH of each electrolyte was adjusted by use of concentrated HNO(3), resulting in acid-enhanced electrokinetics. The monitoring results indicated that overall removal of heavy metals (Pb, Cu) was achieved, and that both heavy metals were removed from outside the cell. The average final efficiency of removal of Pb and Cu was 39.5 ± 35 and 63.8 ± 12%, respectively. Although the feasibility of this system was confirmed, for commercialization of the process confirmed drawbacks must be improved by further study.

  20. Quantifying the heterogeneity of the tectonic stress field using borehole data

    Science.gov (United States)

    Schoenball, Martin; Davatzes, Nicholas C.

    2017-01-01

    The heterogeneity of the tectonic stress field is a fundamental property which influences earthquake dynamics and subsurface engineering. Self-similar scaling of stress heterogeneities is frequently assumed to explain characteristics of earthquakes such as the magnitude-frequency relation. However, observational evidence for such scaling of the stress field heterogeneity is scarce.We analyze the local stress orientations using image logs of two closely spaced boreholes in the Coso Geothermal Field with sub-vertical and deviated trajectories, respectively, each spanning about 2 km in depth. Both the mean and the standard deviation of stress orientation indicators (borehole breakouts, drilling-induced fractures and petal-centerline fractures) determined from each borehole agree to the limit of the resolution of our method although measurements at specific depths may not. We find that the standard deviation in these boreholes strongly depends on the interval length analyzed, generally increasing up to a wellbore log length of about 600 m and constant for longer intervals. We find the same behavior in global data from the World Stress Map. This suggests that the standard deviation of stress indicators characterizes the heterogeneity of the tectonic stress field rather than the quality of the stress measurement. A large standard deviation of a stress measurement might be an expression of strong crustal heterogeneity rather than of an unreliable stress determination. Robust characterization of stress heterogeneity requires logs that sample stress indicators along a representative sample volume of at least 1 km.

  1. Measuring Relativistic effects in the field of the Earth with Laser Ranged Satellites and the LARASE research program

    Science.gov (United States)

    Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The main goal of the LARASE (LAser RAnged Satellites Experiment) research program is to obtain refined tests of Einstein's theory of General Relativity (GR) by means of very precise measurements of the round-trip time among a number of ground stations of the International Laser Ranging Service (ILRS) network and a set of geodetic satellites. These measurements are guaranteed by means of the powerful and precise Satellite Laser Ranging (SLR) technique. In particular, a big effort of LARASE is dedicated to improve the dynamical models of the LAGEOS, LAGEOS II and LARES satellites, with the objective to obtain a more precise and accurate determination of their orbit. These activities contribute to reach a final error budget that should be robust and reliable in the evaluation of the main systematic errors sources that come to play a major role in masking the relativistic precession on the orbit of these laser-ranged satellites. These error sources may be of gravitational and non-gravitational origin. It is important to stress that a more accurate and precise orbit determination, based on more reliable dynamical models, represents a fundamental prerequisite in order to reach a sub-mm precision in the root-mean-square of the SLR range residuals and, consequently, to gather benefits in the fields of geophysics and space geodesy, such as stations coordinates knowledge, geocenter determination and the realization of the Earth's reference frame. The results reached over the last year will be presented in terms of the improvements achieved in the dynamical model, in the orbit determination and, finally, in the measurement of the relativistic precessions that act on the orbit of the satellites considered.

  2. A New Algorithm for Joint Range-DOA-Frequency Estimation of Near-Field Sources

    Directory of Open Access Journals (Sweden)

    Jian-Feng Chen

    2004-03-01

    Full Text Available This paper studies the joint estimation problem of ranges, DOAs, and frequencies of near-field narrowband sources and proposes a new computationally efficient algorithm, which employs a symmetric uniform linear array, uses eigenvalues together with the corresponding eigenvectors of two properly designed matrices to estimate signal parameters, and does not require searching for spectral peak or pairing among parameters. In addition, the proposed algorithm can be applied in arbitrary Gaussian noise environment since it is based on the fourth-order cumulants, which is verified by extensive computer simulations.

  3. Dynamic properties of Indiana, Fort Knox and Utah test range limestones and Danby Marble over the stress range 1 to 20 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, M.D.

    1994-12-01

    The responses of the following carbonate materials to shock loading and release have been measured: Indiana limestone (18% porosity; saturated and dry), Jeffersonville/Louisville Limestones (Fort Knox limestone) (variable dolomitization, low porosity), Danby Marble (essentially pure calcite; low porosity), and a limestone from the Utah Test and Training Range (low porosity, with 22% silica). Various experimental configurations were used, some optimized to yield detailed waveform information, others to yield a clean combination of Hugoniot states and release paths. All made use of velocity interferometry as a primary diagnostic. The stress range of 0 - 20 GPa was probed (in most cases, emphasizing the stress range 0 -10 GPa). The primary physical processes observed in this stress regime were material strength, porosity, and polymorphic phase transitions between the CaCO{sub 3} phases I, II, III and VI. Hydration was also a significant reaction under certain conditions. The Indiana Limestone studies in particular represent a significant addition to the low-pressure database for porous limestone. Temperature dependence and the effect of freezing were assessed for the Fort Knox limestone. Experimental parameters and detailed results are provided for the 42 impact tests in this series.

  4. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  5. Oxidative Stress and Mitochondrial Dysfunction across Broad-Ranging Pathologies: Toward Mitochondria-Targeted Clinical Strategies

    Directory of Open Access Journals (Sweden)

    Giovanni Pagano

    2014-01-01

    Full Text Available Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver, neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF along with the occurrence of oxidative stress (OS have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.

  6. Wavy Lineaments on Europa: Fracture Propagation into Combined Nonsynchronous and Diurnal Stress Fields

    Science.gov (United States)

    Crawford, Zane; Pappalardo, Robert T.; Barr, Amy C.; Gleeson, Damhnait; Mullen, McCall; Nimmo, Francis; Stempel, Michelle M.; Wahr, John

    2005-01-01

    Understanding the processes that have operated on Europa and the manner in which they may have changed through time is fundamental to understanding the satellite's geology and present-day habitability. Previous studies have shown that lineament patterns on Europa can be explained by accumulation of tensile stress from slow nonsynchronous rotation (NSR), while the cycloidal planforms of other Europan lineaments can be explained if fractures propagate through a diurnally changing tensile stress field. We find that fractures propagated into combined diurnal and NSR stress fields can be "wavy" in planform for NSR stress accumulated over 2 to 8 of ice shell rotation and average propagation speeds of approx. 1 to 3 m/s. The variety of Europa's observed lineament planforms from cycloidal, to wavy, to arcuate can be produced by accumulation of NSR stress relative to the diurnal stress field. Varying proportions of these stress mechanisms plausibly may be related to a time-variable (slowing) NSR rate.

  7. Genre Differences on Visual Perception of Color Range and Depth of Field

    Directory of Open Access Journals (Sweden)

    Luisa Ballesteros

    2003-07-01

    Full Text Available Visual perception is the result of the integration of various related factors of the observed object and its environment. In this study we evaluated the impact of tridimensional form on color perception and the angle from the horizontal plane of a set of similar objets on the depth of field perception between young men and women. A panel half magenta and half white placed at the end of a black box, folded either concaved or convexed to alter the chromatic effect perceived were used to determine tridimensional form on color perception. Four sets of identical sticks where the angle from the horizontal plane varied for each, were used to determine the effect of spatial distribution of depth of field perception. The parameters taking into account were age, genre, associated visual defects for each individual evaluated. Our results show that the tridimensional form alters color perception but the range of color perceived was larger for women whereas depending on the angle from the horizontal plane we found genre differences on the depth of field perception.

  8. The present-day stress field orientation in Italy: new release

    Science.gov (United States)

    Montone, P.; Mariucci, M. T.

    2015-12-01

    When contemporary stress field in a region is well-known and faults are identified, it is possible to determine which faults are favorably oriented and are more likely to slip in the future. Stress data are also an important input in integrated crustal modeling to get more reliable evaluations in many applicative researches. Then, the knowledge of the active stress field contributes to the seismotectonic zoning of a region. In Italy, although at large scale a first order stress field due to plate boundary forces controls the contemporary tectonics, some areas show changes in stress regime over small distances and/or with depth clearly linked to localized stress perturbations. Where information is lacking each prediction of stress patterns could significantly differ from the reality and any further evaluation would be weakly supported by data. Therefore we continuously collect the available stress indicators and here present an update of present-day stress orientations in Italy with the last 5 years data, relative to crustal earthquake focal mechanisms (0-40 km depth), borehole breakouts from deep wells and fault data. About 100 new quality-ranked entries complete the definition of the horizontal stress orientation and tectonic regime in some areas, and bring new information mainly in Po Plain and Calabria area, recently affected by important earthquake sequences. Now the global Italian dataset consists of ~800 data points, including ~580 of A-C quality, with an increase of 17% compared to the previous compilation (Montone et al., 2012). We use A-, B- and C-quality stress indicators for analyzing first-order stress patterns while we also consider D-quality data to define second-or third-order stress field, as observed in other studies in the world. In particular we discuss the simultaneous occurrence of different stress regimes and the complex interaction between first order stress field and local effects, and the influence of the inherited tectonic structures.

  9. Mechanical Pre-Stressing a Transducer through a Negative DC Biasing Field

    Science.gov (United States)

    2017-04-21

    NUWC-NPT Technical Report 12,224 21 April 2017 Mechanical Pre-Stressing a Transducer through a Negative DC Biasing Field Stephen C...TITLE AND SUBTITLE Mechanical Pre-Stressing a Transducer through a Negative DC Biasing Field 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...with regards to the feasibility of using a negative DC biasing approach to apply a mechanical compressive stress to a transducer’s piezoelectric

  10. Earthquakes focal mechanism and stress field pattern in the northeastern part of Egypt

    Directory of Open Access Journals (Sweden)

    Emad K. Mohamed

    2015-12-01

    The inversion technique scheme is used also in the present study for determining the regional stress field parameters for earthquake focal mechanism solutions based on the grid search method of Gephart and Forsyth (1984. The Results of the stress tensor using focal mechanisms of recent earthquakes show a prevailed tension stress field in N52°E, N41°E and N52°E for the northern Red Sea, Gulf of Suez and Gulf of Aqaba zone respectively.

  11. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Lucas, J.H.; Moore, G.T.; Orr, J.L.; Smith, H.D.; Taylor, L.L.; Tuttle, M.L.

    1987-10-24

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, possible behavioral effects associated with exposure to high intensity 60 Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, will be used by the Department of Energy (DOE) to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This research program consists of four major research projects, all of which have been successfully completed. The first project evaluated the potentially aversive character of exposure to 60 Hz electric fields by determining the threshold intensity that produces escape or avoidance responses. The second project estimated the threshold intensity for detection threshold was 12 kV/m; the range of means was 6 to 16 kV/m. The third project assessed, in separate experiments conducted at 30 and 60 kV/m, effects of chronic exposure to electric fields on the performance of two operant conditioning tasks, fixed ratio (FR), and differential reinforcement of low rate (DRL). In the same two experiments, the fourth project investigated, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. 131 refs., 87 figs., 123 tabs.

  12. Stress and the Workplace: A Comparison of Occupational Fields.

    Science.gov (United States)

    Matthews, Doris B.; Casteel, Jim Frank

    Stress in various occupations is of interest to managers, counselors, and personnel workers. A study was undertaken to examine, through the use of self-report scales, stress-related characteristics of workers in occupations which require many and varied human interactions. Subjects were 244 full-time employees in six professions: health services,…

  13. A compact, short-pulse laser for near-field, range-gated imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, F.J.; Helgeson, W.D.; Loubriel, G.M. [Sandia National Labs., Albuquerque, NM (United States); Yates, G.J.; Gallegos, R.A.; McDonald, T.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    This paper describes a compact laser, which produces high power, wide-angle emission for a near-field, range-gated, imaging system. The optical pulses are produced by a 100 element laser diode array (LDA) which is pulsed with a GaAs, photoconductive semiconductor switch (PCSS). The LDA generates 100 ps long, gain-switched, optical pulses at 904 nm when it is driven with 3 ns, 400 A, electrical pulses from a high gain PCSS. Gain switching is facilitated with this many lasers by using a low impedance circuit to drive an array of lasers, which are connected electrically in series. The total optical energy produced per pulse is 10 microjoules corresponding to a total peak power of 100 kW. The entire laser system, including prime power (a nine volt battery), pulse charging, PCSS, and LDA, is the size of a small, hand-held flashlight. System lifetime, which is presently limited by the high gain PCSS, is an active area of research and development. Present limitations and potential improvements will be discussed. The complete range-gated imaging system is based on complementary technologies: high speed optical gating with intensified charge coupled devices (ICCD) developed at Los Alamos National Laboratory (LANL) and high gain, PCSS-driven LDAs developed at Sandia National Laboratories (SNL). The system is designed for use in highly scattering media such as turbid water or extremely dense fog or smoke. The short optical pulses from the laser and high speed gating of the ICCD are synchronized to eliminate the back-scattered light from outside the depth of the field of view (FOV) which may be as short as a few centimeters. A high speed photodiode can be used to trigger the intensifier gate and set the range-gated FOV precisely on the target. The ICCD and other aspects of the imaging system are discussed in a separate paper.

  14. Considerations on fatigue stress range calculations in nuclear power plants using on-line monitoring systems and the ASME Code

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, R., E-mail: ciceror@unican.e [INESCO INGENIEROS S.L., Santander (Spain); Departamento de Ciencia e Ingenieria del Terreno y los Materiales, Universidad de Cantabria, Santander (Spain); Cicero, S. [Departamento de Ciencia e Ingenieria del Terreno y los Materiales, Universidad de Cantabria, Santander (Spain); Gorrochategui, I. [Centro Tecnologico de Componentes, Santander (Spain); Lacalle, R. [INESCO INGENIEROS S.L., Santander (Spain); Departamento de Ciencia e Ingenieria del Terreno y los Materiales, Universidad de Cantabria, Santander (Spain)

    2010-01-15

    Nuclear power plants are generally designed and inspected according to the ASME Code. This code indicates stress intensity (S{sub INT}) as the parameter to be used in the stress analysis of components. One of the particularities of S{sub INT} is that it always takes positive values, independently of the nature of the stress (tensile or compressive). This circumstance is relevant in the Fatigue Monitoring Systems used in nuclear power plants, due to the manner in which the different variable stresses are combined in order to obtain the final total stress range. This paper describes some situations derived from the application of the ASME Code, shows different ways of dealing with them and illustrates their influence on the evaluation of the fatigue usage factor through a case study.

  15. Field System for Extended Range Continuous Monitoring of Near Surface CO2 Gas from Multiple Locations

    Science.gov (United States)

    Barr, J.; Amonette, J.

    2007-12-01

    A novel system was developed for continuous measurement of near surface carbon dioxide gas concentrations associated with the monitoring of carbon dioxide capture and storage in geologic formations. In the current configuration, the battery powered system allows for near surface CO2 gas collection (0-300,000 ppm) from seven (expandable) independently located steady state chambers. Each chamber has an associated pump and metering valve attached to a control manifold that either directs the flow to the analyzer (test chamber) or to exhaust (all others). The uniquely large concentration range in which the system is capable of operating is achieved by using an auto-control system that senses when the LiCor LI-7000 analyzer is approaching saturation and then dilutes the incoming sample using a metered flow of nitrogen gas from the reference gas supply. The dilution is carried out in stages and is capable of increasing or decreasing on the fly to keep the analyzer within range. By reading in the sample flow rate, the dilution gas flow rate, and the output flow it is possible to calculate a dilution scalar that acts as a multiplier for the LiCor analyzer concentration, allowing for immediate read and record of true sampler concentrations. This system was tested and validated during a week of continuous operation and field use, monitoring the seven chambers 24 hours/day with CO2 concentrations ranging from background to over 130,000 ppm.

  16. Monitoring stress in captive and free-ranging African wild dogs (Lycaon pictus) using faecal glucocorticoid metabolites.

    Science.gov (United States)

    Van der Weyde, L K; Martin, G B; Paris, M C J

    2016-01-15

    An understanding of stress physiology is important for species management because high levels of stress can hamper reproduction and affect an individual's ability to cope with threats to their survival, such as disease and human-wildlife conflict. A commonly used indicator of stress, faecal concentrations of cortisol metabolites (FCM), can be used to assess the impact of social, biological and environmental factors. Measurements of FCM are particularly valuable for endangered species that are logistically challenging to study and where non-invasive techniques are preferred. As the second most endangered canid in Africa, the African wild dog (Lycaon pictus) has been the focus of considerable conservation research, yet there is still little understanding of factors associated with stress, in either captive or free-ranging populations. The present study therefore aimed to determine whether stress levels differ between captive and free-ranging populations, and to detect social, biological and environmental factors that are stressful in these populations. Faecal samples were collected from 20 captive and 62 free-ranging animals. Within free-ranging populations, the sexes differed significantly, but there was no effect of social status, age or breeding period for either sex. Captive females had higher FCM concentrations than free-ranging females. In captive populations, FCM concentrations differed among zoos and with reproductive status in females, but were not related to age class or group-housing structure. In conclusion, FCM is a useful indicator of stress and should be considered an integrative aspect of management, for both in situ and ex situ African wild dog populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Regional Stress Field in the Maghreb Region From an Updated Focal Mechanism Catalog (1954-2014)

    Science.gov (United States)

    Lamara, Samir; Friederich, Wolfgang

    2015-04-01

    In order to investigate the regional stress field in the Maghreb region we construct a focal mechanism catalog for earthquakes that occurred from 1954 to 2014. To this intent, all available moment tensor solutions of past earthquakes obtained from different sources were checked, compared and corrected. Furthermore, the focal solutions of all recent earthquakes with magnitude down to 4 and for which data is available were calculated using a new method based on waveform fitting of observed seismograms and synthetics calculated for a range of fault angles and hypocenter depths. Observed seismograms of all stations for a given earthquake were thus collected, processed and subject to a rigorous quality control according to the corresponding signal-to-noise ratio. An average 1-D earth model for the Maghreb-western Mediterranean region was also constructed to calculate synthetics. The misfits between these observed seismograms and a set of synthetics calculated for every value of fault angles (strike, dip and rake) and hypocenter depths were calculated after respectively, a phase fitting obtained by shifting the seismograms to the best cross-correlation between data and synthetics, and amplitudes scaling. The best configuration of fault angles and hypocenter depths was then selected according to the smallest average misfit over all stations. If a systematic time shift was noticeable for all stations or most of them, an additional relocation step was done to obtain the most accurate earthquake's epicenter. Most of the earthquakes included in the catalog define several spatial clusters for which the assumption of homogeneous stress can be fulfilled. Hence, a stress inversion for each cluster was performed and a stress ratio indicating the dominance of compressional or tensional stresses as well as the directions and dips of the tensional, intermediate and compressional axis were obtained.

  18. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    Science.gov (United States)

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-04-01

    Characterizing the tectonic stress field is an integral part for the development of hydrothermal systems, especially enhanced geothermal systems (EGS). With a known stress field, critically stressed faults can be identified. Faults that are critically oriented with respect to the in-situ stress field exhibit a high tendency for slip, and thus are likely candidates for reactivation during the creation of an EGS. Reactivated faults are known to serve as dominant fluid pathways during hydrothermal circulation and the characteristics of this process determine the potential for damaging earthquakes; should extensive portions of well-oriented, large features be reactivated. As part of the FORGE initiative at the West Flank of the Coso Geothermal Field, we analyze a large set of image logs obtained from wells distributed across the geothermal field for details about the stress state revealed by indicators such as borehole breakouts and drilling-induced tensile fractures. Previous stress analyses at Coso have ignored deviated well sections, since their interpretation for the orientation of the stress tensor is non-unique with respect to varying stress magnitudes. Using interpreted borehole-induced structures, we perform a grid search over all possible Andersonian stress states and find a best fitting vertical stress tensor for each stress state characterized by principal stress magnitudes. By including deviated well sections and recently drilled wells, we considerably expand the suite of stress measurements in the Coso Geothermal Field. Along individual wells, this analysis also reveals local meter length-scale deviations from the best-fitting mean stress orientation. While most wells show consistent horizontal principal stress orientations with standard deviations of about 10°, other wells show large standard deviations on the order of 25°. Several regions have logged well trajectories with lateral spacing below 1 km. This enables us to trace changes of the stress

  19. National Geographic FieldScope: Tools for Engaging a Range of Audiences in Citizen Science

    Science.gov (United States)

    OConnor, S.; Takaki, E.

    2013-12-01

    NSF grant to bring this vision for FieldScope to life. The project is structured around key collaborations with 'conveners' of existing citizen science initiatives. These existing initiatives include Project BudBurst, the Association of Zoos and Aquariums FrogWatch USA, and the Alice Ferguson Fund's Trash Free Potomac Initiative. These groups are serving as testbed partners, building their citizen science projects with the FieldScope development tools and hosting their communities within the FieldScope infrastructure. Through outcomes research and evaluation, these testbeds will provide much-needed evidence about the value of citizen science for learning and the conditions that can maximize those outcomes. Presenters will share findings to date of the project, including a demonstration of the technology using examples from our convening partners from the NSF project, as well as other communities using FieldScope, ranging from citizen science initiatives in the Yukon River watershed aimed at engaging indigenous Alaskan populations to a wide-spread initiative across the Chesapeake Bay watershed designed for students and environmental education program participants.

  20. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos

    2009-01-01

    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  1. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  2. Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space

    Science.gov (United States)

    Baisch, J. F.; Wolfram, G.; Beck, L.; Drummer, C.; Stormer, I.; Buckey, J.; Blomqvist, G.

    2000-01-01

    In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.

  3. Stress field evolution above the Peruvian flat-slab (Cordillera Blanca, northern Peru)

    Science.gov (United States)

    Margirier, A.; Audin, L.; Robert, X.; Pêcher, A.; Schwartz, S.

    2017-08-01

    In subduction settings, the tectonic regime of the overriding plate is closely related to the geometry of the subducting plate. Flat-slab segments are supposed to increase coupling at the plate interface in the Andes, resulting in an increase and eastward migration of the shortening in the overriding plate. Above the Peruvian flat-slab, a 200 km-long normal fault trend parallel to the range and delimits the western flank of the Cordillera Blanca. In a context of flat subduction, expected to produce shortening, the presence of the Cordillera Blanca normal fault (CBNF) is surprising. We performed a systematic inversion of striated fault planes in the Cordillera Blanca region to better characterize the stress field above the Peruvian flat-slab. It evidences the succession of different tectonic regimes. NE-SW extension is predominant in most of the sites indicating a regional extension. We suggest that the Peruvian flat-slab trigger extension in the Western Cordillera while the shortening migrated eastward. Finally, we propose that flat-slab segments do not increase the coupling at the trench neither the shortening in the overriding plate but only favor shortening migration backward. However, the stress field of the overriding plate arises from the evolution of plate interface properties through time due to bathymetric anomaly migration.

  4. Spatial consistency of neural firing regulates long-range local field potential synchronization: a computational study.

    Science.gov (United States)

    Sato, Naoyuki

    2015-02-01

    Local field potentials (LFPs) are thought to integrate neuronal processes within the range of a few millimeters of radius, which corresponds to the scale of multiple columns. In this study, the model of LFP in the visual cortex proposed by Mazzoni et al. (2008) was adapted to organize a network of two cortical areas, in which pyramidal neurons were divided into two sub-population modeling columns with spatially organized connections to neurons in other areas. Using the model enabled the relationship between neural firing and LFP to be evaluated, in addition to the LFP coherence between the two areas. Results showed that: (1) neurons in a particular sub-population generated the LFP in the area; (2) the spatial consistency of neural firing in the two areas was strongly correlated with LFP coherence; and (3) this consistency was capable of regulating LFP coherence in a lower frequency band, which was originally introduced to neurons in a particular sub-population. These results were derived from a winner-take-all operation in the columnar structure; thus, they are expected to be common in the cortex. It is suggested that the spatial consistency of neural firing is essential for regulating long-range LFP synchronization, which would facilitate neuronal integration processes over multiple cortical areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Crustal stress field perturbations in the continental margin around the Korean Peninsula and Japanese islands

    Science.gov (United States)

    Lee, Junhyung; Hong, Tae-Kyung; Chang, Chandong

    2017-10-01

    Seismic activity and focal mechanisms are governed by the effective stress field that is a combined result of regional tectonic processes and local stress perturbation. This study investigates the regional variation in the stress field in the eastern continental margin of the Eurasian plate around the Korean Peninsula and Japanese islands using a damped stress inversion technique based on the focal mechanism solutions of regional earthquakes. The dominant compressional stress is directed ENE-WSW around the Korean Peninsula and eastern China, E-W at the central East Sea and northern and southern Japan, NW-SE at central Japan, and N-S around the northern Nankai trough. The dominant compression direction changes rapidly in the East Sea and Japanese islands, which may be due to the combined effects of tectonic loading in the subduction zones off the Japanese islands and the India-Eurasia plate boundary. The crustal stress fields around the subduction zones off the Japanese islands present characteristic depth-dependent orientations. The orientations of the largest horizontal stress components, σH, in the subduction zones are subparallel with the plate convergence directions at shallow depths. The σH orientations are observed to rotate clockwise with the depth owing to slab subduction and lithospheric deformation. The regional stress field around the Japanese islands was perturbed temporally by the 2011 M9.0 Tohoku-Oki megathrust earthquake. The regional stress field was recovered in a couple of years. The stress field and tectonic structures are mutually affected, causing stress field distortion and a localized mixture of earthquakes in different faulting types.

  6. Intraplate stress field in South America from earthquake focal mechanisms

    Science.gov (United States)

    Assumpção, Marcelo; Dias, Fábio L.; Zevallos, Ivan; Naliboff, John B.

    2016-11-01

    We present an updated compilation of earthquake focal mechanisms in Brazil together with focal mechanisms from the sub-Andean region (mainly from global CMT catalogs). All earthquakes in the sub-Andean region show reverse (majority) or strike-slip faulting mechanisms. Focal mechanisms in Brazil show reverse, strike-slip and normal faulting. Focal mechanisms of nearby earthquakes in the same tectonic environment were grouped and inverted for the stress tensor. In the sub-Andean region, stresses are compressional, as expected, with the principal major compression (S1) roughly E-W, on average. A slight rotation of S1 can be observed and is controlled by the orientation of the Andean plateau. In the sub-Andean region, the intermediate principal stress (S2) is also compressional (i.e., larger than the lithostatic pressure, Sv), a feature that is not always reproduced in numerical models published in the literature. In mid-plate South America stresses seem to vary in nature and orientation. In SE Brazil and the Chaco-Pantanal basins, S1 tends to be oriented roughly E-W with S2 approximately equal to S3. This stress pattern changes to purely compressional (both SHmax and Shmin larger than Sv) in the São Francisco craton. A rotation of SHmax from E-W to SE-NW is suggested towards the Amazon region. Along the Atlantic margin, the regional stresses are very much affected by coastal effects (due to continent/ocean spreading stresses as well as flexural effects from sediment load at the continental margin). This coastal effect tends to make SHmax parallel to the coastline and Shmin (usually S3) perpendicular to the coastline. Few breakout data and in-situ measurements are available in Brazil and are generally consistent with the pattern derived from the earthquake focal mechanisms. Although numerical models of global lithospheric stresses tend to reproduce the main large-scale features in most mid-plate areas, the S1 rotation from ∼E-W in SE Brazil to SE-NW in the Amazon

  7. 3D stress field simulation for Greater Munich, Germany

    Science.gov (United States)

    Ziegler, Moritz; Heidbach, Oliver; Reinecker, John; Przybycin, Anna Maria; Scheck-Wenderoth, Magdalena

    2016-04-01

    Geotechnical applications such as tunneling, storage of waste, wellbore planning, or reservoir engineering requires detailed 3D information on the rock properties and behavior of the continuum. One of the key parameters is the contemporary crustal in-situ stress state. However, generally the availability of stress data on reservoir scale is scarce or no data exists at all. Furthermore, stress data is often limited to the orientation of the maximum horizontal stress. Hence, geomechanical-numerical modelling provides an approximation of a continuous description of the 3D in-situ stress state. We present a model workflow that shows (1) how to calibrate a regional scale model of Greater Munich with stress orientations and magnitudes mainly from borehole data and (2) how to derive from the regional model boundary conditions for a local high-resolution model of a geothermal reservoir site. This approach using two models is an alternative to the required trade-off between resolution, computational cost and a sufficient number of calibration data which is otherwise inevitable for a single model. The incorporated 3D geological models contain the topography from a digital elevation model and 6 stratigraphic units with different elasto-plastic rock properties. The local model mimics the area of a planned reservoir and its resolution is significantly higher than in the regional model and down to 10 m near the planned borehole trajectories using 21×106 tetrahedron finite elements with linear approximation functions. The uncertainties of the calibrated regional model are large since no information on the magnitude of the maximum horizontal stress is available. Even in the entire Greater Munich area only two reliable leak-off tests that deliver the magnitude of the minimum horizontal stress could be used. These uncertainties are transferred also to the local model. Hence we also show how to quantify for the workflow in general the systematic uncertainties and discuss

  8. Performance analysis of a full-field and full-range swept-source OCT system

    Science.gov (United States)

    Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.

    2015-09-01

    In recent years, optical coherence tomography (OCT) became gained importance in medical disciplines like ophthalmology, due to its noninvasive optical imaging technique with micrometer resolution and short measurement time. It enables e. g. the measurement and visualization of the depth structure of the retina. In other medical disciplines like dermatology, histopathological analysis is still the gold standard for skin cancer diagnosis. The EU-funded project VIAMOS (Vertically Integrated Array-type Mirau-based OCT System) proposes a new type of OCT system combined with micro-technologies to provide a hand-held, low-cost and miniaturized OCT system. The concept is a combination of full-field and full-range swept-source OCT (SS-OCT) detection in a multi-channel sensor based on a micro-optical Mirau-interferometer array, which is fabricated by means of wafer fabrication. This paper presents the study of an experimental proof-of-concept OCT system as a one-channel sensor with bulk optics. This sensor is a Linnik-interferometer type with similar optical parameters as the Mirau-interferometer array. A commercial wavelength tunable light source with a center wavelength at 845nm and 50nm spectral bandwidth is used with a camera for parallel OCT A-Scan detection. In addition, the reference microscope objective lens of the Linnik-interferometer is mounted on a piezo-actuated phase-shifter. Phase-shifting interferometry (PSI) techniques are applied for resolving the conjugate complex artifact and consequently contribute to an increase of image quality and depth range. A suppression ratio of the complex conjugate term of 36 dB is shown and a system sensitivity greater than 96 dB could be measured.

  9. An intercomparison of POLARIS measurement results from the DTU-ESA Facility and from the ESTEC Near-Field Range

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Breinbjerg, Olav

    This report documents an intercomparison of measurement results of the POLARIS antenna from measurement at the DTU-ESA Spherical Near-Field Antenna Test Facility in August 2011 and from measurement at the ESTEC Near-Field Range in the fall 2012. The comparison was carried out at the DTU-ESA Facil......This report documents an intercomparison of measurement results of the POLARIS antenna from measurement at the DTU-ESA Spherical Near-Field Antenna Test Facility in August 2011 and from measurement at the ESTEC Near-Field Range in the fall 2012. The comparison was carried out at the DTU...

  10. Experimental investigation of the acoustic anisotropy field in the sample with a stress concentrator

    Directory of Open Access Journals (Sweden)

    Aleksey I. Grishchenko

    2017-03-01

    Full Text Available The behavior of acoustic anisotropy and the longitudinal wave velocity in the case of multiaxial stress-strain state of the plate under inelastic deformation has been studied experimentally. The plate had a stress concentrator in the form of the central hole. The results for several deformation levels, and the results of finite element analysis of active stresses were presented. The qualitative agreement between the calculated stress fields and the distribution fields of acoustic anisotropy was revealed. It was found that the absolute magnitude maximum of acoustic anisotropy fell on the areas with the biggest stresses near the concentrator. It was supposed that the non-uniform distribution of acoustic anisotropy in the material testified to a possible stress concentration at the corresponding points.

  11. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.

    Science.gov (United States)

    Hockmann, Kerstin; Tandy, Susan; Lenz, Markus; Reiser, René; Conesa, Héctor M; Keller, Martin; Studer, Björn; Schulin, Rainer

    2015-09-01

    Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L(-1) in summer and Antimony speciation measurements in soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Predicting Short-Range Order in Multicomponent Alloys from an Improved Mean-Field Theory

    Science.gov (United States)

    Ong, Zhun-Yong; Johnson, Duane

    2007-03-01

    In alloys the atomic short-range order (SRO) indicates the nascent ordering to which the disordered alloy is tending at high temperatures. Direct first-principles prediction based upon KKR-CPA and mean-field thermodynamics have been successful in predicting system-specific SRO [1], if, at a minimum, corrections are included to satisfy the diffuse scattering sum rule in k-space. However, such models do not account for k-dependence of the corrections. Here, we present an analytic generalization to multicomponent alloys that includes ``cyclic diagrams'' [2,3] for composition, temperature, and k-dependent corrections to SRO. We first explore the improvement to SRO in model fcc ternary alloys via the generalized Ising model. We find that there is much better agreement to Monte Carlo simulations than with standard Bragg-Williams with(out) Onsager corrections. Then we implement this within the KKR-CPA linear-response theory of SRO.Work was supported by DOE (Award DEFG02-03ER46026 and NSF (DMR-0325939). [1] J.B. Staunton, D.D. Johnson, and F.J. Pinski, Phys. Rev. Lett. 65, 1259 (1990); Phys. Rev. B 50, 1450 (1994); ibid, 57, 15177 (1998). [2] R. Brout, Phys. Rev. 115, 824-835 (1959). [3] R.V. Chepulski, et al, Phys. Rev. 65, 064201-7 (2002).

  13. Integration method to calculate the stress field in the optical fiber

    Science.gov (United States)

    Ji, Minning; Chen, Dandan; Huang, Liujun

    2017-11-01

    An integration method based on superposition theorem to calculate the stress field in the optical fiber with arbitrary shape stress elements is derived. The identity between the theoretical analysis result and the integration method in the optical fiber with sector shape bow-tie stress elements is proved. The integration method calculation is compared with the Comsol Multiphysics software simulation and they are agreed well with each other.

  14. Stress hormone receptors change as range expansion progresses in house sparrows.

    Science.gov (United States)

    Liebl, Andrea L; Martin, Lynn B

    2013-06-23

    As ranges expand, individuals encounter different environments at the periphery than at the centre of the range. Previously, we have shown that glucocorticoids (GCs) vary with range expansion: individuals at the range edge release more GCs in response to restraint. Here, we measured hippocampal mRNA expression of GC receptors (mineralocorticoid, MR and glucocorticoid, GR) in eight house sparrow (Passer domesticus) populations varying in age. We found that individuals closest to the range edge had the lowest expression of MR relative to GR; in all likelihood, this relationship was driven by a marginal reduction of MR mRNA at the range edge. Reduced MR (relative to GR) might allow enhanced GC binding to GR, the lower affinity receptor that would enhance a rapid physiological and behavioural response to stressors. The insights gained from this study are not only enlightening to introduced species, but may also predict how certain species will react as their ranges shift owing to anthropogenic changes.

  15. Biofeedback systems for stress reduction : Towards a bright future for a revitalized field

    NARCIS (Netherlands)

    Broek, E.L. van den; Westerink, J.H.D.M.

    2012-01-01

    Stress has recently been baptized as the black death of the 21st century, which illustrates its threat to current health standards. This article proposes biofeedback systems as a means to reduce stress. A concise state-of-the-art introduction on biofeedback systems is given. The field of mental

  16. Biofeedback for stress reduction: towards a brigth future for a revitalized field

    NARCIS (Netherlands)

    Van den Broek, E.L.; Westerink, J.H.D.

    2012-01-01

    Stress has recently been baptized as the black death of the 21st century, which illustrates its threat to current health standards. Thisarticle proposes biofeedback systems as a means to reduce stress. Aconcise state-ofthe-art introduction on biofeedback systems is given. The field of mental health

  17. Biofeedback systems for stress reduction: Towards a Bright Future for a Revitalized Field

    NARCIS (Netherlands)

    van den Broek, Egon; Westerink, Joyce H.D.M.; Conchon, E.; Correia, C.; Fred, A.; Gamboa, H.

    2012-01-01

    Stress has recently been baptized as the black death of the 21st century, which illustrates its threat to current health standards. This article proposes biofeedback systems as a means to reduce stress. A concise state-ofthe-art introduction on biofeedback systems is given. The field of mental

  18. A satellite based crop water stress index for irrigation scheduling in sugarcane fields

    NARCIS (Netherlands)

    Veysi, Shadman; Naseri, Abd Ali; Hamzeh, Saeid; Bartholomeus, Harm

    2017-01-01

    In this study, the capability of crop water stress index (CWSI) based on satellite thermal infrared data for estimating water stress and irrigation scheduling in sugarcane fields was evaluated. For this purpose, eight Landsat 8 satellite images were acquired during the sugarcane growing season

  19. Stress field and kinematics for diffuse microseismicity in a zone of continental transpression, South Island, New Zealand

    Science.gov (United States)

    Warren-Smith, Emily; Lamb, Simon; Stern, Tim A.

    2017-04-01

    We analyze shallow (0-20 km) microseismicity adjacent to the Alpine Fault in New Zealand, where there is oblique convergence of the Australian and Pacific plates. Focal mechanisms for 155 earthquakes (June 2012 to October 2013) are inverted to determine the orientation of the stress field. This yields a principal horizontal axis of compression, SHmax = 114° ± 10°, which cannot be explained in terms of the sum of stress from tectonic loading due to plate convergence, indicated by GPS observations, and gravitational stresses. The azimuth of slip vectors for individual focal mechanisms cluster perpendicular and parallel to the plate convergence vector. These faults, however, strike at 45° to SHmax from the stress inversion, suggesting a very low coefficient of friction. The earthquake slip directions may be kinematically controlled, accommodating the plate convergence on a limited set of fractures, similar to the segmentation for neotectonic faulting along the Alpine Fault, which is partitioned into strike-slip and thrust segments at a 1-10 km scale. We suggest two possible controls on our calculated SHmax azimuths. First, there may be a slight clockwise bias in the estimates of SHmax from earthquakes; slip may be occurring on a more limited range of fractures than assumed by the stress inversion method, although this effect is likely to be relatively small (±5°). More importantly, the components of the stress field may be relieved at different timescales during big earthquakes, resulting in a residual stress field that varies significantly (±15°) on timescales of several large earthquakes.

  20. Approximate expressions for lightning electromagnetic fields at near and far ranges: Influence of return-stroke speed

    Science.gov (United States)

    Chen, Yazhou; Wang, Xiaojia; Rakov, Vladimir A.

    2015-04-01

    The waveforms of lightning return-stroke electromagnetic fields on ground are studied using the transmission line model. Approximate expressions to calculate lightning electromagnetic fields at near and far ranges are presented. It is found that the waveforms of lightning electric and magnetic fields in the time domain at both near and far ranges can be expressed approximately as the channel-base current waveform multiplied by a factor which is a function of the return-stroke speed v and the horizontal distance r between the return-stroke channel and the observation point on ground. The ranges at which the approximate expressions are valid are determined. The ranges of validity increase with increasing the return-stroke speed, and the near and far field approximate expressions converge to the exact formula as the return-stroke speed approaches the speed of light.

  1. Seed ageing and field performance of maize under water stress

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... vigor seeds and proper storage are necessary to ensure optimum stand establishment and ... deleterious effects of seed ageing on field performance of .... Effects of seed vigour and the duration of cold acclimation on freezing ...

  2. Stress field rotation or block rotation: An example from the Lake Mead fault system

    Science.gov (United States)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-02-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  3. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    Science.gov (United States)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  4. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    Science.gov (United States)

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-01-01

    Characterizing the tectonic stress field is an integral part of the development of hydrothermal systems and especially for enhanced geothermal systems (EGS). With a well characterized stress field the propensity of fault slip on faults with known location and orientation can be identified. Faults that are critically oriented for faulting with respect to the stress field are known to provide natural fluid pathways. A high slip tendency makes a fault a likely candidate for reactivation during the creation of an EGS. Similarly, the stress state provides insight for the potential of larger, damaging earthquakes should extensive portions of well-oriented, larger faults be reactivated.The analysis of stress indicators such as drilling-induced fractures and borehole breakouts is the main tool to infer information on the stress state of a geothermal reservoir. The standard procedure is applicable to sub-vertical wellbore sections and highly deviated sections have to be discarded. However, in order to save costs and reduce the environmental impact most recent wells are directionally drilled with deviations that require appropriate consideration of the deviated trajectory. Here we present an analysis scheme applicable to arbitrary well trajectories or a combination of wells to infer the stress state. Through the sampling of the stress tensor along several directions additional information on the stress regime and even relative stress magnitudes can be obtained. We apply this method on image logs from the pair of wells 58-10 and 58A-10 that were drilled from the same well pad. Both wells have image logs of about 2km of their trajectories that are separated by less than 300m. For both wells we obtain a mean orientation of SHmax of N23° with large standard deviations of locations of stress indicators of 24° and 26°, respectively. While the local stress direction is highly variable along both wells with dominant wavelengths from around 50 to 500m, the mean directions are very

  5. Mean-Field Scenario for the Athermal Creep Dynamics of Yield-Stress Fluids

    Science.gov (United States)

    Liu, Chen; Martens, Kirsten; Barrat, Jean-Louis

    2018-01-01

    We develop a theoretical description based on an existent mean-field model for the transient dynamics prior to the steady flow of yielding materials. The mean-field model not only reproduces the experimentally observed nonlinear time dependence of the shear-rate response to an external stress, but also allows for the determination of the different physical processes involved in the onset of the reacceleration phase after the initial slowing down and a distinct fluidization phase. The fluidization time displays a power-law dependence on the distance of the applied stress to an age-dependent yield stress, which is not universal but strongly dependent on initial conditions.

  6. Flow and Stress Field Analysis of Different Fluids and Blades for Fermentation Process

    Directory of Open Access Journals (Sweden)

    Cheng-Chi Wang

    2014-02-01

    Full Text Available Fermentation techniques are applied for the biotechnology and are widely used for food manufacturing, materials processing, chemical reaction, and so forth. Different fluids and types of blades in the tank for fermentation cause distinct flow and stress field distributions on the surface between fluid and blade and various flow reactions in the tank appear. This paper is mainly focused on the analysis of flow field with different fluid viscosities and also studied the stress field acting on the blades with different scales and shapes of them under specific rotational speed. The results show that the viscosity of fluid influences the flow field and stress distributions on the blades. The maximum stress that acts on the blade is increased with the increasing of viscosity. On the other hand, the ratio of blade length to width influences stress distributions on the blade. At the same time, the inclined angle of blade is also the key parameter for the consideration of design and appropriate inclined angle of blade will decrease the maximum stress. The results provide effective means of gaining insights into the flow and stress distribution of fermentation process.

  7. Recency of Faulting and Neotechtonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range

    Energy Technology Data Exchange (ETDEWEB)

    Steven Wesnousky; S. John Caskey; John W. Bell

    2003-02-20

    We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The approach developed here during our pilot study provides an inexpensive approach to (1) better define the best locations to site geothermal wells within known geothermal fields and (2) to define the location of yet discovered geothermal fields which are not manifest at the surface by active geothermal springs. More specifically, our investigation shows that induced stress concentrations at the endpoints of normal fault ruptures appear to promote favorable conditions for hydrothermal activity in two ways. We conclude that an understanding of the spatial distribution of active faults and the past history of earthquakes on those faults be incorporated as a standard tool in geothermal exploration and in the siting of future boreholes in existing geothermal fields.

  8. Shielding Flowers Developing under Stress: Translating Theory to Field Application

    Directory of Open Access Journals (Sweden)

    Noam Chayut

    2014-07-01

    Full Text Available Developing reproductive organs within a flower are sensitive to environmental stress. A higher incidence of environmental stress during this stage of a crop plants’ developmental cycle will lead to major breaches in food security. Clearly, we need to understand this sensitivity and try and overcome it, by agricultural practices and/or the breeding of more tolerant cultivars. Although passion fruit vines initiate flowers all year round, flower primordia abort during warm summers. This restricts the season of fruit production in regions with warm summers. Previously, using controlled chambers, stages in flower development that are sensitive to heat were identified. Based on genetic analysis and physiological experiments in controlled environments, gibberellin activity appeared to be a possible point of horticultural intervention. Here, we aimed to shield flowers of a commercial cultivar from end of summer conditions, thus allowing fruit production in new seasons. We conducted experiments over three years in different settings, and our findings consistently show that a single application of an inhibitor of gibberellin biosynthesis to vines in mid-August can cause precocious flowering of ~2–4 weeks, leading to earlier fruit production of ~1 month. In this case, knowledge obtained on phenology, environmental constraints and genetic variation, allowed us to reach a practical solution.

  9. Shielding Flowers Developing under Stress: Translating Theory to Field Application.

    Science.gov (United States)

    Chayut, Noam; Sobol, Shiri; Nave, Nahum; Samach, Alon

    2014-07-11

    Developing reproductive organs within a flower are sensitive to environmental stress. A higher incidence of environmental stress during this stage of a crop plants' developmental cycle will lead to major breaches in food security. Clearly, we need to understand this sensitivity and try and overcome it, by agricultural practices and/or the breeding of more tolerant cultivars. Although passion fruit vines initiate flowers all year round, flower primordia abort during warm summers. This restricts the season of fruit production in regions with warm summers. Previously, using controlled chambers, stages in flower development that are sensitive to heat were identified. Based on genetic analysis and physiological experiments in controlled environments, gibberellin activity appeared to be a possible point of horticultural intervention. Here, we aimed to shield flowers of a commercial cultivar from end of summer conditions, thus allowing fruit production in new seasons. We conducted experiments over three years in different settings, and our findings consistently show that a single application of an inhibitor of gibberellin biosynthesis to vines in mid-August can cause precocious flowering of ~2-4 weeks, leading to earlier fruit production of ~1 month. In this case, knowledge obtained on phenology, environmental constraints and genetic variation, allowed us to reach a practical solution.

  10. Vector Magnetic Fields, Sub surface Stresses and Evolution of ...

    Indian Academy of Sciences (India)

    tribpo

    Arendt 1996). Bogdan (1984) found that flux tubes of the same sense of twist will merge if their relative velocities are slow enough to allow their magnetic fields to reconnect. Zweibel & Rhoads (1995) estimated an upper limit to the critical velocity and concluded that colliding twisted flux tubes may coalesce at the base of the ...

  11. Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

    Directory of Open Access Journals (Sweden)

    Y. Prawoto

    2012-01-01

    Full Text Available Through an investigation of the field failure analysis and laboratory experiment, a study on (stress corrosion cracking SCC behavior of steel and aluminum was performed. All samples were extracted from known operating conditions from the field failures. Similar but accelerated laboratory test was subsequently conducted in such a way as to mimic the field failures. The crack depth and behavior of the SCC were then analyzed after the laboratory test and the mechanism of stress corrosion cracking was studied. The results show that for the same given stress relative to ultimate tensile strength, the susceptibility to SCC is greatly influenced by heat treatment. Furthermore, it was also concluded that when expressed relative to the (ultimate tensile strength UTS, aluminum has similar level of SCC susceptibility to that of steel, although with respect to the same absolute value of applied stress, aluminum is more susceptible to SCC in sodium hydroxide environment than steel.

  12. Seed ageing and field performance of maize under water stress

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... multiple range test at P≤0.05. RESULTS. Seed ageing had significant effects on normal germi- nation percentage, mean germination .... priming in semi-arid agriculture development andevaluation in maize, rice and chickpea in India using participatory methods. Exp. Agric. 35: 15-29. Ludlow MM, Muchow ...

  13. Displacement and stress fields around rock fractures opened by irregular overpressure variations

    Directory of Open Access Journals (Sweden)

    Shigekazu eKusumoto

    2014-05-01

    Full Text Available Many rock fractures are entirely driven open by fluids such as ground water, geothermal water, gas, oil, and magma. These are a subset of extension fractures (mode I cracks; e.g., dikes, mineral veins and joints referred to as hydrofractures. Field measurements show that many hydrofractures have great variations in aperture. However, most analytical solutions for fracture displacement and stress fields assume the loading to be either constant or with a linear variation. While these solutions have been widely used, it is clear that a fracture hosted by heterogeneous and anisotropic rock is normally subject to loading that is neither constant nor with a linear variation. Here we present new general solutions for the displacement and stress fields around hydrofractures, modelled as two-dimensional elastic cracks, opened by irregular overpressure variations given by the Fourier cosine series. Each solution has two terms. The first term gives the displacement and stress fields due to the average overpressure acting inside the crack; it is given by the initial term of the Fourier coefficients expressing the overpressure variation. The second term gives the displacement and stress fields caused by the overpressure variation; it is given by general terms of the Fourier coefficients and solved through numerical integration. Our numerical examples show that the crack aperture variation closely reflects the overpressure variation. Also, that the general displacement and stress fields close to the crack follow the overpressure variation but tend to be more uniform far from the crack. The present solutions can be used to estimate the displacement and stress fields around any fluid-driven crack, that is, any hydrofracture, as well as its aperture, provided the variation in overpressure can be described by Fourier series. The solutions add to our understanding of local stresses, displacements, and fluid transport associated with hydrofractures in the crust.

  14. Group velocity effect on resonant, long-range wake-fields in slow wave structures

    CERN Document Server

    Smirnov, A V

    2002-01-01

    Synchronous wake-fields in a dispersive waveguide are derived in a general explicit form on the basis of a rigorous electro-dynamical approach using Fourier transformations. The fundamental role of group velocity in wake-field propagation, calculation of attenuation, amplitudes, form-factors and loss-factors is analyzed for single bunch radiation. Adiabatic tapering of the waveguide and bunch density variation is taken into account analytically for the time-domain fields. Effects of field 'compression/expansion' and group delays are demonstrated. The role of these effects is discussed for single bunch wake-fields, transient beam loading, BBU and HOMs. A novel waveguide structure with central rf coupling and both positive and negative velocities is proposed. It can be used effectively in both high-energy accelerators and single-section linacs.

  15. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  16. Range Detection of the Extremely Low-Frequency Magnetic Field Produced by Laptop's AC Adapter

    Science.gov (United States)

    Brodić, Darko; Amelio, Alessia

    2017-02-01

    Human exposure to extremely low frequency magnetic field represents a risk to their health. This paper takes into consideration the level of an extremely low-frequency magnetic field between 30 and 300 Hz emitted by an AC laptop adapter. The experiment consists of testing 17 different AC adapters for laptops. During the testing, laptops are operated in a normal operating conditions as well as under heavy load. The magnetic field measurement is conducted in the area around the AC adapter. Obtained data is evaluated according to the critical level of the magnetic field proposed by safety standards. Furthermore, data is classified by a K-medians method in order to determine the critical levels of the magnetic field exposure in the nearby area of the AC adapter. Obtained classifications are evaluated according to safety standards, giving a critical analysis of magnetic field areas at risk. Due to emission of a very strong magnetic field in certain areas, a recommendation for safety use of the AC adapter is proposed.

  17. Numerical modeling of tectonic stress field and fault activity in North China

    Directory of Open Access Journals (Sweden)

    Li Yan

    2012-02-01

    Full Text Available On the basis of a 3-dimension visco-elastic finite element model of lithosphere in North China, we numerically simulate the recent mutative figures of tectonic stress field. Annual change characteristics of stress field are; 1 Maximum principal tensile stress is about 3–9 kPaa−1 and its azimuth lie in NNW-SSE. 2 Maximum principal compressive stress is about 1–6 kPaa−1 and its azimuth lie in NEE-SWW. 3 Maximum principal tensile stress is higher both in the west region and Liaoning Province. 4 Variation of tectonic stress field benefits fault movement in the west part and northeast part of North China. 5 Annual accumulative rates of Coulomb fracture stress in Tanlu fault belt have segmentation patterns: Jiashan-Guangji segment is the highest (6 kPaa−1, Anshan-Liaodongwan segment is the second (5 kPaa−1, and others are relatively lower (3–4 kPaa−1.

  18. In situ Weak Magnetic-Assisted Thermal Stress Field Reduction Effect in Laser Welding

    Science.gov (United States)

    Liang, Lvjie; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Jiang, Ping; Chen, Xin

    2018-01-01

    For decades, post-welding magnetic treatment has been used to reduce residual stress of welds by improving the crystal structure of solid-state welds. In this paper, we propose a new magnetic treatment method, which can reduce the time-dependent thermal stress field in situ and reduce the final residual stress of welds by simply exerting an assisted weak magnetic field perpendicular to the welding direction and workpiece during laser welding. A new finite-element model is developed to understand the thermal-mechanical physical process of the magnetic-assisted laser welding. For the widely used 304 austenite stainless steel, we theoretically observed that this method can reduce around 10 pct of the time-dependent thermal stress field, and finally reduce approximately 20 MPa of residual stress near the heat-affected zone with a 415-mT magnetic field for typical welding process parameters. A new mechanism based on magneto-fluid dynamics is proposed to explain the theoretical predications by combining high-speed imaging experiments of the transient laser welding process. The developed method is very simple but surprisingly effective, which opens new avenues for thermal stress reduction in laser welding of metals, particularly heat-sensitive metallic materials.

  19. In situ Weak Magnetic-Assisted Thermal Stress Field Reduction Effect in Laser Welding

    Science.gov (United States)

    Liang, Lvjie; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Jiang, Ping; Chen, Xin

    2017-11-01

    For decades, post-welding magnetic treatment has been used to reduce residual stress of welds by improving the crystal structure of solid-state welds. In this paper, we propose a new magnetic treatment method, which can reduce the time-dependent thermal stress field in situ and reduce the final residual stress of welds by simply exerting an assisted weak magnetic field perpendicular to the welding direction and workpiece during laser welding. A new finite-element model is developed to understand the thermal-mechanical physical process of the magnetic-assisted laser welding. For the widely used 304 austenite stainless steel, we theoretically observed that this method can reduce around 10 pct of the time-dependent thermal stress field, and finally reduce approximately 20 MPa of residual stress near the heat-affected zone with a 415-mT magnetic field for typical welding process parameters. A new mechanism based on magneto-fluid dynamics is proposed to explain the theoretical predications by combining high-speed imaging experiments of the transient laser welding process. The developed method is very simple but surprisingly effective, which opens new avenues for thermal stress reduction in laser welding of metals, particularly heat-sensitive metallic materials.

  20. Igneous sills record far-field and near-field stress interactions during volcano construction: Isle of Mull, Scotland

    Science.gov (United States)

    Stephens, T. L.; Walker, R. J.; Healy, D.; Bubeck, A.; England, R. W.; McCaffrey, K. J. W.

    2017-11-01

    Sill emplacement is typically associated with horizontally mechanically layered host rocks in a near-hydrostatic far-field stress state, where contrasting mechanical properties across the layers promote transitions from dykes, or inclined sheets, to sills. We used detailed field observations from the Loch Scridain Sill Complex (Isle of Mull, UK), and mechanical models to show that layering is not always the dominant control on sill emplacement. The studied sills have consistently shallow dips (1°-25°) and cut vertically bedded and foliated metamorphic basement rocks, and horizontally bedded cover sedimentary rocks and lavas. Horizontal and shallowly-dipping fractures in the host rock were intruded with vertical opening in all cases, whilst steeply-dipping discontinuities within the sequence (i.e. vertical fractures and foliation in the basement, and vertical polygonal joints in the lavas) were not intruded during sill emplacement. Mechanical models of slip tendency, dilation tendency, and fracture susceptibility for local and overall sill geometry data, support a radial horizontal compression during sill emplacement. Our models show that dykes and sills across Mull were emplaced during NW-SE horizontal shortening, related to a far-field tectonic stress state. The dykes generally accommodated phases of NE-SW horizontal tectonic extension, whereas the sills record the superposition of the far-field stress with a near-field stress state, imposed by emplacement of the Mull Central Volcano. We show that through detailed geometric characterisation coupled with mechanical modelling, sills may be used as an indication of fluctuations in the paleostress state.

  1. Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range

    DEFF Research Database (Denmark)

    Baryshnikova, Kseniia V.; Novitsky, Andrey; Evlyukhin, Andrey B.

    2017-01-01

    Possibility of magnetic energy accumulation inside silicon nanoparticles atthe conditions of resonant optical responses is investigated theoretically. Themagnetic field distributions inside silicon nanocylinders with and withoutcoaxial through holes are calculated using full-wave numerical approach....... It isdemonstrated that such systems can be used for control and manipulation ofoptical magnetic fields providing their enhancement up to 26 times at thecondition of optical resonances. Obtained results can be used for realizationof nanoantennas and nanolasers, in which magnetic optical transitions playsignificant...

  2. Effect of continuous irradiation with terahertz electromagnetic waves of the NO frequency range on behavioral reactions of male albino rats under stress conditions.

    Science.gov (United States)

    Kirichuk, V F; Antipova, O N; Krylova, Ya A

    2014-06-01

    We studied the effect of terahertz waves (NO frequency range, 150.176-150.664 GHz) on stress-induced variations in behavioral reactions of male albino rats during hypokinetic stress. THz irradiation was followed by partial or complete normalization of behavioral reactions of male albino rats after hypokinetic stress. The most significant effect was observed after continuous irradiation for 30 min.

  3. Tertiary stress field evolution in Sistan (Eastern Iran)

    Science.gov (United States)

    Michael, Jentzer; Marc, Fournier; Philippe, Agard; Jafar, Omrani

    2016-04-01

    The Sistan orogenic belt in eastern Iran, near the boundary with Afghanistan, results from the closure of a branch of the Neo-Thethys: the Sistan Ocean. It was divided by Tirrul et al. (1983) in five main units: the Lut (1) and Afghan (2) continental blocks where basement is exposed; the Neh (3) and Ratuk (4) complexes which display ophiolitic rocks weakly and highly (HP-BT) metamorphosed, respectively, and the Sefidabeh basin lying over these complexes and interpreted as a fore-arc basin. Sistan is bordered by the Makran and Zagros (formed by the closure of the Neo-Tethys) to the south and by the Kopet Dagh (formed by the closure of Paleo-Tethys) to the North. The aim of this study is to fill the gap between preliminary studies about the overall structure of the Sistan Suture Zone and recent investigations of active tectonics in the region (e.g., Walker et al., 2004 and 2006 a and b). Questions herein addressed are: (1) how are stresses transfered throughout Iran from the Zagros to the Sistan belts? (2) Did the Zagros, Makran and Sistan belts evolve independently through time, or were they mechanically coupled? In order to answer these questions, we have determined paleostress evolution in the Sistan, using a direct inversion method for 42 microtectonic sites in almost all lithologies of the Neh complex and the Sefidabeh basin. We find three successive directions of compression: (1) 87°N for the oldest deformation stage dated of the Late Miocene, (2) 59°N for the intermediate stage probably dated of the Early Pliocene, and (3) 26°N for the youngest stage dated of the Plio-Quaternary. A counterclockwise rotation of about 60° of the main stress (σ1) in less than 10 Ma is therefore documented in Sistan. These same three stages of deformation were also documented by several microtectonic studies in Iran, especially in Makran and Zagros. The direction of the youngest compression is very homogeneous indicating that the mountain belts and continental blocks of Iran

  4. Thermal Preference Ranges Correlate with Stable Signals of Universal Stress Markers in Lake Baikal Endemic and Holarctic Amphipods.

    Directory of Open Access Journals (Sweden)

    Denis Axenov-Gribanov

    Full Text Available Temperature is the most pervasive abiotic environmental factor for aquatic organisms. Fluctuations in temperature range lead to changes in metabolic performance. Here, we aimed to identify whether surpassing the thermal preference zones is correlated with shifts in universal cellular stress markers of protein integrity, responses to oxidative stress and lactate content, as indicators of anaerobic metabolism. Exposure of the Lake Baikal endemic amphipod species Eulimnogammarus verrucosus (Gerstfeldt, 1858, Ommatogammarus flavus (Dybowski, 1874 and of the Holarctic amphipod Gammarus lacustris Sars 1863 (Amphipoda, Crustacea to increasing temperatures resulted in elevated heat shock protein 70 (Hsp70 and lactate content, elevated antioxidant enzyme activities (i.e., catalase and peroxidase, and reduced lactate dehydrogenase and glutathione S-transferase activities. Thus, the zone of stability (absence of any significant changes of the studied molecular and biochemical markers correlated with the behaviorally preferred temperatures. We conclude that the thermal behavioral responses of the studied amphipods are directly related to metabolic processes at the cellular level. Thus, the determined thermal ranges may possibly correspond to the thermal optima. This relationship between species-specific behavioral reactions and stress response metabolism may have significant ecological consequences that result in a thermal zone-specific distribution (i.e., depths, feed spectrum, etc. of species. As a consequence, by separating species with different temperature preferences, interspecific competition is reduced, which, in turn, increases a species' Darwinian fitness in its environment.

  5. Repeatability of Contour Method Residual Stress Measurements for a Range of Material, Process, and Geometry (Preprint)

    Science.gov (United States)

    2017-09-19

    titanium, and nickel, reflecting key industrial alloys . The set of conditions also includes a range of geometry, including plate, disk, and...for measurements. 2.2.3. Titanium Electron Beam Welded Plate Titanium alloy electron beam (EB) welded plate specimens were fabricated using one...right to use , modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT (Maximum 200 words) This paper examines precision of

  6. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  7. Micromechanism Underlying Nonlinear Stress-Dependent K0 of Clays at a Wide Range of Pressures

    Directory of Open Access Journals (Sweden)

    Xiang-yu Shang

    2015-01-01

    Full Text Available In order to investigate the mechanism underlying the reported nonlinear at-rest coefficient of earth pressure, K0 of clays at high pressure, a particle-scale model which can be used to calculate vertical and horizontal repulsion between clay particles has been proposed. This model has two initial states which represent the clays at low pressure and high pressure, and the particles in this model can undergo rotation and vertical translation. The computation shows that the majority of particles in a clay sample at high pressure state would experience rotation during one-dimensional compression. In addition, rotation of particles which tends to form a parallel structure causes an increase of the horizontal interparticle force, while vertical translation leads to a decrease in it. Finally, the link between interparticle force, microstructure, and macroscopic K0 is analyzed and it can be used to interpret well the nonlinear changes in K0 with both vertical consolidation stress and height-diameter ratio.

  8. Dynamics of Mount Somma-Vesuvius edifice: from stress field inversion to analogue and numerical modelling

    Science.gov (United States)

    De Matteo, Ada; Massa, Bruno; D'Auria, Luca; Castaldo, Raffaele

    2017-04-01

    Geological processes are generally very complex and too slow to be directly observed in their completeness; modelling procedures overcome this limit. The state of stress in the upper lithosphere is the main responsible for driving geodynamical processes; in order to retrieve the active stress field in a rock volume, stress inversion techniques can be applied on both seismological and structural datasets. This approach has been successfully applied to active tectonics as well as volcanic areas. In this context the best approach in managing heterogeneous datasets in volcanic environments consists in the analysis of spatial variations of the stress field by applying robust techniques of inversion. The study of volcanic seismicity is an efficient tool to retrieve spatial and temporal pattern of the pre-, syn- and inter-eruptive stress field: magma migration as well as dynamics of magma chamber and hydrothermal system are directly connected to the volcanic seismicity. Additionally, analysis of the temporal variations of stress field pattern in volcanoes could be a useful monitoring tool. Recently the stress field acting on several active volcanoes has been investigated by using stress inversion techniques on seismological datasets (Massa et al., 2016). The Bayesian Right Trihedra Method (BRTM; D'Auria and Massa, 2015) is able to successfully manage heterogeneous datasets allowing the identification of regional fields locally overcame by the stress field due to volcano specific dynamics. In particular, the analysis of seismicity and stress field inversion at the Somma-Vesuvius highlighted the presence of two superposed volumes characterized by different behaviour and stress field pattern: a top volume dominated by an extensional stress field, in accordance with a gravitational spreading-style of deformation, and a bottom volume related to a regional extensional stress field. In addition, in order to evaluate the dynamics of deformation, both analogue and numerical

  9. THEORETICAL COMPUTATION OF A STRESS FIELD IN A CYLINDRICAL GLASS SPECIMEN

    Directory of Open Access Journals (Sweden)

    NORBERT KREČMER

    2011-03-01

    Full Text Available This work deals with the computation of the stress field generated in an infinitely high glass cylinder while cooling. The theory of structural relaxation is used in order to compute the heat capacity, the thermal expansion coefficient, and the viscosity. The relaxation of the stress components is solved in the frame of the Maxwell viscoelasticity model. The obtained results were verified by the sensitivity analysis and compared with some experimental data.

  10. Numerical and experimental study of moisture-induced stress and strain field developments in timber logs

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2013-01-01

    When solid wood dries from a green condition to a moisture content used for further processing, moisture-induced fracture and stresses can occur. The drying stresses arise because of internal deformation constraints that are strongly affected by the cross-sectional moisture gradient differential...... shrinkage and the inhomogeneity of the material. To obtain a better understanding of how stresses develop during climatic variations, the field histories of stresses (and strains) in cross sections in their entirety need to be studied. The present paper reports on experiments and numerical simulations...... concerned with analysing the development of strains and stresses during the drying of 15-mm-thick discs of Norway spruce timber log. The samples were dried at 23 °C and relative humidity of 64 % from a green condition to equilibrium moisture content. The moisture gradient in the longitudinal direction...

  11. Acidic pH shock induces the expressions of a wide range of stress-response genes

    Directory of Open Access Journals (Sweden)

    Hong Soon-Kwang

    2008-12-01

    Full Text Available Abstract Background Environmental signals usually enhance secondary metabolite production in Streptomycetes by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in Streptomyces strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in S. coelicolor A3(2. Results According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of sigH (heat shock, sigR (oxidative stress, sigB (osmotic shock, and hrdD that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of hspR was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall. Conclusion From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.

  12. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster

    OpenAIRE

    ZHANG Zi-yan; Zhang,Jing; Yang, Chuan-Jun; Lian, Hui-Yong; Yu, Hui; Huang, Xiao-Mei; Cai, Peng

    2016-01-01

    Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF), but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT) on the lifespan, locomotion, heat shock response (HSR), and oxidative stress (OS) of Canton-Special (CS) and mutant w1118 flies were investigated at 25?C and 35?C (thermal stress). Results showed that thermal stress accelerated the death rates of CS and w1118 fl...

  13. Stress fields in soft material induced by injection of highly-focused microjets

    Science.gov (United States)

    Miyazaki, Yuta; Endo, Nanami; Kawamoto, Sennosuke; Kiyama, Akihito; Tagawa, Yoshiyuki

    2017-11-01

    Needle-free drug injection systems using high-speed microjets are of great importance for medical innovations since they can solve problems of the conventional needle injection systems. However, the mechanical stress acting on the skin/muscle of patients during the penetration of liquid-drug microjets had not been clarified. In this study we investigate the stress caused by the penetration of microjets into soft materials, which is compared with the stress induced by the penetration of needles. In order to capture high-speed temporal evolution of the stress field inside the material, we utilized a high-speed polarized camera and gelatin that resembles human skin. Remarkably we find clear differences in the stress fields induced by microjets and needles. On one hand, high shear stress induced by the microjets is attenuated immediately after the injection, even though the liquid stays inside the soft material. On the other hand, high-shear stress induced by the needles stays and never decays unless the needles are entirely removed from the material. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.

  14. Estimating bed shear stress from remotely measured surface turbulent dissipation fields in open channel flows

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-03-01

    Synoptic information on bed shear stress is necessary in predicting the transport of sediments and environmental contaminants in rivers and open channels. Existing methods of estimating bed shear stress typically involve measuring vertical profiles of streamwise velocity or Reynolds stress and taking advantage of the logarithmic or the constant stress region, respectively, to determine friction velocity and subsequently, bed shear stress. While effective, these methods yield local measurements of bed shear stress only. Direct measurements of bed shear stress can also be obtained through measurements with a drag plate. However, this method yields average shear stress information over the area of the plate and is impractical for large-scale implementation in the field. Here we present a method capable of providing continuous synoptic measurements of bed shear stress over a large field-of-view. A series of Large-Scale Particle Image Velocimetry (LSPIV) and Acoustic Doppler Velocimetry (ADV) measurements were made in a variety of flows generated in a wide-open channel facility. Turbulent dissipation is calculated on the free surface from the 2-D LSPIV results and is correlated with near-surface ADV measurements of turbulent dissipation in the water column. The ADV results are consistent with the Nezu (1977) established relationship for the vertical variation of turbulent dissipation in the water column. Knowledge of the correlation between free-surface and near-surface dissipation values coupled with Nezu's (1977) relationship allow a robust and accurate estimate of friction velocity to be made and subsequently, shear stress at the bed can be estimated.

  15. The interaction of plant biotic and abiotic stresses: from genes to the field.

    Science.gov (United States)

    Atkinson, Nicky J; Urwin, Peter E

    2012-06-01

    Plant responses to different stresses are highly complex and involve changes at the transcriptome, cellular, and physiological levels. Recent evidence shows that plants respond to multiple stresses differently from how they do to individual stresses, activating a specific programme of gene expression relating to the exact environmental conditions encountered. Rather than being additive, the presence of an abiotic stress can have the effect of reducing or enhancing susceptibility to a biotic pest or pathogen, and vice versa. This interaction between biotic and abiotic stresses is orchestrated by hormone signalling pathways that may induce or antagonize one another, in particular that of abscisic acid. Specificity in multiple stress responses is further controlled by a range of molecular mechanisms that act together in a complex regulatory network. Transcription factors, kinase cascades, and reactive oxygen species are key components of this cross-talk, as are heat shock factors and small RNAs. This review aims to characterize the interaction between biotic and abiotic stress responses at a molecular level, focusing on regulatory mechanisms important to both pathways. Identifying master regulators that connect both biotic and abiotic stress response pathways is fundamental in providing opportunities for developing broad-spectrum stress-tolerant crop plants.

  16. Remote Detection of Climate Change Indicators in the Mission Mountain Range: Tracking Ice Field Movement

    Science.gov (United States)

    Sifford, C. N.; Kenning, R.; Carlson, M.; Rock, B. N.

    2010-12-01

    This study compared Landsat images over a 22-year span from 1987-2009 to map the change in size of the McDonald snow and ice fields in the Mission Mountains on the Flathead Reservation. Our hypothesis was that a variation in snow and ice field size can be used as an indicator of climate change on a local level. This hypothesis proved true. Analyzing snow and ice field acreage from 8 Landsat images representing September dates from different years (1987, 1990, 1991, 1994, 2005, 2007, 2008, and 2009) created with MultiSpec and ArcMap, we then created a sum of acres for each year that yielded a slight downward trend in area of snow and ice fields. The study found an upward trend in the average temperature for the month of September over a 100-year span (1909- 2009) of approximately 2.0o F, from 55o F to more than 57o F. Calculations of snow and ice field area were made from a Normalized Difference Snow and Ice Index (NDSII) of the September months’ ice/snow cover, using Multispec, and attribute table measures of those areas in ArcMap. Years 1990 and 1991 showed 738 and 700 acres, respectively; in the current decade the largest acreage was in 2005 with 531 acres and the lowest was in 2007 at 232 acres. I conclude that using remote sensing methods prove a reliable source for analyzing land cover such as snow and ice. Cloud cover remains a constant issue in acquiring usable data due to interference from clouds. Graphing the analyzed data from the 8 Landsat scenes shows a slight downward trend (Formula y = -4.6802x + 515.84 R2 = 0.0494).

  17. Field report: Exploring the Doonerak fenster of the central Brooks Range, Alaska, USA

    Directory of Open Access Journals (Sweden)

    Justin V. Strauss

    2017-07-01

    Full Text Available Arctic Alaska is a ‘suspect’ terrane that encompasses approximately 20% of Alaska, stretching from the southern Brooks Range all the way to the continental shelves of the Chukchi and Beaufort Seas. Although the origin and subsequent travels of this large crustal fragment are debated among geologists, most researchers agree upon its composite nature and exotic origin. To constrain the early geological history of this terrane, we describe a recent expedition to the Doonerak fenster of the central Brooks Range. This area has long been regarded as a key locality for understanding the structural evolution of the Mesozoic–Cenozoic Brooks Range orogen; however, our target was different: a unique sequence of volcanic and siliciclastic rocks (Apoon assemblage exposed beneath a profound pre-Mississippian unconformity, which we argue is of key importance to understanding the early Paleozoic tectonic history of northern Alaska and the greater Arctic.

  18. Experimental study on stabilizing range extension of diamagnetic levitation under modulated magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T C S; Wong, P L; Liu, K P, E-mail: 50578230@student.cityu.edu.h, E-mail: meplwong@cityu.edu.h, E-mail: mekpliu@cityu.edu.h [Manufacturing Engineering and Engineering Management Department, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2010-01-01

    The real energy-free levitation exists with the help of diamagnetic material. Its ultra-high sensitivity to force is particularly attractive to micro/nano force sensing. A key parameter: Levitation Stabilizing Local Range, LR (allowable moving range of the floater) is critical to the load and self-rotating performance. Besides, larger LR reduces the energy loss due to the eddy current and has greater application potential. Recently, an idea of extending the LR by a modulating coil array has been validated using numerical simulation. This paper takes the next move to carry out an experimental study on the shape effect of stacked coil arrays with different currents on LR.

  19. The stress field of Vrancea region from fault plane solution (FPS

    Directory of Open Access Journals (Sweden)

    L. Telesca

    2011-10-01

    Full Text Available The fault plane solutions (FPS of 247 seismic events were used for stress field investigation of the region. The eigenvectors t, p, b, and moment tensor M components for each FPS were defined and computed numerically. The obtained results confirm the hypothesis of subduction-type intermediate depth earthquakes for the Vrancea seismic region and this may be considered the first approximation of the stress field for the whole of the Vrancea (intermediate depth region.

  20. Phase-Field Relaxation of Topology Optimization with Local Stress Constraints

    DEFF Research Database (Denmark)

    Stainko, Roman; Burger, Martin

    2006-01-01

    We introduce a new relaxation scheme for structural topology optimization problems with local stress constraints based on a phase-field method. In the basic formulation we have a PDE-constrained optimization problem, where the finite element and design analysis are solved simultaneously. The star......We introduce a new relaxation scheme for structural topology optimization problems with local stress constraints based on a phase-field method. In the basic formulation we have a PDE-constrained optimization problem, where the finite element and design analysis are solved simultaneously...

  1. In situ rock strength and far field stress in the Nankai accretionary complex: Integration of downhole data from multiple wells

    Science.gov (United States)

    Huffman, K. A.; Saffer, D. M.

    2014-12-01

    Knowing the magnitude of tectonic stress and rock strength at seismically active margins is important towards understanding fault strength and failure mechanics, yet both are difficult to measure in situ. Recent work at subduction margins, including Integrated Ocean Drilling Program (IODP) Nankai Trough Subduction Zone Experiment (NanTroSEIZE) drillsites, uses the width of compressional wellbore breakouts (BO), which depends on far field stress conditions, rock strength, and borehole annular pressure (APRS), to estimate the magnitude of horizontal principal stresses (SHmax and Shmin); estimates are problematic due to uncertainty in rock strength (unconfined compressive strength/UCS- for which direct measurements are scarce) and rheology that govern stress distribution at the wellbore. We conduct a novel case study at IODP Site C0002, where a hole was drilled twice with different boundary conditions, providing an opportunity to define in situ stress and strength from field data. Site C0002 is the main deep riser borehole for NanTroSEIZE, located near the seaward edge of the Kumano Basin above the seismogenic plate boundary, ~30 km from the trench. Several boreholes were drilled at the site. During IODP Expedition 314 in 2007, Hole C0002A was drilled with a suite of logging while drilling (LWD) tools to 1401 mbsf in a riserless mode. Hole C0002F, ~70 m away, was drilled to 862 mbsf in riserless mode during Exp. 326 in 2010 and deepened to 2005 mbsf in a riser mode during Expedition 338 in 2012-2013. Increased APRS achieved by riser drilling stabilizes the borehole and suppresses BO, consistent with resistivity imaging data from Exp. 314 that document well-developed, continuous BO throughout the borehole, and data from Expedition 338 indicating few BO. We use a semi-Newtonian approach to solve for stress and UCS consistent with the observed BO width and measured APRS in the two holes over the interval from 862-2005 mbsf. Effective SHmax ranges from ~10-30 MPa and

  2. Short-range dynamics and prediction of mesoscale flow patterns in the MISTRAL field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O.; Kaufmann, P.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In a limited area of about 50 km by 50 km with complex topography, wind measurements on a dense network were performed during the MISTRAL field experiment in 1991-1992. From these data the characteristic wind fields were identified by an automated classification method. The dynamics of the resulting twelve typical regional flow patterns is studied. It is discussed how transitions between the flow patterns take place and how well the transition probabilities can be described in the framework of a Markov model. Guided by this discussion, a variety of prediction models were tested which allow a short-term forecast of the flow pattern type. It is found that a prediction model which uses forecast information from the synoptic scale has the best forecast skill. (author) 2 figs., 7 refs.

  3. Escape factors for thermionic cathodes in atomic gases in a wide electric field range

    Science.gov (United States)

    Benilov, M. S.; Naidis, G. V.; Petrovic, Z. Lj; Radmilovic-Radjenovic, M.; Stojkovic, A.

    2006-07-01

    An approximate analytical expression is obtained for the escape factors for thermionically emitting cathodes in atomic gases that is uniformly valid at all values of the reduced electric field. This expression is used for evaluation of the escape factors in neon, helium and mercury. An independent evaluation is performed by means of Monte Carlo simulations. The analytical results are in good agreement with the results of Monte Carlo simulations, both for reflecting and non-reflecting cathodes.

  4. Escape factors for thermionic cathodes in atomic gases in a wide electric field range

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal); Naidis, G V [Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow 125412 (Russian Federation); Petrovic, Z Lj [Institute of Physics, POB 68, 11080 Zemun, Belgrade (Serbia); Radmilovic-Radjenovic, M [Institute of Physics, POB 68, 11080 Zemun, Belgrade (Serbia); Stojkovic, A [Institute of Physics, POB 68, 11080 Zemun, Belgrade (Serbia)

    2006-07-21

    An approximate analytical expression is obtained for the escape factors for thermionically emitting cathodes in atomic gases that is uniformly valid at all values of the reduced electric field. This expression is used for evaluation of the escape factors in neon, helium and mercury. An independent evaluation is performed by means of Monte Carlo simulations. The analytical results are in good agreement with the results of Monte Carlo simulations, both for reflecting and non-reflecting cathodes.

  5. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min/sup -1/ can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected.

  6. USE OF AUTODESK SIMULATION MULTIPHYSICS FOR RESEARCH OF TEMPERATURE FIELDS, STRESS AND DEFOMATION IN THE CONSTRUCTION OF GEAR PUMP

    Directory of Open Access Journals (Sweden)

    A. V. Puzanov

    2016-01-01

    Full Text Available Gear pumps are the most common type of hydraulic machines. They are used in various industries: oil and gas processing industry, in machine tools, mobile military, road-building and agricultural machinery. The need to ensure efficiency of hydraulic mobile applications in a wide climatic range requires increasing the accuracy of the calculation methods for the design of their elements. The results of temperature field modeling and caused them stress and strain. The results obtained allowed to justify the design and technological solutions, providing an increase of hydraulic performance at critical ambient temperatures.

  7. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Zi-Yan Zhang

    Full Text Available Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF, but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT on the lifespan, locomotion, heat shock response (HSR, and oxidative stress (OS of Canton-Special (CS and mutant w1118 flies were investigated at 25°C and 35°C (thermal stress. Results showed that thermal stress accelerated the death rates of CS and w1118 flies, shortened their lifespan, and influenced their locomotion rhythm and activity. The upregulated expression levels of heat shock protein (HSP 22, HSP26, and HSP70 indicated that HSR was enhanced. Thermal stress-induced OS response increased malondialdehyde content, enhanced superoxide dismutase activity, and decreased reactive oxygen species level. The effects of thermal stress on the death rates, lifespan, locomotion, and HSP gene expression of flies, especially w1118 line, were also enhanced by ELF-EMF. In conclusion, thermal stress weakened the physiological function and promoted the HSR and OS of flies. ELF-EMF aggravated damages and enhanced thermal stress-induced HSP and OS response. Therefore, thermal stress and ELF-EMF elicited a synergistic effect.

  8. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster.

    Science.gov (United States)

    Zhang, Zi-Yan; Zhang, Jing; Yang, Chuan-Jun; Lian, Hui-Yong; Yu, Hui; Huang, Xiao-Mei; Cai, Peng

    2016-01-01

    Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF), but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT) on the lifespan, locomotion, heat shock response (HSR), and oxidative stress (OS) of Canton-Special (CS) and mutant w1118 flies were investigated at 25°C and 35°C (thermal stress). Results showed that thermal stress accelerated the death rates of CS and w1118 flies, shortened their lifespan, and influenced their locomotion rhythm and activity. The upregulated expression levels of heat shock protein (HSP) 22, HSP26, and HSP70 indicated that HSR was enhanced. Thermal stress-induced OS response increased malondialdehyde content, enhanced superoxide dismutase activity, and decreased reactive oxygen species level. The effects of thermal stress on the death rates, lifespan, locomotion, and HSP gene expression of flies, especially w1118 line, were also enhanced by ELF-EMF. In conclusion, thermal stress weakened the physiological function and promoted the HSR and OS of flies. ELF-EMF aggravated damages and enhanced thermal stress-induced HSP and OS response. Therefore, thermal stress and ELF-EMF elicited a synergistic effect.

  9. Collaborative effects of electric field and fluid shear stress on fibroblast migration.

    Science.gov (United States)

    Song, Sukhyun; Han, Hana; Ko, Ung Hyun; Kim, Jaemin; Shin, Jennifer H

    2013-04-21

    Cells are inherently exposed to a number of different biophysical stimuli such as electric fields, shear stress, and tensile or compressive stress from the extracellular environment in vivo. Each of these biophysical cues can work simultaneously or independently to regulate cellular functions and tissue integrity in both physiological and pathological conditions. Thus, it is vital to understand the interaction of multiple stimuli on cells by decoupling and coupling the stimuli in simple combinations and by investigating cellular behaviors in response to these cues. Here, we report a novel microfluidic platform to apply the combinatorial stimulation of an electric field and fluid shear stress by controlling two directional cues independently. An integrated microfluidic platform was developed using soft lithography to monitor the cellular migration in real-time in response to an electric field and fluid shear stress in single, simultaneous, and sequential modes. When each of these stimulations is applied separately, normal human dermal fibroblasts migrate toward the anode and in the direction of fluid flow in a dose-dependent manner. Simultaneous stimulation with an electric field and shear stress, which mimics a wound in vivo, enhances the directional migration of fibroblasts by increasing both directedness and trajectory speed, suggesting the plausible scenario of cooperation between two physical cues to promote wound healing. When an electric field and shear stress are applied sequentially, migration behavior is affected by the applied stimulation as well as pre-existing stimulating conditions. This microfluidic platform can be utilized to understand other microenvironments such as embryogenesis, angiogenesis and tumor metastasis.

  10. Stress-energy tensor of quantized massive fields in static wormhole spacetimes

    Science.gov (United States)

    Kocuper, Ewa; Matyjasek, Jerzy; Zwierzchowska, Kasia

    2017-11-01

    In order to be traversable, the static Lorentzian wormhole must be made out of some exotic matter that violates the weak energy condition. The quantized fields are the natural candidates as their stress-energy tensor, in many cases, possesses desired properties. In this paper we construct and examine the stress-energy tensor of the quantized massive scalar, spinor and vector fields in six static wormhole spacetimes. We find that in all considered cases the quantum fields violate the Morris-Thorne conditions and do not have the form necessary to support the wormhole throat. This is in concord with the previous results and indicates that the massive quantum fields make the wormholes less operable.

  11. Former Spencer Artillery Range, Tennessee Classification Demonstration Open Field and Dynamic Areas

    Science.gov (United States)

    2016-01-01

    capabilities of the production community by enhancing and streamlining UX -Analyze’s workflow and functionality; by offering training documents...Inc. UXA UX -Analyze List of Figures Figure 3-1: Spencer Range Open Area Metal Mapper ROC Curve ............................................... 5...easting and horizontal is less than 0.1 meter. Statistics calculations are part of the Geosoft UX -Analyze (UXA) process module for IVS and include, in

  12. Relation of short-range and long-range lithium ion dynamics in glass-ceramics: Insights from 7Li NMR field-cycling and field-gradient studies

    Science.gov (United States)

    Haaks, Michael; Martin, Steve W.; Vogel, Michael

    2017-09-01

    We use various 7Li NMR methods to investigate lithium ion dynamics in 70Li 2S-30 P 2S5 glass and glass-ceramic obtained from this glass after heat treatment. We employ 7Li spin-lattice relaxometry, including field-cycling measurements, and line-shape analysis to investigate short-range ion jumps as well as 7Li field-gradient approaches to characterize long-range ion diffusion. The results show that ceramization substantially enhances the lithium ion mobility on all length scales. For the 70Li 2S-30 P 2S5 glass-ceramic, no evidence is found that bimodal dynamics result from different ion mobilities in glassy and crystalline regions of this sample. Rather, 7Li field-cycling relaxometry shows that dynamic susceptibilities in broad frequency and temperature ranges can be described by thermally activated jumps governed by a Gaussian distribution of activation energies g (Ea) with temperature-independent mean value Em=0.43 eV and standard deviation σ =0.07 eV . Moreover, use of this distribution allows us to rationalize 7Li line-shape results for the local ion jumps. In addition, this information about short-range ion dynamics further explains 7Li field-gradient results for long-range ion diffusion. In particular, we quantitatively show that, consistent with our experimental results, the temperature dependence of the self-diffusion coefficient D is not described by the mean activation energy Em of the local ion jumps, but by a significantly smaller apparent value whenever the distribution of correlation times G (logτ ) of the jump motion derives from an invariant distribution of activation energies and, hence, continuously broadens upon cooling. This effect occurs because the harmonic mean, which determines the results of diffusivity or also conductivity studies, continuously separates from the peak position of G (logτ ) when the width of this distribution increases.

  13. Long-range magnetic fields in the ground state of the Standard Model plasma.

    Science.gov (United States)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Shaposhnikov, Mikhail

    2012-09-14

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at nonzero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new equilibrium state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation could occur in the early Universe and may play an important role in its subsequent evolution.

  14. Long-range magnetic fields in the ground state of the Standard Model plasma

    CERN Document Server

    Boyarsky, Alexey; Shaposhnikov, Mikhail

    2012-01-01

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at non-zero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation can occur in the early Universe and may play an important role in its subsequent evolution.

  15. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders - from Optical Triangulation to the Automotive Field.

    Science.gov (United States)

    Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air

    2008-03-13

    With their significant features, the applications of complementary metal-oxidesemiconductor (CMOS) image sensors covers a very extensive range, from industrialautomation to traffic applications such as aiming systems, blind guidance, active/passiverange finders, etc. In this paper CMOS image sensor-based active and passive rangefinders are presented. The measurement scheme of the proposed active/passive rangefinders is based on a simple triangulation method. The designed range finders chieflyconsist of a CMOS image sensor and some light sources such as lasers or LEDs. Theimplementation cost of our range finders is quite low. Image processing software to adjustthe exposure time (ET) of the CMOS image sensor to enhance the performance oftriangulation-based range finders was also developed. An extensive series of experimentswere conducted to evaluate the performance of the designed range finders. From theexperimental results, the distance measurement resolutions achieved by the active rangefinder and the passive range finder can be better than 0.6% and 0.25% within themeasurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests onapplications of the developed CMOS image sensor-based range finders to the automotivefield were also conducted. The experimental results demonstrated that our range finders arewell-suited for distance measurements in this field.

  16. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Robert, E-mail: Robert.Stegemann@bam.de [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Wimpory, Robert; Boin, Mirko [HZB Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Kreutzbruck, Marc [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); IKT, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2017-03-15

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. - Highlights: • Comparison of magnetic microstructure with neutron diffraction stress analysis. • High spatial resolution magnetic stray field images of hypereutectoid TIG welds. • Spatial variations of the stray fields are below the magnetic field of the earth. • GMR spin valve gradiometer arrays adapted for the evaluation of magnetic microstructures. • Magnetic stray fields are closely linked to microstructure of the material.

  17. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or

  18. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Hareesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution of mechanical fields due to dislocations was found to have a non-negligible effect on such process.

  19. [Investigation research of occupational stress and job burnout for oil field workers in Xinjiang].

    Science.gov (United States)

    Ning, Li; Li, Fuye; Yang, Xiaoyan; Ge, Hua; Liu, Jiwen

    2014-03-01

    To provide scientific basis for further intervention, the association between occupational stress and job burnout among oil field workers of Xinjiang was discussed. A random sample and research on Xinjiang oil-field outdoor workers who will finish occupation Stress Inventory-Revised questionnaire and Maslash Burnout Survey. The scoring of each OSI-R dimension and each MBI dimension varied significantly between different individual characterizations (age, gender and education). Multiple linear regression analysis showed: occupation task, physical strain, work environment, subjective support, self health care are the main factors influencing occupation burnout. Different individual characteristics effect the occurrence of occupation stresses and job burnout, reduce the occupation task, strengthen social support and self health care consciousness, strive to build and improve the enterprise culture atmosphere can prevent occupation burnout.

  20. Field performance of timber bridges. 11, Spearfish Creek stress-laminated box-beam bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; K. Stanfill-McMillan

    The Spearfish Creek bridge was constructed in 1992 in Spearfish, South Dakota. It is a single-span, stress-laminated, box-beam superstructure. Performance of the bridge is being monitored for 5 years, beginning at installation. This report summarizes results for the first 3-1/2 years of monitoring and includes information on the design, construction, and field...

  1. Field performance of stress-laminated highway bridges constructed with glued laminated timber

    Science.gov (United States)

    J.P. Wacker

    2004-01-01

    This paper summarizes the field performance of three stress-laminated deck timber bridges located in Wisconsin, New York, and Arizona. The deck superstructures of these single-span highway bridges is comprised of full-span glued laminated timber (glulam) beam laminations manufactured with southern pine, hem fir/red maple combination, and/or Douglas fir lumber species....

  2. The University of California Institute of Environmental Stress Marathon Field Studies

    Science.gov (United States)

    Maron, Michael B.

    2014-01-01

    In 1973, the Institute of Environmental Stress of the University of California-Santa Barbara, under the direction of Steven M. Horvath, began a series of field and laboratory studies of marathon runners during competition. As one of Horvath's graduate students, many of these studies became part of my doctoral dissertation. The rationale for…

  3. Atomistically enabled nonsingular anisotropic elastic representation of near-core dislocation stress fields in α -iron

    Science.gov (United States)

    Seif, Dariush; Po, Giacomo; Mrovec, Matous; Lazar, Markus; Elsässer, Christian; Gumbsch, Peter

    2015-05-01

    The stress fields of dislocations predicted by classical elasticity are known to be unrealistically large approaching the dislocation core, due to the singular nature of the theory. While in many cases this is remedied with the approximation of an effective core radius, inside which ad hoc regularizations are implemented, such approximations lead to a compromise in the accuracy of the calculations. In this work an anisotropic nonsingular elastic representation of dislocation fields is developed to accurately represent the near-core stresses of dislocations in α -iron. The regularized stress field is enabled through the use of a nonsingular Green's tensor function of Helmholtz-type gradient anisotropic elasticity, which requires only a single characteristic length parameter in addition to the material's elastic constants. Using a magnetic bond-order potential to model atomic interactions in iron, molecular statics calculations are performed, and an optimization procedure is developed to extract the required length parameter. Results show the method can accurately replicate the magnitude and decay of the near-core dislocation stresses even for atoms belonging to the core itself. Comparisons with the singular isotropic and anisotropic theories show the nonsingular anisotropic theory leads to a substantially more accurate representation of the stresses of both screw and edge dislocations near the core, in some cases showing improvements in accuracy of up to an order of magnitude. The spatial extent of the region in which the singular and nonsingular stress differ substantially is also discussed. The general procedure we describe may in principle be applied to accurately model the near-core dislocation stresses of any arbitrarily shaped dislocation in anisotropic cubic media.

  4. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    Science.gov (United States)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E – N180°E (N-S), N60°E – N70°E (NE-SW), and N310°E – N320°E (NW-SE), while the dominant dip is 80° –90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E – N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  5. The effect of a tectonic stress field on coal and gas outbursts.

    Science.gov (United States)

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions.

  6. Searching for the Haplorrhine Heterotherm: Field and Laboratory Data of Free-Ranging Tarsiers

    Directory of Open Access Journals (Sweden)

    Shaun Welman

    2017-09-01

    Full Text Available The observation of heterothermy in a single suborder (Strepsirrhini only within the primates is puzzling. Given that the placental-mammal ancestor was likely a heterotherm, we explored the potential for heterothermy in a primate closely related to the Strepsirrhini. Based upon phylogeny, body size and habitat stability since the Late Eocene, we selected western tarsiers (Cephalopachus bancanus from the island of Borneo. Being the sister clade to Strepsirrhini and basal in Haplorrhini (monkeys and apes, we hypothesized that C. bancanus might have retained the heterothermic capacity observed in several small strepsirrhines. We measured resting metabolic rate, subcutaneous temperature, evaporative water loss and the percentage of heat dissipated through evaporation, at ambient temperatures between 22 and 35°C in fresh-caught wild animals (126.1 ± 2.4 g. We also measured core body temperatures in free-ranging animals. The thermoneutral zone was 25–30°C and the basal metabolic rate was 3.52 ± 0.06 W.kg−1 (0.65 ± 0.01 ml O2.g−1.h−1. There was no evidence of adaptive heterothermy in either the laboratory data or the free-ranging data. Instead, animals appeared to be cold sensitive (Tb ~ 31°C at the lowest temperatures. We discuss possible reasons for the apparent lack of heterothermy in tarsiers, and identify putative heterotherms within Platyrrhini. We also document our concern for the vulnerability of C. bancanus to future temperature increases associated with global warming.

  7. Corrosion of metals exposed to 25% magnesium chloride solution and tensile stress: Field and laboratory studies

    Directory of Open Access Journals (Sweden)

    Xianming Shi

    2017-12-01

    Full Text Available The use of chemicals for snow and ice control operations is a common practice for improving the safety and mobility of roadways in cold climate, but brings significant concerns over their risks including the corrosive effects on transportation infrastructure and motor vehicles. The vast majority of existing studies and methods to test the deicer corrosivity have been restricted to laboratory environments and unstressed metals, which may not reliably simulate actual service conditions. As such, we report a case study in which stainless steel SS 304 (unstressed and externally tensile stressed, aluminum (Al 1100 and low carbon steel (C1010 coupons were exposed to 25% MgCl2 under field conditions for six weeks. A new corrosion test-bed was developed in Montana to accelerate the field exposure to this deicer. To further investigate the observed effect of tensile stress on the corrosion of stainless steel, SS 304 (unstressed and externally stressed coupons were exposed to 25% MgCl2 solution under the laboratory conditions. The C 1010 exhibited the highest percentage of rust area and suffered the most weight loss as a result of field exposure and MgCl2 sprays. In terms of ultimate tensile strength, the Al 1100 coupons saw the greatest reduction and the unstressed and externally stressed SS 304 coupons saw the least. The ability of MgCl2 to penetrate deep into the matrix of aluminum alloy poses great risk to such structural material. Tensile stressed SS 304 suffered more corrosion than unstressed SS 304 in both the field and laboratory conditions. Results from this case study may shed new light on the deicer corrosion issue and help develop improved field testing methods to evaluate the deicer corrosivity to metals in service.

  8. Human exposure to pulsed fields in the frequency range from 6 to 100 GHz

    Science.gov (United States)

    Laakso, Ilkka; Morimoto, Ryota; Heinonen, Juhani; Jokela, Kari; Hirata, Akimasa

    2017-09-01

    Restrictions on human exposure to electromagnetic waves at frequencies higher than 3-10 GHz are defined in terms of the incident power density to prevent excessive temperature rise in superficial tissue. However, international standards and guidelines differ in their definitions of how the power density is interpreted for brief exposures. This study investigated how the temperature rise was affected by exposure duration at frequencies higher than 6 GHz. Far-field exposure of the human face to pulses shorter than 10 s at frequencies from 6 to 100 GHz was modelled using the finite-difference time-domain method. The bioheat transfer equation was used for thermal modelling. We investigated the effects of frequency, polarization, exposure duration, and depth below the skin surface on the temperature rise. The results indicated limitations in the current human exposure guidelines and showed that radiant exposure, i.e. energy absorption per unit area, can be used to limit temperature rise for pulsed exposure. The data are useful for the development of human exposure guidelines at frequencies higher than 6 GHz.

  9. Magnetic field induced strain assisted by stress in Ni-Fe-GaCo single crystals

    Directory of Open Access Journals (Sweden)

    Chumlyakov Y.

    2010-06-01

    Full Text Available Ferromagnetic shape memory alloys (FSMA have the possibility to induced a strain by applying a magnetic field. The main advantage of the FSMA is that the strain cycling frequency is two orders of magnitude higher than coventional shape memory alloys. The best alloy showing this effect is the Ni-Mn-Ga system, with a high mobility of its martensite variants and high magnetocrystalline anisotropy constant. Nevertheless, due to the high brittleness of this alloy, other systems (Ni-Fe-Ga, Co-Ni-Al, Co-Ni-Ga, ... are being investigated as an alternative to Ni-Mn-Ga. In the current work, Ni-Fe-Ga-Co single crystals have been studied. In spite of the formation of L10 martensite (low mobility of the variants, the [001] crystals exhibited magnetic-field-induced strains (in tension larger than 2%, under an assisting tensile stress around 16 MPa and fields below 15 kOe. In martensitic samples previously compressed, application of a constant tensile stress along the same axis together with a perpendicular magnetic field produces the elongation of the sample by variant reorientation, as one of the variants rotates its c axis from the field direction to the stress-axis direction. An estimated magnetostress of ~0.8 MPa is in good agreement with the theoretical value given by the ratio of magnetocrystalline anisotropy constant and twinning shear.

  10. Post-Cretaceous to recent stress fields in the SE Moesian Platform (Bulgaria)

    Science.gov (United States)

    Shanov, Stefan

    2005-12-01

    The reconstruction of the stress fields in the SE Moesian Platform in Bulgaria has been made by means of earthquake fault-plane solutions, tectonic fracture and fold patterns, and physical (electrical) anisotropy in rocks restricted stratigraphically from the Early Cretaceous up to the Late Pliocene. The philosophy of the study is that the recognition of the older stress fields for a given area can be successful if the characteristics of the youngest ones are known. The contemporary stress field is discussed using the fault plane solutions from earthquakes and the kinematics of the activated faults. The reconstruction of the Post-Pliocene paleo-stress field was made by studies of conjugate shear joints systems in Upper Pliocene limestones. Measurements of elements of tectonic fractures were also performed in situ on more than 60 outcrops of rocks aged from Aptian to Pliocene. A limited number of sites were studied for electrical anisotropy using the Azimuthal Vertical Electrical Sounding method. A more complete study of the tectonic meso- and micro-structures has been performed on the Sarmatian sediments in the SE Moesian Platform. This study includes a description of the discovered folds, brittle tectonic analysis and reconstruction of the Post-Sarmatian paleo-stress field. As a result, it was deduced that the compression after the Early Cretaceous period is NE-SW directed. The direction of compression since Sarmatian to Early Quaternary was NW-SE. A clockwise rotation of the main stress axes was established for a number of sites. The contemporary contraction is directed also NW-SE, according to the fault-plane solutions determined for crustal earthquakes in the region. This result is tested using the data from the GPS measurement recently performed in this part of the Balkan Peninsula. It could be suggested that there has been a clockwise rotation of the stress field due to the evolution of curved fold-thrust belt in the south-eastern Carpathians and the

  11. Control of Chiral Magnetism Through Electric Fields in Multiferroic Compounds above the Long-Range Multiferroic Transition.

    Science.gov (United States)

    Stein, J; Baum, M; Holbein, S; Finger, T; Cronert, T; Tölzer, C; Fröhlich, T; Biesenkamp, S; Schmalzl, K; Steffens, P; Lee, C H; Braden, M

    2017-10-27

    Polarized neutron scattering experiments reveal that type-II multiferroics allow for controlling the spin chirality by external electric fields even in the absence of long-range multiferroic order. In the two prototype compounds TbMnO_{3} and MnWO_{4}, chiral magnetism associated with soft overdamped electromagnons can be observed above the long-range multiferroic transition temperature T_{MF}, and it is possible to control it through an electric field. While MnWO_{4} exhibits chiral correlations only in a tiny temperature interval above T_{MF}, in TbMnO_{3} chiral magnetism can be observed over several kelvin up to the lock-in transition, which is well separated from T_{MF}.

  12. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  13. Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field.

    OpenAIRE

    Schul, J.; Matt, F; von Helversen, O

    2000-01-01

    The hearing range of the tettigoniid Phaneropterafalcata for the echolocation calls of freely flying mouseeared bats (Myotis myotis) was determined in the field. The hearing of the insect was monitored using hook electrode recordings from an auditory interneuron, which is as sensitive as the hearing organ for frequencies above 16 kHz. The flight path of the bat relative to the insect's position was tracked by recording the echolocation calls with two microphone arrays, and calculating the bat...

  14. A Comparison of Antenna Measurements in a Near-Field Range and a Newly Renovated Short-Tapered Chamber

    Science.gov (United States)

    2016-09-01

    Research Laboratory’s (ARL) near-field range (NFR) and tapered anechoic chamber, which has been newly renovated with absorber material . ARL would like...SUPPLEMENTARY NOTES 14. ABSTRACT This study was undertaken to quantify and compare electromagnetic device (i.e., antenna) measurements using the US Army...to know the performance levels with the NFR and the newly renovated, slightly different absorber layout configuration laid out and designed by the

  15. Modelling of stress fields during LFEM DC casting of aluminium billets by a meshless method

    Science.gov (United States)

    Mavrič, B.; Šarler, B.

    2015-06-01

    Direct Chill (DC) casting of aluminium alloys is a widely established technology for efficient production of aluminium billets and slabs. The procedure is being further improved by the application of Low Frequency Electromagnetic Field (LFEM) in the area of the mold. Novel LFEM DC processing technique affects many different phenomena which occur during solidification, one of them being the stresses and deformations present in the billet. These quantities can have a significant effect on the quality of the cast piece, since they impact porosity, hot-tearing and cold cracking. In this contribution a novel local radial basis function collocation method (LRBFCM) is successfully applied to the problem of stress field calculation during the stationary state of DC casting of aluminium alloys. The formulation of the method is presented in detail, followed by the presentation of the tackled physical problem. The model describes the deformations of linearly elastic, inhomogeneous isotropic solid with a given temperature field. The temperature profile is calculated using the in-house developed heat and mass transfer model. The effects of low frequency EM casting process parameters on the vertical, circumferential and radial stress and on the deformation of billet surface are presented. The application of the LFEM appears to decrease the amplitudes of the tensile stress occurring in the billet.

  16. The Effect of Magnetic Field and Initial Stress on Fractional Order Generalized Thermoelastic Half-Space

    Directory of Open Access Journals (Sweden)

    Sunita Deswal

    2013-01-01

    Full Text Available The aim of this paper is to study magneto-thermoelastic interactions in an initially stressed isotropic homogeneous half-space in the context of fractional order theory of generalized thermoelasticity. State space formulation with the Laplace transform technique is used to obtain the general solution, and the resulting formulation is applied to the ramp type increase in thermal load and zero stress. Solutions of the problem in the physical domain are obtained by using a numerical method of the Laplace inverse transform based on the Fourier expansion technique, and the expressions for the displacement, temperature, and stress inside the half-space are obtained. Numerical computations are carried out for a particular material for illustrating the results. Results obtained for the field variables are displayed graphically. Some comparisons have been shown in figures to present the effect of fractional parameter, ramp parameter, magnetic field, and initial stress on the field variables. Some particular cases of special interest have been deduced from the present investigation.

  17. Field investigations of high stress soft surrounding rocks and deformation control

    Directory of Open Access Journals (Sweden)

    Weijian Yu

    2015-08-01

    Full Text Available Field investigations of high stress soft rock deformations show that the high stress soft rock roadway can slide with large deformation. Severe extrusion and floor heave can also be subsequently observed. The supported roadway can be locally damaged or completely fail, where the floor has a large deformation and/or is seriously damaged. The factors inducing large deformation of surrounding rocks in deep roadway are rock strengths, structure face cutting types, stress states, stress release, support patterns, and construction methods. Based on the deformation characteristics of high stress soft rock roadway, a comprehensive support scheme is proposed. The overall support technology of “step-by-step and joint, hierarchical reinforcement” for roadway is presented, and the anchor cable and bolt parameters to check the design methods are also given. Finally, the proposed comprehensive support method “bolt + metal mesh + U-steel arch + shortcrete + grouting and cable” is used in the extension section of east main haulage roadway at −850 m level of Qujiang coal mine. The 173-day monitoring results show that the average convergence of sidewalls reaches 208 mm, and the average relative convergence of roof and floor reaches 448 mm, suggesting that this kind of support technology for controlling large deformation of high stress soft surrounding rock roadway is effective.

  18. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.

    Science.gov (United States)

    Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F

    2008-07-01

    This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.

  19. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    Science.gov (United States)

    Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc

    2017-03-01

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.

  20. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    Science.gov (United States)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  1. Integrative field scale phenotyping for investigating metabolic components of water stress within a vineyard

    Directory of Open Access Journals (Sweden)

    Jorge Gago

    2017-10-01

    Full Text Available Abstract Background There is currently a high requirement for field phenotyping methodologies/technologies to determine quantitative traits related to crop yield and plant stress responses under field conditions. Methods We employed an unmanned aerial vehicle equipped with a thermal camera as a high-throughput phenotyping platform to obtain canopy level data of the vines under three irrigation treatments. High-resolution imagery (< 2.5 cm/pixel was employed to estimate the canopy conductance (g c via the leaf energy balance model. In parallel, physiological stress measurements at leaf and stem level as well as leaf sampling for primary and secondary metabolome analysis were performed. Results Aerial g c correlated significantly with leaf stomatal conductance (g s and stem sap flow, benchmarking the quality of our remote sensing technique. Metabolome profiles were subsequently linked with g c and g s via partial least square modelling. By this approach malate and flavonols, which have previously been implicated to play a role in stomatal function under controlled greenhouse conditions within model species, were demonstrated to also be relevant in field conditions. Conclusions We propose an integrative methodology combining metabolomics, organ-level physiology and UAV-based remote sensing of the whole canopy responses to water stress within a vineyard. Finally, we discuss the general utility of this integrative methodology for broad field phenotyping.

  2. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    Science.gov (United States)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  3. Stress analysis of three-dimensional roadway layout of stagger arrangement with field observation

    Science.gov (United States)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method for extracting thick (> 5 m) to ultra-thick coal seams in recent years. However, low-level recovery ratio of coal resources and top-coal loss above the supports at both ends of working face are long-term problems. Geological factors, such as large dip angle, soft rock, mining depth further complicate the problems. This paper proposes addressing this issue by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress environment surrounding head entry in the replacing working face based on the stress distribution characteristics at the triangular coal-pillar side in gob and the stress slip line field theory. In the second step, filed observation was conducted. Finally, an economic evaluation of the 3-D RLSA for extracting thick to ultra-thick seams was conducted.

  4. Formulation of Deformation Stress Fields and Constitutive Equations in Rational Mechanics

    CERN Document Server

    Jianhua, Xiao

    2010-01-01

    In continuum mechanics, stress concept plays an essential role. For complicated materials, different stress concepts are used with ambiguity or different understanding. Geometrically, a material element is expressed by a closed region with arbitral shape. The internal region is acted by distance dependent force (internal body force), while the surface is acted by surface force. Further more, the element as a whole is in a physical background (exterior region) which is determined by the continuum where the element is embedded (external body force). Physically, the total energy can be additively decomposed as three parts: internal region energy, surface energy, and the background energy. However, as forces, they cannot be added directly. After formulating the general forms of physical fields, the deformation tensor is introduced to formulate the force variations caused by deformation. As the force variation is expressed by the deformation tensor, the deformation stress concept is well formulated. Furthermore, a...

  5. Field-based observations confirm linear scaling of sand flux with wind stress

    CERN Document Server

    Martin, Raleigh L

    2016-01-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the sand flux scales with wind speed, largely because models do not agree on how particle speed changes with wind shear velocity. Here, we present comprehensive measurements from three new field sites and three published studies, showing that characteristic saltation layer heights, and thus particle speeds, remain approximately constant with shear velocity. This result implies a linear dependence of saltation flux on wind shear stress, which contrasts with the nonlinear 3/2 scaling used in most aeolian process predictions. We confirm the linear flux law with direct measurements of the stress-flux relationship occurring at each site. Models for dust generation, dune migration, and other processes driven by wind-blown sand on Earth, Mars, and several other planetary surfaces should be modified to account for linear stress-flux scaling.

  6. Analytical Solution for Stress Field and Intensity Factor in CSTBD under Mixed Mode Conditions

    Directory of Open Access Journals (Sweden)

    Najaf Ali Ghavidel

    2014-06-01

    Full Text Available Considering the fact that rocks fail faster under tensile stress, rock tensile strength is of greatimportance in applications such as blasting, rock fragmentation, slope stability, hydraulic fracturing,caprock integrity, and geothermal energy extraction. There are two direct and indirect methods tomeasure tensile strength. Since direct methods always encompass difficulties in test setup, indirectmethods, specifically the Brazilian test, have often been employed for tensile strength measurement.Tensile failure is technically attributed to crack propagation in rock. Fracture mechanics hassignificant potential for the determination of crack behaviour as well as propagation pattern. To applyBrazilian tests, cracked disc geometry has been suggested by the International Society for RockMechanics ISRM. Accordingly, a comprehensive study is necessary to evaluate stress field and stressintensity factor (SIF around the crack in the centre of the specimen. In this paper, superpositionprinciple is employed to solve the problem of cracked straight-through Brazilian disc (CSTBD, usingtwo methods of dislocation and complex stress function. Stress field and SIF in the vicinity of thecrack tip are then calculated. With the proposed method, the magnitude of critical load for crackinitiation in structures can be predicted. This method is valid for any crack of any arbitrary length andangle. In addition, numerical modelling has been carried out for the Brazilian disc. Finally, theanalytical solution has been compared with numerical modelling results showing the same outcomefor both methods.

  7. Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps

    Science.gov (United States)

    Maury, J.; Cornet, F. H.; Cara, M.

    2014-11-01

    In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.

  8. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions.

    Science.gov (United States)

    Habben, Jeffrey E; Bao, Xiaoming; Bate, Nicholas J; DeBruin, Jason L; Dolan, Dennis; Hasegawa, Darren; Helentjaris, Timothy G; Lafitte, Renee H; Lovan, Nina; Mo, Hua; Reimann, Kellie; Schussler, Jeffrey R

    2014-08-01

    A transgenic gene-silencing approach was used to modulate the levels of ethylene biosynthesis in maize (Zea mays L.) and determine its effect on grain yield under drought stress in a comprehensive set of field trials. Commercially relevant transgenic events were created with down-regulated ACC synthases (ACSs), enzymes that catalyse the rate-limiting step in ethylene biosynthesis. These events had ethylene emission levels reduced approximately 50% compared with nontransgenic nulls. Multiple, independent transgenic hybrids and controls were tested in field trials at managed drought-stress and rain-fed locations throughout the US. Analysis of yield data indicated that transgenic events had significantly increased grain yield over the null comparators, with the best event having a 0.58 Mg/ha (9.3 bushel/acre) increase after a flowering period drought stress. A (genotype × transgene) × environment interaction existed among the events, highlighting the need to better understand the context in which the down-regulation of ACSs functions in maize. Analysis of secondary traits showed that there was a consistent decrease in the anthesis-silking interval and a concomitant increase in kernel number/ear in transgene-positive events versus nulls. Selected events were also field tested under a low-nitrogen treatment, and the best event was found to have a significant 0.44 Mg/ha (7.1 bushel/acre) yield increase. This set of extensive field evaluations demonstrated that down-regulating the ethylene biosynthetic pathway can improve the grain yield of maize under abiotic stress conditions. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    OpenAIRE

    Guoshun Wang; Rong Fu

    2013-01-01

    Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the posit...

  10. Deleterious localized stress fields: the effects of boundaries and stiffness tailoring in anisotropic laminated plates.

    Science.gov (United States)

    Groh, R M J; Weaver, P M

    2016-10-01

    The safe design of primary load-bearing structures requires accurate prediction of stresses, especially in the vicinity of geometric discontinuities where deleterious three-dimensional stress fields can be induced. Even for thin-walled structures significant through-thickness stresses arise at edges and boundaries, and this is especially precarious for laminates of advanced fibre-reinforced composites because through-thickness stresses are the predominant drivers in delamination failure. Here, we use a higher-order equivalent single-layer model derived from the Hellinger-Reissner mixed variational principle to examine boundary layer effects in laminated plates comprising constant-stiffness and variable-stiffness laminae and deforming statically in cylindrical bending. The results show that zigzag deformations, which arise due to layerwise differences in the transverse shear moduli, drive boundary layers towards clamped edges and are therefore critically important in quantifying localized stress gradients. The relative significance of the boundary layer scales with the degree of layerwise anisotropy and the thickness to characteristic length ratio. Finally, we demonstrate that the phenomenon of alternating positive and negative transverse shearing deformation through the thickness of composite laminates, previously only observed at clamped boundaries, can also occur at other locations as a result of smoothly varying the material properties over the in-plane dimensions of the laminate.

  11. Generalized stress field in granular soils heap with Rayleigh–Ritz method

    Directory of Open Access Journals (Sweden)

    Gang Bi

    2017-02-01

    Full Text Available The stress field in granular soils heap (including piled coal will have a non-negligible impact on the settlement of the underlying soils. It is usually obtained by measurements and numerical simulations. Because the former method is not reliable as pressure cells instrumented on the interface between piled coal and the underlying soft soil do not work well, results from numerical methods alone are necessary to be doubly checked with one more method before they are extended to more complex cases. The generalized stress field in granular soils heap is analyzed with Rayleigh–Ritz method. The problem is divided into two cases: case A without horizontal constraint on the base and case B with horizontal constraint on the base. In both cases, the displacement functions u(x, y and v(x, y are assumed to be cubic polynomials with 12 undetermined parameters, which will satisfy the Cauchy's partial differential equations, generalized Hooke's law and boundary equations. A function is built with the Rayleigh–Ritz method according to the principle of minimum potential energy, and the problem is converted into solving two undetermined parameters through the variation of the function, while the other parameters are expressed in terms of these two parameters. By comparison of results from the Rayleigh–Ritz method and numerical simulations, it is demonstrated that the Rayleigh–Ritz method is feasible to study the generalized stress field in granular soils heap. Solutions from numerical methods are verified before being extended to more complicated cases.

  12. Mapping three-dimensional stress and strain fields within a soft hydrogel using a fluorescence microscope.

    Science.gov (United States)

    Hall, Matthew S; Long, Rong; Hui, Chung-Yuen; Wu, Mingming

    2012-05-16

    Three-dimensional cell culture is becoming mainstream as it is recognized that many animal cell types require the biophysical and biochemical cues within the extracellular matrices to perform truly physiologically realistic functions. However, tools for characterizing cellular mechanical environment are largely limited to cell culture plated on a two-dimensional substrate. We present a three-dimensional traction microscopy that is capable of mapping three-dimensional stress and strain within a soft and transparent extracellular matrix using a fluorescence microscope and a simple forward data analysis algorithm. We validated this technique by mapping the strain and stress field within the bulk of a thin polyacrylamide gel layer indented by a millimeter-size glass ball, together with a finite-element analysis. The experimentally measured stress and strain fields are in excellent agreements with results of the finite-element simulation. The unique contributions of the presented three-dimensional traction microscopy technique are: 1), the use of a fluorescence microscope in contrast with the confocal microscope that is required for the current three-dimensional traction microscopes in the literature; 2), the determination of the pressure field of an incompressible gel from strains; and 3), the simple forward-data-analysis algorithm. Future application of this technique for mapping animal cell traction in three-dimensional nonlinear biological gels is discussed. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Range limitation in hip internal rotation and fifth metatarsal stress fractures (Jones fracture) in professional football players.

    Science.gov (United States)

    Saita, Yoshitomo; Nagao, Masashi; Kawasaki, Takayuki; Kobayashi, Yohei; Kobayashi, Keiji; Nakajima, Hiroki; Takazawa, Yuji; Kaneko, Kazuo; Ikeda, Hiroshi

    2017-04-25

    To identify unknown risk factors associated with fifth metatarsal stress fracture (Jones fracture). A case-controlled study was conducted among male Japanese professional football (soccer) players with (N = 20) and without (N = 40) a history of Jones fracture. Injury history and physical examination data were reviewed, and the two groups were compared. Univariate and multivariate logistic regression controlling for age, leg dominance and body mass index were used to obtain odds ratios (ORs) and 95% confidence intervals (CIs) to describe the association between physical examination data and the presence or absence of Jones fractures. From 2000 to 2014, among 162 professional football club players, 22 (13.6%; 21 Asians and one Caucasian) had a history of Jones fracture. Thirteen out of 22 (60%) had a Jones fracture in their non-dominant leg. The mean range of hip internal rotation (HIR) was restricted in players with a history of Jones fracture [25.9° ± 7.5°, mean ± standard deviation (SD)] compared to those without (40.4° ± 11.1°, P fracture (OR = 3.03, 95% CI 1.45-6.33, P = 0.003). Subgroup analysis using data prior to Jones fracture revealed a causal relationship, such that players with a restriction of HIR were at high risk of developing a Jones fracture [Crude OR (95% CI) = 6.66 (1.90-23.29), P = 0.003, Adjusted OR = 9.91 (2.28-43.10), P = 0.002]. In addition, right HIR range limitation increased the risks of developing a Jones fracture in the ipsilateral and the contralateral feet [OR = 3.11 (1.35-7.16) and 2.24 (1.22-4.12), respectively]. Similarly, left HIR range limitation increased the risks in the ipsilateral or the contralateral feet [OR (95% CI) = 4.88 (1.56-15.28) and 2.77 (1.08-7.08), respectively]. The restriction of HIR was associated with an increased risk of developing a Jones fracture. Since the HIR range is a modifiable factor, monitoring and improving the HIR range can lead to prevent reducing the occurrence of

  14. Blubber cortisol: a potential tool for assessing stress response in free-ranging dolphins without effects due to sampling.

    Directory of Open Access Journals (Sweden)

    Nicholas M Kellar

    Full Text Available When paired with dart biopsying, quantifying cortisol in blubber tissue may provide an index of relative stress levels (i.e., activation of the hypothalamus-pituitary-adrenal axis in free-ranging cetacean populations while minimizing the effects of the act of sampling. To validate this approach, cortisol was extracted from blubber samples collected from beach-stranded and bycaught short-beaked common dolphins using a modified blubber steroid isolation technique and measured via commercially available enzyme immunoassays. The measurements exhibited appropriate quality characteristics when analyzed via a bootstraped stepwise parallelism analysis (observed/expected = 1.03, 95%CI: 99.6 - 1.08 and showed no evidence of matrix interference with increasing sample size across typical biopsy tissue masses (75-150 mg; r(2 = 0.012, p = 0.78, slope = 0.022 ng(cortisol deviation/ul(tissue extract added. The relationships between blubber cortisol and eight potential cofactors namely, 1 fatality type (e.g., stranded or bycaught, 2 specimen condition (state of decomposition, 3 total body length, 4 sex, 5 sexual maturity state, 6 pregnancy status, 7 lactation state, and 8 adrenal mass, were assessed using a Bayesian generalized linear model averaging technique. Fatality type was the only factor correlated with blubber cortisol, and the magnitude of the effect size was substantial: beach-stranded individuals had on average 6.1-fold higher cortisol levels than those of bycaught individuals. Because of the difference in conditions surrounding these two fatality types, we interpret this relationship as evidence that blubber cortisol is indicative of stress response. We found no evidence of seasonal variation or a relationship between cortisol and the remaining cofactors.

  15. Blubber cortisol: a potential tool for assessing stress response in free-ranging dolphins without effects due to sampling.

    Science.gov (United States)

    Kellar, Nicholas M; Catelani, Krista N; Robbins, Michelle N; Trego, Marisa L; Allen, Camryn D; Danil, Kerri; Chivers, Susan J

    2015-01-01

    When paired with dart biopsying, quantifying cortisol in blubber tissue may provide an index of relative stress levels (i.e., activation of the hypothalamus-pituitary-adrenal axis) in free-ranging cetacean populations while minimizing the effects of the act of sampling. To validate this approach, cortisol was extracted from blubber samples collected from beach-stranded and bycaught short-beaked common dolphins using a modified blubber steroid isolation technique and measured via commercially available enzyme immunoassays. The measurements exhibited appropriate quality characteristics when analyzed via a bootstraped stepwise parallelism analysis (observed/expected = 1.03, 95%CI: 99.6 - 1.08) and showed no evidence of matrix interference with increasing sample size across typical biopsy tissue masses (75-150 mg; r(2) = 0.012, p = 0.78, slope = 0.022 ng(cortisol deviation)/ul(tissue extract added)). The relationships between blubber cortisol and eight potential cofactors namely, 1) fatality type (e.g., stranded or bycaught), 2) specimen condition (state of decomposition), 3) total body length, 4) sex, 5) sexual maturity state, 6) pregnancy status, 7) lactation state, and 8) adrenal mass, were assessed using a Bayesian generalized linear model averaging technique. Fatality type was the only factor correlated with blubber cortisol, and the magnitude of the effect size was substantial: beach-stranded individuals had on average 6.1-fold higher cortisol levels than those of bycaught individuals. Because of the difference in conditions surrounding these two fatality types, we interpret this relationship as evidence that blubber cortisol is indicative of stress response. We found no evidence of seasonal variation or a relationship between cortisol and the remaining cofactors.

  16. Earth gravity field modeling and relativistic measurements with laser-ranged satellites and the LARASE research program

    Science.gov (United States)

    Pucacco, Giuseppe; Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The importance of General Relativity (GR) for space geodesy — and for geodesy in general — is well known since several decades and it has been confirmed by a number of very significant results. For instance, GR plays a fundamental role for the following very notable techniques: Satellite-and-Lunar Laser Ranging (SLR/LLR), Very Long Baseline Interferometry (VLBI), Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), and Global Navigation Satellite Systems (GNSS). Each of these techniques is intimately and closely related with both GR and geodesy, i.e. they are linked in a loop where benefits in one field provide positive improvements in the other ones. A common ingredient for a suitable and reliable use of each of these techniques is represented by the knowledge of the Earth's gravitational field, both in its static and temporal dependence. Spaceborne gravimetry, with the inclusion of accelerometers and gradiometers on board dedicated satellites, together with microwave links between satellites and GPS measurements, have allowed a huge improvement in the determination of the Earth's geopotential during the last 15 years. In the near future, further improvements are expected in this knowledge thanks to the inclusion of laser inter-satellite link and the possibility to compare frequency and atomic standards by a direct use of atomic clocks, both on the Earth's surface and in space. Such results will be also important for the possibility to further improve the GR tests and measurements in the field of the Earth with laser-ranged satellites in order to compare the predictions of Einstein's theory with those of other (proposed) relativistic theories for the interpretation of the gravitational interaction. Within the present paper we describe the state of the art of such measurements with geodetic satellites, as the two LAGEOS and LARES, and we discuss the effective impact of the systematic errors of gravitational origin on the measurement of

  17. Comment on 'Field ion microscopy characterized tips in noncontact atomic force microscopy: Quantification of long-range force interactions'

    OpenAIRE

    Paul, William; Grütter, Peter

    2013-01-01

    A recent article by Falter et al. (Phys. Rev. B 87, 115412 (2013)) presents experimental results using field ion microscopy characterized tips in noncontact atomic force microscopy in order to characterize electrostatic and van der Waals long range forces. In the article, the tip radius was substantially underestimated at ~4.7 nm rather than ~8.1 nm due to subtleties in the application of the ring counting method. We point out where common errors in ring counting arise in order to benefit fut...

  18. Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients

    DEFF Research Database (Denmark)

    Normand, Signe; Treier, Urs; Randin, Christophe

    2009-01-01

    Aim We examined whether species occurrences are primarily limited by physiological tolerance in the abiotically more stressful end of climatic gradients (the asymmetric abiotic stress limitation (AASL) hypothesis) and the geographical predictions of this hypothesis: abiotic stress mainly determin...

  19. Multi-Range Conditional Random Field for Classifying Railway Electrification System Objects Using Mobile Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Jaewook Jung

    2016-12-01

    Full Text Available Railways have been used as one of the most crucial means of transportation in public mobility and economic development. For safe railway operation, the electrification system in the railway infrastructure, which supplies electric power to trains, is an essential facility for stable train operation. Due to its important role, the electrification system needs to be rigorously and regularly inspected and managed. This paper presents a supervised learning method to classify Mobile Laser Scanning (MLS data into ten target classes representing overhead wires, movable brackets and poles, which are key objects in the electrification system. In general, the layout of the railway electrification system shows strong spatial regularity relations among object classes. The proposed classifier is developed based on Conditional Random Field (CRF, which characterizes not only labeling homogeneity at short range, but also the layout compatibility between different object classes at long range in the probabilistic graphical model. This multi-range CRF model consists of a unary term and three pairwise contextual terms. In order to gain computational efficiency, MLS point clouds are converted into a set of line segments to which the labeling process is applied. Support Vector Machine (SVM is used as a local classifier considering only node features for producing the unary potentials of the CRF model. As the short-range pairwise contextual term, the Potts model is applied to enforce a local smoothness in the short-range graph; while long-range pairwise potentials are designed to enhance the spatial regularities of both horizontal and vertical layouts among railway objects. We formulate two long-range pairwise potentials as the log posterior probability obtained by the naive Bayes classifier. The directional layout compatibilities are characterized in probability look-up tables, which represent the co-occurrence rate of spatial relations in the horizontal and vertical

  20. A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin

    Science.gov (United States)

    Ziegler, Moritz O.; Heidbach, Oliver; Reinecker, John; Przybycin, Anna M.; Scheck-Wenderoth, Magdalena

    2016-09-01

    The knowledge of the contemporary in situ stress state is a key issue for safe and sustainable subsurface engineering. However, information on the orientation and magnitudes of the stress state is limited and often not available for the areas of interest. Therefore 3-D geomechanical-numerical modelling is used to estimate the in situ stress state and the distance of faults from failure for application in subsurface engineering. The main challenge in this approach is to bridge the gap in scale between the widely scattered data used for calibration of the model and the high resolution in the target area required for the application. We present a multi-stage 3-D geomechanical-numerical approach which provides a state-of-the-art model of the stress field for a reservoir-scale area from widely scattered data records. Therefore, we first use a large-scale regional model which is calibrated by available stress data and provides the full 3-D stress tensor at discrete points in the entire model volume. The modelled stress state is used subsequently for the calibration of a smaller-scale model located within the large-scale model in an area without any observed stress data records. We exemplify this approach with two-stages for the area around Munich in the German Molasse Basin. As an example of application, we estimate the scalar values for slip tendency and fracture potential from the model results as measures for the criticality of fault reactivation in the reservoir-scale model. The modelling results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing SHmax magnitude estimates needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of available stress information rather than on the modelling technique itself or on local details of the model geometry. Any improvements in modelling and increases

  1. Contemporary stress field in the area of the 2016 Amatrice seismic sequence (central Italy

    Directory of Open Access Journals (Sweden)

    Maria Teresa Mariucci

    2016-11-01

    Full Text Available We update the last present-day stress map for Italy relatively to the area of 2016 Amatrice seismic sequence (central Italy taking into account a large number of earthquakes occurred from August 24 to October 3, 2016. In particular in this paper, we discuss the new stress data from crustal earthquake focal mechanisms selecting those with Magnitude ≥ 4.0; at the same time, we revise the borehole data, analyze the stratigraphic profiles and the relative sonic logs in 4 deep wells located close to the Amatrice sequence along the Apennine belt and toward east along the Adriatic foredeep. From these data we consider the P-wave velocity trend with depth and estimate rock density following an empirical relationship. Then we calculate the overburden stress magnitude for each well. The new present-day stress indicators confirm the presence of prevalent normal faulting regime and better define the local stress field in the area, highlighting a slight rotation from NE-SW to ENE-WSW of extension. The analysis evidences that the lithostatic gradient gradually changes from ~26 MPa/km in the belt to less than 23 MPa/km along the Adriatic foredeep. Finally, at a depth of 5 km we estimate the vertical stress magnitude varying from 130 MPa to 114 moving from the Apennine belt to the Adriatic foredeep. Although the wells are very close each other they show different P wave velocities from the belt to the foredeep with values ~7km/s and ~4 km/s at 5 km depth, respectively.

  2. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00406842; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner Sphere Spectrometers (BSS). The extended- range BSS that was used for this work, consists of 7 spheres with an overall response to neutrons up to 2 GeV. A 3He detector is used as a thermal counter in the centre of each sphere. In the context of this thesis the BSS was calibrated in monoenergetic neutron fields at low and intermediate energies. It was also used for measurements in several high energy mixed fields. These measurements have led to the calculation of neutron yields and spectral fluences from unshielded targets....

  3. Shortcuts to Adiabaticity in the Infinite-Range Ising Model by Mean-Field Counter-Diabatic Driving

    Science.gov (United States)

    Hatomura, Takuya

    2017-09-01

    The strategy of shortcuts to adiabaticity enables us to realize adiabatic dynamics in finite time. In the counter-diabatic driving approach, an auxiliary Hamiltonian which is called the counter-diabatic Hamiltonian is appended to an original Hamiltonian to cancel out diabatic transitions. The counter-diabatic Hamiltonian is constructed by using the eigenstates of the original Hamiltonian. Therefore, it is in general difficult to construct the counter-diabatic Hamiltonian for quantum many-body systems. Even if the counter-diabatic Hamiltonian for quantum many-body systems is obtained, it is generally non-local and even diverges at critical points. We construct an approximated counter-diabatic Hamiltonian for the infinite-range Ising model by making use of the mean-field approximation. An advantage of this method is that the mean-field counter-diabatic Hamiltonian is constructed by only local operators. We numerically demonstrate the effectiveness of this method through quantum annealing processes going the vicinity of the critical point. It is also confirmed that the mean-field counter-diabatic Hamiltonian is still well-defined in the limit to the critical point for a certain class of schedules. The present method can take higher order contributions into account and is consistent with the variational approach for local counter-diabatic driving.

  4. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions.

    Science.gov (United States)

    Jiménez, Juan de la Cruz; Cardoso, Juan A; Leiva, Luisa F; Gil, Juanita; Forero, Manuel G; Worthington, Margaret L; Miles, John W; Rao, Idupulapati M

    2017-01-01

    Brachiaria grasses are sown in tropical regions around the world, especially in the Neotropics, to improve livestock production. Waterlogging is a major constraint to the productivity and persistence of Brachiaria grasses during the rainy season. While some Brachiaria cultivars are moderately tolerant to seasonal waterlogging, none of the commercial cultivars combines superior yield potential and nutritional quality with a high level of waterlogging tolerance. The Brachiaria breeding program at the International Center for Tropical Agriculture, has been using recurrent selection for the past two decades to combine forage yield with resistance to biotic and abiotic stress factors. The main objective of this study was to test the suitability of normalized difference vegetation index (NDVI) and image-based phenotyping as non-destructive approaches to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Nineteen promising hybrid selections from the breeding program and three commercial checks were evaluated for their tolerance to waterlogging under field conditions. The waterlogging treatment was imposed by applying and maintaining water to 3 cm above soil surface. Plant performance was determined non-destructively using proximal sensing and image-based phenotyping and also destructively via harvesting for comparison. Image analysis of projected green and dead areas, NDVI and shoot biomass were positively correlated (r ≥ 0.8). Our results indicate that image analysis and NDVI can serve as non-destructive screening approaches for the identification of Brachiaria hybrids tolerant to waterlogging stress.

  5. Field Investigations On the Lateral Vibration Features Of Prestressed Concrete Stress Ribbon Footbridges

    Directory of Open Access Journals (Sweden)

    Fukada Saiji

    2015-01-01

    Full Text Available The prestressed concrete (PC stress ribbon footbridge is a type of suspension bridge without towers, which has been applied in Japan and all over the world for years in light of its low construction cost and aesthetic merit. It generally consists of the precast concrete slabs with embedded cables. However, the walking-induced lateral vibration trouble of the Millennium Bridge in London in 2000 gave a lesson to the engineers that the lateral vibration feature must be taken into consideration for the footbridge vibration evaluation. In this sense, the field investigations on the lateral vibration features of 14 pre-stressed concrete stress ribbon footbridge in Japan was carried out by artificial impact and damping free vibration tests. According to the investigations, the larger the bridge span, the lower the frequencies of lateral-related vibration modes. In addition, based on the damping-free vibration field tests, there was a tendency toward the damping constant degradation when bridge span became larger.

  6. Attachment styles of helping volunteers and their coping with stress in the field of psychosocial help

    Directory of Open Access Journals (Sweden)

    Leonida Kobal Možina

    2007-12-01

    Full Text Available For many years I have been observing young adults who worked as volunteers in the field of psychosocial help. I have studied their functioning during summer psychotherapeutic camps, where they spent about 20 days with children and adolescents with heavier emotional and behaviour problems. Therapeutic camps based on the concept of milieu therapy often presented a stress factor for the volunteers, consisting mostly of students with no therapeutic education. I presumed they would differ in prevailing attachment styles, in their ways of coping with stress, and in constructive shifts when coping with stress. The sample consisted of 21 volunteers. Data were collected with The Attachment Style Questionnaire and with two semi-structured interviews and interpreted with the qualitative analysis. Volunteers with a preoccupied attachment style, for example, had difficulties with distancing themselves from inner experiencing in stressful situations and often went through intense emotional crises, helplessness, suffering; they were looking for constant support and held on to idealized individuals; they needed frequent feedback information about themselves and their work; self-image and self-evaluation depended on external factors. Volunteers with an avoidant attachment style, for example, avoided conflicts and emotional engagements by occupying themselves with work, activity; holding back emotions was often followed by intense anger outbursts; their reactions were inflexible and connected with their expectations and goals, thus exercising constant control in the relationship with their self-sufficient attitude.

  7. Engineering stress in thin films for the field of bistable MEMS

    Science.gov (United States)

    Ratnayake, Dilan; Martin, Michael D.; Gowrishetty, Usha R.; Porter, Daniel A.; Berfield, Thomas A.; McNamara, Shamus P.; Walsh, Kevin M.

    2015-12-01

    While stress-free and tensile films are well-suited for released in-plane MEMS designs, compressive films are needed for released out-of-plane MEMS structures such as buckled beams and diaphragms. This study presents a characterization of stress on a variety of sputtered and plasma-enhanced chemical vapour deposition (PECVD)-deposited films, including titanium tungsten, invar, silicon nitride and amorphous silicon, appropriate for the field of bistable MEMS. Techniques and strategies are presented (including varying substrate bias, pressure, temperature, and frequency multiplexing) for tuning internal stress across the spectrum from highly compressive (-2300 MPa) to highly tensile (1500 MPa). Conditions for obtaining stress-free films are also presented in this work. Under certain conditions during the PECVD deposition of amorphous silicon, interesting ‘micro-bubbles’ formed within the deposited films. Strategies to mitigate their formation are presented, resulting in a dramatic improvement in surface roughness quality from 667 nm root mean square (RMS) to 16 nm RMS. All final deposited films successfully passed the traditional ‘tape test’ for adhesion.

  8. 3D geomechanical modeling and numerical simulation of in-situ stress fields in shale reservoirs: A case study of the lower Cambrian Niutitang formation in the Cen'gong block, South China

    Science.gov (United States)

    Liu, Jingshou; Ding, Wenlong; Yang, Haimeng; Wang, Ruyue; Yin, Shuai; Li, Ang; Fu, Fuquan

    2017-08-01

    An analysis of the in-situ state of stress in a shale reservoir was performed based on comprehensive information about the subsurface properties from wellbores established during the development of an oil and gas field. Industrial-level shale gas production has occurred in the Niutitang formation of the lower Cambrian Cen'gong block, South China. In this study, data obtained from hydraulic fracturing, drilling-induced fractures, borehole breakout, global positioning system (GPS), and well deviation statistics have been used to determine the orientation of the maximum horizontal principal stress. Additionally, hydraulic fracturing and multi-pole array acoustic logging (XMAC) were used to determine the vertical variations in the in-situ stress magnitude. Based on logging interpretation and mechanical experiments, the spatial distributions of mechanical parameters were obtained by seismic inversion, and a 3D heterogeneous geomechanical model was established using a finite element stress analysis approach to simulate the in-situ stress fields. The effects of depth, faults, rock mechanics, and layer variations on the principal stresses, horizontal stress difference (Δσ), horizontal stress difference coefficient (Kh), and stress type coefficient (Sp) were determined. The results show that the direction of the maximum principal stress is ESE 120°. Additionally, the development zones of natural fractures appear to correlate with regions with high principal stress differences. At depths shallower than 375 m, the stress type is mainly a thrust faulting stress regime. At depths ranging from 375 to 950 m, the stress type is mainly a strike-slip faulting stress regime. When the depth is > 950 m, the stress type is mainly a normal faulting stress regime. Depth, fault orientation, and rock mechanics all affect the type of stress. The knowledge regarding the Cen'gong block is reliable and can improve borehole stability, casing set point determination, well deployment

  9. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Moda)

    Science.gov (United States)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.; Terry, J. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Reinke, M. L.; Whyte, D.; Alcator C-Mod Team

    2013-05-01

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%-30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed

  10. Estimation of transient creep crack-tip stress fields for SE(B) specimen under elastic-plastic-creep conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Je, Jin Ho; Kim, Dong Jun; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2015-10-15

    This paper estimates the time-dependent crack-tip stress fields under elastic-plastic-creep conditions. We perform Finite-Element (FE) transient creep analyses for a Single-Edge-notched-Bend (SEB) specimen. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step-load. We consider both the same stress exponent and different stress exponent in the power-law creep and plasticity to determine the elastic-plastic-creep behaviour. To estimation of the crack-tip stress fields, we compare FE analysis results with those obtained numerically formulas. In addition, we propose a new equation to predict the crack-tip stress fields when the creep exponent is different from the plastic exponent.

  11. Vacuum stress tensor of a scalar field in a rectangular waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.B.; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: robson@cbpf.br; svaiter@lns.mit.edu; Paola, R.D.M. de [Escola Federal de Engenharia de Itajuba, MG (Brazil). Inst. de Ciencias]. E-mail: rpaola@efei.br

    2001-11-01

    Using the heat Kernel method and the analytical continuation of the zeta function, we calculate the canonical and improved vacuum stress tensors, {l_brace}T{sub {mu}}{sub {nu}}(vector x){r_brace} and {l_brace}{theta}{sub {mu}}{sub {nu}} (vector x){r_brace}, associated with a massless scalar field confined in the interior of an infinity long rectangular waveguide. The local depence of the renormalized energy for two special configurations when the total energy is positive and negative are presented using {l_brace}T{sub 00}(vector x){r_brace} and {l_brace}{theta}{sub 00}(vector x){r_brace}. From the stress tensors we obtain the local casimir forces in all walls by introducing a particular external configuration. It is hown that this external configuration cannot give account of the edge divergences of the local forces. The local form of the forces is obtained for three special configurations. (author)

  12. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea.

    Science.gov (United States)

    Jiang, Yunfei; Lahlali, Rachid; Karunakaran, Chithra; Kumar, Saroj; Davis, Arthur R; Bueckert, Rosalind A

    2015-11-01

    Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar. © 2015 John Wiley & Sons Ltd.

  13. Bioeffects of Static Magnetic Fields: Oxidative Stress, Genotoxic Effects, and Cancer Studies

    Directory of Open Access Journals (Sweden)

    Soumaya Ghodbane

    2013-01-01

    Full Text Available The interaction of static magnetic fields (SMFs with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. Exposure to SMF can increase the activity, concentration, and life time of paramagnetic free radicals, which might cause oxidative stress, genetic mutation, and/or apoptosis. Current evidence suggests that cell proliferation can be influenced by a treatment with both SMFs and anticancer drugs. It has been recently found that SMFs can enhance the anticancer effect of chemotherapeutic drugs; this may provide a new strategy for cancer therapy. This review focuses on our own data and other data from the literature of SMFs bioeffects. Three main areas of investigation have been covered: free radical generation and oxidative stress, apoptosis and genotoxicity, and cancer. After an introduction on SMF classification and medical applications, the basic phenomena to understand the bioeffects are described. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts; international safety guidelines are also cited.

  14. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    Directory of Open Access Journals (Sweden)

    Kaplan David L

    2011-01-01

    Full Text Available Abstract Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP and collagen type 1 (col1, and stress response markers, such as heat shock protein 27 (hsp27 and heat shock protein 70 (hsp70. Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  15. 3D Residual Stress Field in Arteries: Novel Inverse Method Based on Optical Full-field Measurements

    CERN Document Server

    Badel, Pierre; Avril, Stéphane; 10.1111/str.12008

    2013-01-01

    Arterial tissue consists of multiple structurally important constituents that have individual material properties and associated stress-free configurations that evolve over time. This gives rise to residual stresses contributing to the homoeostatic state of stress in vivo as well as adaptations to perturbed loads, disease or injury. The existence of residual stresses in an intact but load-free excised arterial segment suggests compressive and tensile stresses, respectively, in the inner and outer walls. Accordingly, an artery ring springs open into a sector after a radial cut. The measurement of the opening angle is commonly used to deduce the residual stresses, which are the stresses required to close back the ring. The opening angle method provides an average estimate of circumferential residual stresses but it gives no information on local distributions through the thickness and along the axial direction. To address this lack, a new method is proposed in this article to derive maps of residual stresses usi...

  16. Phase field approach with anisotropic interface energy and interface stresses: Large strain formulation

    Science.gov (United States)

    Levitas, Valery I.; Warren, James A.

    2016-06-01

    A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the "usual" manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg-Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg-Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics

  17. Active stress field and seismotectonic features in Intra-Carpathian region of Romania

    Science.gov (United States)

    Oros, Eugen; Popa, Mihaela; Diaconescu, Mihai; Radulian, Mircea

    2017-04-01

    The Romanian Intra-Carpathian Region is located on the eastern half of Tisa-Dacia geodynamic block from the Neogene Carpathian-Pannonian Basin. The distribution of seismicity displays clear clusters and narrower zones with seismogenic potential confirmed by the damaging earthquakes recoded in the region, e.g. July 01, 1829 (Mw=6.2), October 10, 1834 (Mw=5.6), January 26, 1916 (Mw=6.4), July 12, 1991 (Mw=5.7), December 2, 1991 (Mw=5.5). The state of recent stress and deformation appears to be controlled by the interaction of plate-boundary and intraplate forces, which include the counterclockwise rotation and N-NE-directed indentation of the Adria microplate and buoyancy forces associated with differential topography and lithospheric heterogeneities. The stress field and tectonic regime are investigated at regional and local scales by the formal inversion of focal mechamisms. There can be observed short-scale lateral changes of i) tectonic regimes from compressive (reverse and strike-slip faultings) to pure extensive (normal faultings) and ii) variation of stress directions (SHmax) from NE-SW to EW and WNW-ESE towards Southern Carpathians and NS within Easter Carpathians. The changes in stress directions occur over a distance that is comparable to or smaller than the thickness of the lithosphere. A comparative analysis of stress tensor with GPS velocity/displacememt vectors shows variations from paralellism to orthogonality, suggesting different mechanisms of crustal deformations.The major seismic activity (Mw≥5.0) appears to be generally concentrated along the faults systems bordering de Tisa-Dacia Block, intersections of faults of different ages, internal shear zones and with the border of the former structural terrains, old rifts and neostructures.

  18. Stress wave velocity and dynamic modulus of elasticity of yellow-poplar ranging from 100 to 10 percent moisture content

    Science.gov (United States)

    Jody D. Gray; Shawn T. Grushecky; James P. Armstrong

    2008-01-01

    Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...

  19. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice

    Directory of Open Access Journals (Sweden)

    J. Olakunle Onaolapo

    2016-07-01

    Conclusion: Repeated caffeine consumption and/or acute sleep-deprivation led to significant changes in pattern of open-field behaviour and stress/antioxidant response in mice. Responses seen in the study are probably due to modulatory effects of caffeine on the total body response to stressful stimuli.

  20. High-dynamic-range microscope imaging based on exposure bracketing in full-field optical coherence tomography.

    Science.gov (United States)

    Leong-Hoi, Audrey; Montgomery, Paul C; Serio, Bruno; Twardowski, Patrice; Uhring, Wilfried

    2016-04-01

    By applying the proposed high-dynamic-range (HDR) technique based on exposure bracketing, we demonstrate a meaningful reduction in the spatial noise in image frames acquired with a CCD camera so as to improve the fringe contrast in full-field optical coherence tomography (FF-OCT). This new signal processing method thus allows improved probing within transparent or semitransparent samples. The proposed method is demonstrated on 3 μm thick transparent polymer films of Mylar, which, due to their transparency, produce low contrast fringe patterns in white-light interference microscopy. High-resolution tomographic analysis is performed using the technique. After performing appropriate signal processing, resulting XZ sections are observed. Submicrometer-sized defects can be lost in the noise that is present in the CCD images. With the proposed method, we show that by increasing the signal-to-noise ratio of the images, submicrometer-sized defect structures can thus be detected.

  1. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R

    Science.gov (United States)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2005-08-01

    The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E × B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport.

  2. [Corrective effects of electromagnetic radiation in a millimeter wavelength range on the parameters of oxidative stress after standard anti-helicobacterial therapy in patients with ulcer disease].

    Science.gov (United States)

    Ivanishkina, E V; Podoprigorova, V G

    2012-01-01

    We assessed the possibilities of correction of oxidative stress parameters in the serum and gastroduodenal mucosa using electromagnetic radiation in a millimeter wavelength range in 127 patients with gastric and duodenal ulcer after eradication therapy. Control group included 230 healthy subjects. Parameter of lipid oxidation by free radicals were measured by direct methods (hemiluminescence and EPR-spectroscopy). The results show that standard eradication therapy does not influence parameters of oxidative stress. More pronounced effect of electromagnetic radiation in a millimeter wavelength range may be due to the correction of prooxidant-antioxidant and antioxidant disbalance. This observation provides pathogenetic substantiation for the inclusion of this physical method in modern therapeutic modalities.

  3. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2003-04-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.

  4. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASOLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis; Hagen Schempf

    2004-10-01

    This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its sixth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot completed its first field demonstration in June 2004 and is undergoing further extensive endurance testing and some minor modifications in order to prepare for the second and last field demonstration planned for October 2004.

  5. Modeling of stresses and electric fields in piezoelectric multilayer: Application to multi quantum wells

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Mishra

    2017-07-01

    Full Text Available Exact closed-form expressions have been derived for the stresses and the electric fields induced in piezoelectric multilayers deposited on a substrate with lattice misfit and thermal expansion coefficient mismatch. The derived formulations can model any number of layers using recursive relations that minimize the computation time. A proper rotation matrix has been utilized to generalize the expressions so that they can be used for various growth orientations with each layer having hexagonal crystal symmetry. As an example, the influence of lattice misfit and thermal expansion coefficient mismatch on the state of electroelastic fields in different layers of GaN multi quantum wells has been examined. A comparison with the finite element analysis results showed very close agreement. The analytical expressions developed herein will be useful in designing optoelectronic devices as well as in predicting defect density in multi quantum wells.

  6. A model for steady state stage III creep regime at low-high stress/temperature range

    Directory of Open Access Journals (Sweden)

    Nicola Bonora

    2008-07-01

    Full Text Available Although diffusional flow creep is often considered out of practical engineering applications, the need for a model capable to account for the resulting action of both diffusional and dislocation type creep is justified by the increasing demands of reliable creep design for very long lives (exceeding 100.000h, high stress-low temperatures and high temperature-low stress regimes. In this paper, a creep model formulation, in which the change of the creep mechanism has been accounted for through an explicit dependence of the creep exponent n on stress and temperature, has been proposed. An application example of the proposed approach to high purity aluminum is given.

  7. Stress

    Science.gov (United States)

    ... natural disaster. This type of stress can cause post-traumatic stress disorder (PTSD). Different people may feel stress in different ways. Some people experience digestive symptoms. Others may have headaches, sleeplessness, depressed mood, anger, ...

  8. Ferroelectric behavior of a lead titanate nanosphere due to depolarization fields and mechanical stresses

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Landeta, J.; Lascano, I.

    2017-07-01

    A theorical model has been developed based on the theory of Ginzburg-Landau-Devonshire to study and predict the effects the decreasing of size particle in a nanosphere of PbTiO3 subjected to the action of depolarization fields and mechanical stress. It was considered that the nanosphere is surrounded by a layer of space charges on its surface, and containing 180° domains generated by minimizing free energy of depolarization. Energy density of depolarization, wall domain and electro-elastic energy have been incorporated into the free energy of the theory Ginzburg-Landau-Devonshire. Free energy minimization was performed to determine the spontaneous polarization and transition temperature system. These results show that the transition temperature for nanosphere is substantially smaller than the corresponding bulk material. Also, it has been obtained that the stability of the ferroelectric phase of nanosphere is favored for configurations with a large number of 180° domains, with the decreasing of thickness space charge layer, and the application of tensile stress and decreases with compressive stress. (Author)

  9. High-Throughput Phenotyping in Plant Stress Response: Methods and Potential Applications to Polyamine Field.

    Science.gov (United States)

    Marko, D; Briglia, N; Summerer, S; Petrozza, A; Cellini, F; Iannacone, R

    2018-01-01

    High-throughput phenotyping has opened whole new perspectives for crop improvement and better understanding of quantitative traits in plants. Generation of loss-of-function and gain-of-function plant mutants requires processing and imaging a large number of plants in order to determine unknown gene functions and phenotypic changes generated by genetic modifications or selection of new traits. The use of phenomics for the evaluation of transgenic lines contributed significantly to the identification of plants more tolerant to biotic/abiotic stresses and furthermore, helped in the identification of unknown gene functions. In this chapter we describe the High-throughput phenotyping (HTP) platform working in our facility, drawing the general protocol and showing some examples of data obtainable from the platform. Tomato transgenic plants over-expressing the arginine decarboxylase 2 gene, which is involved in the polyamine biosynthetic pathway, were analyzed through our HTP facility for their tolerance to abiotic stress and significant differences in water content and ability to recover after drought stress where highlighted. This demonstrates the applicability of this methodology to the plant polyamine field.

  10. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    Directory of Open Access Journals (Sweden)

    Guoshun Wang

    2013-01-01

    Full Text Available Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the position of the friction block of the brake pad. Structure optimization was conducted on brake pads composed of 5 or 7 circular friction blocks. The result shows that, with the same overall contact area of friction pair, an appropriate brake pad structure can make the friction energy distribute evenly and therefore lowers peak temperature and stress of the brake disc. Compared with a brake pad of 7 friction blocks, an optimized brake pad of 5 friction blocks lowered the peak temperature of the corresponding brake disc by 4.9% and reduced the highest stress by 10.7%.

  11. THE FIELD OF RECENT TECTONIC STRESSES IN CENTRAL AND SOUTH-EASTERN ASIA

    Directory of Open Access Journals (Sweden)

    Yu. L. Rebetsky

    2014-01-01

    Global CMT Database, reconstructions based on the first catalog are mapped. In the maps showing consolidated patterns of the state of stresses, spacious areas of horizontal extension of the crust in Tibet are clearly identified. In the south, such areas are bordered by regions of horizontal compression of the crust in Himalaya; in the north and north-east, they are bordered by regions of horizontal shear of the crust in East Kunlun. According to results of calculations at stage 2 of the method of cataclastic analyses, the crust in the central part of Tibet is subject to intensive confining pressure and lateral compression that is reduced in the neighboring regions. The crust in the southern and northern parts of Pamir is also subject to horizontal extension and shear. Regions of horizontal compression are located to the north, west and south of Pamir. Regulations of the field of recent tectonic stresses of Tibet and Pamir, which are revealed in this study, can be explained by the concept of ‘tectonic spreading’ of these regions due to gravity, which causes intensive horizontal spreading of the crust in Himalaya when the southern boundary of Tibet bends outwards and spreads over the Indian ‘indenter’ moving in the north–north-eastern direction. It is suggested by the data on horizontal extension of the crust in Tibet and underthrusting shear stresses over the horizontal zones that the impact Indian ‘indenter’ does not go beyond the crust of Pamir and the crust of the central parts of Tibet which is located above the long-term active mantle plume.  

  12. Stress Field in Brazil with Focal Mechanism: Regional and Local Patterns

    Science.gov (United States)

    Dias, F.; Assumpcao, M.

    2013-05-01

    The knowledge of stress field is fundamental not only to understand driving forces and plate deformation but also in the study of intraplate seismicity. The stress field in Brazil has been determined mainly using focal mechanisms and a few breakout data and in-situ measurements. However the stress field still is poorly known in Brazil. The focal mechanisms of recent earthquakes (magnitude lower than 5 mb) were studied using waveform modeling. We stacked the record of several teleseismic stations ( delta > 30°) stacked groups of stations separated according to distance and azimuth. Every record was visually inspected and those with a good signal/noise ratio (SNR) were grouped in windows of ten degrees distance and stacked. The teleseismic P-wave of the stacked signals was modeled using the hudson96 program of Herrmann seismology package (Herrmann, 2002) and the consistency of focal mechanism with the first-motion was checked. Some events in central Brazil were recorded by closer stations (~ 1000 km) and the moment tensor was determined with the ISOLA code (Sokos & Zahradnik, 2008). With the focal mechanisms available in literature and those obtained in this work, we were able to identify some patterns: the central region shows a purely compressional pattern (E-W SHmax), which is predicted by regional theoretical models (Richardson & Coblentz, 1996 and the TD0 model of Lithgow & Bertelloni, 2004). Meanwhile in the Amazon we find an indication of SHmax oriented in the SE-NW direction, probably caused by the Caribbean plate interaction (Meijer, 1995). In northern coastal region, the compression rotates following the coastline, which indicates an important local component related to spreading effects at the continental/oceanic transition (Assumpção, 1998) and flexural stresses caused by sedimentary load in Amazon Fan. We determine the focal mechanism of several events in Brazil using different techniques according to the available data. The major difficulty is to

  13. Relationship between parallel faults and stress field in rock mass based on numerical simulation

    Science.gov (United States)

    Imai, Y.; Mikada, H.; Goto, T.; Takekawa, J.

    2012-12-01

    Parallel cracks and faults, caused by earthquakes and crustal deformations, are often observed in various scales from regional to laboratory scales. However, the mechanism of formation of these parallel faults has not been quantitatively clarified, yet. Since the stress field plays a key role to the nucleation of parallel faults, it is fundamentally to investigate the failure and the extension of cracks in a large-scale rock mass (not with a laboratory-scale specimen) due to mechanically loaded stress field. In this study, we developed a numerical simulations code for rock mass failures under different loading conditions, and conducted rock failure experiments using this code. We assumed a numerical rock mass consisting of basalt with a rectangular shape for the model. We also assumed the failure of rock mass in accordance with the Mohr-Coulomb criterion, and the distribution of the initial tensile and compressive strength of rock elements to be the Weibull model. In this study, we use the Hamiltonian Particle Method (HPM), one of the particle methods, to represent large deformation and the destruction of materials. Out simulation results suggest that the confining pressure would have dominant influence for the initiation of parallel faults and their conjugates in compressive conditions. We conclude that the shearing force would provoke the propagation of parallel fractures along the shearing direction, but prevent that of fractures to the conjugate direction.

  14. Stress Fields Along Okinawa Trough and Ryukyu Arc Inferred From Regional Broadband Moment Tensors

    Science.gov (United States)

    Kubo, A.; Fukuyama, E.

    2001-12-01

    Most shallow earthquakes along Okinawa trough and Ryukyu arc are relatively small (MFREESIA). Lower limit of magnitude of the earthquakes determined becomes 1.5 smaller in M{}w than that of Harvard moment tensors. As a result, we could examine the stress field in more detail than Fournier et al.(2001, JGR, 106, 13751-) did based on surface geology and teleseismic moment tensors. In the NE Okinawa trough, extension axes are oblique to the trough strike, while in SW Okinawa trough, they are perpendicular to the trough. Fault type in SW is normal fault and gradually changes to mixture of normal and strike slip toward NE. In the Ryukyu arc, extension axes are parallel to the arc. Although this feature is not clear in the NW Ryukyu arc, arc parallel extension may be a major property of entire arc. Dominant fault type is normal fault and several strike slips with the same extensional component are included. The volcanic train is located at the edge of arc parallel extension field faced A simple explanation of the arc parallel extension is the response to the opening motion of the Okinawa trough. Another possible mechanism is forearc movement due to oblique subduction which is enhanced in SW. We consider that the Okinawa trough and the Ryukyu arc are independent stress provinces.

  15. Extreme of random field over rectangle with application to concrete rupture stresses

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2000-01-01

    Probabilities of excursions of random processes and fields into critical domains are of fundamental interestin many civil engineering decision problems. Examples are reliability evaluations of structures subject torandom load processes, the influence of the size of a structural element on the car......Probabilities of excursions of random processes and fields into critical domains are of fundamental interestin many civil engineering decision problems. Examples are reliability evaluations of structures subject torandom load processes, the influence of the size of a structural element...... results for such probabilities. However, dueto the engineering importance of the problem, several approximate assessment methods have been suggestedin the past. The suitability and accuracy of each of these methods depends on the type of process or fieldunder consideration. Often recourse must be taken...... to the area of the rectangle and the side lengths of therectangle. Published rupture stress data for plain concrete beams illustrate the applicability of the derivedclosed form extreme value distributions as models for distributions of rupture stresses related to weakest linkmechanisms....

  16. Whole-field measurement of three-dimensional stress by scattered-light photoelasticity with unpolarized light

    Directory of Open Access Journals (Sweden)

    Kihara T.

    2010-06-01

    Full Text Available In digital scattered-light photoelasticity with unpolarized light (DSLPUL, secondary principal stress direction ψj and total relative phase retardation ρjtot in a three-dimensional stressed model with rotation of the principal stress axes are obtained by measuring Stokes parameters of scattered light from optical slices. The present paper describes intelligibly the principle of DSLPUL, and then demonstrates that the ψj and ρjtot in a frozen stress sphere model are nondestructively measured over the entire field.

  17. Combining very-long-range terrestrial laser scanner data and thermal imagery for analysis of active lava flow fields

    Science.gov (United States)

    James, Mike; Pinkerton, Harry; Applegarth, Jane

    2010-05-01

    In order to increase our understanding of the processes involved in the evolution of lava flow fields, detailed and frequent assessments of the activity and the topographic change involved are required. Although topographic data of sufficient accuracy and resolution can be acquired by airborne lidar, the cost and logistics generally prohibit repeats at the daily (or more frequent) intervals necessary to assess flow processes. More frequent surveys can be carried out using ground-based terrestrial laser scanners (TLSs) but on volcanic terrain such instruments generally have ranges of only several hundreds of metres, with long range variants extending to ~1100 m. Here, we report preliminary results from the use of a new, ground-based Riegl LPM-321 instrument with a quoted maximum range of 6000 m. The LPM-321 was deployed at Mount Etna, Sicily during July 2009. At this time, active lava flows from the waning 2008-9 eruption were restricted to the upper region of a lava delta that had accumulated over the course of the eruption. Relatively small (a few hundreds of metres in length) and short lived (of order a few days) flows were being effused from a region of tumuli at the head of the delta. The instrument was used from three locations, Schiena dell' Àsino, the head of the Valle del Bove and Pizzi Deneri. From Schiena dell' Àsino, most of the 2008-9 lava flows could be observed, but, due to low reflectivities and viewing distances of ~4500 m, the active regions of the flows were out of range. The longest return was acquired from a range of 3978 m, but successful returns at this range were sparse; for dense topographic data, data were best acquired over distances of less than ~3500 m. The active flows were successfully imaged from the head of the Valle del Bove (9 and 12 July, 2009) and Pizzi Deneri (6 July, 2009). Despite low effusion rates (~1 m3s-1), topographic change associated with the emplacement and inflation of new flows and the inflation of a tumulus was

  18. Full-range stress-strain behaviour of contemporary pipeline steels: Part II. Estimation of model parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hertele, Stijn, E-mail: stijn.hertele@ugent.be [FWO Flanders Aspirant, Ghent University, Laboratory Soete, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); De Waele, Wim; Denys, Rudi; Verstraete, Matthias [Ghent University, Laboratory Soete, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium)

    2012-04-15

    Contemporary pipeline steels with a yield-to-tensile ratio above 0.80 often show two-stages of strain hardening, which cannot be simultaneously described by the standardized Ramberg-Osgood model. A companion paper (Part I) showed that the recently developed UGent model provides more accurate descriptions than the Ramberg-Osgood model, as it succeeds in describing both strain hardening stages. However, it may be challenging to obtain an optimal model fit in absence of full stress-strain data. This paper discusses on how to find suited parameter values for the UGent model, given a set of measurable tensile test characteristics. The proposed methodology shows good results for an extensive set of investigated experimental stress-strain curves. Next to some common tensile test characteristics, the 1.0% proof stress is needed. The authors therefore encourage the acquisition of this stress during tensile tests. - Highlights: Black-Right-Pointing-Pointer An analytical procedure estimates UGent model parameters. Black-Right-Pointing-Pointer The procedure requires a set of tensile test characteristics. Black-Right-Pointing-Pointer The UGent model performs better than the Ramberg-Osgood model. Black-Right-Pointing-Pointer Apart from common characteristics, the 1.0% proof stress is required. Black-Right-Pointing-Pointer The authors encourage the acquisition of this 1.0% proof stress.

  19. Artificial intelligence analysis of hyperspectral remote sensing data for management of water, weed, and nitrogen stresses in corn fields

    Science.gov (United States)

    Waheed, Tahir

    This study investigated the possibility of using ground-based remotely sensed hyperspectral observations with a special emphasis on detection of water, weed and nitrogen stresses contributing towards in-season decision support for precision crop management (PCM). A three factor split-split-plot experiment, with four randomized blocks as replicates, was established during the growing seasons of 2003 and 2004. Corn (Zea mays L.) hybrid DKC42-22 was grown because this hybrid is a good performer on light soils in Quebec. There were twelve 12 x 12m plots in a block (one replication per treatment per block) and the total number of plots was 48. Water stress was the main factor in the experiment. A drip irrigation system was laid out and each block was split into irrigated and non-irrigated halves. The second main factor of the experiment was weeds with two levels i.e. full weed control and no weed control. Weed treatments were assigned randomly by further splitting the irrigated and non-irrigated sub-blocks into two halves. Each of the weed treatments was furthermore split into three equal sub-sub-plots for nitrogen treatments (third factor of the experiment). Nitrogen was applied at three levels i.e. 50, 150 and 250 kg N ha-1 (Quebec norm is between 120-160 kg N ha-1). The hyperspectral data were recorded (spectral resolution = 1 nm) mid-day (between 1000 and 1400 hours) with a FieldSpec FR spectroradiometer over a spectral range of 400-2500 run at three growth stages namely: early growth, tasseling and full maturity, in each of the growing season. There are two major original contributions in this thesis: First is the development of a hyperspectral data analysis procedure for separating visible (400-700 nm), near-infrared (700-1300 nm) and mid-infrared (1300-2500 nm) regions of the spectrum for use in discriminant analysis procedure. In addition, of all the spectral band-widths analyzed, seven waveband-aggregates were identified using STEPDISC procedure, which were the

  20. Williams expansion-based approximation of the stress field in an Al 2024 body with a crack from optical measurements

    Directory of Open Access Journals (Sweden)

    S. Seitl

    2017-07-01

    Full Text Available A study on the approximation of the stress field in the vicinity of crack tip in a compact tension specimen made from Al 2024-T351 is presented. Crack tip stress tensor components are expressed using the linear elastic fracture mechanics (LEFM theory in this work, more precisely via its multi-parameter formulation, i.e. by Williams power series (WPS. Determination of coefficients of terms of this series is performed using a least squares-based regression technique known as over deterministic method (ODM for which displacements data obtained experimentally via optical measurements are taken as inputs. The stress fields reconstructed based on the displacement data obtained experimentally by means of optical measurements are verified by means of the stress field approximations derived for the normalized CT specimen via hybrid elements.

  1. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis, Hagen Schempf

    2004-04-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fifth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot is undergoing extensive endurance testing in order to prepare for the field demonstrations planned for June 2004.

  2. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2003-10-01

    This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6- inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fourth six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on endurance testing and testing of launching procedures. Testing of the prototype in the lab is expected to be completed by Fall 2003, to be followed by two field demonstrations in Winter 2003-2004.

  3. Quaternary volcanism in the Colorado Plateau-Basin and Range transition zone: Zuni-Bandera and nearby volcanic fields

    Science.gov (United States)

    Cascadden, Tracey Elaine

    Early (ca. 700 ka) voluminous tholeiites in the Zuni-Bandera volcanic field (ZBVF) were followed by smaller volume alkalic, transitional and tholeiitic basalts, intermittently erupted from ca. 200 ka through 3 ka. In some cases, lavas of different chemical characteristics were erupted from the same vent, or from contemporaneous clusters of vents. El Calderon cinder cone erupted magmas derived from two different sources. Early alkalic eruptions, derived from a depleted (asthenospheric) source, were followed by more voluminous tholeiitic flows derived from an enriched (lithospheric) source. The tholeiite flow erupted at ca. 80 ka during a high-amplitude excursion (possibly an aborted reversal) of the geomagnetic field, as indicated by a paleomagnetic direction with declination = 271sp° , inclination = -17sp° (N = 10, alphasb{95}=4.4sp° ,\\ kappa = 124). This tholeiite has higher Ksb2O, TiOsb2, MgO, Co, Nb, Sr, Zr and LREE contents than other ZBVF tholeiites. The Candelaria Cluster comprises four volcanoes, within a four kmsp2 area, that erupted alkalic and transitional lavas from an asthenospheric source and tholeiitic lavas from a lithospheric source. Lavas from all four vents record moderate-amplitude paleomagnetic secular variation (declination = 32sp° , inclination = 56sp° , N = 17, alphasb{95}=2.8sp° ,\\ kappa = 189) indicating eruption within a very short time span, conceivably less than 100 years. The ZBVF is located within the Basin and Range/Rio Grande rift - Colorado Plateau transition zone, where extension has thinned the crust and lithosphere with respect to the Colorado Plateau but not as much as in the more highly-extended Basin and Range. Contemporaneous eruption of magmas from different mantle sources is consistent with a model in which transition zone alkalic magmas are generated at the boundary between upwelling depleted asthenosphere and residual enriched lithosphere, and tholeiitic magmas are derived from the lithosphere. The lack of

  4. The lithospheric stress field from joint modeling of lithosphere and mantle circulation using constraints from the latest global tomography models

    Science.gov (United States)

    Wang, X.; Holt, W. E.; Ghosh, A.

    2013-12-01

    An understanding of the lithospheric stress field is important because these stresses are one indication of processes within the Earth's interior. In order to calculate the lithosphere stress field it is necessary to take into account the effects of lithosphere structure and topography along with coupling with 3-D mantle flow. We separate these effects into two parts: (1) contributions from topography and lithosphere structure are calculated by computing the stresses associated with gravitational potential energy (GPE) differences, and (2) stresses associated with mantle tractions are computed using the latest tomography models. The contributions from GPE and tractions are then combined to obtain model estimates of the lithospheric stress field, strain rate field, and surface velocity field. We simultaneously use the World Stress Map, the Global Strain Rate Model, and the No-Net-Rotation (NNR) surface velocity vectors to constrain models. We systematically test the latest global tomography models (SEMum [Lekic and Romanowicz, 2011], S40RTS [Ritsema et al., 2011], and S362ANI_PREM [Kustowski et al., 2008]) and the composite tomography model (SMEAN [Becker and Boschi, 2002]), along with the influence of different mantle radial viscosity models. We find that a coupled model with a weak viscosity channel, sandwiched between a strong lithosphere and strong lower mantle is best able to match the observational constraints, although there is a slight difference in stress field among the different tomography models. There is considerable evidence that the contributions from shallow versus deeper sources vary dramatically over the surface of the globe. We quantify these relative contributions as a function of position on the globe and systematically compare the results of different tomography models. Subduction zones are dominated by the effects of GPE differences, whereas within many of the plate interiors the contributions from mantle flow dominate.

  5. Visualization and Transparentization of the Structure and Stress Field of Aggregated Geomaterials Through 3D Printing and Photoelastic Techniques

    Science.gov (United States)

    Ju, Yang; Wang, Li; Xie, Heping; Ma, Guowei; Zheng, Zemin; Mao, Lingtao

    2017-06-01

    Natural resource reservoirs usually consist of heterogeneous aggregated geomaterials containing a large number of randomly distributed particles with irregular geometry. As a result, the accurate characterization of the stress field, which essentially governs the mechanical behaviour of such geomaterials, through analytical and experimental methods, is considerably difficult. Physical visualization of the stress field is a promising method to quantitatively characterize and reveal the evolution and distribution of stress in aggregated geomaterials subjected to excavation loads. This paper presents a novel integration of X-ray computed tomography (CT) imaging, three-dimensional (3D) printing, and photoelastic testing for the transparentization and visualization of the aggregated structure and stress field of heterogeneous geomaterials. In this study, a glutenite rock sample was analysed by CT to acquire the 3D aggregate structure, following which 3D printing was adopted to produce transparent models with the same aggregate structure as that of the glutenite sample. Uniaxial compression tests incorporated with photoelastic techniques were performed on the transparent models to acquire and visualize the stress distribution of the aggregated models at various loading stages. The effect of randomly distributed aggregates on the stress field characteristics of the models, occurrence of plastic zones, and fracture initiation was analysed. The stress field characteristics of the aggregated models were analysed using the finite element method (FEM). The failure process was simulated using the distinct element method (DEM). Both FEM and DEM results were compared with the experimental observations. The results showed that the proposed method can very well visualize the stress field of aggregated solids during uniaxial loading. The results of the visualization tests were in good agreement with those of the numerical simulations.

  6. Multi-parameter approximation of stress field in a cracked specimen using purpose-built Java applications

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Sopek, J.; Tesař, D.; Frantík, P.; Pail, T.; Seitl, Stanislav

    2015-01-01

    Roč. 9, č. 33 (2015), s. 120-133 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Cracked specimen * Near-crack-tip fields * Williams expansion * Higher order terms * Stress field reconstruction * Finite element analysis * Java application Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials

    Science.gov (United States)

    Lopour, Beth A.; Staba, Richard J.; Stern, John M.; Fried, Itzhak; Ringach, Dario L.

    2016-04-01

    Objective. Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Approach. Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. Main results. We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. Significance. The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity

  8. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    Science.gov (United States)

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fault-related dolomitization in the Orpesa Ranges (Iberian Chain, E Spain): reactive transport simulations and field data constraints

    Science.gov (United States)

    Gomez-Rivas, E.; Martin-Martin, J. D.; Corbella, M.; Teixell, A.

    2009-04-01

    The relationships between hydrothermal fluid circulation and fracturing that lead to mineral dissolution and/or precipitation in carbonate rocks have direct impacts on the evolution and final distribution of hydrocarbon reservoir permeability. Understanding the coupling between these processes is important for predicting permeability and improving hydrocarbon recovery. We present a case study of dolomitization processes in Cretaceous limestone from the Orpesa Ranges (Iberian Chain, E Spain). Extending over part of the Maestrat Cretaceous Basin, the Orpesa area is deformed by extensional faults. These faults accommodated thick sequences of shallow marine limestone, mainly during Aptian times. The syn-rift carbonates are partially dolomitized due to the circulation and mixing of hydrothermal fluids along normal faults and bedding. Both Aptian and later Neogene extensional faults must have served as conduits for the circulation of fluids. MVT deposits of Paleocene age are well documented in the Maestrat basin and may also be related to dolomitization. Samples of host rocks and vein fillings have been collected along strike and analyzed in different fault sections to characterize fluid and rock composition, track flow pathways and map the relationships of fluid flow with respect to the main normal faults in the area. Using field and geochemical data from the Orpesa Ranges carbonates, we have developed reactive-transport models to study the influence of different parameters in the dolomitization of carbonates related to the circulation and mixing of hydrothermal fluids at the outcrop scale. We present results from models that were run with constant and non-constant permeability. The main parameters analyzed include: initial porosity and permeability of layers and fractures, composition of fluids, groundwater and brines flux, composition of layers, reactive surface of minerals, differences in vertical and horizontal permeability, and presence or absence of stratigraphic

  10. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials.

    Science.gov (United States)

    Lopour, Beth A; Staba, Richard J; Stern, John M; Fried, Itzhak; Ringach, Dario L

    2016-04-01

    Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity in epilepsy and the relationship between

  11. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2002-10-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6- inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NYGAS member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the New York Gas Group (NYGAS; a trade association of the publicly owned gas utilities in New York State), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL). The DOE's contribution to this current phase of the project is $499,023 out of a total of $780,735 (not including NASA's contribution). The

  12. Analysis of the Thermal Stress for Combined Electrode of Soldered Crystalline Silicon Solar Cells under Temperature Field

    Directory of Open Access Journals (Sweden)

    He Wang

    2016-01-01

    Full Text Available Based on the theory of material mechanics and thermal stress analysis, the stress distribution of combined electrode for crystalline silicon solar module was studied for the first time. The shear stress and normal stress distribution of soldered structure for crystalline silicon solar cells under the thermal field were discussed. And the results show that the stress distribution is not simply linear relationship as some results found. But there is a stress concentration at the edge, which was considered as the true reason that caused microcracks at the edge of soldered solar cells. The conclusions we got in this paper provide a theoretical basis for deceasing the breakage rates of soldered crystalline silicon solar cells and improving the reliability of crystalline silicon solar modules.

  13. Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures.

    Science.gov (United States)

    Skotak, Maciej; Wang, Fang; Alai, Aaron; Holmberg, Aaron; Harris, Seth; Switzer, Robert C; Chandra, Namas

    2013-07-01

    We evaluated the acute (up to 24 h) pathophysiological response to primary blast using a rat model and helium driven shock tube. The shock tube generates animal loadings with controlled pure primary blast parameters over a wide range and field-relevant conditions. We studied the biomechanical loading with a set of pressure gauges mounted on the surface of the nose, in the cranial space, and in the thoracic cavity of cadaver rats. Anesthetized rats were exposed to a single blast at precisely controlled five peak overpressures over a wide range (130, 190, 230, 250, and 290 kPa). We observed 0% mortality rates in 130 and 230 kPa groups, and 30%, 24%, and 100% mortality rates in 190, 250, and 290 kPa groups, respectively. The body weight loss was statistically significant in 190 and 250 kPa groups 24 h after exposure. The data analysis showed the magnitude of peak-to-peak amplitude of intracranial pressure (ICP) fluctuations correlates well with mortality rates. The ICP oscillations recorded for 190, 250, and 290 kPa are characterized by higher frequency (10-20 kHz) than in other two groups (7-8 kHz). We noted acute bradycardia and lung hemorrhage in all groups of rats subjected to the blast. We established the onset of both corresponds to 110 kPa peak overpressure. The immunostaining against immunoglobulin G (IgG) of brain sections of rats sacrificed 24-h post-exposure indicated the diffuse blood-brain barrier breakdown in the brain parenchyma. At high blast intensities (peak overpressure of 190 kPa or more), the IgG uptake by neurons was evident, but there was no evidence of neurodegeneration after 24 h post-exposure, as indicated by cupric silver staining. We observed that the acute response as well as mortality is a non-linear function over the peak overpressure and impulse ranges explored in this work.

  14. In situ neutron diffraction studies of a commercial, soft lead zirconate titanate ceramic: Response to electric fields and mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, Abhijit [University of Florida; Prewitt, Anderson [University of Florida; Cottrell, Michelle [University of Florida; Lee, Wayne [ITT Corporation Acoustic Sensors; Studer, Andrew J. [Bragg Institute, ANSTO; An, Ke [ORNL; Hubbard, Camden R [ORNL; Jones, Jacob [University of Florida

    2010-01-01

    Structural changes in commercial lead zirconate titanate (PZT) ceramics (EC-65) under the application of electric fields and mechanical stress were measured using neutron diffraction instruments at the Australian Nuclear Science and Technology Organisation (ANSTO) and the Oak Ridge National Laboratory (ORNL). The structural changes during electric-field application were measured on the WOMBAT beamline at ANSTO and include non-180{sup o} domain switching, lattice strains and field-induced phase transformations. Using time-resolved data acquisition capabilities, lattice strains were measured under cyclic electric fields at times as short as 30 {mu}s. Structural changes including the (002) and (200) lattice strains and non-180{sup o} domain switching were measured during uniaxial mechanical compression on the NRSF2 instrument at ORNL. Contraction of the crystallographic polarization axis, (002), and reorientation of non-180{sup o} domains occur at lowest stresses, followed by (200) elastic strains at higher stresses.

  15. a Comparison of Close-Range Photogrammetry Using a Non-Professional Camerawith Field Surveying for Vplume Estimation

    Science.gov (United States)

    Abbaszadeh, S.; Rastiveis, H.

    2017-09-01

    Rapid and accurate volume calculation is one of the most important requirements in many applications such as construction and mining industries. The accuracy of a calculated volume depends on the number of collected points on the object. Increasing the number of measured points undoubtedly requires higher cost and time. On the other hand, collecting surveying points might sometimes be difficult, dangerous or impossible. The aim of this study is to evaluate the close range photogrammetry (CRP) using a non-professional camera for DEM generation in comparison to the traditional field surveying technique (TST). For this purpose, a test area in Deralok hydropower planet site was considered and the process of DEM extraction in both methods was compared. The obtained results showed that although the CRP method in contrast with TST method was more time consuming, however, this method was able to successfully measure negative slops and berms and, consequently, calculated more accurate volume. Moreover, the relative error of 0.2% was reported.

  16. Isokinetic trunk strength and lumbosacral range of motion in elite female field hockey players reporting low back pain.

    Science.gov (United States)

    Fenety, A; Kumar, S

    1992-01-01

    This study was funded, in part, by a Small Faculties Grant from the University of Alberta. Physical therapists have reported an increased incidence of low back pain (LBP) in female field hockey (FH) players, commonly accompanied by decreased trunk range of motion (ROM) and strength. The purpose of this study was to compare lumbosacral sagittal ROM and isokinetic trunk strength in three groups of women: 1) FH athletes with a history of chronic LBP, 2) pain-free FH athletes, and 3) an age-matched, healthy nonathletic control group. Photographs (35 mm) of subjects wearing spinal motion markers were used to determine the limits of lumbosacral saggital ROM in standing. Eccentric and concentric isokinetic trunk flexion and extension torques were measured in sitting through 60 degrees of trunk movement using a Kin-Com dynamometer set at 60 degrees /sec. The ANOVA showed that the pain group had 12 degrees and 18 degrees less extension (p pain-free and control groups, respectively. Only peak (p pain group than in the nonathletic control group. These results suggest that physical therapists should perform preseason screening of trunk strength and lumbosacral ROM. In-season trunk extension stretching and strengthening is needed in the training regimes of these athletes. J Orthop Sports Phys Ther 1992;16(3):129-135.

  17. Gravitational potential stresses and stress field of passive continental margins: Insights from the south-Norway shelf

    NARCIS (Netherlands)

    Pascal, C.; Cloetingh, S.A.P.L.

    2009-01-01

    It is commonly assumed that the stress state at passive margins is mainly dominated by ridge push and that other stress sources have only a limited temporal and/or spatial influence. We show, by means of numerical modelling, that observed variations in lithosphere structure and elevation from a

  18. A stress field in the vortex lattice in the type-II superconductor

    Directory of Open Access Journals (Sweden)

    Maruszewski, Bogdan

    2008-02-01

    Full Text Available Magnetic flux can penetrate a type-II superconductor in the form of Abrikosov vortices (also called flux lines, flux tubes, or fluxons, each carrying a quantum of magnetic flux. These tiny vortices of supercurrent tend to arrange themselves in a triangular and/or quadratic flux-line lattice, which is more or less perturbed by material inhomogeneities that pin the flux lines. Pinning is caused by imperfections of the crystal lattice, such as dislocations, point defects, grain boundaries, etc. Hence, a honeycomb-like pattern of the vortex array presents some mechanical properties. If the Lorentz force of interactions between the vortices is much bigger than the pinning force, the vortex lattice behaves elastically. So we assume that the pinning force is negligible in the sequel and we deal with soft vortices. The vortex motion in the vortex lattice and/or creep of the vortices in the vortex fluid is accompanied by energy dissipation. Hence, except for the elastic properties, the vortex field is also of a viscous character. The main aim of the paper is a formulation of a thermoviscoelastic stress - strain constitutive law consisted of coexistence of the ordered and disordered states of the vortex field. Its form describes an auxetic-like thermomechanical (anomalous property of the vortex field.

  19. A Parameter Sensitivity Analysis of the Effect of Rebar Corrosion on the Stress Field in the Surrounding Concrete

    Directory of Open Access Journals (Sweden)

    Fangyuan Li

    2017-01-01

    Full Text Available Rebar corrosion results in a change in the stress field in the surrounding concrete, which in turn accelerates the deterioration of the concrete structure. In addition to the protective layer, the compressive stress under which concrete is prestressed also affects the effect of corrosion-induced rebar expansion on the stress field in the concrete. The present study simulates the effect of corrosion-induced rebar expansion on the stress field in the concrete using the finite element method (FEM by applying a virtual radial displacement to the product of corrosion-induced rebar expansion. Based on an analysis of the effect of multiple rebars on the stress field in ordinary concrete, stress distribution in the protective layer of the concrete is determined. Afterward, the locations where there is damage to the surface concrete caused by rebar corrosion are determined. After verifying the feasibility of the FEM analysis, the effect of corrosion-induced ordinary rebar expansion in a typical prestressed concrete segment is determined by analyzing the characteristics of corrosion-induced rebar expansion occurring in various prestressed concrete specimens.

  20. Stress distribution calculations through a snow slab of varying elastic modulus; comparison with stability evaluation in the field

    Science.gov (United States)

    Swinkels, Laura; Borstad, Chris

    2017-04-01

    Field observations are the main tools for assessing the snow stability concerning dry snow slab avalanche release. Often, theoretical studies cannot directly be translated into useful information for avalanche recreationists and forecasters in the field, and vice versa; field observations are not always objective and quantifiable for theoretical studies. Moreover, numerical models often simplify the snowpack and generally use an isotropic single layer slab which is not representative of the real-life situation. The aim of this study is to investigate the stress distribution in a snowpack with an elastic modulus that continuously varies with depth. The focus lies on the difference between a slab with a gradient in hardness and a slab with isotropic hardness and the effect on the calculated maximum stress and the stability evaluation in the field. Approximately 20 different snow pits were evaluated in the mountains around Tromsø, Norway and Longyearbyen, Svalbard. In addition to the standard snowpack observations, the hardness was measured using a thin-blade gauge. Extended column tests were executed for stability evaluation. Measurements from the field were used as input for stress calculations for each snow pit using a line load solution for a sloping half space with a non-homogeneous elastic modulus. The hardness measurements were used to calculate the elastic modulus and a power law relation was fit through the modulus in the slab. The calculated shear stress was compared to the estimated stability and character of the specific snowpack The results show that the approach used for this study improves the calculation of stress at a given depth, although many assumptions and simplifications were still needed. Comparison with the snow profiles indicate that calculated stresses correlate well with the observed snowpack properties and stability. The calculated shear stresses can be introduced in the standard stability index and give a better indication for the

  1. Concentrating colloids with electric field gradients. II. Phase transitions and crystal buckling of long-ranged repulsive charged spheres in an electric bottle

    NARCIS (Netherlands)

    Leunissen, M.E.; van Blaaderen, A.

    2008-01-01

    We explored the usefulness of electric field gradients for the manipulation of the particle concentration in suspensions of charged colloids, which have long-ranged repulsive interactions. In particular, we studied the compression obtained by ``negative'' dielectrophoresis, which drives the

  2. Vortex configuration in the presence of local magnetic field and locally applied stress

    Energy Technology Data Exchange (ETDEWEB)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena, E-mail: beena@biu.ac.il

    2017-02-15

    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  3. Influence of selenium in drought-stressed wheat plants under greenhouse and field conditions

    Directory of Open Access Journals (Sweden)

    Roghieh HAJIBOLAND

    2015-11-01

    Full Text Available Effects of selenium (Na2SeO4 was studied in two wheat genotypes under well-watered and drought conditions in greenhouse (15 µg Se L-1 and field (20-60 60 g ha-1 experiments. Application of Se improved dry matter and grain yield under both well-watered and drought conditions. Se increased leaf concentration of pigments and photosynthesis rate under both well-watered and drought conditions. Our results indicated that Se alleviates drought stress via increased photosynthesis rate, protection of leaf photochemical events, accumulation of organic osmolytes and improvement of water use efficiency. Under well-watered condition, Se-mediated growth improvement was associated with higher photosynthesis rate and water use efficiency, greater root length and diameter, and higher leaf water content.

  4. A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs

    CERN Document Server

    Augustin, Matthias Albert

    2015-01-01

    This monograph focuses on the numerical methods needed in the context of developing a reliable simulation tool to promote the use of renewable energy. One very promising source of energy is the heat stored in the Earth’s crust, which is harnessed by so-called geothermal facilities. Scientists from fields like geology, geo-engineering, geophysics and especially geomathematics are called upon to help make geothermics a reliable and safe energy production method. One of the challenges they face involves modeling the mechanical stresses at work in a reservoir. The aim of this thesis is to develop a numerical solution scheme by means of which the fluid pressure and rock stresses in a geothermal reservoir can be determined prior to well drilling and during production. For this purpose, the method should (i) include poroelastic effects, (ii) provide a means of including thermoelastic effects, (iii) be inexpensive in terms of memory and computational power, and (iv) be flexible with regard to the locations of data ...

  5. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations

    Science.gov (United States)

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin

    2018-01-01

    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  6. Some characteristics of the seismicity and the stress field in the Panxi rift zone

    Science.gov (United States)

    Zheng, Jian-Zhong; Xu, Wen-Yue; Liu, Jin; Zou, Ying

    1987-02-01

    Some characteristics of the horizontal distribution of the earthquakes, the focus depth distribution, distribution of the earthquakes with time, b-values, fault slip rates and stress field in the Panxi rift zone have been investigated. The results are as follows: (1) Earthquakes with M ⩾ 4.7 occurred mainly along the major faults in the Panxi rift zone. Earthquake activity is greater along the sides of the Panxi rift zone than along its axis. Earthquakes with M ⩾ 6 occurred along the bounding faults of the Panxi rift zone. The small earthquakes exhibit a random distribution. (2) The focal depths along the axis of the Panxi rift zone are shallow (5-20 km), but the focal depths outside the rift zone are deeper (6-40 km). (3) The b-values in the Panxi rift zone are 0.58-0.75. (4) The correlation of the seismicity between the Panxi rift zone and the eastern India-Eurasian collision zone is high. (5) The fault planes in the Panxi rift zone are nearly vertical and strike-slip. The fault slip rates in the Panxi rift zone are 0.13-0.19 cm/yr. (6) The maximum principal compressive stress axis in the Panxi rift zone is nearly horizontal, NNW-SSE in direction. According to the above results, a dynamic model for the aborting process of the Panxi rift zone is suggested.

  7. Numerical simulation of stress field for laser thermal loading on piston

    Science.gov (United States)

    Liu, Xiu-Bo; Pang, Ming; Zhang, Zhen-Guo; Tan, Jian-Song; Zhu, Gang-Xian; Wang, Ming-Di

    2012-07-01

    To investigate the laser thermal loading on diesel engine piston, the employed Gaussian laser beam was transformed into concentric multi-circular patterns of specific intensity distributions with the aid of diffractive optical elements (DOEs), the time duration of laser thermal loading was controlled by computer with air cooling on the top surface of piston, and water cooling of oil tunnel and bottom surface of piston. Numerical simulation model of stress field of laser thermal action was established with the consideration of experimental conditions and the temperature dependent of thermal physical properties of the piston materials. Results show that the stress fluctuation rate at the concave pit site of top surface of piston is larger than that of laser irradiated region due to concave pit region near oil tunnel. Meanwhile, the regions of concave pit, oil tunnel and inner chamber near the top surface of piston are most vulnerable sites to form thermal cracks due to their direct contact with the cooling medium. Results of experimental and numerical simulation have good agreement, which validates the numerical simulation mode.

  8. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders — from Optical Triangulation to the Automotive Field

    Science.gov (United States)

    Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air

    2008-01-01

    With their significant features, the applications of complementary metal-oxide semiconductor (CMOS) image sensors covers a very extensive range, from industrial automation to traffic applications such as aiming systems, blind guidance, active/passive range finders, etc. In this paper CMOS image sensor-based active and passive range finders are presented. The measurement scheme of the proposed active/passive range finders is based on a simple triangulation method. The designed range finders chiefly consist of a CMOS image sensor and some light sources such as lasers or LEDs. The implementation cost of our range finders is quite low. Image processing software to adjust the exposure time (ET) of the CMOS image sensor to enhance the performance of triangulation-based range finders was also developed. An extensive series of experiments were conducted to evaluate the performance of the designed range finders. From the experimental results, the distance measurement resolutions achieved by the active range finder and the passive range finder can be better than 0.6% and 0.25% within the measurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests on applications of the developed CMOS image sensor-based range finders to the automotive field were also conducted. The experimental results demonstrated that our range finders are well-suited for distance measurements in this field. PMID:27879789

  9. Time-dependent wellbore breakout growth caused by drilling-induced pore pressure transients: Implications for estimations of far field stress magnitude

    Science.gov (United States)

    Olcott, K. A.; Saffer, D. M.; Elsworth, D.

    2013-12-01

    One method used to constrain principal stress orientations and magnitudes in the crust combines estimates of rock strength with observations of wellbore failures, including drilling-induced tensile fractures (DITF) and compressional borehole breakouts (BO). This method has been applied at numerous Integrated Ocean Drilling Program (IODP) boreholes drilled into sediments in a wide range of settings, including the Gulf of Mexico, the N. Japan and Costa Rican subduction margins, and the Nankai Trough Accretionary Prism. At Nankai and N. Japan, BO widths defined by logging-while-drilling (LWD) resistivity images have been used to estimate magnitudes of far-field horizontal tectonic stresses. At several drillsites (C0010, C0002, and C0011), sections of the borehole were relogged with LWD after the hole was left open for times ranging from ~30 min to 3 days; times between acquisition were associated with pipe connections (~30 min), cleaning and circulating the hole (up to ~3 hr), and evacuation of the site for weather (~3 days). Relogged portions exhibit widening of BO, hypothesized to reflect time-dependent re-equilibration of instantaneous changes in pore fluid pressure (Pf) induced by opening the borehole. In this conceptual model, Pf decrease caused by initial excavation of the borehole and resulting changes in the state of stress at the borehole wall lead to an initial strengthening of the sediment. Re-equilibration of Pf results in time-dependent weakening of the sediment and subsequent BO growth. If correct, this hypothesis implies that stress magnitudes estimated by BO widths could be significantly underestimated. We test this idea using a finite-element model in COMSOL multiphysics that couples fluid flow and deformation in a poroelastic medium. We specify far-field horizontal principal stresses (SHmax and Shmin) in the model domain. At the start of simulations/at the time of borehole opening, we impose a decreased stress at the borehole wall. We consider a

  10. Analysis of Stress and Strain Fields in and around Inclusions of Various Shapes in a Cylindrical Specimen Loaded in Tension

    Directory of Open Access Journals (Sweden)

    Neimitz A.

    2016-06-01

    Full Text Available A numerical analysis is performed of the stress field in and around inclusions of various shapes. Inclusions both stiffer and more compliant than the metal matrix are analysed. The critical stresses required for inclusion fracture are estimated after observation of cavities and inclusions by scanning electron microscopy. Real inclusions were observed after performing uniaxial loading to different amounts of overall strain. The material tested was Hardox-400 steel.

  11. Field measurements, simulation modeling and development of analysis for moisture stressed corn and soybeans, 1982 studies

    Science.gov (United States)

    Blad, B. L.; Norman, J. M.; Gardner, B. R.

    1983-01-01

    The experimental design, data acquisition and analysis procedures for agronomic and reflectance data acquired over corn and soybeans at the Sandhills Agricultural Laboratory of the University of Nebraska are described. The following conclusions were reached: (1) predictive leaf area estimation models can be defined which appear valid over a wide range of soils; (2) relative grain yield estimates over moisture stressed corn were improved by combining reflectance and thermal data; (3) corn phenology estimates using the model of Badhwar and Henderson (1981) exhibited systematic bias but were reasonably accurate; (4) canopy reflectance can be modelled to within approximately 10% of measured values; and (5) soybean pubescence significantly affects canopy reflectance, energy balance and water use relationships.

  12. Numerical Simulation for Thermal Shock Resistance of Ultra-High Temperature Ceramics Considering the Effects of Initial Stress Field

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2011-01-01

    Full Text Available Taking the hafnium diboride ceramic as an example, the effects of heating rate, cooling rate, thermal shock initial temperature, and external constraint on the thermal shock resistance (TSR of ultra-high temperature ceramics (UHTCs were studied through numerical simulation in this paper. The results show that the external constraint has an approximately linear influence on the critical rupture temperature difference of UHTCs. The external constraint prepares a compressive stress field in the structure because of the predefined temperature field, and this compressive stress field relieves the tension stress in the structure when it is cooled down and then it improves the TSR of UHTCs. As the thermal shock initial temperature, a danger heating rate (or cooling rate exists where the critical temperature difference is the lowest.

  13. Epinephrine, DNA integrity and oxidative stress in workers exposed to extremely low-frequency electromagnetic fields (ELF-EMFs) at 132 kV substations.

    Science.gov (United States)

    Tiwari, Ravindra; Lakshmi, N K; Bhargava, S C; Ahuja, Y R

    2015-03-01

    There is apprehension about widespread use of electrical and electromagnetic gadgets which are supposed to emit electromagnetic radiations. Reports are controversy. These electromagnetic fields (EMFs) have considerable effect on endocrine system of exposed subjects. This study was focused to assess the possible bioeffects of extremely low-frequency (ELF)-EMFs on epinephrine level, DNA damage and oxidative stress in subjects occupationally exposed to 132 kV high-voltage substations. The blood sample of 142 exposed subjects and 151 non-exposed individuals was analyzed. Plasma epinephrine was measured by enzyme-linked immunosorbent assay, DNA damage was studied by alkaline comet assay along with oxidative stress. Epinephrine levels of sub-groups showed mean concentration of 75.22  ±  1.46, 64.43  ±  8.26 and 48.47  ±  4.97 for high, medium and low exposed groups, respectively. DNA damage ranged between 1.69 µm and 9.91 µm. The oxidative stress levels showed significant increase. The individuals employed in the live-line procedures were found to be vulnerable for EM stress with altered epinephrine concentrations, DNA damage and increased oxidative stress.

  14. Effect of parameters on local stress field in single-lap bolted joints with the interference fit

    Directory of Open Access Journals (Sweden)

    Jiefeng Jiang

    2016-05-01

    Full Text Available From the interference fit bolt installation to tensile loading stage in single-lap joint with a hi-lock bolt, the stress and strain fields were studied experimentally and numerically. A three-dimensional finite element model was generated to simulate the experimental setup, which was validated using the experimental data. The fatigue behavior of the bolted joint is influenced by the local stress fields on the faying surface near the holes in single-lap joints. Therefore, with the aim to improve design awareness, the effects of the parameters on the local stress fields were investigated by means of finite element simulation. With an increase in the interference fit size, the occurred position of the maximum stress values on the upper plate faying surface moves away from the hole edge gradually. As the clamping force or friction coefficient increases, the position of larger stress area is changed to the side of bearing load from the transverse direction. The lap geometry of the bolted joint as well as the amplitude of tensile load has apparent impact on the maximum stress value.

  15. A linear least squares approach for evaluation of crack tip stress field parameters using DIC

    Science.gov (United States)

    Harilal, R.; Vyasarayani, C. P.; Ramji, M.

    2015-12-01

    In the present work, an experimental study is carried out to estimate the mixed-mode stress intensity factors (SIF) for different cracked specimen configurations using digital image correlation (DIC) technique. For the estimation of mixed-mode SIF's using DIC, a new algorithm is proposed for the extraction of crack tip location and coefficients in the multi-parameter displacement field equations. From those estimated coefficients, SIF could be extracted. The required displacement data surrounding the crack tip has been obtained using 2D-DIC technique. An open source 2D DIC software Ncorr is used for the displacement field extraction. The presented methodology has been used to extract mixed-mode SIF's for specimen configurations like single edge notch (SEN) specimen and centre slant crack (CSC) specimens made out of Al 2014-T6 alloy. The experimental results have been compared with the analytical values and they are found to be in good agreement, thereby confirming the accuracy of the algorithm being proposed.

  16. The response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress

    Science.gov (United States)

    Holmquist, T. J.; Bradley, J.; Dwivedi, A.; Casem, D.

    2016-05-01

    This article presents the response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress. Laboratory data from the literature, and new test data provided here, are used in the evaluation. The new data include uniaxial stress compression tests (at various strain rates and temperatures) and uniaxial stress tension tests (at low strain rates and ambient temperatures). The compression tests include experiments at ˙ɛ = 13,000 s-1, significantly extending the range of known strain rate data. The observed behavior of PMMA includes the following: it is brittle in compression at high rates, and brittle in tension at all rates; strength is dependent on the pressure, strain, strain rate, temperature, and the intermediate principal stress; the shear modulus increases as the pressure increases; and it is highly compressible. Also presented are novel, high velocity impact tests (using high-speed imaging) that provide insight into the initiation and evolution of damage. Lastly, computational constitutive models for pressure, strength, and failure are presented that provide responses that are in good agreement with the laboratory data. The models are used to compute several ballistic impact events for which experimental data are available.

  17. Can the soil fauna of boreal forests recover from lead-derived stress in a shooting range area?

    Science.gov (United States)

    Selonen, Salla; Liiri, Mira; Setälä, Heikki

    2014-04-01

    The responses of soil faunal communities to lead (Pb) contamination in a shooting range area and the recovery of these fauna after range abandonment were studied by comparing the communities at an active shotgun shooting range, an abandoned shooting range, and a control site, locating in the same forest. Despite the similar overall Pb pellet load at the shooting ranges, reaching up to 4 kg m(-2), Pb concentrations in the top soil of the abandoned range has decreased due to the accumulation of detritus on the soil surface. As a consequence, soil animal communities were shown to recover from Pb-related disturbances by utilizing the less contaminated soil layer. Microarthropods showed the clearest signs of recovery, their numbers and community composition being close to those detected at the control site. However, in the deepest organic soil layer, the negative effects of Pb were more pronounced at the abandoned than at the active shooting range, which was detected as altered microarthropod and nematode community structures, reduced abundances of several microarthropod taxa, and the total absence of enchytraeid worms. Thus, although the accumulation of fresh litter on soil surface can promote the recovery of decomposer communities in the top soil, the gradual release of Pb from corroding pellets may pose a long-lasting risk for decomposer taxa deeper in the soil.

  18. Ionisation potential theorem in the presence of the electric field: Assessment of range-separated functional in the reproduction of orbital and excitation energies.

    Science.gov (United States)

    Borpuzari, Manash Protim; Boruah, Abhijit; Kar, Rahul

    2016-04-28

    Recently, the range-separated density functionals have been reported to reproduce gas phase orbital and excitation energies with good accuracy. In this article, we have revisited the ionisation potential theorem in the presence of external electric field. Numerical results on six linear molecules are presented and the performance of the range-separated density functionals in reproducing highest occupied molecular orbital (HOMO) energies, LUMO energies, HOMO-LUMO gaps in the presence of the external electric field is assessed. In addition, valence and Rydberg excitation energies in the presence of the external electric field are presented. It is found that the range-separated density functionals reproduce orbital and excitation energies accurately in the presence of the electric field. Moreover, we have performed fractional occupation calculation using cubic spline equation and tried to explain the performance of the functional.

  19. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    Science.gov (United States)

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  20. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    Science.gov (United States)

    VanGordon, James A.; Kovaleski, Scott D.; Norgard, Peter; Gall, Brady B.; Dale, Gregory E.

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  1. Sicily and southern Calabria focal mechanism database: a valuable tool for local and regional stress-field determination

    Directory of Open Access Journals (Sweden)

    Luciano Scarfì

    2013-04-01

    Full Text Available In this work, we present a new catalog of focal mechanisms calculated for earthquakes recorded in Sicily and southern Calabria. It comprises about 300 solutions, for events with magnitudes ranging from 2.7 to 4.8 that occurred from 1999 to 2011. We used P-wave polarities to compute the fault-plane solutions. Two main goals are achieved. For the first, the catalog allows the stress regime and kinematics characterizing the studied area to be depicted at a regional and more local scale. In particular, moving along the tectonic lineament that extends from the Aeolian Islands to the Ionian Sea, there is a change from a regime characterized by sub-horizontal P-axes, ca. NW-SE directed, to an extensive one in the Calabro-Peloritan Arc, where T-axes striking in a NW-SE direction prevail. Our results also show that part of the seismicity is clustered along the main active seismogenic structures, of which the focal mechanisms indicate the kinematics. Finally, in the Etna volcano area, different stress fields act at different depths due to the combination of the regional tectonics, the strong pressurization of the deep magmatic system, and the dynamics of the shallower portion of the volcano. As a second goal, we highlight that the catalog also represents a valuable tool, through the data distribution on the internet, for further studies directed towards improving our understanding of the geodynamic complexity of the region, and for a better characterization of the seismogenic sources.

  2. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2002-05-01

    retrieving the robot but through the use of auxiliaries, to be developed in a follow-on phase, that will allow insertion of additional antennas and battery recharge plugs into the pipe under live conditions through inexpensive keyhole sized excavations. The proposed system significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the New York Gas Group (NYGAS; a trade association of the publicly owned gas utilities in New York State), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL). The DOE's contribution to this project is $499,023 out of a total of $780,735 (not including NASA's contribution). The present report summarizes the accomplishments of the project during the first six months since funding from DOE commenced. The project has achieved its goals for this period as outlined in the report. Currently the fabrication of the prototype is in progress and it should be completed by late-summer 2002. Testing of the prototype in the lab is expected to be completed by November 2002, to be followed by two field demonstrations in early 2003.

  3. Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics.

    Science.gov (United States)

    Sims, David W; Humphries, Nicolas E; Bradford, Russell W; Bruce, Barry D

    2012-03-01

    1. Search processes play an important role in physical, chemical and biological systems. In animal foraging, the search strategy predators should use to search optimally for prey is an enduring question. Some models demonstrate that when prey is sparsely distributed, an optimal search pattern is a specialised random walk known as a Lévy flight, whereas when prey is abundant, simple Brownian motion is sufficiently efficient. These predictions form part of what has been termed the Lévy flight foraging hypothesis (LFF) which states that as Lévy flights optimise random searches, movements approximated by optimal Lévy flights may have naturally evolved in organisms to enhance encounters with targets (e.g. prey) when knowledge of their locations is incomplete. 2. Whether free-ranging predators exhibit the movement patterns predicted in the LFF hypothesis in response to known prey types and distributions, however, has not been determined. We tested this using vertical and horizontal movement data from electronic tagging of an apex predator, the great white shark Carcharodon carcharias, across widely differing habitats reflecting different prey types. 3. Individual white sharks exhibited movement patterns that predicted well the prey types expected under the LFF hypothesis. Shark movements were best approximated by Brownian motion when hunting near abundant, predictable sources of prey (e.g. seal colonies, fish aggregations), whereas movements approximating truncated Lévy flights were present when searching for sparsely distributed or potentially difficult-to-detect prey in oceanic or shelf environments, respectively. 4. That movement patterns approximated by truncated Lévy flights and Brownian behaviour were present in the predicted prey fields indicates search strategies adopted by white sharks appear to be the most efficient ones for encountering prey in the habitats where such patterns are observed. This suggests that C. carcharias appears capable of exhibiting

  4. Long-range dispersal and high-latitude environments influence the population structure of a "stress-tolerant" dinoflagellate endosymbiont.

    Directory of Open Access Journals (Sweden)

    D Tye Pettay

    Full Text Available The migration and dispersal of stress-tolerant symbiotic dinoflagellates (genus Symbiodinium may influence the response of symbiotic reef-building corals to a warming climate. We analyzed the genetic structure of the stress-tolerant endosymbiont, Symbiodinium glynni nomen nudum (ITS2 - D1, obtained from Pocillopora colonies that dominate eastern Pacific coral communities. Eleven microsatellite loci identified genotypically diverse populations with minimal genetic subdivision throughout the Eastern Tropical Pacific, encompassing 1000's of square kilometers from mainland Mexico to the Galapagos Islands. The lack of population differentiation over these distances corresponds with extensive regional host connectivity and indicates that Pocillopora larvae, which maternally inherit their symbionts, aid in the dispersal of this symbiont. In contrast to its host, however, subtropical populations of S. glynni in the Gulf of California (Sea of Cortez were strongly differentiated from populations in tropical eastern Pacific. Selection pressures related to large seasonal fluctuations in temperature and irradiance likely explain this abrupt genetic discontinuity. We infer that S. glynni genotypes harbored by host larvae arriving from more southern locations are rapidly replaced by genotypes adapted to more temperate environments. The strong population structure of S. glynni corresponds with fluctuating environmental conditions and suggests that these genetically diverse populations have the potential to evolve rapidly to changing environments and reveals the importance of environmental extremes in driving microbial eukaryote (e.g., plankton speciation in marine ecosystems.

  5. Stress revisited : a critical evaluation of the stress concept

    NARCIS (Netherlands)

    Koolhaas, J.M.; Bartolomucci, A; Buwalda, B; Flügge, G; de Boer, Sietse; Korte, S M; Meerlo, P; Murison, R; Olivier, B; Palanza, P; Richter-Levin, G; Sgoifo, A; Steimer, T; Stiedl, O; van Dijk, G; Wöhr, M; Fuchs, E

    2011-01-01

    With the steadily increasing number of publications in the field of stress research it has become evident that the conventional usage of the stress concept bears considerable problems. The use of the term 'stress' to conditions ranging from even the mildest challenging stimulation to severely

  6. The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor

    Energy Technology Data Exchange (ETDEWEB)

    Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2009-03-15

    We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)

  7. The Emotional Stress Reaction Questionnaire (ESRQ): Measurement of Stress Reaction Level in Field Conditions in 60 Seconds

    Science.gov (United States)

    2011-04-01

    multinational military missions characterized by irregular warfare (see e.g. Bartone, Pastel , & Vaitkus, 2010), there is an accompanying need for easy-to-use...Antonovsky, A. (1987). Unraveling the mystery of health: How people manage stress and stay well. San Francisco: Jossey-Bass. Bartone, P. T., Pastel , R

  8. Field Testing and Performance Evaluation of the Long-Range Acoustic Real-Time Sensor for Polar Areas (LARA)

    Science.gov (United States)

    2015-09-30

    animals ) in an array configuration. A few passive acoustic monitoring systems use a surface buoy to overcome some of these disadvantages but cannot be...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Field Testing and Performance Evaluation of the Long...cover expenses for field testing and performance evaluation. This new ONR award will allow us to conduct initial short-term deployments of LARA of the

  9. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-11-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  10. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-12-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  11. Comparative Evaluation of Common Savannah Grass on a Range of Soils Subjected to Different Stresses II: Root Zone Physical Condition

    Directory of Open Access Journals (Sweden)

    Raymond Springer

    2014-02-01

    Full Text Available The root zone physical condition influences root development and function, which affects turfgrass growth, quality and performance. The temporal variability of root zone properties was investigated in a factorial experiment combining sand layering compaction and moisture stress on the performance of Savannahgrass (SG (Axonopus compressus, Bermudagrass (BG (Cynodon dactylon (L. Pers. (cv. Tifway 419 and Zoysiagrass (ZG (Zoysia spp. grown in four contrasting soils. Four stresses—drought (D, waterlogging (WL, high compaction (HC and low compaction (LC—were applied either with or without a surface sand layer. Root zone properties, including root weight (RW, bulk density (BD, surface hardness (SH, redox potential (Eh and non-capillary pore space (NCPS, were monitored over a four-month growth period. Surface hardness values were greater for the high compaction effort in treatments without sand, but were highest under drought. Sand addition resulted in lower SH for all grass × soil combinations. The soil texture influenced root zone BD for all turfgrasses, with the clay soils recording significantly lower bulk densities (<1.00 g/cm3 than those with coarser fractions. Compaction had a minimal influence on BD, the effect being further modified by grass type. Low BD was associated with high RW. RW was also significantly higher in the sand-amended treatments. Waterlogging reduced Eh for all soils, with higher values recorded in the sand treatments. The redox potential was lowest in River Estate soil and in pots planted with ZG. Across turfgrasses, Princes Town and Talparo soils had significantly lower NCPS for the sand treatment. NCPS was highest for ZG across stress treatments, but values were similar to SG under compaction treatments. Sand layering improved the root zone aeration status, particularly with SG, resulting in a better physical condition.

  12. A new theoretical model of the quasistatic single-fiber pullout problem: Analysis of stress field

    DEFF Research Database (Denmark)

    Qing, Hai

    2013-01-01

    A new theoretical model is developed in order to predict the stress transfer during the quasistatic single-fibre pullout process. The theoretical approach retains all relevant stress and strain components, and satisfies exactly the interfacial continuity conditions and all the stress boundary con...

  13. Laser cutting of triangular geometry into 2024 aluminum alloy: Influence of triangle size on thermal stress field

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, Bekir Sami; Akhtar, Syed Sohail [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Keles, Omer; Boran, Kurtulus [Gazi University, Ankara (Turkmenistan)

    2015-08-15

    Laser cutting of a triangular geometry into aluminum 2024 alloy is carried out. Thermal stress field in the cutting section is predicted using the finite element code ABAQUS. Surface temperature predictions are validated through the thermocouple data. Morphological changes in the cut section are examined incorporating optical and electron scanning microscopes. The effects of the size of the triangular geometry on thermal stress field are also examined. It is found that surface temperature predictions agree well with thermocouple data. von Mises stress remains high in the region close to the corners of the triangular geometry, which is more pronounced for the small size triangle. This behavior is associated with the occurrence of the high cooling rates in this region. Laser cut edges are free from large scale sideways burning and large size burr attachments. However, some locally scattered dross attachments are observed at the kerf exit.

  14. Assessing the accuracy of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields

    NARCIS (Netherlands)

    Hamzeh, Saied; Naseri, Abd Ali; Alavipanah, Seyed Kazem; Bartholomeus, Harm; Herold, Martin

    2016-01-01

    This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image

  15. On the plane strain in a theory for self-gravitating elastic configuration with initial static stress field

    Directory of Open Access Journals (Sweden)

    E. BOSCHI

    1974-06-01

    Full Text Available This paper is concerned with the plane strain in a theory for an arbitrary, uniformly rotating, self-gravitating, perfectly elastic Earth model with a hydrostatic initial stress field. Using the associated matrices method, a representation of Galerkin type is given. This representation enables us to derive the solution of the vibration problem corresponding to concentrated body forces.

  16. Mindfulness Training and Reductions in Teacher Stress and Burnout: Results from Two Randomized, Waitlist-Control Field Trials

    Science.gov (United States)

    Roeser, Robert W.; Schonert-Reichl, Kimberly A.; Jha, Amishi; Cullen, Margaret; Wallace, Linda; Wilensky, Rona; Oberle, Eva; Thomson, Kimberly; Taylor, Cynthia; Harrison, Jessica

    2013-01-01

    The effects of randomization to mindfulness training (MT) or to a waitlist-control condition on psychological and physiological indicators of teachers' occupational stress and burnout were examined in 2 field trials. The sample included 113 elementary and secondary school teachers (89% female) from Canada and the United States. Measures were…

  17. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K.

    Science.gov (United States)

    Kirichek, O; Timms, J D; Kelleher, J F; Down, R B E; Offer, C D; Kabra, S; Zhang, S Y

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  18. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    Directory of Open Access Journals (Sweden)

    Maria João Gaspar

    Full Text Available Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  19. Numerical and experimental analysis of the residual stress field in cladded components; Numerische und experimentelle Bestimmung des Eigenspannungszustands in plattierten Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Dieter; Brand, Marcus; Hohe, Joerg [Fraunhofer Inst. fuer Werkstoffmechanik, Freiburg (Germany)

    2008-07-01

    The inner surface of a ferritic reactor pressure vessel is protected against corrosion by an austenitic cladding that is usually performed by a double-pass welding in order to avoid under-clad defects und to improve the microstructural properties of the cladding material. On the other hand the different thermal expansion coefficients of the cladding and the base metal induce a complex residual stress field. This has a non-negligible influence on the fracture mechanical assessment of postulated flaws within or under the cladding. The determination of the residual stress field was achieved by numerical simulation of the cladding process. The calibration of the used equivalent heat sources for the modelling of the heat input within the simulation was performed using measured data of the temperature field in a KTA compliant cladding process of test plates made of plant-representative materials. The simulation of the welding process used the temperature dependent material characteristics taking into account the transformation behaviour of the ferritic base metal. The resulting residual stress field shows significant tensile stresses within the cladding with a subsequent compressive stress field under the cladding. The calculated residual stress field is in good agreement with the experimental data. A comparison of the calculated residual stress field using the process simulation with the results of a simplified modelling assuming an increased stress-free temperature in the range of the operation temperature shows also a good agreement, esp. using the materials characteristics of KTA. [German] Die Innenoberflaeche von Reaktordruckbehaeltern aus ferritischen Werkstoffen wird zum Schutz gegen Korrosion mit einer austenitischen Plattierung versehen. Diese wird ueblicherweise als zweilagige Schweissplattierung ausgefuehrt, um die Bildung von Unterplattierungsfehlern zu vermeiden und die mikrostrukturellen Eigenschaften des Plattierungswerkstoffs zu verbessern. Auf der

  20. Stresses of PTT, Giesekus, and Oldroyd-B fluids in a Newtonian velocity field near the stick-slip singularity

    Science.gov (United States)

    Evans, J. D.; Palhares Junior, I. L.; Oishi, C. M.

    2017-12-01

    We characterise the stress singularity of the Oldroyd-B, Phan-Thien-Tanner (PTT), and Giesekus viscoelastic models in steady planar stick-slip flows. For both PTT and Giesekus models in the presence of a solvent viscosity, the asymptotics show that the velocity field is Newtonian dominated near to the singularity at the join of the stick and slip surfaces. Polymer stress boundary layers are present at both the stick and slip surfaces. By integrating along streamlines, we verify the polymer stress behavior of r-4/11 for PTT and r-5/16 for Giesekus, where r is the radial distance from the singularity. These asymptotic results for PTT and Giesekus do not hold in the limit of vanishing quadratic stress terms for Oldroyd-B. However, we can consider the Oldroyd-B model in the fixed kinematics of a prescribed Newtonian velocity field. In contrast to PTT and Giesekus, this is not the correct balance for the momentum equation but does allow insight into the behavior of the Oldroyd-B equations near the singularity. A three-region asymptotic structure is again apparent with now a polymer stress singularity of r-4/5. The high Weissenberg boundary layer equations are found to manifest themselves at the stick surface and are of thickness r3/2. At the slip surface, dominant balance between the upper convected stress and rate-of-strain terms gives a slip boundary layer of thickness r2. The solution of the slip boundary layer shows that the polymer stress is now singular along the slip surface. These results are supported through numerical integration along streamlines of the Oldroyd-B equations in a Newtonian velocity field. The Oldroyd-B model thus extends the point singularity at the join of the stick and slip surfaces to the whole of slip surface. As such, it does not have a physically meaningful solution in a Newtonian velocity field. We would expect a similar stress behavior for this model in the true viscoelastic velocity field.

  1. Characterization and minimization of the stress response to trapping in free-ranging wolves (Canis lupus): insights from physiology and behavior.

    Science.gov (United States)

    Santos, Nuno; Rio-Maior, Helena; Nakamura, Mónia; Roque, Sara; Brandão, Ricardo; Álvares, Francisco

    2017-09-01

    Wildlife capture is an essential management tool that induces a reactive homeostasis response in the captured animals. The aim of this study was to characterize the reactive homeostatic response to trapping in free-ranging wolves and assess the mitigation achieved by reducing the duration of restraint. Making use of wolves captured for ecological research as a model for wildlife acute stress, we characterize 25 reactive homeostasis mediators and we assess the effect on these mediators of reducing the duration of restraint in trap by using remote trap activation alarms. Free-ranging wolves trapped by leg-hold snares (n = 15) showed higher stress leukogram, tissue injury and hematocrit; while lower glucose, ions and cardiac rate compared with captive wolves. They also showed higher leukocyte count and creatine kinase; but lower hematocrit, cardiac rate and rectal body temperature compared to wolves captured by darting from a helicopter. Daily distance travelled was significantly lower up to day 12 post-capture compared to the remainder of the telemetry follow-up and this effect was more noticeable on the nocturnal distance travelled. Reducing the duration of restraint on trap significantly lowered the stress leukogram and dehydration. Daily distance travelled during the night by wolves captured using trap-alarms was significantly lower only up to day 4 post-capture compared to up to day 28 for wolves captured without trap-alarms. The capture method and duration of restraint influence the reactive homeostasis response of free-ranging wolves. Technological solutions that reduce the duration of restraint on trap significantly dampen this influence. Wildlife trapping actions should strive to minimize the delay from capture to manipulation.

  2. Effect of a single-session meditation training to reduce stress and improve quality of life among health care professionals: a "dose-ranging" feasibility study.

    Science.gov (United States)

    Prasad, Kavita; Wahner-Roedler, Dietlind L; Cha, Stephen S; Sood, Amit

    2011-01-01

    The primary aim of the study was to assess the feasibility of incorporating a single-session meditation-training program into the daily activities of healthy employees of a tertiary-care academic medical center. The study also assessed the most preferred duration of meditation and the effect of the meditation program on perceived stress, anxiety, and overall quality of life (QOL). Seventeen healthy clinic employees were recruited for this study. After an initial group instruction session covering basic information about meditation, Paced Breathing Meditation (PBM) was taught to the participants. Participants were instructed to self-practice meditation with the help of a DVD daily for a total of 4 weeks. The DVD had three different programs of 5, 15, and 30 minutes with a menu option to choose one of the programs. (1) Patient diary, (2) Perceived Stress Scale (PSS), (3) Linear Analogue Self-Assessment (LASA), (4) Smith Anxiety Scale (SAS). Primary outcome measures were compared using the paired t-test. All participants were female; median age was 48 years (range 33-60 y). The 5-minute meditation session was practiced by 14 participants a total of 137 times during the 4-week trial period, the 15-minute session by 16 participants a total of 223 times, and the 30-minute session by 13 participants 71 times. The median number of days practiced was 25 (range 10-28 d); the average total time practiced was 394 minutes (range 55-850 min). After 4 weeks of practice, the scores of the following instruments improved significantly from baseline: PSS (P stress, anxiety, and QOL.

  3. Influence of Residual Stress Field on the Fatigue Crack Propagation in Prestressing Steel Wires

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2015-11-01

    Full Text Available This paper deals with the effect of several residual stress profiles on the fatigue crack propagation in prestressing steel wires subjected to tension loading or bending moment. To this end, a computer program was developed to evaluate the crack front evolution on the basis of the Walker law. Results demonstrate that the absence of residual stresses makes the crack propagate towards a preferential crack path. When surface residual stresses are tensile and, correspondingly, core residual stresses are compressive, the fatigue crack fronts rapidly converge towards a quasi-straight shape. When surface residual stresses are compressive, with their corresponding tensile stresses in the core area, a preferential crack path also appears.

  4. Development of Environmental Guidelines for Multipurpose Range Complexes. Volume 2. Description of Field Tests, Sediment Yields, and Option Analysis

    Science.gov (United States)

    1987-01-01

    0.0 0.0 0.0 0.0 Dead 0.0 0.0 0.0 0.0 0.0 70 to 73 Total 0.0 0.0 0.0 0.0 0.0 0.0 0.0S...... i~mean 0. 0. 0, 0. kid ¢ 0:.O 0: .00 D 0.0 0. 0.0 , 75 to 80...brown thrashers, catbirds, yellowthroats, kingbirds, rosebreasted grosbeaks, warbling vireos, chickadees, robins, indigo buntings, cardinals, and field...16 7 30 22 CHIPPING SPARROW 25 0 FIELD SPARROW 20 5 12 3 8 0CARDINAL 15 8 16 7 18 9 . ROSE-BREASTED GROSBEAK 22 19 18 5 27 20 INDIGO BUNTIN6 17 9 19 8

  5. Neurone bioelectric activity under magnetic fields of variable frequency in the range of 0.1-80 Hz

    Science.gov (United States)

    Pérez Bruzón, R. N.; Azanza, María. J.; Calvo, Ana C.; del Moral, A.

    2004-05-01

    Intracellular recordings from single unit molluscan neurones under exposure to ELF-MF (1 mT, 0.1-80 Hz), show that neurone frequency activity, f, decreases with the applied magnetic field frequency, fM, a phenomenon which indicates a frequency-window effect for the neurone membrane response. The HMHW of the window amounts between 2-10 Hz. An explanation of this phenomenon is proposed.

  6. Neurone bioelectric activity under magnetic fields of variable frequency in the range of 0.1-80 Hz

    Energy Technology Data Exchange (ETDEWEB)

    Perez Bruzon, R.N.; Azanza, M.J. E-mail: mjazanza@posta.unizar.es; Calvo, Ana C.; Moral, A. del

    2004-05-01

    Intracellular recordings from single unit molluscan neurones under exposure to ELF-MF (1 mT, 0.1-80 Hz), show that neurone frequency activity, f, decreases with the applied magnetic field frequency, f{sub M}, a phenomenon which indicates a frequency-window effect for the neurone membrane response. The HMHW of the window amounts between 2-10 Hz. An explanation of this phenomenon is proposed.

  7. Resonance oscillations of non-reciprocal long-range van der Waals forces between atoms in electromagnetic fields

    OpenAIRE

    Sherkunov, Yury

    2017-01-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating and non-reciprocal due to resonance absorption and emission of virtual photons. We suggest that these forces can be used to manipulate and control centre-of-mass and relative motion of atomic pairs.

  8. Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge

    Science.gov (United States)

    J. A. Kainz; J. P. Wacker; M. Nelson

    The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...

  9. Residual stress fields in sol-gel-derived thin TiO2 layers

    OpenAIRE

    Teeuw, D.H.J.; Haas, M.; De Hosson, J.Th.M.

    1999-01-01

    This paper discusses the induction of residual stresses during the curing process of thin titania layers, which are derived using a sol-gel process. During this process, stresses may build up in the spinning stage, the drying stage, and the consolidation stage. The magnitude and character of these stresses depend heavily on the morphology of the layers in the various stages and the processing conditions. Dried layers are densified using two different processes, conventional furnace heating an...

  10. Temporal changes of static stress drop as a proxy for poroelastic effects at The Geysers geothermal field, California

    Science.gov (United States)

    Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia

    2017-04-01

    One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field

  11. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  12. Assessment of occupational health problems and physiological stress among the brick field workers of West Bengal, India

    Directory of Open Access Journals (Sweden)

    Banibrata Das

    2014-08-01

    Full Text Available Objectives: The brick field industry is one of the oldest industries in India, which employs a large number of workers of poor socioeconomic status. The main aim of the present investigation is i to determine the prevalence of musculoskeletal disorders among brick field workers, ii to determine the prevalence of respiratory disorders and physiological stress among brick field workers compared to control workers. Material and Methods: For this study, a total of 220 brick field workers and 130 control subjects were selected randomly. The control subjects were mainly involved in hand-intensive jobs. The Modified Nordic Questionnaire was applied to assess the discomfort felt among both groups of workers. Thermal stress was also assessed by measuring the WBGT index. The pulmonary functions were checked using the spirometry. Physiological assessment of the workload was carried out by recording the heart rate and blood pressure of the workers prior to work and just after work in the field. Results: Brick field workers suffered from pain especially in the lower back (98%, hands (93%, knees (86%, wrists (85%, shoulders (76% and neck (65%. Among the brick-making activities, brick field workers felt discomfort during spading for mud collection (98%, carrying bricks (95% and molding (87%. The results showed a significantly lower p value < 0.001 in FVC, FEV1, FEV1/FVC ratio and PEFR in brick field workers compared to the control group. The post-activity heart rate of the brick field workers was 148.6 beats/min, whereas the systolic and diastolic blood pressure results were 152.8 and 78.5 mm/Hg, respectively. Conclusions: This study concludes that health of the brick field workers was highly affected due to working in unhealthy working conditions for a long period of time.

  13. Cancer-associated fibroblasts enact field cancerization by promoting extratumoral oxidative stress.

    Science.gov (United States)

    Chan, Jeremy Soon Kiat; Tan, Ming Jie; Sng, Ming Keat; Teo, Ziqiang; Phua, Terri; Choo, Chee Chong; Li, Liang; Zhu, Pengcheng; Tan, Nguan Soon

    2017-01-19

    Histological inspection of visually normal tissue adjacent to neoplastic lesions often reveals multiple foci of cellular abnormalities. This suggests the presence of a regional carcinogenic signal that spreads oncogenic transformation and field cancerization. We observed an abundance of mutagenic reactive oxygen species in the stroma of cryosectioned patient tumor biopsies, indicative of extratumoral oxidative stress. Diffusible hydrogen peroxide (H2O2) was elevated in the conditioned medium of cultured skin epithelia at various stages of oncogenic transformation, and H2O2 production increased with greater tumor-forming and metastatic capacity of the studied cell lines. Explanted cancer-associated fibroblasts (CAFs) also had higher levels of H2O2 secretion compared with normal fibroblasts (FIBs). These results suggest that extracellular H2O2 acts as a field effect carcinogen. Indeed, H2O2-treated keratinocytes displayed decreased phosphatase and tensin homolog (PTEN) and increased Src activities because of oxidative modification. Furthermore, treating FIBs with CAF-conditioned medium or exogenous H2O2 resulted in the acquisition of an oxidative, CAF-like state. In vivo, the proliferative potential and invasiveness of composite tumor xenografts comprising cancerous or non-tumor-forming epithelia with CAFs and FIBs could be attenuated by the presence of catalase. Importantly, we showed that oxidatively transformed FIBs isolated from composite tumor xenografts retained their ability to promote tumor growth and aggressiveness when adoptively transferred into new xenografts. Higher H2O2 production by CAFs was contingent on impaired TGFβ signaling leading to the suppression of the antioxidant enzyme glutathione peroxidase 1 (GPX1). Finally, we detected a reduction in Smad3, TAK1 and TGFβRII expression in a cohort of 197 clinical squamous cell carcinoma (SCC) CAFs, suggesting that impaired stromal TGFβ signaling may be a clinical feature of SCC. Our study indicated

  14. Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self- consistent field wave functions

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Jensen, Hans Jørgen Aagaard; Knecht, Stefan

    2013-01-01

    Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous formulat......Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous...... formulation of multi-determinantal TD-DFT schemes where excitation classes, which are absent in conventional TD-DFT spectra (like for example double excitations), can be addressed. This paper investigates the combination of both the long-range Multi-Configuration Self-Consistent Field (MCSCF) and Second Order...... Polarization Propagator Approximation (SOPPA) ansätze with a short-range DFT (srDFT) description. We find that the combinations of SOPPA or MCSCF with TD-DFT yield better results than could be expected from the pure wave function schemes. For the Time-Dependent MCSCF short-range DFT ansatz (TD...

  15. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Science.gov (United States)

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O3]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O3] and elevated temperature, respectively. Elevated [O3] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  16. Trait associations in common bean genotypes grown under drought stress and field infestation by BSM bean fly

    Directory of Open Access Journals (Sweden)

    Daniel Ambachew

    2015-08-01

    Full Text Available Understanding functional relations among plant traits and their modulation by growing conditions is imperative in designing selection strategies for breeding programs. This study assessed trait relationships among 196 common bean genotypes exposed to stresses for drought and field infestation of bean fly or bean stem maggot (BSM. The study was carried out at two locations and data was analyzed with linear correlation, path coefficient and genotype × trait biplot analyses. Multiple trait data related to mechanisms of drought and bean fly tolerance were collected on 196 genotypes grown under i water deficit at mid-pod fill, or ii unprotected against bean fly; iii irrigated, well watered conditions, or iv bean fly protection with chemicals. Seed yield exhibited positive and significant correlations with leaf chlorophyll content, vertical root pulling resistance, pod harvest index, pods per plant and seeds per pod at both phenotypic and genotypic levels under stress and non-stress conditions. Genotypic correlations of traits with seed yield were greater than their respective phenotypic correlations across environments indicating the greater contribution of genotypic factors to the trait correlation. Pods per plant and seeds per pod had high positive direct effects on seed yield both under stress and non-stress whereas pods per plant had the highest indirect effect on seed yield through pod harvest index under stress. In general, our results suggest that vertical root pulling resistance and pod harvest index are important selection objectives for improving seed yield in common beans under non-stress and stress conditions, and particularly useful for drought and BSM tolerance evaluation.

  17. Field performance of timber bridges. 5, Little Salmon Creek stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; J. A. Kainz; G. J. Porter

    The Little Salmon Creek bridge was constructed in November 1988 on the Allegheny National Forest in Pennsylvania. The bridge is a simple span, single-lane, stress-laminated deck superstructure that is approximately 26-ft long and 16-ft wide. The bridge is unique in that it is the first known stress-laminated timber bridge to be constructed of hardwood lumber. The...

  18. Field performance of timber bridges. 6, Hoffman Run stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; P. D. Hilbrich Lee; G. J. Porter

    The Hoffman Run bridge, located just outside Dahoga, Pennsylvania, was constructed in October 1990. The bridge is a simple-span, single-lane, stress-laminated deck superstructure that is approximately 26 ft long and 16 ft wide. It is the second stress-laminated timber bridge to be constructed of hardwood lumber in Pennsylvania. The performance of the bridge was...

  19. Residual stress fields in sol-gel-derived thin TiO2 layers

    NARCIS (Netherlands)

    Teeuw, D.H.J.; Haas, M. de; Hosson, J.Th.M. De

    1999-01-01

    This paper discusses the induction of residual stresses during the curing process of thin titania layers, which are derived using a sol-gel process. During this process, stresses may build up in the spinning stage, the drying stage, and the consolidation stage. The magnitude and character of these

  20. Field performance of timber bridges. 7, Connell Lake stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop; M. A. Ritter

    The Connell Lake bridge was constructed in early 1991 on the Tongass National Forest, Alaska, as a demonstration bridge under the Timber Bridge Initiative. The bridge is a stress-laminated deck structure with an approximate 36-ft length and 18-ft width and is the first known stress-laminated timber bridge constructed in Alaska. Performance of the bridge was monitored...

  1. The Effect of Stress and Recovery on Field-test Performance in Floorball

    NARCIS (Netherlands)

    van der Does, H. T. D.; Brink, M. S.; Visscher, C.; Huijgen, B. C. H.; Frencken, W. G. P.; Lemmink, K. A. P. M.

    Physical and psychosocial stress and recovery are important performance determinants. A holistic approach that monitors these performance determinants over a longer period of time is lacking. Therefore this study aims to investigate the effect of a player's physical and psychosocial stress and

  2. Systematic Review of Uit Parameters on Residual Stresses of Sensitized AA5456 and Field Based Residual Stress Measurements for Predicting and Mitigating Stress Corrosion Cracking

    Science.gov (United States)

    2014-03-01

    sensitization EBSD electron backscatter diffraction ECAE equal channel angular extrusion FIB-SEM focused ion beam, scanning electron microscope GMAW gas...induce compressive stresses [40, 43]. Other SPD methods include equal channel angular extrusion ( ECAE ), accumulative roll bonding (ARB), and...pp. 414–419, 2003. [50] Lambda Technologies Group . (2012). Low plasticity burnishing. [Online]. Available: http://www.lambdatechs.com/low

  3. A phase field model coupling lithium diffusion and stress evolution with crack propagation and application in lithium ion batteries.

    Science.gov (United States)

    Zuo, Peng; Zhao, Ya-Pu

    2015-01-07

    Cracking and fracture of electrodes under diffusion during lithiation and delithiation is one of the main factors responsible for short life span of lithium based batteries employing high capacity electrodes. Coupling effects among lithium diffusion, stress evolution and crack propagation have a significant effect on dynamic processes of electrodes during cycling. In this paper, a phase field model coupling lithium diffusion and stress evolution with crack propagation is established. Then the model is applied to a silicon thin film electrode to explore the coupling effects on diffusion and crack propagation paths. During lithiation, simulation results show that lithium accumulates at crack tips and the lithium accumulation further reduces the local hydrostatic stress. Single and multiple crack geometries are considered to elucidate some of the crack patterns in thin film electrodes as a consequence of coupling effects and crack interactions.

  4. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong

    Science.gov (United States)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.

    2015-12-01

    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  5. Temperature range extension of an organically crosslinked polymer system and its successful field application for water and gas shutoff

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, Julio; Eoff, Larry; Dalrymple, Dwyann [Halliburton, Rio de Janeiro. RJ (Brazil)

    2008-07-01

    Excessive water production from hydrocarbon reservoirs is one of the most serious problems in the oil industry. Water production greatly affects the economic life of producing wells and brings along secondary problems such as sand production, corrosion, and tubular scale. Remediation techniques for controlling water production, generally referred to as conformance control, include the use of polymer systems to reduce or plug permeability to water. This paper presents the laboratory evaluation of an organically crosslinked polymer (OCP) system used as a sealant for water control problems in hydrocarbon wells. Originally, the OCP system had a limited working temperature range (140 deg to 260 deg F). Recently, an alternative base polymer (for low temperatures) and a retarder (for high temperatures) have been introduced to expand the temperature range of applicability of the OCP system from 70 deg F to 350 deg F without compromising its effectiveness or thermal stability. More than 400 jobs have been performed with the OCP system around the world to address conformance problems such as water coning/cresting, high-permeability streaks, gravel pack isolation, fracture shutoff, and casing leak repairs. This paper presents an overview of case histories that used the OCP system in various regions of the world for a wide variety of applications. (author)

  6. Plant responses to extreme climatic events: a field test of resilience capacity at the southern range edge.

    Directory of Open Access Journals (Sweden)

    Asier Herrero

    Full Text Available The expected and already observed increment in frequency of extreme climatic events may result in severe vegetation shifts. However, stabilizing mechanisms promoting community resilience can buffer the lasting impact of extreme events. The present work analyzes the resilience of a Mediterranean mountain ecosystem after an extreme drought in 2005, examining shoot-growth and needle-length resistance and resilience of dominant tree and shrub species (Pinus sylvestris vs Juniperus communis, and P. nigra vs J. oxycedrus in two contrasting altitudinal ranges. Recorded high vegetative-resilience values indicate great tolerance to extreme droughts for the dominant species of pine-juniper woodlands. Observed tolerance could act as a stabilizing mechanism in rear range edges, such as the Mediterranean basin, where extreme events are predicted to be more detrimental and recurrent. However, resistance and resilience components vary across species, sites, and ontogenetic states: adult Pinus showed higher growth resistance than did adult Juniperus; saplings displayed higher recovery rates than did conspecific adults; and P. nigra saplings displayed higher resilience than did P. sylvestris saplings where the two species coexist. P. nigra and J. oxycedrus saplings at high and low elevations, respectively, were the most resilient at all the locations studied. Under recurrent extreme droughts, these species-specific differences in resistance and resilience could promote changes in vegetation structure and composition, even in areas with high tolerance to dry conditions.

  7. Stress

    OpenAIRE

    Jensen, Line Skov; Lova, Lotte; Hansen, Zandra Kulikovsky; Schønemann, Emilie; Larsen, Line Lyngby; Colberg Olsen, Maria Sophia; Juhl, Nadja; Magnussen, Bogi Roin

    2012-01-01

    Stress er en tilstand som er meget omdiskuteret i samfundet, og dette besværliggør i en vis grad konkretiseringen af mulige løsningsforslag i bestræbelsen på at forebygge den såkaldte folkesygdom. Hovedkonklusionen er, at selv om der bliver gjort meget for at forebygge, er der ikke meget der aktivt kan sættes i værk for at reducere antallet af stressramte, før en fælles forståelse af stressårsager og effektiv stresshåndtering er fremlagt. Problemformuleringen er besvaret gennem en undersø...

  8. On the low temperature dependence of the threshold field of CDW in NbSe3 : effect of uniaxial stress

    OpenAIRE

    Tessema, G.; Skove, M.; Tseng, Y.

    1993-01-01

    We investigated the effect of uniaxial stress on the threshold field in NbSe3. For the upper CDW, we show a clear separation of the threshold field into two additive components, E'T(t) and E"T(t,ε) where t = T /Tp. The impurity dependence of E"T(t,ε) indicates that this term is the impurity or bulk pinning term. E"T(t,ε) shows strong temperature dependence near Tp but saturates to a t independent minimum below t ≈ 0.85. On the other hand, the term E'T(t) takes nearly all the temperature depen...

  9. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics.

    Science.gov (United States)

    Darré, Leonardo; Machado, Matías Rodrigo; Brandner, Astrid Febe; González, Humberto Carlos; Ferreira, Sebastián; Pantano, Sergio

    2015-02-10

    Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein-protein complexes.

  10. Line-field swept source optical coherence tomography system for evaluating microstructure of objects in near-infrared spectral range

    Science.gov (United States)

    Gurov, Igor; Margaryants, Nikita; Pimenov, Aleksei

    2017-06-01

    Peculiarities of optical design for optical coherence tomography (OCT) system with illumination by a swept-source in the spectral range 1.26-1.36 μm are considered. In the OCT system, an object is illuminated by light intensity distribution in the form of line providing high power efficiency of the light source when evaluating micro structure of objects. A linearray photo detector with the frame acquisition rate of a few tens of kilohertz is utilized that allows obtaining B-scans without mechanical lateral scanning. The illumination power density at each point of investigated object is much less with respect to conventional "flying spot" methods that is important when studying biological objects not resistant to intensive light. Results of experimental investigations utilizing the Linnik micro interferometer optical scheme are given. Experimental tomograms of different objects are presented.

  11. Scalar field with the source in the form of the stress-energy tensor trace as a dark energy model

    CERN Document Server

    Dudko, I G

    2016-01-01

    We consider a scalar-tensor theory of gravitation with the scalar source being the trace of the stress-energy tensor of the scalar field itself and matter. We obtain an example of a numerical solution of the cosmological equations which shows that under some special choice of the scalar parameters, there exists a slow-roll regime in which the modern values of the Hubble and deceleration parameters may be obtained.

  12. Electronic spectrum in the visible frequency range of UF/sub 4/ molecules isolated in solid neon, and its interpretation in the crystal-field approximation

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, A.A.; Golubev, Y.M.

    1987-09-01

    The matrix isolation method is used to obtain the spectra of molecules in solid neon in the 1000--400-nm range. All the recorded bands are referred to transitions within the 5f /sup 2/ configuration of U/sup 4 +/ ion in the field of four fluorine ions. The interpretation assumes the case of a weak crystal field in which the terms of U/sup 4 +/ ion with different J are not mixed up. It is concluded that the UF/sub 3/ molecule has the structure of either a tetrahedron or a slightly distorted tetrahedron.

  13. Three-term Asymptotic Stress Field Expansion for Analysis of Surface Cracked Elbows in Nuclear Pressure Vessels

    Science.gov (United States)

    Labbe, Fernando

    2007-04-01

    Elbows with a shallow surface cracks in nuclear pressure pipes have been recognized as a major origin of potential catastrophic failures. Crack assessment is normally performed by using the J-integral approach. Although this one-parameter-based approach is useful to predict the ductile crack onset, it depends strongly on specimen geometry or constraint level. When a shallow crack exists (depth crack-to-thickness wall ratio less than 0.2) and/or a fully plastic condition develops around the crack, the J-integral alone does not describe completely the crack-tip stress field. In this paper, we report on the use of a three-term asymptotic expansion, referred to as the J- A 2 methodology, for modeling the elastic-plastic stress field around a three-dimensional shallow surface crack in an elbow subjected to internal pressure and out-of-plane bending. The material, an A 516 Gr. 70 steel, used in the nuclear industry, was modeled with a Ramberg-Osgood power law and flow theory of plasticity. A finite deformation theory was included to account for the highly nonlinear behavior around the crack tip. Numerical finite element results were used to calculate a second fracture parameter A 2 for the J- A 2 methodology. We found that the used three-term asymptotic expansion accurately describes the stress field around the considered three-dimensional shallow surface crack.

  14. Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus.

    Science.gov (United States)

    Yang, Xue-Sen; He, Gen-Lin; Hao, Yu-Tong; Xiao, Yang; Chen, Chun-Hai; Zhang, Guang-Bin; Yu, Zheng-Ping

    2012-07-01

    The issue of possible neurobiological effects of the electromagnetic field (EMF) exposure is highly controversial. To determine whether electromagnetic field exposure could act as an environmental stimulus capable of producing stress responses, we employed the hippocampus, a sensitive target of electromagnetic radiation, to assess the changes in its stress-related gene and protein expression after EMF exposure. Adult male Sprague-Dawley rats with body restrained were exposed to a 2.45 GHz EMF at a specific absorption rate (SAR) of 6 W/kg or sham conditions. cDNA microarray was performed to examine the changes of gene expression involved in the biological effects of electromagnetic radiation. Of 2048 candidate genes, 23 upregulated and 18 downregulated genes were identified. Of these differential expression genes, two heat shock proteins (HSP), HSP27 and HSP70, are notable because expression levels of both proteins are increased in the rat hippocampus. Result from immunocytochemistry revealed that EMF caused intensive staining for HSP27 and HSP70 in the hippocampus, especially in the pyramidal neurons of cornu ammonis 3 (CA3) and granular cells of dentate gyrus (DG). The gene and protein expression profiles of HSP27 and HSP70 were further confirmed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Our data provide direct evidence that exposure to electromagnetic fields elicits a stress response in the rat hippocampus. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Extremes of random fields over arbitrary domains with application to concrete rupture stresses

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2004-01-01

    To find the exact probability distribution of the global maximum or minimum of a random field within a bounded domain is a pending problem even for Gaussian fields. Except for very special examples of fields, recourse must be taken to approximate reasoning or asymptotic considerations to be judged...... functions of a smooth approximately Gaussian field, herein called a broken line Hino field. For completeness this particular field type is defined in Appendices A and B. The paper concludes with a statistical application on data for plain concrete tensile strength. (C) 2004 Elsevier Ltd. All rights reserved....

  16. Field evidence of colonisation by Holm Oak, at the northern margin of its distribution range, during the Anthropocene period.

    Science.gov (United States)

    Delzon, Sylvain; Urli, Morgane; Samalens, Jean-Charles; Lamy, Jean-Baptiste; Lischke, Heike; Sin, Fabrice; Zimmermann, Niklaus E; Porté, Annabel J

    2013-01-01

    A major unknown in the context of current climate change is the extent to which populations of slowly migrating species, such as trees, will track shifting climates. Niche modelling generally predicts substantial northward shifts of suitable habitats. There is therefore an urgent need for field-based forest observations to corroborate these extensive model simulations. We used forest inventory data providing presence/absence information from just over a century (1880-2010) for a Mediterranean species (Quercus ilex) in forests located at the northern edge of its distribution. The main goals of the study were (i) to investigate whether this species has actually spread into new areas during the Anthropocene period and (ii) to provide a direct estimation of tree migration rate. We show that Q. ilex has colonised substantial new areas over the last century. However, the maximum rate of colonisation by this species (22 to 57 m/year) was much slower than predicted by the models and necessary to follow changes in habitat suitability since 1880. Our results suggest that the rates of tree dispersion and establishment may also be too low to track shifts in bioclimatic envelopes in the future. The inclusion of contemporary, rather than historical, migration rates into models should improve our understanding of the response of species to climate change.

  17. Field Evidence of Colonisation by Holm Oak, at the Northern Margin of Its Distribution Range, during the Anthropocene Period

    Science.gov (United States)

    Delzon, Sylvain; Urli, Morgane; Samalens, Jean-Charles; Lamy, Jean-Baptiste; Lischke, Heike; Sin, Fabrice; Zimmermann, Niklaus E.; Porté, Annabel J.

    2013-01-01

    A major unknown in the context of current climate change is the extent to which populations of slowly migrating species, such as trees, will track shifting climates. Niche modelling generally predicts substantial northward shifts of suitable habitats. There is therefore an urgent need for field-based forest observations to corroborate these extensive model simulations. We used forest inventory data providing presence/absence information from just over a century (1880–2010) for a Mediterranean species (Quercus ilex) in forests located at the northern edge of its distribution. The main goals of the study were (i) to investigate whether this species has actually spread into new areas during the Anthropocene period and (ii) to provide a direct estimation of tree migration rate. We show that Q. ilex has colonised substantial new areas over the last century. However, the maximum rate of colonisation by this species (22 to 57 m/year) was much slower than predicted by the models and necessary to follow changes in habitat suitability since 1880. Our results suggest that the rates of tree dispersion and establishment may also be too low to track shifts in bioclimatic envelopes in the future. The inclusion of contemporary, rather than historical, migration rates into models should improve our understanding of the response of species to climate change. PMID:24260391

  18. The stress field and its sources in the North Atlantic Realm and Europe

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Schiffer, Christian; Stephenson, Randell Alexander

    in the convecting mantle cause mantle tractions at the base of the lithosphere. The radial component can cause dynamic topography and an anomalous state of lithospheric pressure, whereas the horizontal component might influence the plate movements directly. Relative plate movements and stress transmission through...... the rigid plates result in forces along plate boundaries. The relative importance and absolute magnitudes of the single stress sources is still matter of considerable discussion. Whereas the crustal structure is relatively well constrained for the estimation of the geopotential stress component...... and temperature variations at the base of the lithosphere that result in dynamic topography, and an anomalous geopotential energy. We do not include horizontal basal tractions or plate boundary forces. Nevertheless we can indirectly discuss the importance of additional stress sources for the lithospheric state...

  19. On the strength of oceanic fracture zones and their influence on the intraplate stress field

    Science.gov (United States)

    Bergman, Eric A.; Solomon, Sean C.

    1992-01-01

    We use the locations and source mechanisms of oceanic intraplate earthquakes to test the hypothesis that the strength of oceanic fracture zones is less than that of normal oceanic lithosphere. The 77 earthquakes selected for the study have well-determined focal mechanisms and epicenters in regions where fracture zones are well mapped. We have search for dependence of faulting style, fault orientation, or principal stress direction on the distance from the nearest fracture zone. If fracture zones were generally weaker than the surrounding lithosphere, one of the principal horizontal stresses would be oriented nearly perpendicular to the fracture zone; we find no evidence that principal stresses near fracture zones are oriented preferentially in this manner. There is a slight tendency for earthquakes to occur near fracture zones, and patterns of fault orientation and sense of slip support the view that differential cooling and horizontal contraction on fracture zones may contribute seismogenic stress.

  20. Field performance of timber bridges. 8, Lynches Woods Park stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; D. Conger

    The Lynches Woods Park bridge was constructed during the summer of 1990 in Newberry, South Carolina. It is a single-span, single-lane, stress-laminated deck superstructure that measures approximately 30 ft long, 16 ft wide, and 14 in. deep. The bridge is unique in that is one of the first known stress-laminated deck bridges to be constructed of Southern Pine lumber...

  1. Field performance of timber bridges. 4, Graves Crossing stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter

    The Graves Crossing bridge was constructed October 1991 in Antrim County, Michigan, as part of the demonstration timber bridge program sponsored by the USDA Forest Service. The bridge is a two-span continuous, stress-laminated deck superstructure and it is 36-ft long and 26-ft wide. The bridge is one of the first stress-laminated deck bridges to be built of sawn lumber...

  2. Analysis of Mode I Periodic Parallel Cracks-Tip Stress Field in an Infinite Orthotropic Plate

    Directory of Open Access Journals (Sweden)

    Wenbin Zhao

    2013-01-01

    Full Text Available The mechanical behavior near crack tip for periodic parallel cracks in an orthotropic composite plate subjected to the uniformly distributed load within the cracks surface is studied. The mechanical problem is turned into the boundary value problem of partial differential equation. By using the periodicity of the hyperbolic function in the complex domain and constructing proper Westergaard stress function, the periodicity of parallel cracks can be removed. Using the complex variable function method and the undetermined coefficients method, the boundary value problem of partial differential equation can be solved with the help of boundary conditions. The analytic expressions for stress intensity factor, stress, and displacement near the crack tip of periodical parallel cracks are obtained. When the vertical distance of cracks tends to infinity, the stress intensity factor degenerates into a single central crack situation. The stress intensity factor around the crack tip of periodic parallel cracks in an orthotropic composite plate depends on the shape factor. The interaction happens between the cracks. Finally, a numerical analysis of the stress and displacement changed with the polar angle is done.

  3. Geospatial compilation of results from field sample collection in support of mineral resource investigations, Western Alaska Range, Alaska, July 2013

    Science.gov (United States)

    Johnson, Michaela R.; Graham, Garth E.; Hubbard, Bernard E.; Benzel, William M.

    2015-07-16

    This Data Series summarizes results from July 2013 sampling in the western Alaska Range near Mount Estelle, Alaska. The fieldwork combined in situ and camp-based spectral measurements of talus/soil and rock samples. Five rock and 48 soil samples were submitted for quantitative geochemi­cal analysis (for 55 major and trace elements), and the 48 soils samples were also analyzed by x-ray diffraction to establish mineralogy and geochemistry. The results and sample photo­graphs are presented in a geodatabase that accompanies this report. The spectral, mineralogical, and geochemical charac­terization of these samples and the sites that they represent can be used to validate existing remote-sensing datasets (for example, ASTER) and future hyperspectral studies. Empiri­cal evidence of jarosite (as identified by x-ray diffraction and spectral analysis) corresponding with gold concentrations in excess of 50 parts per billion in soil samples suggests that surficial mapping of jarosite in regional surveys may be use­ful for targeting areas of prospective gold occurrences in this sampling area.

  4. Local versus regional active stress field in 5900m San Gregorio Magno 1 well (southern Apennines, Italy).

    Science.gov (United States)

    Pierdominici, S.; Montone, P.; Mariucci, M. T.

    2009-04-01

    The aim of this work is to characterize the local stress field in a peculiar sector of the southern Apennines by analyzing borehole breakouts, fractures and logging data along the San Gregorio Magno 1 deep well, and to compare the achieved stress field with the regional one. The study area is characterized by diffuse low-Magnitude seismicity, although in historical times it has been repeatedly struck by moderate to large earthquakes. We have analyzed in detail the 5900m San Gregorio Magno 1 well drilled in 1996-97 by ENI S.p.A. and located very close (1.3 km away) to the Irpinia Fault. This fault was responsible of the strongest earthquake happened in this area, the 23rd November 1980 M6.9 earthquake that produced the first unequivocal historical surface faulting ever documented in Italy. The mainshock enucleated on a fault 38 km-long with a strike of 308° and 60-70° northeast-dipping, consistent with a NE-SW T-axis and a normal faulting tectonic regime. Borehole breakouts, active faults and focal mechanism solutions have allowed to define the present-day stress along and around the San Gregorio Magno 1 well and other analysis (logging data) to discriminate the presence of fracture zones and/or faults at depth. We have considered data from 1200m to the bottom of San Gregorio Magno 1 well. Our analysis of stress-induced wellbore breakouts shows an inhomogeneous direction of minimum horizontal stress (N359+-31°) orientation along the well. This direction is moderately consistent with the Shmin-trend determined from breakouts in other wells in this region and also with the regional active stress field inferred from active faults and earthquake focal plane solutions (N44 Shmin oriented). For this reason we have computed for each breakout zone the difference between the local trend and the regional one; comparing these breakout rotations with the spikes or changing trend of logs we have identified possible fractures or faults at different depths. We have correlated

  5. Principal stress analysis in LDA measurement of the flow field downstream of 19-mm Sorin Bicarbon heart valve.

    Science.gov (United States)

    Barbaro, V; Grigioni, M; Daniele, C; D'Avenio, G

    1998-11-01

    Heart valve replacement has become, since many years, a common surgical practice. Along with the improvement that the patients' health has derived from it, however, a certain amount of risk could not be avoided, bound to the inevitable hemodynamic disturbances that an artificial device generates. A major shortcoming, often reported, is the formation of thrombus on the edge of the prosthetic valve, with a possible obstruction of the orifices through which blood should normally flow undisturbed. Hemolysis is another possible consequence of the implantation of a mechanical heart valve, generally correlated to turbulence downstream of prosthetic heart valves (PHV). As it is agreed upon by many researchers, the risk of thrombogenicity or hemolysis is higher in those valves that are more subject to promote turbulence and flow separation in the flow through them. In the following paper, we present a study of the turbulence-related shear stress downstream of a bileaflet valve of minimum size (19 mm external diameter) Sorin Bicarbon. This size was chosen, accordingly to the Food & Drug Administration (FDA) draft guidance suggestion to investigate the worst case in turbulence promoted by PHVs, in order to have the highest velocity gradients and shear stresses for the FDA-stated cardiac output (6 1/min), related to maximum Reynolds number conditions. Velocity data were collected with the two-dimensional laser Doppler anemometry (LDA) technique; whereas this approach does not investigate directly all three components of the flow field, in the present case (bileaflet valves) it is not a limitation to the assessment of the maximum turbulence shear stress (TSS), thanks to the two-dimensional flow nature downstream of bileaflet models. Data taken in coincident mode were elaborated in order to determine the maximum shear stress in the measured points in the flow field, using the 2D Principal Stress Analysis (PSA). The consequences of a variable principal normal stress direction all

  6. Thermo-mechanical modeling of continental rift evolution over mantle upwelling in presence of far-field stresses

    Science.gov (United States)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    We conducted fully-coupled high resolution rheologically consistent 3D thermo-mechanical numerical models to investigate the processes of mantle-lithosphere interaction (MLI) in presence of preexisting far-field tectonic stresses. MLI-induced topography exhibits strongly asymmetric small-scale 3D features, such as rifts, flexural flank uplifts and complex faults structures. This suggests a dominant role of continental rheological structure and intra-plate stresses in controlling continental rifting and break-up processes above mantle upwelling while reconciling the passive (far-field tectonic stresses) versus active (plume-activated) rift concepts as our experiments show both processes in action. We tested different experiments by varying two principal controlling parameters: 1) horizontal extension velocity and 2) Moho temperature used as simplified indicator of the thermal and rheological lithosphere layering. An increase in the applied extension expectedly gives less localized deformation at lithospheric scale: the growth of external velocity from 1.5 mm/years to 6 mm/years leads to enlargement of the rift zones from 75-175 km to 150-425 km width. On the contrary, increasing of the lithospheric geotherm has an opposite effect leading to narrowing of the rift zone: the change of the Moho isotherm from 600°C to 800°C causes diminution of the rift width from 175-425 km to 75-150 km. Some of these finding are contra-intuitive in terms of usual assumptions. The models refer to strongly non-linear impact of far-field extension rates on timing of break-up processes. Experiments with relatively fast far-field extension (6 mm/years) show intensive normal fault localization in crust and uppermost mantle above the plume head at 15-20 Myrs after the onset of the experiment. When plume head material reaches the bottom of the continental crust (at 25 Myrs), the latter is rapidly ruptured (break-up time (from 60 to 70 Myrs depending on initial isotherm at the crust bottom

  7. Site exploration for rock-mechanics field tests in the Grouse Canyon Member, Belted Range Tuff, U12g Tunnel Complex, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Langkopf, B.S.; Eshom, E.

    1982-02-01

    This report describes site exploration work completed in support of planned rock-mechanics field tests in the Grouse Canyon Member of the Belted Range Ruff at Nevada Test Site`s, G-Tunnel. As part of this work, the Rock Mechanics Drift (RMD) and the Rock Mass Property Alcove (RMPA) were mined and three coreholes drilled. The results of mapping and corehole logging are displayed, described, and analyzed.

  8. Effect of far-field stresses and residual stresses incorporation in predicting fracture toughness of carbon nanotube reinforced yttria stabilized zirconia

    Science.gov (United States)

    Mahato, Neelima; Nisar, Ambreen; Mohapatra, Pratyasha; Rawat, Siddharth; Ariharan, S.; Balani, Kantesh

    2017-10-01

    Yttria-stabilized zirconia (YSZ) is a potential thermal insulating ceramic for high temperature applications (>1000 °C). YSZ reinforced with multi-walled carbon nanotubes (MWNTs) was processed via spark plasma sintering to produce dense, crack-free homogeneous sample and avoid any degradation of MWNTs when sintered using conventional routes. Despite porosity, the addition of MWNT has a profound effect in improving the damage tolerance of YSZ by allowing the retention of tetragonal phase. However, at some instances, the crack lengths in the MWNT reinforced YSZ matrices have been found to be longer than the standalone counterparts. Therefore, it becomes inappropriate to apply Anstis equation to calculate fracture toughness values. In this regard, a combined analytical cum numerical method is used to estimate the theoretical fracture toughness and quantitatively analyze the mechanics of matrix cracking in the reinforced composite matrices incorporating the effects of various factors (such as far-field stresses, volume fraction of MWNTs, change in the modulus and Poisson's ratio values along with the increase in porosity, and bridging and phase transformation mechanism) affecting the fracture toughness of YSZ-MWNT composites. The results suggest that the incorporation of far-field stresses cannot be ignored in estimating the theoretical fracture toughness of YSZ-MWNT composites.

  9. High-resolution observation of field-aligned irregularities in the ionosphere using multi-frequency range imaging of VHF atmospheric radar

    Science.gov (United States)

    Chen, Jenn-Shyong; Furumoto, Jun-ichi; Su, Ching-Lun; Chu, Yen-Hsyang

    Field-aligned irregularity (FAI) in the ionosphere is a topic of interest to atmospheric radar community. In addition to the field-aligned characteristic, quasi-periodic (QP) appearance of FAI echoes has been observed frequently by very-high-frequency (VHF) atmospheric radar. The occurrence range of QP FAI echoes changes with time, and the slope of range versus time can be positive or negative, depending on occurrence time of the echoes. Several mechanisms responsible for the QP FAI echoes have been proposed, e.g., modulation in altitude by a passing atmospheric gravity wave, semidiurnal neutral-wind variation, and so on. Owing to the finite pulse length of radar in observation, the range resolution of measurement is limited within hundreds of meters. In view of this, the range imaging (RIM) using multiple frequencies has been employed to improve the range resolution of measurement. The multi-frequency technique transmits a set of slightly different frequencies sequentially during each radar pulse, and the radar returns at different transmitting frequencies are received, respectively. With adaptive retrieval algorithms for these radar returns, it is capable of resolving the echo structures at meter scale in the range direction. RIM has been employed in the lower atmosphere successfully. In this study, the performance of RIM for FAI was first carried out with the Middle and Upper atmosphere Radar (46 MHz; 34.85(°) N, 136.10(°) N; Japan) and the Chung-Li VHF radar (52 MHz; 24.9(°) N, 121.1(°) E; Taiwan). Some initial results of high-resolution FAI echoes within the range gate will be shown.

  10. SEALDH-II—An Autonomous, Holistically Controlled, First Principles TDLAS Hygrometer for Field and Airborne Applications: Design–Setup–Accuracy/Stability Stress Test

    Directory of Open Access Journals (Sweden)

    Bernhard Buchholz

    2016-12-01

    Full Text Available Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II, which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal “housekeeping” data to nearly perfectly control SEALDH-II’s health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively.

  11. Culture, Stress and Recovery from Schizophrenia: Lessons from the Field for Global Mental Health

    Science.gov (United States)

    2011-01-01

    This cultural case study investigates one U.S. psychosocial rehabilitation organization’s (Horizons) attempt to implement the recovery philosophy of the U.S. Recovery Movement and offers lessons from this local attempt that may inform global mental health care reform. Horizons’ “recovery-oriented” initiatives unwittingly mobilized stressful North American discourses of valued citizenship. At times, efforts to “empower” people diagnosed with schizophrenia to become esteemed self-made citizens generated more stressful sociocultural conditions for people whose daily lives were typically remarkably stressful. A recovery-oriented mental health system must account for people diagnosed with schizophrenia’s sensitivity to stress and offer consumers contextually relevant coping mechanisms. Any attempt to export U.S. mental health care practices to the rest of the world must acknowledge that (1) sociocultural conditions affect schizophrenia outcomes; (2) schizophrenia outcomes are already better in the developing world than in the United States; and (3) much of what leads to “better” outcomes in the developing world may rely on the availability of locally relevant techniques to address stress. PMID:20571905

  12. Disease stress detection on citrus using a leaf optical model and field spectroscopy

    Science.gov (United States)

    Badnakhe, Mrunalini R.; Durbha, Surya; Adinarayana, J.

    2015-10-01

    As citrus is progressively contributing to horticultural production, wealth and economy of a country, it is necessary to understand the factors impacting citrus production. Gummosis is one of the most serious diseases causing considerable loss of overall citrus production and yield quality. A qualitative and quantitative analysis of citrus leaf biochemical properties are necessary to monitor the crop health, disease /pest stress and production. Total leaf chlorophyll content (Cab) represents one of the key biochemical factors which contributes in water, carbon, and energy exchange processes. Photosynthesis process in citrus will be disturbed as gummosis disease life cycle progresses. It is important to study Cab to evaluate the photosynthesis rate and disease stress. In this study the potential of Radiative Transfer (RT) PROSPECT model to retrieve Cab in citrus orchards was undertaken at different sites. The main goal is to evaluate the relationship between Cab and gummosis disease stress for citrus at various phenological stages. Inversion of PROSPECT model on measured hyperspectral data is carried out to extract the leaf level parameters influencing the disease. This model was inverted with the ground truth hyperspectral reading. The testing was separately initiated for healthy and infected plant leaves. This can lead to understand the disease stress on citrus leaves. For accuracy, raw spectra are filtered and processed which is an input parameter for Inversion PROSPECT model. Here, retrieved Cab content was correlated with gummosis disease stress in terms of oozing with R2 = 0.6021 and RMSE= 0.481272.

  13. Experimental-numerical evaluation of a new butterfly specimen for fracture characterisation of AHSS in a wide range of stress states

    Science.gov (United States)

    Peshekhodov, I.; Jiang, S.; Vucetic, M.; Bouguecha, A.; Berhens, B.-A.

    2016-11-01

    Results of an experimental-numerical evaluation of a new butterfly specimen for fracture characterisation of AHHS sheets in a wide range of stress states are presented. The test on the new butterfly specimen is performed in a uniaxial tensile machine and provides sufficient data for calibration of common fracture models. In the first part, results of a numerical specimen evaluation are presented, which was performed with a material model of a dual-phase steel DP600 taken from literature with plastic flow and fracture descriptions. In the second part, results of an experimental-numerical specimen evaluation are shown, which was conducted on another dual-phase steel DP600, which was available with a description of plastic flow only and whose fracture behaviour was characterised in the frame of this work. The overall performance of the new butterfly specimen at different load cases with regard to characterisation of the fracture behaviour of AHSS was investigated. The dependency of the fracture strain on the stress triaxiality and Lode angle as well as space resolution is quantified. A parametrised CrachFEM ductile shear fracture model and modified Mohr-Coloumb ductile shear fracture model are presented as a result of this quantification. The test procedure and results analysis are believed to contribute to current discussions on requirements to AHSS fracture characterisation.

  14. A mean field study of quantum transitions in a spin-1/2 XY chain with a transverse long-range interaction

    Science.gov (United States)

    Sousa, H. S.; de Lima, J. P.; Costa, N. C.; Lyra, M. L.; Gonçalves, L. L.

    2017-11-01

    We study the anisotropic one-dimensional XY model (s = 1/2 ) with uniform long-range interaction between the transverse components of the spins. The solution of the model was obtained by using the Jordan-Wigner transformation, and by treating the four fermion term within the mean field approximation. The proposed approximation reproduces the known exact results for two limiting cases of the model, namely, the isotropic model with long-range interaction and the anisotropic model without long-range interaction. Explicit expressions are obtained for the Helmholtz free energy, the induced magnetization and the isothermal susceptibility at arbitrary temperatures. Special attention is given to the study of quantum critical behaviour at T = 0 , by determining the phase diagram for the quantum phase transitions, and it is shown that the system presents a critical behaviour analogous to the one presented by isotropic model with long-range interaction. The spontaneous magnetization is also determined, at T = 0 , and we show that our results obtained by mean field approximation are in good agreement with those obtained by exact diagonalization of a finite chain; a comparison is also made with already known results.

  15. Timing effects of heat-stress on plant physiological characteristics and growth: a field study with prairie vegetation

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-11-01

    Full Text Available More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic agricultural, economic and ecological impacts. This field study examined how plant responded to heat-stress (HS treatment at different timing in naturally-occurring vegetation. HS treatment (5 days at 40.5 ºC were applied to 12 1m2 plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass and Solidago canadensis (warm-season C3 forb at different growing stages. During and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (Pn, quantum yield of photosystem II (ФPSII, stomatal conductance (gs, and internal CO2 level (Ci of the dominant species were measured. One week after the last HS treatment, all plots were harvested and the biomass of above-ground tissue and flower weight of the two dominant species was determined. HS decreased physiological performance and growth for both species, with S. canadensis being affected more than A. gerardii, indicated by negative heat stress effect on both physiological and growth responses. There were significant timing effect of heat stress on the two species, with greater reductions in the photosynthesis and productivity occurred when heat stress was applied at later-growing season. The reduction in aboveground productivity in S. canadensis but not A. gerardii could have important implications for plant community structure by increasing the competitive advantage of A. gerardii in this grassland. The present experiment showed that heat stress, though ephemeral, may promote long-term effects on plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when more frequent and severe heat stress occur in the future.

  16. Low field induced large magnetocaloric effect in Tm2Ni0.93Si2.93 : influence of short range magnetic correlation.

    Science.gov (United States)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R

    2017-10-31

    In this work, we report successful synthesis of a new intermetallic compound Tm2Ni0.93Si2.93 that forms in single phase only in defect crystal structure. The compound does not show any long range magnetic ordering down to 2 K. The material exhibits large magnetic entropy change (-ΔSM ~ 13.7 J/kg K) and adiabatic temperature change (ΔTad ~ 4.4 K) at 2.2 K for a field change of 20 kOe which can be realized by permanent magnets, thus being very beneficial for application purpose. In the absence of long range magnetic ordering down to 2 K, metastable nature of the low temperature spin dynamics and short range magnetic correlations are considered to be responsible for such large magnetocaloric effect (MCE) over a wide temperature region. © 2017 IOP Publishing Ltd.

  17. Low-field induced large magnetocaloric effect in Tm2Ni0.93Si2.93: influence of short-range magnetic correlation

    Science.gov (United States)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2017-12-01

    In this work, we report the successful synthesis of a new intermetallic compound Tm2 Ni0.93 Si2.93 that forms in single phase only in defect crystal structure. The compound does not show any long range magnetic ordering down to 2 K. The material exhibits a large magnetic entropy change (-Δ S_M∼13.7 J kg-1 K–1) and adiabatic temperature change (Δ T_ad∼4.4 K) at 2.2 K for a field change of 20 kOe which can be realized by permanent magnets, thus being very beneficial for application purpose. In the absence of long-range magnetic ordering down to 2 K, the metastable nature of low-temperature spin dynamics and short-range magnetic correlations are considered to be responsible for such a large magnetocaloric effect over a wide temperature region.

  18. The Stress Field at an Axial Eccentrical Fatigue Loading - Influenced by the Test Temperature

    Science.gov (United States)

    Roşca, Vâlcu; Miriţoiu, Cosmin Mihai

    2017-12-01

    By applying a cyclic eccentrically tensile loading, oscillatory positive, determines at the crack peak that exist in a plate specimen CT type a compound loading of bending with tensile. The aim of the study is to analyze the equivalent stress variation σ, when the working temperature varies, namely: T= 293K (+20°C), T= 253K (-20C) and T= 213K (-60°C). The specimens are made from a stainless steel 10TiNiCr175 type, and were loaded with the asymmetry coefficient R= 0.1. There are drawn the variation curves of stress versus the crack length variation, σ(a), versus the material durability, σ(N), and respectively versus the stress intensity factor, σ(ΔK), for the three loading temperatures.

  19. ANALYSIS ON THE GROUND DESTROYED FEATURES AND TECTONIC STRESS FIELD OF THE 2008 WENCHUAN EARTHQUAKE AND OUR TREATING TACTICS

    Science.gov (United States)

    Guo, Y.; Wang, H.; Deng, Z.; You, H.

    2009-12-01

    To research the ground destroyed features and tectonic stress field of the 2008 Wenchuan Earthquake, we went the earthquake-hazard area, Hongkou Town in Dujiangyan City, Yingxiu Town in Wenchuan County, Bailu Town in Pengzhou City, Yinghua Town in Shifang City, Hanwang Town in Mianzhu City and Beichuan Cit early and late twice in 2008. The geological survey was made. Firstly, the ground destroyed features of the Wenchuan Earthquake around both Yingxiu - Beichuan Fracture and Guanxian - Jiangyou Fracture were analyzed. They mainly display as the ground crack ground, road steep slope, ground deformation, road rise high and deformation, road staggering and rupture, etc. Besides, the Wenchuan Earthquake resulted in the great deal of building collapse and lots of bridges damage even break down; It can be seen that the first floor of the building disappeared or damaged seriously; Some building still stood there although damaged by the earthquake; A few of building was damaged slightly and kept intact structure. Furthermore, the earthquake caused earth slide, mudflow and rolling stone, which lead to the building destroyed seriously, river blocked up, the life line engineering destroyed. Secondly, the phenomena of the ground destroy were analyzed preliminarily. The seismic intensity was determined based on the field investigation. The damaged situation of the construction was concluded. Based on the principle of structure geology and making use of the Stereographic projection, the stress field was analyzed according to the attitude, structural nature and relations among the fracture, fault scratch and joint fissure as well as the characteristics of ground deformation thirdly. The geodynamics of the 2008 Wenchuan Earthquake are probed into preliminarily. The main compressive stress (the maximum main stress) σ1 took Northeast by east direction, and the main tensile stress (the minimum main stress)σ3 took Northwest by north direction. The main fracture shows as the right

  20. Spatial variations of current tectonic stress field and its relationship to the structure and rheology of lithosphere around the Bohai Sea, North China

    Science.gov (United States)

    Li, Xianrui; Wang, Jie; Zeng, Zuoxun; Dai, Qingqin

    2017-05-01

    The tectonic stress field in the middle-upper crust is closely related to the structure and rheology of the lithosphere. To determine the stress field in the deep crust, we inversed the focal mechanism solutions (FMSs) of 62 earthquakes that occurred between 2009 and 2015 in the Bohai Sea and its surrounding areas using broadband seismic waveforms collected from 140 stations. We then derived the tectonic stress field using the software SATSI (Spatial And Temporal Stress Inversion) based on the damped linear inversion method. The inversion results show that both the maximum (σ1) and minimum (σ3) principle stress axes throughout the entire region are nearly horizontal except in the Tangshan and Haicheng areas, suggesting that the study area is predominantly under a strike-slip faulting stress regime. The σ1 and σ3 axes are found to be oriented in the NEE-SWW or nearly E-W and NNW-SSE or nearly S-N directions, respectively. These results indicate that the stress field in the North China Craton is controlled by the combined effects of the Pacific Plate westward subduction and the India-Eurasia Plate collision. However, localized normal faulting stress regimes (where the vertical stress σv ≈ σ1) are observed in the Tangshan and Haicheng areas, where low viscosity bodies (LVBs) were identified using geophysical data. Based on the analysis of focal mechanism solutions, active faults and lithosphere rheology characteristics in the Tangshan and Haicheng areas, we speculate that the anomalous stress regime is caused by the local extension resulting from the movement of strike-slip faults under the action of the regional stress field. The existence of LVB may indicate weakness in the crust that favors the accumulation of tectonic stress and triggers large earthquakes.

  1. The Effect of the Free Surface on the Singular Stress Field at the Fatigue Crack Front

    Directory of Open Access Journals (Sweden)

    Oplt Tomáš

    2017-11-01

    Full Text Available Description of stress singularity in the vicinity of a free surface is presented. Its presence causes the retardation of the fatigue crack growth in that region and fatigue crack is being curved. Numerical model is used to study dependence of the stress singularity exponent on Poisson’s ratio. Estimated values are compared to those already published. Experimentally measured angles of fatigue crack on SENB specimens confirm the relation between Poisson’s ratio and the angle between crack front and free surface.

  2. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  3. Laue-DIC: a new method for improved stress field measurements at the micrometer scale.

    Science.gov (United States)

    Petit, J; Castelnau, O; Bornert, M; Zhang, F G; Hofmann, F; Korsunsky, A M; Faurie, D; Le Bourlot, C; Micha, J S; Robach, O; Ulrich, O

    2015-07-01

    A better understanding of the effective mechanical behavior of polycrystalline materials requires an accurate knowledge of the behavior at a scale smaller than the grain size. The X-ray Laue microdiffraction technique available at beamline BM32 at the European Synchrotron Radiation Facility is ideally suited for probing elastic strains (and associated stresses) in deformed polycrystalline materials with a spatial resolution smaller than a micrometer. However, the standard technique used to evaluate local stresses from the distortion of Laue patterns lacks accuracy for many micromechanical applications, mostly due to (i) the fitting of Laue spots by analytical functions, and (ii) the necessary comparison of the measured pattern with the theoretical one from an unstrained reference specimen. In the present paper, a new method for the analysis of Laue images is presented. A Digital Image Correlation (DIC) technique, which is essentially insensitive to the shape of Laue spots, is applied to measure the relative distortion of Laue patterns acquired at two different positions on the specimen. The new method is tested on an in situ deformed Si single-crystal, for which the prescribed stress distribution has been calculated by finite-element analysis. It is shown that the new Laue-DIC method allows determination of local stresses with a strain resolution of the order of 10(-5).

  4. Field performance of timber bridges. 15, Pueblo County, Colorado, stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop

    The Pueblo County 204B bridge was constructed in March 1990 in Pueblo, Colorado, as a demonstration bridge under the USDA Forest Service Timber Bridge Initiative. The stress-laminated deck superstructure is approximately 10 m long, 9 m wide, and 406 mm deep, with a skew of 10 degrees. Performance monitoring was conducted for 3 years, beginning at...

  5. Multigrid Solution of the 3D stress field in strongly heterogeneous materials

    NARCIS (Netherlands)

    Boffy, Hugo; Venner, Cornelis H.

    2014-01-01

    Technology allows the production of advanced (heterogeneous) materials controlling properties on an increasingly local scale, e.g. layered, graded, granular and fiber-reinforced. In this paper the efficiency of the Multigrid method for 3D stress calculation involving such materials is investigated.

  6. Development of the numerical model for evaluating the temperature field and thermal stresses in structural elements of aircrafts

    Science.gov (United States)

    Shumaev, V. V.; Kuzenov, V. V.

    2017-11-01

    An approximate method for estimating the thermal stresses of the aircraft key components of the simple geometric shape (the edges of the hull and wings, the nose fairing) has been developed. The mathematical model of such estimates is based on the solution of the quasi-static thermoelasticity problem. The solution is evaluated in the area with curvilinear boundaries, and the shape of these boundaries changes under the influence of thermal and mechanical loads. Thus the computational domain is transformed to an area where the regular Cartesian (structured) grid can be introduced. The initial validation and verification of the developed numerical methodology was carried out. Numerical modeling of temperature fields and thermal stresses in the simplest components of aircraft structures (cylinder blunted over the sphere and the shell) is performed.

  7. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  8. Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions

    Directory of Open Access Journals (Sweden)

    Seghatoleslami Mohammadjavad

    2015-03-01

    Full Text Available Normally the productivity of cropping systems in arid and semi- arid regions is very low. The sustainable agricultural systems try to find out environmental friendly technologies based on physical and biological treatments to increase crop production. In this study two irrigation treatments (control and water stress and six methods of fertilizer treatment (control, NPK-F, using magnetic band- M, using silver nano particles- N, M+N and M+N+50% F on performance of ajowan were compared. Results showed that treatments with magnetic field or base fertilizer had more yield compared to the control and silver nanoparticles (N treatments. Application of silver nanoparticles had no positive effect on yield. The highest seed and biomass WUE achieved in base fertilizer or magnetic field treatments. Under water stress treatment, seed WUE significantly increased. In conclusion magnetic field exposure, probably by encourage nutrient uptake efficiency could be applied to reduce fertilizer requirement. On the other hand the cultivation of plants under low MF could be an alternative way of WUE improving.

  9. Distributed deformation structures in shallow water carbonates subsiding through a simple stress field (Jandaira Formation, NE Brazil)

    Science.gov (United States)

    Bertotti, Giovanni; Bisdom, Kevin; Bezerra, Hilario; Reijmer, John; Cazarin, Carol

    2016-04-01

    Despite the scarcity of major deformation structures such as folds and faults, the flat-lying, post-rift shallow water carbonates of the Jandaira Formation (Potiguar Basin, NE Brazil) display well-organized fracture systems distributed of tens of km2. Structures observed in the outcropping carbonates are sub-vertical, generally N-S trending mode I and hybrid veins and barren fractures, sub-vertical roughly E-W trending stylolites and sub-horizontal stylolites. These features developed during subsidence in a simple and constant stress field characterized by, beside gravity, a significant horizontal stress probably of tectonic origin. The corresponding depth curves have different origin and slopes and, therefore, cross each other resulting in position of the principal stresses which change with depth. As a result, the type and amount of fractures affecting subsiding rocks change despite the fact that the far-field stresses remain constant. Following early diagenesis and porosity elimination in the first 100-200m depth, Jandaira carbonates experienced wholesale fracturing at depths of 400-800m resulting in a network of NNW-NE trending fractures partly organized in conjugate sets with a low interfault angle and a sub-vertical intersection, and sub-vertical stylolites roughly perpendicular to the fractures. Intense fluid circulation was activated as a consequence through the carbonates. With increasing subsidence, sub-horizontal stylolites formed providing calcite which precipitated in the open fractures transforming them in veins. The Jandaira formation lost thereby the permeability it had reached during the previous stage. Because of the lack of major deformation, the outcrops of the Jandaira Formation is an excellent analog for carbonate reservoirs in the Middle East, South Atlantic and elsewhere.

  10. Evaluation of crack-tip stress fields on microstructural-scale fracture in Al-Al2O3 interpenetrating network composites

    Science.gov (United States)

    Robert J. Moon; Mark Hoffman; Jurgen Rödel; Shigemi Tochino; Giuseppe Pezzotti

    2009-01-01

    The influence of local microstructure on the fracture process at the crack tip in a ceramic–metal composite was assessed by comparing the measured stress at a microstructural level and analogous finite element modelling (FEM). Fluorescence microprobe spectroscopy was used to investigate the influence of near-crack-tip stress fields on the resulting crack propagation at...

  11. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to EFisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.

  12. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Koukoulas, Triantafillos, E-mail: triantafillos.koukoulas@npl.co.uk; Piper, Ben [Acoustics Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  13. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms

    Science.gov (United States)

    Manga, Michael; Beresnev, Igor; Brodsky, Emily E.; Elkhoury, Jean E.; Elsworth, Derek; Ingebritsen, Steve E.; Mays, David C.; Wang, Chi-Yuen

    2012-01-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10–6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitoring permeability in geothermal systems where there is abundant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution.

  14. Numerical Simulation of Temperature Field and Residual Stress Distribution for Laser Cladding Remanufacturing

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2014-05-01

    Full Text Available A three-dimensional finite element model was employed to simulate the cladding process of Ni-Cr-B-Si coatings on 16MnR steel under different parameters of laser power, scanning speed, and spot diameter. The temperature and residual stress distribution, the depth of the heat affected zone (HAZ, and the optimized parameters for laser cladding remanufacturing technology were obtained. The orthogonal experiment and intuitive analysis on the depth of the HAZ were performed to study the influence of different cladding parameters. A new criterion based on the ratio of the maximum tensile residual stress and fracture strength of the substrate was proposed for optimization of the remanufacturing parameters. The result showed well agreement with that of the HAZ analysis.

  15. Influence of internal stresses on field-dependent elastic modulus and damping in pure nickel

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A.L., E-mail: AngelLuis.Morales@uclm.e [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales (Universidad de Castilla - La Mancha), Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Nieto, A.J.; Chicharro, J.M.; Pintado, P. [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales (Universidad de Castilla - La Mancha), Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Rodriguez, G.P.; Herranz, G. [Area de Ciencia de los Materiales e Ingenieria Metalurgica, E.T.S. Ingenieros Industriales (Universidad de Castilla - La Mancha), Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-11-15

    Measurements of the {Delta}E-effect and magnetomechanical damping are reported for crystalline pure nickel under several states of internal stresses. The different internal stresses are obtained by means of a wide variety of heat treatments and studied via microscopic examination and measurement. The influence of the heating temperature, the heating time and the cooling method on the magnetoelastic properties is studied. Our results make it possible to select the most suitable heat treatment for each application and to optimize the magnetoelastic response of nickel. Relative variations from 2% to 13% can be obtained in the {Delta}E-effect, whereas relative variations from 40.0% to 99.9% are possible in magnetomechanical damping, in terms of specific damping capacity.

  16. Extending the frequency range of free-field reciprocity calibration of measurement microphones to frequencies up to 150 kHz

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Torras Rosell, Antoni; Jacobsen, Finn

    2013-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most sound measurement applications related with noise assessment. However, other applications such as the measurement of noise emitted by ultrasound cleaning...... machines and failure detection in aeronautic structures require that the sensitivity of the microphone is known at frequencies up to 150 kHz. Another area of particular interest is the investigation of the perception mechanisms of ultrasound. In any of these applications, it is of fundamental importance...... to establish a well-defined traceability chain to support the measurement results. In order to extend the frequency range of free-field calibration the measurement system and measurement methods must undergo a series of changes and adaptations including the type of excitation signal, techniques for eliminating...

  17. Enhancing the critical current of a superconducting film in a wide range of magnetic fields with a conformal array of nanoscale holes

    Science.gov (United States)

    Wang, Y. L.; Latimer, M. L.; Xiao, Z. L.; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, W. K.

    2013-06-01

    The maximum current (critical current) a type-II superconductor can transmit without energy loss is limited by the motion of the quantized magnetic flux penetrating into a superconductor. Introducing nanoscale holes into a superconducting film has been long pursued as a promising way to increase the critical current. So far the critical current enhancement was found to be mostly limited to low magnetic fields. Here we experimentally investigate the critical currents of superconducting films with a conformal array of nanoscale holes that have nonuniform density while preserving the local ordering. We find that the conformal array of nanoscale holes provides a more significant critical current enhancement at high magnetic fields. The better performance can be attributed to its arching effect that not only gives rise to the gradient in hole density for pinning vortices with a wide range of densities but also prevents vortex channeling occurring in samples with a regular lattice of holes.

  18. Method to compute the stress-energy tensor for a quantum field outside a black hole that forms from collapse

    Science.gov (United States)

    Anderson, Paul; Evans, Charles

    2017-01-01

    A method to compute the stress-energy tensor for a quantized massless minimally coupled scalar field outside the event horizon of a 4-D black hole that forms from the collapse of a spherically symmetric null shell is given. The method is illustrated in the corresponding 2-D case which is mathematically similar but is simple enough that the calculations can be done analytically. The approach to the Unruh state at late times is discussed. National Science Foundation Grant No. PHY-1505875 to Wake Forest University and National Science Foundation Grant No. PHY-1506182 to the University of North Carolina, Chapel Hill

  19. Investigation on Void Effect on Shear Stress Field in Bonded Stepped-Lap Joint

    OpenAIRE

    Ghoddous,Behnam; Shishehsaz,Mohamad

    2016-01-01

    Abstract In this paper, an adhesively-bonded stepped-lap joint suffering from a void within its adhesive layer is investigated. The void separates the layer into two sections. The joint is under tensile load and materials are isotropic and assumed to behave as linear elastic. Classical elasticity theory is used to determine shear stress distribution in the separated sections of adhesive layer along the overlap length. A set of differential equations was derived and solved by using appropriate...

  20. Field performance of timber bridges. 17, Ciphers stress-laminated deck bridge

    Science.gov (United States)

    James P. Wacker; James A. Kainz; Michael A. Ritter

    In September 1989, the Ciphers bridge was constructed within the Beltrami Island State Forest in Roseau County, Minnesota. The bridge superstructure is a two-span continuous stress-laminated deck that is approximately 12.19 m long, 5.49 m wide, and 305 mm deep (40 ft long, 18 ft wide, and 12 in. deep). The bridge is one of the first to utilize red pine sawn lumber for...

  1. Field performance of timber bridges. 13, Mohawk Canal stress-laminated bridge

    Science.gov (United States)

    P. D. Hilbrich Lee; X. Lauderdale

    The Mohawk Canal bridge was constructed in August 1994, just outside Roll, Arizona. It is a simple-span, double-lane, stress-laminated deck superstructure, approximately 6.4 m (21 ft) long and 10.4 m (34 ft) wide and constructed with Combination 16F-V3 Douglas Fir glued-laminated timber beam laminations. The performance of the bridge was monitored continuously for 2...

  2. Field performance of timber bridges. 10, Sanborn Brook stress-laminated deck bridge

    Science.gov (United States)

    P. D. Hilbrich Lee; J. P. Wacker; M. A. Ritter

    The Sanborn Brook bridge was constructed in August 1991, 10 miles northeast of Concord, New Hampshire, as part of the demonstration timber bridge program of the USDA Forest Service. The bridge is a simple-span, double-lane, stress-laminated deck superstructure constructed from Southern Pine lumber and is approximately 25 ft long and 28 ft wide with a skew of 14 degrees...

  3. Field performance of timber bridges. 12, Christian Hollow stress-laminated box-beam bridge

    Science.gov (United States)

    J. P. Wacker; S. C. Catherman; R. G. Winnett

    In January 1992, the Christian Hollow bridge was constructed in Steuben County, New York. The bridge is a single-span, stress-laminated box-beam superstructure that is 9.1 m long, 9.8 m wide, and 502 mm deep (30 ft long, 32 ft wide, and 19-3/4 in. deep). The performance of the bridge was continuously monitored for 28 months, beginning shortly after installation....

  4. Laue-DIC: a new method for improved stress field measurements at the micrometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J., E-mail: johannpetit@u-paris10.fr [LEME, Université Paris Ouest, 50 rue de Sèvres, F-92410 Ville d’Avray (France); Castelnau, O. [PIMM, CNRS, Arts and Métiers ParisTech, 151 Bd de l’Hopital, F-75013 Paris (France); Bornert, M. [Laboratoire Navier, Université Paris-Est, École des Ponts ParisTech, F-77455 Marne-la-Vallée (France); Zhang, F. G. [PIMM, CNRS, Arts and Métiers ParisTech, 151 Bd de l’Hopital, F-75013 Paris (France); Hofmann, F.; Korsunsky, A. M. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Faurie, D. [LSPM, CNRS, Université Paris 13, 93430 Villetaneuse (France); Le Bourlot, C. [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Micha, J. S. [Université Grenoble Alpes, INAC-SPrAM, F-38000 Grenoble (France); CNRS, SPrAM, F-38000 Grenoble (France); CRG-IF BM32 at ESRF, 71 Avenue des Martyrs, F-38000 Grenoble (France); Robach, O.; Ulrich, O. [Université Grenoble Alpes, INAC-SPrAM, F-38000 Grenoble (France); CRG-IF BM32 at ESRF, 71 Avenue des Martyrs, F-38000 Grenoble (France); CEA, INAC-SP2M, F-38000 Grenoble (France)

    2015-05-09

    The increment of elastic strain distribution, with a micrometer spatial resolution, is obtained by the correlation of successive Laue images. Application to a bent Si crystal allows evaluation of the accuracy of this new Laue-DIC method, which is about 10{sup −5}. A better understanding of the effective mechanical behavior of polycrystalline materials requires an accurate knowledge of the behavior at a scale smaller than the grain size. The X-ray Laue microdiffraction technique available at beamline BM32 at the European Synchrotron Radiation Facility is ideally suited for probing elastic strains (and associated stresses) in deformed polycrystalline materials with a spatial resolution smaller than a micrometer. However, the standard technique used to evaluate local stresses from the distortion of Laue patterns lacks accuracy for many micromechanical applications, mostly due to (i) the fitting of Laue spots by analytical functions, and (ii) the necessary comparison of the measured pattern with the theoretical one from an unstrained reference specimen. In the present paper, a new method for the analysis of Laue images is presented. A Digital Image Correlation (DIC) technique, which is essentially insensitive to the shape of Laue spots, is applied to measure the relative distortion of Laue patterns acquired at two different positions on the specimen. The new method is tested on an in situ deformed Si single-crystal, for which the prescribed stress distribution has been calculated by finite-element analysis. It is shown that the new Laue-DIC method allows determination of local stresses with a strain resolution of the order of 10{sup −5}.

  5. Field performance of timber bridges. 16, North Siwell Road stress-laminated bridge

    Science.gov (United States)

    J. A. Kainz

    The North Siwell Road bridge was constructed during December 1994 in Hinds County, Mississippi. The bridge is a single-span, stress-laminated T-beam structure that measures 9.1 m (30 ft) long and 8.7 m (28.5 ft) wide. Performance of the bridge was monitored for 24 months, beginning at the time of installation. Monitoring involved gathering and evaluating data relative...

  6. Lithosphere strain rate and stress field orientations across the Alpine front

    Science.gov (United States)

    Houlie, Nicolas; Cardello, Luca

    2017-04-01

    In this study we test whether principal components of the strain rate and stress tensors align within Switzerland. We find that 1) the Alpine front is the most relevant tectonic boundary separating different domains of crustal stress / surface strain rates orientations and 2) orientations of T- axes (of moment tensor solutions) and long-term asthenosphere cumulative finite strain (from SKS shear wave splitting) are consistent. Additionally, we show that directions of principal components of both strain rate and stress tensors agree with orientations of shear wave splitting, implying that the Alpine arc is sheared by large-scale processe(s) taking place in the asthenosphere. At a more local scale, we find that seismic current activity and surface deformation are not in agreement in three regions (Basel, Swiss Jura and Ticino), possibly because of the low levels of deformation and seismicity. In the Basel area, deep seismicity exists while surface deformation is absent. In the Ticino and the Swiss Jura, where seismic activity is close to absent, surface deformation is detected at a level of 2x10-8/yr.

  7. Analytical Methods for Temperature Field and Temperature Stress of Column Pier under Solar Radiation

    Directory of Open Access Journals (Sweden)

    Yin-hui Wang

    2015-01-01

    Full Text Available Based on the previous research work, a new idea is proposed for analyzing the impact of solar radiation on the substructure of bridges. Investigation is conducted in the thermodynamic phenomena and temperature stress of a dual-column pier. Research is led to the thermal conductivity of concrete structure and the values of the environmental parameters under solar radiation. An analytical code is written for the thermal analysis of the dual-column pier using the parametric modeling function of FE software, by means of which the temperature distribution of the bridge structure is computed under solar radiation. Using the thermal analytical results, the temperature stress of the dual-column pier is further calculated. The results tell that the temperature gradient distribution curve inside the concrete of the pier fits favorably the curve defined in the design specification and coincides quite well with real situation, which verifies the new idea proposed in this paper. Under the solar radiation which is a time-variable nonlinear temperature load to the bridge, the maximum principal stress is found at the corner of the pier with the sign of negative, which is believed to threaten the safety of the substructure of bridge and is necessary to arouse emphasis.

  8. A field study of management stress in reindeer (Rangifer tarandus L

    Directory of Open Access Journals (Sweden)

    C. Rehbinder

    1982-05-01

    Full Text Available The impact of stress was studied in semidomesticated reindeer subjected to various herding and handling methods. In herded and handled animals, stress lesions were found, such as abomasal haemorrhage, muscular and myocardial degeneration and marked changes in blood constituents. The degree of change was dependent of the magnitude of stress the animal had been exposed to. Manual handling and restraint was found to be one of the major stress factors. There were evident indications of a cumulative effect of repeated stress events. The use of motor vehicles (helicopter and snow-scooter, for herding and transporting the animals, was found to be an important stress factor. It is concluded that various herding and handling methods studied in the present investigation led to varying degrees of deleterious effects on the health of the animals and a poorer meatquality from slaughtered animals. Hence herding should be undertaken as carefully as possible, the time taken for manual handling should be minimized, and the corrals be so constructed as to cause a minimum of disturbance, capture and restraint. Transportation should be undertaken very cautiously with as little manual handling as possible during loading and unloading. To obtain a good meat quality, animals to be slaughtered should be subjected to a minimum of handling, i.e. slaughter should take place as quickly as possible. Transportation of live animals to slaughterhouses and the keeping of animals in corrals, pens or crates whilst awaiting slaughter will result in a lowered meat quality and should therefore be avoided.En fåltstudie av stress hos ren i samband med olika hanteringsformer.Abstract in Swedish / Sammanfatning: Betydelsen av stress hos ren studerades i hjordar i vilka olika typer av samlings- och hanteringsmetoder anvandes. I samtliga hjordar som utsatts for olika former av drivning forelag hos slaktdjur skador betingade av stress i form av magblodningar, muskelsonderfall och

  9. Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation responses, inflammation, and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Catherine J., E-mail: cjwalsh@mote.org [Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Butawan, Matthew, E-mail: mattbutawan@outlook.com [Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Yordy, Jennifer, E-mail: jennifer.e.balmer@gmail.com [Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Ball, Ray, E-mail: Ray.Ball@lowryparkzoo.com [Lowry Park Zoo, 1101 W Sligh Ave, Tampa, FL 33604 (United States); Flewelling, Leanne, E-mail: Leanne.Flewelling@MyFWC.com [Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 8th Ave SE, St. Petersburg, FL 33701 (United States); Wit, Martine de, E-mail: Martine.deWit@MyFWC.com [Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 8th Ave SE, St. Petersburg, FL 33701 (United States); Bonde, Robert K., E-mail: rbonde@usgs.gov [U.S. Geological Survey, Sirenia Project, 7920 NE 71st Street, Gainesville, FL 32653 (United States)

    2015-04-15

    Highlights: • Sublethal brevetoxin exposure affects manatee immune function. • Plasma brevetoxin levels correlate with oxidative stress in rescued manatees. • Brevetoxin exposure affects lymphocyte proliferation in rescued manatees. • Plasma brevetoxin concentrations ranged from 0 to 19 ng PbTx-3 eq/mL. - Abstract: The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida’s southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red tide toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red tide toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative responses and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red tide toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p < 0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the

  10. Analysis of Channel Stress Induced by NiPt-Silicide in Metal-Oxide-Semiconductor Field-Effect Transistor and Its Generation Mechanism

    Science.gov (United States)

    Mizuo, Mariko; Yamaguchi, Tadashi; Kudo, Shuichi; Hirose, Yukinori; Kimura, Hiroshi; Tsuchimoto, Jun-ichi; Hattori, Nobuyoshi

    2013-09-01

    Channel stress induced by NiPt-silicide films in metal-oxide-semiconductor field-effect transistors (MOSFETs) was demonstrated using UV-Raman spectroscopy, and its generation mechanism was revealed. It was possible to accurately measure the channel stress with the Raman test structure. The channel stress depends on the source/drain doping type and the second silicide annealing method. In order to discuss the channel stress generation mechanism, NiPt-silicide microstructure analyses were performed using X-ray diffraction analysis and scanning transmission electron microscopy. The channel stress generation mechanism can be elucidated by the following two factors: the change in the NiSi lattice spacing, which depends on the annealing temperature, and the NiSi crystal orientation. The analyses of these factors are important for controlling channel stress in stress engineering for high-performance transistors.

  11. ELF electro-magnetic fields as stress factors in some yeasts and molds

    Directory of Open Access Journals (Sweden)

    Galonja-Coghill Tamara A.

    2011-01-01

    Full Text Available The possibility of species targeted growth inhibition of three yeast (Candida albicans, Cryptococcus neoformans and Saccharomyces cerevisiae and one mold species (Aspergillus fumigatus by electromagnetic fields of certain characteristics was investigated. Cultures were exposed to sinusoidal 50 Hz fields, and 10, 40 and 70 mT magnetic components and 20 V/m electric component, for 30 minutes. Cell density in yeast cultures and germination time and rate in mold cultures were investigated.

  12. The CIRCORT database: Reference ranges and seasonal changes in diurnal salivary cortisol derived from a meta-dataset comprised of 15 field studies

    Science.gov (United States)

    Miller, Robert; Stalder, Tobias; Jarczok, Marc; Almeida, David M.; Badrick, Ellena; Bartels, Meike; Boomsma, Dorret I.; Coe, Christopher L.; Dekker, Marieke C. J.; Donzella, Bonny; Fischer, Joachim E.; Gunnar, Megan R.; Kumari, Meena; Lederbogen, Florian; Oldehinkel, Albertine J.; Power, Christine; Rosmalen, Judith G.; Ryff, Carol D.; Subramanian, S V; Tiemeier, Henning; Watamura, Sarah E.; Kirschbaum, Clemens

    2016-01-01

    Diurnal salivary cortisol profiles are valuable indicators of adrenocortical functioning in epidemiological research and clinical practice. However, normative reference values derived from a large number of participants and across a wide age range are still missing. To fill this gap, data were compiled from 15 independently conducted field studies with a total of 104,623 salivary cortisol samples obtained from 18,698 unselected individuals (mean age: 48.3 years, age range: 0.5 to 98.5 years, 39% females). Besides providing a descriptive analysis of the complete dataset, we also performed mixed-effects growth curve modeling of diurnal salivary cortisol (i.e., 1 to 16 hours after awakening). Cortisol decreased significantly across the day and was influenced by both, age and sex. Intriguingly, we also found a pronounced impact of sampling season with elevated diurnal cortisol in spring and decreased levels in autumn. However, the majority of variance was accounted for by between-participant and between-study variance components. Based on these analyses, reference ranges (LC/MS-MS calibrated) for cortisol concentrations in saliva were derived for different times across the day, with more specific reference ranges generated for males and females in different age categories. This integrative summary provides important reference values on salivary cortisol to aid basic scientists and clinicians in interpreting deviations from the normal diurnal cycle. PMID:27448524

  13. Snail phenotypic variation and stress proteins: do different heat response strategies contribute to Waddington's widget in field populations?

    Science.gov (United States)

    Köhler, Heinz-R; Lazzara, Raimondo; Dittbrenner, Nils; Capowiez, Yvan; Mazzia, Christophe; Triebskorn, Rita

    2009-03-15

    On the basis of studies with laboratory strains of Drosophila and Arabidopsis, it has been hypothesized that potential buffers to the expression of phenotypic morphological variation, such as Hsp90 and possibly Hsp70, represent important components of Waddington's widget, which may confer capacitive evolution. As studies on field populations of living organisms to test this hypothesis are lacking, we tested whether a heat response strategy involving high stress protein levels is associated with low morphological variation and vice versa, using four natural populations of Mediterranean pulmonate snails. In response to 8 hr of elevated temperatures, a population of Xeropicta derbentina with uniform shell pigmentation pattern showed remarkably high Hsp70 but low Hsp90 levels. In contrast, a highly variable population of Cernuella virgata kept both Hsp90 and Hsp70 levels low when held at diverse though environmentally relevant temperatures. Two other populations (Theba pisana and another X. derbentina population) with intermediate variation in shell pigmentation pattern were also intermediate in inducing Hsp70, though Hsp90 was maintained at a low level. The observed correlation of stress protein levels and coloration pattern variation provide the first indirect evidence for an association of stress proteins with Waddington's widget under natural conditions.

  14. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress.

    Science.gov (United States)

    Song, Lili; Jiang, Lin; Chen, Yue; Shu, Yongjun; Bai, Yan; Guo, Changhong

    2016-09-01

    Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa.

  15. Focal mechanisms in the southern Aegean from temporary seismic networks – implications for the regional stress field and ongoing deformation processes

    Directory of Open Access Journals (Sweden)

    W. Friederich

    2014-05-01

    Full Text Available The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located microearthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini–Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW–SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE–SSW. Intermediate-depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east–west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW–SE compression. Tensional principal stresses in the crust exhibit very good alignment with extensional strain rate principal axes derived from GPS velocities except

  16. Effects of lead exposure on oxidative stress biomarkers and plasma biochemistry in waterbirds in the field

    OpenAIRE

    Martínez-Haro, Mónica; Green, Andy J.; Mateo, Rafael

    2011-01-01

    Medina lagoon in Andalusia has one of the highest densities of spent lead (Pb) shot in Europe. Blood samples from waterbirds were collected in 2006-2008 to measure Pb concentration (PbB), δ-aminolevulinic acid dehydratase (ALAD), oxidative stress biomarkers and plasma biochemistry. PbB above background levels (>20 γg/dl) was observed in 19% (n=59) of mallards (Anas platyrhynchos) and in all common pochards (Aythya ferina) (n=4), but common coots (Fulica atra) (n=37) and moorhens (Gallinula ch...

  17. Effects of elevated atmospheric CO{sub 2} concentrations and water stress on field-grown maize

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    Global atmospheric carbon dioxide (CO{sub 2}) concentrations are continuing to increase and will probably double during the next century. The effects of such an increase are of global concern. Carbon dioxide-induced climate changes may result in reduced precipitation in major agricultural areas. The potential therefore exists for severe CO{sub 2}-induced water-stress effects on agriculture. This set of studies determined the effects of long-term elevated atmospheric CO{sub 2} concentrations and severe water stress on biomass production, evapotranspiration, water-use efficiency (WUE), water potential, photosynthesis, stomatal conductance, morphology and phenology of maize grown under field conditions. Plants were grown at one of four daytime mean CO{sub 2} concentrations (348, 431, 506 or 656 {mu}LL{sup {minus}1}) in open-top field exposure chambers and at one of two levels of available water (well-watered or 50% of well-watered). This report is organized into 4 chapters followed by appendices. Separate abstracts were prepared for each of the four chapters: (1) biomass production and water-use efficiency, (2) gas exchange and water potential, (3) morphology and phenology, and (4) and elemental analyses. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar (Germany); Thamburaja, P., E-mail: prakash.thamburaja@gmail.com [Department of Mechanical & Materials Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 (Malaysia); Rabczuk, T., E-mail: timon.rabczuk@tdt.edu.vn [Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City (Viet Nam)

    2016-12-15

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.

  19. Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Camin, Bettina; Schmidt, Søren

    2012-01-01

    the position, orientation and full stress tensor of each illuminated grain to be determined and, hence, enables the study of evolving stress fields in coarse grained materials with a spatial resolution equal to the grain size. Grain resolved information like this is vital for understanding what happens when...... element simulation. It was found that a full three-dimensional simulation was required to account for the measured transition from the overall plane stress case away from the notch to the essentially plane strain case observed near the notch tip. The measured and simulated stress contours were shown...

  20. Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts

    Science.gov (United States)

    Wyszkowska, Joanna; Shepherd, Sebastian; Sharkh, Suleiman; Jackson, Christopher W.; Newland, Philip L.

    2016-01-01

    Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) electromagnetic fields are particularly poorly understood especially at high field strengths as they are rarely encountered at ground level. Flying insects, however, can approach close to high field strength transmission lines prompting the question as to how these high levels of exposure affect behaviour and physiology. Here we utilise the accessible nervous system of the locust to ask how exposure to high levels of ELF EMF impact at multiple levels. We show that exposure to ELF EMFs above 4 mT leads to reduced walking. Moreover, intracellular recordings from an identified motor neuron, the fast extensor tibiae motor neuron, show increased spike latency and a broadening of its spike in exposed animals. In addition, hind leg kick force, produced by stimulating the extensor tibiae muscle, was reduced following exposure, while stress-protein levels (Hsp70) increased. Together these results suggest that ELF EMF exposure has the capacity to cause dramatic effects from behaviour to physiology and protein expression, and this study lays the foundation to explore the ecological significance of these effects in other flying insects. PMID:27808167

  1. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates: Projects 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Orr, J.L.; Smith, H.D.; Taylor, L.L.; Tuttle, M.L.

    1987-01-01

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, possible hehavioral effects associated with exposure to high intensity 60 Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, will be used by the Department of Energy (DOE) to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This research program consists of four major research projects, all of which have been successfully completed. The third project assessed, in separate experiments conducted at 30 and 60 kV/m, effects of chronic exposure to electric fields on the performance of two operant conditioning tasks, fixed ratio (FR), and differential reinforcement of low rate (DRL). In the same two experiments, the fourth project investigated, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. This volume contains only appendices for projects 3 and 4. 81 figs., 67 tabs.

  2. Full field stress/strain analysis : use of Moire and TSA for wood structural assemblies

    Science.gov (United States)

    R. W. Wolfe; R. E. Rowlands; C. H. Lin

    1994-01-01

    Laboratory and field experiments in wood engineering often rely on different types of devices to measure strain. Each type has certain limitations and characteristics that generally dictate its applicability to wood. Some of the issues related to using traditional strain measurement devices on wood and wood-based materials are discussed in this paper.

  3. Bending stress- and magnetic field-dependence of Ic in JFCA-RRT samples

    Science.gov (United States)

    Noto, K.; Fujine, Y.; Sato, T.; Shirato, S.; Nagasawa, Y.; Kikegawa, T.; Watanabe, K.; Kimura, Y.; Kaneko, T.; Kimura, A.

    2002-10-01

    Japan Fine Ceramics Association has carried out a round robin test (RRT) on the bending strain ( εb) dependence of the critical current Ic at 77 K in three kinds of Bi(2223)/Ag tape samples (VAM-1, JFC-1, JFC-2; three samples each) for future standardization. We measured Ic( εb) ( εb: 0-1.0%) as one of RRT participants and also measured the magnetic field dependence of Ic under several bending strains mentioned above as optional measurements. As results, we found a very fast decrease of Ic in low fields up to 0.5 T and then a gradual decrease up to 1.5-2.0 T. Ic maintains 0.9-0.95 of its initial value up to εb=0.4% strain and then decreases a little faster down to 0.60-0.65 at εb=1.0% for almost all samples and magnetic fields. The normalized pinning force F p/F p max shows scaling according to the expression F p/F p max∝(B/B irr)(1-(B/B irr)) 3 for all samples and bending strains, where Birr is the irreversibility field.

  4. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study.

    Science.gov (United States)

    Okkenhaug, Gudny; Grasshorn Gebhardt, Karl-Alexander; Amstaetter, Katja; Bue, Helga Lassen; Herzel, Hannes; Mariussen, Espen; Rossebø Almås, Åsgeir; Cornelissen, Gerard; Breedveld, Gijs D; Rasmussen, Grete; Mulder, Jan

    2016-04-15

    Small-arm shooting ranges often receive a significant input of lead (Pb), copper (Cu) and antimony (Sb) from ammunition. The goal of the present study was to investigate the mobility, distribution and speciation of Pb and Sb pollution under field conditions in both untreated and sorbent-amended shooting range soil. Elevated Sb (19-349μgL(-1)) and Pb (7-1495μgPbL(-1)) concentrations in the porewater of untreated soil over the four-year test period indicated a long-term Sb and Pb source to the adjacent environment in the absence of remedial measures. Mixing ferric oxyhydroxide powder (CFH-12) (2%) together with limestone (1%) into the soil resulted in an average decrease of Sb and Pb porewater concentrations of 66% and 97%, respectively. A similar reduction was achieved by adding 2% zerovalent iron (Fe°) to the soil. The remediation effect was stable over the four-year experimental period indicating no remobilization. Water- and 1M NH4NO3-extractable levels of Sb and Pb in field soil samples indicated significant immobilization by both treatments (89-90% for Sb and 89-99% for Pb). Results from sequential extraction analysis indicate fixation of Sb and Pb in less accessible fractions like amorphous iron oxides or even more crystalline and residual mineral phases, respectively. This work shows that amendment with Fe-based sorbents can be an effective method to reduce the mobility of metals both in cationic and anionic form in polluted shooting range soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy

    Science.gov (United States)

    Bagnall, Kevin R.; Moore, Elizabeth A.; Badescu, Stefan C.; Zhang, Lenan; Wang, Evelyn N.

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to

  6. The potential of audiomagnetotellurics in the study of geothermal fields: A case study from the northern segment of the La Candelaria Range, northwestern Argentina

    Science.gov (United States)

    Barcelona, Hernan; Favetto, Alicia; Peri, Veronica Gisel; Pomposiello, Cristina; Ungarelli, Carlo

    2013-01-01

    Despite its reduced penetration depth, audiomagnetotelluric (AMT) studies can be used to determine a broad range of features related to little studied geothermal fields. This technique requires a stepwise interpretation of results taking into consideration diverse information (e.g. topographic, hydrological, geological and/or structural data) to constrain the characteristics of the study area. In this work, an AMT study was performed at the hot springs in the northern segment of the La Candelaria Range in order to characterize the area at depth. Geometric aspects of the shallow subsurface were determined based on the dimensional and distortion analysis of the impedance tensors. Also, the correlation between structural features and regional strikes allowed us to define two geoelectric domains, useful to determine the controls on fluid circulation. The subsurface resistivity distribution was determined through 1D and 2D models. The patterns of the 1D models were compared with the morpho-structure of the range. Shallow and deep conductive zones were defined and a possible shallow geothermal system scheme proposed. A strong correlation was found between the AMT results and the geological framework of the region, showing the relevance of using AMT in geothermal areas during the early stages of subsurface prospecting.

  7. Partial discharges and breakdown in SF6 in the pressure range 25-150 kPa in non-uniform background fields

    Science.gov (United States)

    Seeger, M.; Clemen, M.

    2014-01-01

    The partial discharge (PD) and electric breakdown mechanisms in SF6 at a plug contact in the pressure range 25-150 kPa were investigated at ambient temperature in a plug-plate arrangement. This parameter range has similar particle number densities as in the previous investigation of the dielectric recovery in a high-voltage circuit breaker (Seeger et al 2012 J. Phys. D: Appl. Phys. 45 395204), where optical access was limited and the relevant parameters of pressure and temperature could only be determined indirectly by computational fluid dynamic simulations. The present investigation did not have these limitations, since the pressure and temperature were well defined. Optical observation by an image intensified high speed camera in combination with a photo multiplier tube allowed an understanding of the various mechanisms for the PDs and breakdown to be gained. The breakdown fields and PD parameters could be well described by a simple leader model in the pressure range 75-150 kPa for negative polarity and above 25 kPa for positive polarity. Discrepancies with the model are observed below 75 kPa for negative polarity and at 25 kPa for positive polarity. This could be explained by a slow, repetitive heating mechanism which has not been reported so far.

  8. Electromagnetic field effect or simply stress? Effects of UMTS exposure on hippocampal longterm plasticity in the context of procedure related hormone release.

    Directory of Open Access Journals (Sweden)

    Nora Prochnow

    Full Text Available Harmful effects of electromagnetic fields (EMF on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF signals of the Universal Mobile Telecommunications System (UMTS to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH and on hippocampal derived synaptic long-term plasticity (LTP and depression (LTD as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg. The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg cannot be excluded.

  9. Electromagnetic Field Effect or Simply Stress? Effects of UMTS Exposure on Hippocampal Longterm Plasticity in the Context of Procedure Related Hormone Release

    Science.gov (United States)

    Ladage, Kerstin; Krause-Finkeldey, Dorothee; El Ouardi, Abdessamad; Bitz, Andreas; Streckert, Joachim; Hansen, Volkert; Dermietzel, Rolf

    2011-01-01

    Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded. PMID:21573218

  10. Effective stresses and shear failure pressure from in situ Biot's coefficient, Hejre Field, North Sea

    DEFF Research Database (Denmark)

    Regel, Jeppe Bendix; Orozova-Bekkevold, Ivanka; Andreassen, Katrine Alling

    2017-01-01

    , is significantly different from 1. The log-derived Biot's coefficient is above 0.8 in the Shetland Chalk Group and in the Tyne Group, and 0.6-0.8 in the Heno Sandstone Formation. We show that the effective vertical and horizontal stresses obtained using the log-derived Biot's coefficient result in a drilling...... window for a vertical well larger than if approximating Biot's coefficient by 1. The estimation of the Biot's coefficient is straightforward in formations with a stiff frame, whereas in formations such as shales, caution has to be taken. We discuss the consequence of assumptions made on the mineral...... composition of shales as unphysical results could be obtained when choosing inappropriate mineral moduli....

  11. Evaluation of the evolving stress field of the Yellowstone volcanic plateau, 1988 to 2010, from earthquake first-motion inversions

    Science.gov (United States)

    Russo, E.; Waite, G. P.; Tibaldi, A.

    2017-03-01

    Although the last rhyolite eruption occurred around 70 ka ago, the silicic Yellowstone volcanic field is still considered active due to high hydrothermal and seismic activity and possible recent magma intrusions. Geodetic measurements document complex deformation patterns in crustal strain and seismic activity likewise reveal spatial and temporal variations in the stress field. We use earthquake data recorded between 1988 and 2010 to investigate these variations and their possible causes in more detail. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events have normal-faulting solutions, subordinate strike-slip kinematics, and very rarely, reverse motions. The dominant direction of extension throughout the 0.64 Ma Yellowstone caldera is nearly ENE, consistent with the perpendicular direction of alignments of volcanic vents within the caldera, but our study also reveals spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years around Norris Geyser Basin, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The presence of ;chocolate tablet; structures, with two sets of nearly perpendicular normal faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera.

  12. Influence of the tilt angle of Percutaneous Aortic Prosthesis on Velocity and Shear Stress Fields

    Directory of Open Access Journals (Sweden)

    Bruno Alvares de Azevedo Gomes

    Full Text Available Abstract Background: Due to the nature of the percutaneous prosthesis deployment process, a variation in its final position is expected. Prosthetic valve placement will define the spatial location of its effective orifice in relation to the aortic annulus. The blood flow pattern in the ascending aorta is related to the aortic remodeling process, and depends on the spatial location of the effective orifice. The hemodynamic effect of small variations in the angle of inclination of the effective orifice has not been studied in detail. Objective: To implement an in vitro simulation to characterize the hydrodynamic blood flow pattern associated with small variations in the effective orifice inclination. Methods: A three-dimensional aortic phantom was constructed, reproducing the anatomy of one patient submitted to percutaneous aortic valve implantation. Flow analysis was performed by use of the Particle Image Velocimetry technique. The flow pattern in the ascending aorta was characterized for six flow rate levels. In addition, six angles of inclination of the effective orifice were assessed. Results: The effective orifice at the -4° and -2° angles directed the main flow towards the anterior wall of the aortic model, inducing asymmetric and high shear stress in that region. However, the effective orifice at the +3° and +5° angles mimics the physiological pattern, centralizing the main flow and promoting a symmetric distribution of shear stress. Conclusion: The measurements performed suggest that small changes in the angle of inclination of the percutaneous prosthesis aid in the generation of a physiological hemodynamic pattern, and can contribute to reduce aortic remodeling.

  13. High-Field Nb3Sn Cos-theta Dipole with Stress Management

    Energy Technology Data Exchange (ETDEWEB)

    Novitski, Igor [Fermilab; Carmichael, Justin [Fermilab; Kashikhin, Vadim V. [Fermilab; Zlobin, Alexander V. [Fermilab

    2017-01-01

    Cost-effective superconducting dipole magnets with operating fields up to 16 T are being considered for the LHC en-ergy upgrade (HE-LHC) and a Future Circular Collider (FCC). To demonstrate feasibility of 15 T accelerator quality dipole mag-nets, FNAL as a part of the US-MDP is developing a single-aper-ture Nb3Sn dipole demonstrator based on a 4-layer graded cos-theta coil with 60 mm aperture and cold iron yoke. In parallel, to explore the limit of the Nb3Sn accelerator magnet technology, op-timize magnet design and performance parameters, and reduce magnet cost, magnet design studies are also being performed to push the nominal bore field to 16 T in a 60-mm aperture cos-theta dipole. Results of these studies are reported and discussed in this paper.

  14. Multi-parameter approximation of the stress field in a cracked body in the more distant surroundings of the crack tip

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Sobek, J.; Frantík, P.; Seitl, Stanislav

    2016-01-01

    Roč. 89, AUG (2016), s. 20-35 ISSN 0142-1123. [International Conference on Characterisation of Crack Tip Fields /3./. Urbino, 20.04.2015-22.04.2015] Institutional support: RVO:68081723 Keywords : Crack-tip fields * Williams power series * Higher order terms * Stress field reconstruction * Multi-parameter approximation accuracy Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  15. Measurements of the Atmospheric Electric Field through a Triangular Array and the Long-range Saharan Dust Electrification in Southern Portugal

    CERN Document Server

    Silva, H G; Pereira, S; Barbosa, S M; Nicoll, K; Pereira, M Collares; Harrison, R G

    2016-01-01

    Atmospheric electric field (AEF) measurements were carried out in three different sites forming a triangular array in Southern Portugal. The campaign was performed during the summer characterized by Saharan dust outbreaks; the 16th-17th July 2014 desert dust event is considered here. Evidence of long-range dust electrification is attributed to the air-Earth electrical current creating a positive space-charge inside of the dust layer. An increase of ~23 V/m is observed in AEF on the day of the dust event corresponding to space-charges of ~20-2 pCm-3 (charge layer thicknesses ~10-100 m). A reduction of AEF is observed after the dust event.

  16. An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia

    DEFF Research Database (Denmark)

    Ilkhchi, Rahim Kadkhodaie; Rezaee, Reza; Harami, Reza Moussavi

    2014-01-01

    between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types......Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate...... the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship...

  17. Transcriptional and biochemical markers in transplanted Perca flavescens to characterize cadmium- and copper-induced oxidative stress in the field

    Energy Technology Data Exchange (ETDEWEB)

    Defo, Michel A. [Institut National De La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 De La Couronne, Québec, QC G1K 9A9 (Canada); Bernatchez, Louis [Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Campbell, Peter G.C.; Couture, Patrice [Institut National De La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 De La Couronne, Québec, QC G1K 9A9 (Canada)

    2015-05-15

    Highlights: • Four-weeks exposure is sufficient to increase kidney metal levels in wild perch. • Cd and Cu affected indicators of retinoid metabolism and oxidative stress in fish. • Multi-level biological approaches are needed when assessing fish metal toxicology. • Changes at molecular level do not always mean changes at the functional level. • Wild juvenile perch may partly adjust to metal contamination by plastic responses. - Abstract: Despite recent progress achieved in elucidating the mechanisms underlying local adaptation to pollution, little is known about the evolutionary change that may be occurring at the molecular level. The goal of this study was to examine patterns of gene transcription and biochemical responses induced by metal accumulation in clean yellow perch (Perca flavescens) and metal depuration in contaminated fish in a mining and smelting region of Canada. Fish were collected from a reference lake (lake Opasatica) and a Cd, Cu and Zn contaminated lake (lake Dufault) located in the Rouyn-Noranda region (Qc, Canada) and caged for one or four weeks in their own lake or transplanted in the other lake. Free-ranging fish from the same lakes were also collected. Kidney Cd and Cu concentrations in clean fish caged in the contaminated lake increased with the time of exposure, but metal depuration did not occur in contaminated fish caged in the clean lake. After 4 weeks, the major retinoid metabolites analysed, the percentage of free dehydroretinol (dROH) and the retinol dehydrogenase-2 (rdh-2) transcription level in liver decreased in clean fish transplanted into the metal-contaminated lake, suggesting that metal exposure negatively impacted retinoid metabolism. However, we observed an increase in almost all of the retinoid parameters analysed in fish from the metal-impacted lake caged in the same lake, which we interpret as an adaptation response to higher ambient metal concentration. In support of this hypothesis, liver transcription levels

  18. Effects of lead exposure on oxidative stress biomarkers and plasma biochemistry in waterbirds in the field.

    Science.gov (United States)

    Martinez-Haro, Monica; Green, Andy J; Mateo, Rafael

    2011-05-01

    Medina lagoon in Andalusia has one of the highest densities of spent lead (Pb) shot in Europe. Blood samples from waterbirds were collected in 2006-2008 to measure Pb concentration (PbB), δ-aminolevulinic acid dehydratase (ALAD), oxidative stress biomarkers and plasma biochemistry. PbB above background levels (>20 μg/dl) was observed in 19% (n=59) of mallards (Anas platyrhynchos) and in all common pochards (Aythya ferina) (n=4), but common coots (Fulica atra) (n=37) and moorhens (Gallinula chloropus) (n=12) were all ALAD ratio in mallards and coots decreased with PbB levels >6 μg/dl. In mallards, an inhibition of glutathione peroxidase (GPx) and an increased level of oxidized glutathione (oxGSH) in red blood cells (RBC) were associated with PbB levels >20 μg/dl. In coots, PbB levels were negatively related to vitamin A and carotenoid levels in plasma, and total glutathione in RBCs; and positively related with higher superoxide dismutase and GPx activities and % oxGSH in RBCs. Overall, the results indicate that previously assumed background levels of PbB for birds need to be revised. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA.

    Science.gov (United States)

    Tripp, Daniel W; Rocke, Tonie E; Streich, Sean P; Abbott, Rachel C; Osorio, Jorge E; Miller, Michael W

    2015-04-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  20. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.

    2015-01-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  1. THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5-12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Richard S.; Schenker, Matthew A. [Department of Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Curtis-Lake, Emma; Cirasuolo, Michele [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Ono, Yoshiaki; Ouchi, Masami [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa City, Chiba 277-8582 (Japan); Koekemoer, Anton [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Furlanetto, Steven R., E-mail: rse@astro.caltech.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2013-01-20

    We present the results of the deepest search to date for star-forming galaxies beyond a redshift z {approx_equal} 8.5 utilizing a new sequence of near-infrared Wide-Field Camera 3 (WFC3/IR) images of the Hubble Ultra Deep Field (UDF). This 'UDF12' campaign completed in 2012 September doubles the earlier exposures with WFC3/IR in this field and quadruples the exposure in the key F105W filter used to locate such distant galaxies. Combined with additional imaging in the F140W filter, the fidelity of high-redshift candidates is greatly improved. Using spectral energy distribution fitting techniques on objects selected from a deep multi-band near-infrared stack, we find seven promising z > 8.5 candidates. As none of the previously claimed UDF candidates with 8.5 < z < 10 are confirmed by our deeper multi-band imaging, our campaign has transformed the measured abundance of galaxies in this redshift range. Although we recover the candidate UDFj-39546284 (previously proposed at z = 10.3), it is undetected in the newly added F140W image, implying that it lies at z = 11.9 or is an intense emission line galaxy at z {approx_equal} 2.4. Although no physically plausible model can explain the required line intensity given the lack of Ly{alpha} or broadband UV signal, without an infrared spectrum we cannot rule out an exotic interloper. Regardless, our robust z {approx_equal} 8.5-10 sample demonstrates a luminosity density that continues the smooth decline observed over 6 < z < 8. Such continuity has important implications for models of cosmic reionization and future searches for z >10 galaxies with James Webb Space Telescope.

  2. Effects of Electromagnetic Field Over a Human Body, Sar Simulation with and Without Nanotextile in the Frequency Range 0.9-1.8GHZ

    Science.gov (United States)

    Tomovski, Boyan; Gräbner, Frank; Hungsberg, Axel; Kallmeyer, Christian; Linsel, Mario

    2011-11-01

    Within only the last decade, usage of mobile phones and many other electronic devices with high speed wireless RF connection is rapidly increasing. Modern life requires reliable, quick and high-quality information connections, which explains the widely spreading craze for electronic mobile devices of various types. The vast technological advances we are witnessing in electronics, electro-optics, and computer science have profoundly affected our everyday lives. Meanwhile, safety concerns regarding the biological effects of electromagnetic (EM) radiation have been raised, in particular at a low level of exposure which we everyday experience. A variety of waves and signals have to be considered such as different sine waves, digital signals used in radio, television, mobile phone systems and other information transfer systems. The field around us has become rather complicated and the "air space is getting more and more dense with RF. The establishing of safety recommendations, law norms and rules augmented by adequate measurements is very important and requires quite an expertise. But as many scientific researches suggest, what we are currently witnessing is very likely to generate a great public danger and a bad influence over the human body. There are many health organisations warning the public for possible development of cancer, mental and physical disorders etc [7, 8]. These suggestions are quite serious and should not be neglected by the official bodies and the test laboratories. In the following work, the effects of electromagnetic field over a virtual model of a human head have been simulated in the frequency range from 900 MHz to 1800 MHz (commonly created in the real life by mobile GSM system) with the help of the program MEFiSTo 2D Classic [1]. The created virtual models using the 2D simulation & computation software proved that the use of new high tech nanotextile materials for shielding layers around the human body can reduce the effects of EM fields

  3. Investigation of Three-Dimensional Stress Fields and Slip Systems for FCC Single Crystal Superalloy Notched Specimens

    Science.gov (United States)

    Arakere, Nagaraj K.; Magnan, Shannon; Ebrahimi, Fereshteh; Ferroro, Luis

    2004-01-01

    Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e. plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g. cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing, become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a FCC single crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of 3D stress fields and evolution of slip sector boundaries near notches in FCC single crystal tension test specimens, and demonstrate that a 3D linear elastic finite element model that includes the effect of material anisotropy is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near FCC single crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single crystal notches.

  4. Influence Of Terahertz Range Electromagnetic Radiation At Molecular Spectrum Frequency Of 150+0,75 Ghz Nitric Oxide On Microcirculation Morphofunctional Disturbances In White Rats In Condition Of Acute And Prolonged Stress

    Directory of Open Access Journals (Sweden)

    M.O. Kurtukova

    2009-12-01

    Full Text Available The effect of electromagnetic radiation of terahertz range at frequency of emission and absorption molecular spectrum of 150+0,75GHz nitric oxide on morphofunctional changes of microcirculation and tissue structure in animals in condition of acute and prolonged immobilization stress has been studied. It has shown that the influence of electromagnetic waves at these frequencies causes activity decrease of hypothalamic-pituitary-adrenal and tireoyd axis of stress reaction. It has been determined that terahertz range waves at frequency of nitric oxide are liable to restore disturbances of intravascular, vascular and extravascular components of microcirculation and also have histoprotective effect

  5. Mean field diffusion models for precipitation in crystalline GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Kimmerle, Sven-Joachim [Humboldt-Univ. Berlin (Germany). Dept. of Mathematics

    2009-07-01

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first class of models treats the diffusion-controlled regime of interface motion, while the second class is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. We consider homogenised models, where different length scales of the experimental situation have been exploited in order to simplify the equations. These homogenised models generalise the well-known Lifshitz-Slyozov-Wagner model for Ostwald ripening. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  6. Development of Window-based program for analysis and visualization of two-dimensional stress field in digital photoelasticity

    Directory of Open Access Journals (Sweden)

    Pichet Pinit

    2009-07-01

    Full Text Available This paper describes the development of a Window-based framework for analyzing and visualizing two-dimensional stress field in digital photoelasticity. The program is implemented as stand-alone software. The program contains mainly two parts: computational part and visual part supplemented with several image-processing functions. The computation method used in the program for retrieval of photoelastic parameters (isoclinic and isochromatic parameters is the phase stepping method. The visualization links between the results and the user by a gray scale or color map of such parameters, which is very convenient to the user for physical interpretation. With the Windows-based framework, additional modules eithercomputation or visualization can be simply added to the program.

  7. Emitting far-field multicolor patterns and characters through plastic diffractive micro-optics elements illuminated by common Gaussian lasers in the visible range.

    Science.gov (United States)

    Zhang, Xinyu; Li, Hui; Liu, Kan; Luo, Jun; Xie, Changsheng; Ji, An; Zhang, Tianxu

    2011-04-01

    Far-field multicolor patterns and characters are emitted effectively in a relatively wide and deep spatial region by plastic diffractive micro-optics elements (DMOEs), which are illuminated directly by common Gaussian lasers in the visible range. Phase-only DMOEs are composed of a large number of fine step-shaped phase microstructures distributed sequentially over the plastic wafer selected. The initial DMOEs in silicon wafer are fabricated by an innovative technique with a combination of a single-mask ultraviolet photolithography and low-cost and rapid wet KOH etching. The fabricated silicon DMOEs are further converted into a nickel mask by the conventional electrochemical method, and they are finally transferred onto the surface of the plastic wafer through mature hot embossing. Morphological measurements show that the surface roughness of the plastic DMOEs is in the nanometer range, and the feature height of the phase steps in diffractive elements is in the submicrometer scale, which can be designed and adjusted flexibly according to requirements. The dimensions of the DMOEs can be changed from the order of millimeters to centimeters. A large number of pixel phase microstructures with a square microappearance employed to construct the phase-only DMOEs are created by the Gerchberg-Saxton algorithm, according to the target patterns and characters and common Gaussian lasers manipulated by the DMOEs fabricated. © 2011 Optical Society of America

  8. Horizontal/vertical differences in range and upper/lower visual field differences in the midpoints of sensory fusion limits of oriented lines.

    Science.gov (United States)

    Grove, Philip M; Ono, Hiroshi

    2012-01-01

    O'Shea and Crassini (1982, Perception & Psychophysics 32 195-196) demonstrated that fusion persists for vertical lines with an orientation disparity of 8 degrees, but diplopia is experienced in simultaneously presented horizontal lines with the same disparity. They concluded that the neural fusion process fuses larger horizontal disparities than vertical disparities. Kertesz criticised their demonstration because it did not quantify the possible motor component associated with fusing their counter-rotated images. Krekling and Blika argued that the demonstrated anisotropy is due to a disparity bias in the visual system, owing to the temporalward tilt of corresponding vertical meridians. We addressed these criticisms with a novel stimulus and presentation protocol, that rendered compensatory cyclovergence eye movements unlikely and explored a wide range of orientation disparities. We confirmed O'Shea and Crassini's vertical/horizontal anisotropy in orientation fusion limits. In addition, our measurements of vertical lines showed that the distributions of fused responses as a function of orientation disparity in the upper and lower visual fields were shifted relative to each other. Therefore, the distributions of fusible orientation disparities are wider for vertical lines than horizontal lines and are relatively shifted as predicted if the fusional range is centred around the vertical horopter.

  9. Experimental Study on Wing Crack Behaviours in Dynamic-Static Superimposed Stress Field Using Caustics and High-Speed Photography

    Directory of Open Access Journals (Sweden)

    L.Y. Yang

    2014-07-01

    Full Text Available During the drill-and-blast progress in rock tunnel excavation of great deep mine, rock fracture is evaluated by both blasting load and pre-exiting earth stress (pre-compression. Many pre-existing flaws in the rock mass, like micro-crack, also seriously affect the rock fracture pattern. Under blasting load with pre-compression, micro-cracks initiate, propagate and grow to be wing cracks. With an autonomous design of static-dynamic loading system, dynamic and static loads were applied on some PMMA plate specimen with pre-existing crack, and the behaviour of the wing crack was tested by caustics corroding with a high-speed photography. Four programs with different static loading modes that generate different pre-compression fields were executed, and the length, velocity of the blasting wing crack and dynamic stress intensity factor (SIF at the wing crack tip were analyzed and discussed. It is found that the behaviour of blasting-induced wing crack is affected obviously by blasting and pre-compression. And pre-compression, which is vertical to the direction of the wing crack propagation, hinders the crack propagation. Furthermore, the boundary constraint condition plays an important role on the behaviour of blasting induced crack during the experiment.

  10. Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress

    Directory of Open Access Journals (Sweden)

    Yongshui Kang

    2014-10-01

    Full Text Available Water-bearing rocks exposed to freezing temperature can be subjected to freeze–thaw cycles leading to crack initiation and propagation, which are the main causes of frost damage to rocks. Based on the Griffith theory of brittle fracture mechanics, the crack initiation criterion, propagation direction, and crack length under freezing pressure and far-field stress are analyzed. Furthermore, a calculation method is proposed for the stress intensity factor (SIF of the crack tip under non-uniformly distributed freezing pressure. The formulae for the crack/fracture propagation direction and length of the wing crack under freezing pressure are obtained, and the mechanism for coalescence of adjacent cracks is investigated. In addition, the necessary conditions for different coalescence modes of cracks are studied. Using the topology theory, a new algorithm for frost crack propagation is proposed, which has the capability to define the crack growth path and identify and update the cracked elements. A model that incorporates multiple cracks is built by ANSYS and then imported into FLAC3D. The SIFs are then calculated using a FISH procedure, and the growth path of the freezing cracks after several calculation steps is demonstrated using the new algorithm. The proposed method can be applied to rocks containing fillings such as detritus and slurry.

  11. Soil mechanical stresses in high wheel load agricultural field traffic: a case study

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2017-01-01

    .6 and 0.9 m depths of a sandy loam soil at field capacity water content. The soil was ploughed annually to a depth of 0.25 m and was tested in the spring following autumn ploughing but before secondary tillage. The machinery tested was a tractor–trailer system for slurry application with a total weight...... to 300, 100 and 45 kPa at soil depths of 0.3, 0.6 and 0.9 m respectively. Comparing these with the data in the literature regarding soil strength and measured compaction effects on the soil studied, we conclude that the traffic event investigated is likely to induce serious effects on soil properties...

  12. [Extremely low frequency electromagnetic field induces apoptosis of osteosarcoma cells via oxidative stress].

    Science.gov (United States)

    Yang, Min-li; Ye, Zhao-ming

    2015-05-01

    To investigate the effects of extremely low frequency electromagnetic field (ELF-EMF) on human osteosarcoma cells and its mechanisms. Human osteosarcoma MG-63 cells were exposed to 50 Hz,1 mT ELF-EMF for 1, 2 and 3 h in vitro, with or without pretreatment by reactive oxygen species (ROS) inhibitor N acetylcysteine (NAC) or p38MAPK inhibitor SB203580. The proliferation of MG-63 cells was determined by MTT method; the apoptosis rate and ROS level in MG-63 cells were detected by flow cytometry. The expression of p38MAPK in MG-63 cells was determined by Western blotting. ELF-EMF decreased the viability of MG-63 cells, inhibited cell growth, induced cell apoptosis and increased the level of ROS significantly. The apoptosis rate declined significantly after treatment with ROS inhibitor NAC or p38MAPK inhibitor SB203580. After exposure to ELF-EMF, p38MAPK in MG-63 cells was activated, and the phosphorylation level was also inhibited after treatment with NAC. ELF-EMF can induce the apoptosis of MG-63 cells. Increased ROS and p38MAPK activation may be involved in the mechanism.

  13. Phase field crystal simulation of stress induced localized solid-state amorphization in nanocrystalline materials

    Science.gov (United States)

    Xi, Wen; Song, Xiaoqing; Hu, Shi; Chen, Zheng

    2017-11-01

    In this work, the phase field crystal (PFC) method is used to study the localized solid-state amorphization (SSA) and its dynamic transformation process in polycrystalline materials under the uniaxial tensile deformation with different factors. The impacts of these factors, including strain rates, temperatures and grain sizes, are analyzed. Kinetically, the ultra-high strain rate causes the lattice to be seriously distorted and the grain to gradually collapse, so the dislocation density rises remarkably. Therefore, localized SSA occurs. Thermodynamically, as high temperature increases the activation energy, the atoms are active and prefer to leave the original position, which induce atom rearrangement. Furthermore, small grain size increases the percentage of grain boundary and the interface free energy of the system. As a result, Helmholtz free energy increases. The dislocations and Helmholtz free energy act as the seed and driving force for the process of the localized SSA. Also, the critical diffusion-time step and the percentage of amorphous region areas are calculated. Through this work, the PFC method is proved to be an effective means to study localized SSA under uniaxial tensile deformation.

  14. Local zone wise elastic and plastic properties of electron beam welded Ti-6Al-4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method

    Science.gov (United States)

    Saranath, K. M.; Ramji, M.

    2015-05-01

    Joining of materials using welding results in the formation of material zones with varying microstructure across the weld. Extraction of the mechanical properties of those individual heterogeneous zones are important in designing components and structures comprised of welds. In this study, the zone wise local extraction of the elastic and plastic properties of an electron beam welded Ti-6Al-4V titanium alloy has been carried out using both the uniform stress method (USM) and the virtual fields method (VFM) involving digital image correlation (DIC) technique. The surface strain field obtained using DIC technique from a transverse weld specimen tensile testing is used for extracting the zone wise strain evolution. Initially, using uniform stress assumption, zone wise full range stress-strain curves are extracted. In USM methodology, the elastic and plastic material models are fitted to the zone wise stress-strain curves and required parameters are extracted from it. But inherent disadvantage is lot of images need to be processed for the parameter extraction. Recently, VFM is gaining lot of popularity in characterization domain as it is robust, accurate and faster. VFM is based on the principle of virtual work where, the weak form of local equilibrium equations and kinematically admissible virtual displacement fields are utilized for parameter extraction. Hollomon's power law is used here as the hardening rule. Young's modulus, Poisson's ratio, yield stress, strength coefficient and strain hardening exponent are the parameters extracted zone wise using both USM and VFM. A Vicker's microhardness measurement is also conducted across the weld zone towards mapping the strength behavior. Fusion zone has reported higher yield strength, strength coefficient and Poisson's ratio. Young's modulus value is found decreasing from base metal towards the fusion zone. The trend observed in parameter variation across the weld zone obtained by both USM and VFM compares very well. Due

  15. The half-interpercentile range of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_hIPR, Geographic, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The...

  16. Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method.

    Science.gov (United States)

    Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu

    2016-07-01

    We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.

  17. Safety in the stress field involving man and production. Sicherheit im Spannungsfeld von Mensch und Produktion

    Energy Technology Data Exchange (ETDEWEB)

    Mieles, K.

    1991-03-14

    Modern production systems are characterised by continuous innovative adaptations and improvements. They do not permit adequate preparation of vocational training in the phase between school and job. Only a basis extending to basic skills, basic knowledge and attitude to work can thus be secured in the training. However, knowledge of work and work experience should be added to the technical and social skills for the work input in order to achieve higher qualification by technical competence, system competence and social competence. It is essential to include safety as an integrated part of the training. Consequently safety and social skills, which in subsequent work input constitute the prerequisites to enable safety to compete with the other production aims, could be acquired in this way. The time taken to acquire a far higher qualification, viz. risk competence, is thus also inevitably shortened. Risk competence is understood to mean the ability to perceive risks and organise all behaviour in the sense of rational prevention of danger. However, human behaviour is determined by the readiness to accept risks and the assessment of risks. As no technology can be utilised without risks, either the readiness to accept risks or their assessment or preferably both must be changed to reduce the accident rate. The school records of the trainees offer good prerequisites for basic knowledge; the youthful age of the work force of 34 years on average suggests that the higher qualification has not yet been achieved in many sectors as a result of the change of generation. There is thus still imbalance between the force fields of the workplaces and the employees. However, a balanced condition can be achieved only if this development takes place gradually in stages in which the technical, organisational and personnel aspects are controllable. (orig.).

  18. Crystal fields, disorder, and antiferromagnetic short-range order in (Yb{sub 0.24}Sn{sub 0.76})Ru

    Energy Technology Data Exchange (ETDEWEB)

    Klimczuk, T; Wang, C H; Lawrence, J M; Xu, Q; Durakiewicz, T; Ronning, F; Llobet, A; Trouw, F; Kurita, N; Tokiwa, Y; Lee, Han-oh; Booth, C H; Gardner, J S; Bauer, E D; Joyce, J J; Zandbergen, H W; Movshovich, R; Cava, R J; Thompson, J D

    2011-07-18

    We report extensive measurements on a new compound (Yb{sub 0.24}Sn{sub 0.76})Ru that crystallizes in the cubic CsCl structure. Valence band photoemission and L{sub 3} x-ray absorption show no divalent component in the 4f configuration of Yb. Inelastic neutron scattering (INS) indicates that the eight-fold degenerate J-multiplet of Yb{sup 3+} is split by the crystalline electric field (CEF) into a Γ{sub 7} doublet ground state and a Γ{sub 8} quartet at an excitation energy 20 meV. The magnetic susceptibility can be fit very well by this CEF scheme under the assumption that a Γ{sub 6} excited state resides at 32 meV; however, the Γ{sub 8}/Γ{sub 6} transition expected at 12 meV was not observed in the INS. The resistivity follows a Bloch-Grüneisen law shunted by a parallel resistor, as is typical of systems subject to phonon scattering with no apparent magnetic scattering. All of these properties can be understood as representing simple local moment behavior of the trivalent Yb ion. At 1 K, there is a peak in specific heat that is too broad to represent a magnetic phase transition, consistent with absence of magnetic reflections in neutron diffraction. On the other hand, this peak also is too narrow to represent the Kondo effect in the Γ{sub 7} ground state doublet. On the basis of the field-dependence of the specific heat, we argue that antiferromagnetic shortrange order (possibly co-existing with Kondo physics) occurs at low temperatures. The long-range magnetic order is suppressed because the Yb site occupancy is below the percolation threshold for this disordered compound.

  19. A quasi-Hertzian stress field from an internal source: A possible working model for the Vredefort structure

    Science.gov (United States)

    Antoine, L. A. G.; Reimold, W. U.; Colliston, W. P.

    1992-12-01

    The Vredefort structure is a large domal feature about 110 km southeast of Johannesburg, South Africa, situated within and almost central to the large intracratonic Witwatersrand Basin. This structure consists of an Archean core of ca. 45 km in diameter, consisting largely of granitic gneiss, surrounded by a collar of metasedimentary and metavolcanic supracrustal rocks of the Dominian Group, Witwatersrand and Ventersdorp Supergroups, and Transvaal Sequence. The interpretation of images of the gravity and magnetic fields over Vredefort has permitted the delineation of several important features of the structure and of its environment. The outline of the collar strata is a prominent feature of both the gravity and the magnetic fields. The Vredefort structure shares this distinctive geometry with other structures (e.g., Manicouagan, Decaturville, Sierra Madera) of debated impact origin. In all these, successively older strata with steep outward dips are encountered while traversing inward to the center of the structure. A further attribute of these structures is the shortening of the outcrop of a particular stratigraphic unit compared to the original perimeter of that unit. To account for the geometric attributes of the Vredefort structure a mechanical scheme is required where there is radial movement of horizontal strata toward, with uplift in, the center of the Vredefort structure. Two models can be proposed: (1) one in which there is a rapid rise and violent disruption of cover rocks in response to expansion of a fluid accumulation; and (2) one in which there is, in contrast, a nonexplosive, quasi-Hertzian stress field resulting from a diapiric process. Both models can accommodate the geometry and structural components of Vredefort.

  20. A quasi-Hertzian stress field from an internal source: A possible working model for the Vredefort structure

    Science.gov (United States)

    Antoine, L. A. G.; Reimold, W. U.; Colliston, W. P.

    1992-01-01

    The Vredefort structure is a large domal feature about 110 km southeast of Johannesburg, South Africa, situated within and almost central to the large intracratonic Witwatersrand Basin. This structure consists of an Archean core of ca. 45 km in diameter, consisting largely of granitic gneiss, surrounded by a collar of metasedimentary and metavolcanic supracrustal rocks of the Dominian Group, Witwatersrand and Ventersdorp Supergroups, and Transvaal Sequence. The interpretation of images of the gravity and magnetic fields over Vredefort has permitted the delineation of several important features of the structure and of its environment. The outline of the collar strata is a prominent feature of both the gravity and the magnetic fields. The Vredefort structure shares this distinctive geometry with other structures (e.g., Manicouagan, Decaturville, Sierra Madera) of debated impact origin. In all these, successively older strata with steep outward dips are encountered while traversing inward to the center of the structure. A further attribute of these structures is the shortening of the outcrop of a particular stratigraphic unit compared to the original perimeter of that unit. To account for the geometric attributes of the Vredefort structure a mechanical scheme is required where there is radial movement of horizontal strata toward, with uplift in, the center of the Vredefort structure. Two models can be proposed: (1) one in which there is a rapid rise and violent disruption of cover rocks in response to expansion of a fluid accumulation; and (2) one in which there is, in contrast, a nonexplosive, quasi-Hertzian stress field resulting from a diapiric process. Both models can accommodate the geometry and structural components of Vredefort.

  1. Apparent ionospheric total electron content variations prior to major earthquakes due to electric fields created by tectonic stresses

    Science.gov (United States)

    Kelley, Michael C.; Swartz, Wesley E.; Heki, Kosuke

    2017-06-01

    Growing evidence for ionospheric signatures of impending earthquakes comes from electron content measurements along slanted paths from GPS satellites to multiple ground stations located up to 500 km away from the epicenters. These slant total electron content (STEC) measurements deviate from the classic U-shape pattern, starting about 40 min to over an hour before major earthquakes. Unlike other naturally occurring STEC fluctuations at midlatitudes, we show here that these earthquake-induced deviations are simultaneous over a wide geographical area and do not propagate, thereby indicating a ground-based origin. Prior to the 11 March 2011 Tohoku-Oki earthquake (Mw 9.0), the deviations were as much as 10% of the undisturbed STEC. We argue that such deviations must be due to an electric field-forced rise or fall of the main ionosphere with little change in the vertical electron density profile. Hence, "apparent" is used in the title. We show how stress-related underground electric fields penetrate to 80 km altitude (above which penetration to the main ionosphere easily occurs) with magnitudes high enough to create STEC variations comparable to those observed. Since many thousands of GPS receivers exist worldwide, our theory suggests the possibility of early warning systems that could provide 10 to 20 min notice prior to large earthquakes, after allowing time for signal processing. This theory for prequake-induced STEC fluctuations also explains the ground-based ULF magnetic field data acquired by Fraser-Smith et al. 40 min prior to the Loma Prieta earthquake.

  2. Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions.

    Science.gov (United States)

    Fuller, Mark E; Schaefer, Charles E; Steffan, Robert J

    2009-11-01

    An evaluation of peat moss plus crude soybean oil (PMSO) for mitigation of explosive contamination of soil at military facilities was performed using large soil lysimeters under field conditions. Actual range soils were used, and two PMSO preparations with different ratios of peat moss:soybean oil (1:1, PO1; 1:2, PO2) were compared to a control lysimeter that received no PMSO. PMSO was applied as a 10 cm layer on top of the soil, and Composition B detonation residues from a 55-mm mortar round were applied at the surface of each of the lysimeters. Dissolution of the residues occurred during natural precipitation events over the course of 18 months. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) emanating from the Composition B residues were significantly reduced by the PO2 PMSO material compared to the untreated control. Soil pore water RDX concentrations and RDX fluxes were reduced over 100-fold compared to the control plots at comparable depths. Residual RDX in the soil profile was also significantly lower in the PMSO treated plots. PO1 PMSO resulted in lower reductions in RDX transport than the PO2 PMSO. The transport of the RDX breakdown product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was also greatly reduced by the PMSO materials. Results were in general agreement with a previously developed fate and transport model describing PMSO effectiveness. These results demonstrate the potential effectiveness of the inexpensive and environmentally benign PMSO technology for reducing the subsurface loading of explosives at training ranges and other military facilities.

  3. Structural and seismic indications of the elements of recent and present-day stress fields in several epicentral regions of western Tien Shan

    Science.gov (United States)

    Umurzakov, R. A.

    2010-05-01

    This study presents the results of stress field reconstruction for the epicentral zones of large-magnitude earthquakes in some folded-mountain regions of western Tien Shan. Field studies, including geostructural and tectonophysical interpretations, performed for the Talas-Suusamyr, Chatkal-Kurama, Turkestan-Zarafshan, Gissar and Nurata-Kyzylkum regions allow the reconstruction of some regional components of the tectonic stress field. The nearly E-W orientations of the lower-order compressional axes are identified in the Chatkal-Kurama and Turkestan-Zarafshan mountain areas. Detailed structural-dynamical diagrams of several epicentral zones and reconstructions of focal mechanisms of some strong earthquakes are derived from the geostructural data. The coincidence of the present-day stress field manifested in the earthquake sources and the recent stress field derived from the geostructural determinations is revealed. The focal mechanisms of the strong earthquakes in the folded-mountain regions of western Tien Shan relate to the thrust/strike-slip faulting and breakup of large tectonic blocks.

  4. Assessment of a CFD model for short-range plume dispersion: Applications to the Fusion Field Trial 2007 (FFT-07) diffusion experiment

    Science.gov (United States)

    Kumar, Pramod; Singh, Sarvesh Kumar; Ngae, Pierre; Feiz, Amir-Ali; Turbelin, Grégory

    2017-11-01

    Simulations of the short-range plume dispersion under different atmospheric conditions can provide essential information for the development of source reconstruction methodologies that allows to retrieve the location and intensity of an unknown hazardous pollutant source. This process required a comprehensive assessment of the atmospheric dispersion models with tracer diffusion experiments in various stability conditions. In this study, a comprehensive evaluation of a CFD model fluidyn-PANACHE is performed with the observations from available seven trials of single releases conducted in the Fusion Field Trail 2007 (FFT-07) tracer experiment. The CFD simulations are performed for each trial and it was observed that the CFD model fluidyn-PANACHE provides good agreement of the predicted concentrations with the observations in both stable and convective atmospheric conditions. A comprehensive analysis of the simulated results is performed by computing the statistical performance measures for the dispersion model evaluation. The CFD model predicts 65.4% of the overall concentration points within a factor of two to the observations. It was observed that the CFD model is predicting better in convective stability conditions in comparison to the trials conducted in stable stability. In convective conditions, 74.6% points were predicted within a factor of two to the observations which are higher than 59.3% concentration points predicted within a factor of two in the trials in stable atmospheric conditions.

  5. PSYCHOLOGICAL PROBLEMS AND STRESS FACED BY SOLDIERS WHO OPERATE IN ASYMMETRIC WARFARE ENVIRONMENTS: EXPERIENCES IN THE FIELD

    Directory of Open Access Journals (Sweden)

    Giuseppe CAFORIO

    2014-10-01

    Full Text Available This article deals with the problems of anxiety, stress and psychological discomfort that can affect soldiers sent on asymmetric warfare operations. It is based on secondary analysis of the data of two important field researches whose results have recently (2013 been published. Although the two researches adopted different methodologies, the testimonies are fully comparable and show that soldiers from different countries and cultures display common or similar reactions when they are placed in the stress conditions that the asymmetric environment involves. The approach of the paper is drawn up in such a way as to make the reader a participating observer of the reality of such missions. It is therefore centered on the personal testimonies of the soldiers interviewed in the two researches, testimonies reported just as they are, in their simplicity and, often, drama, with comments by the author kept to a minimum in order to give readers ample opportunity to evaluate and interpret the reported texts on their own. The research data, drawn from the declarations of those directly concerned, reveal the existence of a problem of psychological distress resulting from deployment in asymmetric warfare situations that is in part different in the causes of the problems resulting from deployment in traditional combat and affects percentages of participating soldiers that are not high but definitely significant. The highest incidence appears to be constituted by problems relating to reintegration into normal social and working life upon returning from the mission. This is followed in percentage terms by anxiety situations relating to life far from the family, due in large part to a sense of powerlessness for the scant possibility of managing family situations that may have cropped up or already existed beforehand.

  6. Ambient condition bias stress stability of vanadium (IV) oxide phthalocyanine based p-channel organic field-effect transistors

    Science.gov (United States)

    Obaidulla, Sk Md; Singh, Subhash; Mohapatra, Y. N.; Giri, P. K.

    2018-01-01

    High bias-stress stability and low threshold voltage (V th) shift under ambient conditions are highly desirable for practical applications of organic field-effect transistors (OFETs). We demonstrate here a 20-fold enhancement in the bias-stress stability for hexamethyledisilazane (HMDS) treated vanadium (IV) oxide phthalocyanine (VOPc) based OFETs as compared to the bare VOPc case under ambient conditions. VOPc based OFETs were fabricated on bare (non treated) SiO2 and a HMDS monolayer passivated SiO2 layer, with an operating voltage of 40 V. The devices with top contact gold (Au) electrodes exhibit excellent p-channel behavior with a moderate hole mobility for the HMDS-treated device. It is demonstrated that the time dependent ON-current decay and V th shift can be effectively controlled by using self-assembled monolayers of HMDS on the VOPc layer. For the HMDS-treated case, the bias stress stability study shows the stretched exponential decay of drain current by only ~15% during the long-term operation with constant bias voltage under ambient conditions, while it shows a large decay of  >70% for the nontreated devices operated for 1000 s. The corresponding characteric decay time constant (τ) is 104 s for the HMDS treated case, while that of the the non-treated SiO2 case is only ~480 s under ambient conditions. The inferior performance of the device with bare SiO2 is traced to the charge trapping at the voids in the inter-grain region of the films, while it is almost negligible for the HMDS-treated case, as confirmed from the AFM and XRD analyses. It is believed that HMDS treatment provides an excellent interface with a low density of traps and passivates the dangling bonds, which improve the charge transport characteristics. Also, the surface morphology of the VOPc film clearly influences the device performance. Thus, the HMDS treatment provides a very attractive approach for attaining long-term air stability and a low V th shift for the VOPc based OFET

  7. Determining the Critical Slip Surface of Three-Dimensional Soil Slopes from the Stress Fields Solved Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang

    2016-01-01

    Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.

  8. Changes in graphite coefficient of thermal expansion due to fast neutron irradiation and applied stress in the temperature range 300C-1200C

    Energy Technology Data Exchange (ETDEWEB)

    Marsden, B.J. [AEA Technology Plc, Risley, Warrington, Cheshire (United Kingdom); Arai, Taketoshi [Oarai Research Establishment, Japan Atomic Energy Research Institute JAERI, Ibaraki-ken (Japan); McLachlan, N. [Nuclear Electric Ltd, Edinburgh, Scotland (United Kingdom)

    1998-09-01

    Changes in coefficient of thermal expansion (CTE) in nuclear graphite are important because they are related to dimensional change and the thermal stressing of graphite moderated reactor graphite components. The CTE of nuclear graphite can be modified by fast neutron irradiation, stress and creep strain. Various theories exist which relate the CTE of the individual graphite crystallite to the CTE of the polycrystalline graphite through a structure factor. This structure factor is a function of the graphite crystal orientation and the accommodation available due to local crystal porosity. The porosity can be taken up by raising the temperature of the graphite, which causes the lattice `c` spacing to expand, or by fast neutron irradiation induced crystal dimensional changes. It is also proposed that this porosity can be taken up by stressing unirradiated graphite, although there appears to be some evidence from Japan that the anisotropy of graphite is also altered by pre-stress. Annealing of creep strain specimens has shown that not all of irradiation induced creep strain is responsible for modifying CTE. 12 refs.

  9. Field evaluation of durum wheat landraces for prevailing abiotic and biotic stresses in highland rainfed regions of Iran

    Directory of Open Access Journals (Sweden)

    Reza Mohammadi

    2015-10-01

    Full Text Available Biotic and abiotic stresses are major limiting factors for high crop productivity worldwide. A landrace collection consisting of 380 durum wheat (Triticum turgidum L. var. durum entries originating in several countries along with four check varieties were evaluated for biotic stresses: yellow rust (Puccinia striiformis Westendorf f. sp. tritici and wheat stem sawfly (WSS Cephus cinctus Norton (Hymenoptera: Cephidae, and abiotic stresses: cold and drought. The main objectives were to (i quantify phenotypic diversity and identify variation in the durum wheat landraces for the different stresses and (ii characterize the agronomic profiles of landraces in reaction to the stresses. Significant changes in reactions of landraces to stresses were observed. Landraces resistant to each stress were identified and agronomically characterized. Percentage reduction due to the stresses varied from 11.4% (yellow rust to 21.6% (cold stress for 1000-kernel weight (TKW and from 19.9 (yellow rust to 91.9% (cold stress for grain yield. Landraces from Asia and Europe showed enhanced genetic potential for both grain yield and cold tolerance under highland rainfed conditions of Iran. The findings showed that TKW and yield productivity could be used to assess the response of durum wheat landraces to different stresses. In conclusion, landraces showed high levels of resistance to both biotic and abiotic stresses, and selected landraces can serve in durum wheat breeding for adaptation to cold and drought-prone environments.

  10. Evaluation of the Hamburg Rut Tester and Moisture Induced Stress Test (MIST) for field control of hot mix asphalt (HMA) in Oklahoma : final report.

    Science.gov (United States)

    2013-03-01

    This report covers the evaluation of the Hamburg Loaded Wheel Rut Tester (OHD L-55) and the : Moisture Induced Stress Tester (MIST) for field control of Oklahoma HMA mixtures. OHD L-55 : was evaluated as a possible replacement for AASHTO T 283 and fo...

  11. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    Science.gov (United States)

    Fisher, Aileen

    spatial wind noise filtering hoses or pipes. The grid was within the distance limits of a single gauge's normal hose array, and data were used to perform a spatial noise correlation study. The highest correlation values were not found in the lower frequencies as anticipated, owing to a lack of sources in the lower range and the uncorrelated nature of wind noise. The highest values, with cross-correlation averages between 0.4 and 0.7 from 3 to 17 m between gauges, were found at night from 10 and 20 Hz due to a continuous local noise source and low wind. Data from the larger array were used to identify continuous and impulsive signals in the area that comprise the ambient noise field. Ground truth infrasound and acoustic, time and location data were taken for a highway site, a wind farm, an