Sample records for range resolving ground

  1. Pain Resolving in Addiction and Recovery: A Grounded Theory Study

    Directory of Open Access Journals (Sweden)

    Alan Kim-Lok Oh


    Full Text Available The aim of this study is to develop a classic grounded theory about how addicts resolve their pain during addiction and recovery. Interviews and observations were analyzed and secondary analyses were carried out. Pain emerged as the main concern with pain resolving as the emergent pattern of behavior through which they deal with this concern. Pain resolving is a two-stage basic social psychological process of becoming where their identity is formed based on how they resolve their pain. This process of becoming is progressive over time. These two stages are instantaneous pain relieving and honesting. Trapped in instantaneous pain relieving leads an addict to become a worthless person while continuous life-long implementing of honesting brings the addict towards becoming a fully functioning person. Instantaneous pain relieving and honesting account for the patterns of behavior in resolving pain when an addict is in addiction and during the recovering process respectively.

  2. The Application of Time Resolved Dielectric Instruments to Air Force Ground Fleet Maintenance

    National Research Council Canada - National Science Library

    Thompson, Stephanie


    In 1993 the Military Equipment Evaluation Program (MEEP) located at Eglin Air Force Base, FL, evaluated a time resolved dielectric instrument for use in air force ground fleet maintenance applications...

  3. Grounded theory: building a middle-range theory in nursing

    Directory of Open Access Journals (Sweden)

    Maria João Fernandes


    Full Text Available The development of nursing as a discipline results from a boom of investigations underway for nearly a century, and of the construction of theories that have arisen during the 1950’s, with greater relevance since the 1960’s. Giving continuation to the production of knowledge in nursing and seeking to contribute to the increase in the number of explanatory theories of the functional content of nurses, there is interest in answering the question: how can a middle-range theory in nursing be built that explains the nurse-elderly interaction in a successful aging process? As well, we address the goal of describing the process of building a middle-range theory in nursing. Middle-range theory refers to a qualitative paradigm study of inductive thinking, developed in the context of primary health care. The information was collected through participant observation and interviews. Method of analysis grounded theory by Corbin and Strauss(1 was followed, utilizing the triangulation of data and theoretical sampling. Grounded theory has become a method of analysis which facilitates the understanding and explanation of the phenomenon under study. By making clear the nature and process of the nurse-elderly interaction in the selected context and within the context of successful aging, a middle-range theory proposal emerged.

  4. CT characteristics of resolving ground-glass opacities in a lung cancer screening programme

    Energy Technology Data Exchange (ETDEWEB)

    Felix, L.; Serra-Tosio, G. [Clinique Universitaire de Radiologie et Imagerie Medicale, Universite Grenoble I, CHU Grenoble (France); Lantuejoul, S. [Departement d' anatomie Pathologique, Universite Grenoble I, CHU Grenoble (France); INSERM U823, A Bonniot Institute, La Tronche (France); Timsit, J.F. [INSERM U823, A Bonniot Institute, La Tronche (France); Moro-Sibilot, D.; Brambilla, C. [INSERM U823, A Bonniot Institute, La Tronche (France); Clinique Universitaire Pneumologique, Universite Grenoble I, CHU Grenoble (France); Ferretti, G.R., E-mail: [Clinique Universitaire de Radiologie et Imagerie Medicale, Universite Grenoble I, CHU Grenoble (France); INSERM U823, A Bonniot Institute, La Tronche (France)


    Purpose: This study aimed at evaluating the computed tomography (CT) characteristics of resolving localized ground-glass opacities (GGOs) in a screening programme for lung cancer. Material and methods: 280 patients at high-risk for lung cancer (221 men, 59 women; mean age, 58.6 years), divided into four groups (lung cancer history (n = 83), head and neck cancer history (n = 63), symptomatic (n = 88) and asymptomatic (n = 46) cigarette smokers), were included in a prospective trial with annual low-dose CT for lung cancer screening. We retrospectively reviewed all localized GGOs, analyzed the CT characteristics on initial CT scans and changes during follow-up (median 29.1 months). Variables associated with resolution of GGOs were tested using chi-square or Mann-Whitney tests. Results: A total of 75 GGOs were detected in 37 patients; 54.7% were present at baseline and 45.3% appeared on annual CT. During follow-up, 56.2% persisted and 43.8% disappeared. The resolving localized GGOs were significantly more often lobular GGOs (p = 0.006), polygonal in shape (p = 0.02), mixed (p = 0.003) and larger (p < 0.0001) than non-resolving localized GGOs. Conclusion: Localized GGOs are frequent and many disappeared on follow-up. CT characteristics of resolving GGOs show significant differences compared to persistent ones. This study emphasizes the importance of short-term CT follow-up in subjects with localized GGOs.

  5. Biosonar resolving power: Echo-acoustic perception of surface structures in the submillimeter range

    Directory of Open Access Journals (Sweden)

    Ralph eSimon


    Full Text Available The minimum distance for which two points still can be separated from each other defines the resolving power of a visual system. In an echo-acoustic context, the resolving power is usually measured as the smallest perceivable distance of two reflecting surfaces on the range axis and is found to be around half a millimetre for bats employing frequency modulated echolocation calls. Only few studies measured such thresholds with physical objects, most often bats were trained on virtual echoes i.e. echoes generated and played back by a computer; moreover, bats were sitting while they received the stimuli. In these studies differences in structure depth between 200 µm and 340 µm were found. However, these low thresholds were never verified for free-flying bats and real physical objects. Here, we show behavioural evidence that the echo-acoustic resolving power for surface structures in fact can be as low as measured for computer generated echoes and even lower, sometimes below 100 µm. We found this exceptional fine discrimination ability only when one of the targets showed spectral interferences in the frequency range of the bats' echolocation call while the other target did not. This result indicates that surface structure is likely to be perceived as a spectral quality rather than being perceived strictly in the time domain. Further, it points out that sonar resolving power directly depends on the highest frequency/shortest wavelength of the signal employed.

  6. Program to perform research on use of lidar for range resolved turbulence measurements (United States)

    Moskowitz, Warren P.; Garner, Richard C.


    The design of a lidar system capable of measuring remotely range resolved atmospheric turbulence is presented. The connection between the measured quantities and the accepted turbulence strength parameter (C sub n)-sq is developed theoretically. Simulations of an operating system were made, and the results provide a measure of system capability. A typical value for (C sub n)-sq of 10(exp -16) m to the -2/3 power at 3 km vertical range is measurable with a 200 m range resolution.

  7. Method for enhancing the resolving power of ion mobility separations over a limited mobility range (United States)

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D


    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.


    Directory of Open Access Journals (Sweden)

    F. Fratarcangeli


    Full Text Available The SAR (Synthetic Aperture Radar imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR, based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano – Northern Italy, where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS, taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one stable PS’s are

  9. Range Resolved CO2 Atmospheric Backscattering Measurements Using Fiber Lasers and RZPN Code Modulation (United States)

    Burris, John


    We report the use of a return-to- zero (RZPN) pseudo noise modulation technique for making range resolved measurements of CO2 within the planetary boundary layer (PBL) using commercial, off-the-shelf, components. Conventional, range resolved, DIAL measurements require laser pulse widths that are significantly shorter than the desired spatial resolution and necessitate using pulses whose temporal spacing is such that scattered returns from only a single pulse are observed by the receiver at any one time (for the PBL pulse separations must be greater than approximately 20 microseconds). This imposes significant operational limitations when using currently available fiber lasers because of the resulting low duty cycle (less than approximately 0.0005) and consequent low average laser output power. The RZPN modulation technique enables a fiber laser to operate at much higher duty cycles (approaching 0.04) thereby more effectively utilizing the amplifier's output. This increases the counts received by approximately two orders of magnitude. Our approach involves employing two distributed feedback lasers (DFB), each modulated by a different RPZN code, whose outputs are then amplified by a CW fiber amplifier. One laser is tuned to a CO2 absorption line; the other operates offline thereby permitting the simultaneous acquisition of both on and offline signals using independent RZPN codes. This minimizes the impact of atmospheric turbulence on the measurement. The on and offline signals are retrieved by deconvolving the return signal using the appropriate kernels.

  10. Energy- and time-resolved detection of prompt gamma-rays for proton range verification. (United States)

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao


    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  11. Exploiting sparsity in time-of-flight range acquisition using a single time-resolved sensor. (United States)

    Kirmani, Ahmed; Colaço, Andrea; Wong, Franco N C; Goyal, Vivek K


    Range acquisition systems such as light detection and ranging (LIDAR) and time-of-flight (TOF) cameras operate by measuring the time difference of arrival between a transmitted pulse and the scene reflection. We introduce the design of a range acquisition system for acquiring depth maps of piecewise-planar scenes with high spatial resolution using a single, omnidirectional, time-resolved photodetector and no scanning components. In our experiment, we reconstructed 64 × 64-pixel depth maps of scenes comprising two to four planar shapes using only 205 spatially-patterned, femtosecond illuminations of the scene. The reconstruction uses parametric signal modeling to recover a set of depths present in the scene. Then, a convex optimization that exploits sparsity of the Laplacian of the depth map of a typical scene determines correspondences between spatial positions and depths. In contrast with 2D laser scanning used in LIDAR systems and low-resolution 2D sensor arrays used in TOF cameras, our experiment demonstrates that it is possible to build a non-scanning range acquisition system with high spatial resolution using only a standard, low-cost photodetector and a spatial light modulator. © 2011 Optical Society of America

  12. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.


    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  13. Ground-Based Midcourse Defense (GMD) Extended Test Range (ETR) (United States)


    Steller’s eiders and endangered short-tailed albatross offshore would also be outside the range of site preparation noise levels and are not...bird populations. Waterfowl would quickly resume feeding and other normal behavior patterns after a launch is completed. GMD ETR Final EIS es...mammal. No significant long-term adverse impacts are anticipated to seabirds and shorebirds, Guadalupe fur seals, California sea lions, northern

  14. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project (United States)

    National Aeronautics and Space Administration — The main purpose of this NASA SBIR Phase II proposal is development of a novel type of high resolving power diffraction gratings based on volume Bragg gratings...

  15. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop a novel type of high resolving power diffraction gratings based on volume Bragg gratings technology. The...

  16. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements (United States)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.


    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  17. A Range Resolved CO2 Backscattering Profile Measurement Technique for Ground Calibration Project (United States)

    National Aeronautics and Space Administration — This project involves modulating a commercial, distributed feedback, laser with a pseudo random code. It involves the optimization of laser pulse width versus the...

  18. Resolving relationships over a wide taxonomic range in Delphacidae (Homoptera) using the COI gene

    NARCIS (Netherlands)

    Dijkstra, E.G.M.; Rubio, J.M.; Post, R.J.


    Using a combination of different methods to investigate the suitability of a fragment of the cytochrome c oxidase I gene (COI), we succeeded in partially resolving phylogenetic relationships in Delphacidae from the level of species to subfamily. Spectral analysis applied to the relatively noisy COI

  19. On a Finite Range Decomposition of the Resolvent of a Fractional Power of the Laplacian II. The Torus (United States)

    Mitter, P. K.


    In previous papers, Mitter (J Stat Phys 163:1235-1246, 2016; Erratum: J Stat Phys 166:453-455, 2017; On a finite range decomposition of the resolvent of a fractional power of the Laplacian,, we proved the existence as well as regularity of a finite range decomposition for the resolvent G_{α } (x-y,m^2) = ((-Δ )^{α \\over 2} + m2)^{-1} (x-y) , for 0<α <2 and all real m, in the lattice Zd for dimension d≥ 2. In this paper, which is a continuation of the previous one, we extend those results by proving the existence as well as regularity of a finite range decomposition for the same resolvent but now on the lattice torus Zd/L^{N+1}Zd for d≥ 2 provided m≠ 0 and 0<α <2. We also prove differentiability and uniform continuity properties with respect to the resolvent parameter m2. Here L is any odd positive integer and N≥ 2 is any positive integer.

  20. Near-ground tornado-like vortex structure resolved by particle image velocimetry (PIV)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Iowa State University, Aerospace Engineering Department, Ames, IA (United States); University of Minnesota, Saint Anthony Falls Laboratory, Minneapolis, MN (United States); Sarkar, Partha P. [Iowa State University, Aerospace Engineering Department, Ames, IA (United States)


    The near-ground flow structure of tornadoes is of utmost interest because it determines how and to what extent civil structures could get damaged in tornado events. We simulated tornado-like vortex flow at the swirl ratios of S = 0.03-0.3 (vane angle {theta}{sub v} = 15 -60 ), using a laboratory tornado simulator and investigated the near-ground-vortex structure by particle imaging velocimetry. Complicated near-ground flow was measured in two orthogonal views: horizontal planes at various elevations (z = 11, 26 and 53 mm above the ground) and the meridian plane. We observed two distinct vortex structures: a single-celled vortex at the lowest swirl ratio (S = 0.03, {theta}{sub v} = 15 ) and multiple suction vortices rotating around the primary vortex (two-celled vortex) at higher swirl ratios (S = 0.1-0.3, {theta}{sub v} = 30 -60 ). We quantified the effects of vortex wandering on the mean flow and found that vortex wandering was important and should be taken into account in the low swirl ratio case. The tangential velocity, as the dominant velocity component, has the peak value about three times that of the maximum radial velocity regardless of the swirl ratio. The maximum velocity variance is about twice at the high swirl ratio ({theta}{sub v} = 45 ) that at the low swirl ratio ({theta}{sub v} = 15 ), which is contributed significantly by the multiple small-scale secondary vortices. Here, the results show that not only the intensified mean flow but greatly enhanced turbulence occurs near the surface in the tornado-like vortex flow. The intensified mean flow and enhanced turbulence at the ground level, correlated with the ground-vortex interaction, may cause dramatic damage of the civil structures in tornadoes. This work provides detailed characterization of the tornado-like vortex structure, which has not been fully revealed in previous field studies and laboratory simulations. It would be helpful in improving the understanding of the interaction between the

  1. Range vegetation type mapping and above-ground green biomass estimations using multispectral imagery. [Wyoming (United States)

    Houston, R. S. (Principal Investigator); Gordon, R. C.


    The author has identified the following significant results. Range vegetation types have been successfully mapped on a portion of the 68,000 acre study site located west of Baggs, Wyoming, using ERTS-1 imagery. These types have been ascertained from field transects over a five year period. Comparable studies will be made with EREP imagery. Above-ground biomass estimation studies are being conducted utilizing double sampling techniques on two similar study sites. Information obtained will be correlated with percent relative reflectance measurements obtained on the ground which will be related to image brightness levels. This will provide an estimate of above-ground green biomass with multispectral imagery.

  2. An Efficient Computation of Effective Ground Range Using an Oblate Earth Model

    Directory of Open Access Journals (Sweden)

    Dalal A. Maturi


    Full Text Available An effcient method is presented to calculate the ground range of a ballistic missile trajectory on a nonrotating Earth. The spherical Earth model does not provide good approximation of distance between two locations on the surface of Earth. We used oblate spheroid Earth model because it provides better approximations. The effective ground range of a ballistic missile is an arc-length of a planner elliptic (or circle curve which passes through the launch and target points on the surface of Earth model. A general formulation is presented to calculate the arc-length of an elliptic (or circle curve which is the intersection of oblate Earth model and a plane. Explicit formulas are developed to calculate the coordinates of center of the ellipse as well as major and minor axes which are necessary ingredients for the calculation of effective ground range.

  3. Time-resolved vortex wake of a common swift flying over a range of flight speeds (United States)

    Henningsson, P.; Muijres, F. T.; Hedenström, A.


    The wake of a freely flying common swift (Apus apus L.) is examined in a wind tunnel at three different flight speeds, 5.7, 7.7 and 9.9 m s−1. The wake of the bird is visualized using high-speed stereo digital particle image velocimetry (DPIV). Wake images are recorded in the transverse plane, perpendicular to the airflow. The wake of a swift has been studied previously using DPIV and recording wake images in the longitudinal plane, parallel to the airflow. The high-speed DPIV system allows for time-resolved wake sampling and the result shows features that were not discovered in the previous study, but there was approximately a 40 per cent vertical force deficit. As the earlier study also revealed, a pair of wingtip vortices are trailing behind the wingtips, but in addition, a pair of tail vortices and a pair of ‘wing root vortices’ are found that appear to originate from the wing/body junction. The existence of wing root vortices suggests that the two wings are not acting as a single wing, but are to some extent aerodynamically detached from each other. It is proposed that this is due to the body disrupting the lift distribution over the wing by generating less lift than the wings. PMID:21131333

  4. Time-resolved photoluminescence spectroscopy of semiconductors for optical applications beyond the visible spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, Alexey A.


    The work discussed in this thesis is focused on the experimental studies regarding these three steps: (1) investigation of the fundamental effects, (2) characterization of new material systems, and (3) optimization of the semiconductor devices. In all three cases, the experimental technique of choice is photoluminescence (PL) spectroscopy. The thesis is organized as follows. Chapter 2 gives a summary of the PL properties of semiconductors relevant for this work. The first section deals with the intrinsic processes in an ideal direct band gap material, starting with a brief summary of the theoretical background followed by the overview of a typical PL scenario. In the second part of the chapter, the role of the lattice-vibrations, the internal electric fields as well as the influence of the band-structure and the dielectric environment are discussed. Finally, extrinsic PL properties are presented in the third section, focusing on defects and disorder in real materials. In chapter 3, the experimental realization of the spectroscopic studies is discussed. The time-resolved photoluminescence (TRPL) setup is presented, focusing on the applied excitation source, non-linear frequency mixing, and the operation of the streak camera used for the detection. In addition, linear spectroscopy setup for continous-wave (CW) PL and absorption measurements is illustrated. Chapter 4 aims at the study of the interactions between electrons and lattice-vibrations in semiconductor crystals relevant for the proper description of carrier dynamics as well as the heat-transfer processes. The presented discussion covers the experimental studies of many-body effects in phonon-assisted emission of semiconductors due to the carriercarrier Coulomb-interaction. The corresponding theoretical background is discussed in detail in chapter 2. The investigations are focused on the two main questions regarding electron-hole plasma contributions to the phonon-assisted light-matter interaction as well as

  5. Quantifying Forest Ground Flora Biomass Using Close-range Remote Sensing (United States)

    Paul F. Doruska; Robert C. Weih; Matthew D. Lane; Don C. Bragg


    Close-range remote sensing was used to estimate biomass of forest ground flora in Arkansas. Digital images of a series of 1-m² plots were taken using Kodak DCS760 and Kodak DCS420CIR digital cameras. ESRI ArcGIS™ and ERDAS Imagine® software was used to calculate the Normalized Difference Vegetation Index (NDVI) and the Average Visible...

  6. Ground and Range Operations for a Heavy-Lift Vehicle: Preliminary Thoughts (United States)

    Rabelo, Luis; Zhu, Yanshen; Compton, Jeppie; Bardina, Jorge


    This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.

  7. The social ecology of resolving family conflict among West African immigrants in New York: a grounded theory approach. (United States)

    Rasmussen, Andrew; Chu, Tracy; Akinsulure-Smith, Adeyinka M; Keatley, Eva


    The current study employs a grounded theory approach to examine West African immigrants' resolution of parent-child conflict and intimate partner conflict. Data from 59 participants present an interactive social ecological framework, where a lack of resolution at one level results in attempts to resolve problems at higher levels. Four levels are identified within West African immigrants' problem solving ecology, each with specific actors in positions of authority: individual/dyadic (parents and spouses), extended family (which includes distant relatives and relatives living in home countries), community leadership (non-family elders and religious leaders), and state authorities. From participants' descriptions of family challenges emerged a picture of a social ecology in flux, with traditional, socially conservative modes of resolving family conflict transposed across migration into the more liberal and state-oriented familial context of the United States. This transposition results in a loss spiral for the traditional social ecology, differentially affecting individual actors within families. Implications for helping professionals working with new immigrant communities include identifying variability in openness to adapting structures that are not working well (e.g., patriarchal protection of abusive husbands) and supporting structures known to be associated with well being (e.g., collective monitoring of youth).

  8. Spatially resolved distribution function and the medium-range order in metallic liquid and glass

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiaowei; Wang, Cai-Zhuang; Hao, Shaogang; Kramer, Matthew; Yao, Yongxin; Mendelev, Mikhail; Napolitano, Ralph; Ho, Kai-Ming


    The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu{sub 64.5}Zr{sub 35.5} alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe 'Bergman triacontahedron' packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

  9. Spatially resolved distribution function and the medium-range order in metallic liquid and glass. (United States)

    Fang, X W; Wang, C Z; Hao, S G; Kramer, M J; Yao, Y X; Mendelev, M I; Ding, Z J; Napolitano, R E; Ho, K M


    The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu(64.5)Zr(35.5) alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe "Bergman triacontahedron" packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

  10. Ranging behaviour of little bustard males, Tetrax tetrax, in the lekking grounds. (United States)

    Ponjoan, Anna; Bota, Gerard; Mañosa, Santi


    We investigated the ranging behaviour during the breeding season of 18 radiotracked little bustard (Tetrax tetrax) males, a disperse-lekking species inhabiting the cereal pseudo-steppes. The average kernel 95% home range was 60±50 ha and the average cluster 85% area was 17±17 ha. Range structure was as relevant as home range size for explaining the variation in the ranging behaviour of males, which could be partially explained by age, habitat quality and site. Ranging behaviour varied from males defending small and concentrated home ranges with high habitat quality, to males holding larger home ranges composed by several arenas. Our results suggest that social dominance and resource availability may affect ranging behaviour of males during the breeding season. Also, mating systems constraints may play a role on the use of space of males within the lekking ground. The ranging behaviour of a given male may be determined by a tendency to reduce and concentrate the home range as age and social status increase, and several fine-tuning mechanisms adjusting the ranging behaviour to the prevailing environmental or social factors on a given site and year. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Challenging Adiabatic Time-dependent Density Functional Theory with a Hubbard Dimer: The Case of Time-Resolved Long-Range Charge Transfer

    CERN Document Server

    Fuks, Johanna I


    We explore an asymmetric two-fermion Hubbard dimer to test the accuracy of the adiabatic approximation of time-dependent density functional theory in modelling time-resolved charge transfer. We show that the model shares essential features of a ground state long-range molecule in real-space, and by applying a resonant field we show that the model also reproduces essential traits of the CT dynamics. The simplicity of the model allows us to propagate with an "adiabatically-exact" approximation, i.e. one that uses the exact ground-state exchange-correlation functional, and compare with the exact propagation. This allows us to study the impact of the time-dependent charge-transfer step feature in the exact correlation potential of real molecules on the resulting dynamics. Tuning the parameters of the dimer allows a study both of charge-transfer between open-shell fragments and between closed-shell fragments. We find that the adiabatically-exact functional is unable to properly transfer charge, even in situations ...

  12. Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range (United States)

    Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.


    Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.

  13. The Co-Teaching Journey: A Systematic Grounded Theory Study Investigating How Secondary School Teachers Resolve Challenges in Co-Teaching (United States)

    Gerst, Sharon


    The purpose of this systematic grounded theory study was to explain how problems inherent in co-teaching relationships are resolved by secondary school special education and general education teachers at an urban school district in Eastern Iowa. The participants were general and special education secondary school teachers involved in effective…

  14. Holocene relative sea level variations at the spit system Feddet (Denmark) resolved by ground-penetrating radar and geomorphological data

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Bendixen, Mette; Clemmensen, Lars B

    Estimates of Holocene sea-level variations have been presented in a range of studies based on different approaches, including interpretation of internal beach ridge characteristics from ground-penetrating radar (GPR) and geomorphological data. We present GPR data and geomorphological observations...... of independent GPR and geomorphologic data collected across the recent and sub-recent beach ridge deposits. The data analyses include coastal topography, internal dips of beach ridge layers, and sea-level measurements. A clear change in characteristic layer dip is observed between beach face and upper shoreface...

  15. Long-range interactions of excited He atoms with ground-state noble-gas atoms

    KAUST Repository

    Zhang, J.-Y.


    The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition operators. The large-n expansions for the sums over the He oscillator strength divided by the corresponding transition energy are presented for these series. Using the expansions, the C6 coefficients for the systems involving He(131,3S) and He(131,3P) are calculated and found to be in good agreement with directly calculated values.

  16. Potential health impacts from range fires at Aberdeen Proving Ground, Maryland.

    Energy Technology Data Exchange (ETDEWEB)

    Willians, G.P.; Hermes, A.M.; Policastro, A.J.; Hartmann, H.M.; Tomasko, D.


    This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of two naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires.

  17. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface. (United States)

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi


    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Bias correction and verification of extended-range ECMWF forecasts against ground observations in Europe (United States)

    Monhart, Samuel; Spirig, Christoph; Bhend, Jonas; Liniger, Mark A.; Bogner, Konrad; Schär, Christoph


    In recent years large progress has been made in numerical weather prediction. The implementation of ensemble forecasts has led to better predictability especially at longer lead times, including extended-range (monthly) to seasonal time horizons. The verification of such predictions is often done for areal averages of upper air parameters. Only few studies exist that verify the forecasts for surface parameters at point locations although applications often require local information. With this study we aim at providing an extensive station-wise verification of extended range forecasts in Europe. We therefore verified the ECMWF extended-range forecast against approximately 1000 ground based observational time series across Europe. To do so, we made use of 20 years of hindcasts of the forecasting system that was operational from May 2014 to April 2015 (cycle 40r1), yielding an analysis period of May 1995 to June 2014. This data set is large enough to stratify the performance of the forecast system with season and region. Weekly temperature and precipitation of both raw hindcasts and post-processed hindcasts were analyzed. For the post-processing two techniques were compared, a mean debiasing (MD) and a quantile mapping (QM) approach. Various skill scores (RPSS, CRPSS, ROCSS) characterizing different aspects of forecast quality were computed using simple forecasts based on climatology as a benchmark. Overall, skillful forecasts were found in some regions and seasons up to three weeks of lead time in case of temperature and up to two weeks for precipitation, respectively. Bias-corrections allowed to enhance forecast skill in the first two weeks for most of the stations. QM generally performed better in particular concerning the improvement of reliability as illustrated by the resulting spread to error ratios close to one. Spatial and seasonal differences in skill were found both for temperature and precipitation, with winter forecasts generally being better than those

  19. Nondestructive assessment of fruit biological age in Brazilian mangoes by time-resolved reflectance spectroscopy in the 540-900 nm spectral range

    NARCIS (Netherlands)

    Spinelli, L.; Rizzolo, A.; Vanoli, M.; Grassi, M.; Eccher Zerbini, P.C.; Meirelles de Azevedo Pementel, A.; Torricelli, A.


    Time-resolved Reflectance Spectroscopy (TRS) in the 540–900 nm spectral range has been tested in order to assess nondestructively the biological age of Brazilian mangoes. To this purpose a TRS set-up has been used to measure absorption and scattering coefficients of 60 intact mango fruits (cultivar

  20. North American tree squirrels and ground squirrels with overlapping ranges host different Cryptosporidium species and genotypes

    Czech Academy of Sciences Publication Activity Database

    Stenger, B.L.S.; Clark, M.E.; Kváč, Martin; Khan, E.; Giddings, C.W.; Prediger, Jitka; McEvoy, J.M.


    Roč. 36, 2015-Dec (2015), s. 287-293 ISSN 1567-1348 R&D Projects: GA ČR GA15-01090S Institutional support: RVO:60077344 Keywords : Cryptosporidium * Tree squirrels * Ground squirrels * Host specificity * Zoonotic Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.591, year: 2015

  1. Seasonal variation in daily activity patterns of free-ranging European ground squirrels (Spermophilus citellus)

    NARCIS (Netherlands)

    Everts, LG; Strijkstra, AM; Hut, RA; Hoffmann, IE; Millesi, E


    Daily aboveground activity of European ground squirrels (Spermophilus citellus) in their natural habitat was recorded with a visual scanning procedure during the active seasons of 1992 and 1993. Activity patterns were analyzed with respect to time of year and to the animal's reproductive state.

  2. Renormalized energy of ground and first excited state of Fröhlich polaron in the range of weak coupling

    Directory of Open Access Journals (Sweden)

    M.V. Tkach


    Full Text Available The partial summing of infinite range of diagrams for the two-phonon mass operator of polaron described by Frohlich Hamiltonian is performed using the Feynman-Pines diagram technique. The renormalized spectral parameters of ground and first excited (phonon repeat polaron state are accurately calculated for the weak electron-phonon coupling at T=0 K. It is shown that the stronger electron-phonon interaction shifts the energy of both states into low-energy region of the spectra. The ground state stays stationary and the excited one - decays at bigger coupling constant.

  3. Characterizing Non-Resolved Debris Through Spectral and Photometric Ground-Based Telescopic Data: What Can Laboratory Ground-truth Data Do for You? (United States)

    Lederer, Susan


    NASA's ODPO has recently collected data of unresolved objects at GEO with the 3.8m UKIRT infrared telescope on Mauna Kea and the 1.3m MCAT visible telescope on Ascension Island. Analyses of SWIR data of rocket bodies and HS-376 solar-panel covered buses demonstrate the uniqueness of spectral signatures. Data of 3 classes of rocket bodies show similarities amongst a given class, but distinct differences from one class to another, suggesting that infrared reflectance spectra could effectively be used toward characterizing and constraining potential parent bodies of uncorrelated targets (UCTs). The Optical Measurements Center (OMC) at NASA JSC is designed to collect photometric signatures in the laboratory that can be used for comparison with telescopic data. NASA also has a spectral database of spacecraft materials for use with spectral unmixing models. Spectral unmixing of the HS-376 bus data demonstrates how absorption features and slopes can be used to constrain material characteristics of debris. Broadband photometry likewise can be compared with MCAT data of non-resolved debris images. Similar studies have been applied to IDCSP satellites to demonstrate how color-color photometry can be compared with lab data to constrain bulk materials signatures of spacecraft and debris.

  4. Lidar (Light Detection and Ranging) Remote Measurements of STS-3 Ground Cloud Emissions. (United States)


    mobile Uidar test bed can successfully track ground clouds from an observation point greater than 7 kilometers distant and acquire cloud main body and...complex distribution of H20, HCL, A1 203 and Al Cl 3 . Aging of the cloud is subject to particle settling, chemical recomposition , growth, evaporative 11...reconstructed from the video recording of the launch. At this time the main body of the expanding cloud was beneath the lidar scan and the first lidar

  5. Frequency-resolved optical gating system with a tellurium crystal for characterizing free-electron lasers in the wavelength range of 10-30 microm. (United States)

    Iijima, Hokuto; Nagai, Ryoji; Nishimori, Nobuyuki; Hajima, Ryoichi; Minehara, Eisuke J


    A second-harmonic generation frequency-resolved optical gating (SHG-FROG) system has been developed for the complete characterization of laser pulses in the wavelength range of 10-30 microm. A tellurium crystal is used so that spectrally resolved autocorrelation signals with a good signal-to-noise ratio are obtained. Pulses (wavelength approximately 22 microm) generated from a free-electron laser are measured by the SHG-FROG system. The SHG intensity profile and the spectrum obtained by FROG measurements are well consistent with those of independent measurements of the pulse length and spectrum. The pulse duration and spectral width determined from the FROG trace are 0.6 ps and 5.2 THz at full width half maximum, respectively.

  6. New approach to resolve the amount of Quaternary uplift and associated denudation of the mountain ranges in the Japanese Islands

    Directory of Open Access Journals (Sweden)

    Shigeru Sueoka


    Full Text Available Low-temperature thermochronology is a widely used tool for revealing denudation histories of mountain ranges. Although this technique has been applied mainly to continental orogens, such as the European Alps, Himalayas, and Andes, recent technological development of low-temperature thermochronology has made it applicable to a wider variety of mountain ranges with various sizes and tectonic histories. The Japanese Islands comprise young and active island arcs, where an early stage of mountain range formation is observed. Numerous attempts have been made to constrain the uplift and denudation histories of the mountains in the Japanese Islands using geologic, geomorphologic, or geodetic methods. However, the number of thermochronometric attempts has been limited primarily due to the small amount of total denudation since the initiation of the uplift. In this review paper, we introduce the tectonic and geomorphic settings of the mountain ranges in the Japanese Islands, and discuss previous attempts to estimate uplift or denudation of the Japanese mountains using methods other than thermochronology. Furthermore, we discuss problems of the thermochronometric applications in revealing denudation histories of the Japanese mountains. Finally, we present a case study of the Kiso Range in central Japan and discuss the current effectiveness and applicability of low-temperature thermochronology to the Japanese mountainous areas.

  7. Long-range magnetic fields in the ground state of the Standard Model plasma. (United States)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Shaposhnikov, Mikhail


    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at nonzero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new equilibrium state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation could occur in the early Universe and may play an important role in its subsequent evolution.

  8. Long-range magnetic fields in the ground state of the Standard Model plasma

    CERN Document Server

    Boyarsky, Alexey; Shaposhnikov, Mikhail


    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at non-zero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation can occur in the early Universe and may play an important role in its subsequent evolution.

  9. Numerical results on the short-range spin correlation functions in the ground state of the two-dimensional Hubbard model (United States)

    Qin, Mingpu; Shi, Hao; Zhang, Shiwei


    Optical lattice experiments with ultracold fermion atoms and quantum gas microscopy have recently realized direct measurements of magnetic correlations at the site-resolved level. We calculate the short-range spin-correlation functions in the ground state of the two-dimensional repulsive Hubbard model with the auxiliary-field quantum Monte Carlo (AFQMC) method. The results are numerically exact at half filling where the fermion sign problem is absent. Away from half filling, we employ the constrained path AFQMC approach to eliminate the exponential computational scaling from the sign problem. The constraint employs unrestricted Hartree-Fock trial wave functions with an effective interaction strength U , which is optimized self-consistently within AFQMC. Large supercells are studied, with twist averaged boundary conditions as needed, to reach the thermodynamic limit. We find that the nearest-neighbor spin correlation always increases with the interaction strength U , contrary to the finite-temperature behavior where a maximum is reached at a finite U value. We also observe a change of sign in the next-nearest-neighbor spin correlation with increasing density, which is a consequence of the buildup of the long-range antiferromagnetic correlation. We expect the results presented in this paper to serve as a benchmark as lower temperatures are reached in ultracold atom experiments.

  10. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine. (United States)

    Johnson, Jeremy A; Kim, Kilyoung; Mayhew, Maurine; Mitchell, Deborah G; Sevy, Eric T


    Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

  11. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands (United States)

    Tyuterev, Vladimir G.; Kochanov, Roman V.; Tashkun, Sergey A.


    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to Δ V = 6. A particular challenge was a correct description of the B-type bands (even Δ V3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μ m range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm-1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  12. Characterization of ground-water flow between the Canisteo Mine Pit and surrounding aquifers, Mesabi Iron Range, Minnesota (United States)

    Jones, Perry M.


    The U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, conducted a study to characterize ground-water flow conditions between the Canisteo Mine Pit, Bovey, Minnesota, and surrounding aquifers following mine abandonment. The objective of the study was to estimate the amount of steady-state, ground-water flow between the Canisteo Mine Pit and surrounding aquifers at pit water-level altitudes below the level at which surface-water discharge from the pit may occur. Single-well hydraulic tests and stream-hydrograph analyses were conducted to estimate horizontal hydraulic conductivities and ground-water recharge rates, respectively, for glacial aquifers surrounding the mine pit. Average hydraulic conductivity values ranged from 0.05 to 5.0 ft/day for sands and clays and from 0.01 to 121 ft/day for coarse sands, gravels, and boulders. The 15-year averages for the estimated annual recharge using the winter records and the entire years of record for defining baseflow recession rates were 7.07 and 7.58 in., respectively. These recharge estimates accounted for 25 and 27 percent, respectively, of the average annual precipitation for the 1968-82 streamflow monitoring period. Ground-water flow rates into and out of the mine pit were estimated using a calibrated steady-state, ground-water flow model simulating an area of approximately 75 mi2 surrounding the mine pit. The model residuals, or difference between simulated and measured water levels, for 15 monitoring wells adjacent to the mine pit varied between +28.65 and –3.78 ft. The best-match simulated water levels were within 4 ft of measured water levels for 9 of the 15 wells, and within 2 ft for 4 of the wells. The simulated net ground-water flow into the Canisteo Mine Pit was +1.34 ft3/s, and the net ground-water flow calculated from pit water levels measured between July 5, 1999 and February 25, 2001 was +5.4 ft3/s. Simulated water levels and ground-water flow to and from the mine

  13. Testing of ground fault relay response during the energisation of megawatt range electric boilers in thermal power plants

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Davidsen, Troels


    Large controllable loads may support power systems with an increased penetration of fluctuating renewable energy, by providing a rapid response to a change in the power production. Megawatt range electric boilers are an example of such controllable loads, capable of change rapidly, with the advan......Large controllable loads may support power systems with an increased penetration of fluctuating renewable energy, by providing a rapid response to a change in the power production. Megawatt range electric boilers are an example of such controllable loads, capable of change rapidly...... for the testing of two ground fault protection relays, in order to assure that they are not triggered by the energisation of the boiler. The test is performed via an OMICRON CMC 256 with Advanced TransPlay SW, which generates the signals that would be present at the secondary of the instrumentation transformers......, resulting in a realistic simulation environment. The test of different cases demonstrates that the relays will not present unwanted triggering....

  14. FrFT-CSWSF: Estimating cross-range velocities of ground moving targets using multistatic synthetic aperture radar

    Directory of Open Access Journals (Sweden)

    Li Chenlei


    Full Text Available Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar (SAR, which is important for ground moving target indication (GMTI. Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model (ESTIM of the azimuth signal, has two steps: first, a set of finite impulse response (FIR filter banks based on a fractional Fourier transform (FrFT is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting (CSWSF algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.

  15. Ground based snow water equivalent versus remotely sensed snow water extent assimilation for medium range streamflow simulation (United States)

    Schaner, N. A.; Voisin, N.; Lettenmaier, D. P.


    In general, it is difficult for snow data assimilation to produce improvements in seasonal streamflow forecasts made with a well calibrated hydrological model when forced (up to the forecast time) by high quality gridded station data, because the uncertainty in the seasonal climate forecasts heavily influences streamflow forecast accuracy. On the other hand, improvements should be realizable for short to medium range (up to about 15 days) forecasts where the initial hydrologic conditions have more influence. Ground-based snow water equivalent (SWE) is observed at many locations across the western U.S., and is a state variable in most hydrological models, hence in principle can be assimilated directly into hydrologic models. However the challenge in assimilating SWE lies in the spatial disaggregation of point-based measurements in complex terrain and with varying observation density network, to the spatial resolution of hydrological models, which typically represent basin-average or grid cell-average (possibly with elevation bands) conditions, rather than points. The station-based SWE assimilation approach we consider here is taken from the University of Washington's West-Wide Seasonal Forecast system and uses the NRCS SNOw TELemetry (SNOTEL) network of about 600 stations across the mountainous West. The approach relies on a disaggregation using spatial and elevation-based weights. Satellite-derived Snow Cover Extent (SCE), in contrast, defines the spatial extent of the snow coverage but must rely on an empirical SCE-SWE relationship to produce estimates of SWE, which can then be assimilated. The direct insertion of SCE has not lead to much improvement in streamflow forecasts at seasonal lead times in previous studies, but our results show more marked improvements for shorter lead times. We evaluate the differences in potential forecast error reductions in medium range streamflow simulations (perfect forecast) for both SWE and SCE assimilation over the Feather River

  16. Signal-to-noise ratio improvements in laser flow diagnostics using time-resolved image averaging and high dynamic range imaging (United States)

    Giassi, Davide; Long, Marshall B.


    Two alternative image readout approaches are demonstrated to improve the signal-to-noise ratio (SNR) in temporally resolved laser-based imaging experiments of turbulent phenomena. The first method exploits the temporal decay characteristics of the phosphor screens of image intensifiers when coupled to an interline-transfer CCD camera operated in double-frame mode. Specifically, the light emitted by the phosphor screen, which has a finite decay constant, is equally distributed and recorded over the two sequential frames of the detector so that an averaged image can be reconstructed. The characterization of both detector and image intensifier showed that the technique preserves the correct quantitative information, and its applicability to reactive flows was verified using planar Rayleigh scattering and tested with the acquisition of images of both steady and turbulent partially premixed methane/air flames. The comparison between conventional Rayleigh results and the averaged ones showed that the SNR of the averaged image is higher than the conventional one; with the setup used in this work, the gain in SNR was seen to approach 30 %, for both the steady and turbulent cases. The second technique uses the two-frame readout of an interline-transfer CCD to increase the image SNR based on high dynamic range imaging, and it was tested in an unsteady non-reactive flow of Freon-12 injected in air. The result showed a 15 % increase in the SNR of the low-pixel-count regions of an image, when compared to the pixels of a conventionally averaged one.

  17. The ground state of long-range Schrödinger equations and static qq̄ potential

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); INFN, Via Arnesano, 73100 Lecce (Italy); Metafune, Giorgio [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); Pallara, Diego [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); INFN, Via Arnesano, 73100 Lecce (Italy)


    Motivated by the recent results in about the quark-antiquark potential in N=4 SYM, we reconsider the problem of computing the asymptotic weak-coupling expansion of the ground state energy of a certain class of 1d Schrödinger operators −((d{sup 2})/(dx{sup 2}))+λ V(x) with long-range potential V(x). In particular, we consider even potentials obeying ∫{sub ℝ}dx V(x)<0 with large x asymptotics V∼−a/x{sup 2}−b/x{sup 3}+⋯. The associated Schrödinger operator is known to admit a bound state for λ→0{sup +}, but the binding energy is rigorously non-analytic at λ=0. Its asymptotic expansion starts at order O(λ), but contains higher corrections λ{sup n} log{sup m} λ with all 0≤m≤n−1 and standard Rayleigh-Schrödinger perturbation theory fails order by order in λ. We discuss various analytical tools to tame this problem and provide the general expansion of the binding energy at O(λ{sup 3}) in terms of quadratures. The method is tested on a soluble potential that is fully under control, and on various non-soluble cases as well. A supersymmetric case, arising in the study of the quark-antiquark potential in N=6 ABJ(M) theory, is also exploited to provide a further non-trivial consistency check. Our analytical results confirm at third order a remarkable exponentiation of the leading infrared logarithms, first noticed in N=4 SYM where it may be proved by Renormalization Group arguments. We prove this interesting feature at all orders at the level of the Schrödinger equation for general potentials in the considered class.

  18. Sound transmission at ground level in a short-grass prairie habitat and its implications for long-range communication in the swift fox Vulpes velox

    DEFF Research Database (Denmark)

    Darden, Safi K; Pedersen, Simon B; Larsen, Ole N


    seem to persist to at least 400 m. Individual temporal features were very consistent to at least 400 m. The communication range of the barking sequences is likely to be farther than 400 m and it should be considered a long-ranging vocalization. However, relative to the large home ranges of swift foxes......The acoustic environment of swift foxes Vulpes velox vocalizing close to the ground and the effect of propagation on individual identity information in vocalizations were quantified in a transmission experiment in prairie habitat. Sounds were propagated (0.45 m above the ground) at distances up.......2-2.5 kHz propagated the furthest and the latter sweeps exhibited the best transmission properties for long-range propagation. Swift fox barking sequence elements are centered toward the lower end of this frequency range. Nevertheless, measurable individual spectral characteristics of the barking sequence...

  19. Leaf traits and photosynthetic responses of Betula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads. (United States)

    Harmens, Harry; Hayes, Felicity; Sharps, Katrina; Mills, Gina; Calatayud, Vicent


    Ground-level ozone (O3) concentrations and atmospheric nitrogen (N) deposition rates have increased strongly since the 1950s. Rising ground-level O3 concentrations and atmospheric N deposition both affect plant physiology and growth, however, impacts have often been studied in isolation rather than in combination. In addition, studies are often limited to a control treatment and one or two elevated levels of ozone and/or nitrogen supply. In the current study, three-year old Betula pendula saplings were exposed to seven different O3 profiles (24h mean O3 concentration of 36-68ppb in 2013, with peaks up to an average of 105ppb) in precision-controlled hemispherical glasshouses (solardomes) and four different N loads (10, 30, 50 or 70kgNha-1y-1) in 2012 and 2013. Here we report on the effects of enhanced O3 concentrations and N load on leaf traits and gas exchange in leaves of varying age and developmental stage in 2013. The response of leaf traits to O3 (but not N) vary with leaf developmental stage. For example, elevated O3 did not affect the chlorophyll content of the youngest fully expanded leaf, but it reduced the chlorophyll content and photosynthetic parameters in aging leaves, relatively more so later than earlier in the growing season. Elevated O3 enhanced the N content of senesced leaves prior to leaf fall, potentially affecting subsequent N cycling in the soil. Enhanced N generally stimulated the chlorophyll content and photosynthetic capacity. Whilst elevated O3 reduced the light-saturated rate of photosynthesis (Asat) in aging leaves, it did not affect stomatal conductance (gs). This suggests that photosynthesis and gs are not closely coupled at elevated O3 under-light saturating conditions. We did not observe any interactions between O3 and N regarding photosynthetic parameters (Vc,max, Jmax, Asat), chlorophyll content, gs, N content in senesced leaves and leaf number. Hence, the sensitivity of these leaf traits to O3 in young silver birch trees is

  20. Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range (United States)

    Konugolu Venkata Sekar, Sanathana; Farina, Andrea; Martinenghi, Edoardo; Dalla Mora, Alberto; Taroni, Paola; Pifferi, Antonio; Durduran, Turgut; Pagliazzi, Marco; Lindner, Claus; Farzam, Parisa; Mora, Mireia; Squarcia, Mattia; Urbano-Ispizua, A.


    We report on the design, performance assessment, and first in vivo measurement of a Time-Resolved Diffuse Optical system for broadband (600-1350 nm) nm measurement of absorption and scattering spectra of biological tissues for non-invasive clinical diagnostics. Two strategies to reduce drift and enhance responsivity are adopted. The system was enrolled in a first in vivo test phase on healthy volunteers, carrying out non-invasive, in vivo quantification of key tissue constituents (oxy- and deoxy-hemoglobin, water, lipids, collagen) and tissue micro-structure (scatterer size and density).

  1. Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops

    Directory of Open Access Journals (Sweden)

    Sandra Lorenz


    Full Text Available Recently, ground-based hyperspectral imaging has come to the fore, supporting the arduous task of mapping near-vertical, difficult-to-access geological outcrops. The application of outcrop sensing within a range of one to several hundred metres, including geometric corrections and integration with accurate terrestrial laser scanning models, is already developing rapidly. However, there are few studies dealing with ground-based imaging of distant targets (i.e., in the range of several kilometres such as mountain ridges, cliffs, and pit walls. In particular, the extreme influence of atmospheric effects and topography-induced illumination differences have remained an unmet challenge on the spectral data. These effects cannot be corrected by means of common correction tools for nadir satellite or airborne data. Thus, this article presents an adapted workflow to overcome the challenges of long-range outcrop sensing, including straightforward atmospheric and topographic corrections. Using two datasets with different characteristics, we demonstrate the application of the workflow and highlight the importance of the presented corrections for a reliable geological interpretation. The achieved spectral mapping products are integrated with 3D photogrammetric data to create large-scale now-called “hyperclouds”, i.e., geometrically correct representations of the hyperspectral datacube. The presented workflow opens up a new range of application possibilities of hyperspectral imagery by significantly enlarging the scale of ground-based measurements.

  2. Quantum-Phase Resolved Mapping of Ground-State Vibrational D2 Wave Packets via Selective Depletion in Intense Laser Pulses (United States)

    Ergler, Th.; Feuerstein, B.; Rudenko, A.; Zrost, K.; Schröter, C. D.; Moshammer, R.; Ullrich, J.


    Applying 7 fs pump-probe pulses (780nm, 4×1014W/cm2) we observe electronic ground-state vibrational wave packets in neutral D2 with a period of T=11.101(70)fs by following the internuclear separation (R-)dependent ionization with a sensitivity of Δ⟨R⟩≤0.02Å. The absolute phase of the wave packet’s motion provides evidence for R-dependent depletion of the ground state by nonlinear ionization, to be the dominant preparation mechanism. A phase shift of about π found between pure ionization (D2+) and dissociation (D++D) channels opens a pathway of quantum control.

  3. Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters

    NARCIS (Netherlands)

    Cambraia Lopes, P.; Clementel, E.; Crespo, P.; Henrotin, S.; Huizenga, J.; Janssens, G.; Parodi, K.; Prieels, D.; Roellinghoff, F.; Smeets, J.; Stichelbaut, F.; Schaart, D.R.


    Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in

  4. Joint derivation method for determining optical properties based on steady-state spatially resolved diffuse reflectance measurement at small source-detector separations and large reduced albedo range: theory and simulation. (United States)

    Shi, Zhenzhi; Fan, Ying; Zhao, Huijuan; Xu, Kexin


    Accurate determination of the optical properties (the absorption coefficient μ(a) and the reduced scattering coefficient μ(s) (')) of tissues is very important in a variety of diagnostic and therapeutic procedures. Optical diffusion theory is frequently used as the forward model for describing the photon transfer in media with large reduced albedos (a(')) and in large source-detector separations (SDS). Several other methods (PN approximation, hybrid diffusion-P3 approximation) have also been published that describe photon transfer in media with low a(') or small SDSs. We studied the theoretical models for the steady-state spatially resolved diffuse reflectance measurement to accurately determine μ(a) and μ(s) (') at large a(') range but small SDSs. Instead of using a single model, a joint derivation method is proposed. The developed method uses one of the best aforementioned theoretical methods separately in five ranges of a(') determined from several forward models. In the region of small SDSs (the range between 0.4 and 8 mm) and large a(') range (between 0.5 and 0.99), the best theoretical derivation model was determined. The results indicate that the joint derivation method can improve the derivation accuracy and that a(') range can be determined by the steady-state spatially resolved diffuse reflectance measurement.

  5. Response of ground-dwelling spider assemblages to prescribed fire following stand structure manipulation in the southern Cascade Range (United States)

    Nancy E. Gillette; Richard S. Vetter; Sylvia R. Mori; Carline R. Rudolph; Dessa R. Welty


    We assessed spider (Arachnida: Araneae) responses to prescribed fire following stand s tructure treatments in ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) stands in the Cascade Range of California. Stands were logged or left untreated to create three levels of structural diversity. We logged one treatment to minimize old-growth...

  6. Marking Territory: Legislated Genres, Stakeholder Beliefs, and the Possibilities for Common Ground in the Mexican Wolf Blue Range Reintroduction Project (United States)

    Walsh, Lynda


    This article reports the results of a study analyzing the interaction of administrative genres and stakeholder beliefs in the Mexican Wolf Blue Range Reintroduction Project (MWBRRP) in New Mexico and Arizona. The author examines this interaction through an analysis of a set of 944 recorded public comments (with administrative responses) concerning…

  7. High-grade iron ore deposits of the Mesabi Range, Minnesota-product of a continental-scale proterozoic ground-water flow system (United States)

    Morey, G.B.


    The Mesabi Range along the north edge of the Paleoproterozoic Penokean orogen in northern Minnesota has produced 3.6 billion metric tons of ore since its discovery in 1890. Of that amount, 2.3 billion metric tons were extracted from hematite- or geothite-rich deposits generally referred to as 'high-grade' ores. The high-grade ores formed as the Biwabik Iron-Formation was oxidized, hydrated, and leached by solutions flowing along open faults and fractures. The source of the ore-forming solutions has been debated since it was first proposed that the ores were weathering products formed by descending meteoritic ground-water flowing in late Mesozoic time. Subsequently others believed that the ores were better explained by ascending solutions, possbily hydrothermal solutions of pre-Phanerzoic age. Neither Wolff nor Gruner could reconcile their observations with a reasonable source for the solutions. In this paper, I build on modern mapping of the Mesabi Range and mine-specific geologic observations summarized in the literature to propose a conceptual model in which the high-grade ores formed from ascending solutions that were part of continent-scale topographic or gravity-driven ground-water system. I propose that the ground-water system was active during the later stages of the development of a coupled fold and thrust belt and foreland basin that formed during the Penokean orogen.

  8. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus via range expansion of Asclepias host plants.

    Directory of Open Access Journals (Sweden)

    Nathan P Lemoine

    Full Text Available Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp. host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in

  9. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants. (United States)

    Lemoine, Nathan P


    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  10. Inferring the colonization of a mountain range--refugia vs. nunatak survival in high alpine ground beetles. (United States)

    Lohse, Konrad; Nicholls, James A; Stone, Graham N


    It has long been debated whether high alpine specialists survived ice ages in situ on small ice-free islands of habitat, so-called nunataks, or whether glacial survival was restricted to larger massifs de refuge at the periphery. We evaluate these alternative hypotheses in a local radiation of high alpine carabid beetles (genus Trechus) in the Orobian Alps, Northern Italy. While summits along the northern ridge of this mountain range were surrounded by the icesheet as nunataks during the last glacial maximum, southern areas remained unglaciated. We analyse a total of 1366 bp of mitochondrial (Cox1 and Cox2) data sampled from 150 individuals from twelve populations and 530 bp of nuclear (PEPCK) sequence sampled for a subset of 30 individuals. Using Bayesian inference, we estimate ancestral location states in the gene trees, which in turn are used to infer the most likely order of recolonization under a model of sequential founder events from a massif de refuge from the mitochondrial data. We test for the paraphyly expected under this model and for reciprocal monophyly predicted by a contrasting model of prolonged persistence of nunatak populations. We find that (i) only three populations are incompatible with the paraphyly of the massif de refuge model, (ii) both mitochondrial and nuclear data support separate refugial origins for populations on the western and eastern ends of the northern ridge, and (iii) mitochondrial node ages suggest persistence on the northern ridge for part of the last ice age. © 2010 Blackwell Publishing Ltd.

  11. Organic electronic materials: Recent advances in the dft description of the ground and excited states using tuned range-separated hybrid functionals

    KAUST Repository

    Körzdörfer, Thomas


    Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers.In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter.We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of π-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer limit, and for the

  12. Dual Brushless Resolver Rate Sensor (United States)

    Howard, David E. (Inventor)


    A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.

  13. The home range of a recently established group of Southern ground-hornbill (Bucorvus leadbeateri in the Limpopo Valley, South Africa

    Directory of Open Access Journals (Sweden)

    Nicholas Theron


    Full Text Available Little is known about Southern ground-hornbill (SGH population ecology outside of large, formally protected areas where the largest declines in numbers have been recorded. The SGH has started re-colonising, establishing group territories and breeding successfully in the Limpopo Valley on the northern border of South Africa, following localised extinction from the 1950s to the 1970s. A group of SGH was monitored over a period of 14 months by means of radio telemetry across privately owned land in order to investigate their seasonal habitat movements in this semi-arid, predominantly livestock-based environment. We also investigated seasonal fluctuations in invertebrate prevalence, as an indication of food availability and its influence on seasonal SGH group movements and foraging activity patterns. There was a clear increase in food availability during the summer rainfall period allowing the group to forage over a wider area, whilst winter foraging remained localised within their range. Kernel home range analysis indicated a marked difference in size between the summer (13 409 ha and winter (5280 ha home ranges, with an overall home range of 19 372 ha, which is approximately double that of home ranges recorded that fall within formally and informally protected reserves. In this article, we proposed that food availability is the driving force for home range size and seasonal activity patterns in a semi-arid livestock-ranching habitat.Conservation implications: The Limpopo Valley SGH population is one of the most significant outside protected areas in South Africa. This population is especially vulnerable to threats such as poisoning, persecution for window breaking and drought, as shown by their near extirpation from the area. Conservation efforts need to focus on awareness amongst local farmers, provision of artificial nests and continued monitoring of groups.


    Directory of Open Access Journals (Sweden)

    C. Li


    Full Text Available Building 3D reconstruction based on ground remote sensing data (image, video and lidar inevitably faces the problem that buildings are always occluded by vegetation, so how to automatically remove and repair vegetation occlusion is a very important preprocessing work for image understanding, compute vision and digital photogrammetry. In the traditional multispectral remote sensing which is achieved by aeronautics and space platforms, the Red and Near-infrared (NIR bands, such as NDVI (Normalized Difference Vegetation Index, are useful to distinguish vegetation and clouds, amongst other targets. However, especially in the ground platform, CIR (Color Infra Red is little utilized by compute vision and digital photogrammetry which usually only take true color RBG into account. Therefore whether CIR is necessary for vegetation segmentation or not has significance in that most of close-range cameras don’t contain such NIR band. Moreover, the CIE L*a*b color space, which transform from RGB, seems not of much interest by photogrammetrists despite its powerfulness in image classification and analysis. So, CIE (L, a, b feature and support vector machine (SVM is suggested for vegetation segmentation to substitute for CIR. Finally, experimental results of visual effect and automation are given. The conclusion is that it's feasible to remove and segment vegetation occlusion without NIR band. This work should pave the way for texture reconstruction and repair for future 3D reconstruction.

  15. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range. (United States)

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G


    An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.

  16. RESOLVE Project (United States)

    Parker, Ray O.


    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  17. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change.

    Directory of Open Access Journals (Sweden)

    Wallace M Meyer

    Full Text Available The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May and summer (September 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon biomes. Four arthropod taxa: (1 beetles (Coleoptera, (2 spiders (Araneae, (3 grasshoppers and crickets (Orthoptera, and (4 millipedes and centipedes (Myriapoda were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species and 76% (254 species of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests. Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11-25% depending on taxon, significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  18. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change. (United States)

    Meyer, Wallace M; Eble, Jeffrey A; Franklin, Kimberly; McManus, Reilly B; Brantley, Sandra L; Henkel, Jeff; Marek, Paul E; Hall, W Eugene; Olson, Carl A; McInroy, Ryan; Bernal Loaiza, Emmanuel M; Brusca, Richard C; Moore, Wendy


    The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA) assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May) and summer (September) 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon) biomes. Four arthropod taxa: (1) beetles (Coleoptera), (2) spiders (Araneae), (3) grasshoppers and crickets (Orthoptera), and (4) millipedes and centipedes (Myriapoda) were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens) Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species) and 76% (254 species) of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests). Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11-25% depending on taxon), significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  19. Potential areas of ground-water discharge in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah (United States)

    U.S. Geological Survey, Department of the Interior — These data represent potential areas of ground-water discharge for selected hydrographic areas in eastern Nevada and western Utah. The data are based on phreatophyte...

  20. Exploring the degree of trawling disturbance by the analysis of benthic communities ranging from a heavily exploited fishing ground to an undisturbed area in the NW Mediterranean

    Directory of Open Access Journals (Sweden)

    Silvia de Juan


    Full Text Available This study focuses on 4 sites in the northwestern Mediterranean to investigate the response of benthic fauna across a gradient of trawling impact. One site was located in a heavily exploited fishing ground. The second site was enclosed in the fishing ground but had not been trawled in twenty years. The third site was located adjacent to a marine protected area and was subjected to occasional trawling. The fourth site was located inside the marine protected area, where trawling was banned thirty years ago. Side-scan sonar records of trawl marks on the seabed confirmed the gradient of trawling intensity. We investigated the response of benthic fauna to trawling disturbance at the mesoscale of a fishing ground. We compared the observed patterns of abundance, biomass, diversity and community structure for epifauna and infauna with responses predicted from previous studies. Results showed that those communities less impacted by trawling sustained more biogenically habitat-structured communities (e.g. more abundance of sessile suspension feeders at the less disturbed sites against higher dominance of small invertebrates at the disturbed site. Moreover, these results confirm the benefits of restricting trawling activities for benthic communities, with marine reserves as the paradigm for the conservation of Mediterranean fishing grounds.

  1. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California (United States)

    Jeton, Anne E.; Maurer, Douglas K.


    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide

  2. Evapotranspiration Rate Measurements of Vegetation Typical of Ground-Water Discharge Areas in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah, September 2005-August 2006 (United States)

    Moreo, Michael T.; Laczniak, Randell J.; Stannard, David I.


    Evapotranspiration was measured at six eddy-correlation sites for a 1-year period between September 1, 2005, and August 31, 2006. Five sites were in phreatophytic shrubland dominated by greasewood, and one site was in a grassland meadow. The measured annual evapotranspiration ranged from 10.02 to 12.77 inches at the shrubland sites and 26.94 inches at the grassland site. Evapotranspiration rates correlated to measured vegetation densities and to satellite-derived vegetation indexes. Evapotranspiration rates were greater at sites with denser vegetation. The primary water source supporting evapotranspiration was water derived from local precipitation at the shrubland sites, and ground water at the grassland site. Measured precipitation, ranging from 6.21 to 11.41 inches, was within 20 percent of the computed long-term annual mean. The amount of ground water consumed by phreatophytes depends primarily on local precipitation and vegetation density. The ground-water contribution to local evapotranspiration ranged from 6 to 38 percent of total evapotranspiration at the shrubland sites, and 70 percent of total evapotranspiration at the grassland site. Average depth to water ranged from 7.2 to 32.4 feet below land surface at the shrubland sites, and 3.9 feet at the grassland site. Water levels declined throughout the growing season and recovered during the non-growing season. Diurnal water-level fluctuations associated with evapotranspiration were evident at some sites but not at others.

  3. Mediation for resolving family disputes

    Directory of Open Access Journals (Sweden)

    Kamenecka-Usova M.


    Full Text Available Nowadays the understanding of the institute of marriage and its importance in the society has changed. Marriage is no longer assumed to be a commitment for a lifetime. As the principle of equality has replaced hierarchy as the guiding principle of family law it gave more grounds for family disputes and it became socially acceptable to leave marriages that are intolerable or merely unfulfilling. The aim of this article is to suggest an alternative dispute resolution method-mediation as a worthy option for resolving family conflicts.

  4. Resolving boosted jets with XCone

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse; Wilkason, Thomas F. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA, 02139 (United States)


    We show how the recently proposed XCone jet algorithm smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies — dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs — that demonstrate the physics applications of XCone over a wide kinematic range.

  5. A ground-based magnetic survey of Frenchman Flat, Nevada National Security Site and Nevada Test and Training Range, Nevada: data release and preliminary interpretation (United States)

    Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund


    The Nevada National Security Site (NNSS, formerly the Nevada Test Site) is located in southern Nevada approximately 105 kilometers (km) (65 miles) northwest of Las Vegas. Frenchman Flat is a sedimentary basin located on the eastern edge of NNSS and extending eastward into the adjacent Nevada Test and Training Range (NTTR).

  6. Resolving Lifshitz Horizons

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Sarah; Kachru, Shamit; Wang, Huajia; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC


    Via the AdS/CFT correspondence, ground states of field theories at finite charge density are mapped to extremal black brane solutions. Studies of simple gravity + matter systems in this context have uncovered wide new classes of extremal geometries. The Lifshitz metrics characterizing field theories with non-trivial dynamical critical exponent z {ne} 1 emerge as one common endpoint in doped holographic toy models. However, the Lifshitz horizon exhibits mildly singular behaviour - while curvature invariants are finite, there are diverging tidal forces. Here we show that in some of the simplest contexts where Lifshitz metrics emerge, Einstein-Maxwell-dilaton theories, generic corrections lead to a replacement of the Lifshitz metric, in the deep infrared, by a re-emergent AdS{sub 2} x R{sup 2} geometry. Thus, at least in these cases, the Lifshitz scaling characterizes the physics over a wide range of energy scales, but the mild singularity is cured by quantum or stringy effects.

  7. W-Band Polarimetric Scattering Features of a Tactical Ground Target Using a 1.56THz 3D Imaging Compact Range (United States)


    differences in the amplitudes of scatterers (due primarily to elevation related phasing and aperture dependent pixel division) the PSMs of the TSAR images...on a T8OB with the TSAR data is shown in Figure 2. Figure 2a is an image made by projecting the 3D data onto a top view of the target. Figure 2b TSAR data set taken at thesame angle. The TSAR measurements were made in a separate 1.56THz compact range where the model target is fully

  8. Range finding of Alfvén oscillations and direction finding of ion-cyclotron waves by using the ground-based ULF finder

    Directory of Open Access Journals (Sweden)

    A. Guglielmi

    Full Text Available A new approach to the problem of direction and distance finding of magnetospheric ULF oscillations is described. It is based on additional information about the structure of geoelectromagnetic field at the Earth's surface which is contained in the known relations of the theory of magnetovariation and magnetotelluric sounding. This allows us to widen the range of diagnostic tools by using observations of Alfvén oscillations in the Pc 3–5 frequency band and the ion-cyclotron waves in the Pc 1 frequency band. Preliminary results of the remote sensing of the magnetosphere at low-latitudes using the MHD ranger technique are presented. The prospects for remote sensing of the plasmapause position are discussed.

  9. Reinventing Grounded Theory: Some Questions about Theory, Ground and Discovery (United States)

    Thomas, Gary; James, David


    Grounded theory's popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed--"theory," "ground" and "discovery"--which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory,…

  10. Resolving Environmental Conflicts (United States)

    McCarthy, Jane E.


    An experimental approach now being tried to resolve environmental conflicts is the use of the negotiation-mediation process. The role of the mediator and the nature of the mediation process as applied to environmental disputes are outlined. (BT)

  11. Spectrally resolved frequency comb interferometry (United States)

    van den Berg, S.


    In this contribution a novel method for interferometric distance measurement is presented, that is based on unraveling the spectrum of a femtosecond frequency comb. The light of a frequency comb is sent into a Michelson interferometer. The output of the interferometer is analyzed by a high-resolution spectrometer, resolving the individual comb modes. The path-length difference between the two arms is determined on the level of tens of nm, by utilizing the wealth of information present in the unraveled spectrum, showing homodyne interference for each individual frequency comb mode. The measurement method allows for high-accuracy measurements in combination with a large range of non-ambiguity.

  12. Operation: Inherent Resolve

    DEFF Research Database (Denmark)

    Cramer-Larsen, Lars


    Kapitlet giver læseren indsigt i den internationale koalitions engagement mod IS igennem Operaton Inherent Resolve; herunder koalitionens strategi i forhold til IS strategi, ligesom det belyser kampagnens legalitet og folkeretlige grundlag, ligesom det giver et bud på overvejelser om kampagnens l...

  13. Resolving-Power Quantization

    CERN Document Server

    Neuberger, Herbert


    Starting with a general discussion, a program is sketched for a quantization based on dilations. This resolving-power quantization is simplest for scalar field theories. The hope is to find a way to relax the requirement of locality so that the necessity to fine tune mass parameters is eliminated while universality is still preserved.

  14. Grounded theory


    Harris, Tina


    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate app...

  15. Grounded theory. (United States)

    Harris, Tina


    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  16. Deriving aerosol scattering ratio using range-resolved lidar ratio

    Indian Academy of Sciences (India)


    Feb 13, 2014 ... Author Affiliations. Reji K Dhaman1 V Krishnakumar1 V P Mahadevan Pillai1 M Satyanarayana1 K Raghunath1. Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum 695 581, India ...

  17. Deriving aerosol scattering ratio using range-resolved lidar ratio

    Indian Academy of Sciences (India)


    Feb 13, 2014 ... [1] M Satyanarayana, S R Radhakrishnan, S Veerabhuthiran, V P Mahadevan Pillai, B. Presennakumar, V S Murty and K Raghunath, J. Appl. Rem. Sens. 4, 043503 (2010). [2] A Ansmann, D Althausen, U Wandinger, K Franke, D Muller, F Wagner and J Heitzenberg,. Geophys. Res. Lett. 27, 963 (2000).

  18. Lidar Range-Resolved Optical Remote Sensing of the Atmosphere

    CERN Document Server

    Weitkamp, Claus


    Written by leading experts in optical radar, or lidar, this book brings all the recent practices up-to-date and covers a multitude of applications, from atmospheric sciences to environmental protection. Its broad cross-disciplinary scope should appeal to both the experienced scientist and the novice in the field. The Foreword is by one of the early pioneers in the area, Herbert Walther.

  19. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... of ground war tactics for how we understand political campaigns and what it means to participate in them. He shows how ground wars are waged using resources well beyond those of a given candidate and their staff. These include allied interest groups and civic associations, party-provided technical...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  20. Efficient ground-state cooling of an ion in a large room-temperature linear Paul trap with a sub-Hertz heating rate

    DEFF Research Database (Denmark)

    Poulsen, Gregers; Miroshnychenko, Yevhen; Drewsen, Michael


    We demonstrate efficient resolved sideband laser cooling (99±1% ground-state population) of a single 40Ca+ ion in a large linear Paul trap (electrode spacing of 7 mm) operated at an rf drive frequency of just 3.7 MHz. For ion oscillation frequencies in the range 280–585 kHz, heating rates below o...

  1. Rotationally resolved infrared spectroscopy of adamantane

    NARCIS (Netherlands)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.


    We present the first rotationally resolved spectra of adamantane (C(10)H(16)) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 334500 cm(-1)range using as source of IR radiation both synchrotron radiation (at the AILES

  2. Rotationally resolved infrared spectroscopy of adamantane

    NARCIS (Netherlands)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.


    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm−1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of

  3. Acquisition, Visualization and Analysis of Photo Real 3D Virtual Geology at High Accuracy: Oblique, Close Range Data Acquisition From the Ground With Digital Cameras, Terrestrial Laser Scanners and GPS (United States)

    Xu, X.; Aiken, C. L.


    For almost seven years we have been mapping geology digitally using a combination of laser rangefinding and GPS. We have extended that concept to add unique real photo texture mapping. This is a unique method combining computer visualization and photogrammetry and has been used to build 3D photo real models at millimeter to centimeter accuracy and resolution of a variety of 3D features especially extensive geologic outcrops in the US, Spain, Ireland, United Kingdom, and Mexico. Although the method is independent of the type of laser rangefinder being used we presently are using fast laser scanners for faster and more detailed models although these data sets are then extremely large resulting in hardware and software problems for users. These models are globally oriented so they can be integrated with other globally positioned data sets such as drill holes, geophysical surveys (seismic and ground penetrating radar), and conventional geologic mapping (stratigraphic sections, outcrop mapping of contacts and orientations.) etc. Three dimensional measurements such as strikes, dips and thicknesses are extracted by fitting surfaces to digitized lines in 3D space defining the intersection of a boundary or fracture/fault with the surface, allowing quantitative measurements with associated statistics. The models have incorporated data from as many as one hundred close range oblique photos (taken from the ground or helicopters etc.) and 60 terrestrial scans over a single site, and laterally over several kilometers. We have also applied the method to processing air photos, using the terrestrial scanners for the terrain model ( at a few centimeters), control from GPS and the commercially acquired air photos for the real photo texture mapping for a fully realized 3D orthophoto. We use the term "real photos" rather than "photorealistic" because the latter has been used for models with texture surfaces that are "like the real" but not the "real" photo surface whereas our approach

  4. Spatially resolved multicomponent gels (United States)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.


    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  5. Spatially resolved multicomponent gels. (United States)

    Draper, Emily R; Eden, Edward G B; McDonald, Tom O; Adams, Dave J


    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this 'self-sorted network' is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  6. Infrasound from ground to space (United States)

    Bowman, Daniel Charles

    Acoustic detector networks are usually located on the Earth's surface. However, these networks suffer from shortcomings such as poor detection range and pervasive wind noise. An alternative is to deploy acoustic sensors on high altitude balloons. In theory, such platforms can resolve signals arriving from great distances, acquire others that never reach the surface at all, and avoid wind noise entirely. This dissertation focuses on scientific advances, instrumentation, and analytical techniques resulting from the development of such sensor arrays. Results from infrasound microphones deployed on balloon flights in the middle stratosphere are described, and acoustic sources such as the ocean microbarom and building ventilation systems are discussed. Electromagnetic noise originating from the balloon, flight system, and other payloads is shown to be a pervasive issue. An experiment investigating acoustic sensor calibration at low pressures is presented, and implications for high altitude recording are considered. Outstanding challenges and opportunities in sound measurement using sensors embedded in the free atmosphere are outlined. Acoustic signals from field scale explosions designed to emulate volcanic eruptions are described, and their generation mechanisms modeled. Wave forms recorded on sensors suspended from tethered helium balloons are compared with those detected on ground stations during the experiment. Finally, the Hilbert-Huang transform, a high time resolution spectral analysis method for nonstationary and nonlinear time series, is presented.

  7. Resolving inventory differences

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.H.; Clark, J.P.


    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID.

  8. Time-resolved photoemission using attosecond streaking (United States)

    Nagele, S.; Pazourek, R.; Wais, M.; Wachter, G.; Burgdörfer, J.


    We theoretically study time-resolved photoemission in atoms as probed by attosecond streaking. We review recent advances in the study of the photoelectric efect in the time domain and show that the experimentally accessible time shifts can be decomposed into distinct contributions that stem from the feld-free photoionization process itself and from probe-field induced corrections. We perform accurate quantum-mechanical as well as classical simulations of attosecond streaking for efective one-electron systems and determine all relevant contributions to the time delay with attosecond precision. In particular, we investigate the properties and limitations of attosecond streaking for the transition from short-ranged potentials (photodetachment) to long-ranged Coulomb potentials (photoionization). As an example for a more complex system, we study time-resolved photoionization for endohedral fullerenes A@C60 and discuss how streaking time shifts are modifed due to the interaction of the C60 cage with the probing infrared streaking field.

  9. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States. (United States)

    Di, Qian; Rowland, Sebastian; Koutrakis, Petros; Schwartz, Joel


    Ground-level ozone is an important atmospheric oxidant, which exhibits considerable spatial and temporal variability in its concentration level. Existing modeling approaches for ground-level ozone include chemical transport models, land-use regression, Kriging, and data fusion of chemical transport models with monitoring data. Each of these methods has both strengths and weaknesses. Combining those complementary approaches could improve model performance. Meanwhile, satellite-based total column ozone, combined with ozone vertical profile, is another potential input. The authors propose a hybrid model that integrates the above variables to achieve spatially and temporally resolved exposure assessments for ground-level ozone. The authors used a neural network for its capacity to model interactions and nonlinearity. Convolutional layers, which use convolution kernels to aggregate nearby information, were added to the neural network to account for spatial and temporal autocorrelation. The authors trained the model with the Air Quality System (AQS) 8-hr daily maximum ozone in the continental United States from 2000 to 2012 and tested it with left out monitoring sites. Cross-validated R2 on the left out monitoring sites ranged from 0.74 to 0.80 (mean 0.76) for predictions on 1 km × 1 km grid cells, which indicates good model performance. Model performance remains good even at low ozone concentrations. The prediction results facilitate epidemiological studies to assess the health effect of ozone in the long term and the short term. Ozone monitors do not provide full data coverage over the United States, which is an obstacle to assess the health effect of ozone when monitoring data are not available. This paper used a hybrid approach to combine satellite-based ozone measurements, chemical transport model simulations, land-use terms, and other auxiliary variables to obtain spatially and temporally resolved ground-level ozone estimation.

  10. RESOLVE and ECO: Survey Design (United States)

    Kannappan, Sheila; Moffett, Amanda J.; Norris, Mark A.; Eckert, Kathleen D.; Stark, David; Berlind, Andreas A.; Snyder, Elaine M.; Norman, Dara J.; Hoversten, Erik A.; RESOLVE Team


    The REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey is a volume-limited census of stellar, gas, and dynamical mass as well as star formation and galaxy interactions within >50,000 cubic Mpc of the nearby cosmic web, reaching down to dwarf galaxies of baryonic mass ~10^9 Msun and spanning multiple large-scale filaments, walls, and voids. RESOLVE is surrounded by the ~10x larger Environmental COntext (ECO) catalog, with matched custom photometry and environment metrics enabling analysis of cosmic variance with greater statistical power. For the ~1500 galaxies in its two equatorial footprints, RESOLVE goes beyond ECO in providing (i) deep 21cm data with adaptive sensitivity ensuring HI mass detections or upper limits <10% of the stellar mass and (ii) 3D optical spectroscopy including both high-resolution ionized gas or stellar kinematic data for each galaxy and broad 320-725nm spectroscopy spanning [OII] 3727, Halpha, and Hbeta. RESOLVE is designed to complement other radio and optical surveys in providing diverse, contiguous, and uniform local/global environment data as well as unusually high completeness extending into the gas-dominated dwarf galaxy regime. RESOLVE also offers superb reprocessed photometry including full, deep NUV coverage and synergy with other equatorial surveys as well as unique northern and southern facilities such as Arecibo, the GBT, and ALMA. The RESOLVE and ECO surveys have been supported by funding from NSF grants AST-0955368 and OCI-1156614.

  11. Children's perceptions of strategies for resolving community health problems. (United States)

    Kalnins, Ilze; Hart, Corrine; Ballantyne, Peri; Quartaro, Georgia; Love, Rhonda; Sturis, Gunta; Pollack, Patti


    We examine children's perceptions of the strategies they would use to resolve community health problems. Qualitative analysis using a grounded theory approach showed that 9- to 10-year-old children could conceptualize a range of solutions to hypothetical community health problems. Children's responses reflected an egocentric perspective, one that was centered on self and peers acting on short-term solutions to the immediate problem. Less frequently, children conceptualized broader structural interventions aimed at removing the problem altogether. Children could name resource persons including their friends, family, school personnel and other people in the community. However, outside of their family and peers, their knowledge was non-specific, i.e. it is doubtful that they would actually be able to access the resources. In light of our findings we discuss several important implications for future research. We note that children are interested in changing community conditions that affect their heath. However, their recognition of their marginalized position in adult society and their perception that adults do not take them seriously may be significant barriers to their participation. We suggest that society must rethink the position and roles that are assigned to children so that their valuable potential is not lost.

  12. Spatially resolved spectroscopy on semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Johanna


    Cleared edge overgrowth (CEO) nanostructures are identified and studied by 1D und 2D {mu}PL mapping scans and by time-resolved and power-dependent measurements. Distinct excitonic ground states of 2fold CEO QDs with large localization energies are achieved. The deeper localization reached as compared to the only other report on 2fold CEO QDs in literature is attributed to a new strain-free fabrication process and changed QW thickness in [001] growth. In order to achieve controlled manipulation of 2fold CEO QDs the concept of a CEO structure with three top gates and one back gate is presented. Due to the complexity of this device, a simpler test structure is realized. Measurements on this test structure confirm the necessity to either grow significantly thicker overgrowth layers or to provide separate top gates in all three spatial direction to controllably manipulate 2fold CEO QDs with an external electric field. (orig.)

  13. Resolving the Phoma enigma. (United States)

    Chen, Q; Jiang, J R; Zhang, G Z; Cai, L; Crous, P W


    The Didymellaceae was established in 2009 to accommodate Ascochyta, Didymella and Phoma, as well as several related phoma-like genera. The family contains numerous plant pathogenic, saprobic and endophytic species associated with a wide range of hosts. Ascochyta and Phoma are morphologically difficult to distinguish, and species from both genera have in the past been linked to Didymella sexual morphs. The aim of the present study was to clarify the generic delimitation in Didymellaceae by combing multi-locus phylogenetic analyses based on ITS, LSU, rpb2 and tub2, and morphological observations. The resulting phylogenetic tree revealed 17 well-supported monophyletic clades in Didymellaceae, leading to the introduction of nine genera, three species, two nomina nova and 84 combinations. Furthermore, 11 epitypes and seven neotypes were designated to help stabilise the taxonomy and use of names. As a result of these data, Ascochyta, Didymella and Phoma were delineated as three distinct genera, and the generic circumscriptions of Ascochyta, Didymella, Epicoccum and Phoma emended. Furthermore, the genus Microsphaeropsis, which is morphologically distinct from the members of Didymellaceae, grouped basal to the Didymellaceae, for which a new family Microsphaeropsidaceae was introduced.

  14. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi


    A prominent strand within current migration research argues that, to understand the participation of immigrants in their host societies, we must focus on their incorporation into the cities in which they settle. This article narrows the perspective further by focusing on the role that immigrants...... play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements...

  15. On the interpretation of time-resolved anisotropic diffraction patterns

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm


    In this paper, we review existing systematic treatments for the interpretation of anisotropic diffraction patterns from partially aligned symmetric top molecules. Such patterns arise in the context of time-resolved diffraction experiments. We calculate diffraction patterns for ground-state NaI ex......I excited with an ultraviolet laser. The results are interpreted with the help of a qualitative analytic model, and general recommendations on the analysis and interpretation of anisotropic diffraction patterns are given....

  16. Grounded Intersectionality

    DEFF Research Database (Denmark)

    Marfelt, Mikkel Mouritz


    Purpose – The purpose of this paper is to build on contemporary intersectional literature to develop a grounded methodological framework for the study of social differences. Design/methodology/approach – A systematic literature review serves as the foundation for a discussion of the challenges...... associated with intersectional research. The findings assist in positioning the proposed methodological framework within recent intersectional debates. Findings – The review shows a rise in intersectional publications since the birth of the “intersectionality” term in 1989. Moreover, the paper points to four...... tensions within the field: a tension between looking at or beyond oppression; a tension between structural-oriented and process-oriented perspectives; an apparent incommensurability among the macro, meso, and micro levels of analysis; and a lack of coherent methodology. Research limitations...

  17. Time resolved measurements of cathode fall in high frequency fluorescent lamps (United States)

    Hadrath, S.; Garner, R. C.; Lieder, G. H.; Ehlbeck, J.


    Measurements are presented of the time resolved cathode and anode falls of high frequency fluorescent lamps for a range of discharge currents typically encountered in dimming mode. Measurements were performed with the movable anode technique. Supporting spectroscopic emission measurements were made of key transitions (argon 420.1 nm and mercury 435.8 nm), whose onset coincide with cathode fall equalling the value associated with the energy, relative to the ground state, of the upper level of the respective transition. The measurements are in general agreement with the well-known understanding of dimmed lamp operation: peak cathode fall decreases with increasing lamp current and with increasing auxiliary coil heating. However, the time dependence of the measurements offers additional insight.

  18. Time resolved measurements of cathode fall in high frequency fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Hadrath, S [Institute of Low-Temperature Plasma Physics, Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Garner, R C [Central Research and Services Laboratory, OSRAM Sylvania, 71 Cherry Hill Dr, Beverly, MA 01915 (United States); Lieder, G H [Research Light Sources, Osram GmbH, Hellabrunner Str. 1, D-81536 Munich (Germany); Ehlbeck, J [Institute of Low-Temperature Plasma Physics, Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany)


    Measurements are presented of the time resolved cathode and anode falls of high frequency fluorescent lamps for a range of discharge currents typically encountered in dimming mode. Measurements were performed with the movable anode technique. Supporting spectroscopic emission measurements were made of key transitions (argon 420.1 nm and mercury 435.8 nm), whose onset coincide with cathode fall equalling the value associated with the energy, relative to the ground state, of the upper level of the respective transition. The measurements are in general agreement with the well-known understanding of dimmed lamp operation: peak cathode fall decreases with increasing lamp current and with increasing auxiliary coil heating. However, the time dependence of the measurements offers additional insight.

  19. The current evolution of complex high mountain debris-covered glacier systems and its relation with ground ice nature and distribution: the case of Rognes and Pierre Ronde area (Mont-Blanc range, France). (United States)

    Bosson, Jean-Baptiste; Lambiel, Christophe


    The current climate forcing, through negative glacier mass balance and rockfall intensification, is leading to the rapid burring of many small glacier systems. When the debris mantle exceeds some centimeters of thickness, the climate control on ice melt is mitigated and delayed. As well, debris-covered glaciers respond to climate forcing in a complex way. This situation is emphasised in high mountain environments, where topo-climatic conditions, such as cold temperatures, amount of solid precipitation, duration of snow cover, nebulosity or shadow effect of rockwalls, limit the influence of rising air temperatures in the ground. Beside, due to Holocene climate history, glacier-permafrost interactions are not rare within the periglacial belt. Glacier recurrence may have removed and assimilated former ice-cemented sediments, the negative mass balance may have led to the formation of ice-cored rock glaciers and neopermafrost may have formed recently under cold climate conditions. Hence, in addition to sedimentary ice, high mountain debris-covered glacier systems can contain interstitial magmatic ice. Especially because of their position at the top of alpine cascade systems and of the amount of water and (unconsolidated) sediment involved, it is important to understand and anticipate the evolution of these complex landforms. Due to the continuous and thick debris mantle and to the common existence of dead ice in deglaciated areas, the current extent of debris-covered glacier can be difficult to point out. Thus, the whole system, according to Little Ice Age (LIA) extent, has sometimes to be investigated to understand the current response of glacier systems to the climate warming. In this context, two neighbouring sites, Rognes and Pierre Ronde systems (45°51'38''N, 6°48'40''E; 2600-3100m a.s.l), have been studied since 2011. These sites are almost completely debris-covered and only few ice outcrops in the upper slopes still witness the existence of former glaciers

  20. Getting grounded: using Glaserian grounded theory to conduct nursing research. (United States)

    Hernandez, Cheri Ann


    Glaserian grounded theory is a powerful research methodology for understanding client behaviour in a particular area. It is therefore especially relevant for nurse researchers. Nurse researchers use grounded theory more frequently than other qualitative analysis research methods because of its ability to provide insight into clients' experiences and to make a positive impact. However, there is much confusion about the use of grounded theory.The author delineates key components of grounded theory methodology, areas of concern, and the resulting implications for nursing knowledge development. Knowledge gained from Glaserian grounded theory research can be used to institute measures for enhancing client-nurse relationships, improving quality of care, and ultimately improving client quality of life. In addition, it can serve to expand disciplinary knowledge in nursing because the resulting substantive theory is a middle-range theory that can be subjected to later quantitative testing.

  1. Lightning detection and ranging (United States)

    Lennon, C. L.; Poehler, H. A.


    A lightning detector and ranging (LDAR) system developed at the Kennedy Space Center and recently transferred to Wallops Island is described. The system detects pulsed VHF signals due to electrical discharges occurring in a thunderstorm by means of 56-75 MHz receivers located at the hub and at the tips of 8 km radial lines. Incoming signals are transmitted by wideband links to a central computing facility which processes the times of arrival, using two independent calculations to determine position in order to guard against false data. The results are plotted on a CRT display, and an example of a thunderstorm lightning strike detection near Kennedy Space Center is outlined. The LDAR correctly identified potential ground strike zones and additionally provided a high correlation between updrafts and ground strikes.

  2. Euthanasia: above ground, below ground. (United States)

    Magnusson, R S


    The key to the euthanasia debate lies in how best to regulate what doctors do. Opponents of euthanasia frequently warn of the possible negative consequences of legalising physician assisted suicide and active euthanasia (PAS/AE) while ignoring the covert practice of PAS/AE by doctors and other health professionals. Against the background of survey studies suggesting that anything from 4% to 10% of doctors have intentionally assisted a patient to die, and interview evidence of the unregulated, idiosyncratic nature of underground PAS/AE, this paper assesses three alternatives to the current policy of prohibition. It argues that although legalisation may never succeed in making euthanasia perfectly safe, legalising PAS/AE may nevertheless be safer, and therefore a preferable policy alternative, to prohibition. At a minimum, debate about harm minimisation and the regulation of euthanasia needs to take account of PAS/AE wherever it is practised, both above and below ground.

  3. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc


    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  4. Resolving Ethical Issues at School (United States)

    Benninga, Jacques S.


    Although ethical dilemmas are a constant in teachers' lives, the profession has offered little in the way of training to help teachers address such issues. This paper presents a framework, based on developmental theory, for resolving professional ethical dilemmas. The Four-Component Model of Moral Maturity, when used in conjunction with a…

  5. Strategies for Resolving Value Dilemmas. (United States)

    Tymchuk, Alexander J.


    Presents a model that can be used by social scientists to formulate and test choice alternatives to select the most ethical course of action when values are in conflict. Graduate students in psychology, education, and medicine have used the model to recognize and resolve ethical problems. (RM)

  6. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)


    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  7. Time-resolved study of excited states of N2 near its first ionization threshold (United States)

    Moise, Angelica; Prince, Kevin C.; Richter, Robert


    Two-photon, two-color double-resonance ionization spectroscopy combining synchrotron vacuum ultraviolet radiation with a tunable near-infrared (NIR) laser has been used to investigate gerade symmetry states of the nitrogen molecule. The rotationally resolved spectrum of an autoionizing 1Σg- state has been excited via the intermediate c4 (v = 0) 1Πu Rydberg state. We present the analysis of the band located at Tv = 10 800.7 ± 2 cm-1 with respect to the intermediate state, 126 366 ± 11 cm-1 with respect to the ground state, approximately 700 cm-1 above the first ionization threshold. From the analysis a rotational constant of Bv = 1.700 ± 0.005 cm-1 has been determined for this band. Making use of the pulsed structure of the two radiation beams, lifetimes of several rotational levels of the intermediate state have been measured. We also report rotationally-averaged fluorescence lifetimes (300 K) of several excited electronic states accessible from the ground state by absorption of one photon in the range of 13.85-14.9 eV. The averaged lifetimes of the c4 (0) and c5 (0) states are 5.6 and 4.4 ns, respectively, while the b' (12), c'4 (4, 5, 6), and c'5 (0) states all have lifetimes in the range of hundreds of picoseconds.

  8. Angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Barton, J.J.


    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs.

  9. Minimum resolvable power contrast model (United States)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing


    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  10. Panchromatic SED modelling of spatially-resolved galaxies (United States)

    Smith, Daniel J. B.; Hayward, Christopher C.


    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially-resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226,950 MAGPHYS SED fits to regions between 0.2 kpc and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  11. Ground penetrating radar

    CERN Document Server

    Daniels, David J


    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  12. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.


    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  13. RESOLVE's Field Demonstration on Mauna Kea, Hawaii 2010 (United States)

    Captain, Janine; Quinn, Jacqueline; Moss, Thomas; Weis, Kyle


    In cooperation with the Canadian Space Agency, and the Northern Centre for Advanced Technology, Inc., NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The resulting water could be electrolyzed into oxygen to support exploration and hydrogen, which would be recycled through the process. The RESOLVE chemical processing system was mounted on a Canadian Space Agency mobility chasis and successfully demonstrated on Hawaii's Mauna Kea volcano in February 2010. The RESOLVE unit is the initial prototype of a robotic prospecting mission to the Moon. RESOLVE is designed to go to the poles of the Moon to "ground truth" the form and concentration of the hydrogen/water/hydroxyl that has been seen from orbit (M3, Lunar Prospector and LRO) and to test technologies to extract oxygen from the lunar regolith. RESOLVE has the ability to capture a one-meter core sample of lunar regolith and heat it to determine the volatiles that may be released and then demonstrate the production of oxygen from minerals found in the regolith. The RESOLVE project, which is led by KSC, is a multi-center and multi-organizational effort that includes representatives from KSC, JSC, GRC, the Canadian Space Agency, and the Northern Center for Advanced Technology (NORCAT). This paper details the results obtained from four days of lunar analog testing that included gas chromatograph analysis for volatile components, remote control of chemistry and drilling operations via satalite communications, and real-time water quantification using a novel capacitance measurement technique.

  14. Time-Resolved Gravimetric Method To Assess Degassing of Roasted Coffee. (United States)

    Smrke, Samo; Wellinger, Marco; Suzuki, Tomonori; Balsiger, Franz; Opitz, Sebastian E W; Yeretzian, Chahan


    During the roasting of coffee, thermally driven chemical reactions lead to the formation of gases, of which a large fraction is carbon dioxide (CO 2 ). Part of these gases is released during roasting while part is retained inside the porous structure of the roasted beans and is steadily released during storage or more abruptly during grinding and extraction. The release of CO 2 during the various phases from roasting to consumption is linked to many important properties and characteristics of coffee. It is an indicator for freshness, plays an important role in shelf life and in packaging, impacts the extraction process, is involved in crema formation, and may affect the sensory profile in the cup. Indeed, and in view of the multiple roles it plays, CO 2 is a much underappreciated and little examined molecule in coffee. Here, we introduce an accurate, quantitative, and time-resolved method to measure the release kinetics of gases from whole beans and ground coffee using a gravimetric approach. Samples were placed in a container with a fitted capillary to allow gases to escape. The time-resolved release of gases was measured via the weight loss of the container filled with coffee. Long-term stability was achieved using a customized design of a semimicro balance, including periodic and automatic zero value measurements and calibration procedures. The novel gravimetric methodology was applied to a range of coffee samples: (i) whole Arabica beans and (ii) ground Arabica and Robusta, roasted to different roast degrees and at different speeds (roast air temperatures). Modeling the degassing rates allowed structural and mechanistic interpretation of the degassing process.

  15. Orbital Evolution and Orbital Phase Resolved Spectroscopy of the ...

    Indian Academy of Sciences (India)

    tra in the 3–20 keV energy range were fitted with a power law and a high ... acceleration method and also depends on any anisotropy in the stellar wind structure. .... Orbital Evolution and Orbital Phase Resolved Spectroscopy. 415. Figure 3. (a) Pulse arrival time delays measured from the RXTE-PCA observation in 2003,.

  16. Resolving a protracted refugee situation through a regional process

    Directory of Open Access Journals (Sweden)

    Olga Mitrovic


    Full Text Available Protracted refugee situations are usually a result of political deadlock, and their resolution demands the involvement of a range of actors and a multifaceted approach focused on leveraging political will. Despite its shortcomings, the Regional Process in the Western Balkans offers a number of lessons for resolving such situations.

  17. The spatially resolved [C II] Cooling line deficit in galaxies

    NARCIS (Netherlands)

    Smith, J. D T; Croxall, Kevin; Draine, Bruce; Looze, Ilse De; Sandstrom, Karin; Armus, Lee; Beirão, Pedro; Bolatto, Alberto; Boquien, Mederic; Brandl, B.R.; Crocker, Alison; Dale, Daniel A.; Galametz, Maud; Groves, Brent; Helou, George; Herrera-Camus, Rodrigo; Hunt, Leslie; Kennicutt, Robert; Walter, Fabian; Wolfire, Mark


    We present [C ii] 158 μm measurements from over 15,000 resolved regions within 54 nearby galaxies of the Kingfish program to investigate the so-called [C ii] "line-cooling deficit" long known to occur in galaxies with different luminosities. The [C ii]/TIR ratio ranges from above 1% to below 0.1%

  18. Resolved Stellar Populations as Tracers of Outskirts (United States)

    Crnojević, Denija

    Galaxy haloes contain fundamental clues about the galaxy formation and evolution process: hierarchical cosmological models predict haloes to be ubiquitous and to be (at least in part) the product of past merger and/or accretion events. The advent of wide-field surveys in the last two decades has revolutionized our view of our own Galaxy and its closest "sister", Andromeda, revealing copious tidal streams from past and ongoing accretion episodes, as well as doubling the number of their known faint satellites. The focus shall now be shifted to galaxy haloes beyond the Local Group: resolving individual stars over significant areas of galaxy haloes will enable estimates of their ages, metallicities and gradients. The valuable information collected for galaxies with a range of masses, morphologies and within diverse environments will ultimately test and quantitatively inform theoretical models of galaxy formation and shed light onto the many challenges faced by simulations on galactic scales.

  19. Time resolved spectroscopy of shock compressed liquids (United States)

    Ogilvie, K.; Duvall, G. E.


    An experimental procedure has been developed for using a rotating mirror camera to record time-resolved absorption spectra of liquids undergoing shock compression. Experimental records have been obtained for cells containing liquid carbon disulfide shocked, through reverberation, to peak pressures of 55, 80, 100 and 120 kbar. Experiments have been performed using both reflected and transmitted light. Time and spectral resolution were limited to approximately 30 nsec and 30 Å; spectral range was from 4000 to 2500 Å. This initial work on carbon disulfide shows it to become highly absorptive when shocked to low pressures of 8 to 14 kbar, and to progressively become a better broadband reflector as the pressure in a thin layer rings up to the final value. A decay in the reflectivity after reaching peak pressure in the 120 kbar experiment may indicate chemical decomposition. This is in accord with earlier results of S. A. Sheffield based on measurement of flow parameters.

  20. Ground Control System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros


    The Ground Control System contributes to the safe construction and operation of the subsurface facility, including accesses and waste emplacement drifts, by maintaining the configuration and stability of the openings during construction, development, emplacement, and caretaker modes for the duration of preclosure repository life. The Ground Control System consists of ground support structures installed within the subsurface excavated openings, any reinforcement made to the rock surrounding the opening, and inverts if designed as an integral part of the system. The Ground Control System maintains stability for the range of geologic conditions expected at the repository and for all expected loading conditions, including in situ rock, construction, operation, thermal, and seismic loads. The system maintains the size and geometry of operating envelopes for all openings, including alcoves, accesses, and emplacement drifts. The system provides for the installation and operation of sensors and equipment for any required inspection and monitoring. In addition, the Ground Control System provides protection against rockfall for all subsurface personnel, equipment, and the engineered barrier system, including the waste package during the preclosure period. The Ground Control System uses materials that are sufficiently maintainable and that retain the necessary engineering properties for the anticipated conditions of the preclosure service life. These materials are also compatible with postclosure waste isolation performance requirements of the repository. The Ground Control System interfaces with the Subsurface Facility System for operating envelopes, drift orientation, and excavated opening dimensions, Emplacement Drift System for material compatibility, Monitored Geologic Repository Operations Monitoring and Control System for ground control instrument readings, Waste Emplacement/Retrieval System to support waste emplacement operations, and the Subsurface Excavation System

  1. Highly Resolved Paleoclimatic Aerosol Records

    DEFF Research Database (Denmark)

    Kettner, Ernesto

    with frequently changing signs are preserved. Therefore, these aerosol records can be used for dating by annual layer counting. However, with increasing depth the annual layer thicknesses decreases due to pressure and ice flow and accurate dating is possible only as long as the rapid variations can be resolved...... soluble aerosols can be analysed for concentration changes only, insoluble aeolian dust can reveal additional information on its atmospheric residence time via changes in the mean grain sizes. Volumes of particulate matter in ice cores are most reliably determined with Coulter counters, but since...... a Coulter counter performs measurements on discrete samples, it cannot be connected to a CFA system. Attenuation sensors, on the other hand, can be integrated into a CFA set-up, but are known to yield poor dust size records. The dilemma between high quality sizing and high depth resolution was found...

  2. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)


    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  3. Lipoxins: nature's way to resolve inflammation

    Directory of Open Access Journals (Sweden)

    Chandrasekharan JA


    Full Text Available Jayashree A Chandrasekharan, Neelam Sharma-Walia HM Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USAAbstract: An effective host defense mechanism involves inflammation to eliminate pathogens from the site of infection, followed by the resolution of inflammation and the restoration of tissue homeostasis. Lipoxins are endogenous anti-inflammatory, pro-resolving molecules that play a vital role in reducing excessive tissue injury and chronic inflammation. In this review, the mechanisms of action of lipoxins at the site of inflammation and their interaction with other cellular signaling molecules and transcription factors are discussed. Emphasis has also been placed on immune modulatory role(s of lipoxins. Lipoxins regulate components of both the innate and adaptive immune systems including neutrophils, macrophages, T-, and B-cells. Lipoxins also modulate levels of various transcription factors such as nuclear factor κB, activator protein-1, nerve growth factor-regulated factor 1A binding protein 1, and peroxisome proliferator activated receptor γ and control the expression of many inflammatory genes. Since lipoxins and aspirin-triggered lipoxins have clinical relevance, we discuss their important role in clinical research to treat a wide range of diseases like inflammatory disorders, renal fibrosis, cerebral ischemia, and cancer. A brief overview of lipoxins in viral malignancies and viral pathogenesis especially the unexplored role of lipoxins in Kaposi's sarcoma-associated herpes virus biology is also presented. Keywords: lipoxins, epi-lipoxins, inflammation, pro-resolving, aspirin-triggered lipoxins, cyclooxygenases, lipoxygenases, therapeutic potential, transcription factors, Kaposi's sarcoma-associated herpes virus

  4. Final Range Wide Environmental Impact Statement

    National Research Council Canada - National Science Library

    Botdorf, Charles


    This Final Range Wide Environmental Impact Statement presents the impacts associated with the direct, indirect, and cumulative effects of mission diversification and changes to land use for Yuma Proving Ground, Arizona...

  5. Weather data gap problem resolved (United States)

    Bush, Susan

    It looks as though the United States will avoid the crisis situation of a gap in weather data resulting from the aging GOES-7 satellite and technical problems with the next generation of weather satellites (GOESNEXT). Officials at the National Oceanic and Atmospheric Administration, which oversees the National Weather Service, recently announced their decision to borrow at least one and possibly several European satellites until the GOES-NEXT program gets off the ground.The GOES (Geostationary Operational Environmental Satellites) series is currently 3 years behind schedule and $500 million over budget. Problems with its complex design, program management by both NOAA and the National Aeronautics and Space Administration and poor performance by the contractor led Department of Commerce Secretary Robert Mosbacher to slow down the GOES-NEXT series to ensure that it is built right.

  6. Ground penetrating radar (GPR) analysis : Phase I. (United States)


    "The objective of this work is to evaluate the feasibility of expanding the MDT's Ground Penetrating : Radar (GPR) program to a broader range of pavement evaluation activities. Currently, MDT uses GPR in : conjunction with its Falling Weight Deflecto...

  7. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Keywords. Condensed matter physics; high-c superconductivity; electronic properties; photoemission spectroscopy; angle resolved photoemission spectroscopy; cuprates; films; strain; pulsed laser deposition.

  8. Electrical Subsurface Grounding Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Calle


    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

  9. Constructivist Grounded Theory?

    National Research Council Canada - National Science Library

    Barney G. Glaser, PhD, Hon. PhD


    AbstractI refer to and use as scholarly inspiration Charmaz’s excellent article on constructivist grounded theory as a tool of getting to the fundamental issues on why grounded theory is not constructivist...

  10. New Light Source Setup for Angle Resolved Light Absorption measurement of PV sample

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  11. New Light Source Setup for Angle Resolved Light Absorption measurement of PV samples

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  12. Constructivist Grounded Theory?


    Glaser, Barney G.


    In meinem Beitrag greife ich zurück auf den ausgezeichneten und inspirierenden Artikel von CHARMAZ zu konstruktivistischer Grounded Theory, um an diesem Beispiel zu diskutieren, dass und warum die Grounded Theory kein konstruktivistisches Unterfangen ist. Ich versuche zu zeigen, dass "konstruktivistische Daten" bzw. konstruktivistische Anwendungen der Grounded Theory, sofern sie überhaupt existieren bzw. sinnvoll sein könnten, nur einen verschwindend kleinen Teil der Grounded Theory ausmachen...

  13. Constructivist Grounded Theory?

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD, Hon. PhD


    Full Text Available AbstractI refer to and use as scholarly inspiration Charmaz’s excellent article on constructivist grounded theory as a tool of getting to the fundamental issues on why grounded theory is not constructivist. I show that constructivist data, if it exists at all, is a very, very small part of the data that grounded theory uses.

  14. Communication, concepts and grounding

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, F.


    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain

  15. Navigating the grounded theory terrain. Part 1. (United States)

    Hunter, Andrew; Murphy, Kathy; Grealish, Annmarie; Casey, Dympna; Keady, John


    The decision to use grounded theory is not an easy one and this article aims to illustrate and explore the methodological complexity and decision-making process. It explores the decision making of one researcher in the first two years of a grounded theory PhD study looking at the psychosocial training needs of nurses and healthcare assistants working with people with dementia in residential care. It aims to map out three different approaches to grounded theory: classic, Straussian and constructivist. In nursing research, grounded theory is often referred to but it is not always well understood. This confusion is due in part to the history of grounded theory methodology, which is one of development and divergent approaches. Common elements across grounded theory approaches are briefly outlined, along with the key differences of the divergent approaches. Methodological literature pertaining to the three chosen grounded theory approaches is considered and presented to illustrate the options and support the choice made. The process of deciding on classical grounded theory as the version best suited to this research is presented. The methodological and personal factors that directed the decision are outlined. The relative strengths of Straussian and constructivist grounded theories are reviewed. All three grounded theory approaches considered offer the researcher a structured, rigorous methodology, but researchers need to understand their choices and make those choices based on a range of methodological and personal factors. In the second article, the final methodological decision will be outlined and its research application described.

  16. Transmission grating based extreme ultraviolet imaging spectrometer for time and space resolved impurity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States); Tarrio, Charles; Grantham, Steven [Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)


    A free standing transmission grating based imaging spectrometer in the extreme ultraviolet range has been developed for the National Spherical Torus Experiment (NSTX). The spectrometer operates in a survey mode covering the approximate spectral range from 30 to 700 A and has a resolving capability of {delta}{lambda}/{lambda} on the order of 3%. Initial results from space resolved impurity measurements from NSTX are described in this paper.

  17. Resolvent estimates for scalar fields with electromagnetic perturbation

    Directory of Open Access Journals (Sweden)

    Mirko Tarulli


    Full Text Available In this note we prove some estimates for the resolvent of the operator $-Delta$ perturbed by the differential operator $$ V(x,D=ia(xcdot abla+V(xquad hbox{in }mathbb{R}^3,. $$ This differential operator is of short range type and a compact perturbation of the Laplacian on $mathbb{R}^3$. Also we find estimates in the space-time norm for the solution of the wave equation with such perturbation.

  18. Resolvent estimates for scalar fields with electromagnetic perturbation


    Mirko Tarulli


    In this note we prove some estimates for the resolvent of the operator $-Delta$ perturbed by the differential operator $$ V(x,D)=ia(x)cdot abla+V(x)quad hbox{in }mathbb{R}^3,. $$ This differential operator is of short range type and a compact perturbation of the Laplacian on $mathbb{R}^3$. Also we find estimates in the space-time norm for the solution of the wave equation with such perturbation.

  19. Rigour and grounded theory. (United States)

    Cooney, Adeline


    This paper explores ways to enhance and demonstrate rigour in a grounded theory study. Grounded theory is sometimes criticised for a lack of rigour. Beck (1993) identified credibility, auditability and fittingness as the main standards of rigour for qualitative research methods. These criteria were evaluated for applicability to a Straussian grounded theory study and expanded or refocused where necessary. The author uses a Straussian grounded theory study (Cooney, In press) to examine how the revised criteria can be applied when conducting a grounded theory study. Strauss and Corbin (1998b) criteria for judging the adequacy of a grounded theory were examined in the context of the wider literature examining rigour in qualitative research studies in general and grounded theory studies in particular. A literature search for 'rigour' and 'grounded theory' was carried out to support this analysis. Criteria are suggested for enhancing and demonstrating the rigour of a Straussian grounded theory study. These include: cross-checking emerging concepts against participants' meanings, asking experts if the theory 'fit' their experiences, and recording detailed memos outlining all analytical and sampling decisions. IMPLICATIONS FOR RESEARCH PRACTICE: The criteria identified have been expressed as questions to enable novice researchers to audit the extent to which they are demonstrating rigour when writing up their studies. However, it should not be forgotten that rigour is built into the grounded theory method through the inductive-deductive cycle of theory generation. Care in applying the grounded theory methodology correctly is the single most important factor in ensuring rigour.

  20. Presidents and Chairs on Common Ground: Handling Flashpoints Together (United States)

    Fletcher, Donald H.; Maxwell, David E.


    In the face of public controversies, presidents and board chairs are often called upon to resolve difficult and divisive issues. When they are faced with public controversies and other challenges, a strong working relationship grounded in mutual respect and trust can make the difference between meeting the challenge head on and falling behind.…

  1. Joint Polar Satellite System Common Ground System Overview (United States)

    Jamilkowski, M. L.; Smith, D. C.


    segments to implement proper security controls and directly manage integration, test & verification of product segments into the system. O&S operates the JPSS CGS, performs all mission operations and provides onsite support & logistics. O&S responsibilities range from developing, training, maintaining, and executing operational procedures; tracking/resolving anomalies; scheduling, measuring, trending and tracking all Program resources; to securing all assets. O&S has operated/supported the NPP C3S & IDPS baselines since Oct 2008 and Jul 2009 deliveries, respectively. Sustainment updates & maintains H/W & S/W baselines at Raytheon facilities in Colorado & Nebraska. They have done this for the NPP C3S & IDPS baselines since Oct 2008 and Jul 2009, respectively. This presentation will also give an overview of the JPSS CGS ground architecture features & enhancements for the JPSS (post-NPP) era. These include: C3S-provided space-to-ground connectivity, reliable/secure data delivery and insight/oversight of total operations; added ground receptor sites to reduce data latency; delivery of added sensor data products from NPP-like and additional JPSS sensors and expansion to 2 more Centrals (FNMOC & NAVO). The IDPS will act as a buffer to minimize changes in how users request/receive data products.

  2. Differential resolvents of minimal order and weight

    Directory of Open Access Journals (Sweden)

    John Michael Nahay


    Full Text Available We will determine the number of powers of α that appear with nonzero coefficient in an α-power linear differential resolvent of smallest possible order of a univariate polynomial P(t whose coefficients lie in an ordinary differential field and whose distinct roots are differentially independent over constants. We will then give an upper bound on the weight of an α-resolvent of smallest possible weight. We will then compute the indicial equation, apparent singularities, and Wronskian of the Cockle α-resolvent of a trinomial and finish with a related determinantal formula.

  3. Aspects of ground effect modeling. (United States)

    Taraldsen, Gunnar; Jonasson, Hans


    A recently published one-parameter ground model based on Darcy's law is here generalized into a two-parameter model which depends on an effective flow resistivity and an effective layer depth. Extensive field measurements of the acoustic impedance of various ground types have been carried out for frequencies in the range from 200 Hz to 2.5 kHz. The model based on Darcy's law gives an improved fit to the measurements compared to the Delany-Bazley model. It is, in addition, argued on purely theoretical grounds that the suggested model is preferable. In contrast to the Delany-Bazley model it corresponds to a proper causal time-domain model. This is particularly relevant for extrapolation of the models to lower frequencies and for the recently developed harmonized methods intended for use in the implementation of the European Union directive on the assessment and management of environmental noise. The harmonized methods include frequencies down to the 25 Hz third octave band and have the Delany-Bazley ground impedance model as the default choice. The arguments presented here suggest that this default choice should be replaced by the more physically based model from the law of Darcy.

  4. [Introduction to grounded theory]. (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy


    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  5. Airport Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    travels safely and efficiently through the airport. When an aircraft lands, a significant number of tasks must be performed by different groups of ground crew, such as fueling, baggage handling and cleaning. These tasks must be complete before the aircraft is able to depart, as well as check......-in and security services. These tasks are collectively known as ground handling, and are the major source of activity with airports. The business environments of modern airports are becoming increasingly competitive, as both airports themselves and their ground handling operations are changing to private...... ownership. As airports are in competition to attract airline routes, efficient and reliable ground handling operations are imperative for the viability and continued growth of both airports and airlines. The increasing liberalization of the ground handling market prompts ground handling operators...

  6. Electrical grounding prong socket (United States)

    Leong, Robert


    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  7. Resolving the ocean's euphotic zone (United States)

    Marra, John F.; Lance, Veronica P.; Vaillancourt, Robert D.; Hargreaves, Bruce R.


    Measurements of net primary production (P) combined with calculated estimates of phytoplankton respiration (Rp) and gross primary production (G) are used to determine the depth of the ocean's euphotic zone, the autotrophic productive layer. The base of the euphotic zone, the compensation depth (where P=0 and G=Rp), is found to be consistently deeper than the traditionally assumed ‘1% light depth'. It is found to occur, however, at a depth that encompasses the depth range of all, or nearly all, autotrophic biomass. The estimated compensation depth also occurs near the depth of 1% of surface blue light (490 nm), supporting the determination of the ocean's productive layer from satellite ocean color sensors.

  8. From nature to grounding


    Jago, Mark


    Grounding is a powerful metaphysical concept; yet there is widespread scepticism about the intelligibility of the notion. In this paper, I propose an account of an entity’s nature or essence, which I then use to provide grounding conditions for that entity. I claim that an understanding of an entity’s nature, together with an account of how logically complex entities are grounded, provides all we need to understand how that entity is grounded. This approach not only allows us to say what grou...

  9. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)


    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  10. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.


    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... Alert System in the ISGRI field of view. Although the burst was fairly weak (fluence F20-200 keV similar or equal to 3.5x10(-6) erg cm(-2)) it was possible to perform time resolved spectroscopy with a resolution of a few seconds. The GRB shows a spectrum in the 20-400 keV range which is consistent...

  11. X-ray characterization by energy-resolved powder diffraction

    Directory of Open Access Journals (Sweden)

    G. Cheung


    Full Text Available A method for single-shot, nondestructive characterization of broadband x-ray beams, based on energy-resolved powder diffraction, is described. Monte-Carlo simulations are used to simulate data for x-ray beams in the keV range with parameters similar to those generated by betatron oscillations in a laser-driven plasma accelerator. The retrieved x-ray spectra are found to be in excellent agreement with those of the input beams for realistic numbers of incident photons. It is demonstrated that the angular divergence of the x rays can be deduced from the deviation of the detected photons from the Debye-Scherrer rings which would be produced by a parallel beam. It is shown that the angular divergence can be measured as a function of the photon energy, yielding the angularly resolved spectrum of the input x-ray beam.

  12. Benchtop time-resolved magneto-optical Kerr magnetometer. (United States)

    Barman, Anjan; Kimura, T; Otani, Y; Fukuma, Y; Akahane, K; Meguro, S


    We present here the construction and application of a compact benchtop time-resolved Kerr magnetometer to measure the magnetization precession in magnetic thin films and lithographically patterned elements. As opposed to very expensive femtosecond lasers this system is built upon a picosecond pulsed injection diode laser and electronic pulse and delay generators. The precession is triggered by the electronic pulses of controlled duration and shape, which is launched onto the sample by a microstrip line. We used polarized optical pulses synchronous to the electronic pulses to measure the magneto-optical Kerr rotation. The system is integrated in a conventional upright microscope configuration with separate illumination, imaging, and magneto-optical probe paths. The system offers high stability, relative ease of alignment, sample changing, and a long range of time delay. We demonstrate the measurements of time-resolved dynamics of a Permalloy microwire and microdot using this system, which showed dynamics at two different time scales.

  13. Component resolved testing for allergic sensitization

    DEFF Research Database (Denmark)

    Skamstrup Hansen, Kirsten; Poulsen, Lars K


    Component resolved diagnostics introduces new possibilities regarding diagnosis of allergic diseases and individualized, allergen-specific treatment. Furthermore, refinement of IgE-based testing may help elucidate the correlation or lack of correlation between allergenic sensitization and allergi...

  14. Knowledge Extraction from Atomically Resolved Images. (United States)

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V


    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  15. Component resolved testing for allergic sensitization

    DEFF Research Database (Denmark)

    Skamstrup Hansen, Kirsten; Poulsen, Lars K


    Component resolved diagnostics introduces new possibilities regarding diagnosis of allergic diseases and individualized, allergen-specific treatment. Furthermore, refinement of IgE-based testing may help elucidate the correlation or lack of correlation between allergenic sensitization and allergic...

  16. Estimating ground water yield in small research basins (United States)

    Elon S. Verry


    An analysis of ground water recharge in 32 small research watersheds shows the average flow of ground water out of the watershed (deep seepage) is 45% of streamflow and ranges from 8 to 350 mm/year when apportioned over the watershed area. It is time to meld ground water and small watershed science. The use of we11 networks and the evaluation of ground water well...

  17. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup


    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  18. Efektivitas Instagram Common Grounds


    Wifalin, Michelle


    Efektivitas Instagram Common Grounds merupakan rumusan masalah yang diambil dalam penelitian ini. Efektivitas Instagram diukur menggunakan Customer Response Index (CRI), dimana responden diukur dalam berbagai tingkatan, mulai dari awareness, comprehend, interest, intentions dan action. Tingkatan respons inilah yang digunakan untuk mengukur efektivitas Instagram Common Grounds. Teori-teori yang digunakan untuk mendukung penelitian ini yaitu teori marketing Public Relations, teori iklan, efekti...

  19. Decentralized Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Sørensen, M. D.; Clausen, Jens


    Typically, ground staff scheduling is centrally planned for each terminal in an airport. The advantage of this is that the staff is efficiently utilized, but a disadvantage is that staff spends considerable time walking between stands. In this paper a decentralized approach for ground staff...

  20. Communication, concepts and grounding. (United States)

    van der Velde, Frank


    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Dr. Alvita Nathaniel, DSN, APRN, BC


    Full Text Available The Grounded Theory Perspective III: Theoretical Coding, Barney G. Glaser (Sociology Press, 2005. Not intended for a beginner, this book further defi nes, describes, and explicates the classic grounded theory (GT method. Perspective III lays out various facets of theoretical coding as Glaser meticulously distinguishes classic GT from other subsequent methods. Developed many years after Glaser’s classic GT, these methods, particularly as described by Strauss and Corbin, adopt the grounded theory name and engender ongoing confusion about the very premises of grounded theory. Glaser distinguishes between classic GT and the adscititious methods in his writings, referring to remodeled grounded theory and its offshoots as Qualitative Data Analysis (QDA models.

  2. Ranging Behaviour of Commercial Free-Range Laying Hens

    Directory of Open Access Journals (Sweden)

    Leonard Ikenna Chielo


    Full Text Available In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources. These were: apron (0–10 m from shed normally without cover or other enrichments; enriched belt (10–50 m from shed where resources such as manmade cover, saplings and dust baths were provided; and outer range (beyond 50 m from shed with no cover and mainly grass pasture. Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range

  3. Ranging Behaviour of Commercial Free-Range Laying Hens. (United States)

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan


    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  4. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira (United States)

    Limaye, Sanjay


    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  5. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface. (United States)

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori


    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  6. The Resolved Outflow from 3C 48 (United States)

    Shih, Hsin-Yi; Stockton, Alan


    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 103-104 cm-3, the mass is ~6 × 106 M ⊙, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11574. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the

  7. UAV sensor systems for close-range operations (United States)

    Larroque, Clement-Serge; Thompson, Karl S.; Hickman, Duncan


    Although UAV systems have received much interest over the last few years, much of this has focused on either relatively large platforms with complex on-board equipment, or micro systems (typically 6' in every dimension). The operational use of low-cost lightweight UAVs as over-the- hill reconnaissance systems is a new concept offering additional flexibility, providing local knowledge and helping maintain operational tempo. An extensive modeling trade-off study has been performed for different sensor technologies and combinations. The model considered configurations including cooled and uncooled IR sensors, visible-band CCD sensors and image intensifiers. These mathematical models provide an evaluation of sensor performance for both navigation and the gathering of reconnaissance imagery, through Resolution Elements calculations (Johnson criteria) and Signal-to-Noise Ratios. Based upon this analysis, a system specification is presented that exploits next generation sensor technologies. Results obtained from a number of UAV trials are reported and used in order to provide model verification and validation of both the operational concepts and the sensor system modeling activities. Considering the sensor system itself, the low-altitude close-range environment ensures high ground resolved distance and signal-to-noise ratios, with low-cost sensors. Coupled with up-to-date image processing software, the imagery provided directly to the section-level units via a simple standard image interface allows a reduction of time response. Finally, future modeling and trials activities are discussed in the framework of the lightweight UAV system roadmap.

  8. Range-resolved interferometric signal processing using sinusoidal optical frequency modulation. (United States)

    Kissinger, Thomas; Charrett, Thomas O H; Tatam, Ralph P


    A novel signal processing technique using sinusoidal optical frequency modulation of an inexpensive continuous-wave laser diode source is proposed that allows highly linear interferometric phase measurements in a simple, self-referencing setup. Here, the use of a smooth window function is key to suppress unwanted signal components in the demodulation process. Signals from several interferometers with unequal optical path differences can be multiplexed, and, in contrast to prior work, the optical path differences are continuously variable, greatly increasing the practicality of the scheme. In this paper, the theory of the technique is presented, an experimental implementation using three multiplexed interferometers is demonstrated, and detailed investigations quantifying issues such as linearity and robustness against instrument drift are performed.

  9. Spectrally resolved longitudinal spatial coherence inteferometry (United States)

    Woodard, Ethan R.; Kudenov, Michael W.


    We present an alternative imaging technique using spectrally resolved longitudinal spatial coherence interferometry to encode a scene's angular information onto the source's power spectrum. Fourier transformation of the spectrally resolved channeled spectrum output yields a measurement of the incident scene's angular spectrum. Theory for the spectrally resolved interferometric technique is detailed, demonstrating analogies to conventional Fourier transform spectroscopy. An experimental proof of concept system and results are presented using an angularly-dependent Fabry-Perot interferometer-based optical design for successful reconstruction of one-dimensional sinusoidal angular spectra. Discussion for a potential future application of the technique, in which polarization information is encoded onto the source's power spectrum is also given.

  10. The conforming brain and deontological resolve.

    Directory of Open Access Journals (Sweden)

    Melanie Pincus

    Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  11. Imposing resolved turbulence in CFD simulations

    DEFF Research Database (Denmark)

    Gilling, L.; Sørensen, Niels N.


    In large‐eddy simulations, the inflow velocity field should contain resolved turbulence. This paper describes and analyzes two methods for imposing resolved turbulence in the interior of the domain in Computational Fluid Dynamics simulations. The intended application of the methods is to impose...... resolved turbulence immediately upstream of the region or structure of interest. Comparing to the alternative of imposing the turbulence at the inlet, there is a large potential to reduce the computational cost of the simulation by reducing the total number of cells. The reduction comes from a lower demand...... of modifying the source terms. None of the two methods can impose synthetic turbulence with good results, but it is shown that by running the turbulence field through a short precursor simulation, very good results are obtained. Copyright © 2011 John Wiley & Sons, Ltd....

  12. Time-resolved diffuse optical spectroscopy of small tissue samples (United States)

    Taroni, Paola; Comelli, Daniela; Farina, Andrea; Pifferi, Antonio; Kienle, Alwin


    Time-resolved transmittance measurements were performed in the wavelength range of 610 or 700 to 1050 nm on phantom slabs and bone tissue cubes of different sizes. The data were best fitted with solutions of the diffusion equation for an infinite slab and for a parallelepiped to investigate how size and optical properties of the samples affect the results obtained with the two models. When small samples are considered, the slab model overestimates both optical coefficients, especially the absorption. The parallelepiped model largely compensates for the small sample size and performs much better also when the absorption spectra are interpreted with the Beer's law to estimate bone tissue composition.

  13. Automatic Scheduling and Planning (ASAP) in future ground control systems (United States)

    Matlin, Sam


    This report describes two complementary approaches to the problem of space mission planning and scheduling. The first is an Expert System or Knowledge-Based System for automatically resolving most of the activity conflicts in a candidate plan. The second is an Interactive Graphics Decision Aid to assist the operator in manually resolving the residual conflicts which are beyond the scope of the Expert System. The two system designs are consistent with future ground control station activity requirements, support activity timing constraints, resource limits and activity priority guidelines.

  14. Adding Theoretical Grounding to Grounded Theory: Toward Multi-Grounded Theory


    Göran Goldkuhl; Stefan Cronholm


    The purpose of this paper is to challenge some of the cornerstones of the grounded theory approach and propose an extended and alternative approach for data analysis and theory development, which the authors call multi-grounded theory (MGT). A multi-grounded theory is not only empirically grounded; it is also grounded in other ways. Three different grounding processes are acknowledged: theoretical, empirical, and internal grounding. The authors go beyond the pure inductivist approach in GT an...

  15. Hanford site ground water protection management plan

    Energy Technology Data Exchange (ETDEWEB)


    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  16. Reverse Universal Resolving Algorithm and inverse driving

    DEFF Research Database (Denmark)

    Pécseli, Thomas


    Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new...... variant of the Universal Resolving Algorithm for inverse interpretation. The new variant outperforms the original algorithm in several cases, e.g., when unpacking a list using inverse interpretation of a pack program. It uses inverse driving as its main technique, which has not been described in detail...

  17. Grounding, shielding, and bonding (United States)

    Catrysse, J.


    In the electromagnetic compatibility design (EMC) of systems and circuits, both grounding and shielding are related to the coupling mechanisms of the system with (radiated) electromagnetic fields. Grounding is more related to the source or victim circuit (or system) and determines the characteristic of the coupling mechanism between fields and currents/voltages. Shielding is a way of interacting in the radiation path of an electromagnetic field. The basic principles and practical design rules are discussed.

  18. Skepticism, Truth as Coherence, and Constructivist Epistemology: Grounds for Resolving the Discord between Science and Religion? (United States)

    Staver, John R.


    Science and religion exhibit multiple relationships as ways of knowing. These connections have been characterized as cousinly, mutually respectful, non-overlapping, competitive, proximate-ultimate, dominant-subordinate, and opposing-conflicting. Some of these ties create stress, and tension between science and religion represents a significant…

  19. Thermal behavior of ground talc mineral

    Directory of Open Access Journals (Sweden)

    Balek V.


    Full Text Available Microstructure development and thermal behavior of ground talc mineral samples (from locality Puebla de Lillo, Spain was characterized by X-ray diffraction, scanning electron microscopy(SEM,surface area measurements differential thermal analysis, thermogravimetry and emanation thermal analysis (ETA.A vibratory mill and grinding time 5 min. was used to prepare the ground talc sample. It was found that grinding caused an increase in the surface area of the natural talc from 3 m2g-1 to 110 m2g-1. A decrease of particle size after sample grinding was observed by SEM. The increase of structure disorder of the ground sample and the crystallite size reduction from 40 to 10 nm were determined from the XRD results. ETA results revealed a closing up of surface micro-cracks and healing of microstructure irregularities on heating in the range 200-500ºC of both un-ground and ground talc samples. For the ground talc sample a crystallization of non-crystalline phase into orthorhombic enstatite was characterized as by a decrease of radon mobility in the range 785-825ºC and by a DTA exothermal effect with the maximum at 830ºC. ETA results were used for the assessment of transport properties of the talc samples on heating.


    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C. E.; Ramsbottom, C. A.; Scott, M. P., E-mail:, E-mail:, E-mail: [Department of Applied Maths and Theoretical Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)


    We have carried out a 29-state R-matrix calculation in order to calculate collision strengths and effective collision strengths for the electron impact excitation of S III. The recently developed parallel RMATRX II suite of codes have been used, which perform the calculation in intermediate coupling. Collision strengths have been generated over an electron energy range of 0-12 Ryd, and effective collision strength data have been calculated from these at electron temperatures in the range 1000-100,000 K. Results are here presented for the fine-structure transitions between the ground-state configurations of 3s {sup 2}3p {sup 23} P{sub 0,1,2}, {sup 1}D{sub 2}, and {sup 1} S{sub 0}, and the values given resolve a discrepancy between two previous R-matrix calculations.

  1. A vertically resolved model for phytoplankton aggregation

    Indian Academy of Sciences (India)

    components undergo vertical mixing, and phytoplank- ton sink. Phytoplankton growth is limited by the product of nutrient and light terms. The equations for nitrate (NO3) and ... resolved model there is an extra complication: the largest particles that sink out of ...... and biogeochemistry with satellite ocean colour data. Vertically ...

  2. The resolved stellar population of Leo A

    NARCIS (Netherlands)

    Tolstoy, E


    New observations of the resolved stellar population of the extremely metal-poor Magellanic dwarf irregular galaxy Leo A in Thuan-Gunn r, g, i, and narrowband Ha filters are presented. Using the recent Cepheid variable star distance determination to Leo A by Hoessel et al., we are able to create an

  3. Spatially Resolved Images and Solar Irradiance Variability

    Indian Academy of Sciences (India)

    Variations in UV irradiances seen at earth are the sum of global (solar dynamo) to regional (active region, plage, network, bright points and background) solar magnetic activities that can be identified through spatially resolved photospheric, chromospheric and coronal features. In this research, the images of CaII K-line ...

  4. Topoisomerase IB of Deinococcus radiodurans resolves guanine ...

    Indian Academy of Sciences (India)


    Nov 28, 2015 ... structure in vitro and it may be one such protein that could resolve G4 DNA under normal growth conditions in. D. radiodurans. [Kota S and Misra HS 2015 ...... through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145 678–691. Postberg J, Tsytlonok M, Sparvoli ...

  5. Ground Enterprise Management System Project (United States)

    National Aeronautics and Space Administration — Emergent Space Technologies Inc. proposes to develop the Ground Enterprise Management System (GEMS) for spacecraft ground systems. GEMS will provide situational...

  6. Resolving deconvolution ambiguity in gene alternative splicing

    Directory of Open Access Journals (Sweden)

    Hubbell Earl


    Full Text Available Abstract Background For many gene structures it is impossible to resolve intensity data uniquely to establish abundances of splice variants. This was empirically noted by Wang et al. in which it was called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional information is needed in order to obtain an unique answer in splice variant deconvolution. Results In this paper, we analyze the situations under which the problem occurs and perform a rigorous mathematical study which gives necessary and sufficient conditions on how many and what type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix models of splice variants. We explore the proposal that probe sequence information may provide sufficient additional constraints to resolve real-world instances. However, probe behavior cannot be predicted with sufficient accuracy by any existing probe sequence model, and so we present a Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty from the micro-model of probe responsiveness into the macro-model of probe intensities. Conclusion The matrix analysis of constraints provides a tool for detecting real-world instances in which additional constraints may be necessary to resolve splice variants. While purely mathematical constraints can be stated without error, real-world constraints may themselves be poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely estimating transcript abundances given additional constraints that themselves may be uncertain, such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive simulations as well as various biological data.

  7. Cloud-System Resolving Models: Status and Prospects (United States)

    Tao, Wei-Kuo; Moncreiff, Mitch


    Cloud-system resolving models (CRM), which are based on the nonhydrostatic equations of motion and typically have a grid-spacing of about a kilometer, originated as cloud-process models in the 1970s. This paper reviews the status and prospects of CRMs across a wide range of issues, such as microphysics and precipitation; interaction between clouds and radiation; and the effects of boundary-layer and surface-processes on cloud systems. Since CRMs resolve organized convection, tropical waves and the large-scale circulation, there is the prospect for several advances in both basic knowledge of scale-interaction requisite to parameterizing mesoscale processes in climate models. In superparameterization, CRMs represent convection, explicitly replacing many of the assumptions necessary in contemporary parameterization. Global CRMs have been run on an experimental basis, giving prospect to a new generation of climate weather prediction in a decade, and climate models due course. CRMs play a major role in the retrieval of surface-rain and latent heating from satellite measurements. Finally, enormous wide dynamic ranges of CRM simulations present new challenges for model validation against observations.

  8. Range management visual impacts (United States)

    Bruce R. Brown; David Kissel


    Historical overgrazing of western public rangelands has resulted in the passage of the Public Rangeland Improvement Act of 1978. The main purpose of this Act is to improve unsatisfactory range conditions. A contributing factor to unfavorable range conditions is adverse visual impacts. These visual impacts can be identified in three categories of range management: range...

  9. Grounding of space structures (United States)

    Bosela, P. A.; Fertis, D. G.; Shaker, F. J.


    Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. This paper examines the grounding phenomenon in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. A force imbalance inherent in the formulations examined is the likely cause of the grounding problem, suggesting the need for a directed force formulation.

  10. Separating Attitude and Shape Effects for Non-resolved Objects (United States)

    Hall, D.

    Time-resolved photometric measurements provide a means of constraining the attitude and/or shape of on-orbit objects that are too small or distant to be imaged by ground-based optical or radar facilities. At the most general level, a detailed inversion of photometric data to determine attitude and shape entails the solution of a multivariate numerical optimization problem involving two classes of variables: attitude and body parameters. Attitude parameters specify the object orientation at the times of the observations and provide a means to convert between the inertial reference frame and the body-centered and body-fixed reference frame. Body or "shape" parameters provide the information required to calculate the flux reflected from the object within the body reference frame. Our analysis indicates that the most basic requirement for the analysis is an extensive set of photometric observations, ideally gathered from multiple perspectives and under multiple illumination conditions. Given such a rich data-set, a complete attitude/shape inversion analysis requires supercomputer resources to address in a timely fashion, even for relatively simple convex objects. The basic reason for this is that the inversion approach requires solving for a large number object attitude and shape parameters simultaneously. A significantly more computationally efficient means of addressing the problem would be to separate the attitude and body parameter determination analyses, if at all possible. In this regard, we present a variety of theoretical approaches for both shape-independent attitude analysis and attitude-independent shape analysis for non-resolvable objects.

  11. Collison and Grounding

    DEFF Research Database (Denmark)

    Wang, G.; Ji, C.; Kuhala, P.


    COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence, the proba......COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence...

  12. Coding Issues in Grounded Theory (United States)

    Moghaddam, Alireza


    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  13. Ranging Behaviour of Commercial Free-Range Laying Hens (United States)

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan


    to the shed in free-range flocks. This study suggests that hens in the outer range engaged more in walking and foraging activities and showed signs of better welfare than those closer to the shed. Abstract In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0–10 m from shed normally without cover or other enrichments); enriched belt (10–50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower

  14. Resolving resonances in R-matrix calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, J.M.; Bautista, Manuel A. [Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Caracas (Venezuela)


    We present a technique to obtain detailed resonance structures from R-matrix calculations of atomic cross sections for both collisional and radiative processes. The resolving resonances (RR) method relies on the QB method of Quigley-Berrington (Quigley L, Berrington K A and Pelan J 1998 Comput. Phys. Commun. 114 225) to find the position and width of resonances directly from the reactance matrix. Then one determines the symmetry parameters of these features and generates an energy mesh whereby fully resolved cross sections are calculated with minimum computational cost. The RR method is illustrated with the calculation of the photoionization cross sections and the unified recombination rate coefficients of Fe XXIV, O VI, and Fe XVII. The RR method reduces numerical errors arising from unresolved R-matrix cross sections in the computation of synthetic bound-free opacities, thermally averaged collision strengths and recombination rate coefficients. (author)

  15. Compact Core Galaxies in the RESOLVE Survey (United States)

    Snyder, Elaine; Kannappan, S.; Stark, D.; Eckert, K. D.; Norris, M. A.; Norman, D. J.; RESOLVE Team


    We identify a population of galaxies with half-light radii CCGs) include both compact ellipticals (cEs) and CCGs with envelopes of gas and stars. They occupy both isolated and non-isolated environments, spanning a variety of large scale structures in RESOLVE, including clusters, walls, and filaments. We deconvolve the radii of these galaxies with their seeing profiles, as CCGs are strongly affected by seeing at RESOLVE distances. We compare their radii and star formation histories with those of globular clusters, ultra compact dwarfs (UCDs), and cEs in the ~300 object AIMSS (Archive of Intermediate Mass Stellar Systems) catalog, making use of cross-matched GALEX NUV data for both data sets. We also present Gemini observations of velocity dispersions of the CCGs for comparison with RESOLVE and AIMSS kinematic data. By examining all of these properties, we seek to discriminate between formation scenarios for CCGs, such as tidal stripping (a likely scenario if they represent the high-mass end of the UCD population) or dissipative major mergers (a likely scenario if they represent the low-mass end of the massive spheroid population). We also use properties of AIMSS sample objects such as color and environment to guide the development of new algorithms for finding potentially overlooked cEs/CCGs in RESOLVE. Increasing the completeness of our sample of compact galaxies will strengthen its statistical power for analysis of their formation scenarios as a function of environment. This work is supported by the National Science Foundation under AST-0955368, and by the grant HST-AR-12147.01-A .

  16. Lifetime broadening in angle-resolved photoemission (United States)

    McLean, A. B.; Mitchell, C. E. J.; Hill, I. G.


    The register line formalism of angle-resolved photoemission is applied to the special case where electrons are excited from sp surface states. By considering lifetime broadening alone, it is demonstrated that it is possible to explain why photoemission linewidths increase as the initial states disperse towards the Fermi level. Favourable comparisons are made between the theory and with measurements of the surface state widths on Cu(111) and Al(001).

  17. WFIRST: Resolving the Milky Way Galaxy (United States)

    Kalirai, Jason; Conroy, Charlie; Dressler, Alan; Geha, Marla; Levesque, Emily; Lu, Jessica; Tumlinson, Jason


    WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. In this poster, we describe the activities of the WFIRST Science Investigation Team (SIT), "Resolving the Milky Way with WFIRST". Notional programs guiding our analysis include targeting sightlines to establish the first well-resolved large scale maps of the Galactic bulge aand central region, pockets of star formation in the disk, benchmark star clusters, and halo substructure and ultra faint dwarf satellites. As an output of this study, our team is building optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of Milky Way environments including new astrometric studies; and strategies and automated algorithms to find substructure and dwarf galaxies in the Milky Way through the WFIRST High Latitude Survey.

  18. Seniors’ self-preservation by maintaining established self and defying deterioration – A grounded theory


    Källstrand Eriksson, Jeanette; Hildingh, Cathrine; Buer, Nina; Thulesius, Hans


    The purpose of this classic grounded theory study was to understand how seniors who are living independently resolve issues influenced by visual impairment and high fall risk. We interviewed and observed 13 seniors with visual impairment in their homes. We also interviewed six visual instructors with experience from many hundreds of relevant incidents from the same group of seniors. We found that the seniors are resolving their main concern of “remaining themselves as who they used to be” by ...

  19. Grounding in Instant Messaging (United States)

    Fox Tree, Jean E.; Mayer, Sarah A.; Betts, Teresa E.


    In two experiments, we investigated predictions of the "collaborative theory of language use" (Clark, 1996) as applied to instant messaging (IM). This theory describes how the presence and absence of different grounding constraints causes people to interact differently across different communicative media (Clark & Brennan, 1991). In Study 1, we…

  20. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup


    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bott...

  1. Informed Grounded Theory (United States)

    Thornberg, Robert


    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  2. Grounding Anger Management

    Directory of Open Access Journals (Sweden)

    Odis E. Simmons, PhD


    Full Text Available One of the things that drew me to grounded theory from the beginning was Glaser and Strauss’ assertion in The Discovery of Grounded Theory that it was useful as a “theoretical foothold” for practical applications (p. 268. From this, when I was a Ph.D student studying under Glaser and Strauss in the early 1970s, I devised a GT based approach to action I later came to call “grounded action.” In this short paper I’ll present a very brief sketch of an anger management program I developed in 1992, using grounded action. I began my research by attending a two-day anger management training workshop designed for training professionals in the most commonly used anger management model. Like other intervention programs I had seen, this model took a psychologizing and pathologizing approach to the issue. Following this, I sat through the full course of an anger management program that used this model, observing the reactions of the participants and the approach of the facilitator. Following each session I conducted open-ended interviews with most of the participants, either individually or in groups of two or three. I had also done previous research in counseling and social work contexts that turned out to be very relevant to an anger management program design.

  3. Korea's School Grounds Projects (United States)

    Park, Joohun


    This article describes two projects which Korea has undertaken to improve its school grounds: (1) the Green School Project; and (2) the School Forest Pilot Project. The Korean Ministry of Education and Human Resources Development (MOE&HRI) recently launched the Green School Project centred on existing urban schools with poor outdoor…

  4. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen


    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width and th...

  5. Rotationally Resolved Spitzer Spectra of Comet-Asteroid Transition Object 944 Hidalgo (United States)

    Campins, Humberto; Kelley, M. S.; Fernández, Y. R.; Ziffer, J.; Licandro, J.; Emery, J.; Cruikshank, D. P.; Hergenrother, C.; Pinilla-Alonso, N.; Hargrove, K.; Clautice, D.


    Last year (Campins et al. 2006), we reported near-infrared rotational variability in ground-based spectra of comet-asteroid transition object 944 Hidalgo. Since then, we carried out a rotationally resolved study of Hidalgo at mid-infrared wavelengths using the Infrared Spectrograph (IRS) on NASA's Spitzer Space Telescope. We obtained 7 to 38 micron spectra of Hidalgo at 10 different rotational phases. These observations were carried out on July 24, 2006, when Hidalgo was at heliocentric and Spitzer-centric distances of 4.83 AU and 4.84 AU. In an initial analysis, we normalized the spectra with a thermal model fit to the continuum (which varied as the cross section of this non-spherical object changed with rotational phase). No detectable rotational variability in the emissivity was found across the wavelength range. All the spectra show clear emissions from silicates. These emissions are qualitatively similar to those seen in the spectra of Trojan asteroids (Emery et al. 2006) and in the spectrum of comet Hale-Bopp (Crovisier et al. 1997). Given the lack of emissivity variability, we averaged all our spectra and compared them with the other Spitzer spectrum of Hidalgo, which was obtained as part of the guaranteed time observations (GTO) on February 10, 2005 when Hidalgo was at heliocentric and Spitzer-centric distances of 1.96 AU and 1.71 AU. Although the 2005 spectrum has better signal-to-noise than the combined 2006 spectra, the two are identical within the uncertainties, save for changes in the thermal continuum. It is not clear why there is spectral variability in the near-infrared and not the longer wavelengths. One possible explanation is that the mineralogy across Hidalgo's surface is similar but some areas have been affected differently by space weathering, i.e., one or more collisions may have exposed fresh material on some of Hidalgo's surface.

  6. Minnesota Pheasant Range (United States)

    Minnesota Department of Natural Resources — This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and...

  7. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li


    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. We show how to solve substring range reporting with optimal query time and little...... for substring range reporting generalize to substring range counting and substring range emptiness variants. We also obtain non-trivial time-space trade-offs for these problems. Our bounds for substring range reporting are based on a novel combination of suffix trees and range reporting data structures...

  8. Surveillance Range and Interference Impacts on Self-Separation Performance (United States)

    Idris, Husni; Consiglio, Maria C.; Wing, David J.


    Self-separation is a concept of flight operations that aims to provide user benefits and increase airspace capacity by transferring traffic separation responsibility from ground-based controllers to the flight crew. Self-separation is enabled by cooperative airborne surveillance, such as that provided by the Automatic Dependent Surveillance-Broadcast (ADSB) system and airborne separation assistance technologies. This paper describes an assessment of the impact of ADS-B system performance on the performance of self-separation as a step towards establishing far-term ADS-B performance requirements. Specifically, the impacts of ADS-B surveillance range and interference limitations were analyzed under different traffic density levels. The analysis was performed using a batch simulation of aircraft performing self-separation assisted by NASA s Autonomous Operations Planner prototype flight-deck tool, in two-dimensional airspace. An aircraft detected conflicts within a look-ahead time of ten minutes and resolved them using strategic closed trajectories or tactical open maneuvers if the time to loss of separation was below a threshold. While a complex interaction was observed between the impacts of surveillance range and interference, as both factors are physically coupled, self-separation performance followed expected trends. An increase in surveillance range resulted in a decrease in the number of conflict detections, an increase in the average conflict detection lead time, and an increase in the percentage of conflict resolutions that were strategic. The majority of the benefit was observed when surveillance range was increased to a value corresponding to the conflict detection look-ahead time. The benefits were attenuated at higher interference levels. Increase in traffic density resulted in a significant increase in the number of conflict detections, as expected, but had no effect on the conflict detection lead time and the percentage of conflict resolutions that were

  9. A Comparison of Kinematic and Photometric Inclinations in the RESOLVE Survey (United States)

    Beauchemin, Ryan William; Kannappan, Sheila; Eckert, Kathleen D.; Hoversten, Erik A.; Hall, Kirsten; Resolve


    Using standard prescriptions relating axial ratios to inclinations, the inferred distribution of inclinations for galaxies in the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey departs from theoretical expectations for a complete volume-limited sample. We compare kinematic inclinations from velocity fields of ˜200 disk galaxies in RESOLVE with their respective photometric inclinations to examine the origin of this discrepancy. We further investigate which galaxy properties may correlate with differences between inclination estimates, considering morphology, mass, optical size, and rotation curve asymmetry. Our test sample spans galaxy masses between 109 and 1011 M⊙, axial ratios between 0.2 and 0.9, rotation curve asymmetries between 0% and 30%, and the full range of morphological types, which are representative of the distribution for the parent survey, RESOLVE. However, the test sample does not represent the optically largest or smallest galaxies in RESOLVE, denoted by 90% r-band light radii greater than 70" or less than 6". The kinematic data for our sample galaxies were acquired with our custom image slicer on the SOAR telescope/Goodman spectrograph, and inclinations were measured using DiskFit. This analysis will contribute to the RESOLVE kinematic database in preparation. This research was supported by the National Science Foundation under an REU supplement to CAREER award AST-0955368.

  10. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony


    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  11. Radio pill antenna range test (United States)

    Cummins, W. F.; Kane, R. J.


    In order to investigate the potential of a proposed 'radio pill' beacon transmitter, a range test experiment was devised and carried out in the VHF frequency range. Calculations and previous work indicated that optimum sensitivity and, thus, distance would be obtained in this frequency range provided body radio-frequency (RF) absorption was not too great. A ferrite-core loop antenna is compatible with a pill geometry and has better radiation efficiency than an air core loop. The ferrite core may be a hollow cylinder with the electronics and batteries placed inside. However, this range test was only concerned with experimentally developing test range data on the ferrite core antenna itself. A one turn strap loop was placed around a 9.5 mm diameter by 18.3 mm long stack of ferrite cores. This was coupled to a 50 Omega transmission line by 76 mm of twisted pair line and a capacitive matching section. This assembly was excited by a signal generator at output levels of -10 to +10 dBm. Signals were received on a VHF receiver and tape recorder coupled to a 14 element, circularly polarized Yagi antenna at a height of 2.5 m. Field strength measurements taken at ranges of 440, 1100, and 1714 m. Maximum field strengths referenced to 0 dBm transmitter level were -107 to -110 dB at 440 m, -124 to -127 dBm at 1100 m, and -116 to -119 dBm at 1714 m when the antenna cylinder was horizontal. Field strengths with a vertical antenna were about 6 dB below these values. The latter transmit site was elevated and had a clear line-of-site path to the receiving site. The performance of this test antenna was better than that expected from method-of-moment field calculations. When this performance data is scaled to a narrow bandwidth receiving system, ground level receiving ranges of a few to 10 km can be expected. Clear line-of-sight ranges where either or both the transmitter and receiver are elevated could vary from several km to 100 km.

  12. Spaced resolved analysis of suprathermal electrons in dense plasma

    Directory of Open Access Journals (Sweden)

    Moinard A.


    Full Text Available The investigation of the hot electron fraction is a crucial topic for high energy density laser driven plasmas: first, energy losses and radiative properties depend strongly on the hot electron fraction and, second, in ICF hohlraums suprathermal electrons preheat the D-T-capsule and seriously reduce the fusion performance. In the present work we present our first experimental and theoretical studies to analyze single shot space resolved hot electron fractions inside dense plasmas via optically thin X-ray line transitions from autoionizing states. The benchmark experiment has been carried out at an X-pinch in order to create a dense, localized plasma with a well defined symmetry axis of hot electron propagation. Simultaneous high spatial and spectral resolution in the X-ray spectral range has been obtained with a spherically bent quartz Bragg crystal. The high performance of the X-ray diagnostics allowed to identify space resolved hot electron fractions via the X-ray spectral distribution of multiple excited states.

  13. Fully resolved simulations of expansion waves propagating into particle beds (United States)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.


    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  14. PROVE Surface albedo of Jornada Experimental Range, New Mexico, 1997 (United States)

    National Aeronautics and Space Administration — The objective of this study was to determine the spatial variations in field measurements of broadband albedo as related to the ground cover and under a range of...

  15. Collision model for fully resolved simulations of flows laden with finite-size particles

    NARCIS (Netherlands)

    Costa, P.; Boersma, B.J.; Westerweel, J.; Breugem, W.P.


    We present a collision model for particle-particle and particle-wall interactions in interface-resolved simulations of particle-laden flows. Three types of interparticle interactions are taken into account: (1) long- and (2) short-range hydrodynamic interactions, and (3) solid-solid contact.

  16. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: [Imperial College London, London (United Kingdom)


    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  17. Ignoring Grounded Description

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD, Hon. PhD


    Full Text Available Why is there so much grounded description? The simplest, direct answer is that to many a researcher this is GT. This view is supported by several factors. It is easy and natural to describe accurately. So slipping into grounded description comes naturally and is ok as GT. Also departmental support for description is strongly supported by perspective and academic rewards and history and routine QDA. Also many researchers and readers of research cannot conceptualize very well if at all. They want accurate description about the data in the study. They are not into taking a core category as a general category applicable to general implications applicable to much data elsewhere. Their study is about explaining processes the data, NOT in studying the implications of core and sub-core categories as they are integrated into an explanatory theory. I trust the reader can think of other sources of letting GT research slip into conceptual description.

  18. Remodeling Grounded Theory

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser Ph.D., Hon. Ph.D.


    Full Text Available This paper outlines my concerns with Qualitative Data Analysis’ (QDAnumerous remodelings of Grounded Theory (GT and the subsequent eroding impact. I cite several examples of the erosion and summarize essential elements of classic GT methodology. It is hoped that the article will clarify my concerns with the continuing enthusiasm but misunderstood embrace of GT by QDA methodologists and serve as a preliminary guide to novice researchers who wish to explore the fundamental principles of GT.

  19. Implementation of ground

    Directory of Open Access Journals (Sweden)

    Abbas M. Abbas


    The ground penetrating radar and electrical resistivity tomography are two geophysical tools that have successful applications in archeological assessment. The two techniques were used in integration plan to assert the archeological potentiality of the studied site and to map the feasible tombs. Sum of 798 GPR profiles and 19 ERT cross sections was carried out over the study area. The results of them were analyzed to envisage these results in archeological terms.

  20. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li


    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. – We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. – We show how to solve substring range reporting with optimal query time and little...... range reporting are based on a novel combination of suffix trees and range reporting data structures. The reductions are simple and general and may apply to other combinations of string indexing with range reporting....

  1. Compact Antenna Range (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  2. Dryden Aeronautical Test Range (United States)

    Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...

  3. Inferring the links between breeding and wintering grounds in a ...

    African Journals Online (AJOL)

    Inferring the links between breeding and wintering grounds in a Palearctic– African migratory bird, the Great Reed Warbler, using mitochondrial DNA data. ... of Palearctic African migratory passerines. Keywords: bird, connectivity, distribution range, genetic similarity, migration, mitochondria, population differentiation ...

  4. Phylogeography of Franklin's Ground Squirrel (Spermophilus franklinii Sabine) (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a research proposal to identify genetically divergent populations within the range of a species of Franklin’s ground squirrels using phylogeographic analysis.

  5. Ground-to-Ground Optical Communications Demonstration (United States)

    Biswas, A.; Lee, S.


    A bidirectional horizontal-path optical link was demonstrated between Strawberry Peak (SP), Lake Arrowhead, California, and the JPL Table Mountain Facility (TMF), Wrightwood, California, during June and November of 1998. The 0.6-m telescope at TMF was used to broadcast a 4-beam 780-nm beacon to SP. The JPL-patented Optical Communications Demonstrator (OCD) at SP received the beacon, performed ne tracking to compensate for the atmosphere-induced beacon motion and retransmitted a 844-nm communications laser beam modulated at 40 to 500 Mb/s back to TMF. Characteristics of the horizontal-path atmospheric channel as well as performance of the optical communications link were evaluated. The normalized variance of the irradiance fluctuations or scintillation index delta2/I at either end was determined. At TMF where a single 844-nm beam was received by a 0.6-m aperture, the measured delta2/I covered a wide range from 0.07 to 1.08. A single 780-nm beam delta2/I measured at SP using a 0.09-m aperture yielded values ranging from 0.66 to 1.03, while a combination of four beams reduced the scintillation index due to incoherent averaging to 0.22 to 0.40. This reduction reduced the dynamic range of the fluctuations from 17 to 21 dB to 13 to 14 dB as compared with the OCD tracking sensor dynamic range of 10 dB. Predictions of these values also were made based on existing theories and are compared. Generally speaking, the theoretical bounds were reasonable. Discussions on the probability density function (PDF) of the intensity fluctuations are presented and compared with the measurements made. The lognormal PDF was found to agree for the weak scintillation regime as expected. The present measurements support evidence presented by earlier measurements made using the same horizontal path, which suggests that the aperture averaging effect is better than theoretically predicted.

  6. Advances in the WRF model for convection-resolving forecasting

    Directory of Open Access Journals (Sweden)

    J. B. Klemp


    Full Text Available The Weather Research and Forecasting (WRF Model has been designed to be an efficient and flexible simulation system for use across a broad range of weather-forecast and idealized-research applications. Of particular interest is the use of WRF in nonhydrostatic applications in which moist-convective processes are treated explicitly, thereby avoiding the ambiguities of cumulus parameterization. To evaluate the capabilities of WRF for convection-resolving applications, real-time forecasting experiments have been conducted with 4 km horizontal mesh spacing for both convective systems in the central U.S. and for hurricanes approaching landfall in the southeastern U.S. These forecasts demonstrate a good potential for improving the forecast accuracy of the timing and location of these systems, as well as providing more detailed information on their structure and evolution that is not available in current coarser resolution operational forecast models.

  7. 46 CFR 183.376 - Grounded distribution systems (neutral grounded). (United States)


    ... VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.376... must be only one connection to ground, regardless of the number of power sources. This ground connection must be at the switchboard or at the common ground plate, which must be accessible. (b) Each...

  8. Resonant state expansion of the resolvent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, T.; Lind, P. (Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, S-22100 Lund (Sweden))


    An analytic method of generating resonant state expansions from the standard completeness relation of nonrelativistic quantum mechanics is described and shown to reproduce the generalized completeness relations, earlier derived, involving resonant states. The method is then applied to the expansion of the resolvent (the complete Green's function), the symmetry properties of which [ital seem] to be destroyed if a conventional application of the completeness relations is made. These forms of expansions have a continuum term which contains symmetry-restoring contributions and can therefore never vanish identically, nor can it be neglected. The symmetry-conserving form of the expansion has a set of discrete terms which are identical in form to those of the Mittag-Leffler series for the resolvent. In addition, it contains a continuum contribution which in some cases vanishes identically, but in general does not. We illustrate these findings with numerical applictions in which the potential (a square well) is chosen so as to permit analytic evaluation of practically all functions and quantities involved.

  9. Healthcare Teams Neurodynamically Reorganize When Resolving Uncertainty

    Directory of Open Access Journals (Sweden)

    Ronald Stevens


    Full Text Available Research on the microscale neural dynamics of social interactions has yet to be translated into improvements in the assembly, training and evaluation of teams. This is partially due to the scale of neural involvements in team activities, spanning the millisecond oscillations in individual brains to the minutes/hours performance behaviors of the team. We have used intermediate neurodynamic representations to show that healthcare teams enter persistent (50–100 s neurodynamic states when they encounter and resolve uncertainty while managing simulated patients. Each of the second symbols was developed situating the electroencephalogram (EEG power of each team member in the contexts of those of other team members and the task. These representations were acquired from EEG headsets with 19 recording electrodes for each of the 1–40 Hz frequencies. Estimates of the information in each symbol stream were calculated from a 60 s moving window of Shannon entropy that was updated each second, providing a quantitative neurodynamic history of the team’s performance. Neurodynamic organizations fluctuated with the task demands with increased organization (i.e., lower entropy occurring when the team needed to resolve uncertainty. These results show that intermediate neurodynamic representations can provide a quantitative bridge between the micro and macro scales of teamwork.

  10. Time-resolved studies with FELs

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Artem [J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States); Max-Planck Institut für Kernphysik, 69117 Heidelberg (Germany); Rolles, Daniel, E-mail: [J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States); Deutsches Elektronen Synchrotron (DESY), 22607 Hamburg (Germany)


    Highlights: • Free-electron lasers open up new possibilities for studying ultrafast dynamics. • We describe the current status of the field and recent exemplary experiments. • Experiments studying charge transfer in dissociating molecules are discussed. • Photoelectron diffraction from aligned gas-phase molecules is presented. • We give an outlook on future developments and perspectives. - Abstract: Intense femtosecond VUV, XUV, and X-ray pulses from free-electron lasers (FELs) enable time-resolved experiments studying ultrafast dynamics in a large variety of systems relevant, e.g., to physics, chemistry, biology, and material sciences. In this paper, we focus on time-resolved studies of gas-phase molecules, which lie at the crossroad between atomic, molecular and optical physics and ultrafast photochemistry. We describe the current status of the field and discuss typical experimental configurations used for pump-probe experiments with FELs. We illustrate them with three recent examples for such experiments performed at the FLASH and LCLS FELs studying charge transfer following XUV and X-ray photoabsorption as well as photoelectron diffraction from aligned molecules. We conclude with a short outlook on future developments and perspectives for femtosecond pump-probe experiments with FELs.

  11. Third Class Resolver: a retrospective analysis. (United States)

    D'Attilio, M; Festa, F; Filippakos, A; Comparelli, U; Tripodi, D


    To evaluate the use of Third Class Resolver (TCR), a new fixed and functional orthopaedic appliance for the treatment of skeletal Class III malocclusion in adolescents and young adults. Study design: Retrospective analysis. Twenty subjects, 10 females and 10 males, affected by Class III malocclusion were treated with a new fixed orthopaedic appliance: the Third Class Resolver (TCR). The mean age was 7 years at the beginning of treatment and 9 years at the end of treatment. The mean treatment time was 6 months. Digital cephalometric superimpositions on lateral radiographs taken at the start and end of treatment were assessed. The cephalometric values were statistically analysed. Cephalometric analysis of changes during treatment shows a statistically significant increase of ANB angle (mean 1°) (P = 0.045); increase of Witts Index (mean 3.5 mm) (P = 0.003); decrease of Maxillo-Mandibular angle (MM) (mean -2.3°) (P = 0.047); increase of Upper incisor-Maxilla Plane angle (angle mean 10.5°) (P = 0.02); increase of the distance between Upper Incisor and A-Pg line (mean 2.4 mm) (P = 0.021); increase of the mandibular branch length (mean 4.8 mm) (P = 0.004). TCR can be used fully for treatment of Class III malocclusions.

  12. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre


    size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  13. Range Scheduling Aid (RSA) (United States)

    Logan, J. R.; Pulvermacher, M. K.


    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  14. Ground Beef and Food Safety (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... JSR 286) Actions ${title} Loading... Ground Beef and Food Safety Questions about "ground meat" or "hamburger" have always ...

  15. Ground Water Quality of Selected Wells

    Directory of Open Access Journals (Sweden)

    Mosher R. Ahmed


    Full Text Available In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the measured parameters. Ground water quality of Zaweta district has high dissolved ions due to the nature of studied area rocks. Total dissolved solids of more than 1000 mg/l made the wells Gre-Qassroka, Kora and Swaratoka need to be treated to make taste palatable. Additionally high electrical conductivity and TDS made Zaweta ground water have a slight to moderate restriction to crop growth. The high alkalinity of Zaweta ground water indicated stabilized pH. The water quality of all the wells is found excessively hard. The nitrate concentration of Zaweta ground water ranged between 0.19-42.4 mg/l below the guidelines for WHO and the maximum nitrate concentration is recorded in Kora well .

  16. Home range and travels (United States)

    Stickel, L.F.; King, John A.


    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  17. Tests of Gravity Using Lunar Laser Ranging

    Directory of Open Access Journals (Sweden)

    Stephen M. Merkowitz


    Full Text Available Lunar laser ranging (LLR has been a workhorse for testing general relativity over the past four decades. The three retroreflector arrays put on the Moon by the Apollo astronauts and the French built arrays on the Soviet Lunokhod rovers continue to be useful targets, and have provided the most stringent tests of the Strong Equivalence Principle and the time variation of Newton’s gravitational constant. The relatively new ranging system at the Apache Point 3.5 meter telescope now routinely makes millimeter level range measurements. Incredibly, it has taken 40 years for ground station technology to advance to the point where characteristics of the lunar retroreflectors are limiting the precision of the range measurements. In this article, we review the gravitational science and technology of lunar laser ranging and discuss prospects for the future.

  18. Fast Range Covariance Estimation using CONRAD

    Energy Technology Data Exchange (ETDEWEB)

    De Saint Jean, C.; Habert, B.; Noguere, G.; Archier, P.; Litaize, O.; Ruggieri, J.M. [CEA-Cadarache, DER/SPRC/LEPh, 13 - St-Paul-Lez-Durance (France)


    One of the initial goals of the CONRAD code development was to properly take into account various uncertainties propagations. First developments were performed to treat adequately nuisance parameters (such as experimental parameters), in the resolved and unresolved resonance region by using a marginalization technique. A generalization of these methodologies to higher energy range is presented in this paper. We will first present in detail the mathematics involved in this technique. The interface of CONRAD with ECIS will be presented, especially, the way optical model were parameterized in CONRAD from the classical RIPL database. Then, some applications of CONRAD (wrapping ECIS) will be presented. (authors)

  19. Radar measurements of surface deformation in the sub mm-range (United States)

    Peters, Gerhard; Hort, Matthias; Gerst, Alexander; Scharff, Lea


    A portable low power Doppler radar at 24 GHz is used for volcano eruption observations since more than a decade (e.g. Hort and Seyfried, 1998, doi: 10.1029/97GL03482; Seyfried and Hort, 1999, doi: 10.1007/s004450050256; Vöge et al., 2005, doi: 10.1029/2005 EO510001, Vöge and Hort, 2009, doi: 10.1109/TGRS. 2008.2002693, Gerst et al., 2013, doi: 10.1002/jgrb.50234; Scharff et al, 2015, doi: 10.1130/G36705.1) The typical radar products are range resolved Doppler spectra containing information on the reflectivity, radial velocity and its distribution of ejected particles. Here we present the analysis of the phase of radar signals for the detection of comparably slow and small deformations of the solid surface which may occur for example prior to an eruption [Hort et al., 2010, AGU Fall meeting, Abstract V32B-03]. While the phase analysis of weather radar echoes from ground targets is established for estimating the atmospheric refractivity [Besson and du Châtelet, 2013, 10.1175/ JTECH-D-12-00167.1], we consider here the variability of the atmosphere as a source of uncertainty. We describe the implementation of this technique in a dedicated compact low power FMCW system. Observations at Stromboli suggest an expansion of the vent prior to the eruption on the order of millimeter which is on the same oder as reported by [Noferini et al., 2009, doi: 10.1109/IGARSS. 2009. 5416901] and in case of Santiaguito volcano we were able to observe the post eruptive subsidence of the volcanic dome. We suggest further to resolve the range/refractivity ambiguity by using a dual frequency radar with sufficient frequency separation for utilizing the frequency dependence of refractivity.

  20. Capacitive Proximity Sensor Has Longer Range (United States)

    Vranish, John M.


    Capacitive proximity sensor on robot arm detects nearby object via capacitive effect of object on frequency of oscillator. Sensing element part of oscillator circuit operating at about 20 kHz. Total capacitance between sensing element and ground constitutes tuning capacitance of oscillator. Sensor circuit includes shield driven by replica of alternating voltage applied to sensing element. Driven shield concentrates sensing electrostatic field in exterior region to enhance sensitivity to object. Sensitivity and dynamic range has corresponding 12-to-1 improvement.

  1. Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity (United States)

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Gallot, Guilhem


    The authors demonstrate the direct, noninvasive and time resolved imaging of functional frog auricular fibers by ionic contrast terahertz (ICT) near field microscopy. This technique provides quantitative, time-dependent measurement of ionic flow during auricular muscle electrical activity, and opens the way of direct noninvasive imaging of cardiac activity under stimulation. ICT microscopy technique was associated with full three-dimensional simulation enabling to measure precisely the fiber sizes. This technique coupled to waveguide technology should provide the grounds to development of advanced in vivo ion flux measurement in mammalian hearts, allowing the prediction of heart attack from change in K+ fluxes.

  2. Tachometer Derived From Brushless Shaft-Angle Resolver (United States)

    Howard, David E.; Smith, Dennis A.


    Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.

  3. Common Ground and Delegation

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena; Foss, Nicolai Juul; Lyngsie, Jacob

    Much recent research suggests that firms need to increase their level of delegation to better cope with, for example, the challenges introduced by dynamic rapid environments and the need to engage more with external knowledge sources. However, there is less insight into the organizational...... preconditions of increasing delegation. We argue that key HR practices?namely, hiring, training and job-rotation?are associated with delegation of decision-making authority. These practices assist in the creation of shared knowledge conditions between managers and employees. In turn, such a ?common ground...

  4. Designing as Middle Ground

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian; Binder, Thomas


    The theoretical background in this chapter is science and technology studies and actor network theory, enabling investigation of heterogeneity, agency and perfor-mative effects through ‘symmetric’ analysis. The concept of design is defined as being imaginative and mindful to a number of actors in...... research is an articulation of design activity taking place as a middle ground and as an intermixture between a ‘scientific’ regime of knowledge transfer and a capital ‘D’ ‘Designerly’ regime of authoring....

  5. Long range image enhancement

    CSIR Research Space (South Africa)

    Duvenhage, B


    Full Text Available and Vision Computing, Auckland, New Zealand, 23-24 November 2015 Long Range Image Enhancement Bernardt Duvenhage Council for Scientific and Industrial Research South Africa Email: Abstract Turbulent pockets of air...


    Houston, Robert S.; Bigsby, Philip R.


    A mineral survey of the Snowy Range Wilderness in Wyoming was undertaken and was followed up with more detailed geologic and geochemical surveys, culminating in diamond drilling of one hole in the Snowy Range Wilderness. No mineral deposits were identified in the Snowy Range Wilderness, but inasmuch as low-grade uranium and associated gold resources were identified in rocks similar to those of the northern Snowy Range Wilderness in an area about 5 mi northeast of the wilderness boundary, the authors conclude that the northern half of the wilderness has a probable-resource potential for uranium and gold. Closely spaced drilling would be required to completely evaluate this mineral potential. The geologic terrane precludes the occurrence of fossil fuels.

  7. Atlantic Test Range (ATR) (United States)

    Federal Laboratory Consortium — ATR controls fully-instrumented and integrated test ranges that provide full-service support for cradle-to-grave testing. Airspace and surface target areas are used...

  8. Light Detection And Ranging (United States)

    U.S. Geological Survey, Department of the Interior — LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  9. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.


    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  10. Pseudo-bimolecular [2+2] cycloaddition studied by time-resolved photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y; Boguslavskiy, Andrey E; Schalk, Oliver


    The first study of pseudo-bimolecular cycloaddition reaction dynamics in the gas phase is presented. We used femtosecond time-resolved photoelectron spectroscopy (TRPES) to study the [2+2] photocycloaddition in the model system pseudo-gem-divinyl[2.2]paracyclophane. From X-ray crystal diffraction...... measurements we found that the ground-state molecule can exist in two conformers; a reactive one in which the vinyl groups are immediately situated for [2+2] cycloaddition and a nonreactive conformer in which they point in opposite directions. From the measured S(1) lifetimes we assigned a clear relation...... between the conformation and the excited-state reactivity; the reactive conformer has a lifetime of 13 ps, populating the ground state through a conical intersection leading to [2+2] cycloaddition, whereas the nonreactive conformer has a lifetime of 400 ps. Ab initio calculations were performed to locate...

  11. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre


    is a small number, but only gave heuristic arguments for this. In this paper, we provide the first methods for rigorously estimating the Range of Skill of a given game. We provide some general, asymptotic bounds that imply that the Range of Skill of a perfectly balanced game tree is almost exponential in its......At AAAI'07, Zinkevich, Bowling and Burch introduced the Range of Skill measure of a two-player game and used it as a parameter in the analysis of the running time of an algorithm for finding approximate solutions to such games. They suggested that the Range of Skill of a typical natural game...... size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  12. Empirical ground motion prediction

    Directory of Open Access Journals (Sweden)

    R. J. Archuleta


    Full Text Available New methods of site-specific ground motion prediction in the time and frequency domains are presented. A large earthquake is simulated as a composite (linear combination of observed small earthquakes (subevents assuming Aki-Brune functional models of the source time functions (spectra. Source models incorporate basic scaling relations between source and spectral parameters. Ground motion predictions are consistent with the entire observed seismic spectrum from the lowest to the highest frequencies. These methods are designed to use all the available empirical Green’s functions (or any subset of observations at a site. Thus a prediction is not biased by a single record, and different possible source-receiver paths are taken into account. Directivity is accounted for by adjusting the apparent source duration at each site. Our time-series prediction algorithm is based on determination of a non-uniform distribution of rupture times of subevents. By introducing a specific rupture velocity we avoid the major problem of deficiency of predictions around the main event's corner frequency. A novel notion of partial coherence allows us to sum subevents' amplitude spectra directly without using any information on their rupture times and phase histories. Predictions by this spectral method are not Jependent on details of rupture nucleation and propagation, location of asperities and other predominantly phase-affecting factors, responsible for uncertainties in time-domain simulations.

  13. A thermal ground cloak (United States)

    Yang, Tianzhi; Wu, Qinghe; Xu, Weikai; Liu, Di; Huang, Lujun; Chen, Fei


    The thermal cloak has been a long-standing scientific dream of researchers and engineers. Recently thermal metamaterials with man-made micro-structure have been presented based on the principle of transformation optics (TO). This new concept has received considerable attention, which is a powerful tool for manipulating heat flux in thermal imaging systems. However, the inherent material singularity has long been a captivation of experimental realization. As an alternative method, the scattering-cancellation-based cloak (or bi-layer thermal cloak) has been presented to remove the singularity for achieving the same cloaking performance. Nevertheless, such strategy needs prerequisite knowledge (geometry and conductivity) of the object to be cloaked. In this paper, a new thermal ground cloak is presented to overcome the limitations. The device is designed, fabricated and measured to verify the thermal cloaking performance. We experimentally show that the remarkably low complexity of the device can fully and effectively be manipulated using realizable transformation thermal devices. More importantly, this thermal ground cloak is designed to exclude heat flux without knowing the information of the cloaked object.

  14. Resolving coastal conflicts using marine spatial planning. (United States)

    Tuda, Arthur O; Stevens, Tim F; Rodwell, Lynda D


    We applied marine spatial planning (MSP) to manage conflicts in a multi-use coastal area of Kenya. MSP involves several steps which were supported by using geographical information systems (GISs), multi-criteria decision analysis (MCDA) and optimization. GIS was used in identifying overlapping coastal uses and mapping conflict hotspots. MCDA was used to incorporate the preferences of user groups and managers into a formal decision analysis procedure. Optimization was applied in generating optimal allocation alternatives to competing uses. Through this analysis three important objectives that build a foundation for future planning of Kenya's coastal waters were achieved: 1) engaging competing stakeholders; 2) illustrating how MSP can be adapted to aid decision-making in multi-use coastal regions; and 3) developing a draft coastal use allocation plan. The successful application of MSP to resolve conflicts in coastal regions depends on the level of stakeholder involvement, data availability and the existing knowledge base. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Decomposition of time-resolved tomographic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Peter J. [Ecole Polytechnique, Laboratoire d' Hydrodynamique (LadHyX), Palaiseau (France); Violato, Daniele; Scarano, Fulvio [Delft University of Technology, Department of Aerospace Engineering, Delft (Netherlands)


    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured three-dimensional flow fields have then been postprocessed by the dynamic mode decomposition which identifies coherent structures that contribute significantly to the dynamics of the jet. Both temporal and spatial analyses have been performed. Where the jet exhibits a primary axisymmetric instability followed by a pairing of the vortex rings, dominant dynamic modes have been extracted together with their amplitude distribution. These modes represent a basis for the low-dimensional description of the dominant flow features. (orig.)

  16. Orbit of a Resolved Trojan Binary (United States)

    Noll, Keith


    We have identified the Jupiter Trojan (16974) 1998 WR21 as a binary, making it only the third known resolvable binary in this population. We will use HST to determine its orbit from which we will determine the system mass. Using the mass and WISE-derived albedo, we will derive the density. Density can be used to constrain planetary migration models; low density is characteristic of bodies found in the Kuiper Belt, a remnant of the solar system's protoplanetary disk. Only one undisputed density has been measured in the Trojans, that of the binary (617) Patroclus, which has a low density of 800 kg/m3. The density of WR21 will test whether Patroclus is an anomaly or whether low densities might be the norm, as they are in the Kuiper Belt.

  17. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.


    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  18. Ground motion: An introduction for accelerator builders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.


    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.

  19. Ground robotic measurement of aeolian processes (United States)

    Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.


    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science

  20. Impact of additional surface observation network on short range ...

    Indian Academy of Sciences (India)

    conducted to assess the impact of Indian Space Research Organisation's (ISRO) Automatic Weather. Stations (AWS) surface observations (temperature and moisture) on the short range ... computer power has led to finer resolution NWP models, which are able to resolve mesoscale fea- tures and thus to give more precise ...

  1. Comparative analysis of planetary laser ranging concepts (United States)

    Dirkx, D.; Bauer, S.; Noomen, R.; Vermeersen, B. L. A.; Visser, P. N.


    Laser ranging is an emerging technology for tracking interplanetary missions, offering improved range accuracy and precision (mm-cm), compared to existing DSN tracking. The ground segment uses existing Satellite Laser Ranging (SLR) technology, whereas the space segment is modified with an active system. In a one-way system, such as that currently being used on the LRO spacecraft (Zuber et al., 2010), only an active detector is required on the spacecraft. For a two-way system, such as that tested by using the laser altimeter system on the MESSENGER spacecraft en route to Mercury (Smith et al., 2006), a laser transmitter system is additionally placed on the space segment, which will asynchronously fire laser pulses towards the ground stations. Although the one-way system requires less hardware, clock errors on both the space and ground segments will accumulate over time, polluting the range measurements. For a two-way system, the range measurements are only sensitive to clock errors integrated over the the two-way light time.We investigate the performance of both one- and two-way laser range systems by simulating their operation. We generate realizations of clock error time histories from Allan variance profiles, and use them to create range measurement error profiles. We subsequently perform the orbit determination process from this data to quanitfy the system's performance. For our simulations, we use two test cases: a lunar orbiter similar to LRO and a Phobos lander similar to the Phobos Laser Ranging concept (Turyshev et al., 2010). For the lunar orbiter, we include an empirical model for unmodelled non-gravitational accelerations in our truth model to include errors ihe dynamics. We include the estimation of clock parameters over a number of arc lengths for our simulations of the one-way range system and use a variety of state arc durations for the lunar orbiter simulations.We perform Monte Carlo simulations and generate true error distributions for both

  2. The extreme relativity of perception: A new contextual effect modulates human resolving power. (United States)

    Namdar, Gal; Ganel, Tzvi; Algom, Daniel


    The authors report the discovery of a new effect of context that modulates human resolving power with respect to an individual stimulus. They show that the size of the difference threshold or the just noticeable difference around a standard stimulus depends on the range of the other standards tested simultaneously for resolution within the same experimental session. The larger this range, the poorer the resolving power for a given standard. The authors term this effect the range of standards effect (RSE). They establish this result both in the visual domain for the perception of linear extent, and in the somatosensory domain for the perception of weight. They discuss the contingent nature of stimulus resolution in perception and psychophysics and contrast it with the immunity to contextual influences of visually guided action. (c) 2016 APA, all rights reserved).

  3. Raman cooling imaging: Detecting single atoms near their ground state of motion


    Lester, Brian J.; Kaufman, Adam M.; Regal, Cindy A.


    We demonstrate imaging of neutral atoms via the light scattered during continuous Raman sideband cooling. We detect single atoms trapped in optical tweezers while maintaining a significant motional ground-state fraction. The techniques presented provide a framework for single-atom resolved imaging of a broad class of atomic species.

  4. Uncertainty in peat volume and soil carbon estimated using ground-penetrating radar and probing (United States)

    Andrew D. Parsekian; Lee Slater; Dimitrios Ntarlagiannis; James Nolan; Stephen D. Sebestyen; Randall K. Kolka; Paul J. Hanson


    Estimating soil C stock in a peatland is highly dependent on accurate measurement of the peat volume. In this study, we evaluated the uncertainty in calculations of peat volume using high-resolution data to resolve the three-dimensional structure of a peat basin based on both direct (push probes) and indirect geophysical (ground-penetrating radar) measurements. We...

  5. Ganas of Showing the Way: A Grounded Theory Study of Hispanic Presidents in Higher Education (United States)

    Barrios Gutierrez, Eugenio


    In this dissertation, based on classical grounded theory (Glaser & Strauss, 1967, 1971; Glaser, 1978, 1992, 1993, 1994a, 1994b, 1996, 1998, 2001, 2003, 2004), second generation Hispanic presidents and chancellors in higher education were studied to discover how they continually try to resolve second culture-coping challenges, the…

  6. Influence of strike object grounding on close lightning electric fields (United States)

    Baba, Yoshihiro; Rakov, Vladimir A.


    Using the finite difference time domain (FDTD) method, we have calculated vertical electric field Ez, horizontal (radial) electric field Eh, and azimuthal magnetic field Hϕ produced on the ground surface by lightning strikes to 160-m- and a 553-m-high conical strike objects representing the Peissenberg tower (Germany) and the CN Tower (Canada), respectively. The fields were computed for a typical subsequent stroke at distances d' from the bottom of the object ranging from 5 to 100 m for the 160-m tower and from 10 to 300 m for the 553-m tower. Grounding of the 160-m object was assumed to be accomplished by its underground basement represented by a 10-m-radius and 8-m-long perfectly conducting cylinder with or without a reference ground plane located 2 m below. The reference ground plane simulates, to some extent, a higher-conducting ground layer that is expected to exist below the water table. The configuration without reference ground plane actually means that this plane is present, but is located at an infinitely large depth. Grounding of the 553-m object was modeled in a similar manner but in the absence of reference ground plane only. In all cases considered, waveforms of Eh and Hϕ are not much influenced by the presence of strike object, while waveforms of Ez are. Waveforms of Ez are essentially unipolar (as they are in the absence of strike object) when the ground conductivity σ is 10 mS/m (the equivalent transient grounding impedance is several ohms) or greater. Thus, for the CN Tower, for which σ ≥ 10 mS/m, the occurrence of Ez polarity change is highly unlikely. For the 160-m tower and for σ = 1 and 0.1 mS/m, waveforms of Ez become bipolar (exhibit polarity change) at d' ≤ 10 m and d' ≤ 50 m, respectively, regardless of the presence of the reference ground plane. The corresponding equivalent transient grounding impedances are about 30 and 50 Ω in the absence of the reference ground plane and smaller than 10 Ω in the presence of the reference

  7. Resolving conflicts at work: ten strategies for everyone on the job

    National Research Council Canada - National Science Library

    Cloke, Ken; Goldsmith, Joan


    "The classic text on resolving workplace conflicts, fully revised and updated Resolving Conflicts at Work is a guide for preventing and resolving conflicts, miscommunications, and misunderstandings...

  8. Prescription checking device promises to resolve intractable hypoglycemia. (United States)

    Albisser, A Michael; Alejandro, Rodolfo; Sperlich, Marianne; Ricordi, Camillo


    Satisfactory glycemic control, meeting American Diabetes Association recommendations, is often accompanied by unsatisfactory hypoglycemia. The converse is also true. We hypothesize that this diabetes treatment dilemma may be resolved by repeated, objective, prescription checks. To do this, a new, two-part device has been developed. It includes a personal diabetes database for the patient and a built-in diabetes prescription checker for the provider. Its goals are to enhance diabetes education and improve patient care. The device includes a database and supporting software, all contained in a standard USB flash drive. Using the medical prescription, body weight, and recent self-monitored blood glucose (SMBG) data, prescription checks can be done at any time. To demonstrate the device's capabilities, an observational study was performed using data from 11 patients with type 1 diabetes mellitus, on intensified therapy, with a mean glycated hemoglobin A1c <7%, and who all suffered intractable hypoglycemia. Patients had performed SMBG contours on successive days at monthly intervals. Each contour included pre- and postmeal as well as bedtime measurements. The replicated contours were used to predict the patient's glycemic profile each month. Applying a built-in simulator to each profile, changes in the prescription were explored that were consistent with reducing the recalcitrant hypoglycemia. A total of 110 glycemic profiles containing 822 profile points were explored. Of these profile points, 351 (43%) showed risks of hypoglycemia, whereas 385 (47%) fell outside desired ranges. With the simulated changes in the prescription, the predicted risks of hypoglycemia were reduced 2.5-fold with insignificant increases predicted in hemoglobin A1c levels of +0.6 +/- 0.9%. A novel support tool for diabetes promises to resolve the diabetes treatment dilemma. Supporting the patient, it improves self-management. Supporting the provider, it reviews the medical prescription in light

  9. The LOFT Ground Segment

    DEFF Research Database (Denmark)

    Bozzo, E.; Antonelli, A.; Argan, A.


    LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several...... targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT...... Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution...

  10. Applying Grounded Theory

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD, Hon. PhD


    Full Text Available Application of grounded theory (GT is a relatively neglected topic by my colleagues. I have written several chapters in my books on applying GT. Two colleagues, Odis Simmons and Barbara Artinian (2009, as well as Dirks and Mills (2011, and Walsh (2014, have also written about applying GT. In the first two chapters of this book I discuss at length properties of generally applying GT and then professional issues and personal matters when applying of GT. There follows in this book nine chapters, four by me and one by Simmons and one by Artinian and one by Dirks and Mills, that are already published in books on GT, and one by Walsh. Thus, this book ends like a reader which publishes in one place already written work. The reader of this book may experience some redundancy in these chapters, but that is the nature of reader texts as different authors discuss the same ideas and topics.

  11. On slippery ground:

    DEFF Research Database (Denmark)

    Olesen, Birgitte Ravn; Nordentoft, Helle Merete


    , as researchers, found ourselves on slippery and emotionally charged ground. Using a critical, reflexive approach informed by poststructuralism, our ambition was to deconstruct gaps between rhetoric and practice and critique normative understandings of the nature of ethically sound coproduction processes......Purpose The purpose of this article is to discuss the ethical complexity and dilemmas, which arise in the coproduction of knowledge between researchers and other participants. Design/methodology/approach The starting-point for the article is a narrative from a conference we attended where we...... in collaborative research. More specifically, at the conference, we sought to expose and discuss the gap between our good intentions and our own practice as researchers in a collaborative research project at a major hospital. However, instead of reflexive discussions with the research community, we experienced...

  12. On slippery ground

    DEFF Research Database (Denmark)

    Olesen, Birgitte Ravn; Jakobsen, Helle Nordentoft


    , as researchers, found ourselves on slippery and emotionally charged ground. Using a critical, reflexive approach informed by poststructuralism, our ambition was to deconstruct gaps between rhetoric and practice and critique normative understandings of the nature of ethically sound coproduction processes......Purpose The purpose of this article is to discuss the ethical complexity and dilemmas, which arise in the coproduction of knowledge between researchers and other participants. Design/methodology/approach The starting-point for the article is a narrative from a conference we attended where we...... in collaborative research. More specifically, at the conference, we sought to expose and discuss the gap between our good intentions and our own practice as researchers in a collaborative research project at a major hospital. However, instead of reflexive discussions with the research community, we experienced...

  13. Ground hardness and injury in community level Australian football. (United States)

    Twomey, Dara M; Finch, Caroline F; Lloyd, David G; Elliott, Bruce C; Doyle, Tim L A


    To describe the risk and details of injuries associated with ground hardness in community level Australian football (AF). Prospective injury surveillance with periodic objective ground hardness measurement. 112 ground hardness assessments were undertaken using a Clegg hammer at nine locations across 20 grounds, over the 2007 and 2008 AF seasons. Details of 352 injuries sustained by community level players on those grounds were prospectively collected as part of a large randomised controlled trial. The ground location of the injury was matched to the nearest corresponding ground hardness Clegg hammer readings, in gravities (g), which were classified from unacceptably low (hardness (>120 g). Clegg hammer readings ranged from 25 to 301 g. Clegg hammer hardness categories from low/normal to high/normal were associated with the majority of injuries, with only 3.7% (13 injuries) on unacceptably high hardness and 0.3% (1 injury) on the unacceptably low hardness locations. Relative to the preferred range of hardness, the risk of sustaining an injury on low/normal hardness locations was 1.31 (95%CI: 1.06-1.62) times higher and 1.82 (95%CI: 1.17-2.85) times higher on locations with unacceptably high hardness. The more severe injuries occurred with low/normal ground hardness. Despite the low number of injuries, the risk of sustaining an injury on low/normal and unacceptably hard grounds was significantly greater than on the preferred range of hardness. Notably, the severity of the injuries sustained on unacceptably hard grounds was lower than for other categories of hardness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Overlap Properties of Clouds Generated by a Cloud Resolving Model (United States)

    Oreopoulos, L.; Khairoutdinov, M.


    In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will

  15. Time-resolved and position-resolved X-ray spectrometry with a pixelated detector

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Peter


    The aim of the work presented here was to measure X-ray spectra with a pixelated detector. Due to effects in the sensor the spectrum cannot be measured directly and has to be calculated by a deconvolution of the measured data. In the scope of this work the deconvolution of the measured spectra could be enhanced considerably by - amongst other things - the introduction of the Bayesian deconvolution method. Those improvements opened the possibilities for further measurements. For the measurements the detectors of the Medipix family have been used. They are nowadays used for a wide range of applications and scientific research. Their main advantage is the very high position resolution gained by a pixel pitch of 55 μm and a high number of 65536 pixels. The Timepix detector has, in particular, two special possibilities of measurement: the ToA mode and the ToT mode. In ToA mode the arrival time of an impinging photon is measured and in ToT mode the amount of deposited charge is measured. The most common method of operation is counting the number of impinging photons that release a charge higher than a preset threshold in each pixel. As this released charge is proportional to the energy deposition of the impinging photon, one can perform energy-sensitive measurements. To perform the deconvolution of the measured energy distribution there is a need of an energy response matrix describing the detector response on radiation. For some detectors it is possible to obtain an analytic model of the response functions. Due to the high discrepancy between the impinging spectrum and the measured spectrum in case of detectors of the Medipix family, there is so far no analytic model. Thus, the detector response has to be simulated. As I could improve the precision of the measurement quite extensively, I also intended to tune the simulation with more accurate and appropriate models to gain the same level of accuracy. The results of measurement and simulation have then been compared and



    ARIK, Ferhat; ARIK, Işıl Avşar


    This research discusses the historical development of the Grounded Theory Methodology, which is one of the qualitative research method, its transformation over time and how it is used as a methodology in Turkey. The Grounded Theory which was founded by Strauss and Glaser, is a qualitative methodology based on inductive logic to discover theories in contrast with the deductive understanding which is based on testing an existing theory in sociology. It is possible to examine the Grounded Theory...

  17. Orthogonal Range Searching on the RAM, Revisited

    DEFF Research Database (Denmark)

    Chan, Timothy M.; Larsen, Kasper Green; Patrascu, Mihai


    We present a number of new results on one of the most extensively studied topics in computational geometry, orthogonal range searching. All our results are in the standard word RAM model: We present two data structures for 2-d orthogonal range emptiness. The first achieves O(n lg lg n) space and O...... the output size. This resolves two open problems (both appeared in Preparata and Shamos' seminal book): given a set of n axis-aligned rectangles in the plane, we can report all k enclosure pairs (i.e., pairs (r1,r2) where rectangle r1 completely encloses rectangle r2) in O(n lg n + k) expected time; given...

  18. Regolith Volatile Characterization (RVC) in RESOLVE (United States)

    Captain, Janine; Lueck, Dale; Gibson, Tracy; Levine, Lanfang


    Resource investigation in the lunar poles is of importance to the potential impact of in-situ resource utilization (ISRU). The RESOLVE project developed a payload to investigate the permanently shadowed areas of the lunar poles and demonstrate ISRU technology. As a part of the RESOLVE project, the regolith volatile characterization (RVC) subsystem was designed to examine the release of volatiles from sample cores. The test sample was heated in the reactor to release the volatiles where they were analyzed with gas chromatography. Subsequently, the volatile sample was introduced into the lunar water resource demonstration (LWRD) subsystem where the released hydrogen and water were selectively captured. The objective of the Regolith Volatile Characterization (RVC) subsystem was to heat the crushed core sample and determine the desorption of volatile species of interest. The RVC subsystem encompasses the reactor and the system for volatile analysis. The system was designed to analyze H2, He, CO, CO2, N2, 02, CH4, H2S and H2O. The GC chosen for this work is a Siemens MicroSAM process GC with 3 columns and 8 TCD detectors. Neon was chosen as the carrier gas to enhance the analysis of hydrogen and helium.The limit of detection for the gases is approx.1000ppm for H2, CO. CO2 , N2, O2 and H2 S. The limit of detection for CH4 is approx.4000ppm and the water limit of detection is -10000 ppm with a sample analysis time of 2-3 minutes. These values (with the exception of water and H2S) were determined by dilution of a six gas mixture from Scott Gas (5% CO2, CO, O2, N2, 4% CH4 and H2) using mass flow controllers (MFC5). Water was calibrated at low levels using an in house relative humidity (RH) generator. H 2S and high concentrations of H2 were calibrated by diluting a pure stream of gas with MFCs. Higher concentrations of N2 and 02 were calibrated using Air again diluting with MFCs. There were three modification goals for the GC in EBU2 that would allow this process GC to be

  19. Range Selection and Median

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Larsen, Kasper Green


    that supports queries in constant time, needs n1+ (1) space. For data structures that uses n logO(1) n space this matches the best known upper bound. Additionally, we present a linear space data structure that supports range selection queries in O(log k= log log n + log log n) time. Finally, we prove that any...

  20. Electric vehicles: Driving range (United States)

    Kempton, Willett


    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  1. Ground Motions Due to Earthquakes on Creeping Faults (United States)

    Harris, R.; Abrahamson, N. A.


    We investigate the peak ground motions from the largest well-recorded earthquakes on creeping strike-slip faults in active-tectonic continental regions. Our goal is to evaluate if the strong ground motions from earthquakes on creeping faults are smaller than the strong ground motions from earthquakes on locked faults. Smaller ground motions might be expected from earthquakes on creeping faults if the fault sections that strongly radiate energy are surrounded by patches of fault that predominantly absorb energy. For our study we used the ground motion data available in the PEER NGA-West2 database, and the ground motion prediction equations that were developed from the PEER NGA-West2 dataset. We analyzed data for the eleven largest well-recorded creeping-fault earthquakes, that ranged in magnitude from M5.0-6.5. Our findings are that these earthquakes produced peak ground motions that are statistically indistinguishable from the peak ground motions produced by similar-magnitude earthquakes on locked faults. These findings may be implemented in earthquake hazard estimates for moderate-size earthquakes in creeping-fault regions. Further investigation is necessary to determine if this result will also apply to larger earthquakes on creeping faults. Please also see: Harris, R.A., and N.A. Abrahamson (2014), Strong ground motions generated by earthquakes on creeping faults, Geophysical Research Letters, vol. 41, doi:10.1002/2014GL060228.

  2. Imaging dental sections with polarization-resolved SHG and time-resolved autofluorescence (United States)

    Chen, Jun Huang; Lin, Po-Yen; Hsu, Stephen C. Y.; Kao, Fu-Jen


    In this study, we are using two-photon (2-p) excited autofluorescence and second harmonic (SH) as imaging modalities to investigate dental sections that contains the enamel and the dentin. The use of near-infrared wavelengths for multiphoton excitation greatly facilitates the observation of these sections due to the hard tissue's larger index of refraction and highly scattering nature. Clear imaging can be achieved without feature altering preparation procedures of the samples. Specifically, we perform polarization resolving on SH and lifetime analysis on autofluorescence. Polarization resolved SH reflects the preferred orientation of collagen while very different autofluorescence lifetimes are observed from the dentin and the enamel. The origin of 2-p autofluorescence and SH signals are attributed to hydroxyapatite crystals and collagen fibrils, respectively. Hydroxyapatite is found to be present throughout the sections while collagen fibrils exist only in the dentin and dentinoenamel junctions.

  3. Resolving the inner disk of UX Orionis (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.


    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  4. A Grounded Theory of Political Intelligentizing in Business Administration

    Directory of Open Access Journals (Sweden)

    Annabel-Mauve Adjognon


    Full Text Available This study focuses on the substantive area of business administration using the classic grounded theory method. Business administration is mostly driven by political games between top-level corporate managers. The main concern of the managers I met was that they wanted to be more politically successful. For them, success meant being able to change regularly the course of decisions and action within their firm. The study led to the emergence of a core variable called political intelligentizing. Political intelligentizing explains the recurrent main concern that these managers have to resolve, and it explains the competences managers have to combine to succeed regularly in organisational politics. They resolve their main problem through political intelligentizing which consists in acquiring, developing and combining six specific skills: time matching, rhetorical fitting, silence juggling, strategic forward-thinking, strategic interacting and relationing.

  5. Earthquake ground motion: Chapter 3 (United States)

    Luco, Nicolas; Kircher, Charles A.; Crouse, C. B.; Charney, Finley; Haselton, Curt B.; Baker, Jack W.; Zimmerman, Reid; Hooper, John D.; McVitty, William; Taylor, Andy


    Most of the effort in seismic design of buildings and other structures is focused on structural design. This chapter addresses another key aspect of the design process—characterization of earthquake ground motion into parameters for use in design. Section 3.1 describes the basis of the earthquake ground motion maps in the Provisions and in ASCE 7 (the Standard). Section 3.2 has examples for the determination of ground motion parameters and spectra for use in design. Section 3.3 describes site-specific ground motion requirements and provides example site-specific design and MCER response spectra and example values of site-specific ground motion parameters. Section 3.4 discusses and provides an example for the selection and scaling of ground motion records for use in various types of response history analysis permitted in the Standard.

  6. Rotationally resolved spectra of jet-cooled RuSi. (United States)

    Lindholm, Ned; Morse, Michael D


    We report the first gas-phase spectroscopic investigation of diatomic ruthenium silicide (RuSi). The molecules were produced by laser ablation of a Ru disk into a flow of helium carrier gas containing 0.5% SiH(4), and were cooled in a supersonic expansion. The RuSi molecules were then studied using resonant two-photon ionization spectroscopy. Investigations conducted in the spectral range from 18,800 to 23,800 cm(-1) show a large number of excited vibronic levels that cannot readily be grouped into electronic band systems. The ground state is been demonstrated to be of (3)Delta(3) symmetry, deriving from the 2delta(3)14sigma(1) electronic configuration. Correcting for the effects of the spin-uncoupling operator, the ground state bond length (r(0)) is determined to be 2.0921+/-0.0004 A (1sigma error limit). Diatomic RuSi is shown to have strong dpi-ppi bonds, unlike the isovalent AlCo molecule.

  7. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources. (United States)

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E


    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  8. DNA phylogeny of the marsupial wolf resolved. (United States)

    Krajewski, C; Buckley, L; Westerman, M


    The phylogenetic position of the recently extinct marsupial 'wolf', or thylacine (Thylacinus cynocephalus), has been a source of contention in mammalian systematics for nearly a century. Thylacines were endemic to Australasia, but possessed striking anatomical similarities to Oligo-Miocene borhyaenid marsupials of South America. At issue has been whether these features are indicative of common ancestry or convergent adaptation to carnivory. Recent morphological studies have supported both conclusions. Although current marsupial classifications group thylacines with Australian dasyuromorphians, this putative clade is characterized by mostly primitive morphological features. Attempts to determine thylacine affinities with ancient protein and DNA analyses have supported, but not resolved, a dasyuromorphian placement. We report 1546 bp of mitochondrial DNA sequence (from cytochrome b and 12S rRNA genes) and 841 bp of nuclear protamine gene sequence from the thylacine and representatives of all or most other marsupial orders. Phylogenetic analysis of these sequences shows unambiguously that thylacines are members of Dasyuromorphia, and suggests a late Oligocene or very early Miocene divergence of familial lineages.

  9. Resolving Gas-Phase Metallicity In Galaxies (United States)

    Carton, David


    Chapter 2: As part of the Bluedisk survey we analyse the radial gas-phase metallicity profiles of 50 late-type galaxies. We compare the metallicity profiles of a sample of HI-rich galaxies against a control sample of HI-'normal' galaxies. We find the metallicity gradient of a galaxy to be strongly correlated with its HI mass fraction {M}{HI}) / {M}_{\\ast}). We note that some galaxies exhibit a steeper metallicity profile in the outer disc than in the inner disc. These galaxies are found in both the HI-rich and control samples. This contradicts a previous indication that these outer drops are exclusive to HI-rich galaxies. These effects are not driven by bars, although we do find some indication that barred galaxies have flatter metallicity profiles. By applying a simple analytical model we are able to account for the variety of metallicity profiles that the two samples present. The success of this model implies that the metallicity in these isolated galaxies may be in a local equilibrium, regulated by star formation. This insight could provide an explanation of the observed local mass-metallicity relation. Chapter 3 We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept we also apply the model to real IFS observations of high-redshift galaxies. From our testing we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies

  10. Time-Resolved Fluorescence in Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Shu-Chi Allison Yeh


    Full Text Available Photodynamic therapy (PDT has been used clinically for treating various diseases including malignant tumors. The main advantages of PDT over traditional cancer treatments are attributed to the localized effects of the photochemical reactions by selective illumination, which then generate reactive oxygen species and singlet oxygen molecules that lead to cell death. To date, over- or under-treatment still remains one of the major challenges in PDT due to the lack of robust real-time dose monitoring techniques. Time-resolved fluorescence (TRF provides fluorescence lifetime profiles of the targeted fluorophores. It has been demonstrated that TRF offers supplementary information in drug-molecular interactions and cell responses compared to steady-state intensity acquisition. Moreover, fluorescence lifetime itself is independent of the light path; thus it overcomes the artifacts given by diffused light propagation and detection geometries. TRF in PDT is an emerging approach, and relevant studies to date are scattered. Therefore, this review mainly focuses on summarizing up-to-date TRF studies in PDT, and the effects of PDT dosimetric factors on the measured TRF parameters. From there, potential gaps for clinical translation are also discussed.

  11. Time-resolved tribo-thermography (United States)

    Dinwiddie, Ralph B.; Blau, Peter J.


    Wear of coated surfaces tends to progress through a series of stages in which damage accumulates until the coating fails to protect its substrate. Depending on the coating system and the contact conditions, these stages can sometimes be detected as a series of discrete periods of changing frictional behavior, or they can occur quite rapidly, leading to rapid removal of the coating. A new technique has been developed to capture magnified infrared (IR) images of a selected location on a moving wear surface and to synchronize these cycle-by-cycle images with the instantaneous friction force that occurs at the same location. A pin-on-disk tribometer has been used to demonstrate the principle, but other kinds of test geometries can also be used. Contrast in the IR images derives not only from the surface temperatures but also from the emissivity of surface features. A spatial calibration of the system allows the measurement of the width of the wear path as a function of time. By studying a series of captured and friction- synchronized images, it is possible to observe the detailed progression of wear and the corresponding frictional transitions in a limitless variety of materials. Examples of several different materials, including, steel, aluminum, brass, and paint, will be used to illustrate the application of time-resolved microscopic tribo-thermography to coatings research.

  12. Spatially resolved elemental distributions in articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Reinert, T. E-mail:; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gruender, W


    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 {mu}m thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  13. Spatially resolved elemental distributions in articular cartilage (United States)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.


    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  14. Component-resolved diagnostics in vernal conjunctivitis. (United States)

    Armentia, Alicia; Sanchís, Eugenia; Montero, Javier A


    Conventional diagnostic tests in allergy are insufficient to clarify the cause of vernal conjunctivitis. Component-resolved diagnostic (CRD) by microarray allergen assay may be useful in detecting allergens that might be involved in the inflammatory process. In a recent trial in patients suffered from eosinophilic esophagitis, after 2 years of the CRD-guided exclusion diet and specific immunotherapy, significant clinical improvement was observed, and 68% of patients were discharged (cure based on negative biopsy, no symptoms, and no medication intake). Our new objective was to evaluate IgE-mediated hypersensitivity by CRD in tears and serum from patients with vernal conjunctivitis and treat patients with identified triggering allergens by specific immunotherapy. Twenty-five patients with vernal conjunctivitis were evaluated. The identified triggering allergens were n Lol p 1 (11 cases), n Cyn d 1 (eight cases), group 4 and 6 grasses (six cases) and group 5 of grasses (five cases). Prick test and pollen IgE were positive in one case. Clinical improvement was observed in 13/25 vernal conjunctivitis patients after 1-year specific immunotherapy. CRD seems to be a more sensitive diagnostic tool compared with prick test and IgE detection. Specific CRD-led immunotherapy may achieve clinical improvements in vernal conjunctivitis patients.

  15. Component Resolved Diagnosis in Hymenoptera Anaphylaxis. (United States)

    Tomsitz, D; Brockow, K


    Hymenoptera anaphylaxis is one of the leading causes of severe allergic reactions and can be fatal. Venom-specific immunotherapy (VIT) can prevent a life-threatening reaction; however, confirmation of an allergy to a Hymenoptera venom is a prerequisite before starting such a treatment. Component resolved diagnostics (CRD) have helped to better identify the responsible allergen. Many new insect venom allergens have been identified within the last few years. Commercially available recombinant allergens offer new diagnostic tools for detecting sensitivity to insect venoms. Additional added sensitivity to nearly 95% was introduced by spiking yellow jacket venom (YJV) extract with Ves v 5. The further value of CRD for sensitivity in YJV and honey bee venom (HBV) allergy is more controversially discussed. Recombinant allergens devoid of cross-reactive carbohydrate determinants often help to identify the culprit venom in patients with double sensitivity to YJV and HBV. CRD identified a group of patients with predominant Api m 10 sensitization, which may be less well protected by VIT, as some treatment extracts are lacking this allergen. The diagnostic gap of previously undetected Hymenoptera allergy has been decreased via production of recombinant allergens. Knowledge of analogies in interspecies proteins and cross-reactive carbohydrate determinants is necessary to distinguish relevant from irrelevant sensitizations.

  16. Angle-resolved catholdoluminescence imaging polarimetry

    NARCIS (Netherlands)

    Osorio, C.I.; Coenen, T.; Brenny, B.J.M.; Polman, A.; Koenderink, A.F.


    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the

  17. Molecular Synapomorphies Resolve Evolutionary Relationships of Extant Jawed Vertebrates

    National Research Council Canada - National Science Library

    Byrappa Venkatesh; Mark V. Erdmann; Sydney Brenner


    .... We identified 13 derived shared molecular markers (synapomorphies) that define clades in the vertebrate lineage and used them to resolve the phylogenetic relationships of extant jawed vertebrates...

  18. Method of locating ground faults (United States)

    Patterson, Richard L. (Inventor); Rose, Allen H. (Inventor); Cull, Ronald C. (Inventor)


    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  19. Burial Ground Expansion Hydrogeologic Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gaughan , T.F.


    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  20. 2011 Ground Testing Highlights Article (United States)

    Ross, James C.; Buchholz, Steven J.


    Two tests supporting development of the launch abort system for the Orion MultiPurpose Crew Vehicle were run in the NASA Ames Unitary Plan wind tunnel last year. The first test used a fully metric model to examine the stability and controllability of the Launch Abort Vehicle during potential abort scenarios for Mach numbers ranging from 0.3 to 2.5. The aerodynamic effects of the Abort Motor and Attitude Control Motor plumes were simulated using high-pressure air flowing through independent paths. The aerodynamic effects of the proximity to the launch vehicle during the early moments of an abort were simulated with a remotely actuated Service Module that allowed the position relative to the Crew Module to be varied appropriately. The second test simulated the acoustic environment around the Launch Abort Vehicle caused by the plumes from the 400,000-pound thrust, solid-fueled Abort Motor. To obtain the proper acoustic characteristics of the hot rocket plumes for the flight vehicle, heated Helium was used. A custom Helium supply system was developed for the test consisting of 2 jumbo high-pressure Helium trailers, a twelve-tube accumulator, and a 13MW gas-fired heater borrowed from the Propulsion Simulation Laboratory at NASA Glenn Research Center. The test provided fluctuating surface pressure measurements at over 200 points on the vehicle surface that have now been used to define the ground-testing requirements for the Orion Launch Abort Vehicle.

  1. On the Resolvability of Steam Assisted Gravity Drainage Reservoirs Using Time-Lapse Gravity Gradiometry (United States)

    Elliott, E. Judith; Braun, Alexander


    Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.

  2. A Personal Journey with Grounded Theory Methodology. Kathy Charmaz in Conversation With Reiner Keller

    Directory of Open Access Journals (Sweden)

    Kathy Charmaz


    Full Text Available Kathy CHARMAZ is one of the most important thinkers in grounded theory methodology today. Her trailblazing work on constructivist grounded theory continues to inspire research across many disciplines and around the world. In this interview, she reflects on the aura surrounding qualitative inquiry that existed in California in the late 1960s to early 1970s and the lessons she learned from her first forays into empirical research. She comments on the trajectory that grounded theory research has followed since then and gives an account of her own perspective on constructivist grounded theory. In doing so, she underlines the importance of the Chicago School and symbolic interactionist tradition for grounded theory research work today and shows where the latter is positioned in the current field of qualitative fieldwork. URN:

  3. Long-range antigravity

    Energy Technology Data Exchange (ETDEWEB)

    Macrae, K.I.; Riegert, R.J. (Maryland Univ., College Park (USA). Center for Theoretical Physics)


    We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession.

  4. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne


    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions

  5. Resolved Multifrequency Radio Observations of GG Tau (United States)

    Andrews, Sean M.; Chandler, Claire J.; Isella, Andrea; Birnstiel, T.; Rosenfeld, K. A.; Wilner, D. J.; Pérez, L. M.; Ricci, L.; Carpenter, J. M.; Calvet, N.; Corder, S. A.; Deller, A. T.; Dullemond, C. P.; Greaves, J. S.; Harris, R. J.; Henning, Th.; Kwon, W.; Lazio, J.; Linz, H.; Mundy, L. G.; Sargent, A. I.; Storm, S.; Testi, L.


    We present subarcsecond resolution observations of continuum emission associated with the GG Tau quadruple star system at wavelengths of 1.3, 2.8, 7.3, and 50 mm. These data confirm that the GG Tau A binary is encircled by a circumbinary ring at a radius of 235 AU with a FWHM width of ~60 AU. We find no clear evidence for a radial gradient in the spectral shape of the ring, suggesting that the particle size distribution is spatially homogeneous on angular scales gsim0.''1. A central point source, likely associated with the primary component (GG Tau Aa), exhibits a composite spectrum from dust and free-free emission. Faint emission at 7.3 mm is observed toward the low-mass star GG Tau Ba, although its origin remains uncertain. Using these measurements of the resolved, multifrequency emission structure of the GG Tau A system, models of the far-infrared to radio spectrum are developed to place constraints on the grain size distribution and dust mass in the circumbinary ring. The non-negligible curvature present in the ring spectrum implies a maximum particle size of 1-10 mm, although we are unable to place strong constraints on the distribution shape. The corresponding dust mass is 30-300 M ⊕, at a temperature of 20-30 K. We discuss how this significant concentration of relatively large particles in a narrow ring at a large radius might be produced in a local region of higher gas pressures (i.e., a particle "trap") located near the inner edge of the circumbinary disk.

  6. Mode resolved density of atmospheric aerosol particles

    Directory of Open Access Journals (Sweden)

    P. Aalto


    Full Text Available In this study, we investigate the mode resolved density of ultrafine atmospheric particles measured in boreal forest environment. The method used here enables us to find the distinct density information for each mode in atmospheric fine particle population: the density values for nucleation, Aitken, and accumulation mode particles are presented. The experimental data was gained during 2 May 2005–19 May 2005 at the boreal forest measurement station "SMEAR II" in Hyytiälä, Southern Finland. The density values for accumulation mode varied from 1.1 to 2 g/cm3 (average 1.5 g/cm3 and for Aitken mode from 0.4 to 2 g/cm3 (average 0.97 g/cm3. As an overall trend during the two weeks campaign, the density value of Aitken mode was seen to gradually increase. With the present method, the time dependent behaviour of the particle density can be investigated in the time scale of 10 min. This allows us to follow the density evolution of the nucleation mode particles during the particle growth process following the nucleation burst. The density of nucleation mode particles decreased during the growth process. The density values for 15 nm particles were 1.2–1.5 g/cm3 and for grown 30 nm particles 0.5–1 g/cm3. These values are consistent with the present knowledge that the condensing species are semi-volatile organics, emitted from the boreal forest.

  7. /sup 238/U issues resolved and unresolved

    Energy Technology Data Exchange (ETDEWEB)

    de Saussure, G.; Smith, A.B.


    The interaction of 1 eV to 20 MeV neutrons with /sup 238/U is discussed with emphasis on recently resolved and remaining issues relevant to both application need and physical understanding. The apparent inability of older /sup 238/U evaluations to predict the measured /sup 238/U capture rate in thermal critical lattices has stimulated several recent precise measurements of the /sup 238/U cross sections, reanalysis of older data, and improved evaluations. The recent evaluations predict satisfactorily the /sup 238/U capture rate in thermal critical lattices. In the region from 1.5 to 4 keV there are differences of the order of 15%, sometimes larger, between the values of the neutron widths of the main resonances reported by several experimenters or obtained by different evaluators. Above 4 keV there are only sparse results of resonance analysis and most evaluations adopt a statistical treatment of the resonance structure. Some factors affecting the determination of the average properties of the resonance parameters are discussed. Above the inelastic-scattering threshold, energy-averaged neutron total, scattering, capture and fission cross sections are reviewed in a unified manner integrating measurement, calculation and evaluation. (n;n') and (n;2n') energy-transfer mechanisms are addressed. Particular attention is given to neutron capture, stressing precisions consistent with applied need. Fission properties are discussed including: prompt and delayed fission-neutron spectra and nubar, and fission-product yields. Physical understanding is assayed, with attention to compound-nucleus and direct-reaction mechanisms, and applications impact is illustrated in the context of fast-breeder-reactor performance. 95 references.

  8. Ground Motion and Air Overpressure Study

    Directory of Open Access Journals (Sweden)

    Michael K. Sharp


    Full Text Available A seismic attenuation and air overpressure study was conducted to determine the attenuation of explosion induced ground motions and air overpressures as a function of distance from shallow subsurface detonated charges, and to derive parameters to predict blast effects at distances beyond the ordinance disposal facility boundary. A total of 210 explosive shots were monitored producing 2048 time histories of ground motions recorded in the vertical, radial, and transverse directions, in addition to recording air overpressures. The data were analyzed for peak particle velocities and peak air overpressures, then plotted versus scaled range. A best fit line was determined for the data to give average, 95% non-exceedance, and upper bound predictive equations which can be used in the disposal operations to avoid damage to adjacent structures.

  9. Satellite range scheduling with the priority constraint: An improved genetic algorithm using a station ID encoding method

    Directory of Open Access Journals (Sweden)

    Li Yuqing


    Full Text Available Satellite range scheduling with the priority constraint is one of the most important problems in the field of satellite operation. This paper proposes a station coding based genetic algorithm to solve this problem, which adopts a new chromosome encoding method that arranges tasks according to the ground station ID. The new encoding method contributes to reducing the complexity in conflict checking and resolving, and helps to improve the ability to find optimal resolutions. Three different selection operators are designed to match the new encoding strategy, namely random selection, greedy selection, and roulette selection. To demonstrate the benefits of the improved genetic algorithm, a basic genetic algorithm is designed in which two cross operators are presented, a single-point crossover and a multi-point crossover. For the purpose of algorithm test and analysis, a problem-generating program is designed, which can simulate problems by modeling features encountered in real-world problems. Based on the problem generator, computational results and analysis are made and illustrated for the scheduling of multiple ground stations.

  10. Online Sorted Range Reporting

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Greve, Mark


    We study the following one-dimensional range reporting problem: On an arrayA of n elements, support queries that given two indices i ≤ j and an integerk report the k smallest elements in the subarray A[i..j] in sorted order. We present a data structure in the RAM model supporting such queries...... in optimal O(k) time. The structure uses O(n) words of space and can be constructed in O(n logn) time. The data structure can be extended to solve the online version of the problem, where the elements in A[i..j] are reported one-by-one in sorted order, in O(1) worst-case time per element. The problem...... is motivated by (and is a generalization of) a problem with applications in search engines: On a tree where leaves have associated rank values, report the highest ranked leaves in a given subtree. Finally, the problem studied generalizes the classic range minimum query (RMQ) problem on arrays....

  11. Sensitivities and uncertainties of modeled ground temperatures in mountain environments

    Directory of Open Access Journals (Sweden)

    S. Gubler


    Full Text Available Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain. We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT that cannot be neglected (more than 1 °C for several

  12. Epstein on Anchors and Grounds

    Directory of Open Access Journals (Sweden)

    Guala Francesco


    Full Text Available The distinction between anchors and grounds is one of the most innovative contributions of The Ant Trap. In this commentary I will argue that the distinction suffers from an ambiguity between tokens and types. This leads Epstein to endorse pluralism about anchors and grounds, a position that is not justified in the book and to which there are plausible alternatives.

  13. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger


    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate

  14. Grounding experiments on soft bottoms

    DEFF Research Database (Denmark)

    Sterndorff, M.J.; Pedersen, Preben Terndrup


    To verify a theoretical analysis procedure for calculation of the hull girder response of ships running aground, a series of large-scale ship grounding experiments was performed on an artificial island made of engineered fill. The tests were conducted by running a condemned fishing vessel up...... for grounding on soft bottoms....

  15. Ground Attenuation of Railroad Noise

    DEFF Research Database (Denmark)

    Makarewicz, R.; Rasmussen, Karsten Bo; Kokowski, P.


    The influence of ground effect on railroad noise is described using the concept of the peak A-weighted sound exposure level, and A-weighted sound exposure level. The train is modelled by a continuous line of incoherent point sources that have a cosine directivity. The ground effect is included...

  16. English for Airport Ground Staff (United States)

    Cutting, Joan


    This article describes part of a European Commission Leonardo project that aimed to design a multimedia course for English language learners seeking work as ground staff in European airports. The structural-functional analysis of the dialogues written from the course showed that, across the four trades explored (security guards, ground handlers,…

  17. Glucose Sensing by Time-Resolved Fluorescence of Sol-Gel Immobilized Glucose Oxidase


    Esposito, Rosario; Ventura, Bartolomeo Della; De Nicola, Sergio; Altucci, Carlo; Velotta, Raffaele; Mita, Damiano Gustavo; Lepore, Maria


    A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime...

  18. Bimodal Exciplex Formation in Bimolecular Photoinduced Electron Transfer Revealed by Ultrafast Time-Resolved Infrared Absorption


    Koch, Marius; Licari, Giuseppe Léonardo; Vauthey, Eric


    The dynamics of a moderately exergonic photoinduced charge separation has been investigated by ultrafast time-resolved infrared absorption with the dimethylanthracene/phthalonitrile donor/acceptor pair in solvents covering a broad range of polarity. A distinct spectral signature of an exciplex could be identified in the −C≡N stretching region. On the basis of quantum chemistry calculations, the 4–5 times larger width of this band compared to those of the ions and of the locally excited donor ...

  19. Resolving the ambiguities: An industrial hygiene Indoor Air Quality (IAQ) symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, R.B.


    Resolving the Ambiguities: An Industrial Hygiene (IAQ) Symposium was a one-day event designed to inform practicing industrial hygienists about highlight presentations made at Indoor Air `93. A broad range of topics was presented by invited speakers. Topics included were attempts to deal with guidelines and standards, questionnaires, odors and sensory irritation, respiratory allergies, neuroses, sick building syndrome (SBS), and multiple chemical sensitivity (MCS).

  20. Technical note: Time-resolved immunofluorometric assay for growth hormone in ruminants

    DEFF Research Database (Denmark)

    Løvendahl, P.; Adamsen, J.; Lund, Regina Teresa


    for 4 h at 25degreesC. Plates were then washed six times, incubated for 5 to 10 min with 250 muL of enhancement solution, and fluorescence read with a time-resolved fluorometer. The sensitivity of the assay was 0.1 ng/mL, and the working range was 0.2 to 200 ng/mL. Recovery of quantitative amounts...

  1. Motivation and Resolve of U.S. Air Force Pilot Candidates (United States)


    demonstrated character and emotional composure (stability), and a consistent desire and proven resolve to become, and remain, a pilot (motivation). MFS-N...intelligence and functional capacity (ability), demonstrated character and emotional composure (stability), and a consistent desire and proven...are tested as a group in the MFS-N computer lab . Typically, the groups range from 10 to 15 candidates. Depending on the day, testing is administered

  2. Global Precipitation Measurement (GPM) Ground Validation (GV) Science Implementation Plan (United States)

    Petersen, Walter A.; Hou, Arthur Y.


    For pre-launch algorithm development and post-launch product evaluation Global Precipitation Measurement (GPM) Ground Validation (GV) goes beyond direct comparisons of surface rain rates between ground and satellite measurements to provide the means for improving retrieval algorithms and model applications.Three approaches to GPM GV include direct statistical validation (at the surface), precipitation physics validation (in a vertical columns), and integrated science validation (4-dimensional). These three approaches support five themes: core satellite error characterization; constellation satellites validation; development of physical models of snow, cloud water, and mixed phase; development of cloud-resolving model (CRM) and land-surface models to bridge observations and algorithms; and, development of coupled CRM-land surface modeling for basin-scale water budget studies and natural hazard prediction. This presentation describes the implementation of these approaches.

  3. Theory of ground state factorization in quantum cooperative systems. (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio


    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  4. Disk-resolved photometry of Vesta and Lutetia and comparison with other asteroids (United States)

    Longobardo, Andrea; Palomba, Ernesto; Ciarniello, Mauro; Tosi, Federico; De Sanctis, Maria Cristina; Capaccioni, Fabrizio; Zambon, Francesca; Ammannito, Eleonora; Filacchione, Gianrico; Raymond, Carol A.


    Photometry of asteroids gives fundamental information about their spectral and physical properties. The aim of this work is two-fold: (1) to calculate phase functions of Vesta and Lutetia in the visible spectral range; and (2) to compare photometric properties of all the asteroids visited by space missions, as inferred from disk-resolved photometry. The phase functions of Vesta and Lutetia have been retrieved by performing a statistical analysis on data provided by the VIR-Dawn and the VIRTIS-Rosetta imaging spectrometers, respectively. The approach is based on the empirical procedure defined in Longobardo et al. (Longobardo, A. et al. [2014]. Icarus 240, 20-35). The Vesta phase functions have been calculated at two wavelengths, one outside (0.75 μm) and one inside (0.95 μm) the pyroxene absorption band at 0.9 μm. The steepness of the phase function at 0.75 μm decreases from dark to bright regions, due to the increasing role of multiple scattering. Otherwise, the phase function at 0.95 μm results in uniformity across Vesta surface, since darkening agents are spectrally featureless and their influence at wavelengths inside the pyroxene absorption band is negligible. Moreover, it is, on average, steeper than the phase functions at 0.75 μm, due to the more important role of single scattering at 0.95 μm. The Lutetia phase function is instead constant across the surface due to the homogeneous spectral properties of this asteroid. The obtained photometric curves (reflectance versus phase angle) of Vesta and Lutetia have been then compared with those retrieved in previous works on asteroids visited by space missions. Differently from comparisons of disk-integrated phase functions of asteroids performed in previous works at low phase angles (lower than 25°), this work restricts to asteroid observations that are disk-resolved and occur at solar phase angles between 20° and 60°. The S-type asteroids (Gaspra, Ida, Eros and Annefrank) show similar photometric curves

  5. From the Ground Up


    Whitley, Colleen K.


    Mining had an enormous role, only partly measurable, in the history of Utah. Its multidimensional impact continues today. Economically, it made a major long-term contribution to the wealth, employment, and tax base of the state and stimulated a seemingly endless range of secondary businesses and enterprises. It helped shape the state's social history, determining the location, distribution, and composition of many communities and bringing transportation systems and a wide variety of instituti...

  6. Orientation-independent measures of ground motion (United States)

    Boore, D.M.; Watson-Lamprey, Jennie; Abrahamson, N.A.


    The geometric mean of the response spectra for two orthogonal horizontal components of motion, commonly used as the response variable in predictions of strong ground motion, depends on the orientation of the sensors as installed in the field. This means that the measure of ground-motion intensity could differ for the same actual ground motion. This dependence on sensor orientation is most pronounced for strongly correlated motion (the extreme example being linearly polarized motion), such as often occurs at periods of 1 sec or longer. We propose two new measures of the geometric mean, GMRotDpp, and GMRotIpp, that are independent of the sensor orientations. Both are based on a set of geometric means computed from the as-recorded orthogonal horizontal motions rotated through all possible non-redundant rotation angles. GMRotDpp is determined as the ppth percentile of the set of geometric means for a given oscillator period. For example, GMRotDOO, GMRotD50, and GMRotD100 correspond to the minimum, median, and maximum values, respectively. The rotations that lead to GMRotDpp depend on period, whereas a single-period-independent rotation is used for GMRotIpp, the angle being chosen to minimize the spread of the rotation-dependent geometric mean (normalized by GMRotDpp) over the usable range of oscillator periods. GMRotI50 is the ground-motion intensity measure being used in the development of new ground-motion prediction equations by the Pacific Earthquake Engineering Center Next Generation Attenuation project. Comparisons with as-recorded geometric means for a large dataset show that the new measures are systematically larger than the geometric-mean response spectra using the as-recorded values of ground acceleration, but only by a small amount (less than 3%). The theoretical advantage of the new measures is that they remove sensor orientation as a contributor to aleatory uncertainty. Whether the reduction is of practical significance awaits detailed studies of large

  7. On Grounding of Fast Ships

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Pedersen, Preben Terndrup


    The paper deals with analysis of grounding of high-speed crafts. It is the purpose to present a comprehensive mathematical model for calculation of the overall dynamic ship response during grounding. This procedure is applied to derive the motions, the time varying sectional forces and the local...... loads during grounding on plane, sloping, sandy bottoms for six different designs of fast monohull ships made from steel, aluminium or GRP sandwich materials. The results show that the effect of the hull flexibility is to reduce the overall dynamic sectional loads on the hull girder. The considered...... numerical examples also indicate that, even with impact speeds of 40 knots against a 1:10 sloping bottom, the global strength of the hull girder is not exceeded by the grounding induced loads.For the local deformation of high-speed ship hulls at the point of contact with the ground, the paper presents...

  8. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup


    regulations for design of bottom compartment layout with regard to grounding damages are largely based on statistical damage data. New and updated damage statistics holding 930 grounding accident records has been investigated. The bottom damage statistics is compared to current regulations for the bottom......The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current...... for the relation between the amount of deformed structure and the energy absorption. Finally, the paper shows how damage statistics for existing, conventional vessels can be used together with theoretical prediction methods for determining grounding damage distributions for new vessel types not included...

  9. On LHCb muon MWPC grounding

    CERN Document Server

    Kashchuk, A


    My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

  10. Ship Collision and Grounding Analysis

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup


    It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human, e......, environmental and economic costs of collision and grounding events. The main goal of collision and grounding research should be to identify the most economic risk control options associated with prevention and mitigation of collision and grounding events......It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human...

  11. 48 CFR 29.101 - Resolving tax problems. (United States)


    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Resolving tax problems. 29.101 Section 29.101 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS TAXES General 29.101 Resolving tax problems. (a) Contract tax problems are...

  12. 48 CFR 1329.101 - Resolving tax problems. (United States)


    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Resolving tax problems. 1329.101 Section 1329.101 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE GENERAL CONTRACTING REQUIREMENTS TAXES General 1329.101 Resolving tax problems. Legal questions relating to tax issues...

  13. 48 CFR 629.101 - Resolving tax problems. (United States)


    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Resolving tax problems. 629.101 Section 629.101 Federal Acquisition Regulations System DEPARTMENT OF STATE GENERAL CONTRACTING REQUIREMENTS TAXES General 629.101 Resolving tax problems. In certain instances, acquisitions by posts are...

  14. 48 CFR 2929.101 - Resolving tax problems. (United States)


    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Resolving tax problems. 2929.101 Section 2929.101 Federal Acquisition Regulations System DEPARTMENT OF LABOR GENERAL CONTRACTING REQUIREMENTS TAXES General 2929.101 Resolving tax problems. Contract tax problems or questions...

  15. 48 CFR 229.101 - Resolving tax problems. (United States)


    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Resolving tax problems. 229.101 Section 229.101 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS TAXES General 229.101 Resolving tax problems. (a...

  16. 48 CFR 2429.101 - Resolving tax problems. (United States)


    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Resolving tax problems... DEVELOPMENT GENERAL CONTRACTING REQUIREMENTS TAXES General 2429.101 Resolving tax problems. In order to have... within HUD for handling all those tax problems. Therefore, the contracting activity will not engage in...

  17. Measuring Speed Of Rotation With Two Brushless Resolvers (United States)

    Howard, David E.


    Speed of rotation of shaft measured by use of two brushless shaft-angle resolvers aligned so electrically and mechanically in phase with each other. Resolvers and associated circuits generate voltage proportional to speed of rotation (omega) in both magnitude and sign. Measurement principle exploits simple trigonometric identity.

  18. Deciding to Change OpenURL Link Resolvers (United States)

    Johnson, Megan; Leonard, Andrea; Wiswell, John


    This article will be of interest to librarians, particularly those in consortia that are evaluating OpenURL link resolvers. This case study contrasts WebBridge (an Innovative Interface product) and LinkSource (EBSCO's product). This study assisted us in the decision-making process of choosing an OpenURL link resolver that was sustainable to…

  19. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)


    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  20. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)

    Photoluminescence (PL) excitation and emission spectra exhibit variations with changing Mg ratio. Luminescence lifetime as short as 10-10 s was observed for ZnO and ZnMgO (100 : 10) nanophosphors. With increasing Mg ratio, PL decay shifts into microsecond range. ZnO and ZnMgO alloys up to 50% Mg were prepared ...


    Directory of Open Access Journals (Sweden)

    S.Yu. Belov


    Full Text Available Monitoring of the earth’s surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. The new method is suggested. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena, changes ecosystems, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth’s surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. A comparative analysis and shows that the analytical (relative accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method. Analysis of admissible relative analytical error of estimation of this parameter allowed to recommend new method instead of standard method

  2. Time Domain Filtering of Resolved Images of Sgr A∗ (United States)

    Shiokawa, Hotaka; Gammie, Charles F.; Doeleman, Sheperd S.


    The goal of the Event Horizon Telescope (EHT) is to provide spatially resolved images of Sgr A*, the source associated with the Galactic Center black hole. Because Sgr A* varies on timescales that are short compared to an EHT observing campaign, it is interesting to ask whether variability contains information about the structure and dynamics of the accretion flow. In this paper, we introduce “time-domain filtering,” a technique to filter time fluctuating images with specific temporal frequency ranges and to demonstrate the power and usage of the technique by applying it to mock millimeter wavelength images of Sgr A*. The mock image data is generated from the General Relativistic Magnetohydrodynamic (GRMHD) simulation and the general relativistic ray-tracing method. We show that the variability on each line of sight is tightly correlated with a typical radius of emission. This is because disk emissivity fluctuates on a timescale of the order of the local orbital period. Time-domain filtered images therefore reflect the model dependent emission radius distribution, which is not accessible in time-averaged images. We show that, in principle, filtered data have the power to distinguish between models with different black-hole spins, different disk viewing angles, and different disk orientations in the sky.

  3. Monitoring tissue metabolism via time-resolved laser fluorescence (United States)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Marx, Uwe


    Most assays for drug screening are monitoring the metabolism of cells by detecting the NADH content, which symbolize its metabolic activity, indirectly. Nowadays, the performance of a LASER enables us to monitor the metabolic state of mammalian cells directly and on-line by using time-resolved autofluorescence detection. Therefore, we developed in combination with tissue engineering, an assay for monitoring minor toxic effects of volatile organic compounds (VOC), which are accused of inducing Sick Building Syndrome (SBS). Furthermore, we used the Laserfluoroscope (LF) for pharmacological studies on human bone marrow in vitro with special interest in chemotherapy simulation. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; up to now without great success. However, it showed among other things that tissue structure plays a vital role. Consequently, we succeeded in simulating a chemotherapy in vitro on human bone marrow. Furthermore, after tumor ektomy we were able to distinguish between tumoric and its surrounding healthy tissue by using the LF. With its sensitive detection of metabolic changes in tissues the LF enables a wide range of applications in biotechnology, e.g. for quality control in artificial organ engineering or biocompatability testing.

  4. Time-resolved infrared spectroscopic techniques as applied to Channelrhodopsin

    Directory of Open Access Journals (Sweden)

    Eglof eRitter


    Full Text Available Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins.

  5. Resolving photon-shortage mystery in femtosecond magnetism. (United States)

    Si, M S; Zhang, G P


    For nearly a decade, it has been a mystery why the small average number of photons absorbed per atom from an ultrashort laser pulse is able to induce a strong magnetization within a few hundred femtoseconds. Here we resolve this mystery by directly computing the number of photons per atom layer by layer as the light wave propagates inside the sample. We find that for all the 24 experiments considered here, each atom has more than one photon. The so-called photon shortage does not exist. By plotting the relative demagnetization change versus the number of photons absorbed per atom, we show that, depending on the experimental condition, 0.1 photon can induce about 4%-72% spin moment change. Our perturbation theory reveals that the demagnetization depends linearly on the amplitude of the laser field. In addition, we find that the transition frequency of a sample may also play a role in magnetization processes. As long as the intensity is not zero, the intensity of the laser field only affects the matching range of the transition frequencies, but not whether the demagnetization can happen or not.

  6. Application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to differentiation of beer

    Energy Technology Data Exchange (ETDEWEB)

    Khatib, Alfi [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Wilson, Erica G. [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Kim, Hye Kyong [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Lefeber, Alfons W.M. [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Erkelens, Cornelis [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Choi, Young Hae [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)]. E-mail:; Verpoorte, Robert [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)


    A number of ingredients in beer that directly or indirectly affect its quality require an unbiased wide-spectrum analytical method that allows for the determination of a wide array of compounds for its efficient control. {sup 1}H nuclear magnetic resonance (NMR) spectroscopy is a method that clearly meets this description as the broad range of compounds in beer is detectable. However, the resulting congestion of signals added to the low resolution of {sup 1}H NMR spectra makes the identification of individual components very difficult. Among two-dimensional (2D) NMR techniques that increase the resolution, J-resolved NMR spectra were successfully applied to the analysis of 2-butanol extracts of beer as overlapping signals in {sup 1}H NMR spectra were fully resolved by the additional axis of the coupling constant. Principal component analysis based on the projected J-resolved NMR spectra showed a clear separation between all of the six brands of pilsner beer evaluated in this study. The compounds responsible for the differentiation were identified by 2D NMR spectra including correlated spectroscopy and heteronuclear multiple bond correlation spectra together with J-resolved spectra. They were identified as nucleic acid derivatives (adenine, uridine and xanthine), amino acids (tyrosine and proline), organic acid (succinic and lactic acid), alcohol (tyrosol and isopropanol), cholines and carbohydrates.

  7. The Grateful Infrared: Sequential Protein Structural Changes Resolved by Infrared Difference Spectroscopy. (United States)

    Kottke, Tilman; Lórenz-Fonfría, Víctor A; Heberle, Joachim


    The catalytic activity of proteins is a function of structural changes. Very often these are as minute as protonation changes, hydrogen bonding changes, and amino acid side chain reorientations. To resolve these, a methodology is afforded that not only provides the molecular sensitivity but allows for tracing the sequence of these hierarchical reactions at the same time. This feature article showcases results from time-resolved IR spectroscopy on channelrhodopsin (ChR), light-oxygen-voltage (LOV) domain protein, and cryptochrome (CRY). All three proteins are activated by blue light, but their biological role is drastically different. Channelrhodopsin is a transmembrane retinylidene protein which represents the first light-activated ion channel of its kind and which is involved in primitive vision (phototaxis) of algae. LOV and CRY are flavin-binding proteins acting as photoreceptors in a variety of signal transduction mechanisms in all kingdoms of life. Beyond their biological relevance, these proteins are employed in exciting optogenetic applications. We show here how IR difference absorption resolves crucial structural changes of the protein after photonic activation of the chromophore. Time-resolved techniques are introduced that cover the time range from nanoseconds to minutes along with some technical considerations. Finally, we provide an outlook toward novel experimental approaches that are currently developed in our laboratories or are just in our minds ("Gedankenexperimente"). We believe that some of them have the potential to provide new science.

  8. Cloud-Resolving Model and GPM (United States)

    Tao, Wei-Kuo; Lang, S.; Simpson, J.; Adler, R.; Hou, A.; Li, X.; Shie, C.-L.; Olson, W.; Kummerow, C.


    Over the past twenty years, rainfall retrieval algorithms have been developed to retrieve rainfall and vertical hydrometeor structures from passive microwave observations by making use of the fact that weighting functions for various frequencies peak at different levels within a rainy atmosphere. GPROF is one of two TMI rainfall algorithms. It is physically based retrieval that finds the vertical hydrometeor profile that best fits the brightness temperatures in the available passive radiometer channels. Matching is achieved using a library of hydrometeor profiles generated by cloud-resolving models (CRMs). The hydrometeor profiles have a corresponding surface precipitation rate. The algorithm retrieves the hydrometeor profiles and associated surface rainfall using a Bayesian approach that gives the estimated expected values. The ability of CRMs to produce cloud structures that are reliable and representative of observed storms is crucial for the success of GPROF. The cloud mycrophysics are one of the keys to achieving this. In addition, CRMs have been a very useful tool for GPM-algorithm developers through Cloud-Radiation Simulations (CRS), one of the nine GPM disciplinary research themes. This paper will discuss how to generate consistent and comprehensive 4D cloud datasets from an improved (i.e., in regard to bulk and multi-moment microphysics) CRM for TRMM and GPM rainfall retrieval algorithm developers. These cloud datasets include CRM-simulated clouds and cloud systems from different geographic locations in the tropics and midlatitudes. By linking the CRM with a passive microwave radiative-transfer model and using satellite and airborne data, the performance of the "cloud physics" can be assessed and in turn modified and improved. This paper will also address how to assess and improve the performance of various latent and diabatic heating algorithms and develop an algorithm to retrieve the vertical structure of apparent moistening (Q2). Considering that the

  9. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli


    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  10. Frequency ranges and attenuation of macroseismic effects (United States)

    Tosi, Patrizia; De Rubeis, Valerio; Sbarra, Paola


    Macroseismic intensity is assessed on the basis of the effects caused by an earthquake. These effects reflect the expression of both the intensity and frequency of the ground motion, thus complicating prediction equation modelling. Here we analysed data of several macroseismic transitory effects caused by recent Italian earthquakes in order to study their attenuation as a function of magnitude and hypocentral distance and to obtain a specific prediction equation, of simple functional form, that could be applied to each of the effects under analysis. We found that the different attenuation behaviours could be clearly defined by the values of the specially formulated magnitude-distance scaling ratio (S), thus allowing to group the effects on the basis of the S value. The oscillation of hanging objects and liquids, together with the feeling of dizziness, were separated from most other variables, such as the effects of the earthquake on small objects, china and windows, which were caused by a vibration of higher frequency. Besides, the greater value of S, associated with the perception of the seismic sound, explained the peculiarity of this phenomenon. As a result, we recognized the frequency range associated with each effect through comparisons with the ground motion prediction equations and, in particular, with the 5 per cent damped horizontal response spectra. Here we show the importance of appropriately selecting the diagnostic elements to be used for intensity assessment in order to improve the correlation with ground motion.

  11. Temporally resolved refractive index structure parameter measurement (United States)

    Henriksson, Markus; Forsling, Robin


    The refractive index structure parameter is the most common measure of optical turbulence. It is defined as a statistical quantity for the Kolmogorov spectrum energy cascade of turbulent eddies of different sizes. As such it is formally assumed to be constant in time and space. However, the large scale variation with the diurnal cycle, with altitude or with terrain characteristics is well known. The ensemble average in the definition of the refractive index structure parameter is thus assumed to be applied over a restricted region in space and time. The question of how large volume is needed to determine the refractive index structure parameter and on how short temporal scales it can vary has not received significant attention. To study the temporal variation we have used two independent measurement systems to measure the path-averaged refractive index structure parameter over a 171 m path at 1 m above ground with higher than 1 Hz temporal resolution. One measurement system uses the differential angle-of-arrival of an array of LEDs. The other system measures the scintillation of a single path laser beam using a photon counting system, with time correlation of picosecond pulses for simultaneous measurement of signal and background and with temporal autocorrelation-based variance determination to separate turbulence related scintillations from shot noise. The data shows excellent agreement between the two measurement systems on second level temporal variation, giving confidence in that the measured values show true variation of the refractive index structure parameter. Large scale variation of up to two orders of magnitude can be coupled to solar insolation on this partly cloudy day. High frequency variations that are consistent between the systems used show factor two changes at time scales below one second.

  12. Radially and temporally resolved electric field of positive streamers in air and modelling of the induced plasma chemistry (United States)

    Hoder, T.; Šimek, M.; Bonaventura, Z.; Prukner, V.; Gordillo-Vázquez, F. J.


    The initial stages of transient luminous events (TLEs) occurring in the upper atmosphere of the Earth are, in a certain pressure range, controlled by the streamer mechanism. This paper presents the results of the first laboratory experiments to study the TLE streamer phenomena under conditions close to those of the upper atmosphere. Spectrally and highly spatiotemporally resolved emissions originating from radiative states {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) (second positive system) and \\text{N}2+≤ft({{\\text{B}}2}Σu+\\right) (first negative system) have been recorded from the positive streamer discharge. Periodic ionizing events were generated in a barrier discharge arrangement at a pressure of 4 torr of synthetic air, i.e. simulating the pressure conditions at altitudes of ≃37 km. Employing Abel inversion on the radially scanned streamer emission and a 2D fitting procedure, access was obtained to the local spectral signatures within the over 106  m s-1 fast propagating streamers. The reduced electric field strength distribution within the streamer head was determined from the ratio of the \\text{N}2+/{{\\text{N}}2} band intensities with peak values up to 500 Td and overall duration of about 10 ns. The 2D profiles of the streamer head electric fields were used as an experimentally obtained input for kinetic simulations of the streamer-induced air plasma chemistry. The radial and temporal computed distribution of the ground vibrational levels of the radiative states involved in the radiative transitions analyzed (337.1 nm and 391.5 nm), atomic oxygen, nitrogen, nitric oxide and ozone concentrations are vizualized and discussed in comparison with available models of the streamer phase of Blue Jet discharges in the stratosphere.

  13. Ground water '89. Ground water and mining

    Energy Technology Data Exchange (ETDEWEB)


    Over 30 papers are presented covering dewatering and ground water development, mine inflows, and ground water contamination. Abstracts from the poster presentations are also included. Papers of interest to the coal industry include evaluation of sodium lauryl sulphate, sodium benzoate and sorbic acid as inhibitors of acidification of South African coal waste, a hydrogeological investigation of the Grootegeluk mine and disposal of washing plant fines at Middelburg mine.

  14. Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere. (United States)

    de Groot-Hedlin, C D


    The Navier-Stokes equations are solved using a finite-difference, time-domain (FDTD) approach for axi-symmetric environmental models, allowing three-dimensional acoustic propagation to be simulated using a two-dimensional Cylindrical coordinate system. A method to stabilize the FDTD algorithm in a viscous medium at atmospheric densities characteristic of the lower thermosphere is described. The stabilization scheme slightly alters the governing equations but results in quantifiable dispersion characteristics. It is shown that this method leaves sound speeds and attenuation unchanged at frequencies that are well resolved by the temporal sampling rate but strongly attenuates higher frequencies. Numerical experiments are performed to assess the effect of source strength on the amplitudes and spectral content of signals recorded at ground level at a range of distances from the source. It is shown that the source amplitudes have a stronger effect on a signal's dominant frequency than on its amplitude. Applying the stabilized code to infrasound propagation through realistic atmospheric profiles shows that nonlinear propagation alters the spectral content of low amplitude thermospheric signals, demonstrating that nonlinear effects are significant for all detectable thermospheric returns.

  15. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    Directory of Open Access Journals (Sweden)

    Xinhui Zhu


    Full Text Available Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF. The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System and VLBI (very long baseline interferometry velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  16. Resolving the Milky Way and Nearby Galaxies with WFIRST (United States)

    Kalirai, Jasonjot

    High-resolution studies of nearby stellar populations have served as a foundation for our quest to understand the nature of galaxies. Today, studies of resolved stellar populations constrain fundamental relations -- such as the initial mass function of stars, the time scales of stellar evolution, the timing of mass loss and amount of energetic feedback, the color-magnitude relation and its dependency on age and metallicity, the stellar-dark matter connection in galaxy halos, and the build up of stellar populations over cosmic time -- that represent key ingredients in our prescription to interpret light from the Universe and to measure the physical state of galaxies. More than in any other area of astrophysics, WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way and nearby galaxies. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. Our WFIRST GO Science Investigation Team (F) will develop three WFIRST (notional) GO programs related to resolved stellar populations to fully stress WFIRST's Wide Field Instrument. The programs will include a Survey of the Milky Way, a Survey of Nearby Galaxy Halos, and a Survey of Star-Forming Galaxies. Specific science goals for each program will be validated through a wide range of observational data sets, simulations, and new algorithms. As an output of this study, our team will deliver optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of MW environments and galaxy halos; cosmological simulations

  17. Three years spectral resolved UV-measurements at Koldewey-Station (1997-1999) (scientific paper)


    Gross, Christian; Tueg,Helmut; Schrems,Otto


    In May 1997 long-term measurements of spectral resolved UV-B irradiation (wavelength range of the instrument 280 to 322nm) at the NDSC-Station in Ny-Ålesund (Spitsbergen) were started using a self-developed very fast multichannel spectroradiometer. In March 1998 a multichannel UV-A spectroradiometer was installed at Ny-Ålesund to supplement the spectral range of the measurements from 318 to 400nm. For the evaluation of the data with regard to changes in total ozone the ratio of the measured i...

  18. Electric Ground Support Equipment at Airports

    Energy Technology Data Exchange (ETDEWEB)


    Airport ground support equipment (GSE) is used to service airplanes between flights. Services include refueling, towing airplanes or luggage/freight carts, loading luggage/freight, transporting passengers, loading potable water, removing sewage, loading food, de-icing airplanes, and fire-fighting. Deploying new GSE technologies is a promising opportunity in part because the purchasers are generally large, technologically sophisticated airlines, contractors, or airports with centralized procurement and maintenance departments. Airlines could particularly benefit from fuel diversification since they are highly exposed to petroleum price volatility. GSE can be particularly well-suited for electrification because it benefits from low-end torque and has frequent idle time and short required ranges.

  19. On the Spent Coffee Grounds Biogas Production

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz


    Full Text Available Due to the strict legislation currently in use for landfilling, anaerobic digestion has a strong potential as an alternative treatment for biodegradable waste. Coffee is one of the most consumed beverages in the world and spent coffee grounds (SCG are generated in a considerable amount as a processing waste during making the coffee beverage. Chemical composition of SCG, presence of polysaccharides, proteins, and minerals makes from the SCG substrates with high biotechnological value, which might be used as valuable input material in fermentation process. The methane production ranged from 0.271–0.325 m3/kg dry organic matter.

  20. Fast ground filtering for TLS data via Scanline Density Analysis (United States)

    Che, Erzhuo; Olsen, Michael J.


    Terrestrial Laser Scanning (TLS) efficiently collects 3D information based on lidar (light detection and ranging) technology. TLS has been widely used in topographic mapping, engineering surveying, forestry, industrial facilities, cultural heritage, and so on. Ground filtering is a common procedure in lidar data processing, which separates the point cloud data into ground points and non-ground points. Effective ground filtering is helpful for subsequent procedures such as segmentation, classification, and modeling. Numerous ground filtering algorithms have been developed for Airborne Laser Scanning (ALS) data. However, many of these are error prone in application to TLS data because of its different angle of view and highly variable resolution. Further, many ground filtering techniques are limited in application within challenging topography and experience difficulty coping with some objects such as short vegetation, steep slopes, and so forth. Lastly, due to the large size of point cloud data, operations such as data traversing, multiple iterations, and neighbor searching significantly affect the computation efficiency. In order to overcome these challenges, we present an efficient ground filtering method for TLS data via a Scanline Density Analysis, which is very fast because it exploits the grid structure storing TLS data. The process first separates the ground candidates, density features, and unidentified points based on an analysis of point density within each scanline. Second, a region growth using the scan pattern is performed to cluster the ground candidates and further refine the ground points (clusters). In the experiment, the effectiveness, parameter robustness, and efficiency of the proposed method is demonstrated with datasets collected from an urban scene and a natural scene, respectively.

  1. Using a synthesised technique for grounded theory in nursing research. (United States)

    Chen, Hsiao-Yu; Boore, Jennifer Rp


    To introduce a synthesised technique for using grounded theory in nursing research. Nursing increasingly uses grounded theory for a broadened perspective on nursing practice and research. Nurse researchers have choices in how to choose and use grounded theory as a research method. These choices come from a deep understanding of the different versions of grounded theory, including Glaser's classic grounded theory and Strauss and Corbin's later approach. Grounded theory related literature review was conducted. This is a methodological review paper. Nursing researchers intent on using a grounded theory methodology should pay attention to the theoretical discussions including theoretical sampling, theoretical sensitivity, constant comparative methods and asking questions, keeping memoranda diagramming, identification of a core category and a resultant explanatory theory. A synthesised approach is developed for use, based on Strauss and Corbin's style of sampling and memoranda writing, but selecting theoretical coding families, that differ from the paradigm model of Strauss and Corbin, from the wide range suggested by Glaser. This led to the development of a multi-step synthesised approach to grounded theory data analysis based on the works of Glaser, Charmaz and Strauss and Corbin. The use of this synthesised approach provides a true reflection of Glaser's idea of 'emergence of theory from the data' and Strauss and Corbin's style of sampling and memoranda writing is employed. This multi-step synthesised method of data analysis maintains the philosophical perspective of grounded theory. This method indicates how grounded theory has developed, where it might go next in nursing research and how it may continue to evolve.

  2. ACCESS, Absolute Color Calibration Experiment for Standard Stars: Integration, Test, and Ground Performance (United States)

    Kaiser, Mary Elizabeth; Morris, Matthew; Aldoroty, Lauren; Kurucz, Robert; McCandliss, Stephan; Rauscher, Bernard; Kimble, Randy; Kruk, Jeffrey; Wright, Edward L.; Feldman, Paul; Riess, Adam; Gardner, Jonathon; Bohlin, Ralph; Deustua, Susana; Dixon, Van; Sahnow, David J.; Perlmutter, Saul


    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, now exceed the statistical errors associated with merged databases of these measurements. ACCESS, “Absolute Color Calibration Experiment for Standard Stars”, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35‑1.7μm bandpass. To achieve this goal ACCESS (1) observes HST/ Calspec stars (2) above the atmosphere to eliminate telluric spectral contaminants (e.g. OH) (3) using a single optical path and (HgCdTe) detector (4) that is calibrated to NIST laboratory standards and (5) monitored on the ground and in-flight using a on-board calibration monitor. The observations are (6) cross-checked and extended through the generation of stellar atmosphere models for the targets. The ACCESS telescope and spectrograph have been designed, fabricated, and integrated. Subsystems have been tested. Performance results for subsystems, operations testing, and the integrated spectrograph will be presented. NASA sounding rocket grant NNX17AC83G supports this work.

  3. Continuous monitoring of a mountain snowpack in the Austrian Alps by above-ground neutron sensing (United States)

    Schattan, Paul; Baroni, Gabriele; Oswald, Sascha E.; Schöber, Johannes; Fey, Christine; Francke, Till; Huttenlau, Matthias; Achleitner, Stefan


    In alpine catchments the knowledge of the spatially and temporally heterogeneous dynamics of snow accumulation and depletion is crucial for modelling and managing water resources. While snow covered area can be retrieved operationally from remote sensing data, continuous measurements of other snow state variables like snow depth (SD) or snow water equivalent (SWE) remain challenging. Existing methods of retrieving both variables in alpine terrain face severe issues like a lack of spatial representativeness, labour-intensity or discontinuity in time. Recently, promising new measurement techniques combining a larger support with low maintenance cost like above-ground gamma-ray scintillators, GPS interferometric reflectometry or above-ground cosmic-ray neutron sensors (CRNS) have been suggested. While CRNS has proven its potential for monitoring soil moisture in a wide range of environments and applications, the empirical knowledge of using CRNS for snowpack monitoring is still very limited and restricted to shallow snowpacks with rather uniform evolution. The characteristics of an above-ground cosmic-ray neutron sensor (CRNS) were therefore evaluated for monitoring a mountain snowpack in the Austrian Alps (Kaunertal, Tyrol) during three winter seasons. The measurement campaign included a number of measurements during the period from 03/2014 to 06/2016: (i) neutron count measurements by CRNS, (ii) continuous point-scale SD and SWE measurements from an automatic weather station and (iii) 17 Terrestrial Laser Scanning (TLS) with simultaneous SD and SWE surveys. The highest accumulation in terms of SWE was found in 04/2014 with 600 mm. Neutron counts were compared to all available snow data. While previous studies suggested a signal saturation at around 100 mm of SWE, no complete signal saturation was found. A strong non-linear relation was found for both SD and SWE with best fits for spatially distributed TLS based snow data. Initially slightly different shapes were

  4. Ground Enterprise Management System Project (United States)

    National Aeronautics and Space Administration — Spacecraft ground systems are on the cusp of achieving "plug-and-play" capability, i.e., they are approaching the state in which the various components can be...

  5. The Modifiability of Grounded Theory

    Directory of Open Access Journals (Sweden)

    Alvita K. Nathaniel, Ph.D., RN


    Full Text Available Grounded theories are powerful tools that fit empirical situations and provide “relevant predictions, explanations, interpretations, and applications” (Glaser & Strauss, 1967, p.1. Because of their real-world orientation, grounded theories are particularly appropriate for health care research. They can help professionals understand that certain patterns always seem to emerge, that particular people respond in predictable ways, and that actions produce predictable results (Nathaniel & Andrews, 2007. When physicians and nurses better understand patterns that affect patients, they can work towards altering harmful patterns to improve the quality of patient care. As time passes, one may ask, when do grounded theories become obsolete? When are they no longer useful? The purpose of this paper is to revisit the seminal grounded theory, Awareness of Dying, and compare it to contemporary conceptual and descriptive research on end-of-life care, asking the question, is the theory in need of modification?

  6. Ground Water and Climate Change (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide


    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  7. An analytic approach to resolving problems in medical ethics. (United States)

    Candee, D; Puka, B


    Education in ethics among practising professionals should provide a systematic procedure for resolving moral problems. A method for such decision-making is outlined using the two classical orientations in moral philosophy, teleology and deontology. Teleological views such as utilitarianism resolve moral dilemmas by calculating the excess of good over harm expected to be produced by each feasible alternative for action. The deontological view focuses on rights, duties, and principles of justice. Both methods are used to resolve the 1971 Johns Hopkins case of a baby born with Down's syndrome and duodenal atresia. PMID:6234395

  8. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt


    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  9. An analytic approach to resolving problems in medical ethics. (United States)

    Candee, D; Puka, B


    Education in ethics among practising professionals should provide a systematic procedure for resolving moral problems. A method for such decision-making is outlined using the two classical orientations in moral philosophy, teleology and deontology. Teleological views such as utilitarianism resolve moral dilemmas by calculating the excess of good over harm expected to be produced by each feasible alternative for action. The deontological view focuses on rights, duties, and principles of justice. Both methods are used to resolve the 1971 Johns Hopkins case of a baby born with Down's syndrome and duodenal atresia.

  10. Activation of electrical machinery. Supplement 1. [Preliminary evaluation; not applicable to ground tests

    Energy Technology Data Exchange (ETDEWEB)

    Smolen, J.R.


    The following analysis of the induced radioactivity in SNAP-50/SPUR electrical machinery having a high cobalt content is submitted. Induced radioactivity in the flight vehicle will contribute negligibly to allowable radiation levels. This is especially so due to the low neutron to gamma ratio of assumed radiation damage tolerances to semiconductors. A calculation to estimate the order of magnitude of induced radioactivity in cobalt is attached. The calculation is based on a best guess of the neutron spectrum directly behind a lithium hydride shield. The resulting low cobalt activity and associated dose rate of about 1 mr/hr at 10 ft from a generator or a motor is insignificant. Although the evaluation indicates insignificant levels of induced radioactivity, this conclusion is not applicable to a ground test. Neutron moderation and scattering from a containment vessel and biological shield would greatly perturb the neutron environment behind the flight shield. Posttest handling of all components within the vacuum test chamber will undoubtedly be a problem. Notwithstanding the importance of limiting induced radioactivity, other considerations such as economy, cooling and vacuum requirements will largely dictate the final facility design. In summary, an activation analysis involves the overall facility design and will not be readily resolved. For a 10,000 hr. test the Co/sup 60/ activity may range from 100 curies per lb of cobalt where no shielding is provided to 10/sup -3/ curies per lb of cobalt where the equivalent of a flight shield is provided.

  11. Structures of Annulenes and Model Annulene Systems in the Ground and Lowest Excited States

    Directory of Open Access Journals (Sweden)

    Pier Remigio Salvi


    Full Text Available The paper introduces general considerations on structural properties of aromatic, antiaromatic and non-aromatic conjugated systems in terms of potential energy along bond length alternation and distortion coordinates, taking as examples benzene, cyclobutadiene and cyclooctatetraene. Pentalene, formally derived from cyclooctatetraene by cross linking, is also considered as a typical antiaromatic system. The main interest is concerned with [n]annulenes and model [n]annulene molecular systems, n ranging from 10 to 18. The rich variety of conformational and  configurational isomers and of dynamical processes among them is described. Specific attention is devoted to bridged [10]- and [14]annulenes in the ground and lowest excited states as well as to s-indacene and biphenylene. Experimental data obtained from vibrational and electronic spectroscopies are discussed and compared with ab initio calculation results. Finally, porphyrin, tetraoxaporphyrin dication and diprotonated porphyrin are presented as annulene structures adopting planar/non-planar geometries depending on the steric hindrance in the inner macrocycle ring. Radiative and non-radiative relaxation processes from excited state levels have been observed by means of time-resolved fluorescence and femtosecond transient absorption spectroscopy. A short account is also given of porphycene, the structural isomer of porphyrin, and of porphycene properties.

  12. Integrating care for neurodevelopmental disorders by unpacking control: A grounded theory study

    Directory of Open Access Journals (Sweden)

    Gustaf Waxegård


    Full Text Available Background: To establish integrated healthcare pathways for patients with neurodevelopmental disorders (ND such as autism spectrum disorder and attention-deficit hyperactivity disorder is challenging. This study sets out to investigate the main concerns for healthcare professionals when integrating ND care pathways and how they resolve these concerns. Methods: Using classic grounded theory (Glaser, we analysed efforts to improve and integrate an ND care pathway for children and youth in a Swedish region over a period of 6 years. Data from 42 individual interviews with a range of ND professionals, nine group interviews with healthcare teams, participant observation, a 2-day dialogue conference, focus group meetings, regional media coverage, and reports from other Swedish regional ND projects were analysed. Results: The main concern for participants was to deal with overwhelming ND complexity by unpacking control, which is control over strategies to define patients’ status and needs. Unpacking control is key to the professionals’ strivings to expand constructive life space for patients, to squeeze health care to reach available care goals, to promote professional ideologies, and to uphold workplace integrity. Control-seeking behaviour in relation to ND unpacking is ubiquitous and complicates integration of ND care pathways. Conclusions: The Unpacking control theory expands central aspects of professions theory and may help to improve ND care development.

  13. Integrating care for neurodevelopmental disorders by unpacking control: A grounded theory study (United States)

    Waxegård, Gustaf; Thulesius, Hans


    Background To establish integrated healthcare pathways for patients with neurodevelopmental disorders (ND) such as autism spectrum disorder and attention-deficit hyperactivity disorder is challenging. This study sets out to investigate the main concerns for healthcare professionals when integrating ND care pathways and how they resolve these concerns. Methods Using classic grounded theory (Glaser), we analysed efforts to improve and integrate an ND care pathway for children and youth in a Swedish region over a period of 6 years. Data from 42 individual interviews with a range of ND professionals, nine group interviews with healthcare teams, participant observation, a 2-day dialogue conference, focus group meetings, regional media coverage, and reports from other Swedish regional ND projects were analysed. Results The main concern for participants was to deal with overwhelming ND complexity by unpacking control, which is control over strategies to define patients’ status and needs. Unpacking control is key to the professionals’ strivings to expand constructive life space for patients, to squeeze health care to reach available care goals, to promote professional ideologies, and to uphold workplace integrity. Control-seeking behaviour in relation to ND unpacking is ubiquitous and complicates integration of ND care pathways. Conclusions The Unpacking control theory expands central aspects of professions theory and may help to improve ND care development. PMID:27609793

  14. Ground motion prediction and earthquake scenarios in the volcanic region of Mt. Etna (Southern Italy (United States)

    Langer, Horst; Tusa, Giuseppina; Luciano, Scarfi; Azzaro, Raffaela


    One of the principal issues in the assessment of seismic hazard is the prediction of relevant ground motion parameters, e. g., peak ground acceleration, radiated seismic energy, response spectra, at some distance from the source. Here we first present ground motion prediction equations (GMPE) for horizontal components for the area of Mt. Etna and adjacent zones. Our analysis is based on 4878 three component seismograms related to 129 seismic events with local magnitudes ranging from 3.0 to 4.8, hypocentral distances up to 200 km, and focal depth shallower than 30 km. Accounting for the specific seismotectonic and geological conditions of the considered area we have divided our data set into three sub-groups: (i) Shallow Mt. Etna Events (SEE), i.e., typically volcano-tectonic events in the area of Mt. Etna having a focal depth less than 5 km; (ii) Deep Mt. Etna Events (DEE), i.e., events in the volcanic region, but with a depth greater than 5 km; (iii) Extra Mt. Etna Events (EEE), i.e., purely tectonic events falling outside the area of Mt. Etna. The predicted PGAs for the SEE are lower than those predicted for the DEE and the EEE, reflecting their lower high-frequency energy content. We explain this observation as due to the lower stress drops. The attenuation relationships are compared to the ones most commonly used, such as by Sabetta and Pugliese (1987)for Italy, or Ambraseys et al. (1996) for Europe. Whereas our GMPEs are based on small earthquakes, the magnitudes covered by the two above mentioned attenuation relationships regard moderate to large magnitudes (up to 6.8 and 7.9, respectively). We show that the extrapolation of our GMPEs to magnitues beyond the range covered by the data is misleading; at the same time also the afore mentioned relationships fail to predict ground motion parameters for our data set. Despite of these discrepancies, we can exploit our data for setting up scenarios for strong earthquakes for which no instrumental recordings are

  15. Effects of Soil Heterogeneity on Martian Ground Ice Stability (United States)

    Sizemore, H. G.; Mellon, M. T.


    Theoretical investigation of ground-ice stability and analysis of Mars Odyssey Gamma Ray Spectrometer (GRS) data have each been used to infer the depth of the ice-table (the boundary between dry and ice-cemented soil in the martian permafrost). Historically, both methods have assumed the martian soil to be homogeneous. However, imagery of the martian surface clearly shows a complex mixture of soils, rocks, and slopes. Remaining discrepancies between theoretical and GRS-inferred ice-table depths may be related to the natural heterogeneities of the surface layer (Mellon et al., 2004). We have therefore employed a new three-dimensional model to investigate the effects of surface rocks, dust, and albedo variations on Martian ground-ice stability. We find that these heterogeneities produce significant undulations/topography in the ice-table at horizontal length scales of a few meters. Near rocks, the ice-table is deeper than its equilibrium depth in homogeneous soil; dust lenses make the ice-table shallower in their vicinity. Decimeter-scale rocks produce a gross vertical deflection (10-30 cm) over a relatively small horizontal range (1-2 rock radii). Comparably sized dust lenses produce a weak vertical deflection (1-3 cm) over a more extended horizontal range (7-8 lens radii). Albedo variations slightly enhance the effects of dark rocks and bright dust. In general, ice-table depth can vary by 10s of cm under mixed surfaces containing rocks, dust, and average soil poleward of 60° N. We have also investigated the factor-of-two discrepancy between theoretical and observational estimates of ice-table depth noted by Mellon et al., but cannot fully resolve it. Ice-table depths derived from GRS neutron data can be up to 10% deeper than theoretical depths in areas where cumulative fractional rock abundance exceeds 20%. Thus, rocks play a significant but not dominant role in the remote sensing data . Other types of heterogeneities, such as slopes and the layered structure of

  16. Lead Poisoning at an Indoor Firing Range. (United States)

    Kang, Kyung Wook; Park, Won Ju


    In March 2014, a 39-year-old Korean male presented with a 6-month history of various nonspecific symptoms including dizziness, fatigue, asthenia, irritability, elevated blood pressure, palpitation, eyestrain, and tinnitus. His occupational history revealed that he had been working as an indoor firing range manager for 13 months; therefore, he was subjected to a blood lead level (BLL) test. The test results showed a BLL of 64 μg/dL; hence, he was diagnosed with lead poisoning and immediately withdrawn from work. As evident from the workplace environmental monitoring, the level of lead exposure in the air exceeded its limit (0.015-0.387 mg/m³). He received chelation treatment with calcium-disodium ethylenediaminetetraacetic acid (1 g/day) for 5 days without any adverse effects. In the follow-up results after 2 months, the BLL had decreased to 9.7 μg/dL and the symptoms resolved. This report represents the first occupational case of lead poisoning in firing ranges in Korea, and this necessitates institutional management to prevent the recurrence of poisoning through this route. Workplace environmental monitoring should be implemented for indoor firing ranges, and the workers should undergo regularly scheduled special health examinations. In clinical practice, it is essential to question the patient about his occupational history. © 2017 The Korean Academy of Medical Sciences.

  17. Resolving Emissions Dynamics via Mass Spectrometry: Time Resolved Measurements of Emission Transients by Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, William P.


    Transient emissions occur throughout normal engine operation and can significantly contribute to overall system emissions. Such transient emissions may originate from various sources including cold start, varying load and exhaust-gas recirculation (EGR) rates; all of which are dynamic processes in the majority of engine operation applications (1). Alternatively, there are systems which are inherently dynamic even at steady-state engine-operation conditions. Such systems include catalytic exhaust-emissions treatment devices with self-initiated and sustained oscillations (2) and NOX adsorber systems (3,4,5). High-speed diagnostics, capable of temporally resolving such emissions transients, are required to characterize the process, verify calculated system inputs, and optimize the system.

  18. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information (United States)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong


    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  19. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng


    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  20. From Darwin to constructivism: the evolution of grounded theory. (United States)

    Hall, Helen; Griffiths, Debra; McKenna, Lisa


    To explore the evolution of grounded theory and equip the reader with a greater understanding of the diverse conceptual positioning that is evident in the methodology. Grounded theory was developed during the modernist phase of research to develop theories that are derived from data and explain human interaction. Its philosophical foundations derive from symbolic interactionism and were influenced by a range of scholars including Charles Darwin and George Mead. Rather than a rigid set of rules and procedures, grounded theory is a way of conceptualising data. Researchers demonstrate a range of perspectives and there is significant variation in the way the methodology is interpreted and executed. Some grounded theorists continue to align closely with the original post-positivist view, while others take a more constructivist approach. Although the diverse interpretations accommodate flexibility, they may also result in confusion. The grounded theory approach enables researchers to align to their own particular world view and use methods that are flexible and practical. With an appreciation of the diverse philosophical approaches to grounded theory, researchers are enabled to use and appraise the methodology more effectively.

  1. Resolving DNA at efficiencies of more than a million plates per meter using bare narrow open capillaries without sieving matrices. (United States)

    Zhu, Zaifang; Liu, Lei; Wang, Wei; Lu, Joann J; Wang, Xiayan; Liu, Shaorong


    We report a novel approach for effectively separating DNA molecules in free solution. The method uses a bare narrow open capillary without any sieving matrices to resolve a wide size-range of DNA fragments at efficiencies of more than a million plates per meter routinely.

  2. Resolving DNA at Efficiencies of More than A Million Plates per Meter Using Bare Narrow Open Capillary without Sieving Matrix


    Zhu, Zaifang; Liu, Lei; Wang, Wei; Lu, Joann J.; Wang, Xiayan; Liu, Shaorong


    We report a novel approach for effectively separating DNA molecules in free solution. The method uses a bare narrow open capillary without any sieving matrices to resolve a wide size-range of DNA fragments at efficiencies of more than a million plates per meter routinely.

  3. Optimization of the Hyperspectral Imaging-based Spatially-resolved System for Measuring the Optical Properties of Biological Materials (United States)

    This paper reports on the optimization and assessment of a hyperspectral imaging-based spatially-resolved system for determination of the optical properties of biological materials over the wavelengths of 500-1,000 nm. Twelve model samples covering a wide range of absorption and reduced scattering c...

  4. Representation of Precipitation in a Decade-long Continental-Scale Convection-Resolving Climate Simulation (United States)

    Leutwyler, David; Fuhrer, Oliver; Ban, Nikolina; Lapillonne, Xavier; Lüthi, Daniel; Schär, Christoph


    The representation of moist convection and the associated precipitation in climate models represents a major challenge, due to the small scales involved. Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. Using horizontal grid spacings of O(1km), they allow to explicitly resolve deep convection leading to an improved representation of the water cycle. A new version of the Consortium for Small-Scale Modeling weather and climate model (COSMO), capable of exploiting new supercomputer architectures, allows convection-resolving climate simulations on computational domains spanning continents and time period up to one decade. We present results from a decade-long, convection-resolving climate simulation on a European-scale computational domain. The simulation has a grid spacing of 2.2 km, 1536x1536x60 grid points, covers the period 1999-2008, and is driven by the ERA-Interim reanalysis. Specifically we present an evaluation of hourly rainfall using a wide range of data sets, including several rain-gauge networks and a remotely-sensed lightning data set. Substantial improvements are found in terms of the diurnal cycles of precipitation amount, wet-hour frequency and all-hour 99th percentile or in terms of the frequency-intensity distributions. However the results also reveal substantial differences between regions with and without strong orographic forcing. Furthermore we present an index for deep-convective activity based on the statistics of vertical motion. Comparison of the index with lightning data shows that the convection-resolving climate simulations are able to reproduce important features of the annual cycle of deep convection in Europe. Leutwyler, D., Lüthi, D., Ban, N., Fuhrer, O., and Schär, C.: Evaluation of the Convection-Resolving Climate Modeling Approach on Continental Scales, J. Geophys. Res. Atmos., in revision. Leutwyler, D., Fuhrer, O., Lapillonne, X., Lüthi, D., and Schär, C

  5. Microwave complex for ground based ozone and thermal sounding of middle atmosphere (United States)

    Shvetsov, Alexander; Krasil'nikov, Alexander; Kulikov, Mihail; Ryskin, Vitaly; Bolshakov, Oleg; Belikovich, Mihail; Mukhin, Dmitry; Karashtin, Dmitry; Fedoseev, Lev; Feigin, Alexander


    Description of the novel ground-based microwave complex for ozone and thermal sounding of middle atmosphere is presented. The instrument include two spectroradiometers operating in the frequency range 110.3-111.3 GHz (ozone line), and in the in the frequency range 52.5 - 54.5 GHz (edge of 5-mm molecular oxygen band), accordingly. The latter includes band slope and four resolved from the earth's surface relatively weak oxygen lines. Both spectroradiometers employ feed cone as antenna with half-power beam width approximately equal 4 degree. Two digital fast Fourier transform spectrometers developed by "Acqiris" are used for signal analysis in the intermediate frequency range 0.05 - 1 GHz with the effective resolution 61 KHz. Both spectroradiometers operate in total power mod with fast internal calibration that realize by electrically controlled noise generator on basis of Shottky barrier diodes. Noise temperature is approximately 3000 K for ozone spectroradiometer and 1400 K for thermometer. Novel method for retrieval vertical profiles of ozone and temperature from radiometric data is applied. The procedure is based on Bayesian approach to inverse problems which assumes a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. At the present time we carry out the experimental campaign aimed to simultaneous measurements temperature and ozone profile above Nizhny Novgorod, Russia. The work was done under support of the RFBR (projects 11-05-97050 and 12-05-00999)

  6. Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state

    Energy Technology Data Exchange (ETDEWEB)

    Burdzinski, G. [Faculty of Physics, Adam Mickiewicz University, Poznan (Poland); Bayda, M. [Faculty of Chemistry, Adam Mickiewicz University, Poznan (Poland); Hug, G.L. [Faculty of Chemistry, Adam Mickiewicz University, Poznan (Poland); Radiation Laboratory, University of Notre Dame, Notre Dame, IN (United States); Majchrzak, M.; Marciniec, B.; Marciniak, B. [Faculty of Chemistry, Adam Mickiewicz University, Poznan (Poland)


    In femtosecond laser-flash photolysis experiments, the first singlet excited state of trans-ST, ((E,E)-{l_brace}1,4-bis(2-dimethylphenylsilyl)ethenyl{r_brace}benzene) showed a strong S1({pi},{pi}{sup *})-Sn absorption band at 540 nm in acetonitrile and at 550 nm in hexane. The lifetime of this state was determined to be 13.2{+-}2.0 and 11.1{+-}1.5 ps, respectively. Intersystem crossing was shown not to be a principal route for the deactivation of this S1 state of trans-ST. Evidence for this conclusion involved two complementary nanosecond laser-flash photolysis experiments. In one experiment involving direct excitation, no transient absorption spectrum was detected in the 350-650 nm spectral range. Yet, in the second experiment, on triplet sensitization, using xanthone, a transient absorption at 400 nm was tentatively assigned to the triplet state absorption of trans-ST. Photoisomerization was monitored in nanosecond time-resolved bleaching experiments. From these experiments the trans-cis photoisomerization quantum yield was determined to be 0.23 on direct trans-ST excitation. In a xanthone-sensitized stationary-state excitation experiment, the trans-cis isomerization quantum yield was determined to be 0.32. The main deactivation route of trans-ST in its S1 state is repopulation of the ground state directly through internal conversion or with the intermediacy of conformers with twisted geometry.

  7. Angle-resolved cathodoluminescence imaging polarimetry

    CERN Document Server

    Osorio, Clara I; Brenny, Benjamin; Polman, Albert; Koenderink, A Femius


    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the polarization was not fully determined. Here we demonstrate a technique to access the full polarization state of the cathodoluminescence emission, that is the Stokes parameters as a function of the emission angle. Using this technique, we measure the emission of metallic bullseye nanostructures and show that the handedness of the structure as well as nanoscale changes in excitation position induce large changes in polarization ellipticity and helicity. Furthermore, by exploiting the ability of polarimetry to distinguish polarized from unpolarized light, we quantify the contributions of different types of coherent and incoherent radiation to the emission of a gold surface, silicon and gallium arsenide bulk semiconductor...

  8. Effect of horizontal wave barriers on ground vibration propagation. (United States)

    Grau, L; Laulagnet, B


    The aim of this article is to introduce a method to mitigate ground surface vibration through a flexural plate coupled to the ground and acting as a horizontal wave barrier. Using the thin plate hypothesis, two flexural plates are coupled to the ground, the first plate being the excited plate and the second plate the horizontal wave barrier. For instance, the first plate may represent a slab track and be excited by the tramway wheels. A solution to the problem can be found using a spatial two-dimensional Fourier transform of the elastodynamics equation for the ground and a modal decomposition for the flexural plate vibration. The authors show that vibration is substantially mitigated by the horizontal wave barrier and depends on its thickness and width. When the top surface wavelength becomes smaller than twice the plate width, the horizontal wave barrier acts as a wave barrier in the frequency range of interest, i.e., from 20 Hz.

  9. Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model (United States)

    Jung, Joon-Hee; Arakawa, Akio


    By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.

  10. A direct electron detector for time-resolved MeV electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vecchione, T.; Denes, P.; Jobe, R. K.; Johnson, I. J.; Joseph, J. M.; Li, R. K.; Perazzo, A.; Shen, X.; Wang, X. J.; Weathersby, S. P.; Yang, J.; Zhang, D.


    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

  11. Time-resolved ARPES at LACUS: Band Structure and Ultrafast Electron Dynamics of Solids. (United States)

    Crepaldi, Alberto; Roth, Silvan; Gatti, Gianmarco; Arrell, Christopher A; Ojeda, José; van Mourik, Frank; Bugnon, Philippe; Magrez, Arnaud; Berger, Helmuth; Chergui, Majed; Grioni, Marco


    The manipulation of the electronic properties of solids by light is an exciting goal, which requires knowledge of the electronic structure with energy, momentum and temporal resolution. Time- and angle-resolved photoemission spectroscopy (tr-ARPES) is the most direct probe of the effects of an optical excitation on the band structure of a material. In particular, tr-ARPES in the extreme ultraviolet (VUV) range gives access to the ultrafast dynamics over the entire Brillouin zone. VUV tr-ARPES experiments can now be performed at the ASTRA (ARPES Spectrometer for Time-Resolved Applications) end station of Harmonium, at LACUS. Its capabilities are illustrated by measurements of the ultrafast electronic response of ZrSiTe, a novel topological semimetal characterized by linearly dispersing states located at the Brillouin zone boundary.

  12. Time and spectrum-resolving multiphoton correlator for 300–900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Kolenderski, Piotr, E-mail: [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Scarcella, Carmelo; Tosi, Alberto [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)


    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  13. Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, G. L.; Rodriguez, G. [MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Li, Y.; Durakiewicz, T. [MPA-CMMS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)


    We present a laser-based apparatus suitable for visible pump/extreme UV (XUV) probe time-, energy-, and angle-resolved photoemission spectroscopy utilizing high-harmonic generation from a noble gas. Tunability in a wide range of energies (currently 20-36 eV) is achieved by using a time-delay compensated monochromator, which also preserves the ultrashort duration of the XUV pulses. Using an amplified laser system at 10 kHz repetition rate, approximately 10{sup 9}-10{sup 10} photons/s per harmonic are made available for photoelectron spectroscopy. Parallel energy and momentum detection is carried out in a hemispherical electron analyzer coupled with an imaging detector. First applications demonstrate the capabilities of the instrument to easily select the probe wavelength of choice, to obtain angle-resolved photoemission maps (GaAs and URu{sub 2}Si{sub 2}), and to trace ultrafast electron dynamics in an optically excited semiconductor (Ge).

  14. Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy. (United States)

    Dakovski, G L; Li, Y; Durakiewicz, T; Rodriguez, G


    We present a laser-based apparatus suitable for visible pump/extreme UV (XUV) probe time-, energy-, and angle-resolved photoemission spectroscopy utilizing high-harmonic generation from a noble gas. Tunability in a wide range of energies (currently 20-36 eV) is achieved by using a time-delay compensated monochromator, which also preserves the ultrashort duration of the XUV pulses. Using an amplified laser system at 10 kHz repetition rate, approximately 10(9)-10(10) photons/s per harmonic are made available for photoelectron spectroscopy. Parallel energy and momentum detection is carried out in a hemispherical electron analyzer coupled with an imaging detector. First applications demonstrate the capabilities of the instrument to easily select the probe wavelength of choice, to obtain angle-resolved photoemission maps (GaAs and URu(2)Si(2)), and to trace ultrafast electron dynamics in an optically excited semiconductor (Ge).

  15. Angle-resolved PED and AED calculations for different structures of the diamond C(111) surface (United States)

    Niebergall, L.; Rennert, P.; Chassé, A.; Kucherenko, Yu


    Angle-resolved (AR) photoelectron diffraction (PED) spectra for electrons excited from the C 1s core state and angle-resolved KVV Auger electron diffraction (AED) spectra are calculated for the Pandey and the Tsai stucture models of diamond C(111) which extend previous investigations of the ideal structure. It is shown how to decide on the structure model by comparing PE spectra for different directions and by comparing PED and AED spectra. Calculations have been performed by evaluating the scattering path operator for a finite cluster in a curved-wave approximation. The different matrix elements for the photoelectron excitation and for the Auger process, respectively, are included. It is shown that the PED intensities are very sensitive to the surface reconstruction for polar angles in the range of 80°. In the AED intensities, polar scans in the plane perpendicular to the chain direction can be considered.

  16. 142 resolving the redactional ambivalence over the role

    African Journals Online (AJOL)

    RESOLVING THE REDACTIONAL AMBIVALENCE OVER THE ROLE OF. PATRIMONIALISM IN THE COLLAPSE OF MONARCHY IN ISRAEL: IMPLICATIONS FOR NIGERIAN DEMOCRACY. Emmanuel Nwachukwu Uzuegbunam. Abstract. In 930 BC when Israel broke up into two kingdoms, the Deuteronomistic redactors ...

  17. Time resolved fluorescence of naproxen in organogel medium (United States)

    Burguete, M. Isabel; Izquierdo, M. Angeles; Galindo, Francisco; Luis, Santiago V.


    The interaction between non-steroidal anti-inflammatory drug naproxen and the self assembled fibrillar network created by a low molecular weight organogelator has been probed by means of time resolved fluorescence spectroscopy.

  18. Passive background correction method for spatially resolved detection (United States)

    Schmitt, Randal L [Tijeras, NM; Hargis, Jr., Philip J.


    A method for passive background correction during spatially or angularly resolved detection of emission that is based on the simultaneous acquisition of both the passive background spectrum and the spectrum of the target of interest.

  19. Are mini DNA-barcodes sufficiently informative to resolve species ...

    Indian Academy of Sciences (India)

    barcodes sufficiently informative to resolve species identities? An in silico analysis using Phyllanthus. R. Srirama B. R. Gurumurthy U. Senthilkumar G. Ravikanth R. Uma Shaanker M. B. Shivanna. Research Note Volume 93 Issue 3 December 2014 pp ...

  20. Using a referee to resolve shipper-receiver differences

    Energy Technology Data Exchange (ETDEWEB)

    Tietjen, G.L.


    Within the nuclear community, shipper-receiver differences generate considerable concern. Current methods of resolving these differences are discussed, prticularly the use of an umpire or referee. Numerous statistical problems connected with the present procedures are also considered.

  1. Angular resolved light scattering microscopy on human chromosomes (United States)

    Müller, Dennis; Stark, Julian; Kienle, Alwin


    Angular resolved scattering light measurements on chromosomes are compared to Discrete Dipole Approximation (DDA) simulations using Atomic Force Microscopy (AFM) based geometrical models. This could present a novel, marker-free method for human chromosome karyotyping.

  2. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy (United States)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  3. Precision study of ground state capture in the 14N(p,gamma)15O reaction

    CERN Document Server

    Marta, M; Gyurky, Gy; Bemmerer, D; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Elekes, Z; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Kunz, R; Lemut, A; Limata, B; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Romano, M; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A


    The rate of the hydrogen-burning carbon-nitrogen-oxygen (CNO) cycle is controlled by the slowest process, 14N(p,gamma)15O, which proceeds by capture to the ground and several excited states in 15O. Previous extrapolations for the ground state contribution disagreed by a factor 2, corresponding to 15% uncertainty in the total astrophysical S-factor. At the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator placed deep underground in the Gran Sasso facility in Italy, a new experiment on ground state capture has been carried out at 317.8, 334.4, and 353.3 keV center-of-mass energy. Systematic corrections have been reduced considerably with respect to previous studies by using a Clover detector and by adopting a relative analysis. The previous discrepancy has been resolved, and ground state capture no longer dominates the uncertainty of the total S-factor.

  4. Ground fault protectionmethods for distribution systems


    Tavares, Hugo Ricardo dos Santos; Nogueira, Teresa Alexandre


    The system grounding method option has a direct influence on the overall performance of the entire medium voltage network as well as on the ground fault current magnitude. For any kind of grounding systems: ungrounded system, solidly and low impedance grounded and resonant grounded, we can find advantages and disadvantages. A thorough study is necessary to choose the most appropriate grounding protection system. The power distribution utilities justify their choices based on economic and t...

  5. Composite Grounding Application of Transmission Line Tower with Flexible Graphite Grounding Material (United States)

    Liu, Hongtao; Zhang, Lei; Xiong, Jia; Cui, Zhenxing; Yang, Qi


    To solve the metal corrosion problem of transmission line tower grounding grid, a composite grounding material technique based on flexible graphite grounding is proposed. Using CDEGS software, the power frequency grounding resistances with different soils layers and different ground network size of tower are simulated. The researches show that layered soil resistance can be reduced by laying vertical grounding body and uniform soil can reduce ground resistance by increasing grounding network size.

  6. Super-resolved imaging geometrical and diffraction approaches

    CERN Document Server


    In this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as the diffraction effects set by the F number of the imaging lens. In order to obtain the super resolved enhancement, we use spatially non-uniform and/or random transmission structures to encode the image or the aperture planes. The desired resolution enhanced images are obtained by post-processing decoding of the captured data.

  7. An analytic approach to resolving problems in medical ethics.


    Candee, D; Puka, B


    Education in ethics among practising professionals should provide a systematic procedure for resolving moral problems. A method for such decision-making is outlined using the two classical orientations in moral philosophy, teleology and deontology. Teleological views such as utilitarianism resolve moral dilemmas by calculating the excess of good over harm expected to be produced by each feasible alternative for action. The deontological view focuses on rights, duties, and principles of justic...

  8. Characterization of Climax granite ground water

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, D.; Harrar, J.; Raber, E.


    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  9. Site-specific ground response analysis

    National Research Council Canada - National Science Library

    L. GovindaRaju; G. V. Ramana; C. HanumanthaRao; T. G. Sitharam


    ... modifications to the underlying motion. We highlight the engineering importance of site-specific ground response analysis and difficulties faced in conducting a complete ground response analysis...

  10. Microsecond Time-Resolved Circular Dichroism of Rhodopsin Photointermediates† (United States)

    Thomas, Yiren Gu; Szundi, Istvan; Lewis, James W.; Kliger, David S.


    Time-resolved circular dichroism measurements, over a spectral range from 300 to 700 nm, were made at delays of 5, 100 and 500 μs after room temperature photoexcitation of bovine rhodopsin in lauryl maltoside suspension. The purpose was to provide more structural information about intermediate states in the activation of rhodopsin and other G protein-coupled receptors. In particular, information was sought about photointermediates that are isochromic or nearly isochromic in their unpolarized absorbance. The circular dichroism spectrum of lumirhodopsin, obtained after correcting the 5 μs difference CD data for the rhodopsin bleached, was in reasonable agreement with the lumirhodopsin CD spectrum obtained previously by thermal trapping at -76°C. Similarly, the metarhodopsin II spectrum obtained at 500 μs delay was also in agreement with the results of previous work on the temperature trapped form of metarhodopsin II. However, the CD of the mixture formed at 100 μs delay after photoexcitation, whose only visible absorbing component is lumirhodopsin, could not be accounted for near 480 nm in terms of the initially formed, 5 μs lumirhodopsin CD spectrum. Thus, the CD spectrum of lumirhodopsin changes on the time scale from 5 to 100 μs, showing reduced rotational strength in its visible band, possibly associated with either a process responsible for a small spectral shift that occurs in the lumirhodopsin absorbance spectrum at earlier times or the Schiff base deprotonation-reprotonation which occurs during equilibration of lumirhodopsin with the Meta I380 photointermediate. Either explanation suggests a chromophore conformation change closely associated with deprotonation which could be the earliest direct trigger of activation. PMID:19905009

  11. Exclusions for resolving urban badger damage problems: outcomes and consequences

    Directory of Open Access Journals (Sweden)

    Alastair I. Ward


    Full Text Available Increasing urbanisation and growth of many wild animal populations can result in a greater frequency of human-wildlife conflicts. However, traditional lethal methods of wildlife control are becoming less favoured than non-lethal approaches, particularly when problems involve charismatic species in urban areas. Eurasian badgers (Meles meles excavate subterranean burrow systems (setts, which can become large and complex. Larger setts within which breeding takes place and that are in constant use are known as main setts. Smaller, less frequently occupied setts may also exist within the social group’s range. When setts are excavated in urban environments they can undermine built structures and can limit or prevent safe use of the area by people. The most common approach to resolving these problems in the UK is to exclude badgers from the problem sett, but exclusions suffer a variable success rate. We studied 32 lawful cases of badger exclusions using one-way gates throughout England to evaluate conditions under which attempts to exclude badgers from their setts in urban environments were successful. We aimed to identify ways of modifying practices to improve the chances of success. Twenty of the 32 exclusion attempts were successful, but success was significantly less likely if a main sett was to be excluded in comparison with another type of sett and if vegetation was not completely removed from the sett surface prior to exclusion attempts. We recommend that during exclusions all vegetation is removed from the site, regardless of what type of sett is involved, and that successful exclusion of badgers from a main sett might require substantially more effort than other types of sett.

  12. Exclusions for resolving urban badger damage problems: outcomes and consequences. (United States)

    Ward, Alastair I; Finney, Jason K; Beatham, Sarah E; Delahay, Richard J; Robertson, Peter A; Cowan, David P


    Increasing urbanisation and growth of many wild animal populations can result in a greater frequency of human-wildlife conflicts. However, traditional lethal methods of wildlife control are becoming less favoured than non-lethal approaches, particularly when problems involve charismatic species in urban areas. Eurasian badgers (Meles meles) excavate subterranean burrow systems (setts), which can become large and complex. Larger setts within which breeding takes place and that are in constant use are known as main setts. Smaller, less frequently occupied setts may also exist within the social group's range. When setts are excavated in urban environments they can undermine built structures and can limit or prevent safe use of the area by people. The most common approach to resolving these problems in the UK is to exclude badgers from the problem sett, but exclusions suffer a variable success rate. We studied 32 lawful cases of badger exclusions using one-way gates throughout England to evaluate conditions under which attempts to exclude badgers from their setts in urban environments were successful. We aimed to identify ways of modifying practices to improve the chances of success. Twenty of the 32 exclusion attempts were successful, but success was significantly less likely if a main sett was to be excluded in comparison with another type of sett and if vegetation was not completely removed from the sett surface prior to exclusion attempts. We recommend that during exclusions all vegetation is removed from the site, regardless of what type of sett is involved, and that successful exclusion of badgers from a main sett might require substantially more effort than other types of sett.

  13. Ion Mobility Separation of Variant Histone Tails Extending to the “Middle-down” Range

    Energy Technology Data Exchange (ETDEWEB)

    Shvartsburg, Alexandre A.; Zheng, Yupeng; Smith, Richard D.; Kelleher, Neil


    Differential ion mobility spectrometry (FAIMS) can baseline-resolve multiple variants of post-translationally modified peptides extending to the 3 - 4 kDa range, which differ in the localization of a PTM as small as acetylation. Essentially orthogonal separations for different charge states expand the total achievable peak capacity in proportion to the number of observed states that increases for longer polypeptides. This might enable resolving localization variants for even larger peptides and intact proteins.

  14. Effective-range dependence of two-dimensional Fermi gases (United States)

    Schonenberg, L. M.; Verpoort, P. C.; Conduit, G. J.


    The Feshbach resonance provides precise control over the scattering length and effective range of interactions between ultracold atoms. We propose the ultratransferable pseudopotential to model effective interaction ranges -1.5 ≤kF2Reff2≤0 , where Reff is the effective range and kF is the Fermi wave vector, describing narrow to broad Feshbach resonances. We develop a mean-field treatment and exploit the pseudopotential to perform a variational and diffusion Monte Carlo study of the ground state of the two-dimensional Fermi gas, reporting on the ground-state energy, contact, condensate fraction, momentum distribution, and pair-correlation functions as a function of the effective interaction range across the BEC-BCS crossover. The limit kF2Reff2→-∞ is a gas of bosons with zero binding energy, whereas ln(kFa )→-∞ corresponds to noninteracting bosons with infinite binding energy.

  15. New Ground Motion Prediction Models for Caucasus Region (United States)

    Jorjiashvili, N.


    The Caucasus is a region of numerous natural hazards and ensuing disasters. Analysis of the losses due to past disasters indicates the those most catastrophic in the region have historically been due to strong earthquakes. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration because this parameter gives useful information for Seismic Hazard Assessment. Because of this, many peak ground acceleration attenuation relations have been developed by different authors. Besides, a few attenuation relations were developed for Caucasus region: Ambraseys et al. (1996,2005) which were based on entire European region and they were not focused locally on Caucasus Region; Smit (2000) that was based on a small amount of acceleration data that really is not enough. Since 2003 construction of Georgian Digital Seismic Network has started with the help of number of International organizations, Projects and Private companies. The works conducted involved scientific as well as organizational activities: Resolving technical problems concerning communication and data transmission. Thus, today we have a possibility to get real time data and make scientific research based on digital seismic data. Generally, ground motion and damage are influenced by the magnitude of the earthquake, the distance from the seismic source to site, the local ground conditions and the characteristics of buildings. Estimation of expected ground motion is a fundamental earthquake hazard assessment. This is the reason why this topic is emphasized in this study. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models are obtained by classical, statistical way, regression analysis. Also site ground conditions are considered because the same earthquake recorded at the same distance may cause different damage

  16. Resolving spatial inconsistencies in chromosome conformation measurements. (United States)

    Duggal, Geet; Patro, Rob; Sefer, Emre; Wang, Hao; Filippova, Darya; Khuller, Samir; Kingsford, Carl


    Chromosome structure is closely related to its function and Chromosome Conformation Capture (3C) is a widely used technique for exploring spatial properties of chromosomes. 3C interaction frequencies are usually associated with spatial distances. However, the raw data from 3C experiments is an aggregation of interactions from many cells, and the spatial distances of any given interaction are uncertain. We introduce a new method for filtering 3C interactions that selects subsets of interactions that obey metric constraints of various strictness. We demonstrate that, although the problem is computationally hard, near-optimal results are often attainable in practice using well-designed heuristics and approximation algorithms. Further, we show that, compared with a standard technique, this metric filtering approach leads to (a) subgraphs with higher statistical significance, (b) lower embedding error, (c) lower sensitivity to initial conditions of the embedding algorithm, and (d) structures with better agreement with light microscopy measurements. Our filtering scheme is applicable for a strict frequency-to-distance mapping and a more relaxed mapping from frequency to a range of distances. Our filtering method for 3C data considers both metric consistency and statistical confidence simultaneously resulting in lower-error embeddings that are biologically more plausible.

  17. Electrical Grounding Improves Vagal Tone in Preterm Infants. (United States)

    Passi, Rohit; Doheny, Kim K; Gordin, Yuri; Hinssen, Hans; Palmer, Charles


    Low vagal tone (VT) is a marker of vulnerability to stress and the risk of developing necrotizing enterocolitis in preterm infants. Electric fields produced by equipment in the neonatal intensive care unit (NICU) induce an electric potential measurable on the skin in reference to ground. An electrical connection to ground reduces the skin potential and improves VT in adults. We aimed to measure the electric field strengths in the NICU environment and to determine if connecting an infant to electrical ground would reduce the skin potential and improve VT. We also wished to determine if the skin potential correlated with VT. Environmental magnetic flux density (MFD) was measured in and around incubators. Electrical grounding (EG) was achieved with a patch electrode and wire that extended to a ground outlet. We measured the skin potential in 26 infants and heart rate variability in 20 infants before, during, and after grounding. VT was represented by the high-frequency power of heart rate variability. The background MFD in the NICU was below 0.5 mG, but it ranged between 1.5 and 12.7 mG in the closed incubator. A 60-Hz oscillating potential was recorded on the skin of all infants. With EG, the skin voltage dropped by about 95%. Pre-grounding VT was inversely correlated with the skin potential. VT increased by 67% with EG. After grounding, the VT fell to the pre-grounding level. The electrical environment affects autonomic balance. EG improves VT and may improve resilience to stress and lower the risk of neonatal morbidity in preterm infants. © 2017 S. Karger AG, Basel.

  18. Single-Nanoparticle Resolved Biomimetic Long-Range Electron Transfer and Electrocatalysis of Mixed-Valence Nanoparticles

    DEFF Research Database (Denmark)

    Zhu, Nan; Hao, Xian; Ulstrup, Jens


    stability in vitro. Development of robust biomimetic nanostructures is therefore highly desirable. Here, with Prussian blue nanoparticles (PBNPs) as an example we have demonstrated the preparation of highly stable and water-soluble mixed-valence nanoparticles under mild conditions. We have mapped...

  19. System for time resolved spectral studies of pulsed atmospheric discharges in the visible to vacuum ultraviolet range. (United States)

    Laity, G; Neuber, A; Rogers, G; Frank, K


    Vacuum ultraviolet (VUV) emission is believed to play a major role in the development of plasma streamers in pulsed atmospheric discharges, but detection of VUV light is difficult in pulsed experiments at atmospheric pressures. Since VUV light is absorbed in most standard optical materials as well, careful attention must be given to the selection of the lens and mirror optics used in these studies. Of highest interest is the VUV emission during the initial stage of pulsed atmospheric discharges, which has a typical duration in the nanosecond regime. An experiment was designed to study this fast initial stage of VUV emission coupled with fast optical imaging of streamer propagation, both with temporal resolution on the order of nanoseconds. A repetitive solid-state high voltage pulser was constructed which produces triggered flashover discharges with low jitter and consistent pulse amplitude. VUV emission is captured utilizing both photomultiplier and intensified charge-coupled device detectors during the fast stage of streamer propagation. These results are discussed in context with the streamer formation photographed in the visible wavelength regime with 3 ns exposure time.

  20. Photoelectron angular distributions from rotationally resolved autoionizing states of N2 (United States)

    Chartrand, A. M.; McCormack, E. F.; Jacovella, U.; Holland, D. M. P.; Gans, B.; Tang, Xiaofeng; Garcia, G. A.; Nahon, L.; Pratt, S. T.


    The single-photon, photoelectron-photoion coincidence spectrum of N2 has been recorded at high (˜1.5 cm-1) resolution in the region between the N2 + X Σ2g+, v+ = 0 and 1 ionization thresholds by using a double-imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N2 + X Σ2g+ ground state, and electronically autoionizing states converging to the N2 +A 2Π and B 2Σu+ states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. A simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment.

  1. Successful and unsuccessful attempts to resolve caribou management and timber harvesting issues in west central Alberta

    Directory of Open Access Journals (Sweden)

    David Hervieux


    Full Text Available Research studies of woodland caribou in west central Alberta began in 1979 in response to proposed timber harvesting on their winter ranges. Using results from initial studies, timber harvest guidelines were developed. A recent review of these guidelines, and the assumptions on which they were based, has resulted in a renegotiation by government and industry of timber harvesting on caribou range in west central Alberta. Caribou range in west central Alberta overlaps many jurisdictional boundaries: federal and provincial lands, four Forest Management Agreement Areas, three Alberta Land and Forest Service Regions and two Alberta Fish and Wildlife Service Regions. This jurisdictional complexity in combination with other factors such as total allocation of the timber resources, high levels of petroleum, natural gas and coal extraction activities, a high level of concern by public groups for caribou conservation and recent understanding of woodland caribou needs for abundant space has made resolution of caribou/timber harvest conflicts exceedingly slow and often relatively unproductive. This paper reviews 10 years of trying to resolve conflicts between timber harvesting and caribou conservation through meetings, committees, integrated resource planning, policy papers and public consultation. We describe what might be learned by other jurisdictions that are trying to resolve similar caribou/timber harvesting issues. We conclude with an overview of recent timber harvest planning initiatives on caribou range in west central Alberta.

  2. Analysis of strong ground motions to evaluate regional attenuation relationships

    Directory of Open Access Journals (Sweden)

    V. Montaldo


    Full Text Available Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations.

  3. Probing quantum frustrated systems via factorization of the ground state. (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio


    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  4. Broadband Sources in the 1-3 THz Range (United States)

    Mehdi, Imran; Ward, John; Maestrini, Alain; Chattopadhyay, Goutam; Schlecht, Erich; Thomas, Bertrand; Lin, Robert; Lee, Choonsup; Gill, John


    Broadband electronically tunable sources in the terahertz range are a critical technology for enabling space-borne as well as ground-based applications. By power-combining MMIC amplifier and frequency tripler chips, we have recently demonstrated >1 mW of output power at 900 GHz. This source provides a stepping stone to enable sources in the 2-3 THz range than can sufficiently pump multi-pixel imaging arrays.

  5. Evaluation of Ground-Motion Modeling Techniques for Use in Global ShakeMap - A Critique of Instrumental Ground-Motion Prediction Equations, Peak Ground Motion to Macroseismic Intensity Conversions, and Macroseismic Intensity Predictions in Different Tectonic Settings (United States)

    Allen, Trevor I.; Wald, David J.


    Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.

  6. Estimating the seismotelluric current required for observable electromagnetic ground signals

    Directory of Open Access Journals (Sweden)

    J. Bortnik


    Full Text Available We use a relatively simple model of an underground current source co-located with the earthquake hypocenter to estimate the magnitude of the seismotelluric current required to produce observable ground signatures. The Alum Rock earthquake of 31 October 2007, is used as an archetype of a typical California earthquake, and the effects of varying the ground conductivity and length of the current element are examined. Results show that for an observed 30 nT pulse at 1 Hz, the expected seismotelluric current magnitudes fall in the range ~10–100 kA. By setting the detectability threshold to 1 pT, we show that even when large values of ground conductivity are assumed, magnetic signals are readily detectable within a range of 30 km from the epicenter. When typical values of ground conductivity are assumed, the minimum current required to produce an observable signal within a 30 km range was found to be ~1 kA, which is a surprisingly low value. Furthermore, we show that deep nulls in the signal power develop in the non-cardinal directions relative to the orientation of the source current, indicating that a magnetometer station located in those regions may not observe a signal even though it is well within the detectable range. This result underscores the importance of using a network of magnetometers when searching for preseismic electromagnetic signals.

  7. Stress transmission across grounding lines and marine ice sheet instability (United States)

    Docquier, David; Nick, Faezeh M.; Perichon, Laura; Pattyn, Frank


    The stability of marine ice sheets is largely controlled by the dynamic behaviour of the grounding line, i.e., the contact of the bottom of the ice sheet resting on the bedrock with the ocean water. Marine ice sheet instability implies that an ice sheet on a downward sloping bedrock towards the interior will never find stable equilibria, hence leading to ice sheet collapse, unless an upward slope is reached (Schoof, 2007). The latter study shows that steady state solutions using a boundary layer theory for ice flux are in very close agreement with numerical resolutions that resolve the transition zone. However, the time dependent response of grounding line migration is not predicted by this theory. Precise knowledge of this response is essential for assessing the short term impact of accelerated ice discharge on sea level rise. Here we present the results of MISMIP-type (Marine Ice Sheet Model Intercomparison Project) experiments with different sets of numerical flowline models (fixed and moving grid) that solve the stress field in the transition zone according to different approximations to the Stokes equations. These models include shallow-ice (SIA0), shallow-shelf (L1L2) and higher-order (LMLa) approximations, and combinations of these types. All experiments are run at different spatial resolutions and for different sizes of the transition zone (high to low friction). The comparison of several stress approximants allows us to evaluate which stress components in the flow direction are important to the general behaviour of grounding line migration.

  8. Cleansing crews in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Meermann, H.


    Ground water contains a large quantity of bacteria, fungi and animals, and especially small crustaceans which carry out the biological purification process. These organsims are also able to cope with seeping waste water. However, the excessive supply of waste water or the seeping of toxicants e.g. heavy metals, can influence this biological self-purification device considerably or even suspend it. The microbiological fundamentals of this ecosystem had been investigated within the framework of a DFG project since 1973. The conversion of organic matter in ground water had been determined by /sup 14/C-labelled compounds.

  9. DGPS ground station integrity monitoring (United States)

    Skidmore, Trent A.; Vangraas, Frank


    This paper summarizes the development of a unique Differential Global Positioning System (DGPS) ground station integrity monitor which can offer improved availability over conventional code-differential monitoring systems. This monitoring technique, called code/carrier integrity monitoring (CCIM), uses the highly stable integrated Doppler measurement to smooth the relatively noisy code-phase measurements. The pseudorange correction is therefore comprised of the integrated Doppler measurement plus the CCIM offset. The design and operational results of a DGPS ground station integrity monitor are reported. A robust integrity monitor is realized which is optimized for applications such as the Special Category I (SCAT-I) defined in the RTCA Minimum Aviation System Performance Standards.

  10. Resolution of nuclear ground and isomeric states by a Penning trap mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, G.; Kluge, H.; Koenig, M.; Otto, T.; Savard, G.; Stolzenberg, H. (Institut fuer Physik, Universitaet Mainz, D-6500 Mainz (Germany)); Moore, R.B.; Rouleau, G. (Foster Radiation Laboratory, McGill University, Montreal, Province du Quebec, H3A 2B2 (Canada)); Audi, G. (ISOLDE Collaboration CERN, PPE-Division, CH-1211 Geneva (Switzerland))


    Ground and isomeric states of a nucleus have been resolved for the first time by mass spectrometry. Measurements on [sup 78]Rb[sup [ital m],][ital g] and [sup 84]Rb[sup [ital m],][ital g] were performed using a tandem Penning trap mass spectrometer on-line with the isotope separator ISOLDE/CERN. The effects of ion-ion interaction were investigated for two ion species differing in mass and stored simultaneously in the trap.

  11. Resolution of nuclear ground and isomeric states by a Penning trap mass spectrometer (United States)

    Bollen, G.; Kluge, H.-J.; König, M.; Otto, T.; Savard, G.; Stolzenberg, H.; Moore, R. B.; Rouleau, G.; Audi, G.; ISOLDE Collaboration


    Ground and isomeric states of a nucleus have been resolved for the first time by mass spectrometry. Measurements on 78Rbm,g and 84Rbm,g were performed using a tandem Penning trap mass spectrometer on-line with the isotope separator ISOLDE/CERN. The effects of ion-ion interaction were investigated for two ion species differing in mass and stored simultaneously in the trap.

  12. Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections (United States)


    employment and range in using the McQ UGS. It is encryption capable and has an internal solar power charger for the repeaters to aid in extended...assets to support long range, all weather, reduced footprint, and multi -sensor collections in any environment [3]. Ground reconnaissance forces may be...approaches toward asset integration for multi -source intelligence collections, specifically UGS as cueing assets, all to better support EF 21 intelligence

  13. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah (United States)

    Stolp, Bernard J.; Brooks, Lynette E.


    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  14. Chemical composition of atmospheric aerosols resolved via positive matrix factorization (United States)

    Äijälä, Mikko; Junninen, Heikki; Heikkinen, Liine; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael


    Atmospheric particulate matter is a complex mixture of various chemical species such as organic compounds, sulfates, nitrates, ammonia, chlorides, black carbon and sea salt. As aerosol chemical composition strongly influences aerosol climate effects (via cloud condensation nucleus activation, hygroscopic properties, aerosol optics, volatility and condensation) as well as health effects (toxicity, carcinogenicity, particle morphology), detailed understanding of atmospheric fine particle composition is widely beneficial for understanding these interactions. Unfortunately the comprehensive, detailed measurement of aerosol chemistry remains difficult due to the wide range of compounds present in the atmosphere as well as for the miniscule mass of the particles themselves compared to their carrier gas. Aerosol mass spectrometer (AMS; Canagaratna et al., 2007) is an instrument often used for characterization of non-refractive aerosol types: the near-universal vaporization and ionisation technique allows for measurement of most atmospheric-relevant compounds (with the notable exception of refractory matter such as sea salt, black carbon, metals and crustal matter). The downside of the hard ionisation applied is extensive fragmentation of sample molecules. However, the apparent loss of information in fragmentation can be partly offset by applying advanced statistical methods to extract information from the fragmentation patterns. In aerosol mass spectrometry statistical analysis methods, such as positive matrix factorization (PMF; Paatero, 1999) are usually applied for aerosol organic component only, to keep the number of factors to be resolved manageable, to retain the inorganic components for solution validation via correlation analysis, and to avoid inorganic species dominating the factor model. However, this practice smears out the interactions between organic and inorganic chemical components, and hinders the understanding of the connections between primary and

  15. 30 CFR 77.801 - Grounding resistors. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding resistors. 77.801 Section 77.801...-Voltage Distribution § 77.801 Grounding resistors. The grounding resistor, where required, shall be of the proper ohmic value to limit the voltage drop in the grounding circuit external to the resistor to not...

  16. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.


    The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint...... of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground...... voltage compensation. Then, a current control method consisting of proportional resonant (PR) and proportional integral (PI) with capacitive current feedback is then proposed to guarantee sufficient output current accuracy and stability margin subjecting to large range of load change. The performance...


    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Booth, Mark; Kavelaars, J. J.; Koning, Alice [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Kennedy, Grant M.; Wyatt, Mark C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Sibthorpe, Bruce [UK Astronomy Technology Center, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Lawler, Samantha M. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Qi, Chenruo [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Su, Kate Y. L.; Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Greaves, Jane S. [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)


    We present observations of the debris disk around {gamma} Doradus, an F1V star, from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well resolved at 70, 100, and 160 {mu}m, resolved along its major axis at 250 {mu}m, detected but not resolved at 350 {mu}m, and confused with a background source at 500 {mu}m. It is one of our best resolved targets and we find it to have a radially broad dust distribution. The modeling of the resolved images cannot distinguish between two configurations: an arrangement of a warm inner ring at several AU (best fit 4 AU) and a cool outer belt extending from {approx}55 to 400 AU or an arrangement of two cool, narrow rings at {approx}70 AU and {approx}190 AU. This suggests that any configuration between these two is also possible. Both models have a total fractional luminosity of {approx}10{sup -5} and are consistent with the disk being aligned with the stellar equator. The inner edge of either possible configuration suggests that the most likely region to find planets in this system would be within {approx}55 AU of the star. A transient event is not needed to explain the warm dust's fractional luminosity.

  18. Development of a High-Speed Digitizer to Time Resolve Nanosecond Fluorescence Pulses

    Directory of Open Access Journals (Sweden)

    E. Moreno-García


    Full Text Available The development of a high-speed digitizer system to measure time-domain voltage pulses in nanoseconds range is presented in this work. The digitizer design includes a high performance digital signal processor, a high-bandwidth analog-to-digital converter of flash-type, a set of delay lines, and a computer to achieve the time-domain measurements. A program running on the processor applies a time-equivalent sampling technique to acquire the input pulse. The processor communicates with the computer via a serial port RS-232 to receive commands and to transmit data. A control program written in LabVIEW 7.1 starts an acquisition routine in the processor. The program reads data from processor point by point in each occurrence of the signal, and plots each point to recover the time-resolved input pulse after n occurrences. The developed prototype is applied to measure fluorescence pulses from a homemade spectrometer. For this application, the LabVIEW program was improved to control the spectrometer, and to register and plot time-resolved fluorescence pulses produced by a substance. The developed digitizer has 750 MHz of analog input bandwidth, and it is able to resolve 2 ns rise-time pulses with 150 ps of resolution and a temporal error of 2.6 percent.

  19. Coordinated Resolved Motion Control of Dual-Arm Manipulators with Closed Chain

    Directory of Open Access Journals (Sweden)

    Tianliang Liu


    Full Text Available When applied to some tasks, such as payload handling, assembling, repairing and so on, the two arms of a humanoid robot will form a closed kinematic chain. It makes the motion planning and control for dual-arm coordination very complex and difficult. In this paper, we present three types of resolved motion control methods for a humanoid robot during coordinated manipulation. They are, respectively, position-level, velocity-level and acceleration-level resolved motion control methods. The desired pose, velocity and acceleration of each end-effector are then resolved according to the desired motion of the payload and the constraints on the closed-chain system without consideration of the internal force. Corresponding to the three cases above, the joint variables of each arm are then calculated using the inverse kinematic equations, at position-level, velocity-level or acceleration-level. Finally, a dynamic modelling and simulation platform is established based on ADAMS and Matlab software. The proposed methods are verified by typical cases. The simulation results show that the proposed control strategy can realize the dual-arm coordinated operation and the internal force of the closed chain during the operation is controlled in a reasonable range at the same time.

  20. Ground Based Free Electron Laser Technology Integration Experiment, White Sands Missile Range, New Mexico (United States)


    Vehicular Noise 95 30725 PO Vehicular Noise 95 34210 PO1 Vehicular Noise 95 SR680 Commissary Meat Saws 96 TT1848 Packing and Crating Various Saws 90-118...carnivores, including the raptors discussed previously. Numerous species, such as Ord’s and Merriam’s kangaroo rats (Dipodomys ordii and D. merriami

  1. NASA Computational Case Study SAR Data Processing: Ground-Range Projection (United States)

    Memarsadeghi, Nargess; Rincon, Rafael


    Radar technology is used extensively by NASA for remote sensing of the Earth and other Planetary bodies. In this case study, we learn about different computational concepts for processing radar data. In particular, we learn how to correct a slanted radar image by projecting it on the surface that was sensed by a radar instrument.

  2. Kinematic Range of Motion Analysis for a High Degree-of-Freedom Unmanned Ground Vehicle (United States)


    la technologie de la robotique soit en mesure d’augmenter les efforts humains en réponse aux rôles et environnements de l’armée. En préparation à ces...des terrains complexes. La méthodologie de la recherche traite des nombreux défis et incertitudes qui compliquent le concept des systèmes UGV. On...à rendement optimal particulier pour des missions spécifiques mais plutôt d’être en mesure de conduire la recherche dans beaucoup de domaines de

  3. Time-resolved resonance Raman study of proton transferring systems in the excited triplet state: 2,2'-bipyridine and 2,2'-bipyridine-3,3'-diol

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Mordzinski, A.; Wilbrandt, R.


    Time-resolved resonance Raman (RR) spectra of the excited triplet state T1 of 2,2'-bipyridine (BP), 2,2'-bipyridine-3,3'-diol BP(OH)2, and 5,5'-dimethyl-2,2'-bipyridine-3,3'-diol Me2BP(OH)2 are obtained. and interpreted by comparison with their ground-state Raman spectra and the T1 spectrum...

  4. Tunnel flexibility effect on the ground surface acceleration response (United States)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo


    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  5. The ground stones from Sphinx

    Czech Academy of Sciences Publication Activity Database

    Řídký, Jaroslav


    Roč. 2017, č. 21 (2017), s. 39-42 ISSN 1369-5770 Grant - others:GA ČR(CZ) GA17-03207S Institutional support: RVO:67985912 Keywords : Sudan * Mesolithic * ground stones Subject RIV: AC - Archeology, Anthropology, Ethnology

  6. Maintenance Sourcebook: Landscaping and Grounds. (United States)

    Macht, Carol; Gomulka, Ken; Harper, Wayne; Conry, Terry


    Asserts that facility managers need continual education in many subjects to keep their campuses in excellent condition, highlighting four areas related to landscaping and maintenance: landscaping care; athletic field care; grounds care; and equipment care. Lists of relevant professional organizations are included. (SM)

  7. Broadband Synthetic Ground Motion Records (United States)

    U.S. Geological Survey, Department of the Interior — The dataset contains broadband synthetic ground motion records for three events: 1) 1994 M6.7 Northridge, CA, 2) 1989 M7.0 Loma Prieta, CA, and 3) 1999 M7.5 Izmit,...

  8. Global trends on local grounds

    DEFF Research Database (Denmark)

    Steensen, Jette Johanne


    and built upon similar efforts in Namibia in the 1990s. Steensen´s contribution stresses that any educational system will have to lie firmly on local grounds, that international trends must be analysed strategically as well as critically and that such analysis, for example through Critical Practitioner...

  9. Evaluation of multimodal ground cues

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Lecuyer, Anatole; Serafin, Stefania


    This chapter presents an array of results on the perception of ground surfaces via multiple sensory modalities,with special attention to non visual perceptual cues, notably those arising from audition and haptics, as well as interactions between them. It also reviews approaches to combining...

  10. A Wide Range Neutron Detector for Space Nuclear Reactor Applications (United States)

    Nassif, Eduardo; Matatagui, Emilio; Sismonda, Miguel; Pretorius, Stephan


    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  11. Applications of laser ranging to ocean, ice, and land topography (United States)

    Degnan, John J.


    The current status and some future applications of satellite laser ranging (SLR) are briefly reviewed. The demonstrated subcentimeter precision of ground-based SLR systems is attracting new users, particularly, in the area of high-resolution ocean, ice, and land topography. Future airborne or spaceborne SLR system will not only provide topographic data with a horizontal and vertical resolution never achieved previously, but, in addition, ground-based SLR systems, via precise tracking of spaceborne microwave and laser altimeters, will permit the expression of the topographic surface in a common geocentric reference frame.

  12. Time-Resolved Fluorescence Immunoassay for C-Reactive Protein Using Colloidal Semiconducting Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pekka Hänninen


    Full Text Available Besides the typical short-lived fluorescence with decay times in the nanosecond range, colloidal II/VI semiconductor nanoparticles dispersed in buffer also possess a long-lived fluorescence component with decay times in the microsecond range. Here, the signal intensity of the long-lived luminescence at microsecond range is shown to increase 1,000-fold for CdTe nanoparticles in PBS buffer. This long-lived fluorescence can be conveniently employed for time-gated fluorescence detection, which allows for improved signal-to-noise ratio and thus the use of low concentrations of nanoparticles. The detection principle is demonstrated with a time-resolved fluorescence immunoassay for the detection of C-reactive protein (CRP using CdSe-ZnS nanoparticles and green light excitation.

  13. Interference of lee waves over mountain ranges

    Directory of Open Access Journals (Sweden)

    N. I. Makarenko


    Full Text Available Internal waves in the atmosphere and ocean are generated frequently from the interaction of mean flow with bottom obstacles such as mountains and submarine ridges. Analysis of these environmental phenomena involves theoretical models of non-homogeneous fluid affected by the gravity. In this paper, a semi-analytical model of stratified flow over the mountain range is considered under the assumption of small amplitude of the topography. Attention is focused on stationary wave patterns forced above the rough terrain. Adapted to account for such terrain, model equations involves exact topographic condition settled on the uneven ground surface. Wave solutions corresponding to sinusoidal topography with a finite number of peaks are calculated and examined.

  14. An introduction to optimal satellite range scheduling

    CERN Document Server

    Vázquez Álvarez, Antonio José


    The satellite range scheduling (SRS) problem, an important operations research problem in the aerospace industry consisting of allocating tasks among satellites and Earth-bound objects, is examined in this book. SRS principles and solutions are applicable to many areas, including: Satellite communications, where tasks are communication intervals between sets of satellites and ground stations Earth observation, where tasks are observations of spots on the Earth by satellites Sensor scheduling, where tasks are observations of satellites by sensors on the Earth. This self-contained monograph begins with a structured compendium of the problem and moves on to explain the optimal approach to the solution, which includes aspects from graph theory, set theory, game theory and belief networks. This book is accessible to students, professionals and researchers in a variety of fields, including: operations research, optimization, scheduling theory, dynamic programming and game theory. Taking account of the distributed, ...

  15. X-ray diffraction in temporally and spatially resolved biomolecular science. (United States)

    Helliwell, John R; Brink, Alice; Kaenket, Surasak; Starkey, Victoria Laurina; Tanley, Simon W M


    Time-resolved Laue protein crystallography at the European Synchrotron Radiation Facility (ESRF) opened up the field of sub-nanosecond protein crystal structure analyses. There are a limited number of such time-resolved studies in the literature. Why is this? The X-ray laser now gives us femtosecond (fs) duration pulses, typically 10 fs up to ∼50 fs. Their use is attractive for the fastest time-resolved protein crystallography studies. It has been proposed that single molecules could even be studied with the advantage of being able to measure X-ray diffraction from a 'crystal lattice free' single molecule, with or without temporal resolved structural changes. This is altogether very challenging R&D. So as to assist this effort we have undertaken studies of metal clusters that bind to proteins, both 'fresh' and after repeated X-ray irradiation to assess their X-ray-photo-dynamics, namely Ta6Br12, K2PtI6 and K2PtBr6 bound to a test protein, hen egg white lysozyme. These metal complexes have the major advantage of being very recognisable shapes (pseudo spherical or octahedral) and thereby offer a start to (probably very difficult) single molecule electron density map interpretations, both static and dynamic. A further approach is to investigate the X-ray laser beam diffraction strength of a well scattering nano-cluster; an example from nature being the iron containing ferritin. Electron crystallography and single particle electron microscopy imaging offers alternatives to X-ray structural studies; our structural studies of crustacyanin, a 320 kDa protein carotenoid complex, can be extended either by electron based techniques or with the X-ray laser representing a fascinating range of options. General outlook remarks concerning X-ray, electron and neutron macromolecular crystallography as well as 'NMR crystallography' conclude the article.

  16. Time-Resolved Spectroscopy in Complex Liquids An Experimental Perspective

    CERN Document Server

    Torre, Renato


    Time-Resolved Spectroscopy in Complex Liquids introduces current state-of-the-art techniques in the study of complex dynamical problems in liquid phases. With a unique focus on the experimental aspects applied to complex liquids, this volume provides an excellent overview into the quickly emerging field of soft-matter science. Researchers and engineers will find a comprehensive review of current non-linear spectroscopic and optical Kerr effect techniques, in addition to an in-depth look into relaxation dynamics in complex liquids. This volume offers current experimental findings in transient grating spectroscopy and their application to viscoelastic phenomena in glass-formers, dynamics of confined liquid-crystals, and a time-resolved analysis of the host-quest interactions of dye molecules in liquid-crystal matter. Time-Resolved Spectroscopy in Complex Liquids provides a cohesive introduction suitable for individuals involved in this emerging field, complete with the latest experimental procedures of complex ...

  17. Time-Resolved Measurements of Suprathermal Ion Transport Induced by Intermittent Plasma Blob Filaments. (United States)

    Bovet, A; Fasoli, A; Furno, I


    Suprathermal ion turbulent transport in magnetized plasmas is generally nondiffusive, ranging from subdiffusive to superdiffusive depending on the interplay of the turbulent structures and the suprathermal ion orbits. Here, we present time-resolved measurements of the cross-field suprathermal ion transport in a toroidal magnetized turbulent plasma. Measurements in the superdiffusive regime are characterized by a higher intermittency than in the subdiffusive regime. Using conditional averaging, we show that, when the transport is superdiffusive, suprathermal ions are transported by intermittent field-elongated turbulent structures that are radially propagating.

  18. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas (United States)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.


    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  19. Wall-resolved large-eddy simulation of flow past a circular cylinder (United States)

    Cheng, W.; Pullin, D. I.; Samtaney, R.


    Wall-resolved large-eddy simulations (LES) about a smooth-walled circular cylinder are described over a range of Reynolds number from ReD = 3 . 9 ×103 (subcritical) to above the drag crisis, ReD = 8 . 5 ×105 (supercritical), where D is the cylinder diameter. The span-wise domain is 3 D for ReD KAUST OCRF Award No. URF/1/1394-01 and partially by NSF award CBET 1235605. The Cray XC40, Shaheen, at KAUST was utilized for all simulations.

  20. Angle-Resolved Photoemission of Solvated Electrons in Sodium-Doped Clusters. (United States)

    West, Adam H C; Yoder, Bruce L; Luckhaus, David; Saak, Clara-Magdalena; Doppelbauer, Maximilian; Signorell, Ruth


    Angle-resolved photoelectron spectroscopy of the unpaired electron in sodium-doped water, methanol, ammonia, and dimethyl ether clusters is presented. The experimental observations and the complementary calculations are consistent with surface electrons for the cluster size range studied. Evidence against internally solvated electrons is provided by the photoelectron angular distribution. The trends in the ionization energies seem to be mainly determined by the degree of hydrogen bonding in the solvent and the solvation of the ion core. The onset ionization energies of water and methanol clusters do not level off at small cluster sizes but decrease slightly with increasing cluster size.

  1. A sensitive time-resolved radiation pyrometer for shock-temperature measurements above 1500 K (United States)

    Boslough, Mark B.; Ahrens, Thomas J.


    The general design, calibration, and performance of a new high-sensitivity radiation pyrometer are described. The pyrometer can determine time-resolved temperatures (as low as 1500 K) in shocked materials by measuring the spectral radiance of light emitted from shocked solid samples in the visible and near-infrared wavelength range (0.5-1.0 micron). The high sensitivity of the radiation pyrometer is attributed to the large angular aperture (0.06 sr), the large bandwidth per channel (up to 0.1 micron), the large photodiode detection areas (1.0 sq cm), and the small number of calibrated channels (4) among which light is divided.

  2. Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher

    Energy Technology Data Exchange (ETDEWEB)

    Milosavljevic, Vladimir [BioPlasma Research Group, Dublin Institute of Technology, Sackville Place, Dublin 1 (Ireland); Biosystems Engineering, University College Dublin, Dublin 4, Ireland and Faculty of Physics, University of Belgrade, Belgrade (Serbia); MacGearailt, Niall; Daniels, Stephen; Turner, Miles M. [NCPST, Dublin City University, Dublin (Ireland); Cullen, P. J. [BioPlasma Research Group, Dublin Institute of Technology, Sackville Place, Dublin 1 (Ireland)


    Phase-resolved optical emission spectroscopy (PROES) is used for the measurement of plasma products in a typical industrial electron cyclotron resonance (ECR) plasma etcher. In this paper, the PROES of oxygen and argon atoms spectral lines are investigated over a wide range of process parameters. The PROES shows a discrimination between the plasma species from gas phase and those which come from the solid phase due to surface etching. The relationship between the micro-wave and radio-frequency generators for plasma creation in the ECR can be better understood by the use of PROES.

  3. The Resolved Stellar Populations Early Release Science Program (United States)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.


    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  4. RESOLVE OVEN Field Demonstration Unit for Lunar Resource Extraction (United States)

    Paz, Aaron; Oryshchyn, Lara; Jensen, Scott; Sanders, Gerald B.; Lee, Kris; Reddington, Mike


    The Oxygen and Volatile Extraction Node (OVEN) is a subsystem within the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project. The purpose of the OVEN subsystem is to release volatiles from lunar regolith and extract oxygen by means of a hydrogen reduction reaction. The complete process includes receiving, weighing, sealing, heating, and disposing of core sample segments while transferring all gaseous contents to the Lunar Advanced Volatile Analysis (LAVA) subsystem. This document will discuss the design and performance of the OVEN Field Demonstration Unit (FDU), which participated in the 2012 RESOLVE field demonstration.

  5. Resonance fluorescence in the resolvent-operator formalism (United States)

    Debierre, V.; Harman, Z.


    The Mollow spectrum for the light scattered by a driven two-level atom is derived in the resolvent operator formalism. The derivation is based on the construction of a master equation from the resolvent operator of the atom-field system. We show that the natural linewidth of the excited atomic level remains essentially unmodified, to a very good level of approximation, even in the strong-field regime, where Rabi flopping becomes relevant inside the self-energy loop that yields the linewidth. This ensures that the obtained master equation and the spectrum derived matches that of Mollow.

  6. The role of mediation in resolving workplace relationship conflict. (United States)

    McKenzie, Donna Margaret


    Stress triggered by workplace-based interpersonal conflict can result in damaged relationships, loss of productivity, diminished job satisfaction and increasingly, workers' compensation claims for psychological injury. This paper examined the literature on the role and effectiveness of mediation, as the most common method of Alternative Dispute Resolution, in resolving workplace relationship conflict. Available evidence suggests that mediation is most effective when supported by organisational commitment to ADR strategies, policies and processes, and conducted by independent, experienced and qualified mediators. The United States Postal Service program REDRESS™ is described as an illustration of the successful use of mediation to resolve conflict in the workplace. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A Spatially Resolved Study of the GRB 020903 Host Complex


    Thorp, Mallory; Levesque, Emily


    GRB 020903 is a long-duration gamma ray burst (LGRB) with a host galaxy close enough and extended enough for spatially-resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially-resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles we were able to obtain ...

  8. Utilizar las matemáticas para resolver problemas reales


    Vicente Martín, Santiago; Van Dooren, Wim; Verschaffel, Lieven


    En este trabajo de revisión se analizan las razones por las que los alumnos no son capaces de resolver problemas realistas utilizando conocimientos no matemáticos. Para ello se describen, en primer lugar, las investigaciones internacionales que han documentado estas dificultades en la resolución de problemas realistas. En segundo lugar, se describe cómo los libros de texto y la cultura del aula favorecen que los niños vayan aprendiendo de manera progresiva a resolver los problemas de matemáti...

  9. Microfluidics: From crystallization to serial time-resolved crystallography

    Directory of Open Access Journals (Sweden)

    Shuo Sui


    Full Text Available Capturing protein structural dynamics in real-time has tremendous potential in elucidating biological functions and providing information for structure-based drug design. While time-resolved structure determination has long been considered inaccessible for a vast majority of protein targets, serial methods for crystallography have remarkable potential in facilitating such analyses. Here, we review the impact of microfluidic technologies on protein crystal growth and X-ray diffraction analysis. In particular, we focus on applications of microfluidics for use in serial crystallography experiments for the time-resolved determination of protein structural dynamics.

  10. Bond Shortening (1.4 Å) in the Singlet and Triplet Excited States of [Ir2(dimen)4]2+ in Solution Determined by Time-Resolved X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Harlang, Tobias; Christensen, Morten


    Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)42+ are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different ti...

  11. Ground Systems Integration Domain (GSID) Materials for Ground Platforms (United States)


    elastomers • High-strength fibers • Armors that spread the energy • Foams, lattice materials • Chemical manipulation • Unprecedented properties • Multi...TACOM LCMC (ASA(ALT)) ILSC ACQ Center Industrial Base PEO GCS PEO CS&CSS PEO Soldier PEO Integration Department of the Army...Vehicle Development & Integration Large Robotics Integration Cell Prototype Integration Ground Systems Power & Energy Lab Propulsion Laboratories 6

  12. Mitigating ground vibration by periodic inclusions and surface structures

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Bucinskas, Paulius; Persson, Peter


    Ground vibration from traffic is a source of nuisance in urbanized areas. Trenches and wave barriers can provide mitigation of vibrations, but single barriers need to have a large depth to be effective-especially in the low-frequency range relevant to traffic-induced vibration. Alternatively......-dimensional finite-element model. The laboratory model employs soaked mattress foam placed within a box to mimic a finite volume of soil. The dynamic properties of the soaked foam ensure wavelengths representative of ground vibration in small scale. Comparison of the results from the two models leads...

  13. Disk-resolved photometry of Asteroid (2867) Steins (United States)

    Spjuth, S.; Jorda, L.; Lamy, P. L.; Keller, H. U.; Li, J.-Y.


    We present a new method to perform disk-resolved photometry in order to investigate the intrinsic photometric properties of the surface of small Solar System bodies. We adopt the standard approach where a shape model is combined with a photometric formalism - in practise the Hapke formalism - to remove the effects of topography and recover the photometric (Hapke) parameters of either the global surface or, in its most elaborated form, the spatial variations of these parameters across the surface. Our method operates in the space of the facets representing the three-dimensional shape of the body, whereas all past analysis have always been performed in the space of the image pixels although they are not intrinsic to the surface of the body. This has the advantage of automatically tracking the same local surface element on a series of images. We first apply our method to images of the nucleus of Comet 9P/Tempel 1 obtained by the High-Resolution Imager (HRI) instrument on board the Deep Impact spacecraft and our derived Hapke parameters are in good agreement with those published by Li et al. (Li, J.-Y. et al. [2007]. Icarus 187, 41-55) within their respective uncertainties. We confirm the presence of an extended region of higher roughness in the southern hemisphere of the nucleus and the higher albedo of the ice-rich regions identified by Sunshine et al. (Sunshine, J.M. et al. [2006]. Science 311, 1453-1455) near the equator. The photometric properties of Asteroid (2867) Steins are then studied from multi-spectral images obtained with the OSIRIS Wide Angle Camera (WAC) on board the Rosetta spacecraft during its flyby on 5 September 2008. Our analysis indicates that the surface is highly porous (∼84%) and that it exhibits both a shadow-hiding opposition effect (SHOE) and probably, a coherent-backscatter opposition effect (CBOE). The single scattering albedo is the highest (SSA = 0.57) ever observed among small bodies visited by spacecrafts. Our modelled roughness

  14. Surface Ice Spectroscopy of Pluto and Charon Resolved (United States)

    Protopapa, Silvia; Boehnhardt, H.; Herbst, T.; Merlin, F.; Cruikshank, D. P.; Grundy, W. M.


    We present results of 1-5μm spectroscopy of the Pluto-Charon dwarf planet system. The observations were performed in August 2005 with the NACO instrument at the 8.2m-VLT telescope Yepun of the European Southern Observatory in Paranal/Chile. NACO's adaptive optics facility allowed to resolve easily this binary system, this way enabling spectroscopy of the two objects separately. These spectroscopic observations are complemented by a model interpretation of the surface ice composition of Pluto and Charon. For Pluto, it is the first time that the complete L band is measured without unresolved contamination by light from Charon, while its M band spectrum was never measured before. Using Hapke modeling of the spectrum, we find that a geographic mixture of pure methane ice, methane diluted in nitrogen and tholin fits Pluto's spectrum from 1 to 4μm, although not in all details. Our data suggest the presence of further so far unknown and thus unidentified absorption bands centered around 4.0μm and 4.6μm. The latter absorption could be related to the presence of nitriles, arising from C and N connected with a triple bond and possibly CO ice. The difficulty in the modeling is due to the fact that the nitrile band is highly variable in position as a result of variations in its chemical environment. Charon's spectrum is measured in the wavelength range (1-4)μm, for the first time simultaneously with, but isolated from that of Pluto. It was previously studied in some detail in the JHK wavelength region, but was never measured beyond 2.5μm. Since the JHK region of Charon's spectrum is dominated by water ice absorption, it came not unexpectedly that very deep and broad water ice signatures are found in the L band part of Charon's surface spectrum. We model Charon's spectrum with pure H2O ice darkened by a spectrally neutral continuum absorber.

  15. Quantitative structural characterization of local N-glycan microheterogeneity in therapeutic antibodies by energy-resolved oxonium ion monitoring. (United States)

    Toyama, Atsuhiko; Nakagawa, Hidewaki; Matsuda, Koichi; Sato, Taka-Aki; Nakamura, Yusuke; Ueda, Koji


    Site-specific characterization of glycoform heterogeneity currently requires glycan structure assignment and glycopeptide quantification in two independent experiments. We present here a new method combining multiple reaction monitoring mass spectrometry with energy-resolved structural analysis, which we termed "energy-resolved oxonium ion monitoring". We demonstrated that monitoring the yields of oligosaccharide-derived fragment ions (oxonium ions) over a wide range of collision induced dissociation (CID) energy applied to a glycopeptide precursor exhibits a glycan structure-unique fragmentation pattern. In the analysis of purified immunoglobulin glycopeptides, the energy-resolved oxonium ion profile was shown to clearly distinguish between isomeric glycopeptides. Moreover, limit of detection (LOD) of glycopeptide detection was 30 attomole injection, and quantitative dynamic range spanned 4 orders magnitude. Therefore, both quantification of glycopeptides and assignment of their glycan structures were achieved by a simple analysis procedure. We assessed the utility of this method for characterizing site-specific N-glycan microheterogeneity on therapeutic antibodies, including validation of lot-to-lot glycoform variability. A significant change in the degree of terminal galactosylation was observed in different production lots of trastuzumab and bevacizumab. Cetuximab Fab glycosylation, previously known to cause anaphylaxis, was also analyzed, and several causative antigens including Lewis X motifs were quantitatively detected. The data suggests that energy-resolved oxonium ion monitoring could fulfill the regulatory requirement on the routine quality control analysis of forthcoming biosimilar therapeutics.

  16. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis. (United States)

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen


    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.

  17. Clutter in the GMTI range-velocity map.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter


    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  18. Creating synergy between ground and space-based precipitation measurements (United States)

    Gourley, J. J.; Hong, Y.; Petersen, W. A.; Howard, K.; Flamig, Z.; Wen, Y.


    As the successor of the Tropical Rainfall Measuring Mission (TRMM) satellite launched in 1997, the multi-national Global Precipitation Measurement (GPM) Mission, to be launched in 2013, will provide next-generation global precipitation estimates from space within a unified framework. On the ground, several countries worldwide are in the throes of expanding their weather radar networks with gap-filling radars and upgrading them to include polarimetric capabilities. While significant improvements in precipitation estimation capabilities have been realized from space- and ground-based platforms separately, little effort has been focused on aligning these communities for synergistic, joint development of algorithms. In this study, we demonstrate the integration of real-time rainfall products from the Tropical Rainfall Measurement Mission (TRMM) into the National Severe Storms Laboratory’s (NSSL) National Mosaic and QPE (NMQ/Q2; system. The NMQ system enables a CONUS-wide comparison of TRMM products to NEXRAD-based Q2 rainfall products. Moreover, NMQ’s ground validation software ingests and quality controls data from all automatic-reporting rain gauge networks throughout the US and provides robust graphical and statistical validation tools, accessible by anyone with internet access. This system will readily incorporate future products from GPM as well as those from the dual-polarization upgrade to the NEXRAD network. While initial efforts are on the intercomparison of rainfall products, we envision this system will ultimately promote the development of precipitation algorithms that capitalize on the strengths of spatiotemporal and error characteristics of space and ground remote-sensing data. An example algorithm is presented where the vertical structure of precipitating systems over complex terrain is more completely resolved using combined information from NMQ and TRMM precipitation radar (PR), leading to more accurate surface rainfall estimates.

  19. Current Trends in Satellite Laser Ranging (United States)

    Pearlman, M. R.; Appleby, G. M.; Kirchner, G.; McGarry, J.; Murphy, T.; Noll, C. E.; Pavlis, E. C.; Pierron, F.


    Satellite Laser Ranging (SLR) techniques are used to accurately measure the distance from ground stations to retroreflectors on satellites and the moon. SLR is one of the fundamental techniques that define the international Terrestrial Reference Frame (iTRF), which is the basis upon which we measure many aspects of global change over space, time, and evolving technology. It is one of the fundamental techniques that define at a level of precision of a few mm the origin and scale of the ITRF. Laser Ranging provides precision orbit determination and instrument calibration/validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice budget, and terrestrial topography. Laser ranging is also a tool to study the dynamics of the Moon and fundamental constants. Many of the GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation. The GNSS Constellations will be the means of making the reference frame available to worldwide users. Data and products from these measurements support key aspects of the GEOSS 10-Year implementation Plan adopted on February 16, 2005, The ITRF has been identified as a key contribution of the JAG to GEOSS and the ILRS makes a major contribution for its development since its foundation. The ILRS delivers weekly additional realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter (EOP) series with a daily resolution. Additional products are currently under development such as precise orbits of satellites, EOP with daily availability, low-degree gravitational harmonics for studies of Earth dynamics and kinematics, etc. SLR technology continues to evolve toward the next generation laser ranging systems as programmatic requirements become more stringent. Ranging accuracy is improving as higher repetition rate, narrower pulse lasers and faster

  20. Grounded Eyes on Distant Watery Skies (United States)

    Kohler, Susanna


    , the authorshigh-resolution observations allowed them to resolve not only the stellar spectrum, but also the spectral lines fromthe hot Jupiter exoplanet itself.Obtaining a thermal spectrum of the planet permitted the team to break the usual observational degeneracy that occurs with exoplanet observations: they were able to disentangle the planet mass and its orbital inclination angle. Piskorz and collaborators found that the planet is roughly 1.7 Jupiter masses and its orbit is inclined 24 relative to our line of sight.Artists illustration of the closest three planets in the upsilon Andromedae system. The system also has a distant red-dwarf binary companion, as well as a possible fourth planet. [NASA/ESA/A. Feild (STScI)]These measurements of the orbital structure of upsilon Andromedae are critical for understanding this unusual system. With non-coplanar planets and a distant red-dwarf companion, the upsilon Andromedae system has long been suspected to lie on the precipice of instability. The new measurements of upsilon Andromeda bs orbital properties will help us to better understand how the system may have formed, evolved, and survived to today.Water FoundOne of the biggest benefits of spectroscopy of an exoplanet is the potentialto learn about its atmospheric composition. Using their NIRSPEC observations of upsilon Andromedae b and detailed atmospheric modeling, Piskorz and collaborators found that the planets opacity structure is dominated by water vapor at the wavelengths they probed.This detection of water vapor in upsilon Andromedae bs atmosphere and the constraints on the planets orbital properties demonstrate the power and potential of ground-based, high-resolution spectroscopy for characterizing exoplanets and constraining the architecture of distantsolar systems.CitationDanielle Piskorz et al 2017 AJ 154 78. doi:10.3847/1538-3881/aa7dd8