WorldWideScience

Sample records for range propagation experiment

  1. Excitation and propagation of electromagnetic fluctuations with ion-cyclotron range of frequency in magnetic reconnection laboratory experiment

    International Nuclear Information System (INIS)

    Inomoto, Michiaki; Tanabe, Hiroshi; Ono, Yasushi; Kuwahata, Akihiro

    2013-01-01

    Large-amplitude electromagnetic fluctuations of ion-cyclotron-frequency range are detected in a laboratory experiment inside the diffusion region of a magnetic reconnection with a guide field. The fluctuations have properties similar to kinetic Alfvén waves propagating obliquely to the guide field. Temporary enhancement of the reconnection rate is observed during the occurrence of the fluctuations, suggesting a relationship between the modification in the local magnetic structure given by these fluctuations and the intermittent fast magnetic reconnection

  2. IBEX - annular beam propagation experiment

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Miller, R.B.; Shope, S.L.; Poukey, J.W.; Ramirez, J.J.; Ekdahl, C.A.; Adler, R.J.

    1983-01-01

    IBEX is a 4-MV, 100-kA, 20-ns cylindrical isolated Blumlein accelerator. In the experiments reported here, the accelerator is fitted with a specially designed foilless diode which is completely immersed in a uniform magnetic field. Several diode geometries have been studied as a function of magnetic field strength. The beam propagates a distance of 50 cm (approx. 10 cyclotron wavelengths) in vacuum before either striking a beam stop or being extracted through a thin foil. The extracted beam was successfully transported 60 cm downstream into a drift pipe filled either with 80 or 640 torr air. The main objectives of this experiment were to establish the proper parameters for the most quiescent 4 MV, 20 to 40 kA annular beam, and to compare the results with available theory and numerical code simulations

  3. Propagation in a waveguide with range-dependent seabed properties.

    Science.gov (United States)

    Holland, Charles W

    2010-11-01

    The ocean environment contains features affecting acoustic propagation that vary on a wide range of time and space scales. A significant body of work over recent decades has aimed at understanding the effects of water column spatial and temporal variability on acoustic propagation. Much less is understood about the impact of spatial variability of seabed properties on propagation, which is the focus of this study. Here, a simple, intuitive expression for propagation with range-dependent boundary properties and uniform water depth is derived. It is shown that incoherent range-dependent propagation depends upon the geometric mean of the seabed plane-wave reflection coefficient and the arithmetic mean of the cycle distance. Thus, only the spatial probability distributions (pdfs) of the sediment properties are required. Also, it is shown that the propagation over a range-dependent seabed tends to be controlled by the lossiest, not the hardest, sediments. Thus, range-dependence generally leads to higher propagation loss than would be expected, due for example to lossy sediment patches and/or nulls in the reflection coefficient. In a few instances, propagation over a range-dependent seabed can be calculated using range-independent sediment properties. The theory may be useful for other (non-oceanic) waveguides.

  4. Canada Basin Acoustic Propagation Experiment (CANAPE)

    Science.gov (United States)

    2015-09-30

    acoustic communications, acoustic navigation, or acoustic remote sensing of the ocean interior . RELATED PROJECTS The 2015 CANAPE pilot study was a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned

  5. Diagnostics for the ATA beam propagation experiments

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Atchison, W.L.; Barletta, W.A.

    1981-11-01

    This report contains a discussion of the diagnostics required for the beam propagation experiment to be done with the ATA accelerator. Included are a list of the diagnostics needed; a description of the ATA experimental environment; the status of beam diagnostics available at Livermore including recent developments, and a prioritized list of accelerator and propagation diagnostics under consideration or in various stages of development

  6. In situ fatigue-crack-propagation experiment

    International Nuclear Information System (INIS)

    Ermi, A.M.; Chin, B.A.

    1981-01-01

    An in-reactor fatigue experiment was conducted in the Oak Ridge Research Reactor to determine the effects of dynamic irradiation on fatigue crack propagation. Eight 20% cold-worked 316 stainless steel specimens were precracked to various initial crack lengths, linked together to form a chain, and inserted into a specially designed in-reactor fatigue machine. Test conditions included a maximum temperature of 460 0 C, an environment of sodium, a frequency of 1 cycle/min, and a stress ratio of 0.10. Results indicated that (1) no effects of dynamic irradiation were observed for a fluence of 1.5 x 10 21 n/cm 2 (E > 0.1 MeV); and (2) crack growth rates in elevated temperature sodium were a factor of 3 to 4 lower than in room temperature air

  7. Preparation for propagation and absorption experiments in MTX

    International Nuclear Information System (INIS)

    Byers, J.A.; Cohen, R.H.; Fenstermacher, M.E.; Hooper, E.B.; Meassick, S.; Rognlien, T.D.; Smith, G.R.; Stallard, B.W.

    1989-04-01

    Preparatory calculations of microwave transmission through the MTX access duct, propagation of the waves through the plasma and the resulting power deposition profile on a calorimeter located on the tokamak inside wall have been performed. The microwave transmission calculations include the relative phase slippage of waveguide modes in the duct to determine the spatial structure of the wavefront at the duct exist. Ray-tracing calculations show substantial spreading of the beam in the poloidal direction at densities above 1.5 /times/ 10 20 m/sup /minus/3/, well within the range of the experiments. Initial experiments with low or high toroidal field (cyclotron resonance outside the plasma) will investigate both diffraction and refraction effects, without absorption. Estimates of the fractional absorption of the beam in the initial experiments with the cyclotron resonance at the plasma axis have also been made. 4 refs., 3 figs

  8. Sound propagation from a semi-open shooting range

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F. van den

    2011-01-01

    Semi-open shooting ranges, in contrast to a fully open shooting range, are often used in the densely populated area of the Netherlands. The Ministry of Defense operates a number of these ranges. In these shooting ranges above the line of fire a number of screens are situated for safety precautions

  9. Propagation of long-range surface plasmon polaritons in photonic crystals

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded...... structures, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  10. A Mid-Latitude Skywave Propagation Experiment: Overview and Results

    Science.gov (United States)

    Munton, D. C.; Calfas, R. S.; Gaussiran, T., II; Rainwater, D.; Flesichmann, A. M.; Schofield, J. R.

    2016-12-01

    We will describe a mid-latitude HF skywave propagation experiment conducted during 19-27 January, 2014. There were two primary goals to the experiment. First, we wanted to build an understanding of the impact that medium scale traveling ionospheric disturbances have on the angles of arrival of the HF signals. The second goal was to provide a diverse data set that could serve as a baseline for propagation model development and evaluation. We structured individual tests during the experiment to increase the knowledge of temporal and spatial length scales of various ionospheric features. The experiment was conducted during both day and night periods and spanned a wide range of ionospheric states. We conducted the experiment at White Sands Missile Range, New Mexico and in the surrounding area. As part of the experiment, we deployed a number of active HF transmitters, and an array of dipole antennas to provide angle of arrival measurements. We also deployed a smaller array of more novel compact electro-magnetic vector sensors (EMVSs). Other instrumentation specific to the remote sensing of the ionosphere included digisondes, GNSS receivers, beacon satellite receivers, and optical instruments. We will provide a complete description of the experiment configuration and the data products.Finally, we will provide a discussion of experimental results, focusing on ionospheric conditions during the angle-of-arrival determinations, and the impact ionospheric disturbances can have on these measurements. We use the angle-of-arrival determinations to estimate TID properties, including velocity and direction.This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via US Navy Contract N00024-07-D-6200. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements

  11. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate......, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  12. Realtime identification of the propagation direction of received echoes in long range ultrasonic testing

    International Nuclear Information System (INIS)

    Choi, Myoung Seon; Heo, Won Nyoung

    2013-01-01

    In long range ultrasonic testing, a phased array probe composed of multiple identical transducers with an uniform interval of one quarter wavelength is usually used for the transmission or reception directivity control. This paper shows that the propagation directions of individual echoes can be identified in real time by displaying the inputs of a process for summing the constitution reception signals after compensating the phase difference due to the transducer interval, together with the output of the process. A constructive interference of the constitution echoes indicates a forward direction echo propagating along an intended direction while a destructive interference implies a reverse direction echo propagating along the direction opposite to the intended one

  13. Objectives and configuration of the Multiple Pulse Propagation Experiment

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Caporaso, G.J.; Chamber, F.W.; Chong, Y.P.; Deadrick, F.J.; Guethlein, G.; Fawley, W.M.; Renbarger, V.L.; Rogers, D. Jr.; Weir, J.T.; Eckstrom, D.; Stalder, K.; Hubbard, R.; Lee, P.

    1990-01-01

    The Multiple Pulse Propagation Experiment (MPPE) was designed to determine the hose stability properties of an intense relativistic electron beam in a beam generated density channel and to investigate range extension with increasing pulse number in the burst. This experiment used a 10-MeV electron beam generated by the Advanced Test Accelerator (ATA). The electron beam current was expected to be at least 6-kA with an equilibrium radius of 0.5 cm (RMS) in the gas. This last constraint implied an unnormalized, RMS beam emittance of 20 mrad-cm. In order to achieve beam stability against hose, each electron beam pulse had to be tailored in emittance in order to phase mix damp the instability. The initial offsets of the beam were to be kept small in order to prevent a large saturated amplitude. Numerical simulations determined the initial criteria for the emittance profile and initial beam displacements. In order to demonstrate a final density depression of 25% of ambient pressure, at least five pulses with interpulse separation of 1- to 2-ms were specified

  14. Proceedings of the Twenty-First NASA Propagation Experiments Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.

  15. Comparison of the initial ETA gas propagation experiments with theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, F.W.; Clark, J.C.; Fessenden, T.J.

    1982-04-20

    This report contains a description of the initial ETA propagation experiments in air at a beam current of 4.5 kA. The beam was observed to propagate at the pressures anticipated on the basis of previous theory and experiment. A comparison of measured net current waveforms with predictions of the PHOENIX code showed good agreement over the pressure range 0.1 to 200 torr. However, the beam was observed to expand with Z at a faster rate than theory predicts. Excessive transverse beam modulation at injection complicated the experiments and limited their comparison with theory.

  16. Comparison of the initial ETA gas propagation experiments with theoretical models

    International Nuclear Information System (INIS)

    Chambers, F.W.; Clark, J.C.; Fessenden, T.J.

    1982-01-01

    This report contains a description of the initial ETA propagation experiments in air at a beam current of 4.5 kA. The beam was observed to propagate at the pressures anticipated on the basis of previous theory and experiment. A comparison of measured net current waveforms with predictions of the PHOENIX code showed good agreement over the pressure range 0.1 to 200 torr. However, the beam was observed to expand with Z at a faster rate than theory predicts. Excessive transverse beam modulation at injection complicated the experiments and limited their comparison with theory

  17. Model experiments related to outdoor propagation over an earth berm

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1994-01-01

    A series of scale model experiments related to outdoor propagation over an earth berm is described. The measurements are performed with a triggered spark source. The results are compared with data from an existing calculation model based upon uniform diffraction theory. Comparisons are made...

  18. Deep space propagation experiments at Ka-band

    Science.gov (United States)

    Butman, Stanley A.

    1990-01-01

    Propagation experiments as essential components of the general plan to develop an operational deep space telecommunications and navigation capability at Ka-band (32 to 35 GHz) by the end of the 20th century are discussed. Significant benefits of Ka-band over the current deep space standard X-band (8.4 GHz) are an improvement of 4 to 10 dB in telemetry capacity and a similar increase in radio navigation accuracy. Propagation experiments are planned on the Mars Observer Mission in 1992 in preparation for the Cassini Mission to Saturn in 1996, which will use Ka-band in the search for gravity waves as well as to enhance telemetry and navigation at Saturn in 2002. Subsequent uses of Ka-band are planned for the Solar Probe Mission and the Mars Program.

  19. Slow-wave propagation and sheath interaction in the ion-cyclotron frequency range

    International Nuclear Information System (INIS)

    Myra, J R; D'Ippolito, D A

    2010-01-01

    In previous work (Myra J R and D'Ippolito D A 2008 Phys. Rev. Lett. 101 195004) we studied the propagation of slow-wave (SW) resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the treatment of SW propagation and sheath interaction to 'dense' scrape-off-layer plasmas where the usual cold-plasma SW is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the SW couples to a sheath-plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length. The conditions for avoiding potentially deleterious rf-wall interactions in tokamak rf heating experiments are summarized.

  20. Propagation effects on radio range and noise in earth-space telecommunications

    Science.gov (United States)

    Flock, W. L.; Slobin, S. D.; Smith, E. K.

    1982-01-01

    Attention is given to the propagation effects on radio range and noise in earth-space telecommunications. The use of higher frequencies minimizes ionospheric effects on propagation, but tropospheric effects often increase or dominate. For paths of geostationary satellites, and beyond, the excess range delay caused by the ionosphere and plasmasphere is proportional to the total electron content along the path and inversely proportional to frequency squared. The delay due to dry air is usually of the order of a few meters while the delay due to water vapor (a few tens of centimeters) is responsible for most of the temporal variation in the range delay for clean air. For systems such as that of the Voyager spacecraft, and for attenuation values up to about 10 dB, increased sky noise degrades the received signal-to-noise ratio more than does the reduction in signal level due to attenuation.

  1. Experiments on leak-selfwastage and leak-propagation

    International Nuclear Information System (INIS)

    Voss, J.; Vagt, P.; Westenbrugge, J.K. van; Joziasse, J.

    1984-01-01

    During the last years a considerable number of selfwastage experiments with small leaks of different shape and size and for different ferritic materials (2 1/4% Cr - and 12% Cr-steel) were performed by TNO and by INTERATOM, using several sodium test facilities. Many fabrication-methods of artificial micro-leaks were applied and examined. Selfplugging-, selfwastage- and reopening-effects were observed and evaluated during different time periods and under various test conditions. The main results will be discussed. Concerning the leak propagation program of INTERATOM, the first series of experiments was carried out this year. A short status report and some first results will be given. (author)

  2. Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides

    Science.gov (United States)

    Babicheva, Viktoriia E.

    2017-12-01

    We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.

  3. An Obliquely Propagating Electromagnetic Drift Instability in the Lower Hybrid Frequency Range

    International Nuclear Information System (INIS)

    Hantao Ji; Russell Kulsrud; William Fox; Masaaki Yamada

    2005-01-01

    By employing a local two-fluid theory, we investigate an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field current or relative drifts between electrons and ions. The theory self-consistently takes into account local cross-field current and accompanying pressure gradients. It is found that the instability is caused by reactive coupling between the backward propagating whistler (fast) waves in the moving electron frame, and the forward propagating sound (slow) waves in the ion frame when the relative drifts are large. The unstable waves we consider propagate obliquely to the unperturbed magnetic field and have mixed polarization with significant electromagnetic components. A physical picture of the instability emerges in the limit of large wave number characteristic of the local approximation. The primary positive feedback mechanism is based on reinforcement of initial electron density perturbations by compression of electron fluid via induced Lorentz force. The resultant waves are qualitatively consistent with the measured electromagnetic fluctuations in reconnecting current sheet in a laboratory plasma

  4. Resistance to alveolar shape change limits range of force propagation in lung parenchyma.

    Science.gov (United States)

    Ma, Baoshun; Smith, Bradford J; Bates, Jason H T

    2015-06-01

    We have recently shown that if the lung parenchyma is modeled in 2 dimensions as a network of springs arranged in a pattern of repeating hexagonal cells, the distortional forces around a contracting airway propagate much further from the airway wall than classic continuum theory predicts. In the present study we tested the hypothesis that this occurs because of the negligible shear modulus of a hexagonal spring network. We simulated the narrowing of an airway embedded in a hexagonal network of elastic alveolar walls when the hexagonal cells of the network offered some resistance to a change in shape. We found that as the forces resisting shape change approach about 10% of the forces resisting length change of an individual spring the range of distortional force propagation in the spring network fell of rapidly as in an elastic continuum. We repeated these investigations in a 3-dimensional spring network composed of space-filling polyhedral cells and found similar results. This suggests that force propagation away from a point of local parenchymal distortion also falls off rapidly in real lung tissue. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Microcrack propagation under multiaxial loading - experiment and simulation

    International Nuclear Information System (INIS)

    Poetter, K.; Suhartono, A.; Yousefi, F.; Zenner, H.; Duewel, V.; Schram, A.

    2000-01-01

    The accuracy of lifetime prediction for technical components subjected to cyclic loading is still not satisfying. One essential reason for the deviation between the results of the lifetime calculation and experimental results is that it is not yet possible to generate a model capable to describe the microstructural damage process which occurs in the tested material and to integrate this model in the calculation. All of the present research results recognize that the growth of microcracks is significantly influenced by the microstructure of the material. In order to take into account the influence of the microstructure on the damage process a simulation model is suggested in this paper which considers the local stress state in addition to the random nature of the material structure in the form of grain boundaries and slip systems. The results generated by means of the simulation model are compared and verified with those experiences obtained from multiaxial fatigue testing of the investigated aluminum material. For this purpose the surfaces of the tested specimens are carefully observed to discover and analyze microcracks which are classified according to their number, length, and orientation. Moreover the mechanisms of crack initiation and propagation are major points of interest for the comparison of theoretical and experimental results. The developed computer software is suitable to simulate the microcrack initiation, the propagation and coalescence of microcracks as well as the transition of stage I cracks to stage II cracks for uniaxial and multiaxial loading. Results obtained from the simulation model could be verified with the experiment. The future aim to be emphasized is the utilization of the parameter investigations carried out with the computer simulation model in order to improve the lifetime prediction. (orig.)

  6. HF propagation results from the Metal Oxide Space Cloud (MOSC) experiment

    Science.gov (United States)

    Joshi, Dev; Groves, Keith M.; McNeil, William; Carrano, Charles; Caton, Ronald G.; Parris, Richard T.; Pederson, Todd R.; Cannon, Paul S.; Angling, Matthew; Jackson-Booth, Natasha

    2017-06-01

    With support from the NASA sounding rocket program, the Air Force Research Laboratory launched two sounding rockets in the Kwajalein Atoll, Marshall Islands in May 2013 known as the Metal Oxide Space Cloud experiment. The rockets released samarium metal vapor at preselected altitudes in the lower F region that ionized forming a plasma cloud. Data from Advanced Research Project Agency Long-range Tracking and Identification Radar incoherent scatter radar and high-frequency (HF) radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. The HF radio wave ray-tracing toolbox PHaRLAP along with ionospheric models constrained by electron density profiles measured with the ALTAIR radar have been used to successfully model the effects of the cloud on HF propagation. Up to three new propagation paths were created by the artificial plasma injections. Observations and modeling confirm that the small amounts of ionized material injected in the lower F region resulted in significant changes to the natural HF propagation environment.

  7. Satellite traces, range spread-F occurrence, and gravity wave propagation at the southern anomaly crest

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, M.A. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Pezzopane, M.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Ezquer, R.G. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    2010-07-01

    Range spread-F (RSF) and occurrence of ''satellite'' traces prior to RSF onset were studied at the southern peak of the ionospheric equatorial anomaly (EA). Ionograms recorded in September 2007 at the new ionospheric station of Tucuman, Argentina (26.9 S, 294.6 E, dip latitude 15.5 S), by the Advanced Ionospheric Sounder (AIS) developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were considered. Satellite traces (STs) are confirmed to be a necessary precursor to the appearance of an RSF trace on the ionograms. Moreover, an analysis of isoheight contours of electron density seems to suggest a relationship between RSF occurrence and gravity wave (GW) propagation. (orig.)

  8. Long Range Sound Propagation over Sea: Application to Wind Turbine Noise

    Energy Technology Data Exchange (ETDEWEB)

    Boue, Matieu

    2007-12-13

    The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on

  9. A Systematic Approach to Higher-Order Parabolic Propagation in a Weakly Range-Dependent Duct

    National Research Council Canada - National Science Library

    Gragg, Robert F

    2005-01-01

    Energy-conserving transformations are exploited to split a monochromatic field in a weakly inhomogeneous waveguide into a pair of components that undergo uncoupled parabolic propagation in opposite...

  10. Performance of the NASA Beacon Receiver for the Alphasat Aldo Paraboni TDP5 Propagation Experiment

    Science.gov (United States)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2015-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 gigahertz band. NASA GRC has developed and installed a K/Q-band (20/40 gigahertz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 gigahertz signals broadcast from the Alphasat Aldo Paraboni Technology Demonstration Payload (TDP) no. 5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since June 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 gigahertz beacon signals. The system consists of a 1.2-meter K-band and a 0.6-meter Q-band Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 hertz sampling rate is implemented to characterize scintillation effects, with a 1-hertz measurement bandwidth dynamic range of 45 decibels. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  11. Preliminary Results of the NASA Beacon Receiver for Alphasat Aldo Paraboni TDP5 Propagation Experiment

    Science.gov (United States)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2014-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 GHz band. NASA GRC has developed and installed a K/Q-band (20/40 GHz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 GHz signals broadcast from the Alphasat Aldo Paraboni TDP#5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 GHz beacon signals. The system consists of a 1.2-m K-band and a 0.6-m Qband Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 Hz sampling rate is implemented to characterize scintillation effects, with a 1-Hz measurement bandwidth dynamic range of 45 dB. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  12. Test plan for Fauske and Associates to perform tube propagation experiments with simulated Hanford tank wastes

    International Nuclear Information System (INIS)

    Carlson, C.D.; Babad, H.

    1996-05-01

    This test plan, prepared at Pacific Northwest National Laboratory for Westinghouse Hanford Company, provides guidance for performing tube propagation experiments on simulated Hanford tank wastes and on actual tank waste samples. Simulant compositions are defined and an experimental logic tree is provided for Fauske and Associates (FAI) to perform the experiments. From this guidance, methods and equipment for small-scale tube propagation experiments to be performed at the Hanford Site on actual tank samples will be developed. Propagation behavior of wastes will directly support the safety analysis (SARR) for the organic tanks. Tube propagation may be the definitive tool for determining the relative reactivity of the wastes contained in the Hanford tanks. FAI have performed tube propagation studies previously on simple two- and three-component surrogate mixtures. The simulant defined in this test plan more closely represents actual tank composition. Data will be used to support preparation of criteria for determining the relative safety of the organic bearing wastes

  13. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  14. Wave propagation and absorption in the electron cyclotron frequency range for TCA and TCV machines

    International Nuclear Information System (INIS)

    Cardinali, A.

    1990-01-01

    The main theoretical aspects of the propagation and absorption of electron cyclotron frequency waves are reviewed and applied to TCA and TCV tokamak plasmas. In particular the electromagnetic cold dispersion relation is solved analytically and numerically in order to recall the basic properties of mode propagation and to calculate the ray-trajectories by means of geometric optics. A numerical code which integrates the coupled first order differential ray-equations, has been developed and applied to the cases of interest. (author) 4 figs., 23 refs

  15. Transmission experiment by the simulated LMFBR model and propagation analysis of acoustic signals

    International Nuclear Information System (INIS)

    Kobayashi, Kenji; Yasuda, Tsutomu; Araki, Hitoshi.

    1981-01-01

    Acoustic transducers to detect a boiling of sodium may be installed in the upper structure and at the upper position of reactor vessel wall under constricted conditions. A set of the experiments of transmission of acoustic vibration to various points of the vessel was performed utilizing the half scale-hydraulic flow test facility simulating reactor vessel over the frequency range 20 kHz -- 100 kHz. Acoustic signals from an installed sound source in the core were measured at each point by both hydrophones in the vessel and vibration pickups on the vessel wall. In these experiments transmission of signals to each point of detectors were clearly observed to background noise level. These data have been summarized in terms of the transmission loss and furthermore are compared with background noise level of flow to estimate the feasibility of detection of sodium boiling sound. The ratio of signal to noise was obtained to be about 13 dB by hydrophone in the upper structure, 8 dB by accelerometer and 16 dB by AE-sensor at the upper position on the vessel in experiments used the simulation model. Sound waves emanated due to sodium boiling also propagate along the wall of the vessel may be predicted theoretically. The result of analysis suggests a capability of detection at the upper position of the reactor vessel wall. Leaky Lamb waves of the first symmetric (L 1 ) and of the antisymmetric (F 1 ) mode and shear horizontal wave (SH) have been derived in light of the attenuation due to coupling to liquid sodium as the traveling modes over the frequency range 10 kHz -- 100 kHz up to 50 mm in thickness of the vessel wall. Leaky Lamb wave (L 1 ) and (SH) mode have been proposed theoretically on the some assumption to be most available to detect the boiling sound of sodium propagating along the vessel wall. (author)

  16. RADLAC II high current electron beam propagation experiment

    International Nuclear Information System (INIS)

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1993-01-01

    The resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose

  17. Nonlinear propagation model for ultrasound hydrophones calibration in the frequency range up to 100 MHz.

    Science.gov (United States)

    Radulescu, E G; Wójcik, J; Lewin, P A; Nowicki, A

    2003-06-01

    To facilitate the implementation and verification of the new ultrasound hydrophone calibration techniques described in the companion paper (somewhere in this issue) a nonlinear propagation model was developed. A brief outline of the theoretical considerations is presented and the model's advantages and disadvantages are discussed. The results of simulations yielding spatial and temporal acoustic pressure amplitude are also presented and compared with those obtained using KZK and Field II models. Excellent agreement between all models is evidenced. The applicability of the model in discrete wideband calibration of hydrophones is documented in the companion paper somewhere in this volume.

  18. Sound Propagation Around Off-Shore Wind Turbines. Long-Range Parabolic Equation Calculations for Baltic Sea Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lisa

    2003-07-01

    Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.

  19. Gas explosion characterization, wave propagation (small-scale experiments)

    International Nuclear Information System (INIS)

    Larsen, G.C.

    1985-01-01

    A number of experiments have been performed with blast waves arising from the ignition of homogeneous and well defined mixtures of methane, oxygen and nitrogen, contained within spherical balloons with controlled initial dimensions. In the initial small scale experiments pressure characteristics, ground reflection phenomena and pressure distribution on box like obstacles were studied. Both configurations with one box and two closely spaced boxes have been considered, and a wave-wave interaction phenomenom was observed in the case of closely spaced obstacles. Main emphasis has been placed on the half scale field experiments. In these, the maximum flame speed has been of the order of 100 m/s, resulting in positive peak pressures of 50-100.10 2 Pa in 5 - 10 m distance from the source. The explosion process was found to be reasonable symmetric. The attenuation of the blast wave due to vegetation and the influence of obstacles as banks, walls and houses on the pressure field have been investigated. The presence of the bank and the house was felt in a zone with a length corresponding to a typical dimension of the obstacles, whereas the overall pressure field is shown to be unaffected by the type of obstacles and vegetation investigated. For the wall and house, reflection factors have been established, and some variation over the surface has been measured. The scatter of the pressure measurements is estimated for stable, neutral and unstable atmospheric conditions, and an attempt to determine the ground reflection factor has been performed. Finally the accelerations of a house exposed to the blast wave have been examined

  20. Gas explosion characterization, wave propagation (small scale experiments)

    International Nuclear Information System (INIS)

    Larsen, G.C.

    1985-08-01

    A number of experiments have been performed with blast waves arising from the ignition of homogeneous and well defined mixtures of methane, oxygen and nitrogen, contained within spherical balloons with controlled initial dimensions. The pressure characteristics has been studied for blast waves with and without influence from reflected waves. The influence of obstacles in the flow field has also been treated. Both configuration with one box and two closely spaced boxes have been considered, and a wave-wave interaction phenomenon was observed in the case of closely spaced obstacles. Moreover reflection coefficients have been established and some pressure variations over the surfaces have been observed. An acoustic appriximation has been used to model the blast wave originating from an expanding sphere. It has been demonstrated, that the generated pressure pulse is very sensitive to the expansion rate. Calculated and measured data have been compared, and a reasonable agreement has been found. (author)

  1. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    Energy Technology Data Exchange (ETDEWEB)

    Luquet, David; Marchiano, Régis; Coulouvrat, François, E-mail: francois.coulouvrat@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris (France)

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  2. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    International Nuclear Information System (INIS)

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-01-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  3. Long-Range Energy Propagation in Nanometer Arrays of Light Harvesting Antenna Complexes

    NARCIS (Netherlands)

    Escalantet, Maryana; Escalante Marun, M.; Lenferink, Aufrid T.M.; Zhao, Yiping; Tas, Niels Roelof; Huskens, Jurriaan; Hunter, C. Neil; Subramaniam, Vinod; Otto, Cornelis

    2010-01-01

    Here we report the first observation of long-range transport of excitation energy within a biomimetic molecular nanoarray constructed from LH2 antenna complexes from Rhodobacter sphaeroides. Fluorescence microscopy of the emission of light after local excitation with a diffraction-limited light beam

  4. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu

    2016-01-01

    cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer...

  5. Sound propagation in dry granular materials : discrete element simulations, theory, and experiments

    NARCIS (Netherlands)

    Mouraille, O.J.P.

    2009-01-01

    In this study sound wave propagation through different types of dry confined granular systems is studied. With three-dimensional discrete element simulations, theory and experiments, the influence of several micro-scale properties: friction, dissipation, particle rotation, and contact disorder, on

  6. Use of integral experiments to improve neutron propagation and gamma heating calculations

    International Nuclear Information System (INIS)

    Oceraies, Y.; Caumette, P.; Devillers, C.; Bussac, J.

    1979-01-01

    1) The studies to define and improve the accuracies of neutron propagation and gamma heating calculations from integral experiments are encompassed in the field of the fast reactor physics program at CEA. 2) A systematic analysis of neutron propagation in Fe-Na clean media, with variable volumic composition between 0 and 100% in sodium, has been performed on the HARMONIE source reactor. Gamma heating traverses in the core, the blankets and several control rods, have been measured in the R Z core program at MASURCA. The experimental techniques, the accuracies and the results obtained are given. The approximations of the calculational methods used to analyse these experiments and to predict the corresponding design parameters are also described. 3) Particular emphasis is given to the methods planned to improve fundamental data used in neutron propagation calculations, using the discrepancies observed between measured and calculated results in clean integral experiments. One of these approaches, similar to the techniques used in core physics, relies upon sensitivity studies and eventually on adjustment techniques applied to neutron propagation. (author)

  7. Short-range components of nuclear forces: Experiment versus mythology

    International Nuclear Information System (INIS)

    Kukulin, V. I.; Platonova, M. N.

    2013-01-01

    The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditional concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment

  8. Fracture propagation in sandstone and slate – Laboratory experiments, acoustic emissions and fracture mechanics

    Directory of Open Access Journals (Sweden)

    Ferdinand Stoeckhert

    2015-06-01

    Full Text Available Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of 13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.

  9. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  10. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations

  11. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    Science.gov (United States)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.

  12. Simulating the Long-Distance Propagation of Intense Beams in the Paul Trap Simulator Experiment

    CERN Document Server

    Gilson, Erik P; Davidson, Ronald C; Efthimion, Philip; Majeski, Richard; Startsev, Edward

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) makes use of a compact Paul trap configuration with quadrupolar oscillating wall voltages to simulate the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient transport systems. The simulation is possible because of the similarity between the transverse dynamics of particles in the two systems. One-component pure cesium ion plasmas have been trapped that correspond to normalized intensity parameters s < 0.8, where s is the ratio of the square of the plasma frequency to twice the square of the average transverse focusing frequency. The PTSX device confines the plasma for hundreds of milliseconds, which is equivalent to beam propagation over tens of kilometers. Results are presented for experiments in which the amplitude of the oscillating confining voltage waveform has been modified as a function of time. A comparison is made between abrupt changes in amplitude and adiabatic changes in amplitude. T...

  13. Q-Band (37-41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    Science.gov (United States)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2012-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37-41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cut-paraboloidal reflector.

  14. Q-Band (37 to 41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37 to 41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cutparaboloidal reflector.

  15. 1-MeV electron beam propagation experiments in neutral gas

    International Nuclear Information System (INIS)

    Greenspan, M.A.; Rose, E.A.

    1984-01-01

    Experiments were performed studying the propagation of a 1-MeV, 10-ns electron beam at currents of 2-8 kA. Propagation was studied in a 7.6-cm-diam glass guide tube, the same tube with a conducting screen inside, and in a 3.4-m-diam chamber. In the guide tube with the screen, ion-focused propagation is observed at low pressures (≤ 40 Pa) with net current equal to beam current. At higher pressures (55-130 Pa), a notch in beam current is observed for pressure time products of ≅ 100 Pa-ns. Between 270 Pa and 1070 Pa, good propagation is again observed with net currents of 50-70% of the beam current. The net current fraction of beam current increases with increasing pressure and with decreasing beam current. At pressure above 1070 Pa, hose instability occurs, and net current nearly equal to beam current is observed. The hose frequency is in reasonable accord with theory. Nose erosion is minimized at pressures for 1000-2000 Pa depending on beam current, and increases at lower and higher pressures

  16. Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions

    Directory of Open Access Journals (Sweden)

    R. Juras

    2017-09-01

    Full Text Available The mechanisms of rainwater propagation and runoff generation during rain-on-snow (ROS events are still insufficiently known. Understanding storage and transport of liquid water in natural snowpacks is crucial, especially for forecasting of natural hazards such as floods and wet snow avalanches. In this study, propagation of rainwater through snow was investigated by sprinkling experiments with deuterium-enriched water and applying an alternative hydrograph separation technique on samples collected from the snowpack runoff. This allowed us to quantify the contribution of rainwater, snowmelt and initial liquid water released from the snowpack. Four field experiments were carried out during winter 2015 in the vicinity of Davos, Switzerland. Blocks of natural snow were isolated from the surrounding snowpack to inhibit lateral exchange of water and were exposed to artificial rainfall using deuterium-enriched water. The experiments were composed of four 30 min periods of sprinkling, separated by three 30 min breaks. The snowpack runoff was continuously gauged and sampled periodically for the deuterium signature. At the onset of each experiment antecedent liquid water was first pushed out by the sprinkling water. Hydrographs showed four pronounced peaks corresponding to the four sprinkling bursts. The contribution of rainwater to snowpack runoff consistently increased over the course of the experiment but never exceeded 86 %. An experiment conducted on a non-ripe snowpack suggested the development of preferential flow paths that allowed rainwater to efficiently propagate through the snowpack limiting the time for mass exchange processes to take effect. In contrast, experiments conducted on ripe isothermal snowpack showed a slower response behaviour and resulted in a total runoff volume which consisted of less than 50 % of the rain input.

  17. Long-range forces and the Eoetvoes experiment

    International Nuclear Information System (INIS)

    Fischbach, E.; Sudarsky, D.; Szafer, A.; Talmadge, C.; Aronson, S.H.

    1988-01-01

    We present here the details of our reanalysis of the experiment of Eoetvoes, Pekar, and Fekete (EPF). After outlining our motivation for reexamining the EPF paper, we review the history of this experiment, which is described in some detail. A phenomenological framework is developed for describing the EPF and other similar experiments, and this then applied to analyzing the EPF data. We show that these data evidence a strong correlation between the measured fractional acceleration differences of various sample pairs of materials and the corresponding differences of baryon number-to-mass ratios. Such a correlation can result from a coupling of the test masses to an intermediate-range field whose source is baryon number, and it is shown that the properties of this field which emerge from geophysical data provide a fair description of the EPF results. We further demonstrate that no other known mechanism either conventional or otherwise, provides an adequate explanation of these data. Various experiments to check the EPF results are described, and in the Appendix we analyze the effects of local mass inhomogeneities which appear to represent the dominant sources in Eoetvoes-like experiments. copyright 1988 Academic Press, Inc

  18. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    International Nuclear Information System (INIS)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-01

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a “black out” phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm× 260 mm× 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  19. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  20. Outdoor Urban Propagation Experiment of a Handset MIMO Antenna with a Human Phantom located in a Browsing Stance

    DEFF Research Database (Denmark)

    Yamamoto, Atsushi; Hayashi, Toshiteru; Ogawa, Koichi

    2007-01-01

    Outdoor radio propagation experiments are presented at 2.4 GHz, using a handset MIMO antenna with two monopoles and two planar inverted-F antennas (PIFAs), adjacent to a human phantom in browsing stance. The propagation test was performed in an urban area of a city, which resulted in non lineof...

  1. Investigation on utilization of liquid propellant in ballistic range experiments

    Energy Technology Data Exchange (ETDEWEB)

    Saso, Akihiro; Oba, Shinji; Takayama, Kazuyoshi [Tohoku University, Sendai (Japan)

    1999-10-31

    Experiments were conducted in a ballistic range using a HAN (hydroxylammonium nitrate)-based liquid monopropellant, LP1846. In a 25-mm-bore single-stage gun, using bulk-loaded propellant of 10 to 35 g, a muzzle speed up to 1.0 km/s was obtained. Time variations of propellant chamber pressures and in-tube projectile velocity profiles were measured. The liquid propellant combustion was initiated accompanying a delay time which was created due to the pyrolysis of the propellant. In order to obtain reliable ballistic range performance, the method of propellant loading was revealed to be critical. Since the burning rate of the liquid propellant is relatively low, the peak acceleration and the muzzle speed strongly depend on the rupture pressure of a diaphragm that was inserted between the launch tube and the propellant chamber. (author)

  2. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joulaei, A. [Max-Planck Institute for Physics, Munich (Germany); University of Mazandaran (Iran, Islamic Republic of); Moody, J. [Max-Planck Institute for Physics, Munich (Germany); Berti, N.; Kasparian, J. [University of Geneva (Switzerland); Mirzanejhad, S. [University of Mazandaran (Iran, Islamic Republic of); Muggli, P. [Max-Planck Institute for Physics, Munich (Germany)

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment. - Highlights: • Discussion the AWAKE plasma source based on photoionization of rubidium vapor with a TW/cm^2 Intensity laser with a spectrum across valence ground state transition resonances. • Examines the propagation of the AWAKE ionization laser through rubidium vapor at design density on a small scale and reduced intensity with a linear numerical model compared to experimental results. • Discusses physics of pulse propagation through the vapor at high intensity regime where strong ionization occurs within the laser pulse.

  3. Short-range inverse-square law experiment in space

    International Nuclear Information System (INIS)

    Strayer, D.M.; Paik, H.J.; Moody, M.V.

    2003-01-01

    The objective of ISLES (inverse-square law experiment in space) is to perform a null test of Newton's law on the ISS with a resolution of one part in 10 5 at ranges from 100 mm to 1 mm. ISLES will be sensitive enough to detect axions with the strongest allowed coupling and to test the string-theory prediction with R>= 5 μm. To accomplish these goals on the rather noisy International Space Station, the experiment is set up to provide immunity from the vibrations and other common-mode accelerations. The measures to be applied for reducing the effects of disturbances will be described in this presentation. As designed, the experiment will be cooled to less than 2 K in NASA's low temperature facility the LTMPF, allowing superconducting magnetic levitation in microgravity to obtain very soft, low-loss suspension of the test masses. The low-damping magnetic levitation, combined with a low-noise SQUID, leads to extremely low intrinsic noise in the detector. To minimize Newtonian errors, ISLES employs a near-null source of gravity, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a distance of 100 μm to 1 mm. The signal is detected by a superconducting differential accelerometer, making a highly sensitive sensor of the gravity force generated by the source mass

  4. Analytic model of electron pulse propagation in ultrafast electron diffraction experiments

    International Nuclear Information System (INIS)

    Michalik, A.M.; Sipe, J.E.

    2006-01-01

    We present a mean-field analytic model to study the propagation of electron pulses used in ultrafast electron diffraction experiments (UED). We assume a Gaussian form to characterize the electron pulse, and derive a system of ordinary differential equations that are solved quickly and easily to give the pulse dynamics. We compare our model to an N-body numerical simulation and are able to show excellent agreement between the two result sets. This model is a convenient alternative to time consuming and computationally intense N-body simulations in exploring the dynamics of UED electron pulses, and as a tool for refining UED experimental designs

  5. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    CERN Document Server

    Joulaei, Atefeh; Berti, Nicolas; Kasparian, Jerome; Mirzanejhad, Saeed; Muggli, Patric

    2016-01-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  6. An experiment to measure the one-way velocity of propagation of electromagnetic radiation

    Science.gov (United States)

    Kolen, P.; Torr, D. G.

    1982-01-01

    An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.

  7. Simulation of long-distance beam propagation in the Paul trap simulator experiment

    International Nuclear Information System (INIS)

    Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. One-component pure ion plasmas have been trapped that correspond to normalized intensity parameter s-coret=ω p 2 (0)/2ω q 2 = p (r) is the plasma frequency and ω q is the average transverse focusing frequency in the smooth-focusing approximation. The PTSX device confines one-component cesium ion plasmas for hundreds of milliseconds, which is equivalent to beam propagation over 10km. Results are presented for experiments in which the amplitude of the confining voltage waveform has been modified as a function of time. Recent modifications to the device are described, and both the change from a cesium ion source to a barium ion source, and the development of a laser-induced fluorescence diagnostic system are discussed

  8. Assessment of the GOTHIC code for prediction of hydrogen flame propagation in small scale experiments

    International Nuclear Information System (INIS)

    Lee, Jin-Yong . E-mail jinyong1@fnctech.com; Lee, Jung-Jae; Park, Goon-Cherl . E-mail parkgc@snu.ac.kr

    2006-01-01

    With the rising concerns regarding the time and space dependent hydrogen behavior in severe accidents, the calculation for local hydrogen combustion in compartment has been attempted using CFD codes like GOTHIC. In particular, the space resolved hydrogen combustion analysis is essential to address certain safety issues such as the safety components survivability, and to determine proper positions for hydrogen control devices as e.q. recombiners or igniters. In the GOTHIC 6.1b code, there are many advanced features associated with the hydrogen burn models to enhance its calculation capability. In this study, we performed premixed hydrogen/air combustion experiments with an upright, rectangular shaped, combustion chamber of dimensions 1 m x 0.024 m x 1 m. The GOTHIC 6.1b code was used to simulate the hydrogen/air combustion experiments, and its prediction capability was assessed by comparing the experimental with multidimensional calculational results. Especially, the prediction capability of the GOTHIC 6.1b code for local hydrogen flame propagation phenomena was examined. For some cases, comparisons are also presented for lumped modeling of hydrogen combustion. By evaluating the effect of parametric simulations, we present some instructions for local hydrogen combustion analysis using the GOTHIC 6.1b code. From the analyses results, it is concluded that the modeling parameter of GOTHIC 6.1b code should be modified when applying the mechanistic burn model for hydrogen propagation analysis in small geometry

  9. Studies on laser beam propagation and stimulated scattering in multiple beam experiments

    International Nuclear Information System (INIS)

    Labaune, C.; Lewis, K.; Bandulet, H.; Lewis, K.; Depierreux, S.; Huller, S.; Masson-Laborde, P.E.; Pesme, D.; Riazuelo, G.

    2006-01-01

    The propagation and stimulated scattering of intense laser beams interacting with underdense plasmas are two important issues for inertial confinement fusion (ICF). The purpose of this work was to perform experiments under well-controlled interaction conditions and confront them with numerical simulations to test the physics included in the codes. Experimental diagnostics include time and space resolved images of incident and SBS light and of SBS-ion acoustic activity. New numerical diagnostics, including similar constraints as the experimental ones and the treatment of the propagation of the light between the emitting area and the detectors, have been developed. Particular care was put to include realistic plasma density and velocity profiles, as well as laser pulse shape in the simulations. In the experiments presented in this paper, the interaction beam was used with a random phase plate (RPP) to produce a statistical distribution of speckles in the focal volume. Stimulated Brillouin Scattering (SBS) was described using a decomposition of the spatial scales which provides a predictive modeling of SBS in an expanding mm-scale plasma. Spatial and temporal behavior of the SBS-ion acoustic waves was found to be in good agreement with the experimental ones for two laser intensities. (authors)

  10. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    Science.gov (United States)

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  11. Calibration and experiment of an extended range Bonner sphere spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mitaroff, A.; Mayer, S. [CERN, Geneva (Switzerland)]|[Atominstitut der TU-Wien, Vienna (Austria); Dimovasili, E.; Silari, M. [CERN, Geneva (Switzerland); Birattari, C. [Univ. of Milan, LASA, Segrate (Italy); Wiegel, B. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Aiginger, H. [Atominstitut der TU-Wien, Vienna (Austria)

    2001-07-01

    High-energy neutrons dominate the dose equivalent outside the shielding of hadron accelerators (protons, heavy ions). Nowadays these accelerators are not only used or foreseen in high- and intermediate energy physics but in other fields like medicine or waste transmutation, too. In addition it was shown that at commercial flight altitudes a large fraction of the exposure of aircraft personnel is due to neutrons with a comparable energy spectrum to that along hadron accelerators. For this reason in radiation protection the exact knowledge of the neutron spectrum and the relevant dose quantities is very important. The neutrons of these radiation fields extend over more than 14 orders of magnitude up to 1 GeV, thus making the measurement of the spectrum difficult. A newly developed Bonner sphere spectrometer with extended range shall evaluate spectra with a high-energy neutron component. This contribution shows the FLUKA simulated response functions of the two new spheres - Stanlio and Ollio - dedicated for high energies. These simulations should be verified by calibration with quasi monoenergetic neutrons. These took place at PTB with neutron beams of 144 keV, 1.2 MeV, 5 MeV and 14.8 MeV. Additionally experiments at the CERF (CERN-EU Reference Field) facility, which provides a broad neutron spectrum with two pronounced maxima at around 1 MeV and 70 MeV, are shown and compared to the Monte Carlo simulations. (orig.)

  12. Calibration and experiment of an extended range Bonner sphere spectrometer

    International Nuclear Information System (INIS)

    Mitaroff, A.; Mayer, S.; Dimovasili, E.; Silari, M.; Birattari, C.; Wiegel, B.; Aiginger, H.

    2001-01-01

    High-energy neutrons dominate the dose equivalent outside the shielding of hadron accelerators (protons, heavy ions). Nowadays these accelerators are not only used or foreseen in high- and intermediate energy physics but in other fields like medicine or waste transmutation, too. In addition it was shown that at commercial flight altitudes a large fraction of the exposure of aircraft personnel is due to neutrons with a comparable energy spectrum to that along hadron accelerators. For this reason in radiation protection the exact knowledge of the neutron spectrum and the relevant dose quantities is very important. The neutrons of these radiation fields extend over more than 14 orders of magnitude up to 1 GeV, thus making the measurement of the spectrum difficult. A newly developed Bonner sphere spectrometer with extended range shall evaluate spectra with a high-energy neutron component. This contribution shows the FLUKA simulated response functions of the two new spheres - Stanlio and Ollio - dedicated for high energies. These simulations should be verified by calibration with quasi monoenergetic neutrons. These took place at PTB with neutron beams of 144 keV, 1.2 MeV, 5 MeV and 14.8 MeV. Additionally experiments at the CERF (CERN-EU Reference Field) facility, which provides a broad neutron spectrum with two pronounced maxima at around 1 MeV and 70 MeV, are shown and compared to the Monte Carlo simulations. (orig.)

  13. Suitability of high-current standing-wave linac technology for ultra-relativistic electron beam propagation experiments

    International Nuclear Information System (INIS)

    Moir, D.C.; Faehl, R.J.; Newberger, B.S.; Thode, L.E.

    1981-01-01

    Near-term development of the existing PHERMEX standing-wave linac would provide a 40 to 60 MeV electron beam with a current of 3 kA capable of answering a number of fundamental issues concerning endoatmospheric, ultra-relativistic electron beam propagation. Inherent high-repetition rate and multiple-pulse capability would allow alternative propagation scenarios to be investigated. Much of the theoretical expertise required to support the technology development and time-resolved beam propagation experiments presently resides within the Theoretical Applications Division

  14. An analytic study of the perpendicularly propagating electromagnetic drift instabilities in the Magnetic Reconnection Experiment

    International Nuclear Information System (INIS)

    Wang Yansong; Kulsrud, Russell; Ji, Hantao

    2008-01-01

    A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients, and modest collisions as in the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of the cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough e-foldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (lower-hybrid-drift instability, modified two-stream instability, etc.) studied previously, we believe the instability we found is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross-current-layer direction.

  15. An Analytic Study of the Perpendicularly Propagating Electromagnetic Drift Instabilities in the Magnetic Reconnection Experiment

    International Nuclear Information System (INIS)

    Wang, Y.; Kulsrud, R.; Ji, H.

    2008-01-01

    A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients and modest collisions as in the Magnetic Reconnection Experiment (MRX) (10). The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough efoldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (LHDI, MTSI et.) studied previously, we believe the instability we find is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross current layer direction

  16. Coupling of an aeroacoustic model and a parabolic equation code for long range wind turbine noise propagation

    Science.gov (United States)

    Cotté, B.

    2018-05-01

    This study proposes to couple a source model based on Amiet's theory and a parabolic equation code in order to model wind turbine noise emission and propagation in an inhomogeneous atmosphere. Two broadband noise generation mechanisms are considered, namely trailing edge noise and turbulent inflow noise. The effects of wind shear and atmospheric turbulence are taken into account using the Monin-Obukhov similarity theory. The coupling approach, based on the backpropagation method to preserve the directivity of the aeroacoustic sources, is validated by comparison with an analytical solution for the propagation over a finite impedance ground in a homogeneous atmosphere. The influence of refraction effects is then analyzed for different directions of propagation. The spectrum modification related to the ground effect and the presence of a shadow zone for upwind receivers are emphasized. The validity of the point source approximation that is often used in wind turbine noise propagation models is finally assessed. This approximation exaggerates the interference dips in the spectra, and is not able to correctly predict the amplitude modulation.

  17. Interface fatigue crack propagation in sandwich X-joints – Part I: Experiments

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian

    2013-01-01

    Correlation technique was used to locate the crack tip and monitor the crack growth. For the specimens with H45 core, unstable crack growth took place initially. Following the unstable propagation, the crack propagated in the core underneath the resin-rich cell layer approaching the interface. However......, the crack did not kink into the interface. For the specimens with H100 core, the crack propagated initially in the core and then returned into the interface and continued to propagate in the interface. For the specimens with H250 core, the crack initially propagated in the core and then kinked...

  18. Proceedings of the specialists' meeting on steam generator failure and failure propagation experience, held in Aix-en Provence, France, 26-28 September 1990

    International Nuclear Information System (INIS)

    Maupre, J.P.

    1990-09-01

    The 35 participants, representing 7 Member States and one International Organization discussed recent investigations on leak development and propagation in LMFBR steam generators. The meeting was divided into three technical sessions: review of national status on studies of failure propagation (8 papers); propagation experience on reactor steam generators (4 papers); studies of failure propagation: codes, hydrogen detection, tests (11 papers). A separate abstract was prepared for each of these papers

  19. Progress of the volume FEL (VFEL) experiments in millimeter range

    Science.gov (United States)

    Baryshevsky, V. G.; Batrakov, K. G.; Gurinovich, A. A.; Ilienko, I. I.; Lobko, A. S.; Molchanov, P. V.; Moroz, V. I.; Sofronov, P. F.; Stolyarsky, V. I.

    2003-07-01

    Use of non-one-dimensional distributed feedback in Volume Free Electron Laser gives possibility of frequency tuning in wide range. In present work, dependence of lasing process on the angle between resonant diffraction grating grooves and direction of electron beam velocity is discussed.

  20. Broadband Laser Ranging for Position Measurements in Shock Physics Experiments

    Science.gov (United States)

    Rhodes, Michelle; Bennett, Corey; Daykin, Edward; Younk, Patrick; Lalone, Brandon; Kostinski, Natalie

    2017-06-01

    Broadband laser ranging (BLR) is a recently developed measurement system that provides an attractive option for determining the position of shock-driven surfaces. This system uses broadband, picosecond (or femtosecond) laser pulses and a fiber interferometer to measure relative travel time to a target and to a reference mirror. The difference in travel time produces a delay difference between pulse replicas that creates a spectral beat frequency. The spectral beating is recorded in real time using a dispersive Fourier transform and an oscilloscope. BLR systems have been designed that measure position at 12.5-40 MHz with better than 100 micron accuracy over ranges greater than 10 cm. We will give an overview of the basic operating principles of these systems. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.

  1. Recent results on short-range gravity experiment

    International Nuclear Information System (INIS)

    Hata, Maki; Akiyama, Takashi; Ikeda, Yuki; Kawamura, Hirokazu; Narita, Keigo; Ninomiya, Kazufumi; Ogawa, Naruya; Sato, Toshiaki; Seitaibashi, Etsuko; Sekiguchi, Yuta; Tsutsui, Ryosuke; Yazawa, Kazumasa; Murata, Jiro

    2009-01-01

    According to the ADD model, deviation from Newton's inverse square law is expected at below sub-millimeter scale. Present study is an experimental investigation of the Newton's gravitational law at a short range scale. We have developed an experimental setup using torsion balance bar, and succeeded to confirm the inverse square law at a centimeter scale. In addition, composition dependence of gravitational constant G is also tested at the centimeter scale, motivated to test the weak equivalence principle.

  2. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids

    Science.gov (United States)

    Brites, Carlos D. S.; Lima, Patrícia P.; Silva, Nuno J. O.; Millán, Angel; Amaral, Vitor S.; Palacio, Fernando; Carlos, Luís D.

    2013-07-01

    There is an increasing demand for accurate, non-invasive and self-reference temperature measurements as technology progresses into the nanoscale. This is particularly so in micro- and nanofluidics where the comprehension of heat transfer and thermal conductivity mechanisms can play a crucial role in areas as diverse as energy transfer and cell physiology. Here we present two luminescent ratiometric nanothermometers based on a magnetic core coated with an organosilica shell co-doped with Eu3+ and Tb3+ chelates. The design of the hybrid host and chelate ligands permits the working of the nanothermometers in a nanofluid at 293-320 K with an emission quantum yield of 0.38 +/- 0.04, a maximum relative sensitivity of 1.5% K-1 at 293 K and a spatio-temporal resolution (constrained by the experimental setup) of 64 × 10-6 m/150 × 10-3 s (to move out of 0.4 K - the temperature uncertainty). The heat propagation velocity in the nanofluid, (2.2 +/- 0.1) × 10-3 m s-1, was determined at 294 K using the nanothermometers' Eu3+/Tb3+ steady-state spectra. There is no precedent of such an experimental measurement in a thermographic nanofluid, where the propagation velocity is measured from the same nanoparticles used to measure the temperature.There is an increasing demand for accurate, non-invasive and self-reference temperature measurements as technology progresses into the nanoscale. This is particularly so in micro- and nanofluidics where the comprehension of heat transfer and thermal conductivity mechanisms can play a crucial role in areas as diverse as energy transfer and cell physiology. Here we present two luminescent ratiometric nanothermometers based on a magnetic core coated with an organosilica shell co-doped with Eu3+ and Tb3+ chelates. The design of the hybrid host and chelate ligands permits the working of the nanothermometers in a nanofluid at 293-320 K with an emission quantum yield of 0.38 +/- 0.04, a maximum relative sensitivity of 1.5% K-1 at 293 K and a spatio

  3. Object categorization by wild ranging birds-Winter feeder experiments.

    Science.gov (United States)

    Nováková, Nela; Veselý, Petr; Fuchs, Roman

    2017-10-01

    The object categorization is only scarcely studied using untrained wild ranging animals and relevant stimuli. We tested the importance of the spatial position of features salient for categorization of a predator using wild ranging birds (titmice) visiting a winter feeder. As a relevant stimulus we used a dummy of a raptor, the European sparrowhawk (Accipiter nisus), placed at the feeding location. This dummy was designed to be dismantled into three parts and rearranged with the head in the correct position, in the middle or at the bottom of the dummy. When the birds had the option of visiting an alternative feeder with a dummy pigeon, they preferred this option to visiting the feeder with the dummy sparrowhawk with the head in any of the three positions. When the birds had the option of visiting an alternative feeder with an un-rearranged dummy sparrowhawk, they visited both feeders equally often, and very scarcely. This suggests that the titmice considered all of the sparrowhawk modifications as being dangerous, and equally dangerous as the un-rearranged sparrowhawk. The position of the head was not the most important cue for categorization. The presence of the key features was probably sufficient for categorization, and their mutual spatial position was of lower importance. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Long range manipulator development and experiments with dismantling tools

    International Nuclear Information System (INIS)

    Mueller, K.

    1993-01-01

    An existing handling system (EMIR) was used as a carrier system for various tools for concrete dismantling and radiation protection monitoring. It combined the advantages of long reach and high payload with highly dexterous kinematics. This system was enhanced mechanically to allow the use of different tools. Tool attachment devices for automatic tool exchange were investigated as well as interfaces (electric, hydraulic, compressed air, cooling water and signals). The control system was improved with regard to accuracy and sensor data processing. Programmable logic controller functions for tool control were incorporated. A free field mockup of the EMIR was build that allowed close simulation of dismantling scenarios without radioactive inventory. Aged concrete was provided for the integration tests. The development scheduled included the basic concept investigation; the development of tools and sensors; the EMIR hardware enhancement including a tool exchange; the adaption of tools and mockup and the final evaluation of the system during experiments

  5. Self-propagating exothermic reaction analysis in Ti/Al reactive films using experiments and computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Seema, E-mail: seema.sen@tu-ilmenau.de [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Lake, Markus; Kroppen, Norman; Farber, Peter; Wilden, Johannes [Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Schaaf, Peter [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-28

    Highlights: • Development of nanoscale Ti/Al multilayer films with 1:1, 1:2 and 1:3 molar ratios. • Characterization of exothermic reaction propagation by experiments and simulation. • The reaction velocity depends on the ignition potentials and molar ratios of the films. • Only 1Ti/3Al films exhibit the unsteady reaction propagation with ripple formation. • CFD simulation shows the time dependent atom mixing and temperature flow during exothermic reaction. - Abstract: This study describes the self-propagating exothermic reaction in Ti/Al reactive multilayer foils by using experiments and computational fluid dynamics simulation. The Ti/Al foils with different molar ratios of 1Ti/1Al, 1Ti/2Al and 1Ti/3Al were fabricated by magnetron sputtering method. Microstructural characteristics of the unreacted and reacted foils were analyzed by using electronic and atomic force microscopes. After an electrical ignition, the influence of ignition potentials on reaction propagation has been experimentally investigated. The reaction front propagates with a velocity of minimum 0.68 ± 0.4 m/s and maximum 2.57 ± 0.6 m/s depending on the input ignition potentials and the chemical compositions. Here, the 1Ti/3Al reactive foil exhibits both steady state and unsteady wavelike reaction propagation. Moreover, the numerical computational fluid dynamics (CFD) simulation shows the time dependent temperature flow and atomic mixing in a nanoscale reaction zone. The CFD simulation also indicates the potentiality for simulating exothermic reaction in the nanoscale Ti/Al foil.

  6. Ultrashort pulse-propagation effects in a semiconductor optical amplifier: Microscopic theory and experiment

    DEFF Research Database (Denmark)

    Hughes, S.; Borri, P.; Knorr, A.

    2001-01-01

    We present microscopic modeling and experimental measurements of femtosecond-pulse interactions in a semiconductor optical amplifier. Two novel nonlinear propagation effects are demonstrated: pulse breakup in the gain regime and pulse compression in the transparency regime. These propagation phen...... phenomena highlight the microscopic origin and important role of adiabatic following in semiconductor optical amplifiers. Fundamental light-matter interactions are discussed in detail and possible applications are highlighted....

  7. Self-propagating high-temperature synthesis flammable range and dominant parameters for synthesizing several ceramics and intermetallic compounds under heat-loss condition

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1996-01-01

    Extensive comparisons have been conducted between experimental and theoretical results for the nonadiabatic self-propagating high-temperature synthesis combustion characteristics of many solid-solid systems subjected to volumetric heat loss. The nonadiabatic flame propagation theory--which describes the premixed mode of bulk flame propagation supported by the nonpremixed reaction of dispersed nonmetal (or higher-melting point metal) particles in the liquid metal, with finite-rate reaction at the particle surface and temperature-sensitive Arrhenius-type condensed-phase mass diffusivity--is used to compare with experimental results with heat loss. Systems examined are ceramics (TiC, TiB 2 , and ZrB 2 ) and intermetallic compounds (NiAl, TiCo, and TiNi). By using a consistent set of physicochemical parameters for these systems, satisfactory quantitative agreement is demonstrated for the flammable range (defined in terms of the mixture ratio, degree of dilution, particle size, and/or compact diameter)

  8. Earth-satellite propagation above GHz: Papers from the 1972 spring URSI session on experiments utilizing the ATS-5 satellite

    Science.gov (United States)

    Ippolito, L. J. (Compiler)

    1972-01-01

    Papers are reported from the Special Session on Earth-Satellite Propagation Above 10 GHz, presented at The 1972 Spring Meeting of the United States National Committee, International Union of Radio Science, April 1972, Washington, D. C. This session was devoted to propagation measurements associated with the Applications Technology Satellite (ATS-5), which provided the first operational earth-space links at frequencies above 15 GHz. A comprehensive summary is presented of the major results of the ATS-5 experiment measurements and related radiometric, radar and meteorological studies. The papers are organized around seven selected areas of interest, with the results of the various investigators combined into a single paper presented by a principal author for that area. A comprehensive report is provided on the results of the ATS-5 satellite to earth transmissions. A complete list of published reports and presentations related to the ATS-5 Millimeter Wave Experiment is included.

  9. Edge State Propagation Direction in the Fractional Quantum Hall Regime: Multi-Terminal Magnetocapacitance Experiment

    International Nuclear Information System (INIS)

    JOHNSON, B.L.; MOON, JEONG-SUN; RENO, JOHN L.; SIMMONS, JERRY A.

    1999-01-01

    The propagation direction of fractional quantum Hall effect (FQHE) edge states has been investigated experimentally via the symmetry properties of the multi-terminal capacitances of a two dimensional electron gas. Although strong asymmetries with respect to zero magnetic field appear, no asymmetries with respect to even denominator Landau level filling factor ν are seen. This indicates that current-carrying FQHE edge states propagate in the same direction as integer QHE edge states. In addition, anomalous capacitance features, indicative of enhanced bulk conduction, are observed at ν = 1/2 and 3/2

  10. Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments

    Science.gov (United States)

    Peters, S.; Clarke, A. B.

    2017-12-01

    The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate

  11. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  12. Analyses of internal tides generation and propagation over a Gaussian ridge in laboratory and numerical experiments

    Science.gov (United States)

    Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Floor, Jochem

    2010-05-01

    Internal tides are suggested to play a major role in the sustaining of the global oceanic circulation [1][5]. Although the exact origin of the energy conversions occurring in stratified fluids is questioned [2], it is clear that the diapycnal energy transfers provided by the energy cascade of internal gravity waves generated at tidal frequencies in regions of steep bathymetry is strongly linked to the general circulation energy balance. Therefore a precise quantification of the energy supply by internal waves is a crucial step in forecasting climate, since it improves our understanding of the underlying physical processes. We focus on an academic case of internal waves generated over an oceanic ridge in a linearly stratified fluid. In order to accurately quantify the diapycnal energy transfers caused by internal waves dynamics, we adopt a complementary approach involving both laboratory and numerical experiments. The laboratory experiments are conducted in a 4m long tank of the CNRM-GAME fluid mechanics laboratory, well known for its large stratified water flume (e.g. Knigge et al [3]). The horizontal oscillation at precisely controlled frequency of a Gaussian ridge immersed in a linearly stratified fluid generates internal gravity waves. The ridge of e-folding width 3.6 cm is 10 cm high and spans 50 cm. We use PIV and Synthetic Schlieren measurement techniques, to retrieve the high resolution velocity and stratification anomaly fields in the 2D vertical plane across the ridge. These experiments allow us to get access to real and exhaustive measurements of a wide range of internal waves regimes by varying the precisely controlled experimental parameters. To complete this work, we carry out some direct numerical simulations with the same parameters (forcing amplitude and frequency, initial stratification, boundary conditions) as the laboratory experiments. The model used is a non-hydrostatic version of the numerical model Symphonie [4]. Our purpose is not only to

  13. Two-way laser ranging and time transfer experiments between LOLA and an Earth-based satellite laser ranging station

    Science.gov (United States)

    Mao, D.; Sun, X.; Neumann, G. A.; Barker, M. K.; Mazarico, E. M.; Hoffman, E.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    Satellite Laser Ranging (SLR) has established time-of-flight measurements with mm precision to targets orbiting the Earth and the Moon using single-ended round-trip laser ranging to passive optical retro-reflectors. These high-precision measurements enable advances in fundamental physics, solar system dynamics. However, the received signal strength suffers from a 1/R4 decay, which makes it impractical for measuring distances beyond the Moon's orbit. On the other hand, for a two-way laser transponder pair, where laser pulses are both transmitted to and received from each end of the laser links, the signal strength at both terminals only decreases by 1/R2, thus allowing a greater range of distances to be covered. The asynchronous transponder concept has been previously demonstrated by a test in 2005 between the Mercury Laser Altimeter (MLA) aboard the MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft and NASA's Goddard Geophysical and Astronomical Observatory (GGAO) at a distance of ˜0.16 AU. In October 2013, regular two-way transponder-type range measurements were obtained over 15 days between the Lunar Laser Communication Demonstration (LLCD) aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and NASA's ground station at White Sands, NM. The Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) provides us a unique capability to test time-transfer beyond near Earth orbit. Here we present results from two-way transponder-type experiments between LOLA and GGAO conducted in March 2014 and 2017. As in the time-transfer by laser link (T2L2) experiments between a ground station and an earth-orbiting satellite, LOLA and GGAO ranged to each other simultaneously in these two-way tests at lunar distance. We measured the time-of-flight while cross-referencing the spacecraft clock to the ground station time. On May 4th, 2017, about 20 minutes of two-way measurements were collected. The

  14. Use of flood propagation models in real time hydrologic forecast: experiences at Segura River

    International Nuclear Information System (INIS)

    Valverde, Angel Luis Aldana; Beato, Ana Martinez Perez

    2004-01-01

    In this paper a case study related to flood propagation forecast in the Segura River in Spain is presented along with the application that was developed for that purpose. Simulation and forecast models ease the work carry out by the watershed organism personnel and may be essential to understand the complexity of some of the propagation phenomena that take place at specific locations such as the study area, a man-made channel at the downstream end of the Segura River (from Contraparada to Guardamar), including the tributaries along the stream. Three different models were used in the previous studies: a steady state numerical model (Hec-Ras), a physical model and two unsteady state numerical models (ISIS and HMS). Also, historical time series were analyzed and some topography works were carried out along the stream. PROC Segura model was conceived for real time flood propagation forecast in the mentioned area using the data collected by the SAIH. A simplified model was developed based on the following methods: Muskingum, Muskingum-Cunge and Modified Puls. To overcome some of these models limitations, such as the one to one discharge-water surface relationships and the impossibility of reproducing downstream backwater, doubled input rating curves were used to estimate the discharge at some of the gauging stations located at the tributaries, i.e. Merancho and Rambia del Derramador, which may be affected by the water level in the Segura River. The advantages of using these simplified models versus a dynamic wave model were studied and reported as well. In general, it can be stated that when several solutions are provided to solve the same problem, the simplest solution is usually the best one.(Author)

  15. Theory and experiment on electromagnetic-wave-propagation velocities in stacked superconducting tunnel structures

    DEFF Research Database (Denmark)

    Sakai, S.; Ustinov, A. V.; Kohlstedt, H.

    1994-01-01

    Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson transmission are theoretically discussed. An equation for solving n velocities of the waves in an n Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially...... focused on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by Nb-Al-AlOx-Nb systems are experimentally obtained by measuring the cavity resonance...

  16. Paul trap experiment to simulate intense nonneutral beam propagation through a periodic focusing field configuration

    CERN Document Server

    Davidson, R C; Majeski, R; Qin, H; Shvets, G

    2001-01-01

    This paper describes the design concept for a compact Paul trap experimental configuration that fully simulates the collective processes and nonlinear transverse dynamics of an intense charged particle beam that propagates over large distances through a periodic quadrupole magnetic field. To summarize, a long nonneutral plasma column (L>=r sub p) is confined axially by applied DC voltages V[circ]=const. on end cylinders at z=+-L, and transverse confinement is provided by segmented cylindrical electrodes (at radius r sub w) with applied oscillatory voltages +-V sub 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact experimental facility. The nominal operating parameters in the experimental design are: barium ions (A=137); plasma column length 2L=2 m; wall radius r sub w =10...

  17. High Frequency Propagation modeling in a disturbed background ionosphere: Results from the Metal Oxide Space Cloud (MOSC) experiment

    Science.gov (United States)

    Joshi, D. R.; Groves, K. M.

    2015-12-01

    The Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud. A host of diagnostic instruments were used to probe and characterize the cloud including the ALTAIR incoherent scatter radar, multiple GPS and optical instruments, satellite radio beacons, and a dedicated network of high frequency (HF) radio links. Data from ALTAIR incoherent scatter radar and HF radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. During the first release the ionosphere was disturbed, rising rapidly and spread F formed within minutes after the release. To address the disturbed conditions present during the first release, we have developed a new method of assimilating oblique ionosonde data to generate the background ionosphere that can have numerous applications for HF systems. The link budget analysis of the received signals from the HF transmitters explains the missing low frequencies in the received signals along the great circle path. Observations and modeling confirm that the small amounts of ionized material injected in the lower-F region resulted in significant changes to the natural propagation environment.

  18. Propagation of evanescent waves in multimode chalcogenide fiber immersed in an aqueous acetone solution: theory and experiment

    Science.gov (United States)

    Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.

    2017-04-01

    Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.

  19. A dynamic analysis of crack propagation and arrest of pressurized thermal shock experiments (PTSE)

    International Nuclear Information System (INIS)

    Brickstad, B.; Nilsson, F.

    1984-01-01

    The PTS-experiments performed at ORNL are dynamically analysed by aid ot a two-dimensional FEM-code with capability of simulating rapid crack growth.It is found that both a quasistatic and a dynamic treatment agree well with the experimentally obtained crack arrest lengths. (author)

  20. Flame Propagation and Blowout in Hydrocarbon Jets: Experiments to Understand the Stability and Structure

    Science.gov (United States)

    2012-07-29

    Wilson and Kevin M. Lyons. On Diluted-Fuel Combustion Issues in Burning Biogas Surrogates, ASME-JERT, (12 2009): . doi: 2010/01/07 10:47:38 2 TOTAL...four coflow velocities are used, resulting in eight additional flow configurations. Table 2 contains the data obtained for these configurations, as...counterflow have higher stability limits than those in an oblique configuration. 4.) Conclusions Based on the results obtained from this experiment, a

  1. Successful range-expanding plants experience less above-ground and below-ground enemy impact.

    Science.gov (United States)

    Engelkes, Tim; Morriën, Elly; Verhoeven, Koen J F; Bezemer, T Martijn; Biere, Arjen; Harvey, Jeffrey A; McIntyre, Lauren M; Tamis, Wil L M; van der Putten, Wim H

    2008-12-18

    Many species are currently moving to higher latitudes and altitudes. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below-ground enemies than the natives.

  2. Bolt beam propagation analysis

    Science.gov (United States)

    Shokair, I. R.

    BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.

  3. Asian Tracer Experiment and Atmospheric Modeling (TEAM) Project: Draft Field Work Plan for the Asian Long-Range Tracer Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Flaherty, Julia E.

    2007-08-01

    This report provides an experimental plan for a proposed Asian long-range tracer study as part of the international Tracer Experiment and Atmospheric Modeling (TEAM) Project. The TEAM partners are China, Japan, South Korea and the United States. Optimal times of year to conduct the study, meteorological measurements needed, proposed tracer release locations, proposed tracer sampling locations and the proposed durations of tracer releases and subsequent sampling are given. Also given are the activities necessary to prepare for the study and the schedule for completing the preparation activities leading to conducting the actual field operations. This report is intended to provide the TEAM members with the information necessary for planning and conducting the Asian long-range tracer study. The experimental plan is proposed, at this time, to describe the efforts necessary to conduct the Asian long-range tracer study, and the plan will undoubtedly be revised and refined as the planning goes forward over the next year.

  4. Non-local model analysis of heat pulse propagation and simulation of experiments in W7-AS

    International Nuclear Information System (INIS)

    Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi; Itoh, Kimitaka; Stroth, U.

    1999-01-01

    A new model equation which includes the non-local effect in the hear flux is introduced to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [U. Stroth et al.: Plasma Phys. Control. Fusion 38 (1996) 1087] and the power modulation experiments [L. Giannone et al.: Nucl. Fusion 32 (1992) 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to estimate the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  5. Experiments of Long-range Inspection Method in Straight Pipes using Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Eom, H. S.; Lim, S. H.; Kim, J. H.; Joo, Y.S.

    2006-02-01

    This report describes experimental results of a long-range inspection method of pipes using ultrasonic guided waves. In chapter 2, theory of guided wave was reviewed. In chapter 3, equipment and procedures which were used in the experiments were described. Detailed specifications of the specimens described in chapter 4. In chapter 5, we analyzed characteristics of guided wave signals according to shapes and sizes of defects and presents results of various signal processing methods

  6. Fast wave heating experiments in the ion cyclotron range of frequencies on ATF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, M; Shepard, T D; Goulding, R H [Oak Ridge National Lab., TN (United States); and others

    1992-07-01

    Fast wave heating experiments in the ion cyclotron range of frequencies (ICRF) were performed on target plasmas produced by 350 kW of electron cyclotron heating at 53 GHz and also by neutral beam injection in the Advanced Toroidal Facility (ATF). Various heating regimes were investigated in the frequency range between 9.2 MHz and 28.8 MHz with magnetic fields of 0.95 T and 1.9 T on axis. The nominal pulse lengths of up to 200 kW RF power were in the range between 100 and 400 ms. Data from spectroscopy, loading measurements, and edge RF and Langmuir probes were used to characterize the RF induced effects on the ATF plasma. In the hydrogen minority regime at low plasma density, large suprathermal ion tails were observed with a neutral particle analyser. At high density (n-bar{sub e} {>=} 5.0 x 10{sup 13} cm{sup -3}) substantial increases in antenna loading were observed, but ICRF power was insufficient to produce definitive heating results. A two-dimensional RF heating code, ORION, and a Fokker-Planck code, RFTRANS, were used to simulate these experiments. A simulation of future high power, higher density experiments in ATF indicates improved bulk heating results due to the improved loading and more efficient thermalization of the minority tail. (author). 29 refs, 16 figs, 3 tabs.

  7. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.; Stevens, G. D.; Turley, W. D. [National Security Technologies, LLC, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Veeser, L. R. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2015-02-15

    A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, and we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.

  8. Probing the eV-mass range for solar axions with the CAST experiment

    International Nuclear Information System (INIS)

    Vogel, J.

    2009-01-01

    The CERN Axion Solar Telescope (CAST) is searching for solar axions, which could be produced in the core of the Sun via the so-called Primakoff effect. For this purpose, CAST uses a decommissioned LHC prototype magnet. In its magnetic field of 9 Tesla axions could be reconverted into X-ray photons. The magnet is mounted on a structure built to follow the Sun during sunrise and sunset for a total of about 3 hours per day. The analysis of the data acquired during the first phase of the experiment with vacuum in the magnetic field region yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV. In order to extend the sensitivity of the experiment to a wider mass range, the CAST experiment continued its search for axions with helium in the magnet bores. In this way it is possible to restore coherence for larger masses. Changing the pressure of the helium gas enables the experiment to scan different axion masses. In the first part of this second phase of CAST, helium-4 has been used and the axion mass region was extended up to 0.4 eV. Therefore the experiment enters the regions favored by axion models. In CAST's ongoing helium-3 phase the studied mass range is now further extended. We will present the final results of CAST's helium-4 phase. Furthermore the latest upgrades of the experiments will be shown and an outlook on CAST's status and prospects will be given. (author)

  9. Exploring flavor-dependent long-range forces in long-baseline neutrino oscillation experiments

    Science.gov (United States)

    Chatterjee, Sabya Sachi; Dasgupta, Arnab; Agarwalla, Sanjib Kumar

    2015-12-01

    The Standard Model gauge group can be extended with minimal matter content by introducing anomaly free U(1) symmetry, such as L e - L μ or L e - L τ . If the neutral gauge boson corresponding to this abelian symmetry is ultra-light, then it will give rise to flavor-dependent long-range leptonic force, which can have significant impact on neutrino oscillations. For an instance, the electrons inside the Sun can generate a flavor-dependent long-range potential at the Earth surface, which can suppress the ν μ → ν e appearance probability in terrestrial experiments. The sign of this potential is opposite for anti-neutrinos, and affects the oscillations of (anti-)neutrinos in different fashion. This feature invokes fake CP-asymmetry like the SM matter effect and can severely affect the leptonic CP-violation searches in long-baseline experiments. In this paper, we study in detail the possible impacts of these long-range flavor-diagonal neutral current interactions due to L e - L μ symmetry, when (anti-)neutrinos travel from Fermilab to Homestake (1300 km) and CERN to Pyhäsalmi (2290 km) in the context of future high-precision superbeam facilities, DUNE and LBNO respectively. If there is no signal of long-range force, DUNE (LBNO) can place stringent constraint on the effective gauge coupling α eμ < 1.9 × 10-53 (7.8 × 10-54) at 90% C.L., which is almost 30 (70) times better than the existing bound from the Super-Kamiokande experiment. We also observe that if α eμ ≥ 2 × 10-52, the CP-violation discovery reach of these future facilities vanishes completely. The mass hierarchy measurement remains robust in DUNE (LBNO) if α eμ < 5 × 10-52 (10-52).

  10. First Experiences with Kinect v2 Sensor for Close Range 3d Modelling

    Science.gov (United States)

    Lachat, E.; Macher, H.; Mittet, M.-A.; Landes, T.; Grussenmeyer, P.

    2015-02-01

    RGB-D cameras, also known as range imaging cameras, are a recent generation of sensors. As they are suitable for measuring distances to objects at high frame rate, such sensors are increasingly used for 3D acquisitions, and more generally for applications in robotics or computer vision. This kind of sensors became popular especially since the Kinect v1 (Microsoft) arrived on the market in November 2010. In July 2014, Windows has released a new sensor, the Kinect for Windows v2 sensor, based on another technology as its first device. However, due to its initial development for video games, the quality assessment of this new device for 3D modelling represents a major investigation axis. In this paper first experiences with Kinect v2 sensor are related, and the ability of close range 3D modelling is investigated. For this purpose, error sources on output data as well as a calibration approach are presented.

  11. FIRST EXPERIENCES WITH KINECT V2 SENSOR FOR CLOSE RANGE 3D MODELLING

    Directory of Open Access Journals (Sweden)

    E. Lachat

    2015-02-01

    Full Text Available RGB-D cameras, also known as range imaging cameras, are a recent generation of sensors. As they are suitable for measuring distances to objects at high frame rate, such sensors are increasingly used for 3D acquisitions, and more generally for applications in robotics or computer vision. This kind of sensors became popular especially since the Kinect v1 (Microsoft arrived on the market in November 2010. In July 2014, Windows has released a new sensor, the Kinect for Windows v2 sensor, based on another technology as its first device. However, due to its initial development for video games, the quality assessment of this new device for 3D modelling represents a major investigation axis. In this paper first experiences with Kinect v2 sensor are related, and the ability of close range 3D modelling is investigated. For this purpose, error sources on output data as well as a calibration approach are presented.

  12. Increase of the dynamic range of catchup experiments by high-pass filtering

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.J.

    1995-08-01

    The release-catchup shock experiment is an important tool for measuring the speed of sound in compressed matter. The catchup of the release wave to the leading shock is sensitively detected optically, through an indicating fluid which produces light approximately to the 4th power of the shock pressure. However, this sensitivity demands a dynamic range which exceeds the capabilities of our digitizer. The catchup signature lies at the top of a flat pulse, thus any signal clipping is a catastrophic loss of data. We have invented a simple and accurate method for recording the catchup signature that is insensitive to signal clipping. A high pass circuit prior to the digitizer is used with post experiment integration. The insensitivity to clipping allows recording the catchup signature at higher gain, and thus with an improved signal to noise ratio.

  13. Homonuclear long-range correlation spectra from HMBC experiments by covariance processing.

    Science.gov (United States)

    Schoefberger, Wolfgang; Smrecki, Vilko; Vikić-Topić, Drazen; Müller, Norbert

    2007-07-01

    We present a new application of covariance nuclear magnetic resonance processing based on 1H--13C-HMBC experiments which provides an effective way for establishing indirect 1H--1H and 13C--13C nuclear spin connectivity at natural isotope abundance. The method, which identifies correlated spin networks in terms of covariance between one-dimensional traces from a single decoupled HMBC experiment, derives 13C--13C as well as 1H--1H spin connectivity maps from the two-dimensional frequency domain heteronuclear long-range correlation data matrix. The potential and limitations of this novel covariance NMR application are demonstrated on two compounds: eugenyl-beta-D-glucopyranoside and an emodin-derivative. Copyright (c) 2007 John Wiley & Sons, Ltd.

  14. Electron-nucleon scattering experiments in the GeV range

    International Nuclear Information System (INIS)

    Glawe, U.B.

    1980-01-01

    In the framework of this thesis a computer code systems was developed which describes the inclusive electron scattering on bound nucleons in the impact approximation. It could be shown that the structure functions for the quasi-free scattering can be represented as an incoherent superposition of the structure functions of the free processes. The structure functions of the free processes were determined from experimental cross sections. From the comparison of the calculations with electron scattering experiments on the nuclei 6 Li, 9 Be, 12 C, 27 Al, and 28 Si in the kinematic range 0.0 2 2 and W [de

  15. Track propagation methods for the correlation of charged tracks with clusters in the calorimeter of the bar PANDA experiment

    Science.gov (United States)

    Nasawasd, T.; Simantathammakul, T.; Herold, C.; Stockmanns, T.; Ritman, J.; Kobdaj, C.

    2018-02-01

    To classify clusters of hits in the electromagnetic calorimeter (EMC) of bar PANDA (antiProton ANnihilation at DArmstadt), one has to match these EMC clusters with tracks of charged particles reconstructed from hits in the tracking system. Therefore the tracks are propagated to the surface of the EMC and associated with EMC clusters which are nearby and below a cut parameter. In this work, we propose a helix propagator to extrapolate the track from the Straw Tube Tracker (STT) to the inner surface of the EMC instead of the GEANE propagator which is already embedded within the PandaRoot computational framework. The results for both propagation methods show a similar quality, with a 30% gain in CPU time when using the helix propagator. We use Monte-Carlo truth information to compare the particle ID of the EMC clusters with the ID of the extrapolated points, thus deciding upon the correctness of the matches. By varying the cut parameter as a function of transverse momentum and particle type, our simulations show that the purity can be increased by 3-5% compared to the default value which is a constant cut in the bar PANDA simulation framework PandaRoot.

  16. MANGO PROPAGATION

    OpenAIRE

    ALBERTO CARLOS DE QUEIROZ PINTO; VICTOR GALÁN SAÚCO; SISIR KUMAR MITRA; FRANCISCO RICARDO FERREIRA

    2018-01-01

    ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud) as well as the main asexual propagation methods...

  17. The Laser Ranging Experiment of the Lunar Reconnaissance Orbiter: Five Years of Operations and Data Analysis

    Science.gov (United States)

    Mao, Dandan; McGarry, Jan F.; Mazarico, Erwan; Neumann, Gregory A.; Sun, Xiaoli; Torrence, Mark H.; Zagwodzki, Thomas W.; Rowlands, David D.; Hoffman, Evan D.; Horvath, Julie E.; hide

    2016-01-01

    We describe the results of the Laser Ranging (LR) experiment carried out from June 2009 to September 2014 in order to make one-way time-of-flight measurements of laser pulses between Earth-based laser ranging stations and the Lunar Reconnaissance Orbiter (LRO) orbiting the Moon. Over 4,000 hours of successful LR data are obtained from 10 international ground stations. The 20-30 centimeter precision of the full-rate LR data is further improved to 5-10 centimeter after conversion into normal points. The main purpose of LR is to utilize the high accuracy normal point data to improve the quality of the LRO orbits, which are nomi- nally determined by the radiometric S-band tracking data. When independently used in the LRO precision orbit determination process with the high-resolution GRAIL (Gravity Recovery and Interior Laboratory) gravity model, LR data provide good orbit solutions, with an average difference of approximately 50 meters in total position, and approximately 20 centimeters in radial direction, compared to the definitive LRO trajectory. When used in combination with the S-band tracking data, LR data help to improve the orbit accuracy in the radial direction to approximately 15 centimeters. In order to obtain highly accurate LR range measurements for precise orbit determination results, it is critical to closely model the behavior of the clocks both at the ground stations and on the spacecraft. LR provides a unique data set to calibrate the spacecraft clock. The LRO spacecraft clock is characterized by the LR data to a timing knowledge of 0.015 milliseconds over the entire 5 years of LR operation. We here present both the engineering setup of the LR experiments and the detailed analysis results of the LR data.

  18. The wide range in-core neutron measurement system used in the Windscale AGR concluding experiments

    International Nuclear Information System (INIS)

    Goodings, A.; Budd, J.; Wilson, I.

    1982-06-01

    The Windscale AGR Concluding Experiments included a comparison of theoretical and experimental power transients and required measurements of neutron flux as a function of position and time within the reactor core. These measurements were specified to cover as wide as possible working range and had to be made against the in-core gamma background of up to 4 x 10 7 R(hr) - 1 . The detectors were required to operate in special, channels cooled by reactor inlet carbon dioxide and the overall system needed a response time such that it could follow transients with doubling times down to 2s with an accuracy of 2 or 3%. These problems were solved by the use of gas ion fission chambers operating in the current fluctuation or Campbelling mode with unusually low filling pressures and fitted with special trilaminax mineral insulated cables. Ten detectors were built and nine were installed in the reactor, three in each of three special stringers at different radial positions. The paper describes the specification against which this system was built, the design process for the detectors, and commissioning experiments together with some of the problems which were encountered. (U.K.)

  19. Large scale propagation intermittency in the atmosphere

    Science.gov (United States)

    Mehrabi, Ali

    2000-11-01

    Long-term (several minutes to hours) amplitude variations observed in outdoor sound propagation experiments at Disneyland, California, in February 1998 are explained in terms of a time varying index of refraction. The experimentally propagated acoustic signals were received and recorded at several locations ranging from 300 meters to 2,800 meters. Meteorological data was taken as a function of altitude simultaneously with the received signal levels. There were many barriers along the path of acoustic propagation that affected the received signal levels, especially at short ranges. In a downward refraction situation, there could be a random change of amplitude in the predicted signals. A computer model based on the Fast Field Program (FFP) was used to compute the signal loss at the different receiving locations and to verify that the variations in the received signal levels can be predicted numerically. The calculations agree with experimental data with the same trend variations in average amplitude.

  20. Database for propagation models

    Science.gov (United States)

    Kantak, Anil V.

    1991-07-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  1. MANGO PROPAGATION

    Directory of Open Access Journals (Sweden)

    ALBERTO CARLOS DE QUEIROZ PINTO

    2018-03-01

    Full Text Available ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud as well as the main asexual propagation methods their uses and practices. Finally, pattern and quality of graft mangos and their commercialization aspects will be discussed in this Chapter.

  2. The wide range in-core neutron measurement system used in the Windscale AGR concluding experiments

    International Nuclear Information System (INIS)

    Goodings, A.; Budd, J.; Wilson, I.

    1982-06-01

    The Windscale AGR concluding experiments included a comparison of theoretical and experimental power transients and required measurements of neutron flux as a function of position and time within the reactor core. These measurements were specified to cover a working range as wide as possible and had to be made against the in-core gamma background of up to 4 x 10 7 R(hr) - 1 . The detectors were required to operate in special channels cooled by reactor inlet CO 2 and the overall system needed a response time such that it could follow transients with doubling times down to 2s with an accuracy of 2 or 3%. These problems were solved by the use of gas ion fission chambers operating in the current fluctuation or ''Campbelling'' mode. Their neutron to gamma sensitivity ratio was optimised by the use of unusually low filling pressures and they were fitted with special ''trilaminax'' mineral insulated cables to minimise the effects of electrical interference at the 100 kHz channel centre frequency. Ten detectors were built and nine were installed in the reactor, three in each of three special stringers at different radial positions. All were processed and tested for operation at 350 deg. C and their fissile coatings (430 μg cm - 1 of natural uranium) were matched to give individual neutron sensitivities with a population spread better than +- 6% about the mean. The mean absolute sensitivities were determined to about +- 5% against manganese foils in the NESTOR reactor at AEE Winfrith. The detectors were complemented by special signal processing channels which provided current fluctuation sensitivity and appropriate output signals to the experiment data acquisition system. These channels also permitted dc measurement of chamber current for more precise flux determination near reactor full power

  3. Light propagation and interaction observed with electrons

    Energy Technology Data Exchange (ETDEWEB)

    Word, Robert C.; Fitzgerald, J.P.S.; Könenkamp, R., E-mail: rkoe@pdx.edu

    2016-01-15

    We discuss possibilities for a microscopic optical characterization of thin films and surfaces based on photoemission electron microscopy. We show that propagating light with wavelengths across the visible range can readily be visualized, and linear and non-linear materials properties can be evaluated non-invasively with nanometer spatial resolution. While femtosecond temporal resolution can be achieved in pump-probe-type experiments, the interferometric approach presented here has typical image frame times of ~200 fs. - Highlights: • Non-linear photoemission electron micrographs are analyzed. • Optical properties of transparent and metallic thin films are determined. • Light propagation, surface plasmon resonances and energy transfer are discussed.

  4. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    Science.gov (United States)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  5. Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range: Implications for large terrestrial and Martian volcanic edifices

    International Nuclear Information System (INIS)

    Borgia, A.; Burr, J.; Montero, W.; Morales, L.D.; Alvarado, G.E.

    1990-01-01

    Long sublinear ridges and related scarps located at the base of large volcanic structures are frequently interpreted as normal faults associated with extensional regional stress. In contrast, the ridges bordering the Central Costa Rica volcanic range (CCRVR) are the topographic expression of hanging wall asymmetric angular anticlines overlying low-angle thrust faults at the base of the range. These faults formed by gravitational failure and slumping of the flanks of the range due to the weight of the volcanic edifices and were perhaps triggered by the intrusion of magma over the past 20,000 years. These anticlines are hypothesized to occur along the base of the volcano, where the thrust faults ramp up toward the sea bottom. Ridges and scarps between 2,000 and 5,000 m below sea level are interpreted as the topographic expression of these folds. The authors further suggest that the scarps of the CCRVR and valid scaled terrestrial analogs of the perimeter scarp of the Martian volcano Olympus Mons. They suggest that the crust below Olympus Mons has failed under the load of the volcano, triggering the radial slumping of the flanks of the volcano on basal thrusts. The thrusting would have, in turn, formed the anticlinal ridges and scarps that surround the edifice. The thrust faults may extend all the way to the base of the Martian crust (about 40 km), and they may have been active until almost the end of the volcanic activity. They suggest that gravitational failure and slumping of the flanks of volcanoes is a process common to most large volcanic edifices. In the CCRVR this slumping of the flanks is a slow intermittent process, but it could evolve to rapid massive avalanching leading to catastrophic eruptions. Thus monitoring of uplift and displacement of the folds related to the slump tectonics could become an additional effective method for mitigating volcanic hazards

  6. Effects of multiple scatter on the propagation and absorption of electromagnetic waves in a field-aligned-striated cold magneto-plasma: implications for ionospheric modification experiments

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  7. Re-interpretation of the ERMINE-V experiment validation of fission product integral cross section in the fast energy range

    Science.gov (United States)

    Ros, Paul; Leconte, Pierre; Blaise, Patrick; Naymeh, Laurent

    2017-09-01

    The current knowledge of nuclear data in the fast neutron energy range is not as good as in the thermal range, resulting in larger propagated uncertainties in integral quantities such as critical masses or reactivity effects. This situation makes it difficult to get the full benefit from recent advances in modeling and simulation. Zero power facilities such as the French ZPR MINERVE have already demonstrated that they can contribute to significantly reduce those uncertainties thanks to dedicated experiments. Historically, MINERVE has been mainly dedicated to thermal spectrum studies. However, experiments involving fast-thermal coupled cores were also performed in MINERVE as part of the ERMINE program, in order to improve nuclear data in fast spectra for the two French SFRs: PHENIX and SUPERPHENIX. Some of those experiments have been recently revisited. In particular, a full characterization of ZONA-1 and ZONA-3, two different cores loaded in the ERMINE V campaign, has been done, with much attention paid to possible sources of errors. It includes detailed geometric descriptions, energy profiles of the direct and adjoint fluxes and spectral indices obtained thanks to Monte Carlo calculations and compared to a reference fast core configuration. Sample oscillation experiments of separated fission products such as 103Rh or 99Tc, which were part of the ERMINE V program, have been simulated using recently-developed options in the TRIPOLI-4 code and compared to the experimental values. The present paper describes the corresponding results. The findings motivate in-depth studies for designing optimized coupled-core conditions in ZEPHYR, a new ZPR which will replace MINERVE and will provide integral data to meet the needs of Gen-III and Gen-IV reactors.

  8. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  9. Sound propagation in water containing large tethered spherical encapsulated gas bubbles with resonance frequencies in the 50 Hz to 100 Hz range.

    Science.gov (United States)

    Lee, Kevin M; Hinojosa, Kevin T; Wochner, Mark S; Argo, Theodore F; Wilson, Preston S; Mercier, Richard S

    2011-11-01

    The efficacy of large tethered encapsulated gas bubbles for the mitigation of low frequency underwater noise was investigated with an acoustic resonator technique. Tethered latex balloons were used as the bubbles, which had radii of approximately 5 cm. Phase speeds were inferred from the resonances of a water and balloon-filled waveguide approximately 1.8 m in length. The Commander and Prosperetti effective-medium model [J. Acoust. Soc. Am. 85, 732-746 (1989)] quantitatively described the observed dispersion from well below to just below the individual bubble resonance frequency, and it qualitatively predicted the frequency range of high attenuation for void fractions between 2% and 5% for collections of stationary balloons within the waveguide. A finite-element model was used to investigate the sensitivity of the waveguide resonance frequencies, and hence the inferred phase speeds, to changes in individual bubble size and position. The results indicate that large tethered encapsulated bubbles could be used mitigate low frequency underwater noise and that the Commander and Prosperetti model would be useful in the design of such a system.

  10. Long-range beam-beam experiments in the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Calaga, R; Fischer, W; Milas, N; Robert-Demolaize, G

    2014-01-01

    Long-range beam-beam effects are a potential limit to the LHC performance with the nominal design parameters, and certain upgrade scenarios under discussion. To mitigate long-range effects, current carrying wires parallel to the beam were proposed and space is reserved in the LHC for such wires. Two current carrying wires were installed in RHIC to study the effect of strong long-range beam-beam effects in a collider, as well as test the compensation of a single long-range interaction. The experimental data were used to benchmark simulations. We summarize this work

  11. Transverse heat transfer coefficient in the dual channel ITER TF CICCs Part II. Analysis of transient temperature responses observed during a heat slug propagation experiment

    Science.gov (United States)

    Lewandowska, Monika; Herzog, Robert; Malinowski, Leszek

    2015-01-01

    A heat slug propagation experiment in the final design dual channel ITER TF CICC was performed in the SULTAN test facility at EPFL-CRPP in Villigen PSI. We analyzed the data resulting from this experiment to determine the equivalent transverse heat transfer coefficient hBC between the bundle and the central channel of this cable. In the data analysis we used methods based on the analytical solutions of a problem of transient heat transfer in a dual-channel cable, similar to Renard et al. (2006) and Bottura et al. (2006). The observed experimental and other limits related to these methods are identified and possible modifications proposed. One result from our analysis is that the hBC values obtained with different methods differ by up to a factor of 2. We have also observed that the uncertainties of hBC in both methods considered are much larger than those reported earlier.

  12. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    International Nuclear Information System (INIS)

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-01-01

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. We also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths

  13. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.

    Science.gov (United States)

    Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A

    2018-03-01

    Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.

  14. Coupled Hydrodynamic and Wave Propagation Modeling for the Source Physics Experiment: Study of Rg Wave Sources for SPE and DAG series.

    Science.gov (United States)

    Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.

    2017-12-01

    This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.

  15. High-intensity subpicosecond laser pulse propagation in a 1-cm capillary tube and fast ignitor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malka, G.; Courtois, C.; Cros, B.; Matthieussent, G. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Gaz et des Plasmas; Blanchot, N.; Bonnaud, G.; Busquet, M.; Canaud, B.; Desenne, D.; Diskier, L.; Garconnet, J.P.; Louis-Jacquet, M.; Lefebvre, E.; Lours, L.; Mens, A.; Miquel, J.L.; Peyrusse, O.; Rousseaux, C. [CEA/Limeil Valenton, 94 - Villeneuve Saint Georges (France); Borghesi, M.; Gaillard, R.; Mackinnon, A.J.; Willi, O. [Imperial Coll., Plasma Physics Groups, London (United Kingdom); Danson, C.; Neely, D. [Rutherford Appleton Lab., Chilton (United Kingdom); Altenberd, D.; Feurer, T.; Forster, E.; Gibbon, P.; Sauerbray, R.; Teubner, U.; Theobald, W.; Uschmann, I. [Institut fur Optik und Quantenelektronik, Jena (Germany); Amiranoff, F.; Baton, S.; Gremillet, L.; Fuchs, J.; Marques, J.R. [Ecole Polytechnique, Lab. d' Utilisation de Lasers Intenses, CNRS-CEA, 91 - Palaiseau (France); Gallant, P.; Kieffer, J.C.; Pepin, H. [INRS Energie et Materiaux, Quebec (Canada); Adam, J.C.; Heron, A.; Laval, G.; Mora, P. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique

    2000-07-01

    We present an abstract of ultra short and intense laser plasma interaction experiments which were performed with the 100 TW P102 laser facility at CEA/Limeil-Valenton. Laser interaction at relativistic regime (I>10{sup 18} W/cm{sup 2}) has been investigated with different 'targets': overdense plasma, underdense plasma, free electrons and capillary tube. These experiments are of great interests for the Fast Ignitor concept and the Laser Particle Accelerator. (authors)

  16. High-intensity subpicosecond laser pulse propagation in a 1-cm capillary tube and fast ignitor experiments

    International Nuclear Information System (INIS)

    Malka, G.; Courtois, C.; Cros, B.; Matthieussent, G.; Borghesi, M.; Gaillard, R.; Mackinnon, A.J.; Willi, O.; Danson, C.; Neely, D.; Altenberd, D.; Feurer, T.; Forster, E.; Gibbon, P.; Sauerbray, R.; Teubner, U.; Theobald, W.; Uschmann, I.; Amiranoff, F.; Baton, S.; Gremillet, L.; Fuchs, J.; Marques, J.R.; Gallant, P.; Kieffer, J.C.; Pepin, H.; Adam, J.C.; Heron, A.; Laval, G.; Mora, P.

    2000-01-01

    We present an abstract of ultra short and intense laser plasma interaction experiments which were performed with the 100 TW P102 laser facility at CEA/Limeil-Valenton. Laser interaction at relativistic regime (I>10 18 W/cm 2 ) has been investigated with different 'targets': overdense plasma, underdense plasma, free electrons and capillary tube. These experiments are of great interests for the Fast Ignitor concept and the Laser Particle Accelerator. (authors)

  17. Medium-Range Dispersion Experiments Downwind from a Shoreline in Near Neutral Conditions

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Lyck, E.

    1980-01-01

    Five atmospheric dispersion experiments, all assigned Pasquill stability class D, were performed at Risø National Laboratory. The tracer sulphurhexafluoride was released at a height of 60 m from the Risø meteorological tower, situated on a peninsula in the Roskilde Fjord, Denmark, and was sampled...

  18. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE)

    International Nuclear Information System (INIS)

    Lucchesi, D M; Peron, R; Visco, M; Anselmo, L; Pardini, C; Bassan, M; Pucacco, G

    2015-01-01

    In this work, the Laser Ranged Satellites Experiment (LARASE) is presented. This is a research program that aims to perform new refined tests and measurements of gravitation in the field of the Earth in the weak field and slow motion (WFSM) limit of general relativity (GR). For this objective we use the free available data relative to geodetic passive satellite lasers tracked from a network of ground stations by means of the satellite laser ranging (SLR) technique. After a brief introduction to GR and its WFSM limit, which aims to contextualize the physical background of the tests and measurements that LARASE will carry out, we focus on the current limits of validation of GR and on current constraints on the alternative theories of gravity that have been obtained with the precise SLR measurements of the two LAGEOS satellites performed so far. Afterward, we present the scientific goals of LARASE in terms of upcoming measurements and tests of relativistic physics. Finally, we introduce our activities and we give a number of new results regarding the improvements to the modelling of both gravitational and non-gravitational perturbations to the orbit of the satellites. These activities are a needed prerequisite to improve the forthcoming new measurements of gravitation. An innovation with respect to the past is the specialization of the models to the LARES satellite, especially for what concerns the modelling of its spin evolution, the neutral drag perturbation and the impact of Earth's solid tides on the satellite orbit. (paper)

  19. Contributions to the uncertainty management in numerical modelization: wave propagation in random media and analysis of computer experiments

    International Nuclear Information System (INIS)

    Iooss, B.

    2009-01-01

    The present document constitutes my Habilitation thesis report. It recalls my scientific activity of the twelve last years, since my PhD thesis until the works completed as a research engineer at CEA Cadarache. The two main chapters of this document correspond to two different research fields both referring to the uncertainty treatment in engineering problems. The first chapter establishes a synthesis of my work on high frequency wave propagation in random medium. It more specifically relates to the study of the statistical fluctuations of acoustic wave travel-times in random and/or turbulent media. The new results mainly concern the introduction of the velocity field statistical anisotropy in the analytical expressions of the travel-time statistical moments according to those of the velocity field. This work was primarily carried by requirements in geophysics (oil exploration and seismology). The second chapter is concerned by the probabilistic techniques to study the effect of input variables uncertainties in numerical models. My main applications in this chapter relate to the nuclear engineering domain which offers a large variety of uncertainty problems to be treated. First of all, a complete synthesis is carried out on the statistical methods of sensitivity analysis and global exploration of numerical models. The construction and the use of a meta-model (inexpensive mathematical function replacing an expensive computer code) are then illustrated by my work on the Gaussian process model (kriging). Two additional topics are finally approached: the high quantile estimation of a computer code output and the analysis of stochastic computer codes. We conclude this memory with some perspectives about the numerical simulation and the use of predictive models in industry. This context is extremely positive for future researches and application developments. (author)

  20. Etiologic Diagnosis of Infective Endocarditis by Broad-Range Polymerase Chain Reaction: A 3-Year Experience

    OpenAIRE

    Bosshard, Philipp Peter; Kronenberg, Andreas; Zbinden, Reinhard; Ruef, Christian; Böttger, Erik Christian; Altwegg, Martin

    2017-01-01

    We analyzed surgically resected endocardial specimens from 49 patients by broad-range PCR. PCR results were compared with (1) results of previous blood cultures, (2) results of culture and Gram staining of resected specimens, and (3) clinical data (Duke criteria). Molecular analyses of resected specimens and previous blood cultures showed good overall agreement. However, in 18% of patients with sterile blood cultures, bacterial DNA was found in the resected materials. When data from patients ...

  1. Students' experiences of blended learning across a range of postgraduate programmes.

    Science.gov (United States)

    Smyth, Siobhan; Houghton, Catherine; Cooney, Adeline; Casey, Dympna

    2012-05-01

    The article describes the students' experiences of taking a blended learning postgraduate programme in a school of nursing and midwifery. The indications to date are that blended learning as a pedagogical tool has the potential to contribute and improve nursing and midwifery practice and enhance student learning. Little is reported about the students' experiences to date. Focus groups were conducted with students in the first year of introducing blended learning. The two main themes that were identified from the data were (1) the benefits of blended learning and (2) the challenges to blended learning. The blended learning experience was received positively by the students. A significant finding that was not reported in previous research was that the online component meant little time away from study for the students suggesting that it was more invasive on their everyday life. It is envisaged that the outcomes of the study will assist educators who are considering delivering programmes through blended learning. It should provide guidance for further developments and improvements in using Virtual Learning Environment (VLE) and blended learning in nurse education. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. EclipseMob: Results from a nation-wide citizen science experiment on the effects of the 2017 Solar Eclipse on Low-frequency (LF) Radio Propagation

    Science.gov (United States)

    Liles, W. C.; Lukes, L.; Nelson, J.; Henry, J.; Oputa, J.; Kerby-Patel, K. C.

    2017-12-01

    Early experiments to study the effects of a solar eclipse on radio wave propagation were done with either a limited number of sites before any theory of the ionosphere had been confirmed or involved collecting data that proved to be unusable because submissions were missing critical information such as date, time or location. This study used the 2017 solar eclipse over the continental U.S. to conduct the first wide-area (across the U.S.) low-frequency (LF) propagation study. The data collection process was crowdsourced through the engagement of students/educators, citizens, ham radio enthusiasts, and the scientific community. In order to accomplish data collection by geographically dispersed citizen scientists, the EclipseMob team designed and shared a low cost, low tool/skill DIY receiver system to collect LF data that leveraged existing cell phone technology and made the experiment more accessible to students and people with no prior experience constructing electronic systems. To support engagement, in addition to web guides (eclipsemob..org), EclipseMob supplied 150 DIY kits and provided build/Q&A webinars and events. For the experiment, participants constructed a simple receiver system consisting of a homemade antenna, a simple homemade receiver to convert the radio frequency (RF) signals to audio frequencies, and a smart phone app. Before, during, and after the eclipse, participants used their receiver systems to record transmitter signal data from WWVB located near Fort Collins, Colorado on 60.000 kHz (a U.S. frequency standard that is operated by NIST and transmits time codes). A second frequency, 55.500 kHz transmitted by a LF station in Dixon, CA was also used. By using the time, date and location features of the smart phone, the problems experienced in earlier experiments could be minimized. By crowdsourcing the observation sites across the U.S., data from a number of different short, medium and long- paths could be obtained as the total eclipse crossed

  3. The experiment 787 high efficiency photon veto detector in the 20 - 300 MEV range

    International Nuclear Information System (INIS)

    Poutissou, J. M.

    1992-12-01

    Experiment E787 is searching for the rare decay K → πνν at the Brookhaven Alternating Gradient Synchrotron (AGS). To suppress the background from the dominant K → ππ o branch, a fast lead scintillator sandwich veto assembly system was used. An inefficiency level of ∼ 1 x 10 -6 has been achieved for detecting π o . The limitations are in part geometrical in part due to photonuclear interactions. Our present understanding of these limitations will be presented together with our upgrading plans using pure CSI crystals. (author). 7 refs., 4 figs

  4. TESIS experiment on study of solar corona in EUV spectral range (CORONAS-PHOTON project)

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Zhitnik, I.A.; Ignat'ev, A.P.; Mitrofanov, A.V.; Pertsov, A.A.; Bugaenko, O.I.

    2005-01-01

    A new orbital station, namely: the CORONAS-PHOTON one (to be launched in 2006) equipped with systems to explore Sun at the intensification period of the solar activity 24-th cycle and at its peak is being designed within the framework of the CORONAS National Sun Space Exploration Program. The station equipment consists of systems to observe Sun within the spectral soft X-ray and vacuum ultraviolet bands. Paper lists and describes the TESIS experiment tools designed for the CORONAS-PHOTON Project to ensure the Sun atmospheric research within short-wave band [ru

  5. A Range-Wide Experiment to Investigate Nutrient and Soil Moisture Interactions in Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Rodney E. Will

    2015-06-01

    Full Text Available The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction and fertilization (complete suite of nutrients. Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.

  6. Generation and propagation of an electromagnetic pulse in the Trigger experiment and its possible role in electron acceleration

    Science.gov (United States)

    Kelley, M. C.; Kintner, P. M.; Kudeki, E.; Holmgren, G.; Bostrom, R.; Fahleson, U. V.

    1980-01-01

    Instruments onboard the Trigger payload detected a large-amplitude, low-frequency, electric field pulse which was observed with a time delay consistent only with an electromagnetic wave. A model for this perturbation is constructed, and the associated field-aligned current is calculated as a function of altitude. This experiment may simulate the acceleration mechanism which results in the formation of auroral arcs, and possibly even other events in cosmic plasmas.

  7. Beam propagation

    International Nuclear Information System (INIS)

    Hermansson, B.R.

    1989-01-01

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  8. Evaluation of ARAC`s participation in a long-range transport experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pace, J.C.; Pobanz, B.M.; Foster, C.S.; Baskett, R.L.; Vogt, P.J.; Schalk, W.W. III

    1995-08-01

    The 1994 European Tracer Experiment (ETEX) involved two releases of inert tracer gas in western France, allowing subsequent detection at many locations across Europe. Twenty four operational and research facilities from 20 countries made predictions of the motion of the released plume and the resulting concentrations detected at the sampler locations. This paper describes participation by the Lawrence Livermore National Laboratory`s Atmospheric Release Advisory Capability (ARAC) in ETEX. In its role as a real-time emergency response center, ARAC operates a suite of numerical models which simulate the advection and diffusion of airborne releases, and which calculate the estimated downwind concentration of the released material. The models and procedures used by ARAC to participate in ETEX were essentially the same as those which would be used to respond to a release at any previously unspecified location.

  9. Evaluation of ARAC's participation in a long-range transport experiment

    International Nuclear Information System (INIS)

    Pace, J.C.; Pobanz, B.M.; Foster, C.S.; Baskett, R.L.; Vogt, P.J.; Schalk, W.W. III.

    1995-08-01

    The 1994 European Tracer Experiment (ETEX) involved two releases of inert tracer gas in western France, allowing subsequent detection at many locations across Europe. Twenty four operational and research facilities from 20 countries made predictions of the motion of the released plume and the resulting concentrations detected at the sampler locations. This paper describes participation by the Lawrence Livermore National Laboratory's Atmospheric Release Advisory Capability (ARAC) in ETEX. In its role as a real-time emergency response center, ARAC operates a suite of numerical models which simulate the advection and diffusion of airborne releases, and which calculate the estimated downwind concentration of the released material. The models and procedures used by ARAC to participate in ETEX were essentially the same as those which would be used to respond to a release at any previously unspecified location

  10. Short-range dynamics and prediction of mesoscale flow patterns in the MISTRAL field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O.; Kaufmann, P.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In a limited area of about 50 km by 50 km with complex topography, wind measurements on a dense network were performed during the MISTRAL field experiment in 1991-1992. From these data the characteristic wind fields were identified by an automated classification method. The dynamics of the resulting twelve typical regional flow patterns is studied. It is discussed how transitions between the flow patterns take place and how well the transition probabilities can be described in the framework of a Markov model. Guided by this discussion, a variety of prediction models were tested which allow a short-term forecast of the flow pattern type. It is found that a prediction model which uses forecast information from the synoptic scale has the best forecast skill. (author) 2 figs., 7 refs.

  11. Recent ion cyclotron range of frequencies experiments in JT-60U

    International Nuclear Information System (INIS)

    Kimura, H.; Fujii, T.; Saigusa, M.; Moriyama, S.; Sato, M.; Nemoto, M.; Kondoh, T.; Hamamatsu, K.

    1995-01-01

    Recent results on the minority ion second harmonic heating on JT-60U are presented. Maximum coupled power reached 6.4MW. Good antenna-plasma coupling capability and a small fraction (less than 10%) of an incremental radiation loss to r.f. power are confirmed. Power absorption rate increases with increasing r.f. power and is saturated around unity at r.f. powers higher than 3MW. The sawtooth stabilization by minority ion second harmonic heating was realized over a wide parameter range, i.e. I P =0.9MA-4MA, q 95 =2.3-8.6, n e =(1.3-5)x10 19 m -3 and P IC ≥2.2MW. A figure of merit V P left angle n e right angle /P tot for efficiency of the sawtooth stabilization is about 50% higher than those in other devices where fundamental resonance minority ion heating is employed. The longest stable period reached 2.33s. Attainable sawtooth-free periods scale with the resistive diffusion time. It was found that the energy confinement is further improved by 25% during the reheating phase after the giant sawtooth crash. The electron temperature profile became more peaked at the improved confinement phase. Those phenomena were observed only in low q discharges (q 95 ≤2.9). ((orig.))

  12. Laser-driven Mach waves for gigabar-range shock experiments

    Science.gov (United States)

    Swift, Damian; Lazicki, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph

    2017-10-01

    Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should be tested at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Two-phase CFD PTS validation in an extended range of thermohydraulics conditions covered by the COSI experiment

    International Nuclear Information System (INIS)

    Coste, P.; Ortolan, A.

    2014-01-01

    Highlights: • Models for large interfaces in two-phase CFD were developed for PTS. • The COSI experiment is used for NEPTUNE C FD integral validation. • COSI is a PWR cold leg scaled 1/100 for volume. • Fifty runs are calculated, covering a large range of flow configurations. • The CFD predicting capability is analysed using global and local measurements. - Abstract: In the context of the Pressurized Water Reactors (PWR) life duration safety studies, some models were developed to address the Pressurized Thermal Shock (PTS) from the two-phase CFD angle, dealing with interfaces much larger than cells size and with direct contact condensation. Such models were implemented in NEPTUNE C FD, a 3D transient Eulerian two-fluid model. The COSI experiment is used for its integral validation. It represents a cold leg scaled 1/100 for volume and power from a 900 MW PWR under a large range of LOCA PTS conditions. In this study, the CFD is evaluated in the whole range of parameters and flow configurations covered by the experiment. In a first step, a single choice of mesh and CFD models parameters is fixed and justified. In a second step, fifty runs are calculated. The CFD predicting capability is analysed, comparing the liquid temperature and the total condensation rate with the experiment, discussing their dependency on the inlet cold liquid rate, on the liquid level in the cold leg and on the difference between co-current and counter-current runs. It is shown that NEPTUNE C FD 1.0.8 calculates with a fair agreement a large range of flow configurations related to ECCS injection and steam condensation

  14. Scattering from extended targets in range-dependent fluctuating ocean-waveguides with clutter from theory and experiments.

    Science.gov (United States)

    Jagannathan, Srinivasan; Küsel, Elizabeth T; Ratilal, Purnima; Makris, Nicholas C

    2012-08-01

    Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green's theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target's depth extent is shown to accurately describe the statistics of the targets' scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.

  15. Propagating separable equalities in an MDD store

    DEFF Research Database (Denmark)

    Hadzic, Tarik; Hooker, John N.; Tiedemann, Peter

    2008-01-01

    We present a propagator that achieves MDD consistency for a separable equality over an MDD (multivalued decision diagram) store in pseudo-polynomial time. We integrate the propagator into a constraint solver based on an MDD store introduced in [1]. Our experiments show that the new propagator pro...... provides substantial computational advantage over propagation of two inequality constraints, and that the advantage increases when the maximum width of the MDD store increases....

  16. The propagation of Escherichia Coli and of conservative tracers. A comparison

    International Nuclear Information System (INIS)

    Alexander, I.; Seiler, K.P.

    1982-01-01

    The propagation of Escherichia Coli (ATCC 11229, Gelsenkirchen) is compared with that of conservative tracers in groundwater. The experiments were performed with injection quantities of 10 7 , 10 8 , 10 10 and 10 11 of Escherichia Coli. Both, bacteria and conservative tracers pass their maximum at the same instant in the observation gauges. With injection quantities of more than 10 8 , the propagation of the Escherichia Coli sets in at the same time as it begins with the dyes. When the quantities range below 10 8 , the propagation begins after that of conservative tracers, because Coli bacteria were measured with a lower degree of detecting sensitivity than the tracers. With Coli injection quantities ranging above 10 10 , an increased filtering of these bacteria can be observed. Coli bacteria propagate more laterally than conservative tracers, however it could not be proved that this lateral propagation depends on the bacteria concentration. (orig.) [de

  17. Pulse propagation in tapered wiggler free electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered wiggler devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristcs are presented and are found to change considerably over this range

  18. Theoretical and Experimental Study on Vibration Propagation in PMMA Components in Ultrasonic Bonding Process

    Directory of Open Access Journals (Sweden)

    Yibo Sun

    2017-03-01

    Full Text Available Ultrasonic bonding has an increasing application in the micro assembly of polymeric micro-electro mechanical systems (MEMS with high requirements for fusion precision. In the ultrasonic bonding process, the propagation of ultrasonic vibration in polymer components is related to the interfacial fusion, which can be used as a monitoring parameter to control ultrasonic energy. To study the vibration propagation in viscoelastic polymer components, finite element analysis on the bonding of poly methyl methacrylate (PMMA micro connector to substrate for microfluidic system is carried out. Curves of propagated vibration amplitude corresponding to interfacial temperatures are obtained. The ultrasonic vibration propagated in PMMA components are measured through experiments. The theoretical and experimental results are contrasted to analyze the change mechanism of vibration propagation related to temperature. Based on the ultrasonic bonding process controlled by the feedback of vibration propagation, interfacial fusions at different vibration propagation states are obtained through experiments. Interfacial fusion behavior is contrasted to the propagated vibration amplitude in theoretical and experimental studies. The relation between vibration propagation and fusion degree is established with the proper parameter range for the obtained high quality bonding.

  19. The European tracer experiment ETEX: a real-time long range atmospheric dispersion model exercise in different weather conditions

    International Nuclear Information System (INIS)

    Graziani, G.; )

    1998-01-01

    Two long-range tracer experiments were conducted. An inert, non-depositing tracer was being released at Rennes in France for 12 hours. The 168 sampling ground stations were run by the National Meteorological Services. Twenty-four institutions took part in the real-time forecasting of the cloud evolution using 28 long-range dispersion models. The horizontal projection of the cloud evolution over Europe was combined with real-time aerial chemical analysis. The results of the comparison indicate that a limited group of models (7-8) were capable of obtaining a good reproduction of the cloud movement throughout Europe for the first release. Large differences were, however, found in the predicted tracer concentration at a particular location. For the second release, there were large differences between the measured and calculated cloud, particularly after a front passage, which indicates that some efforts have still to be spent before consensus on the model reliability is achieved. (P.A.)

  20. First operational experience with the LHC machine protection system when operating with beam energies beyond the 100MJ range

    CERN Document Server

    Assmann, R; Ferro-Luzzi, M; Goddard, B; Lamont, M; Schmidt, R; Siemko, A; Uythoven, J; Wenninger, J; Zerlauth, M

    2012-01-01

    The Large Hadron Collider (LHC) at CERN has made remarkable progress during 2011, surpassing its ambitious goal for the year in terms of luminosity delivered to the LHC experiments. This achievement was made possible by a progressive increase of beam intensities by more than 5 orders of magnitude during the first months of operation, reaching stored beam energies beyond the 100MJ range at the end of the year, less than a factor of 4 from the nominal design value. The correct functioning of the machine protection systems is vital during the different operational phases, for initial operation and even more when approaching nominal beam parameters where already a small fraction of the stored energy is sufficient to damage accelerator equipment or experiments in case of uncontrolled beam loss. Safe operation of the machine in presence of such high intensity proton beams is guaranteed by the interplay of many different systems: beam dumping system, beam interlocks, beam instrumentation, equipment monitoring, colli...

  1. Basis to demonstrate compliance with the National Emission Standards for Hazardous Air Pollutants for the Stand-off Experiments Range

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sandvig

    2011-01-01

    The purpose of this report is to provide the basis and the documentation to demonstrate general compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPS) 40 CFR 61 Subpart H, “National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities,” (the Standard) for outdoor linear accelerator operations at the Idaho National Laboratory (INL) Stand-off Experiments Range (SOX). The intent of this report is to inform and gain acceptance of this methodology from the governmental bodies regulating the INL.

  2. Damage localisation and fracture propagation in granite: 4D synchrotron x-ray microtomographic observations from an in-situ triaxial deformation experiment at SOLEIL

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Fusseis, Florian; Butler, Ian; Flynn, Michael; King, Andrew

    2017-04-01

    To date, most studies of damage localisation and failure have utilised indirect techniques to visualise the pathway to failure. The advent of synchrotron tomography and x-ray transparent experimental cells provides for the first time the opportunity to image localisation and fracture propagation in-situ, in real time with spatial resolutions of a few microns. We present 4D x-ray microtomographic data collected during a triaxial deformation experiment carried out at the imaging beamline PSICHE at the French Synchrotron SOLEIL. The data document damage localisation and fracture propagation in a microgranite. The sample was deformed at 15 MPa confining pressure and 3x10-5 s-1 strain rate, in a novel, miniature, x-ray transparent, triaxial deformation apparatus, designed and built at the University of Edinburgh. We used a 2.97 mm diameter x 9.46 mm long cylindrical sample of Ailsa Craig microgranite, heat treated to 600 ˚ C to introduce flaws in the form of pervasive crack damage. As the sample was loaded to failure, 21 microtomographic volumes were acquired in intervals of 5-20 MPa (decreasing as failure approached), including one scan at peak differential stress of 200 MPa (1.4 kN end load) and three post-failure scans. The scan at peak stress contained the incipient fault, and the sample failed immediately when loading continued afterwards. During scanning, a constant stress level was maintained. Individual datasets were collected in ˜10 minutes using a white beam with an energy maximum at 66 keV in a spiral configuration. Reconstructions yielded image stacks with a dimension of 1700x1700x4102 voxels with a voxel size of 2.7 μm. We analysed damage localisation and fracture propagation in the time series data. Fractures were segmented from the image data using a Multiscale Hessian fracture filter [1] and analysed for their orientations, dimensions and spatial distributions and changes in these properties during loading. Local changes in volumetric and shear

  3. Propagation speed of gamma radiation in brass

    International Nuclear Information System (INIS)

    Cavalcante, Jose T.P.D.; Silva, Paulo R.J.; Saitovich, Henrique

    2009-01-01

    The propagation speed (PS) of visible light -represented by a short frequency range in the large frame of electromagnetic radiations (ER) frequencies- in air was measured during the last century, using a great deal of different methods, with high precision results being achieved. Presently, a well accepted value, with very small uncertainty, is c= 299,792.458 Km/s) (c reporting to the Latin word celeritas: 'speed swiftness'). When propagating in denser material media (MM), such value is always lower when compared to the air value, with the propagating MM density playing an important role. Until present, such studies focusing propagation speeds, refractive indexes, dispersions were specially related to visible light, or to ER in wavelengths ranges dose to it, and with a transparent MM. A first incursion in this subject dealing with γ-rays was performed using an electronic coincidence counting system, when the value of it's PS was measured in air, C γ(air) 298,300.15 Km/s; a method that went on with later electronic improvements. always in air. To perform such measurements the availability of a γ-radiation source in which two γ-rays are emitted simultaneously in opposite directions -as already used as well as applied in the present case- turns out to be essential to the feasibility of the experiment, as far as no reflection techniques could be used. Such a suitable source was the positron emitter 22 Na placed in a thin wall metal container in which the positrons are stopped and annihilated when reacting with the medium electrons, in such way originating -as it is very well established from momentum/energy conservation laws - two gamma-rays, energy 511 KeV each, both emitted simultaneously in opposite directions. In all the previous experiments were used photomultiplier detectors coupled to NaI(Tl) crystal scintillators, which have a good energy resolution but a deficient time resolution for such purposes. Presently, as an innovative improvement, were used BaF 2

  4. A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems.

    Science.gov (United States)

    Konarev, Petr V; Svergun, Dmitri I

    2015-05-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) experiments on solutions provide rapidly decaying scattering curves, often with a poor signal-to-noise ratio, especially at higher angles. On modern instruments, the noise is partially compensated for by oversampling, thanks to the fact that the angular increment in the data is small compared with that needed to describe adequately the local behaviour and features of the scattering curve. Given a (noisy) experimental data set, an important question arises as to which part of the data still contains useful information and should be taken into account for the interpretation and model building. Here, it is demonstrated that, for monodisperse systems, the useful experimental data range is defined by the number of meaningful Shannon channels that can be determined from the data set. An algorithm to determine this number and thus the data range is developed, and it is tested on a number of simulated data sets with various noise levels and with different degrees of oversampling, corresponding to typical SAXS/SANS experiments. The method is implemented in a computer program and examples of its application to analyse the experimental data recorded under various conditions are presented. The program can be employed to discard experimental data containing no useful information in automated pipelines, in modelling procedures, and for data deposition or publication. The software is freely accessible to academic users.

  5. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2016-08-01

    Full Text Available Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  6. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi

    2016-08-11

    Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  7. Propagation of dynamic measurement uncertainty

    International Nuclear Information System (INIS)

    Hessling, J P

    2011-01-01

    The time-dependent measurement uncertainty has been evaluated in a number of recent publications, starting from a known uncertain dynamic model. This could be defined as the 'downward' propagation of uncertainty from the model to the targeted measurement. The propagation of uncertainty 'upward' from the calibration experiment to a dynamic model traditionally belongs to system identification. The use of different representations (time, frequency, etc) is ubiquitous in dynamic measurement analyses. An expression of uncertainty in dynamic measurements is formulated for the first time in this paper independent of representation, joining upward as well as downward propagation. For applications in metrology, the high quality of the characterization may be prohibitive for any reasonably large and robust model to pass the whiteness test. This test is therefore relaxed by not directly requiring small systematic model errors in comparison to the randomness of the characterization. Instead, the systematic error of the dynamic model is propagated to the uncertainty of the measurand, analogously but differently to how stochastic contributions are propagated. The pass criterion of the model is thereby transferred from the identification to acceptance of the total accumulated uncertainty of the measurand. This increases the relevance of the test of the model as it relates to its final use rather than the quality of the calibration. The propagation of uncertainty hence includes the propagation of systematic model errors. For illustration, the 'upward' propagation of uncertainty is applied to determine if an appliance box is damaged in an earthquake experiment. In this case, relaxation of the whiteness test was required to reach a conclusive result

  8. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  9. Propagation phenomena in real world networks

    CERN Document Server

    Fay, Damien; Gabryś, Bogdan

    2015-01-01

    Propagation, which looks at spreading in complex networks, can be seen from many viewpoints; it is undesirable, or desirable, controllable, the mechanisms generating that propagation can be the topic of interest, but in the end all depends on the setting. This book covers leading research on a wide spectrum of propagation phenomenon and the techniques currently used in its modelling, prediction, analysis and control. Fourteen papers range over topics including epidemic models, models for trust inference, coverage strategies for networks, vehicle flow propagation, bio-inspired routing algorithms, P2P botnet attacks and defences, fault propagation in gene-cellular networks, malware propagation for mobile networks, information propagation in crisis situations, financial contagion in interbank networks, and finally how to maximize the spread of influence in social networks. The compendium will be of interest to researchers, those working in social networking, communications and finance and is aimed at providin...

  10. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    Science.gov (United States)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi

  11. The initial magnetic susceptibility of polydisperse ferrofluids: A comparison between experiment and theory over a wide range of concentration

    International Nuclear Information System (INIS)

    Solovyova, Anna Y.; Goldina, Olga A.; Ivanov, Alexey O.; Elfimova, Ekaterina A.; Lebedev, Aleksandr V.

    2016-01-01

    Temperature dependencies of the static initial magnetic susceptibility for ferrofluids at various concentrations are studied using experiment and statistical-mechanical theories. Magnetic susceptibility measurements are carried out for twelve samples of magnetite-based fluids stabilized with oleic acid over a wide range of temperatures (210 K ≲T ≲ 390 K); all samples have the same granulometric composition but different volume ferroparticle concentrations (0.2 ≲ φ ≲ 0.5). Experimental results are analyzed using three theories: the second-order modified mean-field theory (MMF2) [A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 41405 (2001)]; its correction for polydisperse ferrofluids arising from Mayer-type cluster expansion and taking into account the first terms of the polydisperse second virial coefficient [A. O. Ivanov and E. A. Elfimova, J. Magn. Magn. Mater 374, 327 (2015)]; and a new theory based on MMF2 combined with the first terms of the polydisperse second and third virial contributions to susceptibility. It turns out that the applicability of each theory depends on the experimental sample density. If twelve ferrofluid samples are split into three groups of strong, moderate, and low concentrated fluids, the temperature dependences of the initial magnetic susceptibility in each group are very precisely described by one of the three theories mentioned above. The determination of a universal formula predicting a ferrofluid susceptibility over a broad range of concentrations and temperatures remains as a challenge.

  12. Shock recovery experiments in the range of 10 to 45 GPa - comparison of results of synthetic magnetite and terrestrial diabase

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Pesonen, L.; Deutsch, A.; Honnermann, U.

    89 /53/, Fall Meeting Supplement (2008), , GP21C-0790-GP21C-0790 ISSN 0096-3941. [American Geophysical Union Fall Meeting. 15.12.2008-19.12.2008, San Francisco] Institutional research plan: CEZ:AV0Z30130516 Keywords : shock experiments * magnetite * diabase Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.agu.org/cgi-bin/SFgate/SFgate?language=English&verbose=0&listenv=table&application=fm08&convert=&converthl=&refinequery=&formintern=&formextern=&transquery=kohout&_lines=&multiple=0&descriptor=%2fdata%2fepubs%2fwais%2findexes%2ffm08%2ffm08%7c766%7c5433%7cShock%20recovery%20experiments%20in%20the%20range%20of%2010%20to%2045%20GPa%20-%20comparison%20of%20results%20of%20synthetic%20magnetite%20and%20terrestrial%20diabase%7cHTML%7clocalhost:0%7c%2fdata%2fepubs%2fwais%2findexes%2ffm08%2ffm08%7c19257669%2019263102%20%2fdata2%2fepubs%2fwais%2fdata%2ffm08%2ffm08.txt

  13. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    Science.gov (United States)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  14. Friction and drag forces on spheres propagating down inclined planes

    Science.gov (United States)

    Tee, Yi Hui; Longmire, Ellen

    2017-11-01

    When a submerged sphere propagates along an inclined wall at terminal velocity, it experiences gravity, drag, lift, and friction forces. In the related equations of motion, the drag, lift and friction coefficients are unknown. Experiments are conducted to determine the friction and drag coefficients of the sphere over a range of Reynolds numbers. Through high speed imaging, translational and rotational velocities of spheres propagating along a glass plate are determined in liquids with several viscosities. The onset of sliding motion is identified by computing the dimensionless rotation rate of the sphere. Using drag and lift coefficients for Re friction coefficients are calculated for several materials. The friction coefficients are then employed to estimate the drag coefficient for 350 frictional force over this Re range. Supported by NSF (CBET-1510154).

  15. Rapid Vegetative Propagation Method for Carob

    OpenAIRE

    Hamide GUBBUK; Esma GUNES; Tomas AYALA-SILVA; Sezai ERCISLI

    2011-01-01

    Most of fruit species are propagated by vegetative methods such as budding, grafting, cutting, suckering, layering etc. to avoid heterozygocity. Carob trees (Ceratonia siliqua L.) are of highly economical value and are among the most difficult to propagate fruit species. In the study, air-layering propagation method was investigated first time to compare wild and cultivated (�Sisam�) carob types. In the experiment, one year old carob limbs were air-layered on coco peat medium by wrapping with...

  16. Restrained shrinkage experiments on coated particle fuel compacts in the temperature range 600-1200 deg C

    International Nuclear Information System (INIS)

    Blackstone, R.; Veringa, H.J.; Loelgen, R.

    1976-05-01

    Information on irradiation induced creep in reactor graphite and in fuel compact material is an essential ingredient in the design of any reactor core layout, because the creep plasticity of these materials diminishes the stresses which are built up in the fuel element during reactor operation. The restrained shrinkage method in which the shrinkage of a dumbbell shaped creep specimen is restrained by a graphite material which shows less irradiation shrinkage, offers a good possibility of performing a large series of tensile creep experiments in a limited irradiation volume. The irradiations, evaluations and the results of a series of restrained shrinkage experiments in which six different materials were tested, of which five were dummy coated particle compacts and one pure matrix material are described and discussed. These materials were irradiated in the High Flux Reactor of the Euratom Joint Research Centre in Petten/Netherlands. The irradiations were performed in three successive capsules at irradiation temperatures of 600 deg C, 900 deg C, 1050 deg C and 1200 deg C up to a neutron fluence of maximum 3x10 21 n.cm 2 (DNE). The post-irradiation examinations yielded plastic strains up to 2,3%, and values for the radiation creep coefficient were calculated, ranging from 4 to 8.10 -12 at 600 deg C and 8 to 30.10 -12 at 1200 deg C always given per dyn.cm -2 tensile stresses and per 10 20 n.cm -2 fluence units. Generally it was found that the creep behavior of these materials and the temperature dependence of the creep process could be compared with those for normal reactor graphites

  17. Bubble propagation in Hele-Shaw channels with centred constrictions

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    2018-04-01

    We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred occlusion (termed a rail) is introduced to provide a small axially uniform depth constriction. For bubbles wide enough to span the channel, the system’s behaviour is similar to that of semi-infinite fingers and a symmetric static solution is stable. Here, we focus on smaller bubbles, in which case the symmetric static solution is unstable and the static bubble is displaced towards one of the deeper regions of the channel on either side of the rail. Using a combination of experiments and numerical simulations of a depth-averaged model, we show that a bubble propagating axially due to a small imposed flow rate can be stabilised in a steady symmetric mode centred on the rail through a subtle interaction between stabilising viscous forces and destabilising surface tension forces. However, for sufficiently large capillary numbers Ca, the ratio of viscous to surface tension forces, viscous forces in turn become destabilising thus returning the bubble to an off-centred propagation regime. With decreasing bubble size, the range of Ca for which steady centred propagation is stable decreases, and eventually vanishes through the coalescence of two supercritical pitchfork bifurcations. The depth-averaged model is found to accurately predict all the steady modes of propagation observed experimentally, and provides a comprehensive picture of the underlying steady bifurcation structure. However, for sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady propagating state of changed topology.

  18. Propagation of normal zones in composite superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1976-08-01

    This paper describes calculations of propagation velocities of normal zones in composite superconductors. Full accounting is made for (1) current sharing, (2) the variation with temperature of the thermal conductivity of the copper matrix, and the specific heats of the matrix and the superconductor, and (3) the variation with temperature of the steady-state heat transfer at a copper-helium interface in the nucleate-boiling, transition, and film-boiling ranges. The theory, which contains no adjustable parameters, is compared with experiments on bare (uninsulated) conductors. Agreement is not good. It is concluded that the effects of transient heat transfer may need to be included in the theory to improve agreement with experiment

  19. Curvilinear crack layer propagation

    Science.gov (United States)

    Chudnovsky, Alexander; Chaoui, Kamel; Moet, Abdelsamie

    1987-01-01

    An account is given of an experiment designed to allow observation of the effect of damage orientation on the direction of crack growth in the case of crack layer propagation, using polystyrene as the model material. The direction of crack advance under a given loading condition is noted to be determined by a competition between the tendency of the crack to maintain its current direction and the tendency to follow the orientation of the crazes at its tip. The orientation of the crazes is, on the other hand, determined by the stress field due to the interaction of the crack, the crazes, and the hole. The changes in craze rotation relative to the crack define the active zone rotation.

  20. Controlling wave propagation through nonlinear engineered granular systems

    Science.gov (United States)

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  1. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  2. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  3. Wall effects on the propagation of compressional Alfven waves in a cylindrical plasma with two-ion species

    International Nuclear Information System (INIS)

    Akiyama, H.; Hayler, M.O.; Kristiansen, M.

    1985-01-01

    The dispersion relations for the compressional Alfven waves in a two-ion species plasma of deuterium and hydrogen are calculated for a configuration which includes a vacuum layer between the cylindrical plasma and the conducting wall. The presence of the vacuum layer strongly affects the propagation of the compressional Alfven wave, permitting some branches to propagate and penetrate the plasma column over most frequencies in the ion-cyclotron range. Basic Alfven-wave propagation and heating experiments in two-ion species consequently should be possible using tokamak and mirror devices with minor radii smaller than the Alfven wavelength

  4. Characteristics of shock propagation in high-strength cement mortar

    Science.gov (United States)

    Wang, Zhanjiang; Li, Xiaolan; Zhang, Ruoqi

    2001-06-01

    Planar impact experiments have been performed on high-strength cement mortar to determine characteristics of shock propagation.The experiments were conducted on a light-gas gun,and permanent-magnet particle velocity gages were used to obtain the sand of 0.5 3.5mm size.A bulk density of 2.31g/cm^3,and a compressive and tensile strength of 82MPa and 7.8MPa,respectively,were determined.Three kinds of experimental techniques were used,including the reverse ballistic configuration.These techniques effectively averaged the measured dynamic compression state over a sensibly large volume of the test sample.The impact velocities were controlled over a range of approximately 80m/s to 0.83km/s.Hugoniot equation of state data were obtained for the material over a pressure range of approximately 0.2 2.0GPa,and its nonlinear constitutive relation were analyzed.The experiment results show that,in higher pressure range provided in the experiment,the shock wave in the material splits into two components of an elastic and a plastic,with the Hugoniot elastic limit 0.4 0.5GPa and the precursor velocity about 4.7km/s,and the material presents a very strong nonlinear dynamic response,and its shock amplitude will greatly decrease in propagation.

  5. Vertical laser beam propagation through the troposphere

    Science.gov (United States)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  6. The search for forest facts: a history of the Pacific Southwest Forest and Range Experiment Station, 1926–2000

    Science.gov (United States)

    Anthony. Godfrey

    2013-01-01

    In 1926, the California Forest Experiment Station, which later became the Pacific Southwest (PSW) Research Station, was established at the University of California, Berkeley. Today, the PSW Research Station represents the research and development branch of the USDA Forest Service in California and Hawaii and the U.S.-affiliated Pacific Islands. The PSW Research Station...

  7. PIV tracer behavior on propagating shock fronts

    International Nuclear Information System (INIS)

    Glazyrin, Fyodor N; Mursenkova, Irina V; Znamenskaya, Irina A

    2016-01-01

    The present work was aimed at the quantitative particle image velocimetry (PIV) measurement of a velocity field near the front of a propagating shock wave and the study of the dynamics of liquid tracers crossing the shock front. For this goal, a shock tube with a rectangular cross-section (48  ×  24 mm) was used. The flat shock wave with Mach numbers M  =  1.4–2.0 propagating inside the tube channel was studied as well as an expanding shock wave propagating outside the channel with M  =  1.2–1.8 at its main axis. The PIV imaging of the shock fronts was carried out with an aerosol of dioctyl sebacate (DEHS) as tracer particles. The pressures of the gas in front of the shock waves studied ranged from 0.013 Mpa to 0.1 MPa in the series of experiments. The processed PIV data, compared to the 1D normal shock theory, yielded consistent values of wake velocity immediately behind the plain shock wave. Special attention was paid to the blurring of the velocity jump on the shock front due to the inertial particle lag and peculiarities of the PIV technique. A numerical algorithm was developed for analysis and correction of the PIV data on the shock fronts, based on equations of particle-flow interaction. By application of this algorithm, the effective particle diameter of the DEHS aerosol tracers was estimated as 1.03  ±  0.12 μm. A number of different formulations for particle drag were tested with this algorithm, with varying success. The results show consistency with previously reported experimental data obtained for cases of stationary shock waves. (paper)

  8. Modelling the gluon propagator

    Energy Technology Data Exchange (ETDEWEB)

    Leinweber, D.B.; Parrinello, C.; Skullerud, J.I.; Williams, A.G

    1999-03-01

    Scaling of the Landau gauge gluon propagator calculated at {beta} = 6.0 and at {beta} = 6.2 is demonstrated. A variety of functional forms for the gluon propagator calculated on a large (32{sup 3} x 64) lattice at {beta} = 6.0 are investigated.

  9. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  10. Seismic wave propagation in granular media

    Science.gov (United States)

    Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion

    2016-10-01

    Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in

  11. Transionospheric propagation predictions

    Science.gov (United States)

    Klobucher, J. A.; Basu, S.; Basu, S.; Bernhardt, P. A.; Davies, K.; Donatelli, D. E.; Fremouw, E. J.; Goodman, J. M.; Hartmann, G. K.; Leitinger, R.

    1979-01-01

    The current status and future prospects of the capability to make transionospheric propagation predictions are addressed, highlighting the effects of the ionized media, which dominate for frequencies below 1 to 3 GHz, depending upon the state of the ionosphere and the elevation angle through the Earth-space path. The primary concerns are the predictions of time delay of signal modulation (group path delay) and of radio wave scintillation. Progress in these areas is strongly tied to knowledge of variable structures in the ionosphere ranging from the large scale (thousands of kilometers in horizontal extent) to the fine scale (kilometer size). Ionospheric variability and the relative importance of various mechanisms responsible for the time histories observed in total electron content (TEC), proportional to signal group delay, and in irregularity formation are discussed in terms of capability to make both short and long term predictions. The data base upon which predictions are made is examined for its adequacy, and the prospects for prediction improvements by more theoretical studies as well as by increasing the available statistical data base are examined.

  12. Pulse propagation in free-electron lasers with a tapered undulator

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered undulator devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristics are presented and are found to change considerably over this range

  13. Propagation considerations in land mobile satellite transmission

    Science.gov (United States)

    Vogel, W. J.; Smith, E. K.

    1985-01-01

    It appears likely that the Land Mobile Satellite Services (LMSS) will be authorized by the FCC for operation in the 800 to 900 MHz (UHF) and possibly near 1500 MHz (L-band). Propagation problems are clearly an important factor in the effectiveness of this service, but useful measurements are few, and produced contradictory interpretations. A first order overview of existing measurements is presented with particular attention to the first two NASA balloon to mobile vehicle propagation experiments. Some physical insight into the interpretation of propagation effects in LMSS transmissions is provided.

  14. Propagation calculation for reactor cases

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanhua [School of Power and Energy Engineering, Shanghai Jiao Tong Univ., Shanghai (China); Moriyama, K.; Maruyama, Y.; Nakamura, H.; Hashimoto, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-11-01

    The propagation of steam explosion for real reactor geometry and conditions are investigated by using the computer code JASMINE-pro. The ex-vessel steam explosion is considered, which is described as follow: during the accident of reactor core meltdown, the molten core melts a hole at the bottom of reactor vessel and causes the higher temperature core fuel being leaked into the water pool below reactor vessel. During the melt-water mixing interaction process, the high temperature melt evaporates the cool water at an extreme high rate and might induce a steam explosion. A steam explosion could experience first the premixing phase and then the propagation explosion phase. For a propagation calculation, we should know the information about the initial fragmentation time, the total melt mass, premixing region size, initial void fraction and distribution of the melt volume fraction, and so on. All the initial conditions used in this calculation are based on analyses from some simple assumptions and the observation from the experiments. The results show that the most important parameter for the initial condition of this phase is the total mass and its initial distribution. This gives the requirement for a premixing calculation. On the other hand, for higher melt volume fraction case, the fragmentation is strong so that the local pressure can exceed over the EOS maximum pressure of the code, which lead to the incorrect calculation or divergence of the calculation. (Suetake, M.)

  15. Germination and Seedling Growth of Water Primroses: A Cross Experiment between Two Invaded Ranges with Contrasting Climates

    Directory of Open Access Journals (Sweden)

    Morgane Gillard

    2017-09-01

    Full Text Available Aquatic ecosystems are vulnerable to biological invasions, and will also be strongly impacted by climate change, including temperature increase. Understanding the colonization dynamics of aquatic invasive plant species is of high importance for preservation of native biodiversity. Many aquatic invasive plants rely on clonal reproduction to spread, but mixed reproductive modes are common. Under future climate changes, these species may favor a sexual reproductive mode. The aim of this study was to test the germination capacity and the seedling growth of two water primrose species, Ludwigia hexapetala and Ludwigia peploides, both invasive in Europe and in the United States. We performed a reciprocal transplant of seeds of L. hexapetala and L. peploides from two invasive ranges into experimental gardens characterized by Oceanic and Mediterranean-type climates. Our results showed that higher temperatures increased or maintained germination percentages and velocity, decreased survivorship of germinants, but increased their production of biomass. The origin of the seeds had low impact on L. hexapetala responses to temperature, but greatly influenced those of L. peploides. The invasiveness of water primroses in ranges with Oceanic climates might increase with temperature. The recruitment from seed banks by these species should be considered by managers to improve the conservation of native aquatic and wetland plant species.

  16. The Effects of Seamounts on Sound Propagation in Deep Water

    International Nuclear Information System (INIS)

    Li Wen; Li Zheng-Lin; Zhang Ren-He; Qin Ji-Xing; Li Jun; Nan Ming-Xing

    2015-01-01

    A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the numerical results and found to be in good agreement. (paper)

  17. Propagating annular modes

    Science.gov (United States)

    Sheshadri, A.; Plumb, R. A.

    2017-12-01

    The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP

  18. Spark channel propagation in a microbubble liquid

    Energy Technology Data Exchange (ETDEWEB)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  19. Propagation Environment Assessment Using UAV Electromagnetic Sensors

    Science.gov (United States)

    2018-03-01

    losses can be taken into account when calculating propagation losses. To correlate the data correctly, the measured received signal power must be...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In this thesis, we attempt to build a picture of local propagation conditions by measuring ...operators to choose the optimal settings for the maximum detection range of their radar and radio systems. We also investigate the measurement system

  20. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  1. Experiment-based thermal micromagnetic simulations of the magnetization reversal for ns-range clocked nanomagnetic logic

    Science.gov (United States)

    Ziemys, Grazvydas; Breitkreutz-v. Gamm, Stephan; Csaba, Gyorgy; Schmitt-Landsiedel, Doris; Becherer, Markus

    2017-05-01

    Extensive thermal micromagnetic simulations, based on experimental data and parameters, were performed to investigate the magnetization reversal in Co/Pt nanomagnets with locally reduced perpendicular anisotropy on the nanosecond range. The simulations were supported by experimental data gained on manufactured Co/Pt nanomagnets, as used in nanomagnetic logic. It is known that magnetization reversal is governed by two mechanisms. At pulse lengths longer than 100 ns, thermal activation dominates the magnetization reversal processes and follows the common accepted Arrhenius law. For pulse lengths shorter than 100 ns, the dynamic reversal dominates. With the help of thermal micro-magnetic simulations we found out that the point where the both mechanisms meet is determined by the damping constant α of the multilayer film stack. The optimization of ferromagnetic multilayer film stacks enables higher clocking rates with lower power consumption and, therefore, further improve the performance of pNML.

  2. Are post-dispersed seeds of Eucalyptus globulus predated in the introduced range? Evidence from an experiment in Portugal

    Directory of Open Access Journals (Sweden)

    E. Deus

    2018-04-01

    Full Text Available Plantations of Eucalyptus globulus Labill. have been expanding rapidly worldwide. The species is considered invasive in several regions. While in the native range, post-dispersal seed predation is known to severely limit eucalypt recruitment, there is no experimental evidence of seed predation in the introduced range. We hypothesised that E. globulus seeds largely escape predation in Portugal, which may explain its prolific recruitment in some locations. We tested this hypothesis in central Portugal by exposing E. globulus seeds to the local fauna. For comparison purposes, we also used seeds from locally common species: Acacia dealbata Link (alien, larger, elaiosome-bearing seeds and Cistus salviifolius L. (native, similarly sized seeds. We installed 30 feeding stations across three study sites, each one dominated by one study species. Each feeding station featured four feeders with different animal-access treatments: invertebrates; vertebrates; full access; no access (control. We placed five seeds of each plant species every day in each feeder and registered the number of seeds missing, eaten and elaiosome detached over 9 summer days. Eucalyptus globulus seeds were highly attractive to fauna in the three sites. Nearly half of E. globulus seeds were predated or removed, thus contradicting our hypothesis. Surprisingly, E. globulus and A. dealbata seeds were used by animals in similar proportions and C. salviifolius seeds were the least preferred. Vertebrates were the predominant seed predators and preferred the alien seeds. Invertebrates used all seed species in similar proportions. We found spatial variation regarding the predominant type of seed predators and the levels of seed predation according to the following patterns: predominance of vertebrates; predominance of invertebrates; negligible seed predator activity. Locations with negligible seed predation were abundant and scattered across the study area. Such spatial variation may

  3. Effect of genomic long-range correlations on DNA persistence length: from theory to single molecule experiments.

    Science.gov (United States)

    Moukhtar, Julien; Faivre-Moskalenko, Cendrine; Milani, Pascale; Audit, Benjamin; Vaillant, Cedric; Fontaine, Emeline; Mongelard, Fabien; Lavorel, Guillaume; St-Jean, Philippe; Bouvet, Philippe; Argoul, Françoise; Arneodo, Alain

    2010-04-22

    Sequence dependency of DNA intrinsic bending properties has been emphasized as a possible key ingredient to in vivo chromatin organization. We use atomic force microscopy (AFM) in air and liquid to image intrinsically straight (synthetic), uncorrelated (hepatitis C RNA virus) and persistent long-range correlated (human) DNA fragments in various ionic conditions such that the molecules freely equilibrate on the mica surface before being captured in a particular conformation. 2D thermodynamic equilibrium is experimentally verified by a detailed statistical analysis of the Gaussian nature of the DNA bend angle fluctuations. We show that the worm-like chain (WLC) model, commonly used to describe the average conformation of long semiflexible polymers, reproduces remarkably well the persistence length estimates for the first two molecules as consistently obtained from (i) mean square end-to-end distance measurement and (ii) mean projection of the end-to-end vector on the initial orientation. Whatever the operating conditions (air or liquid, concentration of metal cations Mg(2+) and/or Ni(2+)), the persistence length found for the uncorrelated viral DNA underestimates the value obtained for the straight DNA. We show that this systematic difference is the signature of the presence of an uncorrelated structural intrinsic disorder in the hepatitis C virus (HCV) DNA fragment that superimposes on local curvatures induced by thermal fluctuations and that only the entropic disorder depends upon experimental conditions. In contrast, the WLC model fails to describe the human DNA conformations. We use a mean-field extension of the WLC model to account for the presence of long-range correlations (LRC) in the intrinsic curvature disorder of human genomic DNA: the stronger the LRC, the smaller the persistence length. The comparison of AFM imaging of human DNA with LRC DNA simulations confirms that the rather small mean square end-to-end distance observed, particularly for G

  4. Restoring the azimuthal symmetry of lateral distributions of charged particles in the range of the KASCADE-Grande experiment

    International Nuclear Information System (INIS)

    Sima, O.; Rebel, H.; Haungs, A.; Toma, G.; Manailescu, C.; Morariu, C.; Arteaga, J.C.; Bekk, K.; Bertaina, M.; Bluemer, J.; Bozdog, H.; Brancus, I.M.; Chiavassa, A.; Cosavella, F.; Souza, V. de; Doll, P.; Engel, R.; Finger, M.; Glasstetter, R.; Grupen, C.

    2011-01-01

    The reconstruction of Extensive Air Showers (EAS) observed by particle detectors at the ground is based on the characteristics of observables like the lateral particle density and the arrival times. The lateral densities, inferred for different EAS components from detector data, are usually parameterised by applying various lateral distribution functions (LDFs). The LDFs are used in turn for evaluating quantities like the total number of particles or the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the lateral particle density from this assumption arising from various reasons are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located at the Karlsruhe Institute of Technology (Campus North), Germany. The lateral distributions of charged particles are deduced from the basic information provided by the Grande scintillators - the energy deposits - first in the observation plane, then in the intrinsic shower plane. In all steps azimuthal dependences should be taken into account. As the energy deposit in the scintillators is dependent on the angles of incidence of the particles, azimuthal dependences are already involved in the first step: the conversion from the energy deposits to the charged particle density. This is done by using the Lateral Energy Correction Function (LECF) that evaluates the mean energy deposited by a charged particle taking into account the contribution of other particles (e.g. photons) to the energy deposit. By using a very fast procedure for the evaluation of the energy deposited by various particles we prepared realistic LECFs depending on the angle of incidence of the shower and on the radial and

  5. Effective range of chlorine transport in an aquifer during disinfection of wells: From laboratory experiments to field application

    Science.gov (United States)

    Paufler, S.; Grischek, T.; Adomat, Y.; Herlitzius, J.; Hiller, K.; Metelica, Y.

    2018-04-01

    Microbiological contamination usually leads to erratic operation of drinking water wells and disinfection is required after disasters and sometimes to restore proper well performance for aquifer storage and recovery (ASR) and subsurface iron removal (SIR) wells. This study focused on estimating the fate of chlorine around an infiltration well and improving the knowledge about processes that control the physical extent of the disinfected/affected radius. Closed bottle batch tests revealed low chlorine consumption rates for filter gravel and sand (0.005 mg/g/d) and higher rates for clay (0.030 mg/g/d) as well as natural aquifer material (0.054 mg/g/d). Smaller grain sizes disinfection ability at grain sizes >1 mm, but results in more effective disinfection for very fine material disinfection zone at the example well seems to extend to maximum 3.5 m into the aquifer. Excessive chlorine dosage of >10 mg/l would not further extend the disinfected radius. A preferable way to increase the range of chlorine application is to increase the total infiltrated volume and time. Three approaches are proposed for adapting lab results to actual infiltration wells, that are in principle applicable to any other site.

  6. Analysis of wake vortices of a medium range twin-propeller military cargo aircraft using statistically designed experiments

    Science.gov (United States)

    Sahin, Burhan

    An experimental study was initiated to analyze the trajectories of the streamwise vortices behind the wing tip and flap of a medium range and propeller driven twin-engine military cargo aircraft. The model used for the experimental study was a generic, high wing and half model of a propeller driven aircraft and mounted within Old Dominion University's Low Speed Wind Tunnel where the wind tunnel flow speed was set to constant value of 9 m/sec. The main purpose of the study was to reach regression models for the motion and vorticity strength of both vortices under varying factors such as angle of attack, flap angle, propeller pitch angle and downstream distance. Velocity measurements of the flow fields were accomplished using both Particle Image Velocimetry (PIV) and Hotwire Anemometry (HWA) to yield average velocities, turbulence levels, vorticity strengths and Reynolds shear stresses in the wake of the model. The results of measurements showed that the vertical motions, horizontal motions, and vorticity strengths of both vortices as well as the shortest distance between both vortices depend on the aforementioned factors and the interactions of some factors. It can be concluded that propeller pitch angle mainly affects the behaviors of the vortices as much as angle of attack to the extent that their second order terms take place in some of the regression models.

  7. Long Range River Discharge Forecasting Using the Gravity Recovery and Climate Experiment (GRACE) Satellite to Predict Conditions for Endemic Cholera

    Science.gov (United States)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.

  8. The impact of PMSE and NLC particles on VLF propagation

    Directory of Open Access Journals (Sweden)

    D. Nunn

    2004-04-01

    Full Text Available PMSE or Polar Mesosphere Summer Echoes are a well-known phenomenon in the summer northern polar regions, in which anomalous VHF/UHF radar echoes are returned from heights ~85km. Noctilucent clouds and electron density biteouts are two phenomena that sometimes occur together with PMSE. Electron density biteouts are electron density depletion layers of up to 90%, which may be several kms thick. Using the NOSC Modefndr code based on Wait's modal theory for subionospheric propagation, we calculate the shifts in received VLF amplitude and phase that occur as a result of electron density biteouts. The code assumes a homogeneous background ionosphere and a homogeneous biteout layer along the Great Circle Path (GCP corridor, for transmitter receiver path lengths in the range of 500–6000km.

    For profiles during the 10h about midnight and under quiet geomagnetic conditions, where the electron density at 85km would normally be less than 500el/cc, it was found that received signal perturbations were significant, of the order of 1–4dB and 5–40° of phase. Perturbation amplitudes increase roughly as the square root of frequency. At short range perturbations are rather erratic, but more consistent at large ranges, readily interpretable in terms of the shifts in excitation factor, attenuation factor and v/c ratios for Wait's modes. Under these conditions such shifts should be detectable by a well constituted experiment involving multiple paths and multiple frequencies in the north polar region in summer. It is anticipated that VLF propagation could be a valuable diagnostic for biteout/PMSE when electron density at 85km is under 500el/cc, under which circumstances PMSE are not directly detectable by VHF/UHF radars.

    Key words. Electromagnetism (wave propagation – Ionosphere (polar ionosphere – Radioscience (ionospheric propagation

  9. Study of the γ/p discrimination at ∼100 TeV energy range with LHAASO experiment

    Science.gov (United States)

    Tian, Zhen; Wang, Zhen; Liu, Ye; Guo, Yiqing; Ma, Xinhua; Hu, Hongbo

    2018-05-01

    The observation of high energy γ-rays is essential to unveil the long-standing enigma of the origin and acceleration of Galactic Cosmic Rays (CRs). Given its powerful capability of distinguishing between protons and γ-rays owing to its very large area of underground muon detectors, the LHAASO observatory will be the most sensitive ground-based detectors for γ-rays at 100 TeV with a CRs background rejection rate better than 10-5. To evaluate the very small rejection rate with sufficient precision at energies above 100 TeV, one needs a large number of Monte Carlo events which is time consuming and challenging. As only the μ-poor events are interesting in the calculation of the rejection rate and take up a tiny fraction of the all CRs events, we modify the popular air shower simulation package, CORSIKA, by outputting only the μ-poor events for the following full detector simulation. As a result, our method is fully consistent with the evaluation made with the official CORSIKA at lower energy. Particularly, our improvement significantly escalate the calculation efficiency above 100 TeV, where it can be at least 50 times faster than using all events in simulation. By virtue of this new method, the γ/p discrimination of the LHAASO experiment at energies above 100 TeV is obtained for the first time, which indicates that LHAASO can reject CR backgrounds at a level of 10-5 and 10-9 at 100 TeV and 1 PeV respectively.

  10. Propagation and radiation characteristics of the circular electric, circular magnetic and hybrid waveguide modes

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1996-06-01

    The field distributions and propagation constants of the circular electric, circular magnetic and hybrid modes of oversized waveguides are expressed, taking the effects of walls into account. The near and far field patterns are derived in the case of real wall functions. It is shown that, for very oversized waveguides, the terms containing wall functions can be ignored in the calculations, and it results that the expressions of fields and propagation constants become independent of the types of waveguides. An application to corrugated waveguides for Electron Cyclotron Resonance Heating experiments shows the variations of the radiation characteristics versus geometric parameters of the corrugations and determines the ranges of interest for these parameters. (author)

  11. Can the confidence in long range atmospheric transport models be increased? The pan European experience of ensemble

    International Nuclear Information System (INIS)

    Galmarini, S.; Bianconi, R.; Mikkelsen, T.

    2003-01-01

    Full text: In the unfortunate event of an accidental release of radioactive material to the environment, the first concern for early-phase emergency response is atmospheric dispersion. For this purpose, several countries worldwide use operational Long Range Atmospheric Transport (LRAT) models to produce predictions of the event evolution over the continental scale to determine whether, when and how the radioactive cloud is going to hit their country. While presenting the multi-model ensemble dispersion forecast system (ENSEMBLE), the paper seeks to answer the following questions: is atmospheric dispersion forecasting an important asset of the early-phase emergency response management?; Is there a 'Perfect Atmospheric Dispersion Model'?; Is there a way to make the results of dispersion models more reliable and trustworthy? Several activities conducted during the 1990's, sought to estimate quantitatively the capability of LRAT models to forecast the atmospheric dispersion of radionuclides in the atmosphere. The results obtained clearly demonstrated that: the predictions of the various operational LRAT models used worldwide do not systematically agree (mainly due to conceptual differences in model structure and differences in the meteorological forecasts used to simulate the dispersion); none of the models used in the various countries is better than others under all circumstances and therefore there is no objective indication that shows one or few models to be the 'perfect model/s'. Given the realistic scenario that an accident can take place any time, any national authority is however faced with the practical need of managing the emergency and therefore with the dilemma: 'shall one rely an a LRAT model or only an the now cast provided by a monitoring network?' and 'to what extent are a model predictions going to be deceptive in the decision making process?' Since it goes without saying that even a vague idea an the future evolution of a dispersion process is better

  12. ADVANCES IN THE PROPAGATION OF RAMBUTAN TREE

    Directory of Open Access Journals (Sweden)

    RENATA APARECIDA DE ANDRADE

    2017-12-01

    Full Text Available ABSTRACT The reality of Brazilian fruit farming is demonstrating increasing demand for sustainable information about native and exotic fruit, which can diversify and elevate the efficiency of fruit exploitation. Research on propagation of fruits tree is very important so that it can provide a protocol for suitable multiplication of this fruitful. Due to the great genetic diversity of rambutan plants, it is recommended the use of vegetative propagated plants. This research aimed to evaluate the propagation of rambutan by cuttings, layering and grafting, as well as seed germination and viability without storage. The results of this research indicate that this species can be successfully propagated by layering, grafting and seeds. We also observed that the germination percentage of seeds kept inside the fruits for six days were not influenced by the different substrates used in this experiment.

  13. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oiko, V. T. A., E-mail: oiko@ifi.unicamp.br; Rodrigues, V.; Ugarte, D. [Instituto de Física “Gleb Wataghin,” Univ. Estadual de Campinas (UNICAMP), Campinas 13083-859 (Brazil); Martins, B. V. C. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Silva, P. C. [Laboratório Nacional de Nanotecnologia, CNPEM, Campinas 13083-970 (Brazil)

    2014-03-15

    Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently, applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.

  14. Lateral propagation of MeV electrons generated by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Seely, J. F.; Szabo, C. I.; Audebert, P.; Brambrink, E.; Tabakhoff, E.; Hudson, L. T.

    2010-01-01

    The propagation of MeV electrons generated by intense (≅10 20 W/cm 2 ) femtosecond laser irradiation, in the lateral direction perpendicular to the incident laser beam, was studied using targets consisting of irradiated metal wires and neighboring spectator wires embedded in electrically conductive (aluminum) or resistive (Teflon) substrates. The K shell spectra in the energy range 40-60 keV from wires of Gd, Dy, Hf, and W were recorded by a transmission crystal spectrometer. The spectra were produced by 1s electron ionization in the irradiated wire and by energetic electron propagation through the substrate material to the spectator wire of a different metal. The electron range and energy were determined from the relative K shell emissions from the irradiated and spectator wires separated by varying substrate lateral distances of up to 1 mm. It was found that electron propagation through Teflon was inhibited, compared to aluminum, implying a relatively weak return current and incomplete space-charge neutralization. The energetic electron propagation in the direction parallel to the electric field of the laser beam was larger than perpendicular to the electric field. Energetic electron production was lower when directly irradiating aluminum or Teflon compared to irradiating the heavy metal wires. These experiments are important for the determination of the energetic electron production mechanism and for understanding lateral electron propagation that can be detrimental to fast-ignition fusion and hard x-ray backlighter radiography.

  15. Propagation of waves

    CERN Document Server

    David, P

    2013-01-01

    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  16. Mobile terawatt laser propagation facility (Conference Presentation)

    Science.gov (United States)

    Shah, Lawrence; Roumayah, Patrick; Bodnar, Nathan; Bradford, Joshua D.; Maukonen, Douglas; Richardson, Martin C.

    2017-03-01

    This presentation will describe the design and construction status of a new mobile high-energy femtosecond laser systems producing 500 mJ, 100 fs pulses at 10 Hz. This facility is built into a shipping container and includes a cleanroom housing the laser system, a separate section for the beam director optics with a retractable roof, and the environmental control equipment necessary to maintain stable operation. The laser system includes several innovations to improve the utility of the system for "in field" experiments. For example, this system utilizes a fiber laser oscillator and a monolithic chirped Bragg grating stretcher to improve system robustness/size and employs software to enable remote monitoring and system control. Uniquely, this facility incorporates a precision motion-controlled gimbal altitude-azimuth mount with a coudé path to enable aiming of the beam over a wide field of view. In addition to providing the ability to precisely aim at multiple targets, it is also possible to coordinate the beam with separate tracking/diagnostic sensing equipment as well as other laser systems. This mobile platform will be deployed at the Townes Institute Science and Technology Experimental Facility (TISTEF) located at the Kennedy Space Center in Florida, to utilize the 1-km secured laser propagation range and the wide array of meteorological instrumentation for atmospheric and turbulence characterization. This will provide significant new data on the propagation of high peak power ultrashort laser pulses and detailed information on the atmospheric conditions in a coastal semi-tropical environment.

  17. Ultrahigh energy nuclei propagation in a structured, magnetized universe

    International Nuclear Information System (INIS)

    Armengaud, Eric; Sigl, Guenter; Miniati, Francesco

    2005-01-01

    We compare the propagation of iron and proton nuclei above 10 19 eV in a structured Universe with source and magnetic field distributions obtained from a large-scale structure simulation and source densities ∼10 -5 Mpc -3 . All relevant cosmic ray interactions are taken into account, including photo-disintegration and propagation of secondary products. Iron injection predicts spectral shapes different from proton injection which disagree with existing data below ≅30 EeV. Injection of light nuclei or protons must therefore contribute at these energies. However, at higher energies, existing data are consistent with injection of pure iron with spectral indices between ∼2 and ∼2.4. This allows a significant recovery of the spectrum above ≅100 EeV, especially in the case of large deflections. Significant autocorrelation and anisotropy, and considerable cosmic variance are also predicted in this energy range. The mean atomic mass fluctuates considerably between different scenarios. At energies below 60 EeV, if the observed A > or approx. 35, magnetic fields must have a negligible effect on propagation. At the highest energies the observed flux will be dominated by only a few sources whose location may be determined by next generation experiments to within 10-20 deg. even if extra-galactic magnetic fields are important

  18. Tests and analysis on steam generator tube failure propagation

    International Nuclear Information System (INIS)

    Tanabe, Hiromi

    1990-01-01

    The understanding of leak enlargement and failure propagation behavior is essential to select a design basis leak (DBL) of LMFBR steam generators. Therefore, various series of experiments, such as self-enlargement tests, target wastage tests, failure propagation tests were conducted in a wide range of leak using test facilities of SWAT at PNC/OEC. Especially, in the large leak tests, potential of overheating failure was investigated under a prototypical steam cooling condition inside target tubes. In the small leak, the difference of wastage resistivity was clarified among several tube materials such as 9-chrome steels. In regard to an analytical approach, a computer code LEAP (Leak Enlargement and Propagation) was developed on the basis of all of these experimental results. The code was used to validate the previously selected DBL of the prototype reactor, Monju, steam generator. This approach proved to be successful in spite of somewhat over-conservatism in the analysis. Moreover, LEAP clarified the effectiveness of a rapid steam dump and an enhanced leak detection system. The code improvement toward a realistic analysis is desired, however, to lessen the DBL for a future large plant and then the re-evaluation of the experimental data such as the size of secondary failure is under way. (author). 4 refs, 8 figs, 1 tab

  19. Rapid assessment of nonlinear optical propagation effects in dielectrics

    Science.gov (United States)

    Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.

    2015-01-01

    Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.

  20. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  1. Propagation of Regional Phases in the Basin and Range

    Science.gov (United States)

    1990-02-02

    complex miultiple rupture, Bull. Seusmol. Soc. Am., 57, 1017 W i23 K un.rT~I, "aind G. S. Stew art, Seismologica aspects of she Gutemala 1967...Fred K. Lamb Prof. William Menke University of Illinois at Urbana-Champaign Lamont-Doherty Geological Observatory Department of Physics of Columbia

  2. Memoir of the Long Range Acoustic Propagation Program (LRAPP)

    Science.gov (United States)

    2011-04-01

    data after the exercise was completed. All activities were governed by Greenwich Mean Time (GMT) or, using the military designation, Zulu time. Accurate...is founder and chief executive of several firms: LPS Collaborative Group (a technical and management consulting firm), Pearl River Publishing (a

  3. Propagation environments [Chapter 4

    Science.gov (United States)

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    An understanding of all factors influencing plant growth in a nursery environment is needed for the successful growth and production of high-quality container plants. Propagation structures modify the atmospheric conditions of temperature, light, and relative humidity. Native plant nurseries are different from typical horticultural nurseries because plants must be...

  4. Uncertainty Propagation in OMFIT

    Science.gov (United States)

    Smith, Sterling; Meneghini, Orso; Sung, Choongki

    2017-10-01

    A rigorous comparison of power balance fluxes and turbulent model fluxes requires the propagation of uncertainties in the kinetic profiles and their derivatives. Making extensive use of the python uncertainties package, the OMFIT framework has been used to propagate covariant uncertainties to provide an uncertainty in the power balance calculation from the ONETWO code, as well as through the turbulent fluxes calculated by the TGLF code. The covariant uncertainties arise from fitting 1D (constant on flux surface) density and temperature profiles and associated random errors with parameterized functions such as a modified tanh. The power balance and model fluxes can then be compared with quantification of the uncertainties. No effort is made at propagating systematic errors. A case study will be shown for the effects of resonant magnetic perturbations on the kinetic profiles and fluxes at the top of the pedestal. A separate attempt at modeling the random errors with Monte Carlo sampling will be compared to the method of propagating the fitting function parameter covariant uncertainties. Work supported by US DOE under DE-FC02-04ER54698, DE-FG2-95ER-54309, DE-SC 0012656.

  5. The Weinberg propagators

    International Nuclear Information System (INIS)

    Dvoeglazov, V.V.

    1997-01-01

    An analog of the j = 1/2 Feynman-Dyson propagator is presented in the framework of the j = 1 Weinberg's theory. The basis for this construction is the concept of the Weinberg field as a system of four field functions differing by parity and by dual transformations. (orig.)

  6. UWB Propagation through Walls

    Czech Academy of Sciences Publication Activity Database

    Schejbal, V.; Bezoušek, P.; Čermák, D.; NĚMEC, Z.; Fišer, Ondřej; Hájek, M.

    2006-01-01

    Roč. 15, č. 1 (2006), s. 17-24 ISSN 1210-2512 R&D Projects: GA MPO(CZ) FT-TA2/030 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ultra wide band * UWB antennas * UWB propagation * multipath effects Subject RIV: JB - Sensors, Measurment, Regulation

  7. Tropical Cyclone Propagation

    National Research Council Canada - National Science Library

    Gray, William

    1994-01-01

    This paper discusses the question of tropical cyclone propagation or why the average tropical cyclone moves 1-2 m/s faster and usually 10-20 deg to the left of its surrounding (or 5-7 deg radius) deep layer (850-300 mb) steering current...

  8. Enhancing propagation characteristics of truncated localized waves in silica

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.

  9. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    Science.gov (United States)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the

  10. Interstellar propagation of low energy cosmic rays

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1975-01-01

    Wave particles interactions prevent low energy cosmic rays from propagating at velocities much faster than the Alfven velocity, reducing their range by a factor of order 50. Therefore, supernovae remnants cannot fill the neutral portions of the interstellar medium with 2 MeV cosmic rays [fr

  11. Wave Propagation in Bimodular Geomaterials

    Science.gov (United States)

    Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim

    2016-04-01

    Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.

  12. Accelerating Generalized Polygon Beams and Their Propagation

    International Nuclear Information System (INIS)

    Zhang Yun-Tian; Zhang Zhi-Gang; Cheng Teng; Zhang Qing-Chuan; Wu Xiao-Ping

    2015-01-01

    Accelerating beams with intensity cusps and exotic topological properties are drawing increasing attention as they have extensive uses in many intriguing fields. We investigate the structural features of accelerating polygon beams, show their generalized mathematical form theoretically, and discuss the even-numbered polygon beams. Furthermore, we also carry out the experiment and observe the intensity evolution during their propagation

  13. Results of TGE Study in 0.03-10 MeV Energy Range in Ground Experiments near Moscow and Aragats

    International Nuclear Information System (INIS)

    Bogomolov, V.; Kovalenko, A.; Panasyuk, M.; Saleev, K.; Svertilov, S.; Maximov, I.; Garipov, G.; Iyudin, A.; Chilingarian, A.; Hovsepyan, G.; Karapetyan, T.; Mntasakanyan, E.

    2017-01-01

    Ground-based experiments with scintillator gamma-spectrometers were conducted to study the spectral, temporal and spatial characteristics of TGES as well, as to search the fast hard X-ray and gamma-ray flashes possibly appearing at the moment of lightning. The time of each gamma-quantum interaction was recorded with ∼15 us accuracy together with detailed spectral data. The measurements are similar to ones reported at TEPA-2015 but some important improvement of the instruments was done for 2016 season. First, GPS module was used to synchronize the instrument time with UTC. The accuracy of such synchronization allows one to look at the gamma-ray data at the moment of lightning fixed by radio-wave detector or any other instrument. Second, the energy range of gamma-spectrometers was shifted to higher energies where the radiation of natural isotopes is absent. In this case one can see background changes connected with particles accelerated in thundercloud together with the background increases during the rain caused by Rn-222 daughters. Long-term measurements with two instruments placed in different points of Moscow region were done in 2016 season. First one based on CsI (Tl) 80x80 mm has energy range 0.03-6 MeV. The range of the second one based on CsI (Tl) 100x100 mm is 0.05-10 MeV. A dozen of thunderstorms with increase of Rn-222 radiation were detected but no significant increase of gamma-ray flux above 3.2 MeV was observed at these periods. A lot of data was obtained from the experiment with small gamma-ray spectrometer (40x40 mm NaI (T1) at mountain altitude in Armenia at Aragats station. The analysis of readings during the TGE periods indicates on the presence of Rn-222 radiation in low-energy range (E< l MeV). The detector was improved during TEPA-2016. New 50x50 mm NaI (Tl) crystal was used and the energy range was prolonged up to 5 MeV. Exact timing with GPS-sensor was added and fast recording of the output signal at the moments of triggers from UV flash

  14. Propagator of stochastic electrodynamics

    International Nuclear Information System (INIS)

    Cavalleri, G.

    1981-01-01

    The ''elementary propagator'' for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density proportionalω 3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to psipsi* where psi is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics

  15. Preventing Unofficial Information Propagation

    Science.gov (United States)

    Le, Zhengyi; Ouyang, Yi; Xu, Yurong; Ford, James; Makedon, Fillia

    Digital copies are susceptible to theft and vulnerable to leakage, copying, or manipulation. When someone (or some group), who has stolen, leaked, copied, or manipulated digital documents propagates the documents over the Internet and/or distributes those through physical distribution channels many challenges arise which document holders must overcome in order to mitigate the impact to their privacy or business. This paper focuses on the propagation problem of digital credentials, which may contain sensitive information about a credential holder. Existing work such as access control policies and the Platform for Privacy Preferences (P3P) assumes that qualified or certified credential viewers are honest and reliable. The proposed approach in this paper uses short-lived credentials based on reverse forward secure signatures to remove this assumption and mitigate the damage caused by a dishonest or honest but compromised viewer.

  16. Nonlinear propagation of the extraordinary mode in a hot magnetoplasma

    International Nuclear Information System (INIS)

    Khiet, Tu; Furutani, Y.; Ichikawa, Y.H.

    1978-07-01

    Kinetic theory for a nonlinear propagation of quasi-monochromatic extraordinary waves is presented. It reveals that propagation of an envelope of the extraordinary carriers is described by the nonlinear Schroedinger equation. In a cold plasma limit, a detailed analysis is carried out on a behaviour of the envelope of the upper- and the lower-hybrid waves at respective resonant frequency ranges. (author)

  17. Discovery of Ubiquitous Fast-Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    Science.gov (United States)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Trujillo Bueno, J.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2016-12-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Lyα line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s-1, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  18. Characteristics of micro-propagated banana (Musa spp.) cultures ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... was conducted to assess the effect of NaCl and PEG separately as well as in combination on plant micro- propagation efficiency of banana (Musa spp.) cv., Basrai. In this experiment, 4-weeks old plantlets of the 3rd sub- culture with well propagation on MS2b nutrient were sub- cultured on three differentially ...

  19. Modeling Passive Propagation of Malwares on the WWW

    Science.gov (United States)

    Chunbo, Liu; Chunfu, Jia

    Web-based malwares host in websites fixedly and download onto user's computers automatically while users browse. This passive propagation pattern is different from that of traditional viruses and worms. A propagation model based on reverse web graph is proposed. In this model, propagation of malwares is analyzed by means of random jump matrix which combines orderness and randomness of user browsing behaviors. Explanatory experiments, which has single or multiple propagation sources respectively, prove the validity of the model. Using this model, people can evaluate the hazardness of specified websites and take corresponding countermeasures.

  20. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.

  1. 4D strain localisation and fracture propagation in granite: the relative contribution of seismic and aseismic mechanisms to damage evolution during an in-situ triaxial deformation experiment at SOLEIL synchrotron

    Science.gov (United States)

    Cartwright-Taylor, A. L.; Fusseis, F.; Butler, I. B.; Flynn, M.; King, A.

    2017-12-01

    We present 4D x-ray data documenting strain localisation and fracture propagation in a microgranite, collected during a triaxial deformation experiment on the imaging beamline PSICHE at SOLEIL synchrotron. We loaded to failure a 2.97 mm diameter x 9.46 mm long cylindrical sample of Ailsa Craig microgranite, heat treated to 600 °C. The sample was deformed at 15 MPa confining pressure and 3x10-5 s-1 strain rate in a novel, x-ray transparent triaxial deformation apparatus, designed and built at the University of Edinburgh. 21 microtomographic volumes were acquired in intervals of 5-20 MPa (decreasing as failure approached), including one scan at peak differential stress of 200 MPa and three post-failure scans. A constant stress level was maintained during scanning and individual datasets were collected in 10 minutes using a white beam with an energy maximum at 66 keV in a spiral configuration. Reconstructions yielded image stacks of 1700x1700x4102 voxels with a voxel size of 2.7 μm. We analysed strain localisation and fracture propagation in the time series data. Local changes in volumetric and shear strains between time steps were quantified using 3D digital image correlation [1]. Fractures were segmented using a Multiscale Hessian fracture filter [2] and analysed for their orientations, dimensions and spatial distributions, and changes in these between time steps. In combination, these analyses show the extent and evolution of both local aseismic deformation and microcracking and their relative contributions to the overall damage evolution. Our data provides direct evidence of ongoing deformation processes, complementing the seminal results of Lockner et al. [3], who first imaged fault growth using acoustic emissions locations. Our results provide further insight into the aseismic mechanisms that dissipate >90% of the overall strain energy [4], and the interactions between these mechanisms and the developing microcracks. They also provide experimental verification

  2. Heat pulse propagation studies in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.; Efthimion, P.C.; Hill, K.W.; Izzo, R.; Mikkelsen, D.R.; Monticello, D.A.; McGuire, K.; Bell, J.D.

    1986-02-01

    The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab.

  3. Heat pulse propagation studies in TFTR

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.

    1986-02-01

    The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab

  4. Neutron-proton scattering experiments and phase analyses for the n-p system in the energy range from 17 to 50 MeV

    International Nuclear Information System (INIS)

    Krupp, H.

    1986-01-01

    In the framework of the study of the nucleon-nucleon interaction neutron-proton scattering experiments were performed at the neutron collimator POLKA of the Karlsruhe cyclotron. Neutrons were produced by the source reaction D(d,n)X in the energy range between 17 and 50 MeV. Measured were the differential cross section, the analyzing power, and the spin correlation coefficient of the elastic n-p scattering. By means of the new data the knowledge of the isospin T=0 scattering phases could be improved. It is for the first time possible to determine the scattering phases for T=1 independently from n-p and p-p data with comparable accuracy. (orig./HSI) [de

  5. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  6. Wave propagation in elastic solids

    CERN Document Server

    Achenbach, Jan

    1984-01-01

    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  7. Temporal scaling in information propagation

    Science.gov (United States)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  8. An algorithm to improve sampling efficiency for uncertainty propagation using sampling based method

    International Nuclear Information System (INIS)

    Campolina, Daniel; Lima, Paulo Rubens I.; Pereira, Claubia; Veloso, Maria Auxiliadora F.

    2015-01-01

    Sample size and computational uncertainty were varied in order to investigate sample efficiency and convergence of the sampling based method for uncertainty propagation. Transport code MCNPX was used to simulate a LWR model and allow the mapping, from uncertain inputs of the benchmark experiment, to uncertain outputs. Random sampling efficiency was improved through the use of an algorithm for selecting distributions. Mean range, standard deviation range and skewness were verified in order to obtain a better representation of uncertainty figures. Standard deviation of 5 pcm in the propagated uncertainties for 10 n-samples replicates was adopted as convergence criterion to the method. Estimation of 75 pcm uncertainty on reactor k eff was accomplished by using sample of size 93 and computational uncertainty of 28 pcm to propagate 1σ uncertainty of burnable poison radius. For a fixed computational time, in order to reduce the variance of the uncertainty propagated, it was found, for the example under investigation, it is preferable double the sample size than double the amount of particles followed by Monte Carlo process in MCNPX code. (author)

  9. Propagation of coherent light pulses with PHASE

    Science.gov (United States)

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  10. Propagation characteristics of resonance cone in a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Ohnuma, T.; Sanuki, H.

    1984-01-01

    Propagation characteristics of resonance cone field for frequencies below the electron cyclotron frequency are described in a mirror magnetic field on the basis of fluid equation. Theoretical results are compared qualitatively with those of experiment

  11. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  12. Energy model for rumor propagation on social networks

    Science.gov (United States)

    Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang

    2014-01-01

    With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.

  13. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in ∼ 10 GeV energy range

    International Nuclear Information System (INIS)

    Saito, T.; Takagi, F.

    1994-01-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p 2 )/σ tot , which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p 2 d 2 σ/dpdΩ = C exp (-Bp 2 ), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section ρ = f/σ tot is also described by exponential A 0 exp (-A 1p 2 ), where p becomes independent of energy at initial particle energies ≥ 1.5 GeV for C nucleus and ≥ 5 GeV for the heaviest of the investigated Pb nuclei

  14. Underwater Ranging

    OpenAIRE

    S. P. Gaba

    1984-01-01

    The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  15. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  16. Free Range, Organic? Polish Consumers Preferences Regarding Information on Farming System and Nutritional Enhancement of Eggs: A Discrete Choice Based Experiment

    Directory of Open Access Journals (Sweden)

    Sylwia Żakowska-Biemans

    2017-11-01

    Full Text Available The main purpose of this study was to determine the structure of consumer preferences regarding information on farming system and nutritional enhancement of eggs to verify if consumers are willing to accept products combing sustainability and nutrition related claims. The data was collected within a CAPI (Computer Assisted Personal Interviews survey on a representative sample of 935 consumers responsible for food shopping. A discrete choice-based conjoint method was selected in eliciting consumer preferences among different product profiles with varying levels of attributes. A hierarchical cluster analysis was used to identify four distinct clusters that differed significantly in terms of importance attached to production system attributes and socio-demographic profiles. The results of the experiment showed that price and farming system had the most significant mean relative importance in shaping consumers’ preferences, while other attributes such as nutrition and health claims, egg size, package size and hen breed were far less important. Free range eggs had the highest relative importance for consumers despite the fact that organic egg production systems are governed by much stricter animal welfare standards. Our segmentation revealed that two of our four clusters may be more easily reached by information on animal welfare related attributes in egg production than the others. The results of our study provide the policy makers and marketing practitioners with insights applicable for communication and pricing strategies for eggs with sustainability claims.

  17. Examples and applications in long-range ocean acoustics

    International Nuclear Information System (INIS)

    Vera, M D

    2007-01-01

    Acoustic energy propagates effectively to long ranges in the ocean interior because of the physical properties of the marine environment. Sound propagation in the ocean is relevant to a variety of studies in communication, climatology and marine biology. Examples drawn from ocean acoustics, therefore, are compelling to students with a variety of interests. The dependence of sound speed on depth results in a waveguide that permits the detection of acoustic energy at ranges, in some experiments, of thousands of kilometres. This effect serves as an illustration of Snell's law with a continuously variable index of refraction. Acoustic tomography also offers a means for imaging the ocean's thermal structure, because of the dependence of sound speed on temperature. The ability to perform acoustic thermometry for large transects of the ocean provides an effective means of studying climate change. This application in an area of substantial popular attention allows for an effective introduction to concepts in ray propagation. Aspects of computational ocean acoustics can be productive classroom examples in courses ranging from introductory physics to upper-division mathematical methods courses

  18. Long-Range Piping Inspection by Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Joo, Young Sang; Lim, Sa Hoe; Eom, Heung Seop; Kim, Jae Hee

    2005-01-01

    The ultrasonic guided waves are very promising for the long-range inspection of large structures because they can propagate a long distance along the structures such as plates, shells and pipes. The guided wave inspection could be utilized for an on-line monitoring technique when the transmitting and receiving transducers are positioned at a remote point on the structure. The received signal has the information about the integrity of the monitoring area between the transmitting and receiving transducers. On-line monitoring of a pipe line using an ultrasonic guided wave can detect flaws such as corrosion, erosion and fatigue cracking at an early stage and collect useful information on the flaws. However the guided wave inspection is complicated by the dispersive characteristics for guided waves. The phase and group velocities are a function of the frequency-thickness product. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. In this study, we analyze the propagation characteristics of guided wave modes in a small diameter pipe of nuclear power plant and select the suitable mode for a long-range inspection. And experiments will be carried out for the practical application of a long-range inspection in a 26m long pipe by using a high-power ultrasonic inspection system

  19. Search for a spin-dependent short-range force between nucleons with a 3He/129Xe clock-comparison experiment

    International Nuclear Information System (INIS)

    Tullney, Kathlynne

    2014-01-01

    The standard model (SM) of particle physics describes all known particles and their interactions. However, the SM leaves many issues unresolved. For example, it only includes three of the four fundamental forces and does not clarify the question why in the strong interaction CP symmetry is violated due to its non-trivial vacuum structure is predicted (Θ-term), but experimentally unverifiable. The latter one is known as the strong CP-problem of quantum chromodynamics (QCD) and is solved by the Peccei-Quinn-Weinberg-Wilczek theory. This theory predicts a new and almost massless boson which is known as the axion. The axion feebly interacts with matter and therefore it is a good candidate for cold dark matter, too. Axions are produced by the Primakoff-effect, i.e. by conversion of photons which are scattered in the electromagnetic field, e.g. of atoms. The inverse Primakoff-effect, which converts axions to photons again, can be used for direct detection of galactic, solar, or laboratory axions. Cosmological and astrophysical observations constrain the mass of the axion from a few μeV to some meV (''axion mass window''). If the axion exists, then it mediates a CP violating, spin-dependent, short-range interaction between a fermion and the spin of another fermion. By verification of this interaction, the axion can be detected indirectly. In the framework of the present thesis an experiment to search for this spindependent short-range interaction was performed in the magnetically shielded room BMSR-2 of the Physikalisch-Technische Bundesanstalt Berlin. An ultra-sensitive low-field co-magnetometer was employed which is based on the detection of free precession of 3 He and 129 Xe nuclear spins using SQUIDs as low-noise magnetic flux detectors. The two nuclear spin polarized gases are filled into a glass cell which is immersed in a low magnetic field of about B 0 = 0.35 μT with absolute field gradients in the order of pT/cm. The spin precession frequencies of 3 He and 129

  20. Propagators and path integrals

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van

    1995-08-22

    Path-integral expressions for one-particle propagators in scalar and fermionic field theories are derived, for arbitrary mass. This establishes a direct connection between field theory and specific classical point-particle models. The role of world-line reparametrization invariance of the classical action and the implementation of the corresponding BRST-symmetry in the quantum theory are discussed. The presence of classical world-line supersymmetry is shown to lead to an unwanted doubling of states for massive spin-1/2 particles. The origin of this phenomenon is traced to a `hidden` topological fermionic excitation. A different formulation of the pseudo-classical mechanics using a bosonic representation of {gamma}{sub 5} is shown to remove these extra states at the expense of losing manifest supersymmetry. (orig.).

  1. Atomistics of crack propagation

    International Nuclear Information System (INIS)

    Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.

    1988-01-01

    The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund

  2. Broadband unidirectional ultrasound propagation

    Science.gov (United States)

    Sinha, Dipen N.; Pantea, Cristian

    2017-12-12

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystal provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.

  3. Propagation into an unstable state

    International Nuclear Information System (INIS)

    Dee, G.

    1985-01-01

    We describe propagating front solutions of the equations of motion of pattern-forming systems. We make a number of conjectures concerning the properties of such fronts in connection with pattern selection in these systems. We describe a calculation which can be used to calculate the velocity and state selected by certain types of propagating fronts. We investigate the propagating front solutions of the amplitude equation which provides a valid dynamical description of many pattern-forming systems near onset

  4. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation.

    Science.gov (United States)

    Hanassy, S; Botvinnik, A; Flash, T; Hochner, B

    2015-05-13

    The bend propagation involved in the stereotypical reaching movement of the octopus arm has been extensively studied. While these studies have analyzed the kinematics of bend propagation along the arm during its extension, possible length changes have been ignored. Here, the elongation profiles of the reaching movements of Octopus vulgaris were assessed using three-dimensional reconstructions. The analysis revealed that, in addition to bend propagation, arm extension movements involve elongation of the proximal part of the arm, i.e., the section from the base of the arm to the propagating bend. The elongations are quite substantial and highly variable, ranging from an average strain along the arm of -0.12 (i.e. shortening) up to 1.8 at the end of the movement (0.57 ± 0.41, n = 64 movements, four animals). Less variability was discovered in an additional set of experiments on reaching movements (0.64 ± 0.28, n = 30 movements, two animals), where target and octopus positions were kept more stationary. Visual observation and subsequent kinematic analysis suggest that the reaching movements can be broadly segregated into two groups. The first group involves bend propagation beginning at the base of the arm and propagating towards the arm tip. In the second, the bend is formed or present more distally and reaching is achieved mainly by elongation and straightening of the segment proximal to the bend. Only in the second type of movements is elongation significantly positively correlated with the distance of the bend from the target. We suggest that reaching towards a target is generated by a combination of both propagation of a bend along the arm and arm elongation. These two motor primitives may be combined to create a broad spectrum of reaching movements. The dynamical model, which recapitulates the biomechanics of the octopus muscular hydrostatic arm, suggests that achieving the observed elongation requires an extremely low ratio of longitudinal to transverse muscle

  5. Current understanding of SEP acceleration and propagation

    International Nuclear Information System (INIS)

    Klecker, B

    2013-01-01

    The solar energetic particle (SEP) populations of electrons and ions are highly variable in space and time, in intensity, energy, and composition. Over the last ∼20 years advanced instrumentation onboard many spacecraft (e.g. ACE, Coronas, GOES, Hinode, RHESSI, SAMPEX, SDO, SOHO, STEREO, TRACE, Ulysses, Yokoh, to name a few) extended our ability to explore the characteristics of solar energetic particles by in-situ measurements in interplanetary space and by observing their source characteristics near the Sun by remote-sensing observation of electromagnetic emission over a wide frequency range. These measurements provide crucial information for understanding the sources of the particle populations and the acceleration and propagation processes involved. We are now able to measure intensity-time profiles and anisotropies, energy spectra, elemental and isotopic abundances, and the ionic charge of particles over an extended energy range of 0.01 to several 100 MeV/nuc and for a large dynamic range of particle intensities. Furthermore, multi-spacecraft in-situ observations at different solar longitudes and latitudes provide new insight into the acceleration and propagation processes of SEPs near the Sun and in interplanetary space. In this paper we present an overview of SEP observations, their implications for SEP acceleration and propagation processes, and discuss open questions.

  6. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    Science.gov (United States)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  7. Measuring propagation speed of Coulomb fields

    Energy Technology Data Exchange (ETDEWEB)

    Sangro, R. de; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy)

    2015-03-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planet motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Lienard-Weichert retarded potential leads to the same formula as the one obtained assuming that the electric field propagate with infinite velocity. The Feynman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformly moving electron beam. The results we obtain, on a finite lifetime kinematical state, are compatible with an electric field rigidly carried by the beam itself. (orig.)

  8. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B to quantify long-range transport of East Asian sulfur to Canada

    Directory of Open Access Journals (Sweden)

    A. van Donkelaar

    2008-06-01

    Full Text Available We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem and use it to interpret the observations. Aerosol Optical Depth (AOD retrieved from two satellite instruments (MISR and MODIS for 2000–2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800–600 hPa, with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500–900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72–85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m3 (~30% and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by

  9. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in {approximately} 10 GeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.; Takagi, F. [Tohoku Univ., Sendai (Japan)

    1994-04-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p{sup 2})/{sigma}{sub tot}, which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p{sup 2} d{sup 2}{sigma}/dpd{Omega} = C exp ({minus}Bp{sup 2}), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section {rho} = f/{sigma}{sub tot} is also described by exponential A{sub 0} exp ({minus}A{sub 1p}{sup 2}), where p becomes independent of energy at initial particle energies {ge} 1.5 GeV for C nucleus and {ge} 5 GeV for the heaviest of the investigated Pb nuclei.

  10. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  11. Domain wall propagation in Fe-rich amorphous microwires

    Energy Technology Data Exchange (ETDEWEB)

    Panina, L.V. [School of Comp. and Math., Univ. of Plymouth, Drake Circus, PL4 AA, Plymouth (United Kingdom); Ipatov, M.; Zhukova, V. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain); Zhukov, A., E-mail: arkadi.joukov@ehu.es [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2012-05-01

    The domain wall (DW) propagation in magnetically bistable Fe{sub 74}Si{sub 11}B{sub 13}C{sub 2} amorphous microwires with metallic nucleus diameters of 12-16 {mu}m has been investigated in order to explain high DW velocities observed in Sixtus-Tonks like experiments. In micrometric wires, the boundary between two head-to-head domains is very elongated. The DW mobility normal to the wall surface is reduced by the domain aspect ratio and is in the range of a few m/s/Oe in the linear regime. The experimental results in the viscous regime could be quantitatively explained in terms of the domain length and normal mobility limited by the eddy currents and spin relaxation losses.

  12. Adélie penguins coping with environmental change: Results from a natural experiment at the edge of their breeding range

    Science.gov (United States)

    Dugger, Catherine; Ballard, Grant; Ainley, David G.; Lyber, Phil O'B.; Schine, Casey

    2014-01-01

    We investigated life history responses to extreme variation in physical environmental conditions during a long-term demographic study of Adélie penguins at 3 colonies representing 9% of the world population and the full range of breeding colony sizes. Five years into the 14-year study (1997–2010) two very large icebergs (spanning 1.5 latitude degrees in length) grounded in waters adjacent to breeding colonies, dramatically altering environmental conditions during 2001–2005. This natural experiment allowed us to evaluate the relative impacts of expected long-term, but also extreme, short-term climate perturbations on important natural history parameters that can regulate populations. The icebergs presented physical barriers, not just to the penguins but to polynya formation, which profoundly increased foraging effort and movement rates, while reducing breeding propensity and productivity, especially at the smallest colony. We evaluated the effect of a variety of environmental parameters during breeding, molt, migration and wintering periods during years with and without icebergs on penguin breeding productivity, chick mass, and nesting chronology. The icebergs had far more influence on the natural history parameters of penguins than any of the other environmental variables measured, resulting in population level changes to metrics of reproductive performance, including delays in nesting chronology, depressed breeding productivity, and lower chick mass. These effects were strongest at the smallest, southern-most colony, which was most affected by alteration of the Ross Sea Polynya during years the iceberg was present. Additionally, chick mass was negatively correlated with colony size, supporting previous findings indicating density-dependent energetic constraints at the largest colony. Understanding the negative effects of the icebergs on the short-term natural history of Adélie penguins, as well as their response to long-term environmental variation, are

  13. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  14. Defocusing of an ion beam propagating in background plasma due to two-stream instability

    Energy Technology Data Exchange (ETDEWEB)

    Tokluoglu, Erinc; Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-04-15

    The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics. However, the beam-plasma interaction can result in the development of collective instabilities that may have deleterious effects on ballistic propagation of an ion beam. In the case of fast, light-ion beams, non-linear fields created by instabilities can lead to significant defocusing of the beam. We study an ion beam pulse propagating in a background plasma, which is subjected to two-stream instability between the beam ions and plasma electrons, using PIC code LSP. The defocusing effects of the instability on the beam can be much more pronounced in small radius beams. We show through simulations that a beamlet produced from an ion beam passed through an aperture can be used as a diagnostic tool to identify the presence of the two-stream instability and quantify its defocusing effects. The effect can be observed on the Neutralized Drift Compression Experiment-II facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma.

  15. Aspects of HF radio propagation

    Directory of Open Access Journals (Sweden)

    Stephane Saillant

    2009-06-01

    .

    c Development of inversion techniques enabling backscatter ionograms obtained by an HF radar to be used

    to estimate the ionospheric electron density profile. This development facilitates the operation of over the horizon

    HF radars by enhancing the frequency management aspects of the systems.

    d Various propagation prediction techniques have been tested against measurements made over the trough

    path mentioned above, and also over a long-range path between Cyprus and the UK.

    e The effect of changes in the levels of ionospheric disturbances on the operational availability at various

    data throughput rates has been examined for the trough path mentioned earlier.

    The topics covered in this paper are necessarily brief, and the reader is referred to full papers referenced


  16. Study of interaction of ELF-ULF range (0.1-200 Hz) electromagnetic waves with the earth's crust and the ionosphere in the field of industrial power transmission lines (FENICS experiment)

    Science.gov (United States)

    Zhamaletdinov, A. A.; Shevtsov, A. N.; Velikhov, E. P.; Skorokhodov, A. A.; Kolesnikov, V. E.; Korotkova, T. G.; Ryazantsev, P. A.; Efimov, B. V.; Kolobov, V. V.; Barannik, M. B.; Prokopchuk, P. I.; Selivanov, V. N.; Kopytenko, Yu. A.; Kopytenko, E. A.; Ismagilov, V. S.; Petrishchev, M. S.; Sergushin, P. A.; Tereshchenko, P. E.; Samsonov, B. V.; Birulya, M. A.; Smirnov, M. Yu.; Korja, T.; Yampolski, Yu. M.; Koloskov, A. V.; Baru, N. A.; Poljakov, S. V.; Shchennikov, A. V.; Druzhin, G. I.; Jozwiak, W.; Reda, J.; Shchors, Yu. G.

    2015-12-01

    This article is devoted to describing the theory, technique, and first experimental results of a control source electromagnetic (CSEM) study of the Earth's crust and ionosphere with the use of two mutually orthogonal industrial transmission lines 109 and 120 km in length in the frame of FENICS (Fennoscandian Electrical Conductivity from Natural and Induction Control Source Soundings) experiment. The main part of the measurements is executed on the territory of the Fennoscandian shield at distances from the first hundreds kilometers up to 856 km from the source with the purpose of the deep electromagnetic sounding of the Earth's crust and upper mantle. According to the results of these studies clarifying the parameters of "normal" (standard) geoelectric section of the lithosphere to a depth of 60-70 km, the anisotropy parameters are evaluated and a geothermal and rheological interpretation in conjunction with the analysis of the seismic data is executed. Furthermore, to study the propagation of ELF-LLF waves (0.1-200 Hz) in an "Earth-Ionosphere" waveguide, the measurements are carried out apart from Fennoscandian shield at distances up to 5600 km from the source (in Ukraine, Spitsbergen, Poland, Kamchatka, and other areas). According to the results of these studies, the experimental estimates of the influence of the ionosphere and of the displacement currents on the propagation of ELF-ULF waves in the upper half-space at the different azimuths generation of the primary field are obtained.

  17. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  18. Dressing the nucleon propagator

    International Nuclear Information System (INIS)

    Fishman, S.; Gersten, A.

    1976-01-01

    The nucleon propagator in the ''nested bubbles'' approximation is analyzed. The approximation is built from the minimal set of diagrams which is needed to maintain the unitarity condition under two-pion production threshold in the two-nucleon Bethe--Salpeter equation. Recursive formulas for subsets of ''nested bubbles'' diagrams calculated in the framework of the pseudoscalar interaction are obtained by the use of dispersion relations. We prove that the sum of all the ''nested bubbles'' diverges. Moreover, the successive iterations are plagued with ghost poles. We prove that the first approximation--which is the so-called chain approximation--has ghost poles for any nonvanishing coupling constant. In an earlier paper we have shown that ghost poles lead to ghost cuts. These cuts are present in the ''nested bubbles.'' Ghost elimination procedures are discussed. Modifications of the ''nested bubbles'' approximation are introduced in order to obtain convergence and in order to eliminate the ghost poles and ghost cuts. In a similar way as in the Lee model, cutoff functions are introduced in order to eliminate the ghost poles. The necessary and sufficient conditions for the absence of ghost poles are formulated and analyzed. The spectral functions of the modified ''nested bubbles'' are analyzed and computed. Finally, we present a theorem, similar in its form to Levinson's theorem in scattering theory, which enables one to compute in a simple way the number of ghost poles

  19. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  20. Faraday tarotion: new parameter for electromagnetic pulse propagation in magnetoplasma

    International Nuclear Information System (INIS)

    Bloch, S.C.; Lyons, P.W.

    1976-01-01

    Extreme distortion and time-dependent Faraday rotation occur for propagation of short electromagnetic pulses in magnetoplasma, for some ranges of plasma parameters. In order to relate pulse and monochromatic waves for propagation-path diagnostic purposes, a new parameter is introduced for the transmitted pulse train which has properties that correspond very accurately to results that would be expected for Faraday rotation of a continuous wave having the central frequency of the incident pulse spectrum. Results for 5-ns pulses (10 GHz) are presented for varying propagating length, static magnetic field, electron density, and collisional absorption

  1. Propagation of singularities for linearised hybrid data impedance tomography

    Science.gov (United States)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2018-02-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic conditions, and the associated directions of propagation are precisely identified relative to the directions in which ellipticity is lost. The same result is found in the setting for the corresponding normal formulation of the scalar pseudo-differential equations. A numerical reconstruction procedure based of the least squares finite element method is derived, and a series of numerical experiments visualise exactly how the loss of ellipticity manifests itself as propagating singularities.

  2. Multilayer Network Modeling of Change Propagation for Engineering Change Management

    Science.gov (United States)

    2010-06-01

    generalization, rather than statistical generalization. As such, a single case can be used to advance a theory, similarly to how scientific experiments are...ation 411 PNC C ac 2 C PC Not Predicted & Propagated wI Comunication ENot Predicted & Not Propagated w ConPnCcation 04 PPC 5CPredicted & Propagated w...Engineering Management 48(3): 292-306. 5. Clark, J. and Holton, D.A. (2005). A First Look at Graph Theory. World Scientific . 6. Clarkson P.J., Simons, C

  3. Charged particle beam propagation studies at the Naval Research Laboratory

    International Nuclear Information System (INIS)

    Meger, R.A.; Hubbard, R.F.; Antoniades, J.A.; Fernsler, R.F.; Lampe, M.; Murphy, D.P.; Myers, M.C.; Pechacek, R.E.; Peyser, T.A.; Santos, J.; Slinker, S.P.

    1993-01-01

    The Plasma Physics Division of the Naval Research Laboratory has been performing research into the propagation of high current electron beams for 20 years. Recent efforts have focused on the stabilization of the resistive hose instability. Experiments have utilized the SuperIBEX e-beam generator (5-MeV, 100-kA, 40-ns pulse) and a 2-m diameter, 5-m long propagation chamber. Full density air propagation experiments have successfully demonstrated techniques to control the hose instability allowing stable 5-m transport of 1-2 cm radius, 10-20 kA total current beams. Analytic theory and particle simulations have been used to both guide and interpret the experimental results. This paper will provide background on the program and summarize the achievements of the NRL propagation program up to this point. Further details can be found in other papers presented in this conference

  4. Wave Propagation in Jointed Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  5. Engineering equations for characterizing non-linear laser intensity propagation in air with loss.

    Science.gov (United States)

    Karr, Thomas; Stotts, Larry B; Tellez, Jason A; Schmidt, Jason D; Mansell, Justin D

    2018-02-19

    The propagation of high peak-power laser beams in real atmospheres will be affected at long range by both linear and nonlinear effects contained therein. Arguably, J. H. Marburger is associated with the mathematical characterization of this phenomenon. This paper provides a validated set of engineering equations for characterizing the self-focusing distance from a laser beam propagating through non-turbulent air with, and without, loss as well as three source configurations: (1) no lens, (2) converging lens and (3) diverging lens. The validation was done against wave-optics simulation results. Some validated equations follow Marburger completely, but others do not, requiring modification of the original theory. Our results can provide a guide for numerical simulations and field experiments.

  6. M2 qualify laser beam propagation

    International Nuclear Information System (INIS)

    Abdelhalim, Bencheikh; Mohamed, Bouafia

    2010-01-01

    One of the most important properties of a laser resonator is the highly collimated or spatially coherent nature of the laser output beam. Laser beam diameter and quality factor M 2 are significant parameters in a wide range of laser applications. This is because the spatial beam quality determines how closely the beam can be focused or how well the beam propagates over long distances without significant dispersion. In the present paper we have used three different methods to qualify the spatial structure of a laser beam propagating in free space, the results are obtained and discussed, and we have found that the Wigner distribution function is a powerful tool which allows a global characterization of any kind of beam

  7. Dike Propagation Near Drifts

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M and O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M and O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report

  8. Model Development For Wireless Propagation In Forested Environments

    Science.gov (United States)

    2015-09-01

    vegetation elements can be compared to the reduction of the propagated radio signals in buildings and urban areas. The diversity of operational...contexts for radio wave propagation through foliage is infinite, ranging from tall, dense canopy forests to open, low, sparse canopy woodlands [3], as...nearly flat and mainly consists of dry soil and sand that is covered by grass in some parts. The experimental site is mixed vegetation woodland with an

  9. International Conference on Dynamic Crack Propagation

    CERN Document Server

    1973-01-01

    The planning meeting for a conference on Dynamic Crack Propagation was held at M.LT. in February 1971 and attended by research workers from several industrial, governmental and academic organizations. It was felt that a more specialized meeting would provide a better opportunity for both U.S. and foreign researchers to exchange their ideas and views on dynamic fracture, a subject which is seldom emphasized in national or international fracture conferences. Dynamic crack propagation has been a concern to specialists in many fields: continuum mechanics, metallurgy, geology, polymer chemistry, orthopedics, applied mathematics, as well as structural design and testing. It impinges on a wide variety of problems such as rock breaking and earthquakes, pressure vessels and line pipes, comminution and the per­ formance of armament and ordnance, etc. Advances have been numerous, covering theories and experiments from both the microscopic and macro­ scopic points of view. Hence, the need for comparing the theoretical ...

  10. Design Against Propagating Shear Failure in Pipelines

    Science.gov (United States)

    Leis, B. N.; Gray, J. Malcolm

    Propagating shear failure can occur in gas and certain hazardous liquid transmission pipelines, potentially leading to a large long-burning fire and/or widespread pollution, depending on the transported product. Such consequences require that the design of the pipeline and specification of the steel effectively preclude the chance of propagating shear failure. Because the phenomenology of such failures is complex, design against such occurrences historically has relied on full-scale demonstration experiments coupled with empirically calibrated analytical models. However, as economic drivers have pushed toward larger diameter higher pressure pipelines made of tough higher-strength grades, the design basis to ensure arrest has been severely compromised. Accordingly, for applications where the design basis becomes less certain, as has occurred increasing as steel grade and toughness has increased, it has become necessary to place greater reliance on the use and role of full-scale testing.

  11. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  12. Five-component propagation model for steam explosion analysis

    International Nuclear Information System (INIS)

    Yang, Y.; Moriyama, Kiyofumi; Park, H.S.; Maruyama, Yu; Sugimoto, Jun

    1999-01-01

    A five-field simulation code JASMINE-pro has been developed at JAERI for the calculation of the propagation and explosion phase of steam explosions. The basic equations and the constitutive relationships specifically utilized in the propagation models in the code are introduced in this paper. Some calculations simulating the KROTOS 1D and 2D steam explosion experiments are also stated in the paper to show the present capability of the code. (author)

  13. Laser beam propagation generation and propagation of customized light

    CERN Document Server

    Forbes, Andrew

    2014-01-01

    ""The text is easy to read and is accompanied by beautiful illustrations. It is an excellent book for anyone working in laser beam propagation and an asset for any library.""-Optics & Photonics News, July 2014

  14. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    Science.gov (United States)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  15. Study on Knowledge Propagation in Complex Networks Based on Preferences, Taking Wechat as Example

    Directory of Open Access Journals (Sweden)

    Si-hua Chen

    2014-01-01

    Full Text Available As platform based on users’ relationship to acquire, share, and propagate knowledge, Wechat develops very rapidly and becomes an important channel to spread knowledge. This new way to propagate knowledge is quite different from the traditional media way which enables knowledge to be spread surprisingly in Wechat. Based on complex network theory and the analysis of the factors which influence the knowledge propagation in Wechat, this paper summarizes the behavior preferences of Wechat users in knowledge propagation and establishes a Wechat knowledge propagation model. By the simulation experiment, this paper tests the model established and finds some important thresholds in knowledge propagation in Wechat. The findings are valuable for further studying the knowledge propagation in Wechat and provide theoretical proof for forecasting the scale and influence of knowledge propagation.

  16. A 3D thermal runaway propagation model for a large format lithium ion battery module

    International Nuclear Information System (INIS)

    Feng, Xuning; Lu, Languang; Ouyang, Minggao; Li, Jiangqiu; He, Xiangming

    2016-01-01

    In this paper, a 3D thermal runaway (TR) propagation model is built for a large format lithium ion battery module. The 3D TR propagation model is built based on the energy balance equation. Empirical equations are utilized to simplify the calculation of the chemical kinetics for TR, whereas equivalent thermal resistant layer is employed to simplify the heat transfer through the thin thermal layer. The 3D TR propagation model is validated by experiment and can provide beneficial discussions on the mechanisms of TR propagation. According to the modeling analysis of the 3D model, the TR propagation can be delayed or prevented through: 1) increasing the TR triggering temperature; 2) reducing the total electric energy released during TR; 3) enhancing the heat dissipation level; 4) adding extra thermal resistant layer between adjacent batteries. The TR propagation is successfully prevented in the model and validated by experiment. The model with 3D temperature distribution provides a beneficial tool for researchers to study the TR propagation mechanisms and for engineers to design a safer battery pack. - Highlights: • A 3D thermal runaway (TR) propagation model for Li-ion battery pack is built. • The 3D TR propagation model can fit experimental results well. • Temperature distributions during TR propagation are presented using the 3D model. • Modeling analysis provides solutions for the prevention of TR propagation. • Quantified solutions to prevent TR propagation in battery pack are discussed.

  17. Three-dimensional imaging, change detection, and stability assessment during the centerline trench levee seepage experiment using terrestrial light detection and ranging technology, Twitchell Island, California, 2012

    Science.gov (United States)

    Bawden, Gerald W.; Howle, James; Bond, Sandra; Shriro, Michelle; Buck, Peter

    2014-01-01

    A full scale field seepage test was conducted on a north-south trending levee segment of a now bypassed old meander belt on Twitchell Island, California, to understand the effects of live and decaying root systems on levee seepage and slope stability. The field test in May 2012 was centered on a north-south trench with two segments: a shorter control segment and a longer seepage test segment. The complete length of the trench area measured 40.4 meters (m) near the levee centerline with mature trees located on the waterside and landside of the levee flanks. The levee was instrumented with piezometers and tensiometers to measure positive and negative porewater pressures across the levee after the trench was flooded with water and held at a constant hydraulic head during the seepage test—the results from this component of the experiment are not discussed in this report. We collected more than one billion three-dimensional light detection and ranging (lidar) data points before, during, and after the centerline seepage test to assess centimeter-scale stability of the two trees and the levee crown. During the seepage test, the waterside tree toppled (rotated 20.7 degrees) into the water. The landside tree rotated away from the levee by 5 centimeters (cm) at a height of 2 m on the tree. The paved surface of the levee crown had three regions that showed subsidence on the waterside of the trench—discussed as the northern, central, and southern features. The northern feature is an elongate region that subsided 2.1 cm over an area with an average width of 1.35 m that extends 15.8 m parallel to the trench from the northern end of the trench to just north of the trench midpoint, and is associated with a crack 1 cm in height that formed during the seepage test on the trench wall. The central subsidence feature is a semicircular region on the waterside of the trench that subsided by as much as 6.2 cm over an area 3.4 m wide and 11.2 m long. The southern feature is an elongate

  18. Methodologies of Uncertainty Propagation Calculation

    International Nuclear Information System (INIS)

    Chojnacki, Eric

    2002-01-01

    After recalling the theoretical principle and the practical difficulties of the methodologies of uncertainty propagation calculation, the author discussed how to propagate input uncertainties. He said there were two kinds of input uncertainty: - variability: uncertainty due to heterogeneity, - lack of knowledge: uncertainty due to ignorance. It was therefore necessary to use two different propagation methods. He demonstrated this in a simple example which he generalised, treating the variability uncertainty by the probability theory and the lack of knowledge uncertainty by the fuzzy theory. He cautioned, however, against the systematic use of probability theory which may lead to unjustifiable and illegitimate precise answers. Mr Chojnacki's conclusions were that the importance of distinguishing variability and lack of knowledge increased as the problem was getting more and more complex in terms of number of parameters or time steps, and that it was necessary to develop uncertainty propagation methodologies combining probability theory and fuzzy theory

  19. Propagation engineering in wireless communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2016-01-01

    This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.

  20. Wave propagation in electromagnetic media

    CERN Document Server

    Davis, Julian L

    1990-01-01

    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  1. Massive propagators in instanton fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Lee, C.

    1978-01-01

    Green's functions for massive spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corresponding Green's functions of massive scalar particles

  2. Non-uniform sampling and wide range angular spectrum method

    International Nuclear Information System (INIS)

    Kim, Yong-Hae; Byun, Chun-Won; Oh, Himchan; Lee, JaeWon; Pi, Jae-Eun; Heon Kim, Gi; Lee, Myung-Lae; Ryu, Hojun; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-01-01

    A novel method is proposed for simulating free space field propagation from a source plane to a destination plane that is applicable for both small and large propagation distances. The angular spectrum method (ASM) was widely used for simulating near field propagation, but it caused a numerical error when the propagation distance was large because of aliasing due to under sampling. Band limited ASM satisfied the Nyquist condition on sampling by limiting a bandwidth of a propagation field to avoid an aliasing error so that it could extend the applicable propagation distance of the ASM. However, the band limited ASM also made an error due to the decrease of an effective sampling number in a Fourier space when the propagation distance was large. In the proposed wide range ASM, we use a non-uniform sampling in a Fourier space to keep a constant effective sampling number even though the propagation distance is large. As a result, the wide range ASM can produce simulation results with high accuracy for both far and near field propagation. For non-paraxial wave propagation, we applied the wide range ASM to a shifted destination plane as well. (paper)

  3. Design Change Model for Effective Scheduling Change Propagation Paths

    Science.gov (United States)

    Zhang, Hai-Zhu; Ding, Guo-Fu; Li, Rong; Qin, Sheng-Feng; Yan, Kai-Yin

    2017-09-01

    Changes in requirements may result in the increasing of product development project cost and lead time, therefore, it is important to understand how requirement changes propagate in the design of complex product systems and be able to select best options to guide design. Currently, a most approach for design change is lack of take the multi-disciplinary coupling relationships and the number of parameters into account integrally. A new design change model is presented to systematically analyze and search change propagation paths. Firstly, a PDS-Behavior-Structure-based design change model is established to describe requirement changes causing the design change propagation in behavior and structure domains. Secondly, a multi-disciplinary oriented behavior matrix is utilized to support change propagation analysis of complex product systems, and the interaction relationships of the matrix elements are used to obtain an initial set of change paths. Finally, a rough set-based propagation space reducing tool is developed to assist in narrowing change propagation paths by computing the importance of the design change parameters. The proposed new design change model and its associated tools have been demonstrated by the scheduling change propagation paths of high speed train's bogie to show its feasibility and effectiveness. This model is not only supportive to response quickly to diversified market requirements, but also helpful to satisfy customer requirements and reduce product development lead time. The proposed new design change model can be applied in a wide range of engineering systems design with improved efficiency.

  4. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  5. Semiclassical propagation of Wigner functions.

    Science.gov (United States)

    Dittrich, T; Gómez, E A; Pachón, L A

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  6. Modeling the Propagation of Mobile Phone Virus under Complex Network

    Science.gov (United States)

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209

  7. Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing

    Science.gov (United States)

    Adamovsky, Grigory; Ida, Nathan

    1997-01-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.

  8. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  9. DISCOVERY OF UBIQUITOUS FAST-PROPAGATING INTENSITY DISTURBANCES BY THE CHROMOSPHERIC LYMAN ALPHA SPECTROPOLARIMETER (CLASP)

    International Nuclear Information System (INIS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Bueno, J. Trujillo; Ramos, A. Asensio

    2016-01-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Ly α line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s −1 , and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  10. DISCOVERY OF UBIQUITOUS FAST-PROPAGATING INTENSITY DISTURBANCES BY THE CHROMOSPHERIC LYMAN ALPHA SPECTROPOLARIMETER (CLASP)

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G. [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Winebarger, A.; Kobayashi, K.; Cirtain, J. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Champey, P. [University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Auchère, F. [Institut d’Astrophysique Spatiale, CNRS/Univ. Paris-Sud 11, Bâtiment 121, F-91405 Orsay (France); Bueno, J. Trujillo; Ramos, A. Asensio, E-mail: masahito.kubo@nao.ac.jp [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); and others

    2016-12-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Ly α line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s{sup −1}, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  11. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    Science.gov (United States)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  12. Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers

    International Nuclear Information System (INIS)

    Jou, D.; Cimmelli, V.A.; Sellitto, A.

    2009-01-01

    It is shown that the dispersion relation of heat waves along nanowires or thin layers could allow to compare two different definitions of nonequilibrium temperature, since thermal waves are predicted to propagate with different phase speed depending on the definition of nonequilibrium temperature being used. The difference is small, but it could be in principle measurable in nanosystems, as for instance nanowires and thin layers, in a given frequency range. Such an experiment could provide a deeper view on the problem of the definition of temperature in nonequilibrium situations.

  13. Single pit propagation on austenitic stainless steel

    International Nuclear Information System (INIS)

    Heurtault, Stephane

    2016-01-01

    The electrochemical characterization of metastable events such as pitting corrosion of stainless steel in chloride electrolyte remains complex because many individual processes may occur simultaneously on the alloy surface. To overcome these difficulties, an experimental setup, the flow micro-device, has been developed to achieve the initiation of a single pit and to propagate the single pit in three dimensions. In this work, we take advantage of such a device in order to revisit the pitting process on a 316L stainless steel in a chloride - sulphate bulk. In a first step, the time evolution of the pit geometry (depth, radius) and the chemical evolution of the pit solution investigated using in situ Raman spectroscopy have shown that the pit depth propagation depends on the formation of a metal chloride and sulphate gel in the pit solution, and is controlled by the metallic cations diffusion from the pit bottom to the pit mouth. The pit radius growth is defined by the initial surface de-passivation, by the presence of a pit cover and by the gel development in the solution. all of these phenomena are function of applied potential and chemical composition of the solution. In a last step, it was demonstrated that a critical chloride concentration is needed in order to maintain the pit propagation. This critical concentration slightly increases with the pit depth. From statistical analysis performed on identical experiments, a zone diagram showing the pit stability as a function of the chloride concentration and the pit dimensions was built. (author) [fr

  14. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  15. Single Neurons in the Avian Auditory Cortex Encode Individual Identity and Propagation Distance in Naturally Degraded Communication Calls.

    Science.gov (United States)

    Mouterde, Solveig C; Elie, Julie E; Mathevon, Nicolas; Theunissen, Frédéric E

    2017-03-29

    One of the most complex tasks performed by sensory systems is "scene analysis": the interpretation of complex signals as behaviorally relevant objects. The study of this problem, universal to species and sensory modalities, is particularly challenging in audition, where sounds from various sources and localizations, degraded by propagation through the environment, sum to form a single acoustical signal. Here we investigated in a songbird model, the zebra finch, the neural substrate for ranging and identifying a single source. We relied on ecologically and behaviorally relevant stimuli, contact calls, to investigate the neural discrimination of individual vocal signature as well as sound source distance when calls have been degraded through propagation in a natural environment. Performing electrophysiological recordings in anesthetized birds, we found neurons in the auditory forebrain that discriminate individual vocal signatures despite long-range degradation, as well as neurons discriminating propagation distance, with varying degrees of multiplexing between both information types. Moreover, the neural discrimination performance of individual identity was not affected by propagation-induced degradation beyond what was induced by the decreased intensity. For the first time, neurons with distance-invariant identity discrimination properties as well as distance-discriminant neurons are revealed in the avian auditory cortex. Because these neurons were recorded in animals that had prior experience neither with the vocalizers of the stimuli nor with long-range propagation of calls, we suggest that this neural population is part of a general-purpose system for vocalizer discrimination and ranging. SIGNIFICANCE STATEMENT Understanding how the brain makes sense of the multitude of stimuli that it continually receives in natural conditions is a challenge for scientists. Here we provide a new understanding of how the auditory system extracts behaviorally relevant information

  16. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  17. A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C.; Sindoni, Giampiero; Koenig, Rolf; Ries, John C.; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger; Rubincam, David; Paris, Claudio

    2017-08-01

    We introduce the LARES 2 space experiment recently approved by the Italian Space Agency (ASI). The LARES 2 satellite is planned for launch in 2019 with the new VEGA C launch vehicle of ASI, ESA and ELV. The orbital analysis of LARES 2 experiment will be carried out by our international science team of experts in General Relativity, theoretical physics, space geodesy and aerospace engineering. The main objectives of the LARES 2 experiment are gravitational and fundamental physics, including accurate measurements of General Relativity, in particular a test of frame-dragging aimed at achieving an accuracy of a few parts in a thousand, i.e., aimed at improving by about an order of magnitude the present state-of-the-art and forthcoming tests of this general relativistic phenomenon. LARES 2 will also achieve determinations in space geodesy. LARES 2 is an improved version of the LAGEOS 3 experiment, proposed in 1984 to measure frame-dragging and analyzed in 1989 by a joint ASI and NASA study.

  18. Fatigue crack propagation under elastic plastic medium at elevated temperature

    International Nuclear Information System (INIS)

    Asada, Y.; Yuuki, R.; Sakon, T.; Sunamoto, D.; Tokimasa, K.; Makino, Y.; Kitagawa, M; Shingai, K.

    1980-01-01

    The purposes of the present study are to establish the testing method to obtain compatible data on the low cycle fatigue crack propagation at elevated temperature, and to investigate the parameter controlling the crack propagation rate. In the present study, the preliminary experiments have been carried out on low cycle fatigue crack propagation behaviour in type 304 stainless steel in air at 550 0 C, using two types of specimen with a through thickness notch. Both strain controlled and stress controlled fatigue tests have been done under a fully reversed strain or stress cycling. The data obtained are correlated with some fracture mechanics parameters and are discussed with the appropriate parameter for evaluating the low cycle fatigue crack propagation behaviour at elevated temperature. (author)

  19. Parton Propagation and Fragmentation in QCD Matter

    Energy Technology Data Exchange (ETDEWEB)

    Alberto Accardi, Francois Arleo, William Brooks, David D' Enterria, Valeria Muccifora

    2009-12-01

    We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.

  20. Earth-Space Propagation Data Bases

    Science.gov (United States)

    Smith, Ernest K.

    1996-01-01

    This paper, designed for the newcomer rather than the expert, will take a rather broad view of what is meant by 'propagation data bases' in that it will take the term to mean both the actual measurements and models of Earth-space paths. The text will largely be drawn from International Radio Consultative Committee (CCIR) reports, now annexed to the Recommendations of the International Telecommunications Union-R Study Group 3, plus some experience with a course taught at the University of Colorado.

  1. Laser beam propagation in nonlinear optical media

    CERN Document Server

    Guha, Shekhar

    2013-01-01

    ""This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then

  2. Shock propagation in locally driven granular systems

    Science.gov (United States)

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  3. Numerical experiments using deflation with the HISQ action

    Science.gov (United States)

    Davies, Christine; DeTar, Carleton; McNeile, Craig; Vaquero, Alejandro

    2018-03-01

    We report on numerical experiments using deflation to compute quark propagators for the highly improved staggered quark (HISQ) action. The method is tested on HISQ gauge configurations, generated by the MILC collaboration, with lattice spacings of 0.15 fm, with a range of volumes, and sea quark masses down to the physical quark mass.

  4. A wide dynamic range experiment to measure high energy γ-showers in air by detecting Cherenkov light in the middle ultraviolet

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Belforte, S.; Bellettini, G.; Bertolucci, E.; Cervelli, F.; Chiarelli, G.; Dell'Orso, M.; Giannetti, P.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Zetti, F.; Pisa Univ.

    1988-01-01

    An experiment to study high energy γ rays from localized cosmic sources is described. A number of Al mirrors reflects the Cherenkov light emitted by the showers into photosensitive gas chambers on the mirror focal plane. The use of gas chambers with large active areas allows a sensitivity superior to existing experiments to be reached. Pad readout gives the required angular accuracy. The chamber is sensitive to the middle ultraviolet Cherenkov light produced by the showers in the atmosphere. Since the ozone in the upper atmosphere absorbs the direct ultraviolet light from any outer source, the lower level atmosphere provides a large dark volume in which the Cherenkov radiation from the showers can be isolated. (orig.)

  5. Propagation of Local Bubble Parameters of Subcooled Boiling Flow in a Pressurized Vertical Annulus Channel

    International Nuclear Information System (INIS)

    Chu, In-Cheol; Lee, Seung Jun; Youn, Young Jung; Park, Jong Kuk; Choi, Hae Seob; Euh, Dong Jin

    2015-01-01

    CMFD (Computation Multi-Fluid Dynamics) tools have been being developed to simulate two-phase flow safety problems in nuclear reactor, including the precise prediction of local bubble parameters in subcooled boiling flow. However, a lot of complicated phenomena are encountered in the subcooled boiling flow such as bubble nucleation and departure, interfacial drag of bubbles, lateral migration of bubbles, bubble coalescence and break-up, and condensation of bubbles, and the constitutive models for these phenomena are not yet complete. As a result, it is a difficult task to predict the radial profile of bubble parameters and its propagation along the flow direction. Several experiments were performed to measure the local bubble parameters for the validation of the CMFD code analysis and improvement of the constitutive models of the subcooled boiling flow, and to enhance the fundamental understanding on the subcooled boiling flow. The information on the propagation of the local flow parameters along the flow direction was not provided because the measurements were conducted at the fixed elevation. In SUBO experiments, the radial profiles of local bubble parameters, liquid velocity and temperature were obtained for steam-water subcooled boiling flow in a vertical annulus. The local flow parameters were measured at six elevations along the flow direction. The pressure was in the range of 0.15 to 0.2 MPa. We have launched an experimental program to investigate quantify the local subcooled boiling flow structure under elevated pressure condition in order to provide high precision experimental data for thorough validation of up-to-date CMFD codes. In the present study, the first set of experimental data on the propagation of the radial profile of the bubble parameters was obtained for the subcooled boiling flow of R-134a in a pressurized vertical annulus channel. An experimental program was launched for an in-depth investigation of a subcooled boiling flow in an elevated

  6. Reference range of fetal nasal bone length between 18 and 24 weeks of pregnancy in an unselected Brazilian population: experience from a single service.

    Science.gov (United States)

    Araujo Júnior, Edward; Martins, Wellington P; Pires, Claudio Rodrigues; Moron, Antonio Fernandes; Zanforlin Filho, Sebastião Marques

    2014-08-01

    To determine reference range of fetal nasal bone length (NBL) during the second trimester of pregnancy in a Brazilian population. This was a retrospective cross-sectional study with 2681 normal singleton pregnancies between 18 and 24 weeks of gestation. The NBL was obtained in the mid-sagittal plane of the fetal face profile using the following landmarks: nasal bone, overlying skin and the tip of the nose. The NBL was measured by placing the calipers in the out-to-out position. To assess the correlation between NBL and gestational age (GA), polynomial equations were calculated, with adjustments by coefficient of determination (R(2)). The mean of NBL ranged from 5.72 ± 0.87 mm at 18-18 + 6 weeks to 7.45 ± 1.23 mm at 24-24+6 weeks of pregnancy. We observed a good correlation between NBL and GA, best represented by a linear equation: NBL = 0.080+0.276*GA (R(2 )= 0.16). We established a reference range of fetal NBL in the second trimester of pregnancy in a Brazilian population.

  7. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipt. Ingegneria dell' Innovazione, Lecce (Italy); Centro Fermi, Rome (Italy); Matzner, Richard [University of Texas, Theory Group, Austin (United States); Gurzadyan, Vahe [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom)

    2017-12-15

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  8. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    International Nuclear Information System (INIS)

    Ciufolini, Ignazio; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger

    2017-01-01

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  9. Group symmetries and information propagation

    International Nuclear Information System (INIS)

    Draayer, J.P.

    1980-01-01

    Spectroscopy concerns itself with the ways in which the Hamiltonian and other interesting operators defined in few-particle spaces are determined or determine properties of many-particle systems. But the action of the central limit theorem (CLT) filters the transmission of information between source and observed so whether propagating forward from a few-particle defining space, as is usual in theoretical studies, or projecting backward to it from measured things, each is only sensitive to averaged properties of the other. Our concern is with the propagation of spectroscopic information in the presence of good symmetries when filtering action of the CLT is effective. Specifically, we propose to address the question, What propagates and how. We begin with some examples, using both scalar and isospin geometries to illustrate simple propagation. Examples of matrix propagation are studied; contact with standard tensor algebra is established and an algorithm put forward for the expansion of any operator in terms of another set, complete or not; shell-model results for 20 Ne using a realistic interaction and two trace-equivalent forms are presented; and some further challenges are mentioned

  10. Entanglement Growth in Quench Dynamics with Variable Range Interactions

    Directory of Open Access Journals (Sweden)

    J. Schachenmayer

    2013-09-01

    Full Text Available Studying entanglement growth in quantum dynamics provides both insight into the underlying microscopic processes and information about the complexity of the quantum states, which is related to the efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar molecules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems, identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin interactions in a transverse Ising chain is varied. Computing the buildup of bipartite entanglement as well as mutual information between distant spins, we identify linear growth of entanglement entropy corresponding to propagation of quasiparticles for shorter-range interactions, with the maximum rate of growth occurring when the Hamiltonian parameters match those for the quantum phase transition. Counterintuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic for most regimes, i.e., substantially slower than for shorter-range interactions. Experiments with trapped ions allow for the realization of this system with a tunable interaction range, and we show that the different phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct guide for the generation of large-scale entanglement in such experiments, towards a regime where the entanglement growth can render existing classical simulations inefficient.

  11. Signal propagation along the axon.

    Science.gov (United States)

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Wave equations for pulse propagation

    International Nuclear Information System (INIS)

    Shore, B.W.

    1987-01-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  13. Construction of the Al-Ni-Si phase diagram over the whole composition and temperature ranges: thermodynamic modeling supported by key experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Wei; Du Yong; Wang Jiong; Zhang Wei-Wei [State Key Lab. of Powder Metallurgy, Central South Univ., Changsha (China); Hu Rong-Xiang; Nash, P. [Thermal Processing Technology Center, Illinois Inst. of Tech., Chicago (United States); Lu Xiao-Gang [Thermo-Calc AB, Stockholm Technology Park, Stockholm (Sweden)

    2008-06-15

    An extensive thermodynamic investigation of the Al-Ni-Si system is carried out via an integrated approach of calculation of phase diagrams, first-principles calculations, and key experiments. Eighteen decisive alloys are prepared in order to verify the existence of the previously reported ternary compounds and to provide new phase equilibrium data. Phase compositions, microstructure, and phase transition temperatures are determined using the combined techniques of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and differential thermal analysis. The order/disorder transition between disordered bccA2 and ordered bccB2 phases as well as that between disordered fccA1 and ordered L1{sub 2} phase are described using a two-sublattice model. A self-consistent parameter set is finally obtained by considering the huge amount of experimental data including 13 vertical sections and 5 isothermal sections from both the literature and the present experiments. Almost all of the reliable phase diagram data can be well described by the present modeling. The reliability of the calculated thermodynamic properties for ternary phases is verified through enthalpy measurement employing drop calorimetry and first-principles calculations. The thermodynamic parameters obtained can also successfully predict most of the thermodynamic properties and describe the solidification path for the selected as-cast alloy Al{sub 6}Ni{sub 55}Si{sub 39}. (orig.)

  14. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  15. Vegetative propagation of Bambusa vulgaris

    Directory of Open Access Journals (Sweden)

    Rafael Malfitano Braga

    2017-06-01

    Full Text Available Bamboo is an important source of raw material of multiple uses. The development of simple techniques for its propagation is a practical way to enable its implementation in ownership of low technology. The present work had the objective of evaluating artisanal propagation methods for Bambusa vulgaris. Two types of propagules were tested, with buds budded or not, and three relative positions to the removal of vegetative material on the culm. The best propagule was with only one node, extracted from the lower thirds of the stem, presenting 72% of rooting. This result demonstrates its potential for seedling production of this species under low tech.

  16. Nonequilibrium theory of flame propagation

    International Nuclear Information System (INIS)

    Merzhanov, A.G.

    1995-01-01

    The nonequilibrium theory of flame propagation is considered as applied to the following three processes of wave propagation: the combustion waves of the second kind, the combustion waves with broad reaction zones, and the combustion waves with chemical stages. Kinetic and combustion wave parameters are presented for different in composition mixtures of boron and transition metals, such as Zr, Hf, Ti, Nb, Ta, Mo, as well as for the Ta-N, Zr-C-H, Nb-B-O systems to illustrate specific features of the above-mentioned processes [ru

  17. Characteristics of Electromagnetic Pulse Propagation in Metal

    Science.gov (United States)

    Namkung, M.; Wincheski, B.; Nath, S.; Fulton, J. P.

    2004-01-01

    It is well known that the solution of the diffusion equation for an electromagnetic field with a time harmonic term, e(sup iwt), is in the form of a traveling wave whose amplitude attenuates over distance into a conducting medium. As the attenuation is an increasing function of frequency, the high frequency components attenuate more rapidly than those of low ones upon entering a well conducting object. At the same time, the phase velocity of an individual component is also an increasing function of frequency causing a broadening of the pulse traveling inside a conductor. In the results of our previous study of numerical simulations, the problem of using a gaussian input pulse was immediately clear. First, having the dominant frequency components distributed around zero, the movement of the peak was not well defined. Second, with the amplitude of fourier components varying slowly over a wide range, the dispersion-induced blurring of the peak position was seen to be severe. For the present study, we have used a gaussian modulated single frequency sinusoidal wave, i. e., the carrier, as an input pulse in an effort to improve the issues related to the unclear movement of peak and dispersion as described above. This was based on the following two anticipated advantages: First, the packet moves in a conductor at the group velocity calculated at the carrier frequency, which means it is well controllable. Second, the amplitude of frequency components other than that of the carrier can be almost negligible, such that the effect of dispersion can be significantly reduced. A series of experiments of transmitting electromagnetic pulses through aluminum plates of various thickness was performed to test the validity of the above points. The results of numerical simulation based on wave propagation are discussed with respect to the experimental results. Finally, a simple simulation was performed based on diffusion of a continuous sine wave input and the results are compared with

  18. Properties of Alfvén eigenmodes in the Toroidal Alfvén Eigenmode range on the National Spherical Torus Experiment-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, M.; Gorelenkov, N. N.; White, R. B.; Fredrickson, E. D.; Gerhardt, S. P.; Kramer, G. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-08-15

    A second Neutral Beam (NB) injection line is being installed on the NSTX Upgrade device, resulting in six NB sources with different tangency radii that will be available for heating and current drive. This work explores the properties of instabilities in the frequency range of the Toroidal Alfvén Eigenmode (TAE) for NSTX-U scenarios with various NB injection geometries, from more perpendicular to more tangential, and with increased toroidal magnetic field with respect to previous NSTX scenarios. Predictions are based on analysis through the ideal MHD code NOVA-K. For the scenarios considered in this work, modifications of the Alfvén continuum result in a frequency up-shift and a broadening of the radial mode structure. The latter effect may have consequences for fast ion transport and loss. Preliminary stability considerations indicate that TAEs are potentially unstable with ion Landau damping representing the dominant damping mechanism.

  19. Constraining the Depth of a Martian Magma Ocean through Metal-Silicate Partitioning Experiments: The Role of Different Datasets and the Range of Pressure and Temperature Conditions

    Science.gov (United States)

    Righter, K.; Chabot, N.L.

    2009-01-01

    Mars accretion is known to be fast compared to Earth. Basaltic samples provide a probe into the interior and allow reconstruction of siderophile element contents of the mantle. These estimates can be used to estimate conditions of core formation, as for Earth. Although many assume that Mars went through a magma ocean stage, and possibly even complete melting, the siderophile element content of Mars mantle is consistent with relatively low pressure and temperature (PT) conditions, implying only shallow melting, near 7 GPa and 2073 K. This is a pressure range where some have proposed a change in siderophile element partitioning behavior. We will examine the databases used for parameterization and split them into a low and higher pressure regime to see if the methods used to reach this conclusion agree for the two sets of data.

  20. Cusp shape studies in H+→He collision in the energy range 75-1400 keV: experiment and theory

    International Nuclear Information System (INIS)

    Zavodszky, P.A.; Gulyas, L.; Sarkadi, L.; Vajnai, T.; Szabo, G.; Ricz, S.; Palinkas, J.; Berenyi, D.

    1994-01-01

    The aim of the present study was to measure the double differential cross section (DDCS) for the electron ejection as a function of electron energy at 0 observation angle in H + →He collisions. Having in mind that the experimental and theoretical shape parameters of the DDCS known in the literature are rather scattered, we made a systematic study in the projectile energy range 75-1400 keV. The total electron yield and the shape parameters of the DDCS were determined and compared with the corresponding values from 2nd order OBK, CDW and CDW-EIS theories. A further aim of this work was to check whether the velocity of the projectile and that of the electrons at the maximum of the cusp peak are indeed equal. (orig.)

  1. Suppression of Fatigue Crack Propagation of Duralumin by Cavitation Peening

    Directory of Open Access Journals (Sweden)

    Hitoshi Soyama

    2015-08-01

    Full Text Available It was demonstrated in the present paper that cavitation peening which is one of the mechanical surface modification technique can suppress fatigue crack propagation in duralumin. The impacts produced when cavitation bubble collapses can be utilised for the mechanical surface modification technique in the same way as laser peening and shot peening, which is called “cavitation peening”. Cavitation peening employing a cavitating jet in water was used to treat the specimen made of duralumin Japanese Industrial Standards JIS A2017-T3. After introducing a notch, fatigue test was conducted by a load-controlled plate bending fatigue tester, which has been originally developed. The fatigue crack propagation behavior was evaluated and the relationship between the fatigue crack propagation rate versus stress intensity factor range was obtained. From the results, the fatigue crack propagation rate was drastically reduced by cavitation peening and the fatigue life of duralumin plate was extended 4.2 times by cavitation peening. In addition, the fatigue crack propagation can be suppressed by 88% in the stable crack propagation stage by cavitation peening.

  2. Electric potential structures and propagation of electron beams injected from a spacecraft into a plasma

    International Nuclear Information System (INIS)

    Singh, Nagendra; Hwang, K.S.

    1988-01-01

    The propagation of electron beams injected from a spacecraft into an ambient plasma and the associated potential structures are investigated by one-dimensional Vlasov simulations. For moderate beams, for which the time average spacecraft potential (Φ sa ) lies in the range T e much-lt eΦ sa approx-lt W B , where T e is the electron temperature in energy units and W B is the average beam energy, a double layer forms near the beam head which propagates into the ambient plasma much more slowly than the initial beam velocity. The double layer formation is being reported for the first time. For weak beams, for which |eΦ sa | approx-lt T e , the beam propagates with the initial beam velocity, and no double layer formation occurs. On the other hand, for strong beams for which eΦ sa > W B , the bulk of the beam is returned to the spacecraft, and the main feature of the potential structure is a sheath formation with an intense electric field limited to distances d near the spacecraft surface. These features of the potential structures are compared with those seen in laboratory and space experiments on electron beam injections

  3. Propagation of an ionizing surface electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Boev, A.G.; Prokopov, A.V.

    1976-11-01

    The propagation of an rf surface wave in a plasma which is ionized by the wave itself is analyzed. The exact solution of the nonlinear Maxwell equations is discussed for the case in which the density of plasma electrons is an exponential function of the square of the electric field. The range over which the surface wave exists and the frequency dependence of the phase velocity are found. A detailed analysis is given for the case of a plasma whose initial density exceeds the critical density at the wave frequency. An increase in the wave amplitude is shown to expand the frequency range over which the plasma is transparent; The energy flux in the plasma tends toward a certain finite value which is governed by the effective ionization field.

  4. Physics of Earthquake Rupture Propagation

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  5. Invisibility cloaking without superluminal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Perczel, Janos; Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Tyc, Tomas, E-mail: jp394@st-andrews.ac.uk, E-mail: tomtyc@physics.muni.cz, E-mail: ulf@st-andrews.ac.uk [Faculty of Science, Kotlarska 2 and Faculty of Informatics, Botanicka 68a, Masaryk University, 61137 Brno (Czech Republic)

    2011-08-15

    Conventional cloaking based on Euclidean transformation optics requires that the speed of light should tend to infinity on the inner surface of the cloak. Non-Euclidean cloaking still needs media with superluminal propagation. Here we show by giving an example that this is no longer necessary.

  6. Propagating Class and Method Combination

    DEFF Research Database (Denmark)

    Ernst, Erik

    1999-01-01

    number of implicit combinations. For example, it is possible to specify separate aspects of a family of classes, and then combine several aspects into a full-fledged class family. The combination expressions would explicitly combine whole-family aspects, and by propagation implicitly combine the aspects...

  7. Stress wave propagation in linear viscoelasticity

    International Nuclear Information System (INIS)

    Asada, Kazuo; Fukuoka, Hidekazu.

    1992-01-01

    Decreasing characteristics of both stress and stress gradient with propagation distance at a 2-dimensional linear viscoelasticity wavefront are derived by using our 3-dimensional theoretical equation for particle velocity discontinuities. By finite-element method code DYNA3D, stress at a noncurvature dilatation wavefront of linear viscoelasticity is shown to decrease exponentially. This result is in good accordance with our theory. By dynamic photoelasticity experiment, stress gradients of urethane rubber plates at 3 types of wavefronts are shown to decrease exponentially at a noncurvature wavefront and are shown to be a decreasing function of (1/√R) exp (α 1 2 /(2α 0 3 ξ)) at a curvature wavefront. These experiment results are in good accordance with our theory. (author)

  8. Beaconless operation for optimal laser beam propagation through turbulent atmosphere

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-09-01

    Corruption of the wavefront, beam wondering and power density degradation at the receiving end are the effects typically observed at laser beam propagation through turbulent atmosphere. Compensation of these effects can be achieved if the reciprocal conditions for the propagating wave are satisfied along the propagation range. Practical realization of these conditions requires placing a localized beacon at the receiving end of the range and high-performance adaptive optics system (AOS). The key condition for an effective performance of AOS is a high value of the reciprocal component in the outgoing wave, since only this component is getting compensated after propagating turbulence perturbed path. The nonreciprocal components that is present in the wave directed toward the target is caused by three factors (detailed in this paper) that determine the partial restoration of the structure of the beacon beam. Thus solution of a complex problem of focusing the laser beam propagating through turbulent media can be achieved for the share of the outgoing wave that has a reciprocal component. This paper examines the ways and means that can be used in achieving the stated goal of effective laser power delivery on the distant image-resolved object.

  9. Use of preservative-free hyaluronic acid (Hylabak® for a range of patients with dry eye syndrome: experience in Russia

    Directory of Open Access Journals (Sweden)

    Brzhesky VV

    2014-06-01

    Full Text Available Vladimir Vsevolodovich Brjesky,1 Yury Fedorovich Maychuk,2 Alexey Vladimirovich Petrayevsky,3 Peter Gerrievich Nagorsky41Department of Ophthalmology, Pediatric State Medical Academy, Saint Petersburg, 2Moscow Research Institute of Eye Diseases, Moscow, 3Department of Ophthalmology, Volgograd State Medical University, Volgograd, 4Novosibirsk Branch of the Federal State Institute MNTK Eye Microsurgery, Novosibirsk, Russian Federation, RussiaAbstract: Artificial tear preparations are important in the management of dry eye syndrome. We present the findings from four recently published studies conducted in Russia assessing Hylabak® (marketed as Hyabak® in Europe, a preservative-free hyaluronic acid preparation, for the treatment of dry eye syndrome. All studies had an open, noncomparative design, but one compared the findings with those from 25 patients treated with Tear Naturale® in previous studies. A total of 134 children and adults were enrolled, and the etiologies of dry eye syndrome included contact lens use, intensive office work, adenovirus eye infection, postmenopausal status, persistent meibomian blepharitis, Sjögren's syndrome, phacoemulsification with intraocular lens implantation, and refractive surgery. The patients were treated with Hylabak for 2 weeks to 2 months. All studies showed that Hylabak resulted in marked improvement as assessed by subjective sensations/complaints, Schirmer's test, Norn’s test, impression cytology and biomicroscopy, staining, and tear osmolarity. Greater benefits were also reported compared with Tear Naturale, including a faster onset of action. Hylabak was well tolerated. In conclusion, Hylabak provided rapid and safe relief from the signs and symptoms of dry eye syndrome, as well as improvement in objective measures, in a wide range of patients.Keywords: dry eye, eye drops, artificial tears, hyaluronic acid, Hylabak®, preservative-free

  10. Direct mapping of light propagation in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Arentoft, J.

    2002-01-01

    Using near-field optical microscopy, we directly map the propagation of light in the wavelength range of 1510-1560 nm along bent photonic crystal waveguides formed by removing a single row of holes in the triangular 400-nm-period lattice and connected to access ridge waveguides, the structure being...

  11. Short-range fundamental forces

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.

    2010-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments

  12. Optical vortex beams: Generation, propagation and applications

    Science.gov (United States)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  13. Swell Propagation over Indian Ocean Region

    Directory of Open Access Journals (Sweden)

    Suchandra A. Bhowmick

    2011-06-01

    Full Text Available Swells are the ocean surface gravity waves that have propagated out of their generating fetch to the distant coasts without significant attenuation. Therefore they contain a clear signature of the nature and intensity of wind at the generation location. This makes them a precursor to various atmospheric phenomena like distant storms, tropical cyclones, or even large scale sea breeze like monsoon. Since they are not affected by wind once they propagate out of their generating region, they cannot be described by regional wave models forced by local winds. However, their prediction is important, in particular, for ship routing and off shore structure designing. In the present work, the propagation of swell waves from the Southern Ocean and southern Indian Ocean to the central and northern Indian Ocean has been studied. For this purpose a spectral ocean Wave Model (WAM has been used to simulate significant wave height for 13 years from 1993–2005 using NCEP blended winds at a horizontal spatial resolution of 1° × 1°. It has been observed that Indian Ocean, with average wave height of approximately 2–3 m during July, is mostly dominated by swell waves generated predominantly under the extreme windy conditions prevailing over the Southern Ocean and southern Indian Ocean. In fact the swell waves reaching the Indian Ocean in early or mid May carry unique signatures of monsoon arriving over the Indian Subcontinent. Pre-monsoon month of April contains low swell waves ranging from 0.5–1 m. The amplitudes subsequently increase to approximately 1.5–2 meters around 7–15 days prior to the arrival of monsoon over the Indian Subcontinent. This embedded signature may be utilized as one of the important oceanographic precursor to the monsoon onset over the Indian Ocean.

  14. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-01-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  15. DNA motif elucidation using belief propagation.

    Science.gov (United States)

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  16. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  17. Development and propagation of a pollution gradient in the marine ...

    Indian Academy of Sciences (India)

    The development and propagation of a pollution gradient in the marine boundary layer over the Arabian Sea during the Intensive Field Phase of the Indian Ocean Experiment (1999) is investigated. A hypothesis for the generation of the pollution gradient is presented. Infrared satellite images show the formation of the ...

  18. 50 CFR 21.30 - Raptor propagation permits.

    Science.gov (United States)

    2010-10-01

    ... (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF... take, possess, transport, import, purchase, barter, or offer to sell, purchase, or barter any raptor... of the applicant's experience with raptor propagation or handling raptors; (4) A description of each...

  19. Kinetic-sound propagation in dilute gas mixtures

    International Nuclear Information System (INIS)

    Campa, A.; Cohen, E.G.D.

    1989-01-01

    Kinetic sound is predicted in dilute disparate-mass binary gas mixtures, propagating exclusively in the light compound and much faster than ordinary sound. It should be detectable by light-scattering experiments, as an extended shoulder in the scattering cross section for large frequencies. As an example, H 2 -Ar mixtures are discussed

  20. Metric approach for sound propagation in nematic liquid crystals

    Science.gov (United States)

    Pereira, E.; Fumeron, S.; Moraes, F.

    2013-02-01

    In the eikonal approach, we describe sound propagation near topological defects of nematic liquid crystals as geodesics of a non-Euclidian manifold endowed with an effective metric tensor. The relation between the acoustics of the medium and this geometrical description is given by Fermat's principle. We calculate the ray trajectories and propose a diffraction experiment to retrieve information about the elastic constants.

  1. Surface enhanced raman scattering at Ag-Pyridine interface by use of long range surface plasmon

    International Nuclear Information System (INIS)

    Baik, Moon Gu; Ko, Eu; Kwan, Do Kyeong; Lee, Ja Hyung; Chang, Joon Sung

    1990-01-01

    Surface-enhanced Raman scattering (SERS) experiment of pyridine (C 5 H 5 N) has been performed at silverpyridine interface by use of long range surface plasmon (LRSP) which is generated in the Sarid-type attenuated total reflection (ATR) structure consisting of prism, dielectic, metal and dielectic media. Generation of LRSP has been confirmed by observing the propagation of the LRSP. Raman signal of pyridine adsorbed on the silver surface in the above layered structure has been observed and compared with the bulk Raman signal and SERS signal from the chemically adsorbed pyridine. SERS experiment by use of LRSP has not yet reported to the best of our knowledge. (Author)

  2. Analysis of the Metal Oxide Space Clouds (MOSC) HF Propagation Environment

    Science.gov (United States)

    Jackson-Booth, N.; Selzer, L.

    2015-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the high frequency (HF) propagation environment. It can be achieved through injections of aerosols, chemicals or radio (RF) signals into the ionosphere. The Metal Oxide Space Clouds (MOSC) experiment was undertaken in April/May 2013 to investigate chemical AIM. Two sounding rockets were launched from the Kwajalein Atoll (part of the Marshall Islands) and each released a cloud of vaporized samarium (Sm). The samarium created a localized plasma cloud, with increased electron density, which formed an additional ionospheric layer. The ionospheric effects were measured by a wide range of ground based instrumentation which included a network of high frequency (HF) sounders. Chirp transmissions were made from three atolls and received at five sites within the Marshall Islands. One of the receive sites consisted of an 18 antenna phased array, which was used for direction finding. The ionograms have shown that as well as generating a new layer the clouds created anomalous RF propagation paths, which interact with both the cloud and the F-layer, resulting in 'ghost traces'. To fully understand the propagation environment a 3D numerical ray trace has been undertaken, using a variety of background ionospheric and cloud models, to find the paths through the electron density grid for a given fan of elevation and azimuth firing angles. Synthetic ionograms were then produced using the ratio of ray path length to speed of light as an estimation of the delay between transmission and observation for a given frequency of radio wave. This paper reports on the latest analysis of the MOSC propagation environment, comparing theory with observations, to further understanding of AIM.

  3. Ultrawideband Radio Ranging Studies

    National Research Council Canada - National Science Library

    Scholtz, Robert

    2003-01-01

    .... In addition, UWB propagation measurements were made in a shipboard environment to determine the difficulties in positioning using RF signals in a large metallic enclosure, and issues in sharing...

  4. The propagator of stochastic electrodynamics

    Science.gov (United States)

    Cavalleri, G.

    1981-01-01

    The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.

  5. Particle propagator of the spin Calogero–Sutherland model

    International Nuclear Information System (INIS)

    Nakai, Ryota; Kato, Yusuke

    2014-01-01

    Explicit-exact expressions for the particle propagator of the spin 1/2 Calogero–Sutherland model are derived for the system of a finite number of particles and for that in the thermodynamic limit. Derivation of the expression in the thermodynamic limit is also presented in detail. Combining this result with the hole propagator obtained in earlier studies, we calculate the spectral function of the single particle Green's function in the full range of the energy and momentum space. The resultant spectral function exhibits power-law singularity characteristic to correlated particle systems in one dimension. (paper)

  6. Guided propagation of Alfven waves in a toroidal plasma

    International Nuclear Information System (INIS)

    Borg, G.G.; Brennan, M.H.; Cross, R.C.; Giannone, L.; Donnelly, I.J.

    1985-01-01

    Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed. (author)

  7. Guided propagation of Alfven waves in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Borg, G G; Brennan, M H; Cross, R C; Giannone, L.; Donnelly, I J

    1985-10-01

    Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed.

  8. Experimental study on propagation properties of large size TEM antennas

    International Nuclear Information System (INIS)

    Zhang Guowei; Wang Haiyang; Chen Weiqing; Wang Wei; Zhu Xiangqin; Xie Linshen

    2014-01-01

    The propagation properties of large size TEM antennas were studied by experiment. The size of the TEM antennas is 60 m × 20 m × 10 m and the character Impedance is 120 Ω. A kind of dielectric foil switch is designed compactly with TEM antennas which can generate double exponential waveform with altitude of 10 kV and rise time of l.2 ns. The radiated field distribution was measured. The relationship between rise time/altitude and distance were provided, and the propagation properties of large size TEM antennas were summarized. (authors)

  9. Turbulent Premixed Flame Propagation in Microgravity

    Science.gov (United States)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    A facility in which turbulent Couette flow could be generated in a microgravity environment was designed and built. To fit into the NASA Lewis drop tower the device had to be very compact. This means that edge effects and flow re-circulation were expected to affect the flow. The flow was thoroughly investigated using LDV and was found to be largely two dimensional away from the edges with constant turbulence intensities in the core. Slight flow asymmetries are introduced by the non symmetric re-circulation of the fluid outside the test region. Belt flutter problems were remedied by adding a pair of guide plates to the belt. In general, the flow field was found to be quite similar to previously investigated Couette flows. However, turbulence levels and associated shear stresses were higher. This is probably due to the confined re-circulation zone reintroducing turbulence into the test section. An estimate of the length scales in the flow showed that the measurements were able to resolve nearly all the length scales of interest. Using a new LES method for subgrid combustion it has been demonstrated that the new procedure is computational feasible even on workstation type environment. It is found that this model is capable of capturing the propagation of the premixed names by resolving the flame in the LES grid within 2-3 grid points. In contrast, conventional LES results in numerical smearing of the flame and completely inaccurate estimate of the turbulent propagation speed. Preliminary study suggests that there is observable effect of buoyancy in the 1g environment suggesting the need for microgravity experiments of the upcoming experimental combustion studies. With the cold flow properties characterized, an identical hot flow facility is under construction. It is assumed that the turbulence properties ahead of the flame in this new device will closely match the results obtained here. This is required since the hot facility will not enable LDV measurements. The

  10. Interprocedural Analysis with Lazy Propagation

    DEFF Research Database (Denmark)

    Jensen, Simon Holm; Møller, Anders; Thiemann, Peter

    2010-01-01

    We propose lazy propagation as a technique for flow- and context-sensitive interprocedural analysis of programs with objects and first-class functions where transfer functions may not be distributive. The technique is described formally as a systematic modification of a variant of the monotone fr...... framework and its theoretical properties are shown. It is implemented in a type analysis tool for JavaScript where it results in a significant improvement in performance....

  11. Crack propagation in dynamic thermoelasticity

    International Nuclear Information System (INIS)

    Bui, H.D.

    1980-01-01

    We study the singular thermoelastic fields near the crack tip, in the linear strain assumption. The equations are coupled and non linear. The asymptotic expansions of the displacement and the temperature are given for the first and the second order. It is shown that the temperature is singular when the crack propagates. However, this field does not change the dominant singularity of the mechanical field which is the same as that obtained in the theory of isothermal elasticity [fr

  12. Information Propagation on Permissionless Blockchains

    OpenAIRE

    Ersoy, Oguzhan; Ren, Zhijie; Erkin, Zekeriya; Lagendijk, Reginald L.

    2017-01-01

    Blockchain technology, as a decentralized and non-hierarchical platform, has the potential to replace centralized systems. Yet, there are several challenges inherent in the blockchain structure. One of the deficiencies of the existing blockchains is a convenient information propagation technique enhancing incentive-compatibility and bandwidth efficiency. The transition from a centralized system into distributed one brings along game theoretical concerns. Especially for the permissionless bloc...

  13. Quantum noise and superluminal propagation

    International Nuclear Information System (INIS)

    Segev, Bilha; Milonni, Peter W.; Babb, James F.; Chiao, Raymond Y.

    2000-01-01

    Causal ''superluminal'' effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an ''optical tachyon.'' Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki (CKK) [Phys. Rev. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being ''exponentially large.'' We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally, we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small. (c) 2000 The American Physical Society

  14. Propagation functions in pseudoparticle fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Carlitz, R.D.; Creamer, D.B.; Lee, C.

    1978-01-01

    The Green's functions for massless spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corrresponding Green's functions of scalar particles. Simple, explicit algebraic expressions are constructed for the scalar Green's functions of isospin-1/2 and isospin-1 particles in the self-dual field of a configuration of n pseudoparticles described by 5n arbitrary parameters

  15. The propagation of high power CW scanning electron beam in air

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan

    2002-01-01

    The question of propagation of high power electron beam in air presents the scientific and applied interests. The high power (80 kW) CW electron accelerator 'Rhodotron' with kinetic energy of electrons 5 and 10 MeV was used in the experiments. The experimental results for propagation of scanning electron beams in air are presented and discussed

  16. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  17. Heat affected zone and fatigue crack propagation behavior of high performance steel

    International Nuclear Information System (INIS)

    Choi, Sung Won; Kang, Dong Hwan; Kim, Tae Won; Lee, Jong Kwan

    2009-01-01

    The effect of heat affected zone in high performance steel on fatigue crack propagation behavior, which is related to the subsequent microstructure, was investigated. A modified Paris-Erdogan equation was presented for the analysis of fatigue crack propagation behavior corresponding to the heat affected zone conditions. Fatigue crack propagation tests under 0.3 stress ratio and 0.1 load frequency were conducted for both finegrained and coarse-grained heat affected zones, respectively. As shown in the results, much higher crack growth rate occurred in a relatively larger mean grain size material under the same stress intensity range of fatigue crack propagation process for the material.

  18. Proton-beam propagation through wall-confined plasma channel stabilized against sausage instability

    International Nuclear Information System (INIS)

    Nakahama, Masao; Nemoto, Masahiro; Masugata, Katsumi; Ito, Michiaki; Matsui, Masao; Yatsui, Kiyoshi

    1986-01-01

    Experimental results are presented of proton-beam (energy ∼ 650 keV) propagation through wall-confined plasma channel that is stabilized against sausage instability by an externally-applied longitudinal magnetic field. Significant improvement of beam-propagation efficiency has been obtained of ∼ 70 % compared with the previous experiment of ∼ 55 % without the magnetic field. The propagation can also be available up to ∼ 30 % even in a non-propagation region in a non-stabilized channel. (author)

  19. Experimental measurements of lower-hybrid wave propagation in the Versator II tokamak using microwave scattering

    International Nuclear Information System (INIS)

    Rohatgi, R.; Chen, K.; Bekefi, G.; Bonoli, P.; Luckhardt, S.C.; Mayberry, M.; Porkolab, M.; Villasenor, J.

    1991-01-01

    A series of 139 GHz microwave scattering experiments has been performed on the Versator II tokamak (B. Richards, Ph.D. thesis, Massachusetts Institute of Technology, 1981) to study the propagation of externally launched 0.8 GHz lower-hybrid waves. During lower-hybrid current drive, the launched waves are found to follow a highly directional resonance cone in the outer portion of the plasma. Wave power is also detected near the center of the plasma, and evidence of wave absorption is seen. Scattering of lower-hybrid waves in k space by density fluctuations appears to be a weak effect, although measurable frequency broadening by density fluctuations is found, Δω/ω=3x10 -4 . In the detectable range (2.5 parallel parallel spectra inferred from the scattering measurements are quite similar above and below the current drive density limit. Numerical modeling of these experiments using ray tracing is also presented

  20. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  1. A Study on the Radio Propagation in the Korean Ionosphere

    Directory of Open Access Journals (Sweden)

    Seok-Hee Bae

    1992-06-01

    Full Text Available The effects of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. If ionospheric conditions are suitable, the charged particles can remove energy from radio waves and thus attenuate the signal. Also, a radio wave traveling a path along which the electron density is not constant undergoes changes in direction, position and time of propagation. The present study is based on Korean ionospheric data obtained at the AnYong Radio Research Institute from Jan. 1985 through Oct. 1989. The data are used to simulate the Korean ionosphere following the Chapman law. The effects of the model ionosphere on the radio wave propagation, such as the angle, position error, time delay, and the attenuation, are studies for the various cases of the wave frequency and the altitude.

  2. Investigation of propagation dynamics of truncated vector vortex beams.

    Science.gov (United States)

    Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B

    2018-06-01

    In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

  3. Noise propagation issues in Belle II pixel detector power cable

    Science.gov (United States)

    Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.

    2018-04-01

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  4. Study of regularities in propagation of thermal fatigue cracks

    International Nuclear Information System (INIS)

    Tachkova, N.G.; Sobolev, N.D.; Egorov, V.I.; Rostovtsev, Yu.V.; Ivanov, Yu.S.; Sirotin, V.L.

    1978-01-01

    Regularities in the propagation of thermal fatigue cracks in the Cr-Ni steels of the austenite class depending upon deformation conditions in the crack zone, have been considered. Thin-walled tube samples of the Kh16N40, Kh18N20 and Kh16N15 steels have been tested in the 10O reversible 400 deg C and 100 reversible 500 deg C regimes. The samples have possessed a slot-shaped stress concentrator. Stress intensity pseudocoefficient has been calculated for the correlation of experimental data. The formula for determining crack propagation rate has been obtained. The experiments permit to conclude that propagation rate of thermal fatigue cracks in the above steels depends upon the scope of plastic deformation during a cycle and stress intensity pseudocoefficient, and is determined by plastic deformation resistance during thermal cyclic loading

  5. Pressure wave propagation in the discharge piping with water pool

    International Nuclear Information System (INIS)

    Bang, Young S.; Seul, Kwang W.; Kim, In Goo

    2004-01-01

    Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined

  6. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    -driven, rotating or time-varying directivity function at runtime. Unlike previous approaches, the listener directivity approach can be used to compute spatial audio (3D audio) for a moving, rotating listener at interactive rates. Lastly, we propose an efficient GPU-based time-domain solver for the wave equation that enables wave simulation up to the mid-frequency range in tens of minutes on a desktop computer. It is demonstrated that by carefully mapping all the components of the wave simulator to match the parallel processing capabilities of the graphics processors, significant improvement in performance can be achieved compared to the CPU-based simulators, while maintaining numerical accuracy. We validate these techniques with offline numerical simulations and measured data recorded in an outdoor scene. We present results of preliminary user evaluations conducted to study the impact of these techniques on user's immersion in virtual environment. We have integrated these techniques with the Half-Life 2 game engine, Oculus Rift head-mounted display, and Xbox game controller to enable users to experience high-quality acoustics effects and spatial audio in the virtual environment.

  7. Feynman propagator for spin foam quantum gravity.

    Science.gov (United States)

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  8. Propagating wave correlations in complex systems

    International Nuclear Information System (INIS)

    Creagh, Stephen C; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures. (paper)

  9. Interactive Sound Propagation using Precomputation and Statistical Approximations

    Science.gov (United States)

    Antani, Lakulish

    Acoustic phenomena such as early reflections, diffraction, and reverberation have been shown to improve the user experience in interactive virtual environments and video games. These effects arise due to repeated interactions between sound waves and objects in the environment. In interactive applications, these effects must be simulated within a prescribed time budget. We present two complementary approaches for computing such acoustic effects in real time, with plausible variation in the sound field throughout the scene. The first approach, Precomputed Acoustic Radiance Transfer, precomputes a matrix that accounts for multiple acoustic interactions between all scene objects. The matrix is used at run time to provide sound propagation effects that vary smoothly as sources and listeners move. The second approach couples two techniques---Ambient Reverberance, and Aural Proxies---to provide approximate sound propagation effects in real time, based on only the portion of the environment immediately visible to the listener. These approaches lie at different ends of a space of interactive sound propagation techniques for modeling sound propagation effects in interactive applications. The first approach emphasizes accuracy by modeling acoustic interactions between all parts of the scene; the second approach emphasizes efficiency by only taking the local environment of the listener into account. These methods have been used to efficiently generate acoustic walkthroughs of architectural models. They have also been integrated into a modern game engine, and can enable realistic, interactive sound propagation on commodity desktop PCs.

  10. The effects of solidification on sill propagation dynamics and morphology

    Science.gov (United States)

    Chanceaux, L.; Menand, T.

    2016-05-01

    Sills are an integral part of the formation and development of larger plutons and magma reservoirs. Thus sills are essential for both the transport and the storage of magma in the Earth's crust. However, although cooling and solidification are central to magmatism, their effects on sills have been so far poorly studied. Here, the effects of solidification on sill propagation dynamics and morphology are studied by means of analogue laboratory experiments. Hot fluid vegetable oil (magma analogue), that solidifies during its propagation, is injected as a sill in a colder layered gelatine solid (elastic host rock analogue). The injection flux and temperature are maintained constant during an experiment and systematically varied between each experiment, in order to vary and quantify the amount of solidification between each experiments. The oil is injected directly at the interface between the two gelatine layers. When solidification effects are small (high injection temperatures and fluxes), the propagation is continuous and the sill has a regular and smooth surface. Inversely, when solidification effects are important (low injection temperatures and fluxes), sill propagation is discontinuous and occurs by steps of surface-area creation interspersed with periods of momentary arrest. The morphology of these sills displays folds, ropy structures on their surface, and lobes with imprints of the leading fronts that correspond to each step of area creation. These experiments show that for a given, constant injected volume, as solidification effects increase, the area of the sills decreases, their thickness increases, and the number of propagation steps increases. These results have various geological and geophysical implications. The morphology of sills, such as lobate structures (interpretation of 3D seismic studies in sedimentary basin) and ropy flow structures (field observations) can be related to solidification during emplacement. Moreover, a non-continuous morphology

  11. Vegetative propagation of Cecropia obtusifolia (Cecropiaceae

    Directory of Open Access Journals (Sweden)

    Louis M. LaPierre

    2001-12-01

    Full Text Available Cecropia is a relatively well-known and well-studied genus in the Neotropics. Methods for the successful propagation of C. obtusifolia Bertoloni. 1840 from cuttings and air layering are described, and the results of an experiment to test the effect of two auxins, naphthalene acetic acid (NAA and indole butyric acid (IBA, on adventitious root production in cuttings are presented. In general. C. obtusifolia cuttings respond well to adventitious root production (58.3 % of cuttings survived to root, but air layering was the better method (93 % of cuttings survived to root. The concentration of auxins used resulted in an overall significantly lower quality of roots produced compared with cuttings without auxin treatment. Future experiments using Cecropia could benefit from the use of isogenic plants produced by vegetative propagationCecropia es un género bien conocido y bien estudiado en los Neotrópicos. Se discuten métodos exitosos para la propagación de C. obtusifolia Bertoloni, 1840 de fragmentos de troncos y acodos aéreos. A continuación se presentan los resultados de un experimento para examinar los efectos de dos tipos de hormonas (NAA e IBA en la producción de raíces adventicias en fragmentos de troncos. En general, los fragmentos de C. abtusifalia responden bien en la producción de raíces adventicias (y sobreviven al azar 58.3% de los cortes, pero el método de acodos aéreos funcionó mejor (sobreviven al azar 93 %. El uso de hormonas resultó en raíces de baja calidad en comparación con cortes sin hormonas. Experimentos en el futuro que usan Cecropia pueden beneficiar al usar plantas isogénicas producidas por propagación vegetativa

  12. Semiclassical propagator of the Wigner function.

    Science.gov (United States)

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  13. The propagator of quantum gravity in minisuperspace

    International Nuclear Information System (INIS)

    Louko, J.

    1985-04-01

    We study the quantum gravitational propagation amplitude between two spacelike three-surfaces in minisuperspaces where the supermomentum constraints are identically satisfied. We derive a well-defined path integral formula for the propagator and show that the propagator is an inverse of the canonical Hamiltonian operator. In an exactly solvable deSitter minisuperspace model the propagator is found to obey semi-classically correct boundary conditions. We discuss the implications for the full theory and suggest an approach to unravelling the physical meaning of the propagator. (orig.)

  14. Tropospheric radiowave propagation beyond the horizon

    CERN Document Server

    Du Castel, François

    1966-01-01

    Tropospheric Radiowave Propagation Beyond the Horizon deals with developments concerning the tropospheric propagation of ultra-short radio waves beyond the horizon, with emphasis on the relationship between the theoretical and the experimental. Topics covered include the general conditions of propagation in the troposphere; general characteristics of propagation beyond the horizon; and attenuation in propagation. This volume is comprised of six chapters and begins with a brief historical look at the various stages that have brought the technique of transhorizon links to its state of developmen

  15. Light propagation in linear optical media

    CERN Document Server

    Gillen, Glen D; Guha, Shekhar

    2013-01-01

    Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation o

  16. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  17. Multispecimen fatigue crack propagation testing

    International Nuclear Information System (INIS)

    Ermi, A.M.; Bauer, R.E.; Chin, B.A.; Straalsund, J.L.

    1981-01-01

    Chains of miniature center-cracked-tension specimens were tested on a conventional testing machine and on a prototypic in-reactor fatigue machine as part of the fusion reactor materials alloy development program. Annealed and 20 percent cold-worked 316 stainless steel specimens were cycled under various conditions of temperature, frequency, stress ratio and chain length. Crack growth rates determined from multispecimen visual measurements and from an electrical potential technique were consistent with those obtained by conventional test methods. Results demonstrate that multispecimen chain testing is a valid method of obtaining fatigue crack propagation information for alloy development. 8 refs

  18. Radio Propagation into Modern Buildings

    DEFF Research Database (Denmark)

    Rodriguez Larrad, Ignacio; Nguyen, Huan Cong; Jørgensen, Niels T.K.

    2014-01-01

    Energy-efficient buildings are gaining momentum in order to comply with the new energy regulations. Especially in northern cold countries, thick reinforced walls and energy-efficient windows composed of several layers of glass plus metal coating are becoming the de facto elements in modern building...... constructions. These materials are used in favor of achieving a proper level of thermal isolation, but it has been noticed that they can impact heavily on radio signal propagation. This paper presents a measurement-based analysis of the outdoor-to-indoor attenuation experienced in several modern constructions...

  19. Fast imaging of streamer propagation

    International Nuclear Information System (INIS)

    Veldhuizen, E.M. van; Baede, A.H.F.M.; Hayashi, D.; Rutgers, W.R.

    2001-01-01

    Recently measurement methods are becoming available to study the corona discharge in more detail. One of the most promising methods is laser-induced fluorescence to determine radical density. Recent improvements in CCD cameras makes it now possible to improve measurements of the discharge structure to a resolution of 1 ns in time and 10 μm in space. This paper shows the first results of the spontaneous emission of a point-to-plane corona discharge in air using such a camera. It clearly indicates that the 2-D approach for streamer propagation under these conditions is insufficient

  20. Fast imaging of streamer propagation

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E.M. van; Baede, A.H.F.M.; Hayashi, D.; Rutgers, W.R. [Eindhoven Univ. of Technology (Netherlands). Dept. of Applied Physics

    2001-07-01

    Recently measurement methods are becoming available to study the corona discharge in more detail. One of the most promising methods is laser-induced fluorescence to determine radical density. Recent improvements in CCD cameras makes it now possible to improve measurements of the discharge structure to a resolution of 1 ns in time and 10 {mu}m in space. This paper shows the first results of the spontaneous emission of a point-to-plane corona discharge in air using such a camera. It clearly indicates that the 2-D approach for streamer propagation under these conditions is insufficient.

  1. Modification Propagation in Complex Networks

    Science.gov (United States)

    Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador

    To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.

  2. Space weather and HF propagation along different paths of the Russian chirp sounders network

    Science.gov (United States)

    Kurkin, V. I.; Litovkin, G. I.; Matyushonok, S. M.; Vertogradov, G. G.; Ivanov, V. A.; Poddelsky, I. N.; Rozanov, S. V.; Uryadov, V. P.

    This paper presents experimental data obtained on long paths (from 2200 km to 5700 km range) of Russian frequency modulated continues wave (chirp) sounders network for the period from 1998 to 2003. Four transmitters (near Magadan, Khabarovsk, Irkutsk, Norilsk) and four receivers (near Irkutsk, Yoshkar-Ola, Nizhny Novgorod, Rostov-on-Don) were combined into single network to investigate a influence of geomagnetic storms and substorms on HF propagation in Asian region of Russia. In this region the geographic latitudes are in greatest excess of magnetic latitudes. As a consequence, elements of the large-scale structure, such as the main ionospheric trough, and the zone of auroral ionization, are produced in the ionosphere at the background of a low electron ionization. Coordinated experiments were carried out using 3-day Solar-Geophysical activity forecast presented by NOAA Space Environment Center in Internet. Sounding operations were conducted in the frequency band 4 -- 30 MHz on a round-the-clock basis at 15-min intervals. Oblique-incidence sounding (OIS) ionograms were recorded during 5-7 days every season for some years. The comparison between experimental data and simulation of OIS ionograms using International Reference Ionospheric model (IRI-2001) allowed to estimate the forecast of HF propagation errors both under quiet condition and during geomagnetic disturbances. Strong deviations from median values of maximum observed frequencies on mid-latitude paths in daytime present a real challenge to ionospheric forecast. Subauroral and mid-latitude chirp-sounding paths run, respectively, near the northward and southward walls of the main ionospheric trough. This make sit possible to study the dynamics of the trough's boundaries under different geophysical conditions and assess the influence of ionization gradients and small-scale turbulence on HF signal characteristics. The signals off-great circle propagation were registered over a wide frequency range and for

  3. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    International Nuclear Information System (INIS)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  4. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano, E-mail: dsierras@eafit.edu.co, E-mail: langel@eafit.edu.co [Grupo de Optica Aplicada, Universidad EAFIT, 1 Medellin (Colombia)

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  5. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Science.gov (United States)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  6. Acoustic Environment of Haro Strait: Preliminary Propagation Modeling and Data Analysis

    National Research Council Canada - National Science Library

    Jones, Christopher D; Wolfson, Michael A

    2006-01-01

    Field measurements and acoustic propagation modeling for the frequency range 1 10 kHz are combined to analyze the acoustic environment of Haro Strait of Puget Sound, home to the southern resident killer whales...

  7. In-reactor fatigue crack propagation

    International Nuclear Information System (INIS)

    Ermi, A.M.; Mervyn, D.A.; Straalsund, J.L.

    1979-08-01

    An in-reactor fatigue experiment is being designed to determine the effect of dynamic irradiation on the fatigue crack propagation (FCP) behavior of candidate fusion first wall materials. This investigation has been prompted by studies which show gross differences in crack growth characteristics of creep rupture specimens testing by postirradiation versus dynamic in-reactor methods. The experiment utilizes miniature center-cracked-tension specimens developed specifically for in-reactor studies. In the test, a chain of eight specimens, precracked to various initial crack lengths, is stressed during irradiation to determine crack growth rate as a function of stress intensity. Load levels were chosen which result in small crack growth rates encompassing a regime of the crack growth curve not previously investigated during irradiation studies of FCP. The test will be conducted on 20% cold worked 316 stainless steel at a temperature of 425 0 C, in a sodium environment, and at a frequency of 1 cycle/min. Irradiation will occur in the Oak Ridge Research Reactor, resulting in a He/dpa ratio similar to that expected at the first wall in a fusion reactor. Detailed design of the experiment is presented, along with crack growth data obtained from prototypic testing of the experimental apparatus. These results are compared to data obtained under similar conditions generated by conventional test methods

  8. Long-range antigravity

    Energy Technology Data Exchange (ETDEWEB)

    Macrae, K.I.; Riegert, R.J. (Maryland Univ., College Park (USA). Center for Theoretical Physics)

    1984-10-01

    We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession.

  9. Long-range antigravity

    International Nuclear Information System (INIS)

    Macrae, K.I.; Riegert, R.J.

    1984-01-01

    We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession. (orig.)

  10. Study of fatigue crack propagation in magnesium alloys

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.; Ostash, O.P.; Kudryashov, V.G.; Elkin, F.M.

    1981-01-01

    Fatigue crack propagation in standard (MA2-1, MA8) and super light (MA21, MA18) alloys has been investigated in the whole range of load amplitude changes-from threshold to critical; the materials have been compared by cyclic crack resistance, fractographic analysis has been made. It is shown that MA2-1 alloy crack resistance is slightly lower than the resistance of the other three alloys. MA8 and MA21 alloys having similar mechanical properties almost do not differ in cyclic crack resistance as well. MA18 alloy has the highest resistance to fatigue crack propagation in the whole range of Ksub(max) changes. The presented results on cyclic crack resistance of MA21 and MA18 alloys agree with the data on statistic fracture toughness. The fractures have been also investigated using a scanning electron microscope. Fracture microrelieves of MA8 and MA21 alloys are very similar. At low crack propagation rates (v - 7 m/cycle) it develops through grains, in MA2-1 alloy fracture intergrain fracture areas can be observed. In MA8 and MA21 alloy fractures groove covered areas can be seen alonside with areas of slipping plane laminatron; their specific weight increases with #betta# decrease. Lower crack propagation rates and higher values of threshold stress intensity factors for MA8 and MA21 alloys than for MA2-1 alloy are caused by the absence of intergrain fracture

  11. Effects of selected water chemistry variables on copper pitting propagation in potable water

    International Nuclear Information System (INIS)

    Ha Hung; Taxen, Claes; Williams, Keith; Scully, John

    2011-01-01

    Highlights: → The effects of water composition on pit propagation kinetics on Cu were separated from pit initiation and stabilization using the artificial pit method in a range of dilute HCO 3 - , SO 4 2- and Cl - -containing waters. → The effective polarization and Ohmic resistance of pits were lower in SO4 2- -containing solutions and greater in Cl - -containing solutions. → Relationship between the solution composition and the corrosion product identity and morphology were found. → These, in turn controlled the corrosion product Ohmic resistance and subsequently the pit growth rate. - Abstract: The pit propagation behavior of copper (UNS C11000) was investigated from an electrochemical perspective using the artificial pit method. Pit growth was studied systematically in a range of HCO 3 - , SO 4 2- and Cl - containing-waters at various concentrations. Pit propagation was mediated by the nature of the corrosion products formed both inside and over the pit mouth (i.e., cap). Certain water chemistry concentrations such as those high in sulfate were found to promote fast pitting that could be sustained over long times at a fixed applied potential but gradually stifled in all but the lowest concentration solutions. In contrast, Cl - containing waters without sulfate ions resulted in slower pit growth and eventual repassivation. These observations were interpreted through understanding of the identity, amount and porosity of corrosion products formed inside and over pits. These factors controlled their resistive nature as characterized using electrochemical impedance spectroscopy. A finite element model (FEM) was developed which included copper oxidation kinetics, transport by migration and diffusion, Cu(I) and Cu(II) solid corrosion product formation and porosity governed by equilibrium thermodynamics and a saturation index, as well as pit current and depth of penetration. The findings of the modeling were in good agreement with artificial pit experiments

  12. On flame kernel formation and propagation in premixed gases

    Energy Technology Data Exchange (ETDEWEB)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  13. Drought propagation and its relation with catchment biophysical characteristics

    Science.gov (United States)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.

    2016-12-01

    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical

  14. Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.

    Science.gov (United States)

    van Doren, Thomas Walter

    1993-01-01

    This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.

  15. Studies of nonlinear femtosecond pulse propagation in bulk materials

    Science.gov (United States)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This

  16. High-power laser delocalization in plasmas leading to long-range beam merging

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsutsumi, M; Marques, J R; Antici, P; Bourgeois, N; Romagnani, L; Audebert, P; Fuchs, J [UPMC, CEA, CNRS, LULI, Ecole Polytech, F-91128 Palaiseau (France); Nakatsutsumi, M; Kodama, R [Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871 (Japan); Antici, P [Univ Roma La Sapienza, Dipartimento SBAI, I-00161 Rome (Italy); Feugeas, J L; Nicolai, P [Univ Bordeaux 1, CNRS, CEA, Ctr Lasers Intenses and Applicat, F-33405 Talence (France); Lin, T [Fox Chase Canc Ctr, Philadelphia, PA 19111 (United States)

    2010-07-01

    Attraction and fusion between co-propagating light beams, mutually coherent or not, can take place in nonlinear media as a result of the beam power modifying the refractive index of the medium. In the context of high-power light beams, induced modifications of the beam patterns could potentially impact many topics, including long-range laser propagation, the study of astrophysical colliding blast waves and inertial confinement fusion. Here, through experiments and simulations, we show that in a fully ionized plasma, which is a nonlinear medium, beam merging can take place for high-power and mutually incoherent beams that are initially separated by several beam diameters. This is in contrast to the usual assumption that this type of interaction is limited to beams separated by only one beam diameter. This effect, which is orders of magnitude more significant than Kerr-like nonlinearity in gases, demonstrates the importance of potential cross-talk amongst multiple beams in plasma. (authors)

  17. Genetic conservation and paddlefish propagation

    Science.gov (United States)

    Sloss, Brian L.; Klumb, Robert A.; Heist, Edward J.

    2009-01-01

    The conservation of genetic diversity of our natural resources is overwhelmingly one of the central foci of 21st century management practices. Three recommendations related to the conservation of paddlefish Polyodon spathula genetic diversity are to (1) identify genetic diversity at both nuclear and mitochondrial DNA loci using a suggested list of 20 sampling locations, (2) use genetic diversity estimates to develop genetic management units, and (3) identify broodstock sources to minimize effects of supplemental stocking on the genetic integrity of native paddlefish populations. We review previous genetic work on paddlefish and described key principles and concepts associated with maintaining genetic diversity within and among paddlefish populations and also present a genetic case study of current paddlefish propagation at the U.S. Fish and Wildlife Service Gavins Point National Fish Hatchery. This study confirmed that three potential sources of broodfish were genetically indistinguishable at the loci examined, allowing the management agencies cooperating on this program flexibility in sampling gametes. This study also showed significant bias in the hatchery occurred in terms of male reproductive contribution, which resulted in a shift in the genetic diversity of progeny compared to the broodfish. This shift was shown to result from differential male contributions, partially attributed to the mode of egg fertilization. Genetic insights enable implementation of a paddlefish propagation program within an adaptive management strategy that conserves inherent genetic diversity while achieving demographic goals.

  18. Quantum propagation across cosmological singularities

    Science.gov (United States)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  19. Simplified propagation of standard uncertainties

    International Nuclear Information System (INIS)

    Shull, A.H.

    1997-01-01

    An essential part of any measurement control program is adequate knowledge of the uncertainties of the measurement system standards. Only with an estimate of the standards'' uncertainties can one determine if the standard is adequate for its intended use or can one calculate the total uncertainty of the measurement process. Purchased standards usually have estimates of uncertainty on their certificates. However, when standards are prepared and characterized by a laboratory, variance propagation is required to estimate the uncertainty of the standard. Traditional variance propagation typically involves tedious use of partial derivatives, unfriendly software and the availability of statistical expertise. As a result, the uncertainty of prepared standards is often not determined or determined incorrectly. For situations meeting stated assumptions, easier shortcut methods of estimation are now available which eliminate the need for partial derivatives and require only a spreadsheet or calculator. A system of simplifying the calculations by dividing into subgroups of absolute and relative uncertainties is utilized. These methods also incorporate the International Standards Organization (ISO) concepts for combining systematic and random uncertainties as published in their Guide to the Expression of Measurement Uncertainty. Details of the simplified methods and examples of their use are included in the paper

  20. Uncertainty propagation in nuclear forensics

    International Nuclear Information System (INIS)

    Pommé, S.; Jerome, S.M.; Venchiarutti, C.

    2014-01-01

    Uncertainty propagation formulae are presented for age dating in support of nuclear forensics. The age of radioactive material in this context refers to the time elapsed since a particular radionuclide was chemically separated from its decay product(s). The decay of the parent radionuclide and ingrowth of the daughter nuclide are governed by statistical decay laws. Mathematical equations allow calculation of the age of specific nuclear material through the atom ratio between parent and daughter nuclides, or through the activity ratio provided that the daughter nuclide is also unstable. The derivation of the uncertainty formulae of the age may present some difficulty to the user community and so the exact solutions, some approximations, a graphical representation and their interpretation are presented in this work. Typical nuclides of interest are actinides in the context of non-proliferation commitments. The uncertainty analysis is applied to a set of important parent–daughter pairs and the need for more precise half-life data is examined. - Highlights: • Uncertainty propagation formulae for age dating with nuclear chronometers. • Applied to parent–daughter pairs used in nuclear forensics. • Investigated need for better half-life data

  1. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    Science.gov (United States)

    Bradley, Ben K.

    orbit propagation, yielding savings in computation time and memory. Orbit propagation and position transformation simulations are analyzed to generate a complete set of recommendations for performing the ITRS/GCRS transformation for a wide range of needs, encompassing real-time on-board satellite operations and precise post-processing applications. In addition, a complete derivation of the ITRS/GCRS frame transformation time-derivative is detailed for use in velocity transformations between the GCRS and ITRS and is applied to orbit propagation in the rotating ITRS. EOP interpolation methods and ocean tide corrections are shown to impact the ITRS/GCRS transformation accuracy at the level of 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. The precession-nutation and EOP simplifications yield maximum propagation errors of approximately 2 cm and 1 m after 15 minutes and 6 hours in low-Earth orbit (LEO), respectively, while reducing computation time and memory usage. Finally, for orbit propagation in the ITRS, a simplified scheme is demonstrated that yields propagation errors under 5 cm after 15 minutes in LEO. This approach is beneficial for orbit determination based on GPS measurements. We conclude with a summary of recommendations on EOP usage and bias-precession-nutation implementations for achieving a wide range of transformation and propagation accuracies at several altitudes. This comprehensive set of recommendations allows satellite operators, astrodynamicists, and scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity.

  2. Electrostatic probes driven by broad band high power and propagation of the turbulent perturbation

    International Nuclear Information System (INIS)

    Wang Zhijiang; Sun Xuan; Wan Shude; Wen Yizhi; Yu Changxuan; Liu Wandong; Wang Cheng; Pan Gesheng

    2003-01-01

    A high dynamic output, broad-band power source for driving electrostatic probes in the investigation on propagation of turbulent perturbation has been built and used successfully in experiments on the KT-5C tokamak. The details of the experiment setup as well as some preliminary results are presented. Detections both from the small size magnetic probes and electrostatic probes indicate that the modified perturbation excited by the power source may propagate electrostatically, and electromagnetically as well

  3. Coronal Seismology: The Search for Propagating Waves in Coronal Loops

    Science.gov (United States)

    Schad, Thomas A.; Seeley, D.; Keil, S. L.; Tomczyk, S.

    2007-05-01

    We report on Doppler observations of the solar corona obtained in the Fe XeXIII 1074.7nm coronal emission line with the HAO Coronal Multi-Channel Polarimeter (CoMP) mounted on the NSO Coronal One Shot coronagraph located in the Hilltop Facility of NSO/Sacramento Peak. The COMP is a tunable filtergraph instrument that records the entire corona from the edge of the occulting disk at approximately 1.03 Rsun out to 1.4 Rsun with a spatial resolution of about 4” x 4”. COMP can be rapidly scanned through the spectral line while recording orthogonal states of linear and circular polarization. The two dimensional spatial resolution allows us to correlate temporal fluctuations observed in one part of the corona with those seen at other locations, in particular along coronal loops. Using cross spectral analysis we find that the observations reveal upward propagating waves that are characterized by Doppler shifts with rms velocities of 0.3 km/s, peak wave power in the 3-5 mHz frequency range, and phase speeds 1-3 Mm/s. The wave trajectories are consistent with the direction of the magnetic field inferred from the linear polarization measurements. We discuss the phase and coherence of these waves as a function of height in the corona and relate our findings to previous observations. The observed waves appear to be Alfvenic in character. "Thomas Schad was supported through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program." Daniel Seeley was supported through the National Solar Observatory Research Experience for Teachers (RET) site program, which is funded by the National Science Foundation RET program.

  4. Search for fourth sound propagation in supersolid 4He

    International Nuclear Information System (INIS)

    Aoki, Y.; Kojima, H.; Lin, X.

    2008-01-01

    A systematic study is carried out to search for fourth sound propagation solid 4 He samples below 500 mK down to 40 mK between 25 and 56 bar using the techniques of heat pulse generator and titanium superconducting transition edge bolometer. If solid 4 He is endowed with superfluidity below 200 mK, as indicated by recent torsional oscillator experiments, theories predict fourth sound propagation in such a supersolid state. If found, fourth sound would provide convincing evidence for superfluidity and a new tool for studying the new phase. The search for a fourth sound-like mode is based on the response of the bolometers to heat pulses traveling through cylindrical samples of solids grown with different crystal qualities. Bolometers with increasing sensitivity are constructed. The heater generator amplitude is reduced to the sensitivity limit to search for any critical velocity effects. The fourth sound velocity is expected to vary as ∞ √ Ρ s /ρ. Searches for a signature in the bolometer response with such a characteristic temperature dependence are made. The measured response signal has not so far revealed any signature of a new propagating mode within a temperature excursion of 5 μK from the background signal shape. Possible reasons for this negative result are discussed. Prior to the fourth sound search, the temperature dependence of heat pulse propagation was studied as it transformed from 'second sound' in the normal solid 4 He to transverse ballistic phonon propagation. Our work extends the studies of [V. Narayanamurti and R. C. Dynes, Phys. Rev. B 12, 1731 (1975)] to higher pressures and to lower temperatures. The measured transverse ballistic phonon propagation velocity is found to remain constant (within the 0.3% scatter of the data) below 100 mK at all pressures and reveals no indication of an onset of supersolidity. The overall dynamic thermal response of solid to heat input is found to depend strongly on the sample preparation procedure

  5. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    Science.gov (United States)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  6. Electric field studies: TLE-induced waveforms and ground conductivity impact on electric field propagation

    Science.gov (United States)

    Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth

    2010-05-01

    We review in this paper main results obtained from electric field (from VLF to HF) measurement campaigns realized by CEA in the framework of the Eurosprite program [Neubert et al., 2005, 2008] from 2003 to 2009 in France in different configurations. Two main topics have been studied: sprite or elve induced phenomena (radiation or perturbation) and wave propagation. Using a network of 4 stations, VLF radiations from sprite have been successfully located at 10 km from the sprite parent lightning, in agreement with possible sprite location, generally displaced from the parent lightning. The MF (300 kHz - 3 MHz) source bursts were identified simultaneously with the occurrence of sprites observed with cameras [Farges et al., 2004; Neubert et al., 2008]. These observations are compared to recent broadband measurements, assumed to be due to relativistic electron beam radiation related to sprites [Fullekrug et al., 2009]. Recently, in 2009, with a new instrumentation, an ELF tail has been clearly measured after the lightning waveform, while sprites were observed at about 500 km from our station. This ELF tail is usually observed at distances higher than thousand km and is associated to sprite generation. This opens the capacity to measure the charge moment of the parent-lightning, using such measurement close to the source. Farges et al. [2007] showed that just after a lightning return stroke, a strong transient attenuation is very frequently observed in the MF waves of radio transmissions. They showed that this perturbation is due to heating of the lower ionosphere by the lightning-induced EMP during few milliseconds. These perturbations are then the MF radio signature of the lightning EMP effects on the lower ionosphere, in the same way as elves correspond to their optical signature. The experiment also provided the electric field waveforms directly associated to elves, while lightning were not detected by Météorage. Many of them present a double peak feature. The

  7. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    Science.gov (United States)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  8. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  9. Acoustic energy propagation around railways

    Science.gov (United States)

    Cizkova, Petra

    2017-09-01

    The article deals with the issues of acoustic energy propagation around railways. The research subject was noise emission spreading into the surroundings during the passage of trains over a directly travelled steel bridge construction. Noise emissions were measured using direct measurements in the field. The measurements were performed in two measurement profiles. The noise exposures A LAE measured near the steel bridge construction were compared against the noise exposures A LAE captured on an open track. From the difference of these data, the noise level of the steel bridge structure was determined. Part of the research was to evaluate the effect of the reconstruction of the railway track superstructure on the acoustic situation in the given section of the railway track. The article describes the methodology of measurements, including the processing and evaluation of measured data. The article points out the noise levels of the steel bridge construction and assesses changes in the acoustic situation after the reconstruction.

  10. Pulse Propagation on close conductors

    CERN Document Server

    Dieckmann, A

    2001-01-01

    The propagation and reflection of arbitrarily shaped pulses on non-dispersive parallel conductors of finite length with user defined cross section is simulated employing the discretized telegraph equation. The geometry of the system of conductors and the presence of dielectric material determine the capacities and inductances that enter the calculation. The values of these parameters are found using an iterative Laplace equation solving procedure and confirmed for certain calculable geometries including the line charge inside a box. The evolving pulses and the resulting crosstalk can be plotted at any instant and - in the Mathematica notebook version of this report - be looked at in an animation. As an example a differential pair of microstrips as used in the ATLAS vertex detector is analysed.

  11. Front propagation in flipping processes

    International Nuclear Information System (INIS)

    Antal, T; Ben-Avraham, D; Ben-Naim, E; Krapivsky, P L

    2008-01-01

    We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess Δ k increases logarithmically, Δ k ≅ ln k, with the distance k from the front. Third, the front exhibits ageing-young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations

  12. Nonlinear operators and their propagators

    International Nuclear Information System (INIS)

    Schwartz, C.

    1997-01-01

    Mathematical physicists are familiar with a large set of tools designed for dealing with linear operators, which are so common in both the classical and quantum theories; but many of those tools are useless with nonlinear equations of motion. In this work a general algebra and calculus is developed for working with nonlinear operators: The basic new tool being the open-quotes slash product,close quotes defined by A(1+εB) =A+εA/B+O(ε 2 ). For a generic time development equation, the propagator is constructed and then there follows the formal version of time dependent perturbation theory, in remarkable similarity to the linear situation. A nonperturbative approximation scheme capable of producing high accuracy computations, previously developed for linear operators, is shown to be applicable as well in the nonlinear domain. A number of auxiliary mathematical properties and examples are given. copyright 1997 American Institute of Physics

  13. The propagation of sound in tunnels

    Science.gov (United States)

    Li, Kai Ming; Iu, King Kwong

    2002-11-01

    The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.

  14. Laser beam propagation in atmospheric turbulence

    Science.gov (United States)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  15. Neural network construction via back-propagation

    International Nuclear Information System (INIS)

    Burwick, T.T.

    1994-06-01

    A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima

  16. Terrestrial propagation of long electromagnetic waves

    CERN Document Server

    Galejs, Janis; Fock, V A

    2013-01-01

    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  17. ACTS Propagation Measurements in Maryland and Virginia

    Science.gov (United States)

    Dissanayake, Asoka; Lin, Kuan-Ting

    1996-01-01

    Rapid growth in new satellite services incorporating very small aperture terminals (VSAT) and ultra small aperture terminals (USAT) is expected in the coming years. Small size terminals allow for widespread use of satellite services in small business and domestic applications. Due to congestion of lower frequency bands such as C and Ku, most of these services will use Ka-band (2/20 GHz) frequencies. Propagation impairments produced by the troposphere is a limiting factor for the effective use of the 20/30 GHz band and the use of smaller Earth terminals makes it difficult to provide sufficient link margins for propagation related outages. In this context, reliable prediction of propagation impairments for low margin systems becomes important. Due to the complexity of propagation phenomena propagation modeling is mainly attempted on an empirical basis. As such, the availability of reliable measured data that extend to probability levels well in excess of the traditional limit of 1 percent is of great importance in the development, validation, and refinement of propagation models. The beacon payload on the Advanced Communications Technology Satellite (ACTS) together with the propagation measurement terminals developed under the NASA ACTS propagation program provide an excellent opportunity to collect such data on a long-term basis. This paper presents the results of ACTS propagation measurements conducted in the Washington, DC metropolitan area by COMSAT Laboratories.

  18. Review on steam generator tube failure propagation study in Japan

    International Nuclear Information System (INIS)

    Tanabe, Hiromi; Wachi, Eiji

    1990-01-01

    Major objectives of a failure propagation study in Japan are to understand the leak development behavior, to develop an analytical method based on the knowledge obtained through the experiments, and finally to apply it to actual LMFBR steam generators to evaluate the conservatism of design basis leak (DBL) of the plants. Therefore, various kinds of experimental study in relevant fields were conducted using SWAT test facilities and the LEAP code was developed. (author). 2 figs

  19. Propagation of intense laser pulses in an underdense plasma

    International Nuclear Information System (INIS)

    Monot, P.; Auguste, T.; Gibbon, P.; Jakober, F.; Mainfray, G.

    1994-01-01

    Experiments carried out with a laser beam focused into a vacuum chamber onto a 3-mm long, pulsed hydrogen jet, at powers close to the critical power required for relativistic self focusing, have shown that an underdense plasma is able to significantly reduce the divergence of an intense laser pulse. The propagation mode is in good agreement with theoretical predictions of relativistic self focusing. 2 figs., 8 refs

  20. Effect of copper on crack propagation in beryllium single crystals

    International Nuclear Information System (INIS)

    Aldinger, F.; Wilhelm, M.

    The effect of copper additives on the fracture energy and the development of cracks parallel to the basal plane was studied in zone-refined single crystalline beryllium. At 77 0 K the cleavage planes are very smooth, so the crack propagation energy, which is independent of copper content (less than 2 at. percent Cu) in the range of measurement accuracy, is only a little higher than the surface energy of the basal plane. At room temperature, due to intense plastic processes taking place in front of the crack tip, the fracture energy is an order of magnitude higher than at low temperatures. The effect of copper on the plastic processes can be divided into two regions. In region I (less than 1.2 at. percent Cu), in which the crack propagation energy increases sharply with increasing copper content, crack propagation is controlled by prism slips. The decrease in crack propagation energy in region II (greater than 1.2 at. percent Cu) can be attributed to a reduction of beryllium twinning energy with increasing copper content. (auth)

  1. Propagation of electromagnetic waves in a weakly ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi

    2015-01-01

    Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)

  2. Propagating annotations of molecular networks using in silico fragmentation.

    Science.gov (United States)

    da Silva, Ricardo R; Wang, Mingxun; Nothias, Louis-Félix; van der Hooft, Justin J J; Caraballo-Rodríguez, Andrés Mauricio; Fox, Evan; Balunas, Marcy J; Klassen, Jonathan L; Lopes, Norberto Peporine; Dorrestein, Pieter C

    2018-04-18

    The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.

  3. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  4. Modeling the propagation of electromagnetic waves over the surface of the human body

    Science.gov (United States)

    Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.

    2016-12-01

    The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.

  5. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  6. An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling

    Directory of Open Access Journals (Sweden)

    A. Iqbal

    2014-12-01

    Full Text Available Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM and Split-Step Fourier transform Method (SSFM. A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM.

  7. LP-LPA: A link influence-based label propagation algorithm for discovering community structures in networks

    Science.gov (United States)

    Berahmand, Kamal; Bouyer, Asgarali

    2018-03-01

    Community detection is an essential approach for analyzing the structural and functional properties of complex networks. Although many community detection algorithms have been recently presented, most of them are weak and limited in different ways. Label Propagation Algorithm (LPA) is a well-known and efficient community detection technique which is characterized by the merits of nearly-linear running time and easy implementation. However, LPA has some significant problems such as instability, randomness, and monster community detection. In this paper, an algorithm, namely node’s label influence policy for label propagation algorithm (LP-LPA) was proposed for detecting efficient community structures. LP-LPA measures link strength value for edges and nodes’ label influence value for nodes in a new label propagation strategy with preference on link strength and for initial nodes selection, avoid of random behavior in tiebreak states, and efficient updating order and rule update. These procedures can sort out the randomness issue in an original LPA and stabilize the discovered communities in all runs of the same network. Experiments on synthetic networks and a wide range of real-world social networks indicated that the proposed method achieves significant accuracy and high stability. Indeed, it can obviously solve monster community problem with regard to detecting communities in networks.

  8. Study on spectral features of terahertz wave propagating in the air

    Science.gov (United States)

    Kang, Shengwu

    2018-03-01

    Now, Terahertz technology has been widely used in many fields, which is mainly related to imaging detection. While the frequency range of the terahertz-wave is located between microwave and visible light, whether the existing visible light principle is applicable to terahertz-wave should be studied again. Through experiment, we measure the terahertz-wave field amplitude distribution on the receiving plane perpendicular to the direction of propagation in the air and picture out the energy distribution curve; derive an energy decay formula of terahertz wave based on the results; design a terahertz wavelength apparatus using the F-P interferometer theory; test the wavelength between 1 and 3 THz from the SIFIR-50THz laser of American Corehent company; finally analyze the related factors affecting the measurement precision including the beam incident angle, mechanical vibration, temperature fluctuation and the refractive index fluctuation.

  9. Long range coherence in free electron lasers

    Science.gov (United States)

    Colson, W. B.

    1984-01-01

    The simple free electron laser (FEL) design uses a static, periodic, transverse magnetic field to undulate relativistic electrons traveling along its axis. This allows coupling to a co-propagating optical wave and results in bunching to produce coherent radiation. The advantages of the FEL are continuous tunability, operation at wavelengths ranging from centimeters to angstroms, and high efficiency resulting from the fact that the interaction region only contains light, relativistic electrons, and a magnetic field. Theoretical concepts and operational principles are discussed.

  10. A theoretical and experimental investigation of nonlinear propagation of ultrasound through tissue mimicking media

    Science.gov (United States)

    Rielly, Matthew Robert

    An existing numerical model (known as the Bergen code) is used to investigate finite amplitude ultrasound propagation through multiple layers of tissue-like media. This model uses a finite difference method to solve the nonlinear parabolic KZK wave equation. The code is modified to include an arbitrary frequency dependence of absorption and transmission effects for wave propagation across a plane interface at normal incidence. In addition the code is adapted to calculate the total intensity loss associated with the absorption of the fundamental and nonlinearly generated harmonics. Measurements are also taken of the axial nonlinear pressure field generated from a circular focused, 2.25 MHz source, through single and multiple layered tissue mimicking fluids, for source pressures in the range from 13 kPa to 310 kPa. Two tissue mimicking fluids are developed to provide acoustic properties similar to amniotic fluid and a typical soft tissue. The values of the nonlinearity parameter, sound velocity and frequency dependence of attenuation for both fluids are presented, and the measurement procedures employed to obtain these characteristics are described in detail. These acoustic parameters, together with the measured source conditions are used as input to the numerical model, allowing the experimental conditions to be simulated. Extensive comparisons are made between the model's predictions and the axial pressure field measurements. Results are presented in the frequency domain showing the fundamental and three subsequent harmonic amplitudes on axis, as a function of axial distance. These show that significant nonlinear distortion can occur through media with characteristics typical of tissue. Time domain waveform comparisons are also made. An excellent agreement is found between theory and experiment indicating that the model can be used to predict nonlinear ultrasound propagation through multiple layers of tissue-like media. The numerical code is also used to model the

  11. Propagation of femtosecond laser pulses through water in the linear absorption regime.

    Science.gov (United States)

    Naveira, Lucas M; Strycker, Benjamin D; Wang, Jieyu; Ariunbold, Gombojav O; Sokolov, Alexei V; Kattawar, George W

    2009-04-01

    We investigate the controversy regarding violations of the Bouguer-Lambert-Beer (BLB) law for ultrashort laser pulses propagating through water. By working at sufficiently low incident laser intensities, we make sure that any nonlinear component in the response of the medium is negligible. We measure the transmitted power and spectrum as functions of water cell length in an effort to confirm or disprove alleged deviations from the BLB law. We perform experiments at two different laser pulse repetition rates and explore the dependence of transmission on pulse duration. Specifically, we vary the laser pulse duration either by cutting its spectrum while keeping the pulse shape near transform-limited or by adjusting the pulses chirp while keeping the spectral intensities fixed. Over a wide range of parameters, we find no deviations from the BLB law and conclude that recent claims of BLB law violations are inconsistent with our experimental data. We present a simple linear theory (based on the BLB law) for propagation of ultrashort laser pulses through an absorbing medium and find our experimental results to be in excellent agreement with this theory.

  12. Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species

    Energy Technology Data Exchange (ETDEWEB)

    Boschini, M. J.; Torre, S. Della; Gervasi, M.; Grandi, D.; Vacca, G. La; Pensotti, S.; Rancoita, P. G.; Rozza, D.; Tacconi, M. [INFN, Milano-Bicocca, Milano (Italy); Jóhannesson, G. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Kachelriess, M. [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway); Masi, N.; Quadrani, L. [INFN, Bologna (Italy); Moskalenko, I. V.; Orlando, E.; Porter, T. A. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Ostapchenko, S. S. [Frankfurt Institute of Advanced Studies, Frankfurt (Germany)

    2017-05-10

    Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with the data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range.

  13. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    CERN Document Server

    Koettig, T; Avellino, S; Junginger, T; Bremer, J

    2015-01-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to b...

  14. COMPARATIVE RESEARCH OF VARIOUS METHODS FOR DETERMINING THE CHARACTERISTICS OF AN ELECTROMAGNETIC WAVE REFLECTED FROM A SCATTERING DIFFRACTION SCREEN IN THE PROPAGATION OF A RADIO SIGNAL IN THE EARTH-IONOSPHERE CHANNEL IN THE SHORT-WAVE RANGE OF RADIO WAVES WITH USE OF THE EXPERIMENTAL EQUIPMENT OF COHERENT RECEPTION OF A GROUND-BASED MEASURING COMPLEX

    Directory of Open Access Journals (Sweden)

    S.Yu. Belov

    2017-12-01

    Full Text Available Monitoring of the earth’s surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. The new method is suggested. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena, changes ecosystems, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth’s surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. A comparative analysis and shows that the analytical (relative accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method. Analysis of admissible relative analytical error of estimation of this parameter allowed to recommend new method instead of standard method

  15. Front propagation and clustering in the stochastic nonlocal Fisher equation

    Science.gov (United States)

    Ganan, Yehuda A.; Kessler, David A.

    2018-04-01

    In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

  16. Content Propagation in Online Social Networks

    NARCIS (Netherlands)

    Blenn, N.

    2014-01-01

    This thesis presents methods and techniques to analyze content propagation within online social networks (OSNs) using a graph theoretical approach. Important factors and different techniques to analyze and describe content propagation, starting from the smallest entity in a network, representing a

  17. Topology optimization of wave-propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....

  18. Propagation of microwaves in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G; Ferrari, A [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Massaglia, S [Turin Univ. (Italy). Ist. di Fisica Generale; Cambridge Univ. (UK). Inst. of Astronomy)

    1981-12-01

    We discuss the dispersion relation of linearly-polarized waves, propagating along a strong background magnetic field embedded in an electron-positron plasma. The results are then applied to the study of the propagation conditions of coherent curvature radio radiation inside neutron stars magnetospheres, as produced by electric discharges following current pulsar models.

  19. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    the existence and propagation of four waves in the medium. Three of the waves are ... predicted infinite speed for propagation of ther- mal signals. Lord and ..... saturated reservoir rock (North-sea Sandstone) is chosen for the numerical model ...

  20. In vitro propagation of Irvingia gabonensis

    African Journals Online (AJOL)

    GREGO

    2007-04-16

    Apr 16, 2007 ... Full-grown plantlets were obtained and work is in progress on mass propagation. ... subsequent mass propagation to produce seedlings for farmers, and to improve food security and ... Shooting and rooting were observed, and full grown plantlets were obtained. ¼ MS +0.2 mg KIN. +0.1 mg NAA. Rooting ...

  1. Uncertainty Propagation in an Ecosystem Nutrient Budget.

    Science.gov (United States)

    New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated error for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of fr...

  2. Propagation testing multi-cell batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamb, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steele, Leigh Anna Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spangler, Scott Wilmer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  3. Range Process Simulation Tool

    Science.gov (United States)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  4. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  5. Propagation of SLF/ELF electromagnetic waves

    CERN Document Server

    Pan, Weiyan

    2014-01-01

    This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).

  6. In vitro propagation of jojoba.

    Science.gov (United States)

    Llorente, Berta E; Apóstolo, Nancy M

    2013-01-01

    Jojoba (Simmondsia chinensis (Link) Schn.) is a nontraditional crop in arid and semi-arid areas. Vegetative propagation can be achieved by layering, grafting, or rooting semi-hardwood cuttings, but the highest number of possible propagules is limited by the size of the plants and time of the year. Micropropagation is highly recommended strategy for obtaining jojoba elite clones. For culture initiation, single-node explants are cultivated on Murashige and Skoog medium (MS) supplemented with Gamborg's vitamins (B5), 11.1 μM BA (N(6)-benzyl-adenine), 0.5 μM IBA (indole-3-butyric acid), and 1.4 μM GA(3) (gibberellic acid). Internodal and apical cuttings proliferate on MS medium containing B5 vitamins and 4.4 μM BA. Rooting is achieved on MS medium (half strength mineral salt) amended with B5 vitamins and 14.7 μM IBA during 7 days and transferred to develop in auxin-free rooting medium. Plantlets are acclimatized using a graduated humidity regime on soil: peat: perlite (5:1:1) substrate. This micropagation protocol produces large numbers of uniform plants from selected genotypes of jojoba.

  7. Sound Propagation in Shallow Water. Volume 2. Unclassified Papers

    Science.gov (United States)

    1974-11-15

    range. If ßj and Bs are given in dB/WL, Eq. 9 becomes a v: Pi n (JU 2n ci(20 Ige C ^ eu 2TTC2 (20 Ige) [ nT1 ] [E, 𔃺 where Ci is the...elementary "resolution cell ". The echo and the reverberation level are thus affected in the same wa; by the variations of propagation loss. The fact that...the area of the resolution cell increases proportionally with the range is more or less compensated by the decrease of the scattering strength which

  8. Biomass plug development and propagation in porous media.

    Science.gov (United States)

    Stewart, T L; Fogler, H S

    2001-02-05

    Exopolymer-producing bacteria can be used to modify soil profiles for enhanced oil recovery or bioremediation. Understanding the mechanisms associated with biomass plug development and propagation is needed for successful application of this technology. These mechanisms were determined from packed-bed and micromodel experiments that simulate plugging in porous media. Leuconostoc mesenteroides was used, because production of dextran, a water-insoluble exopolymer, can be controlled by using different carbon sources. As dextran was produced, the pressure drop across the porous media increased and began to oscillate. Three pressure phases were identified under exopolymer-producing conditions: the exopolymer-induction phase, the plugging phase, and the plug-propagation phase. The exopolymer-induction phase extended from the time that exopolymer-producing conditions were induced until there was a measurable increase in pressure drop across the porous media. The plugging phase extended from the first increase in pressure drop until a maximum pressure drop was reached. Changes in pressure drop in these two phases were directly related to biomass distribution. Specifically, flow channels within the porous media filled with biomass creating a plugged region where convective flow occurred only in water channels within the biofilm. These water channels were more restrictive to flow causing the pressure drop to increase. At a maximum pressure drop across the porous media, the biomass yielded much like a Bingham plastic, and a flow channel was formed. This behavior marked the onset of the plug-propagation phase which was characterized by sequential development and breakthrough of biomass plugs. This development and breakthrough propagated the biomass plug in the direction of nutrient flow. The dominant mechanism associated with all three phases of plugging in porous media was exopolymer production; yield stress is an additional mechanism in the plug-propagation phase. Copyright

  9. Effects of Non-Maxwellian Plasma Species on ICRF Propagation and Absorption in Toroidal Magnetic Confinement Devices

    International Nuclear Information System (INIS)

    Dumont, R.J.; Phillips, C.K.; Smithe, D.N.

    2003-01-01

    Auxiliary heating supplied by externally launched electromagnetic waves is commonly used in toroidal magnetically confined fusion experiments for profile control via localized heating, current drive and perhaps flow shear. In these experiments, the confined plasma is often characterized by the presence of a significant population of non-thermal species arising from neutral beam injection, from acceleration of the particles by the applied waves, or from copious fusion reactions in future devices. Such non-thermal species may alter the wave propagation as well as the wave absorption dynamics in the plasma. Previous studies have treated the corresponding velocity distributions as either equivalent Maxwellians, or else have included realistic distributions only in the finite Larmor radius limit. In this work, the hot plasma dielectric response of the plasma has been generalized to treat arbitrary distribution functions in the non-relativistic limit. The generalized dielectric tensor has been incorporated into a one-dimensional full wave all-orders kinetic field code. Initial comparative studies of ion cyclotron range of frequency wave propagation and heating in plasmas with nonthermal species, represented by realistic distribution functions or by appropriately defined equivalent Maxwellians, have been completed for some specific experiments and are presented

  10. Impacts of tides on tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea, Japan

    Science.gov (United States)

    Lee, Han Soo; Shimoyama, Tomohisa; Popinet, Stéphane

    2015-10-01

    The impacts of tides on extreme tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea (SIS), Japan, are investigated through numerical experiments. Tsunami experiments are conducted based on five scenarios that consider tides at four different phases, such as flood, high, ebb, and low tides. The probes that were selected arbitrarily in the Bungo and Kii Channels show less significant effects of tides on tsunami heights and the arrival times of the first waves than those that experience large tidal ranges in inner basins and bays of the SIS. For instance, the maximum tsunami height and the arrival time at Toyomaesi differ by more than 0.5 m and nearly 1 h, respectively, depending on the tidal phase. The uncertainties defined in terms of calculated maximum tsunami heights due to tides illustrate that the calculated maximum tsunami heights in the inner SIS with standing tides have much larger uncertainties than those of two channels with propagating tides. Particularly in Harima Nada, the uncertainties due to the impacts of tides are greater than 50% of the tsunami heights without tidal interaction. The results recommend simulate tsunamis together with tides in shallow water environments to reduce the uncertainties involved with tsunami modeling and predictions for tsunami hazards preparedness. This article was corrected on 26 OCT 2015. See the end of the full text for details.

  11. Aftershock Sequences and Seismic-Like Organization of Acoustic Events Produced by a Single Propagating Crack

    Science.gov (United States)

    Alizee, D.; Bonamy, D.

    2017-12-01

    In inhomogeneous brittle solids like rocks, concrete or ceramics, one usually distinguish nominally brittle fracture, driven by the propagation of a single crack from quasibrittle one, resulting from the accumulation of many microcracks. The latter goes along with intermittent sharp noise, as e.g. revealed by the acoustic emission observed in lab scale compressive fracture experiments or at geophysical scale in the seismic activity. In both cases, statistical analyses have revealed a complex time-energy organization into aftershock sequences obeying a range of robust empirical scaling laws (the Omori-Utsu, productivity and Bath's law) that help carry out seismic hazard analysis and damage mitigation. These laws are usually conjectured to emerge from the collective dynamics of microcrack nucleation. In the experiments presented at AGU, we will show that such a statistical organization is not specific to the quasi-brittle multicracking situations, but also rules the acoustic events produced by a single crack slowly driven in an artificial rock made of sintered polymer beads. This simpler situation has advantageous properties (statistical stationarity in particular) permitting us to uncover the origins of these seismic laws: Both productivity law and Bath's law result from the scale free statistics for event energy and Omori-Utsu law results from the scale-free statistics of inter-event time. This yields predictions on how the associated parameters are related, which were analytically derived. Surprisingly, the so-obtained relations are also compatible with observations on lab scale compressive fracture experiments, suggesting that, in these complex multicracking situations also, the organization into aftershock sequences and associated seismic laws are also ruled by the propagation of individual microcrack fronts, and not by the collective, stress-mediated, microcrack nucleation. Conversely, the relations are not fulfilled in seismology signals, suggesting that

  12. Particle propagation and acceleration in the heliosphere

    International Nuclear Information System (INIS)

    Valdes-Galicia, J.F.; Quenby, J.J.; Mousas, X.

    1988-01-01

    A realistic model of interplanetary magnetic field perturbations has been constructed based on data taken on board spacecraft. The model has been used to study numerically pitch angle scattering suffered by energetic particles (1-100 MeV) as they propagate in the Heliosphere. These numerical experiments allow the determination of the pitch angle diffusion coefficient Dμ and the associated mean free path λ. Dμ is found to be always smaller than implied by quasi linear theory, leading to radial mean free paths (λ r ≅ 0.015 AU) that are at least 3 times larger. Inclusion of solar wind velocity measurements in the model producing V x B random electric fields permits the study of stochastic acceleration caused by these fields. Initial results show that these processes might be able to overcome the effects of adiabatic cooling caused by the expansion of the solar wind and thus be of some influence in cosmic ray acceleration when extrapolated to other astrophysical environments

  13. The nonlinear distortion of propagation cones of lower hybrid wave in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Sanuki, Heiji; Ogino, Tatsuki.

    1976-12-01

    Nonlinear propagation of externally driven waves in the lower hybrid frequency range in an inhomogeneous plasma are investigated. The results of finite temperature, inhomogeneity of the plasma and density depression due to the ponderomotive force are emphasized since these effects are responsible for the propagation characteristics of the waves. The results shows that the waves are localized in a spatial wave packet that propagates into the plasma center along the conical trajectory which makes a small angle with respect to the confining magnetic field. (auth.)

  14. Laser propagation and soliton generation in strongly magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Li, J. Q.; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-03-15

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

  15. Influence of Atmospheric Propagation on Performance of Laser Active Imaging System

    International Nuclear Information System (INIS)

    Li Yingchun; Sun Huayan; Guo Huichao; Zhao Yun

    2011-01-01

    Atmospheric propagation has serious influence on the performance of a good designed laser active imaging system. Atmospheric attenuation and turbulence are two main effects on laser atmospheric propagation. Imaging SNR (Signal-Noise-Ratio) and resolution are two key indexes to describe the performance of a laser active imaging system. Establishing the relation between system performance index and atmospheric propagation effect is significant. The paper analyzed the relation between imaging performance and atmospheric attenuation and turbulence through simulation. And also the experiments were done under different weather to validate the conclusion of simulation.

  16. RXP-E: a connexin43-binding peptide that prevents action potential propagation block

    DEFF Research Database (Denmark)

    Lewandowski, Rebecca; Procida, Kristina; Vaidyanathan, Ravi

    2008-01-01

    . Separately, RXP-E was concatenated to a cytoplasmic transduction peptide (CTP) for cytoplasmic translocation (CTP-RXP-E). The effect of RXP-E on action potential propagation was assessed by high-resolution optical mapping in monolayers of neonatal rat ventricular myocytes, containing approximately 20......% of randomly distributed myofibroblasts. In contrast to control experiments, when heptanol (2 mmol/L) was added to the superfusate of monolayers loaded with CTP-RXP-E, action potential propagation was maintained, albeit at a slower velocity. Similarly, intracellular acidification (pH(i) 6.2) caused a loss...... of action potential propagation in control monolayers; however, propagation was maintained in CTP-RXP-E-treated cells, although at a slower rate. Patch-clamp experiments revealed that RXP-E did not prevent heptanol-induced block of sodium currents, nor did it alter voltage dependence or amplitude of Kir2...

  17. Event-triggered Decision Propagation in Proximity Networks

    Directory of Open Access Journals (Sweden)

    Soumik eSarkar

    2014-12-01

    Full Text Available This paper proposes a novel event-triggered formulation as an extension of the recently develo-ped generalized gossip algorithm for decision/awareness propagation in mobile sensor networksmodeled as proximity networks. The key idea is to expend energy for communication (messagetransmission and reception only when there is any event of interest in the region of surveillance.The idea is implemented by using an agent’s belief about presence of a hotspot as feedback tochange its probability of (communication activity. In the original formulation, the evolution ofnetwork topology and the dynamics of decision propagation were completely decoupled whichis no longer the case as a consequence of this feedback policy. Analytical results and numeri-cal experiments are presented to show a significant gain in energy savings with no change inthe first moment characteristics of decision propagation. However, numerical experiments showthat the second moment characteristics may change and theoretical results are provided forupper and lower bounds for second moment characteristics. Effects of false alarms on networkformation and communication activity are also investigated.

  18. Long range correlations in condensed matter

    International Nuclear Information System (INIS)

    Bochicchio, R.C.

    1990-01-01

    Off diagonal long range order (ODLRO) correlations are strongly related with the generalized Bose-Einstein condensation. Under certain boundary conditions, one implies the other. These phenomena are of great importance in the description of quantum situations with a macroscopic manifestation (superfluidity, superconductivity, etc.). Since ion pairs are not bosons, the definition of ODLRO is modified. The information contained with the 2-particle propagator (electron pairs) and the consequences that lead to pairs statistics are shown in this presentation. The analogy between long range correlations and fluids is also analyzed. (Author). 17 refs

  19. Introduction to sensors for ranging and imaging

    CERN Document Server

    Brooker, Graham

    2009-01-01

    ""This comprehensive text-reference provides a solid background in active sensing technology. It is concerned with active sensing, starting with the basics of time-of-flight sensors (operational principles, components), and going through the derivation of the radar range equation and the detection of echo signals, both fundamental to the understanding of radar, sonar and lidar imaging. Several chapters cover signal propagation of both electromagnetic and acoustic energy, target characteristics, stealth, and clutter. The remainder of the book introduces the range measurement process, active ima

  20. PROPAGATION OF NEW BLACKBERRY CULTIVARS FOR PRODUCING CERTIFIED PROPAGATION MATERIAL

    Directory of Open Access Journals (Sweden)

    Valentina Isac

    2014-12-01

    Full Text Available The purpose of this research was to study the behaviour of two new Romanian thorn blackberry cultivars DAR 24 and DAR 8 in process of micropropagation, compared with Darrow cultivar usually commercially micropropagated in our laboratory. Due to several drawbacks of the conventional propagation of Rubus, the efficiency of micropropagation was tested in order to obtain high quality planting material and to introduce rapidly these new cultivars in a certification program. Thorn blackberry cultivars DAR 8 and DAR 24 with resistance to winter colds was successfully micropropagated. Blackberry plants were found without virus infection after biological and ELISA tests. Axillary buds from the branches in full growth were used as the initial explants. After four weeks of growth, aseptic cultures was established on MS basal mineral salts, LS vitamins with 0.3 mg/l BAP, 0.1mg/l GA3 and 0.001mg/l NAA. The rate of successfully established cultures was on average 65.11%. Good proliferation of the regenerated shoots was obtained on the same medium composition used for initiation phase, whereas medium MS with mineral salts reduced to ½ and LS vitamins with 0.1 mg/l IBA and 0.1 mg/l GA3 was used in the rooting phase. Dar 24 and Dar 8 cultivars responded by good rates of micropropagation on medium culture B as compared to control Darrow cultivar, even if the obtained shoots length was lower than on medium A. The statistical analysis reveled that the highest MR (20.66 plantlets/explant was obtained for Dar 24. In this case the length of shoots was 1.92 cm. The highest rooting percentages (over 85% were obtained with shoots multiplied on medium B. High quality of rooted plants induced a high percentage of acclimatization of cultivar Dar 8, 86.36% under mist system in green house whereas the percentage of acclimatization of cultivar Dar 24 was lower, 51.85%.

  1. Radiation and propagation of short acoustical pulses from underground explosions

    International Nuclear Information System (INIS)

    Banister, J.R.

    1982-06-01

    Radiation and propagation of short acoustical pulses from underground nuclear explosions were analyzed. The cone of more intense radiation is defined by the ratio of sound speeds in the ground and air. The pressure history of the radiated pulse is a function of the vertical ground-motion history, the range, the burial depth, and the velocity of longitudinal seismic waves. The analysis of short-pulse propagation employed an N-wave model with and without enegy conservation. Short pulses with initial wave lengths less than 100 m are severely attenuated by the energy loss in shocks and viscous losses in the wave interior. The methods developed in this study should be useful for system analysis

  2. Laser propagation and compton scattering in parabolic plasma channel

    CERN Document Server

    Dongguo, L; Yokoya, K; Hirose, T

    2003-01-01

    A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)

  3. Quench propagation tests on the LHC superconducting magnet string

    CERN Document Server

    Coull, L; Krainz, G; Rodríguez-Mateos, F; Schmidt, R

    1996-01-01

    The installation and testing of a series connection of superconducting magnets (three 10 m long dipoles and one 3 m long quadrupole) has been a necessary step in the verification of the viability of the Large Hadron Collider at CERN. In the LHC machine, if one of the lattice dipoles or quadrupoles quenches, the current will be by-passed through cold diodes and the whole magnet chain will be de-excited by opening dump switches. In such a scenario it is very important to know whether the quench propagates from the initially quenching magnet to adjacent ones. A series of experiments have been performed with the LHC Test String powered at different current levels and at different de-excitation rates in order to understand possible mechanisms for such a propagation, and the time delays involved. Results of the tests and implications regarding the LHC machine operation are described in this paper.

  4. Improvement of some vegetatively propagated ornamentals by gamma radiation

    International Nuclear Information System (INIS)

    Das, P.K.; Dube, S.; Ghosh, P.; Dhua, S.D.

    1977-01-01

    Studies were made to induce mutations in some vegetatively propagated ornamentals like, Chrysanthemum, Dahlia, Hibiscus, Acalpha, Iresine, etc. by acute as well as chronic gamma irradiation. In both the types of irradiation experiments, apart from growth reduction and various physiological anomalies in growth and leaf characters, a total of 27 somatic mutants have been isolated in Chrysanthemum, Dahlia, Hibiscus, Acalypha and Iresine. Some of the mutants have been established by perpetuation over 3-5 vegetative generations while few could not be maintained on account of initially small chimeric changes of failure of regeneration of the propagable materials. However, most of the mutants hold as practical improvements and will find place in ornamental improvement programme in the country. (author)

  5. Doppler reflectometry for the investigation of poloidally propagating density perturbations

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Kurzan, B.; Holzhauer, E.

    1999-01-01

    A modification of microwave reflectometry is discussed where the direction of observation is tilted with respect to the normal onto the reflecting surface. The experiment is similar to scattering where a finite resolution in k-space exists but keeps the radial localization of reflectometry. The observed poloidal wavenumber is chosen by Bragg's condition via the tilt angle and the resolution in k-space is determined by the antenna pattern. From the Doppler shift of the reflected wave the poloidal propagation velocity of density perturbations is obtained. The diagnostic capabilities of Doppler reflectometry are investigated using full wave code calculations. The method offers the possibility to observe changes in the poloidal propagation velocity of density perturbations and their radial shear with a temporal resolution of about 10μs. (authors)

  6. Quasi-Airy beams along tunable propagation trajectories and directions.

    Science.gov (United States)

    Qian, Yixian; Zhang, Site

    2016-05-02

    We present a theoretical and experimental exhibit that accelerates quasi-Airy beams propagating along arbitrarily appointed parabolic trajectories and directions in free space. We also demonstrate that such quasi-Airy beams can be generated by a tunable phase pattern, where two disturbance factors are introduced. The topological structures of quasi-Airy beams are readily manipulated with tunable phase patterns. Quasi-Airy beams still possess the characteristics of non-diffraction, self-healing to some extent, although they are not the solutions for paraxial wave equation. The experiments show the results are consistent with theoretical predictions. It is believed that the property of propagation along arbitrarily desired parabolic trajectories will provide a broad application in trapping atom and living cell manipulation.

  7. The accuracy of dynamic attitude propagation

    Science.gov (United States)

    Harvie, E.; Chu, D.; Woodard, M.

    1990-01-01

    Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.

  8. Failure propagation tests and analysis at PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Miyake, O.; Daigo, Y.; Sato, M.

    1984-01-01

    Failure propagation tests have been conducted using the Large Leak Sodium Water Reaction Test Rig (SWAT-1) and the Steam Generator Safety Test Facility (SWAT-3) at PNC in order to establish the safety design of the LMFBR prototype Monju steam generators. Test objectives are to provide data for selecting a design basis leak (DBL), data on the time history of failure propagations, data on the mechanism of the failures, and data on re-use of tubes in the steam generators that have suffered leaks. Eighteen fundamental tests have been performed in an intermediate leak region using the SWAT-1 test rig, and ten failure propagation tests have been conducted in the region from a small leak to a large leak using the SWAT-3 test facility. From the test results it was concluded that a dominant mechanism was tube wastage, and it took more than one minute until each failure propagation occurred. Also, the total leak rate in full sequence simulation tests including a water dump was far less than that of one double-ended-guillotine (DEG) failure. Using such experimental data, a computer code, LEAP (Leak Enlargement and Propagation), has been developed for the purpose of estimating the possible maximum leak rate due to failure propagation. This paper describes the results of the failure propagation tests and the model structure and validation studies of the LEAP code. (author)

  9. Modeling and Experimental Study of Soft Error Propagation Based on Cellular Automaton

    OpenAIRE

    He, Wei; Wang, Yueke; Xing, Kefei; Yang, Jianwei

    2016-01-01

    Aiming to estimate SEE soft error performance of complex electronic systems, a soft error propagation model based on cellular automaton is proposed and an estimation methodology based on circuit partitioning and error propagation is presented. Simulations indicate that different fault grade jamming and different coupling factors between cells are the main parameters influencing the vulnerability of the system. Accelerated radiation experiments have been developed to determine the main paramet...

  10. Experimental Investigation of Some Effects of Multipath Propagation on a Line-of-Sight Path at 14 GHz

    DEFF Research Database (Denmark)

    Stephansen, E.; Mogensen, G.

    1979-01-01

    A microwave line-of-sight propagation experiment is carried out in Denmark at frequencies around 14 GHz. Results from long term measurements of multipath propagation are presented. The multipath fade durations are shown to be log-normally distributed. The level dependence of the probability of fa...

  11. Light Experiment data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the early 1990s, Redfish Lake sockeye salmon from the Sawtooth Basin in Idaho were on the brink of extinction, and they were listed as endangered under the US...

  12. Experiments in Error Propagation within Hierarchal Combat Models

    Science.gov (United States)

    2015-09-01

    stochastic Lanchester campaign model that contains 18 Blue and 25 Red submarines. The outputs of the campaign models are analyzed statistically. The...sampled in a variety of ways, including just the mean, and used to calculate the attrition coefficients for a stochastic Lanchester campaign model...9 2. Lanchester Models .............................................................................10 III. SCENARIO AND MODEL DEVELOPMENT

  13. Network propagation in the cytoscape cyberinfrastructure.

    Science.gov (United States)

    Carlin, Daniel E; Demchak, Barry; Pratt, Dexter; Sage, Eric; Ideker, Trey

    2017-10-01

    Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.

  14. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  15. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  16. Crack Propagation by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2018-01-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed

  17. Network propagation in the cytoscape cyberinfrastructure.

    Directory of Open Access Journals (Sweden)

    Daniel E Carlin

    2017-10-01

    Full Text Available Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.

  18. Electron thermal conductivity from heat wave propagation in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Erckmann, V; Gasparino, U; Hartfuss, H J; Kuehner, G; Maassberg, H; Stroth, U; Tutter, M [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); W7-AS Team; ECRH Group IPF Stuttgart; Gyrotron Group KFK Karlsruhe

    1992-11-01

    Heat wave propagation experiments have been carried out on the Wendelstein 7-AS stellarator. The deposition of electron cyclotron resonance heating power is highly localized in the plasma centre, so that power modulation produces heat waves which propagate away from the deposition volume. Radiometry of the electron cyclotron emission is used to measure the generated temperature perturbation. The propagation time delay of the temperature perturbation as a function of distance to the power deposition region is used to determine the electron thermal conductivity [chi][sub e]. This value is then compared with the value determined by global power balance. In contrast to sawtooth propagation experiments in tokamaks, it is found that the value of [chi][sub e] from heat wave propagation is comparable to that calculated by power balance. In addition, inward propagating waves were produced by choosing a power deposition region away from the plasma centre. Experiments were carried out at 70 GHz in the ordinary mode and at 140 GHz in the extraordinary mode. Variations of the modulation power amplitude have demonstrated that the inferred value of [chi][sub e] is independent of the amplitude of the induced temperature perturbations. (author). 29 refs, 11 figs, 5 tabs.

  19. VENUS Ranging Study

    Science.gov (United States)

    2014-12-01

    Majesté la Reine (en droit du Canada), telle que réprésentée par le ministre de la Défense nationale, 2014 Abstract The underwater acoustic propagation...50 km des capteurs sous-marins situés aux nœuds du réseau VENUS dont les données acoustiques et sismiques sont accessibles au public sur Internet...Southwest British Columbia, Geophysical Journal International , 170(2), 800–812. [15] Hamilton, E. L. (1979), Vp/Vs and Poisson’s ratios in marine

  20. In vitro propagation of Cyathea atrovirens (Cyatheaceae): spore storage and sterilization conditions.

    Science.gov (United States)

    Vargas, Isabel Beatriz de; Droste, Annette

    2014-03-01

    Cyathea atrovirens occurs in a wide range of habitats in Brazil, Paraguay, Uruguay and Argentina. In the Brazilian State of Rio Grande do Sul, this commonly found species is a target of intense exploitation, because of its ornamental characteristics. The in vitro culture is an important tool for propagation which may contribute toward the reduction of extractivism. However, exogenous contamination of spores is an obstacle for the success of aseptic long-term cultures. This study evaluated the influence of different sterilization methods combined with storage conditions on the contamination of the in vitro cultures and the gametophytic development of C. atrovirens, in order to establish an efficient propagation protocol. Spores were obtained from plants collected in Novo Hamburgo, State of Rio Grande do Sul, Brazil. In the first experiment, spores stored at 7 degrees C were surface sterilized with 0.5, 0.8 and 2% of sodium hypochlorite (NaClO) for 15 minutes and sown in Meyer's culture medium. The cultures were maintained in a growth room at 26 +/- 1 degrees C for a 12-h photoperiod and photon flux density of 100 micromol/m2/s provided by cool white fluorescent light. Contamination was assessed at 60 days, and gametophytic development was scored at 30, 60, 120 and 130 days of in vitro culture, analyzing 300 individuals for each treatment. There was no significant difference in culture contamination among the different sodium hypochlorite concentrations tested, and all treatments allowed for the development of cordiform gametophytes at 130 days of culture. In the second experiment, spores stored at 7 and -20 degrees C were divided into two groups. Half of the spores were surface sterilized with 2% of NaClO for 15 minutes and the other half was not sterilized. All spores were sown in Meyer's medium supplemented with one of the following antibiotics: nystatin, Micostatin and actidione. The culture conditions and the procedures used for evaluating contamination and