WorldWideScience

Sample records for range pixel size

  1. Variable pixel size ionospheric tomography

    Science.gov (United States)

    Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei

    2017-06-01

    A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the

  2. High Dynamic Range X-Ray Detector Pixel Architectures Utilizing Charge Removal

    Science.gov (United States)

    Weiss, Joel T.; Shanks, Katherine S.; Philipp, Hugh T.; Becker, Julian; Chamberlain, Darol; Purohit, Prafull; Tate, Mark W.; Gruner, Sol M.

    2017-04-01

    Several charge integrating CMOS pixel front ends utilizing charge removal techniques have been fabricated to extend dynamic range for X-ray diffraction applications at synchrotron sourcesand X-ray free electron lasers (XFELs). The pixels described herein build on the mixed mode pixel array detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging. These new pixels boast several orders of magnitude improvement in maximum flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 X-rays/pixel/s while maintaining sensitivity to smaller signals, down to single X-rays. To extend dynamic range, charge is removed from the integration node of the frontend amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is, thereby, shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux > 1011 X-rays/pixel/s. Pixel front-end linearity was evaluated by direct current injection and results are presented. A small-scale readout ASIC utilizing these pixel architectures has been fabricated and the use of these architectures to increase single X-ray pulse dynamic range at XFELs is discussed briefly.

  3. Pixel size and pitch measurements of liquid crystal spatial light ...

    Indian Academy of Sciences (India)

    We present a simple technique for the determination of pixel size and pitch of liquid crystal (LC) based spatial light modulator (SLM). The proposed method is based on optical diffraction from pixelated LC panel that has been modeled as a two-dimensional array of rectangular apertures. A novel yet simple, two-plane ...

  4. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  5. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  6. An Improved Adaptive Template Size Pixel-Tracking Method for Monitoring Large-Gradient Mining Subsidence

    Directory of Open Access Journals (Sweden)

    Jilei Huang

    2017-01-01

    Full Text Available The monitoring of large-gradient deformation caused by coal mining is of great significance to the prevention and management of disasters in mining areas. The interferometric synthetic aperture radar (InSAR method captures the small-gradient ground deformation on the edge of the subsidence basin accurately but is unreliable for capturing large-gradient deformation. The intensity-based pixel-tracking method (e.g., the normalized cross-correlation (NCC method can overcome the limitations of InSAR’s maximum detectable displacement gradient and incoherence. However, the pixel-tracking method is sensitive to template size. It is difficult to estimate ground subsidence accurately by the conventional pixel-tracking method with fixed template size. In this paper, the signal-to-noise ratio (SNR is redefined and an improved locally adaptive template size method is proposed by identifying optimal template adaptively based on maximization of the redefined SNR. The constraint radius is used to constrain the search area in this improved method. The frequency of misrepresentation is reduced by finding the peak of the correlation coefficient surface within the search area. Both simulation data and real ground subsidence data are used to test this algorithm. The results show that this method can improve monitoring accuracy compared with the traditional pixel-tracking method for fixed template size.

  7. An Ultrahigh-Resolution Digital Image Sensor with Pixel Size of 50 nm by Vertical Nanorod Arrays.

    Science.gov (United States)

    Jiang, Chengming; Song, Jinhui

    2015-07-01

    The pixel size limit of existing digital image sensors is successfully overcome by using vertically aligned semiconducting nanorods as the 3D photosensing pixels. On this basis, an unprecedentedly high-resolution digital image sensor with a pixel size of 50 nm and a resolution of 90 nm is fabricated. The ultrahigh-resolution digital image sensor can heavily impact the field of visual information. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Inversion of spheroid particle size distribution in wider size range and aspect ratio range

    Directory of Open Access Journals (Sweden)

    Tang Hong

    2013-01-01

    Full Text Available The non-spherical particle sizing is very important in the aerosol science, and it can be determined by the light extinction measurement. This paper studies the effect of relationship of the size range and aspect ratio range on the inversion of spheroid particle size distribution by the dependent mode algorithm. The T matrix method and the geometric optics approximation method are used to calculate the extinction efficiency of the spheroids with different size range and aspect ratio range, and the inversion of spheroid particle size distribution in these different ranges is conducted. Numerical simulation indicates that a fairly reasonable representation of the spheroid particle size distribution can be obtained when the size range and aspect ratio range are suitably chosen.

  9. A per-pixel Log2ADC for high dynamic range, 1000FPS digital focal plane arrays (DFPA)

    Science.gov (United States)

    Petilli, Eugene

    2016-09-01

    Intrinsix has developed a Digital Focal Plane Array (DFPA) architecture based on a novel piecewise linear Log2 ADC (LADC) with "lossless" analog compression which enables ultra-high dynamic range ROICs that use less power than other extended dynamic range technologies. The LADC provides dynamic range of 126dB with a constant 75dB SNR over the entire frame. The companding 13bit mantissa, 3bit radix per pixel LADCs compress the 21bit signals into efficient 16 bit data words. The Read Out IC (ROIC) is compatible with most IR and LWIR detectors including two-color SLS (photodiode) and uBolometers. The DFPA architecture leverages two (staggered frame prime and redundant) MIPI CSI-3 interfaces to achieve full HD DFPA at 1000 frames/sec; an equivalent uncompressed data rate of 100Gb/sec. The LADC uses direct injection into a moderate sized integrating capacitor and several comparators create a stream of multi-bit data values. These values are accumulated in an SRAM based log2ALU and the radix of the ALU is combined with the data to generate a feedback current to the integrating capacitor, closing the delta loop. The integration time and a single pole low pass IIR filter are configurable using control signals to the log2ALU. The feedback current is at least partially generated using PWM for high linearity.

  10. Experimental investigation on the influence of instrument settings on pixel size and nonlinearity in SEM image formation

    DEFF Research Database (Denmark)

    Carli, Lorenzo; Genta, Gianfranco; Cantatore, Angela

    2010-01-01

    The work deals with an experimental investigation on the influence of three Scanning Electron Microscope (SEM) instrument settings, accelerating voltage, spot size and magnification, on the image formation process. Pixel size and nonlinearity were chosen as output parameters related to image...... quality and resolution. A silicon grating calibrated artifact was employed to investigate qualitatively and quantitatively, through a designed experiment approach, the parameters relevance. SEM magnification was found to account by far for the largest contribution on both parameters under consideration...

  11. Design and characterization of the ePix10k: a high dynamic range integrating pixel ASIC for LCLS detectors

    Science.gov (United States)

    Caragiulo, P.; Dragone, A.; Markovic, B.; Herbst, R.; Nishimura, K.; Reese, B.; Herrmann, S.; Hart, P.; Blaj, G.; Segal, J.; Tomada, A.; Hasi, J.; Carini, G.; Kenney, C.; Haller, G.

    2015-05-01

    ePix10k is a variant of a novel class of integrating pixel ASICs architectures optimized for the processing of signals in second generation LINAC Coherent Light Source (LCLS) X-Ray cameras. The ASIC is optimized for high dynamic range application requiring high spatial resolution and fast frame rates. ePix ASICs are based on a common platform composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog to digital converters per column. The ePix10k variant has 100um×100um pixels arranged in a 176×192 matrix, a resolution of 140e- r.m.s. and a signal range of 3.5pC (10k photons at 8keV). In its final version it will be able to sustain a frame rate of 2kHz. A first prototype has been fabricated and characterized. Performance in terms of noise, linearity, uniformity, cross-talk, together with preliminary measurements with bump bonded sensors are reported here.

  12. Influence of SLM pixel size and shape on the performance of optical correlators and optical memories

    Science.gov (United States)

    O'Callaghan, Michael J.

    2000-05-01

    The principles underlying optical correlators and Fourier transform optical memories are well understood. The components and materials they depend upon are gradually becoming available, bringing these technologies closer to commercialization. As efforts are made to obtain the best possible performance from these systems it becomes increasingly important to understand how their detailed operation differs from simple idealized models. Spatial light modulators (SLMs) used in correlators display sets of discrete data rather than continuous 2D functions, and the optical Fourier transform of these SLMs is influenced by the shape and fill-factor of the SLM's pixels. As a consequence, optical correlators perform a function that is more complex than the simple idealized correlation operation. The performance of Fourier transform optical memories is similarly affected. Here we investigate the operation of such optical systems incorporating pixelated SLMs. Examples are presented which highlight differences between the functions actually performed by these systems and the simple conceptual models of their operation. The output of these systems is commonly detected using pixelated CCD or CMOS imagers, the effect of imager pixel fill-factor is also examined.

  13. Small pixel infrared sensor technology

    Science.gov (United States)

    Caulfield, John; Curzan, Jon

    2017-02-01

    We report on product maturation of small pixel high definition high charge capacity 2.4 Mpixel MWIR Infrared Focal Plane Arrays. This high definition (HD) FPA utilizes a small 5 um pitch pixel size which enables near Nyquist limited sampling with by the optical system of many IR lenses. These smaller sub diffraction pitch pixels enable improved sensitivity and resolution resulting in clear, crisp high contrast imaging with excellent IFOVs even with small focal length lenses. The small pixel IR sensor allows the designer to trade off field of view, MTF, optics F/# to obtain a more compact and high performance IR sensor. This enables lower size, power and weight reductions of the entire IR Sensor System. The highly sensitive MWIR small pixel HD FPA has the capability to detect dimmer signals at longer ranges than previously demonstrated.

  14. Apparatus for handling micron size range particulate material

    Science.gov (United States)

    Friichtenicht, J. F.; Roy, N. L. (Inventor)

    1968-01-01

    An apparatus for handling, transporting, or size classifying comminuted material was described in detail. Electrostatic acceleration techniques for classifying particles as to size in the particle range from 0.1 to about 100 microns diameter were employed.

  15. Investigating the effect of pixel size of high spatial resolution FTIR imaging for detection of colorectal cancer

    Science.gov (United States)

    Lloyd, G. R.; Nallala, J.; Stone, N.

    2016-03-01

    FTIR is a well-established technique and there is significant interest in applying this technique to medical diagnostics e.g. to detect cancer. The introduction of focal plane array (FPA) detectors means that FTIR is particularly suited to rapid imaging of biopsy sections as an adjunct to digital pathology. Until recently however each pixel in the image has been limited to a minimum of 5.5 µm which results in a comparatively low magnification image or histology applications and potentially the loss of important diagnostic information. The recent introduction of higher magnification optics gives image pixels that cover approx. 1.1 µm. This reduction in image pixel size gives images of higher magnification and improved spatial detail can be observed. However, the effect of increasing the magnification on spectral quality and the ability to discriminate between disease states is not well studied. In this work we test the discriminatory performance of FTIR imaging using both standard (5.5 µm) and high (1.1 µm) magnification for the detection of colorectal cancer and explore the effect of binning to degrade high resolution images to determine whether similar diagnostic information and performance can be obtained using both magnifications. Results indicate that diagnostic performance using high magnification may be reduced as compared to standard magnification when using existing multivariate approaches. Reduction of the high magnification data to standard magnification via binning can potentially recover some of the lost performance.

  16. The charge pump PLL clock generator designed for the 1.56 ns bin size time-to-digital converter pixel array of the Timepix3 readout ASIC

    CERN Document Server

    Fu, Y et al.

    2014-01-01

    Timepix3 is a newly developed pixel readout chip which is expected to be operated in a wide range of gaseous and silicon detectors. It is made of 256×256 pixels organized in a square pixel-array with 55 µm pitch. Oscillators running at 640 MHz are distributed across the pixel-array and allow for a highly accurate measurement of the arrival time of a hit. This paper concentrates on a low-jitter phase locked loop (PLL) that is located in the chip periphery. This PLL provides a control voltage which regulates the actual frequency of the individual oscillators, allowing for compensation of process, voltage, and temperature variations.

  17. Polarimetric and diffractive evaluation of 3.74 micron pixel-size LCoS in the telecommunications C-band

    Science.gov (United States)

    Wang, Mi; Martínez, Francisco J.; Márquez, Andrés.; Ye, Yabin; Zong, Liangjia; Pascual, Inmaculada; Beléndez, Augusto

    2017-08-01

    Liquid-crystal on Silicon (LCoS) microdisplays are one of the competing technologies to implement wavelength selective switches (WSS) for optical telecommunications. Last generation LCoS, with more than 4 megapixels, have decreased pixel size to values smaller than 4 microns, what increases interpixel cross-talk effects such as fringing-field. We proceed with an experimental evaluation of a 3.74 micron pixel size parallel-aligned LCoS (PA-LCoS) device. At 1550 nm, for the first time we use time-average Stokes polarimetry to measure the retardance and its flicker magnitude as a function of voltage. We also verify the effect of the antireflection coating when we try to characterize the PA-LCoS out of the designed interval for the AR coating. Some preliminary results for the performance for binary gratings are also given, where the decrease of modulation range with the increase in spatial frequency is shown, together with some residual polarization effects.

  18. Towards the Optimal Pixel Size of dem for Automatic Mapping of Landslide Areas

    Science.gov (United States)

    Pawłuszek, K.; Borkowski, A.; Tarolli, P.

    2017-05-01

    Determining appropriate spatial resolution of digital elevation model (DEM) is a key step for effective landslide analysis based on remote sensing data. Several studies demonstrated that choosing the finest DEM resolution is not always the best solution. Various DEM resolutions can be applicable for diverse landslide applications. Thus, this study aims to assess the influence of special resolution on automatic landslide mapping. Pixel-based approach using parametric and non-parametric classification methods, namely feed forward neural network (FFNN) and maximum likelihood classification (ML), were applied in this study. Additionally, this allowed to determine the impact of used classification method for selection of DEM resolution. Landslide affected areas were mapped based on four DEMs generated at 1 m, 2 m, 5 m and 10 m spatial resolution from airborne laser scanning (ALS) data. The performance of the landslide mapping was then evaluated by applying landslide inventory map and computation of confusion matrix. The results of this study suggests that the finest scale of DEM is not always the best fit, however working at 1 m DEM resolution on micro-topography scale, can show different results. The best performance was found at 5 m DEM-resolution for FFNN and 1 m DEM resolution for results. The best performance was found to be using 5 m DEM-resolution for FFNN and 1 m DEM resolution for ML classification.

  19. Effects of sample size on KERNEL home range estimates

    Science.gov (United States)

    Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.

    1999-01-01

    Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.

  20. Geographic range size and extinction risk assessment in nomadic species.

    Science.gov (United States)

    Runge, Claire A; Tulloch, Ayesha; Hammill, Edd; Possingham, Hugh P; Fuller, Richard A

    2015-06-01

    Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to-and-fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid-zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation

  1. Global patterns of geographic range size in birds.

    Directory of Open Access Journals (Sweden)

    C David L Orme

    2006-07-01

    Full Text Available Large-scale patterns of spatial variation in species geographic range size are central to many fundamental questions in macroecology and conservation biology. However, the global nature of these patterns has remained contentious, since previous studies have been geographically restricted and/or based on small taxonomic groups. Here, using a database on the breeding distributions of birds, we report the first (to our knowledge global maps of variation in species range sizes for an entire taxonomic class. We show that range area does not follow a simple latitudinal pattern. Instead, the smallest range areas are attained on islands, in mountainous areas, and largely in the southern hemisphere. In contrast, bird species richness peaks around the equator, and towards higher latitudes. Despite these profoundly different latitudinal patterns, spatially explicit models reveal a weak tendency for areas with high species richness to house species with significantly smaller median range area. Taken together, these results show that for birds many spatial patterns in range size described in geographically restricted analyses do not reflect global rules. It remains to be discovered whether global patterns in geographic range size are best interpreted in terms of geographical variation in species assemblage packing, or in the rates of speciation, extinction, and dispersal that ultimately underlie biodiversity.

  2. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  3. Indetermination of particle sizing by laser diffraction in the anomalous size ranges

    Science.gov (United States)

    Pan, Linchao; Ge, Baozhen; Zhang, Fugen

    2017-09-01

    The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.

  4. Geographic range size and determinants of avian species richness

    DEFF Research Database (Denmark)

    Jetz, Walter; Rahbek, Carsten

    2002-01-01

    Geographic patterns in species richness are mainly based on wide-ranging species because their larger number of distribution records has a disproportionate contribution to the species richness counts. Here we demonstrate how this effect strongly influences our understanding of what determines...... species richness. Using both conventional and spatial regression models, we show that for sub-Saharan African birds, the apparent role of productivity diminishes with decreasing range size, whereas the significance of topographic heterogeneity increases. The relative importance of geometric constraints...... from the continental edge is moderate. Our findings highlight the failure of traditional species richness models to account for narrow-ranging species that frequently are also threatened....

  5. The charge pump PLL clock generator designed for the 1.56 ns bin size time-to-digital converter pixel array of the Timepix3 readout ASIC

    Science.gov (United States)

    Fu, Y.; Brezina, C.; Desch, K.; Poikela, T.; Llopart, X.; Campbell, M.; Massimiliano, D.; Gromov, V.; Kluit, R.; van Beauzekom, M.; Zappon, F.; Zivkovic, V.

    2014-01-01

    Timepix3 is a newly developed pixel readout chip which is expected to be operated in a wide range of gaseous and silicon detectors. It is made of 256 × 256 pixels organized in a square pixel-array with 55 μm pitch. Oscillators running at 640 MHz are distributed across the pixel-array and allow for a highly accurate measurement of the arrival time of a hit. This paper concentrates on a low-jitter phase locked loop (PLL) that is located in the chip periphery. This PLL provides a control voltage which regulates the actual frequency of the individual oscillators, allowing for compensation of process, voltage, and temperature variations.

  6. Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram.

    Science.gov (United States)

    Kim, Seung-Cheol; Kim, Jae-Ho; Kim, Eun-Soo

    2011-07-01

    In this paper, we propose an approach, new to our knowledge, to effectively generate and reconstruct the resolution-enhanced computer-generated hologram (CGH) of three-dimensional (3-D) objects with a significantly reduced in memory size novel look-up table (N-LUT) by taking into account a relationship between the pixel pitch and reconstruction distance of the hologram pattern. In the proposed method, a CGH pattern composed of shifted versions of the principal fringe patterns (PFPs) with a short pixel pitch can be reconstructed just by using the CGH generated with a much longer pixel pitch by controlling the hologram reconstruction distance. Accordingly, the corresponding N-LUT memory size required for resolution-enhanced hologram patterns can be significantly reduced in the proposed method. To confirm the feasibility of the proposed method, experiments are carried out and the results are discussed.

  7. An Initial Analysis of the Pixel-Level Uncertainties in Global MODIS Cloud Optical Thickness and Effective Particle Size Retrievals

    Science.gov (United States)

    Platnick, S.; King, Michael D.; Wind, B.; Gray, M. A.; Hubanks, P. A.

    2004-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical thickness and effective particle radius employ well-known solar reflectance techniques using pre-calculated reflectance look-up tables. We evaluate the quantitative uncertainty in simultaneous retrievals of cloud optical thickness and particle size for this type of algorithm. The technique uses sensitivity calculations derived from the reflectance look-up tables, coupled with estimates for the effect of various error terms on the uncertainty in inferring the actual cloud-top reflectance. The error terms include the effects of instrument calibration, surface spectral albedo, and atmospheric corrections on both water and ice cloud retrievals. Because particle shapes in ice clouds are highly variable, the effect of particle shape is analyzed separately with a more approximate method. Results will deal exclusively with pixel-level uncertainties associated with plane-parallel clouds; real-world radiative departures from a plane-parallel model are an additional consideration. While we demonstrate the uncertainty technique with operational 1 km MODIS retrievals from the Terra and Aqua satellite platforms, the technique is applicable to any reflectance-based satellite- or air-borne sensor retrieval using similar spectral channels.

  8. Calibration of aerosol instruments in a wide particle size range

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Ojanpera, J.

    2012-07-01

    Aerosol particles have an important role in many scientific and technological issues. Aerosol particle measurements are widely applied for example in clean room technology, in atmospheric measurements and in studying the Particulate Matter (PM) emissions from traffic and industry. This thesis concentrates on developing new aerosol instrumentation both for measurement and calibration purposes. On the measurement side, the driving force has been the urgent need for instruments that have a fast time response and are able to measure nanoparticles with reasonable accuracy. In this respect, the nanoparticle resolution of the Electrical Low Pressure Impactor (ELPI, Dekati Ltd.) was improved by designing, manufacturing and implementing a new impactor stage (cutpoint 16.7 nm) to the ELPI cascade impactor. The new impactor stage divides the particle size range measured by the filter stage (7-30 nm) between the new stage and the filter stage. As a result, the nanoparticle resolution of the ELPI was improved. This made the device more suitable, for example, for vehicle engine emission measurements. The new stage is currently being sold as a part of the new ELPI+ instrument, which is an improved version of the original ELPI. On the calibration side, the main driving force behind aerosol instrument development has been the lack of calibration standards available for calibrating the number concentration responses of the instruments in the sub-micrometer size range. In this size range, the most common method to calibrate an instrument is to use a differential mobility analyzer (DMA), for obtaining monodisperse particles for the calibration, and a Faraday cup aerosol electrometer (FCAE), for measuring the reference number concentration. Even though, in principle, the DMA allows size selection up to 1 {mu}m in diameter, the calibrations are usually limited to particles below 100 nm because of the multiple charging of particles. To solve this problem, a new concept for realizing a

  9. Abundance-range size relationships in stream vegetation in Denmark

    DEFF Research Database (Denmark)

    Riis, Tenna; Sand-Jensen, Kaj

    2002-01-01

    and compositionof vegetation among stream localities and are likely to promote a positiveinterspecific relationship between abundance and range size through mechanismsof metapopulation dynamics and use of common widely distributed resources.Usingdata from 206 localities in 29 stream systems distributed throughout...... such asobligatory submerged or amphibious species. The amphibious species, which caneasily disperse by seeds between stream systems and by vegetative growth frompermanent bank populations to the open streambed, had a significantly strongerabundance-range relationship than obligatory submerged species probably due...... streamhabitattypes of the same width and lengthwise locations in different stream systemsdidnot show a stronger positive relationship than the overall relationship. Thefewobligatory submerged species having a high local abundance and low range sizecould not be regarded as specialist species on narrowly distributed...

  10. Geographic range size and extinction risk assessment in nomadic species

    Science.gov (United States)

    Runge, Claire A; Tulloch, Ayesha; Hammill, Edd; Possingham, Hugh P; Fuller, Richard A

    2015-01-01

    Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to-and-fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid-zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation

  11. Smart-pixel for 3D ranging imagers based on single-photon avalanche diode and time-to-digital converter

    Science.gov (United States)

    Markovic, Bojan; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2011-05-01

    We present a "smart-pixel" suitable for implementation of monolithic single-photon imaging arrays aimed at 3D ranging applications by means of the direct time-of-flight detection (like LIDAR systems), but also for photon timing applications (like FLIM, FCS, FRET). The pixel includes a Single-Photon Avalanche Diode (SPAD) and a Time-to-Digital Converter (TDC) monolithically designed and manufactured in the same chip, and it is able to detect single photons and to measure in-pixel the time delay between a START signal (e.g. laser excitation, LIDAR flash) and a photon detection (e.g. back reflection from a target object). In order to provide both wide dynamic range, high time resolution and very high linearity, we devised a TDC architecture based on an interpolation technique. A "coarse" counter counts the number of reference-clock rising-edges between START and STOP, while high resolution is achieved by means of two interpolators, which measure the time elapsed between START (and STOP) signal and a successive clock edge. In an array with many pixels, multiple STOP channels are needed while just one START channel is necessary if the START event is common to all channels. We report on the design and characterization of prototype circuits, fabricated in a 0.35 μm standard CMOS technology containing complete conversion channels (i.e. 20-μm active-area diameter SPAD, quenching circuitry, and TDC). With a 100 MHz reference clock, the TDC provides a time resolution of 10 ps, a dynamic range of 160 ns and DNL < 1% LSB rms.

  12. Pixel Experiments

    DEFF Research Database (Denmark)

    Søndergaard, Karin; Petersen, Kjell Yngve; Augustesen, Christina

    2015-01-01

    elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research......Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...

  13. Determining particle size distributions in the inhalable size range for wood dust collected by air samplers.

    Science.gov (United States)

    Harper, Martin; Muller, Brian S; Bartolucci, Al

    2002-10-01

    In the absence of methods for determining particle size distributions in the inhalable size range with good discrimination, the samples collected by personal air sampling devices can only be characterized by their total mass. This parameter gives no information regarding the size distribution of the aerosol or the size-selection characteristics of different samplers in field use conditions. A method is described where the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood dust particles which are generally large and close to rectangular prisms in shape. Over 200 wood dust samples have been collected in three different wood-products industries, using the traditional closed-face polystyrene/acrylonitrile cassette, the Institute of Occupational Medicine inhalable sampler, and the Button sampler developed by the University of Cincinnati. A portion of these samples has been analyzed to determine the limitations of this method. Extensive quality control measures are being developed to improve the robustness of the procedure, and preliminary results suggest the method has an accuracy similar to that required of National Institute for Occupational Safety and Health (NIOSH) methods. The results should provide valuable insights into the collection characteristics of the samplers and the impact of these characteristics on comparison of sampler results to present and potential future limit values. The NIOSH Deep South Education and Research Center has a focus on research into hazards of the forestry and associated wood-products industry, and it is hoped to expand this activity in the future.

  14. Pixel Detectors

    CERN Document Server

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh radiation environment at the LHC without severe compromises in performance. From these developments a number of different applications have spun off, most notably for biomedical imaging. Beyond hybrid pixels, a number of monolithic or semi-monolithic developments, which do not require complicated hybridization but come as single sensor/IC entities, have appeared and are currently developed to greater maturity. Most advanced in terms of maturity are so called CMOS active pixels and DEPFET pixels. The present state in the ...

  15. Computer monitor pixellation and Sloan letter visual acuity measurement.

    Science.gov (United States)

    Carkeet, Andrew; Lister, Lucas J

    2017-12-26

    To assess the effects of changing computer monitor pixel density on visual acuity measurements made using Sloan optotypes. Acuity was measured on 10 participants aged 19 to 38 years (mean 27.9 ± 7.0) measured binocularly wearing their best spectacle correction. Stimuli were eight lines of five Sloan letter optotypes in logarithmic progression, ranging in size from -0.4 to 0.3 logMAR. Test distance was varied so that pixels on the monitor ranged in size from 0.125 mins of arc to 1.97 mins of arc. Two sampling approaches were used: (1) unfiltered sampling, with each pixel rendered either black or white; and (2) filtered sampling with pixel luminance averaged across a pixel aperture, giving grey-scale smoothing of letter edges. A broken line fit was made to each data set, with acuity being stable at an asymptotic threshold VAas for small pixels sizes, with thresholds increasing linearly when pixel sizes exceeded a critical pixel size Pcrit . For unfiltered stimuli, Pcrit averaged 1.1 mins of arc and for unfiltered stimuli averaged 0.69 mins of arc. For filtered stimuli, Pcrit was 1.79xVAas , and for unfiltered Pcrit was 1.05xVAas . The results show that grey-scale filtering makes acuity measurement more resistant to the effects of pixellation. Based on a conservative interpretation of these findings, we make the recommendation that charts be constructed with, for filtered optotypes, a maximum pixel size of 0.6 x of the smallest MAR used and, for unfiltered optotypes, 0.35 x the smallest MAR used. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  16. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    Science.gov (United States)

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99mTc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  17. Charge sharing in silicon pixel detectors

    CERN Document Server

    Mathieson, K; Seller, P; Prydderch, M L; O'Shea, V; Bates, R L; Smith, K M; Rahman, M

    2002-01-01

    We used a pixellated hybrid silicon X-ray detector to study the effect of the sharing of generated charge between neighbouring pixels over a range of incident X-ray energies, 13-36 keV. The system is a room temperature, energy resolving detector with a Gaussian FWHM of 265 eV at 5.9 keV. Each pixel is 300 mu m square, 300 mu m deep and is bump bonded to matching read out electronics. The modelling packages MEDICI and MCNP were used to model the complete X-ray interaction and the subsequent charge transport. Using this software a model is developed which reproduces well the experimental results. The simulations are then altered to explore smaller pixel sizes and different X-ray energies. Charge sharing was observed experimentally to be 2% at 13 keV rising to 4.5% at 36 keV, for an energy threshold of 4 keV. The models predict that up to 50% of charge may be lost to the neighbouring pixels, for an X-ray energy of 36 keV, when the pixel size is reduced to 55 mu m.

  18. Optimization of transistor size and operating point for the LVDS driver of the ALICE ITS pixel chip

    CERN Document Server

    Froeen, Solveig Marie

    2015-01-01

    The ALICE Inner Tracker System (ITS) will be upgraded during Long Shutdown 2. The tracker layers will be equipped with monolithic pixel sensors chips. A Low Voltage Differential Signalling (LVDS) driver is required for the off chip data transmission. A current mode 1.2 Gb/s LVDS driver based on H-bridge scheme has already been implemented and tested. Although the present driver meets the specifications, a decrease of its power consumption is beneficial for the reduction of the material required for the detector powering and cooling. This report presents the study of a current mode LVDS driver based on H-bridge scheme where the switches are replaced with current sources that can deliver either ON level or OFF level currents. The ON current is the main static power contributor, and its value is set to 4 mA by specifications to have a differential signal of 400 mV over the 100 Ω termination resistor. The second contributor for the static power is the OFF power, which has to be optimized together with the dynami...

  19. Diel Surface Temperature Range Scales with Lake Size.

    Directory of Open Access Journals (Sweden)

    R Iestyn Woolway

    Full Text Available Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored.

  20. Diel Surface Temperature Range Scales with Lake Size.

    Science.gov (United States)

    Woolway, R Iestyn; Jones, Ian D; Maberly, Stephen C; French, Jon R; Livingstone, David M; Monteith, Donald T; Simpson, Gavin L; Thackeray, Stephen J; Andersen, Mikkel R; Battarbee, Richard W; DeGasperi, Curtis L; Evans, Christopher D; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C; Rusak, James A; Ryves, David B; Scott, Daniel R; Shilland, Ewan M; Smyth, Robyn L; Staehr, Peter A; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored.

  1. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process

    Directory of Open Access Journals (Sweden)

    Isao Takayanagi

    2018-01-01

    Full Text Available To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke−. Readout noise under the highest pixel gain condition is 1 e− with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR signal is obtained. Using this technology, a 1/2.7”, 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR approach.

  2. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process.

    Science.gov (United States)

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-12

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke-. Readout noise under the highest pixel gain condition is 1 e- with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7", 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach.

  3. Are range-size distributions consistent with species-level heritability?

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Gotelli, Nicholas; Rahbek, Carsten

    2012-01-01

    The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has...... been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output...

  4. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...... design it became relevant to investigate the use of LEDs as the physical equivalent of a pixel as a design approach. In this book our interest has been in identifying how the qualities of LEDs can be used in lighting applications. With experiences in the planning and implementation of architectural...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...

  5. Pixel multiplexing technique for real-time three-dimensional-imaging laser detection and ranging system using four linear-mode avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fan; Wang, Yuanqing, E-mail: yqwang@nju.edu.cn; Li, Fenfang [School of Electronic Science and Engineering, Nanjing University, Nanjing 210046 (China)

    2016-03-15

    The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aims to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m.

  6. What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae).

    Science.gov (United States)

    Calosi, Piero; Bilton, David T; Spicer, John I; Votier, Stephen C; Atfield, Andrew

    2010-01-01

    1. The geographical range sizes of individual species vary considerably in extent, although the factors underlying this variation remain poorly understood, and could include a number of ecological and evolutionary processes. A favoured explanation for range size variation is that this result from differences in fundamental niche breadths, suggesting a key role for physiology in determining range size, although to date empirical tests of these ideas remain limited. 2. Here we explore relationships between thermal physiology and biogeography, whilst controlling for possible differences in dispersal ability and phylogenetic relatedness, across 14 ecologically similar congeners which differ in geographical range extent; European diving beetles of the genus Deronectes Sharp (Coleoptera, Dytiscidae). Absolute upper and lower temperature tolerance and acclimatory abilities are determined for populations of each species, following acclimation in the laboratory. 3. Absolute thermal tolerance range is the best predictor of both species' latitudinal range extent and position, differences in dispersal ability (based on wing size) apparently being less important in this group. In addition, species' northern and southern range limits are related to their tolerance of low and high temperatures respectively. In all cases, absolute temperature tolerances, rather than acclimatory abilities are the best predictors of range parameters, whilst the use of independent contrasts suggested that species' thermal acclimation abilities may also relate to biogeography, although increased acclimatory ability does not appear to be associated with increased range size. 4. Our study is the first to provide empirical support for a relationship between thermal physiology and range size variation in widespread and restricted species, conducted using the same experimental design, within a phylogenetically and ecologically controlled framework.

  7. Home ranges of Ishasha lions: size and location in relation to habitat ...

    African Journals Online (AJOL)

    The sizes of African lion home ranges vary widely but tend to correlate with characteristics of the prey populations (e.g. prey density and preferred prey weight). Lion home ranges should be expected to temporally fluctuate according to changes in prey biomass. Here we quantified and compared the home range sizes of ...

  8. Habitat area and climate stability determine geographical variation in plant species range sizes

    DEFF Research Database (Denmark)

    Morueta-Holme, Naia; Enquist, Brian J.; McGill, Brian J.

    2013-01-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~85,000 ...... concerns over the potential effects of future climate change and habitat loss on biodiversity.......Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~85...

  9. Home range sizes for burchell's zebra equus burchelli antiquorum from the Kruger National Park

    Directory of Open Access Journals (Sweden)

    G.L. Smuts

    1975-07-01

    Full Text Available Annual home range sizes were determined for 49 marked zebra family groups in the Kruger National Park. Sizes varied from 49 to 566 sq. km, the mean for the Park being 164 square kilometre. Mean home range sizes for different zebra sub-populations and biotic areas were found to differ considerably. Present herbivore densities have not influenced intra- and inter-specific tolerance levels to the extent that home range sizes have increased. Local habitat conditions, and particularly seasonal vegetational changes, were found to have the most profound influence on the shape and mean size of home ranges. The large home range sizes obtained in the Kruger Park, when compared to an area such as the Ngorongoro Crater, can be ascribed to a lower carrying capacity with respect to zebra, large portions of the habitat being sub-optimal, either seasonally or annually.

  10. Sex differences in spatial ability: a test of the range size hypothesis in the order Carnivora

    OpenAIRE

    Perdue, Bonnie M.; Snyder, Rebecca J.; Zhihe, Zhang; Marr, M. Jackson; Maple, Terry L

    2011-01-01

    Sex differences in spatial cognition have been reported for many species ranging from voles to humans. The range size hypothesis predicts that sex differences in spatial ability will only occur in species in which the mating system selects for differential range size. Consistent with this prediction, we observed sex differences in spatial ability in giant pandas, a promiscuous species in which males inhabit larger ranges than females, but did not observe sex differences in Asian small-clawed ...

  11. Free-Ranging Farm Cats: Home Range Size and Predation on a Livestock Unit In Northwest Georgia

    Science.gov (United States)

    Kitts-Morgan, Susanna E.; Caires, Kyle C.; Bohannon, Lisa A.; Parsons, Elizabeth I.; Hilburn, Katharine A.

    2015-01-01

    This study’s objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife. PMID:25894078

  12. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    Science.gov (United States)

    Veale, M. C.; Adkin, P.; Booker, P.; Coughlan, J.; French, M. J.; Hart, M.; Nicholls, T.; Schneider, A.; Seller, P.; Pape, I.; Sawhney, K.; Carini, G. A.; Hart, P. A.

    2017-12-01

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 105 12 keV photons per image readout at 4.5 MHz. In this paper results from the testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. The performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.

  13. Survival and home-range size of Northern Spotted Owls in southwestern Oregon

    Science.gov (United States)

    Schilling, Jason W.; Dugger, Katie M.; Anthony, Robert G.

    2013-01-01

    In the Klamath province of southwestern Oregon, Northern Spotted Owls (Strix occidentalis caurina) occur in complex, productive forests that historically supported frequent fires of variable severity. However, little is known about the relationships between Spotted Owl survival and home-range size and the characteristics of fire-prone, mixed-conifer forests of the Klamath province. Thus, the objectives of this study were to estimate monthly survival rates and home-range size in relation to habitat characteristics for Northern Spotted Owls in southwestern Oregon. Home-range size and survival of 15 Northern Spotted Owls was monitored using radiotelemetry in the Ashland Ranger District of the Rogue River–Siskiyou National Forest from September 2006 to October 2008. Habitat classes within Spotted Owl home ranges were characterized using a remote-sensed vegetation map of the study area. Estimates of monthly survival ranged from 0.89 to 1.0 and were positively correlated with the number of late-seral habitat patches and the amount of edge, and negatively correlated with the mean nearest neighbor distance between late-seral habitats. Annual home-range size varied from to 189 to 894 ha ( x =  576; SE  =  75), with little difference between breeding and nonbreeding home ranges. Breeding-season home-range size increased with the amount of hard edge, and the amount of old and mature forest combined. Core area, annual and nonbreeding season home-range sizes all increased with increased amounts of hard edge, suggesting that increased fragmentation is associated with larger core and home-range sizes. Although no effect of the amount of late-seral stage forest on either survival or home-range size was detected, these results are the first to concurrently demonstrate increased forest fragmentation with decreased survival and increased home-range size of Northern Spotted Owls.

  14. Causes and consequences of range size variation: the influence of traits, speciation, and extinction

    Directory of Open Access Journals (Sweden)

    Steven M. Vamosi

    2012-12-01

    Full Text Available The tremendous variation in species richness observed among related clades across the tree of life has long caught the imagination of biologists. Recently, there has been growing attention paid to the possible contribution of range size variation, either alone or in combination with putative key innovations, to these patterns. Here, we review three related topics relevant to range size evolution, speciation, and extinction. First, we provide a brief overview of the debate surrounding patterns and mechanisms for phylogenetic signal in range size. Second, we discuss some recent findings regarding the joint influence of traits and range size on diversification. Finally, we present the preliminary results of a study investigating whether range size is negatively correlated with contemporary extinction risk in flowering plants.

  15. An Update on Using the Range to Estimate σ When Determining Sample Sizes.

    Science.gov (United States)

    Rhiel, George Steven; Markowski, Edward

    2017-04-01

    In this research, we develop a strategy for using a range estimator of σ when determining a sample size for estimating a mean. Previous research by Rhiel is extended to provide dn values for use in calculating a range estimate of σ when working with sampling frames up to size 1,000,000. This allows the use of the range estimator of σ with "big data." A strategy is presented for using the range estimator of σ for determining sample sizes based on the dn values developed in this study.

  16. Linking seasonal home range size with habitat selection and movement in a mountain ungulate.

    Science.gov (United States)

    Viana, Duarte S; Granados, José Enrique; Fandos, Paulino; Pérez, Jesús M; Cano-Manuel, Francisco Javier; Burón, Daniel; Fandos, Guillermo; Aguado, María Ángeles Párraga; Figuerola, Jordi; Soriguer, Ramón C

    2018-01-01

    Space use by animals is determined by the interplay between movement and the environment, and is thus mediated by habitat selection, biotic interactions and intrinsic factors of moving individuals. These processes ultimately determine home range size, but their relative contributions and dynamic nature remain less explored. We investigated the role of habitat selection, movement unrelated to habitat selection and intrinsic factors related to sex in driving space use and home range size in Iberian ibex, Capra pyrenaica . We used GPS collars to track ibex across the year in two different geographical areas of Sierra Nevada, Spain, and measured habitat variables related to forage and roost availability. By using integrated step selection analysis (iSSA), we show that habitat selection was important to explain space use by ibex. As a consequence, movement was constrained by habitat selection, as observed displacement rate was shorter than expected under null selection. Selection-independent movement, selection strength and resource availability were important drivers of seasonal home range size. Both displacement rate and directional persistence had a positive relationship with home range size while accounting for habitat selection, suggesting that individual characteristics and state may also affect home range size. Ibex living at higher altitudes, where resource availability shows stronger altitudinal gradients across the year, had larger home ranges. Home range size was larger in spring and autumn, when ibex ascend and descend back, and smaller in summer and winter, when resources are more stable. Therefore, home range size decreased with resource availability. Finally, males had larger home ranges than females, which might be explained by differences in body size and reproductive behaviour. Movement, selection strength, resource availability and intrinsic factors related to sex determined home range size of Iberian ibex. Our results highlight the need to integrate

  17. Correlates of research effort in carnivores: body size, range size and diet matter.

    Directory of Open Access Journals (Sweden)

    Zoe M Brooke

    Full Text Available Given the budgetary restrictions on scientific research and the increasing need to better inform conservation actions, it is important to identify the patterns and causes of biases in research effort. We combine bibliometric information from a literature review of almost 16,500 peer-reviewed publications on a well-known group of 286 species, the Order Carnivora, with global datasets on species' life history and ecological traits to explore patterns in research effort. Our study explores how species' characteristics influenced the degree to which they were studied (measured as the number of publications. We identified a wide variation in intensity of research effort at both Family and Species levels, with some of the least studied being those which may need protection in future. Our findings hint at the complex role of human perspectives in setting research agendas. We found that better-studied species tended to be large-bodied and have a large geographic range whilst omnivory had a negative relationship with research effort. IUCN threat status did not exhibit a strong relationship with research effort which suggests that the conservation needs of individual species are not major drivers of research interest. This work is the first to use a combination of bibliometric analysis and biological data to quantify and interpret gaps in research knowledge across an entire Order. Our results could be combined with other resources, such as Biodiversity Action Plans, to prioritise and co-ordinate future research effort, whilst our methods can be applied across many scientific disciplines to describe knowledge gaps.

  18. Correlates of research effort in carnivores: body size, range size and diet matter.

    Science.gov (United States)

    Brooke, Zoe M; Bielby, Jon; Nambiar, Kate; Carbone, Chris

    2014-01-01

    Given the budgetary restrictions on scientific research and the increasing need to better inform conservation actions, it is important to identify the patterns and causes of biases in research effort. We combine bibliometric information from a literature review of almost 16,500 peer-reviewed publications on a well-known group of 286 species, the Order Carnivora, with global datasets on species' life history and ecological traits to explore patterns in research effort. Our study explores how species' characteristics influenced the degree to which they were studied (measured as the number of publications). We identified a wide variation in intensity of research effort at both Family and Species levels, with some of the least studied being those which may need protection in future. Our findings hint at the complex role of human perspectives in setting research agendas. We found that better-studied species tended to be large-bodied and have a large geographic range whilst omnivory had a negative relationship with research effort. IUCN threat status did not exhibit a strong relationship with research effort which suggests that the conservation needs of individual species are not major drivers of research interest. This work is the first to use a combination of bibliometric analysis and biological data to quantify and interpret gaps in research knowledge across an entire Order. Our results could be combined with other resources, such as Biodiversity Action Plans, to prioritise and co-ordinate future research effort, whilst our methods can be applied across many scientific disciplines to describe knowledge gaps.

  19. A Macrophysiological Analysis of Energetic Constraints on Geographic Range Size in Mammals

    Science.gov (United States)

    Ceballos, Gerardo; Steele, Michael A.

    2013-01-01

    Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR

  20. Sex differences in spatial ability: a test of the range size hypothesis in the order Carnivora.

    Science.gov (United States)

    Perdue, Bonnie M; Snyder, Rebecca J; Zhihe, Zhang; Marr, M Jackson; Maple, Terry L

    2011-06-23

    Sex differences in spatial cognition have been reported for many species ranging from voles to humans. The range size hypothesis predicts that sex differences in spatial ability will only occur in species in which the mating system selects for differential range size. Consistent with this prediction, we observed sex differences in spatial ability in giant pandas, a promiscuous species in which males inhabit larger ranges than females, but did not observe sex differences in Asian small-clawed otters, a related monogamous species in which males and females share home ranges. These results provide the first evidence of sex differences in spatial ability in the order Carnivora, and are consistent with the range size hypothesis.

  1. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges

    NARCIS (Netherlands)

    Haskell, John P.; Ritchie, Mark E.; Olff, Han

    2002-01-01

    Scaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology. Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour, physiology and

  2. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges

    NARCIS (Netherlands)

    Haskell, J.P.; Ritchie, M.E.; Olff, H.

    2002-01-01

    Scaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology(1-4). Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour,

  3. Preparation and characterization of pixelated phosphor screens for high-resolution linear imaging in the vacuum ultraviolet and x-ray ranges

    Science.gov (United States)

    Rodríguez-Barquero, L.; Zurro, B.; Martin, P.; McCarthy, K. J.; Baciero, A.

    2004-10-01

    Indirect digital imaging sensors employ tailored phosphors screens to convert incident x-ray or vacuum-ultraviolet (VUV) photons to visible light quanta A convenient method to prepare pixelated phosphor screens that can be easily tailored in thickness, type, and spatial resolution is presented. The characterization and evaluation of these screens in the laboratory is addressed and their application to high-resolution VUV and x-ray cameras is discussed.

  4. An analysis of monthly home range size in the critically endangered California Condor Gymnogyps californianus

    Science.gov (United States)

    Rivers, James W.; Johnson, Matthew J.; Haig, Susan M.; Schwarz, Carl J.; Burnett, Joseph; Brandt, Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures comprise the only group of terrestrial vertebrates in the world that are obligate scavengers, and these species move widely to locate ephemeral, unpredictable, and patchily-distributed food resources. In this study, we used high-resolution GPS location data to quantify monthly home range size of the critically endangered California Condor Gymnogyps californianus throughout the annual cycle in California. We assessed whether individual-level characteristics (age, sex and breeding status) and factors related to endangered species recovery program efforts (rearing method, release site) were linked to variation in monthly home range size. We found that monthly home range size varied across the annual cycle, with the largest monthly home ranges observed during late summer and early fall (July–October), a pattern that may be linked to seasonal changes in thermals that facilitate movement. Monthly home ranges of adults were significantly larger than those of immatures, but males and females used monthly home ranges of similar size throughout the year and breeding adults did not differ from non-breeding adults in their average monthly home range size. Individuals from each of three release sites differed significantly in the size of their monthly home ranges, and no differences in monthly home range size were detected between condors reared under captive conditions relative to those reared in the wild. Our study provides an important foundation for understanding the movement ecology of the California Condor and it highlights the importance of seasonal variation in space use for effective conservation planning for this critically endangered species.

  5. Limits in point to point resolution of MOS based pixels detector arrays

    Science.gov (United States)

    Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.

    2018-01-01

    In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.

  6. CMOS in-pixel optical pulse frequency modulator

    Science.gov (United States)

    Nel, Nicolaas E.; du Plessis, M.; Joubert, T.-H.

    2016-02-01

    This paper covers the design of a complementary metal oxide semiconductor (CMOS) pixel readout circuit with a built-in frequency conversion feature. The pixel contains a CMOS photo sensor along with all signal-to-frequency conversion circuitry. An 8×8 array of these pixels is also designed. Current imaging arrays often use analog-to-digital conversion (ADC) and digital signal processing (DSP) techniques that are off-chip1. The frequency modulation technique investigated in this paper is preferred over other ADC techniques due to its smaller size, and the possibility of a higher dynamic range. Careful considerations are made regarding the size of the components of the pixel, as various characteristics of CMOS devices are limited by decreasing the scale of the components2. The methodology used was the CMOS design cycle for integrated circuit design. All components of the pixel were designed from first principles to meet necessary requirements of a small pixel size (30×30 μm2) and an output resolution greater than that of an 8-bit ADC. For the photodetector, an n+-p+/p-substrate diode was designed with a parasitic capacitance of 3 fF. The analog front-end stage was designed around a Schmitt trigger circuit. The photo current is integrated on an integration capacitor of 200 fF, which is reset when the Schmitt trigger output voltage exceeds a preset threshold. The circuit schematic and layout were designed using Cadence Virtuoso and the process used was the AMS CMOS 350 nm process using a power supply of 5V. The simulation results were confirmed to comply with specifications, and the layout passed all verification checks. The dynamic range achieved is 58.828 dB per pixel, with the output frequencies ranging from 12.341kHz to 10.783 MHz. It is also confirmed that the output frequency has a linear relationship to the photocurrent generated by the photodiode.

  7. The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry.

    Science.gov (United States)

    Gardiner, Stuart K; Demirel, Shaban; Goren, Deborah; Mansberger, Steven L; Swanson, William H

    2015-03-01

    Automated perimetry uses a 3.5 log unit (35dB) range of stimulus contrasts to assess function within the visual field. Using 'Size III' stimuli (0.43°), presenting stimuli within the highest 15dB of available contrast may not increase the response probability at locations damaged by glaucoma, due to retinal ganglion cell response saturation. This experiment examines the effect of instead using 'Size V' (1.72°) stimuli. Luminance increment thresholds for circular spot stimuli of each stimulus size were measured in 35 participants (mean deviation -20.9 to -3.4 dB, ages 52-87) using the method of constant stimuli, at four locations per participant. Frequency-of-seeing curves were fit at each size and location, with three free parameters: mean, standard deviation, and asymptotic maximum response probability. These were used to estimate the contrasts to which each participant would respond on 25% of presentations (c25). Using segmented orthogonal regression, the maximum observed response probabilities for size III stimuli began to decline at c25 = 25.2 dB (95% confidence interval 23.3-29.0 dB from bootstrap resampling). This decline started at similar contrast for the size V stimulus: c25 = 25.0dB (22.0-26.8 dB). Among locations at which the sensitivity was above these split-points for both stimulus sizes, c25 averaged 5.6 dB higher for size V than size III stimuli. The lower limit of the reliable stimulus range did not differ significantly between stimulus sizes. However, more locations remained within the reliable stimulus range when using the size V stimulus. Size V stimuli enable reliable clinical testing later into the glaucomatous disease process.

  8. Prevalence of intraspecific relationships between range size and abundance in Danish birds

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Rahbek, Carsten

    2006-01-01

    In this study, we investigate patterns in the prevalence of dynamic range-abundance relationships of the Danish avifauna, using breeding bird atlases from 1971 to 1974 and from 1993 to 1996. We focus on differences between common and rare species by dividing the assemblage into range-size quartiles...

  9. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    Science.gov (United States)

    Edwards, Mark A; Derocher, Andrew E; Nagy, John A

    2013-01-01

    The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  10. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    Directory of Open Access Journals (Sweden)

    Mark A Edwards

    Full Text Available The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  11. Diversification Rates and the Evolution of Species Range Size Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Silvia Castiglione

    2017-11-01

    Full Text Available The geographic range sizes frequency distribution (RFD within clades is typically right-skewed with untransformed data, and bell-shaped or slightly left-skewed under the log-transformation. This means that most species within clades occupy diminutive ranges, whereas just a few species are truly widespread. A number of ecological and evolutionary explanations have been proposed to account for this pattern. Among the latter, much attention has been given to the issue of how extinction and speciation probabilities influence RFD. Numerous accounts now convincingly demonstrate that extinction rate decreases with range size, both in living and extinct taxa. The relationship between range size and speciation rate, though, is much less obvious, with either small or large ranged species being proposed to originate more daughter taxa. Herein, we used a large fossil database including 21 animal clades and more than 80,000 fossil occurrences distributed over more than 400 million years of marine metazoans (exclusive of vertebrates evolution, to test the relationship between extinction rate, speciation rate, and range size. As expected, we found that extinction rate almost linearly decreases with range size. In contrast, speciation rate peaks at the large (but not the largest end of the range size spectrum. This is consistent with the peripheral isolation mode of allopatric speciation being the main mechanism of species origination. The huge variation in phylogeny, fossilization potential, time of fossilization, and the overarching effect of mass extinctions suggest caution must be posed at generalizing our results, as individual clades may deviate significantly from the general pattern.

  12. Mountain gorilla ranging patterns: influence of group size and group dynamics.

    Science.gov (United States)

    Caillaud, Damien; Ndagijimana, Felix; Giarrusso, Anthony J; Vecellio, Veronica; Stoinski, Tara S

    2014-08-01

    Since the 1980s, the Virunga mountain gorilla population has almost doubled, now reaching 480 individuals living in a 430-km(2) protected area. Analysis of the gorillas' ranging patterns can provide critical information on the extent and possible effects of competition for food and space. We analyzed 12 years of daily ranging data and inter-group encounter data collected on 11 gorilla groups monitored by the Karisoke Research Center in Rwanda. During that period, the study population increased in size by almost 50% and the number of groups tripled. Groups had small yearly home ranges compared to other known gorilla populations, with an average 90% kernel density estimate of 8.07 km2 and large between-group variations (3.17-23.59 km2). Most groups had consistent home range location over the course of the study but for some, we observed gradual range shifts of up to 4 km. Neighboring groups displayed high home range overlap, which increased dramatically after the formation of new groups. On average, each group used only 28.6% of its 90% kernel home range exclusively, and in some areas up to six different groups had overlapping home ranges with little or no exclusive areas. We found a significant intra-group positive relationship between the number of weaned individuals in a group and the home range size, but the fitted models only explained 17.5% and 13.7% of the variance in 50% and 90% kernel home range size estimates, respectively. This suggests that despite the increase in size, the study population is not yet experiencing marked effects of feeding competition. However, the increase in home range overlap resulting from the formation of new groups led to a sixfold increase in the frequency of inter-group encounters, which exposes the population to elevated risks of fight-related injuries and infanticide. © 2014 Wiley Periodicals, Inc.

  13. Mean latitudinal range sizes of bird assemblages in six Neotropical forest chronosequences

    DEFF Research Database (Denmark)

    Dunn, Robert R.; Romdal, Tom Skovlund

    2005-01-01

    of early successional species was as a result in part of the tendency of early successional species to have ranges that extend beyond the Neotropical forest biome. Conclusions Our analysis of chronosequences suggests that as early successional habitats mature, a consistent shift from large-ranged species...... understood. We examined how the mean latitudinal range sizes of species in Neotropical bird species assemblages shift during forest clearance and subsequent regeneration. We tested the hypothesis that bird species assemblages in early successional habitats tend to have larger latitudinal ranges than those...... in more mature forests. Location We considered breeding bird chronosequence data from six Neotropical forests. Results Breeding bird assemblages were found to have the species with the largest average latitudinal range sizes in cleared areas, intermediate in young secondary forests and smallest in old...

  14. Following Rapoport's Rule: the geographic range and genome size of bacterial taxa decline at warmer latitudes.

    Science.gov (United States)

    Lear, Gavin; Lau, Kelvin; Perchec, Anne-Marie; Buckley, Hannah L; Case, Bradley S; Neale, Martin; Fierer, Noah; Leff, Jonathan W; Handley, Kim M; Lewis, Gillian

    2017-08-01

    We sought to test whether stream bacterial communities conform to Rapoport's Rule, a pattern commonly observed for plants and animals whereby taxa exhibit decreased latitudinal range sizes closer to the equator. Using a DNA sequencing approach, we explored the biogeography of biofilm bacterial communities in 204 streams across a ∼1000 km latitudinal gradient. The range sizes of bacterial taxa were strongly correlated with latitude, decreasing closer to the equator, which coincided with a greater than fivefold increase in bacterial taxonomic richness. The relative richness and range size of bacteria were associated with spatially correlated variation in temperature and rainfall. These patterns were observed despite enormous variability in catchment environmental characteristics. Similar results were obtained when restricting the same analyses to native forest catchments, thereby controlling for spatial biases in land use. We analysed genomic data from ∼500 taxa detected in this study, for which data were available and found that bacterial communities at cooler latitudes also tended to possess greater potential metabolic potential. Collectively, these data provide the first evidence of latitudinal variation in the range size distributions of freshwater bacteria, a trend which may be determined, in part, by a trade-off between bacterial genome size and local variation in climatic conditions. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles

    Science.gov (United States)

    Ager-Wick Ellingsen, Linda; Singh, Bhawna; Hammer Strømman, Anders

    2016-05-01

    The primary goal of this study is to investigate the effect of increasing battery size and driving range to the environmental impact of electric vehicles (EVs). To this end, we compile cradle-to-grave inventories for EVs in four size segments to determine their climate change potential. A second objective is to compare the lifecycle emissions of EVs to those of conventional vehicles. For this purpose, we collect lifecycle emissions for conventional vehicles reported by automobile manufacturers. The lifecycle greenhouse gas emissions are calculated per vehicle and over a total driving range of 180 000 km using the average European electricity mix. Process-based attributional LCA and the ReCiPe characterisation method are used to estimate the climate change potential from the hierarchical perspective. The differently sized EVs are compared to one another to find the effect of increasing the size and range of EVs. We also point out the sources of differences in lifecycle emissions between conventional- and electric vehicles. Furthermore, a sensitivity analysis assesses the change in lifecycle emissions when electricity with various energy sources power the EVs. The sensitivity analysis also examines how the use phase electricity sources influences the size and range effect.

  16. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    Directory of Open Access Journals (Sweden)

    Kyle Dexter

    2016-09-01

    Full Text Available Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

  17. An Improved Method for Including Upper Size Range Plasmids in Metamobilomes

    DEFF Research Database (Denmark)

    Norman, Anders; Riber, Leise; Luo, Wenting

    2014-01-01

    cloning vector (pBR322), and a 56 Kbp conjugative plasmid (pKJK10), to represent lower- and upper plasmid size ranges, respectively. Subjecting a mixture of these plasmids to the overall isolation protocol revealed a 34-fold over-amplification of pBR322 after MDA. To address this bias, we propose...... the addition of an electroelution step that separates different plasmid size ranges prior to MDA in order to reduce size-dependent competition during incubation. Subsequent analyses of metamobilome data from wastewater spiked with the model plasmids showed in silica recovery of pKJK10 to be very poor...... with the established method and a 1,300-fold overrepresentation of pBR322. Conversely, complete recovery of pKJK10 was enabled with the new modified protocol although considerable care must be taken during electroelution to minimize cross-contamination between samples. For further validation, non-spiked wastewater...

  18. Negative range size-abundance relationships in Indo-Pacific bird communities

    DEFF Research Database (Denmark)

    Hart Reeve, Andrew; Borregaard, Michael Krabbe; Fjeldså, Jon

    2016-01-01

    and environmental stability create selection pressures that favor narrowly specialized species, which could drive these non-positive relationships. To test this idea, we measured the range size-abundance relationships of eleven bird communities in mature and degraded forest on four islands in the Indo...... the evolution of species that are simultaneously broad-niched, small-ranged, and abundant, as water barriers limit the range expansions that would typically accompany species' attainment of high local population densities. The consistently negative relationships found across Indo-Pacific islands represent...

  19. Advanced pixel architectures for scientific image sensors

    CERN Document Server

    Coath, R; Godbeer, A; Wilson, M; Turchetta, R

    2009-01-01

    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18μm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency.

  20. Determining the dynamic range of MCPs based on pore size and strip current

    Science.gov (United States)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.

    2010-12-01

    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  1. Penetration of nanoparticles in 5 nm to 400 nm size range through two selected fibrous media

    Science.gov (United States)

    Brochot, C.; Mouret, G.; Michielsen, N.; Chazelet, S.; Thomas, D.

    2011-07-01

    Due to the strong development of nanotechnologies, ultrafine particles could represent a growing hazard for workers health. When it is not possible to reduce the risk at its source, filtration systems are one of the means used to limit the exposure to hazardous substances such as airborne particles. The aim of this study is to measure the penetration of nanoparticles on a very large diameter range, from the nanometer size to the most penetrating particle size (MPPS). Here we present experimental results obtained for three different types of nanoparticles. Measurements of nanoparticle penetration through two low efficiency fiberglass media are carried out using two test benches presented in this article. Penetration values for carbon, copper and NaCl nanoparticles decreases with particle size, as predicted by theory. The value of the most penetrating particle size is situated between 100 and 300 nm. No thermal rebound was observed in this particle size range. The penetration values will be used, in further studies, to determine a global penetration model.

  2. Penetration of nanoparticles in 5 nm to 400 nm size range through two selected fibrous media

    Energy Technology Data Exchange (ETDEWEB)

    Brochot, C; Michielsen, N [Aerosol Physics and Metrology Laboratory, Institute for Radiological Protection and Nuclear Safety, BP68 - 91192, Gif-sur-Yvette Cedex (France); Mouret, G; Thomas, D [Laboratoire Reactions et Genie des Procedes, Nancy Universite, BP 20451 - 54001 Nancy (France); Chazelet, S, E-mail: clothilde.brochot@irsn.fr [Laboratory of polluant and air cleaning process, National Institute for Occupational Safety and Health, Rue du Morvan CS 60027 - 54519 Vandoeuvre Les Nancy (France)

    2011-07-06

    Due to the strong development of nanotechnologies, ultrafine particles could represent a growing hazard for workers health. When it is not possible to reduce the risk at its source, filtration systems are one of the means used to limit the exposure to hazardous substances such as airborne particles. The aim of this study is to measure the penetration of nanoparticles on a very large diameter range, from the nanometer size to the most penetrating particle size (MPPS). Here we present experimental results obtained for three different types of nanoparticles. Measurements of nanoparticle penetration through two low efficiency fiberglass media are carried out using two test benches presented in this article. Penetration values for carbon, copper and NaCl nanoparticles decreases with particle size, as predicted by theory. The value of the most penetrating particle size is situated between 100 and 300 nm. No thermal rebound was observed in this particle size range. The penetration values will be used, in further studies, to determine a global penetration model.

  3. An improved method for including upper size range plasmids in metamobilomes.

    Directory of Open Access Journals (Sweden)

    Anders Norman

    Full Text Available Two recently developed isolation methods have shown promise when recovering pure community plasmid DNA (metamobilomes/plasmidomes, which is useful in conducting culture-independent investigations into plasmid ecology. However, both methods employ multiple displacement amplification (MDA to ensure suitable quantities of plasmid DNA for high-throughput sequencing. This study demonstrates that MDA greatly favors smaller circular DNA elements (10 Kbp. Throughout the study, we used two model plasmids, a 4.4 Kbp cloning vector (pBR322, and a 56 Kbp conjugative plasmid (pKJK10, to represent lower- and upper plasmid size ranges, respectively. Subjecting a mixture of these plasmids to the overall isolation protocol revealed a 34-fold over-amplification of pBR322 after MDA. To address this bias, we propose the addition of an electroelution step that separates different plasmid size ranges prior to MDA in order to reduce size-dependent competition during incubation. Subsequent analyses of metamobilome data from wastewater spiked with the model plasmids showed in silica recovery of pKJK10 to be very poor with the established method and a 1,300-fold overrepresentation of pBR322. Conversely, complete recovery of pKJK10 was enabled with the new modified protocol although considerable care must be taken during electroelution to minimize cross-contamination between samples. For further validation, non-spiked wastewater metamobilomes were mapped to more than 2,500 known plasmid genomes. This displayed an overall recovery of plasmids well into the upper size range (median size: 30 kilobases with the modified protocol. Analysis of de novo assembled metamobilome data also suggested distinctly better recovery of larger plasmids, as gene functions associated with these plasmids, such as conjugation, was exclusively encoded in the data output generated through the modified protocol. Thus, with the suggested modification, access to a large uncharacterized pool of

  4. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range.

    Science.gov (United States)

    Yourassowsky, Catherine; Dubois, Frank

    2014-03-24

    We developed a Digital Holographic Microscope (DHM) working with a partial coherent source specifically adapted to perform high throughput recording of holograms of plankton organisms in-flow, in a size range of 3 µm-300 µm, which is of importance for this kind of applications. This wide size range is achieved with the same flow cell and with the same microscope magnification. The DHM configuration combines a high magnification with a large field of view and provides high-resolution intensity and quantitative phase images refocusing on high sample flow rate. Specific algorithms were developed to detect and extract automatically the particles and organisms present in the samples in order to build holograms of each one that are used for holographic refocusing and quantitative phase contrast imaging. Experimental results are shown and discussed.

  5. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.

    Science.gov (United States)

    Wan, Xiang; Wang, Wenqian; Liu, Jiming; Tong, Tiejun

    2014-12-19

    In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. In this paper, we propose to improve the existing literature in several directions. First, we show that the sample standard deviation estimation in Hozo et al.'s method (BMC Med Res Methodol 5:13, 2005) has some serious limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation problem under several other interesting settings where the interquartile range is also available for the trials. We demonstrate the performance of the proposed methods through simulation studies for the three frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three scenarios and present some suggestions on which scenario is preferred in real-world applications. In this paper, we discuss different approximation methods in the estimation of the sample mean and standard deviation and propose some new estimation methods to improve the existing literature. We conclude our work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for performing meta-analysis in different

  6. Home range size and choice of management strategy for lynx in Scandinavia.

    Science.gov (United States)

    Linnell, J D; Andersen, R; Kvam, T; Andrén, H; Liberg, O; Odden, J; Moa, P F

    2001-06-01

    Annual and seasonal home ranges were calculated for 47 Eurasian lynx in four Scandinavian study sites (two in Sweden and two in Norway). The observed home ranges were the largest reported for the species, with study site averages ranging from 600 to 1,400 km2 for resident males and from 300 to 800 km2 for resident females. When home range sizes were compared to the size of protected areas (national parks and nature reserves) in Scandinavia, it was concluded that very few protected areas contained sufficient forest to provide space for more than a few individuals. As a direct consequence of this, most lynx need to be conserved in the multiuse semi-natural forest habitats that cover large areas in Scandinavia. This conservation strategy leads to a number of conflicts with some land uses (sheep and semidomestic reindeer herding, and roe deer hunters), but not all (forestry and moose harvest). Accordingly research must be aimed at understanding the ecology of these conflicts, and finding solutions.

  7. Microradiography with Semiconductor Pixel Detectors

    Science.gov (United States)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiří; Holý, Tomáš; Platkevič, Michal; Pospíšil, Stanislav; Vavřík, Daniel; Vykydal, Zdeněk

    2007-11-01

    High resolution radiography (with X-rays, neutrons, heavy charged particles, …) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  8. Density-dependent home-range size revealed by spatially explicit capture–recapture

    Science.gov (United States)

    Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.

    2016-01-01

    The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.

  9. Influence of the particle size on polarization-based range-gated imaging in turbid media

    Directory of Open Access Journals (Sweden)

    Heng Tian

    2017-09-01

    Full Text Available The influence of size of the scatterer on the image contrast for polarization-based range-gated imaging in turbid media is investigated here by Monte Carlo method. Circularly polarized light would be more efficient to eliminate the noise photons for both the isotropic medium as well as the anisotropic medium, as compared with linearly polarized light. The improvement in contrast is pronounced for isotropic medium using either linear or circular polarization. The plausible explanations for these observations are also presented.

  10. Microhabitat selection, demography, and correlates of home range size for the King Rail (Rallus elegans)

    Science.gov (United States)

    Pickens, Bradley A.; King, Sammy L.

    2013-01-01

    Animal movements and habitat selection within the home range, or microhabitat selection, can provide insights into habitat requirements, such as foraging and area requirements. The King Rail (Rallus elegans) is a wetland bird of high conservation concern in the United States, but little is known about its movements, habitats, or demography. King Rails (n = 34) were captured during the 2010–2011 breeding seasons in the coastal marshes of southwest Louisiana and southeast Texas. Radio telemetry and direct habitat surveys of King Rail locations were conducted to estimate home ranges and microhabitat selection. Within home ranges, King Rails selected for greater plant species richness and comparatively greater coverage of Phragmites australis, Typha spp., and Schoenoplectus robustus. King Rails were found closer to open water compared to random locations placed 50 m from King Rail locations. Home ranges (n = 22) varied from 0.8–32.8 ha and differed greatly among sites. Home range size did not vary by year or sex; however, increased open water, with a maximum of 29% observed in the study, was correlated with smaller home ranges. Breeding season cumulative survivorship was 89% ± 22% in 2010 and 61% ± 43% in 2011, which coincided with a drought. With an equal search effort, King Rail chicks and juveniles observed in May-June decreased from 110 in 2010 to only 16 in the drier year of 2011. The findings show King Rail used marsh with ≤ 29% open water and had smaller home ranges when open water was more abundant.

  11. Home-range Size and Habitat Used by the Northern Myotis (Myotis septentrionalis)

    Science.gov (United States)

    Owen, S.F.; Menzel, M.A.; Ford, W.M.; Chapman, B.R.; Miller, K.V.; Edwards, J.W.; Wood, P.B.

    2003-01-01

    We examined home range size and habitat use of nine female northern myotis (Myotis septentrionalis) within an intensively managed forest in the central Appalachians of West Virginia. Using the 95% adaptive kernel method, we calculated a mean home range of 65 ha. Northern myotis used recent diameter-limit harvests and road corridors more than expected based on availability of these habitats. Intact forest stands and more open deferment harvested stands were used less than expected based on the availability of these habitats, although intact forest stands still constituted the overall majority of habitat used. Partial timber harvests that leave a relatively closed canopy appear to promote or improve northern myotis foraging habitat in heavily forested landscapes. However, the long-term ecological impacts on bats and other biota from this silviculturally unacceptable practice are unclear.

  12. CVD diamond pixel development

    CERN Document Server

    Stone, R; Koeth, T W; Perera, L P; Schnetzer, S; Worm, S

    2002-01-01

    Pixel detectors using synthetic diamond are an attractive alternative to silicon for use in radiation harsh environments such as at the Large Hadron Collider (LHC). Recent test beam results using Compact Muon Solenoid pixel readout electronics are presented, which demonstrate a hit efficiency of 95% and position resolution of 31 mu m for a diamond pixel sensor with 125 * 125 mu m/sup 2/ pitch. (5 refs).

  13. Organic smart pixels

    Science.gov (United States)

    Dodabalapur, A.; Bao, Z.; Makhija, A.; Laquindanum, J. G.; Raju, V. R.; Feng, Y.; Katz, H. E.; Rogers, J.

    1998-07-01

    The fabrication and characteristics of organic smart pixels are described. The smart pixel reported in this letter consists of a single organic thin-film field effect transistor (FET) monolithically integrated with an organic light-emitting diode. The FET active material is a regioregular polythiophene. The maximum optical power emitted by the smart pixel is about 300 nW/cm2 corresponding to a luminance of ˜2300 cd/m2.

  14. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.

    Science.gov (United States)

    Boucher-Lalonde, Véronique; Currie, David J

    2016-01-01

    Species' geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species' ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species' climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species' ranges, are correlations between species' range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species' realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated.

  15. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal — A Demonstration Using Bird and Mammal Range Maps

    Science.gov (United States)

    Boucher-Lalonde, Véronique; Currie, David J.

    2016-01-01

    Species’ geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species’ ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species’ climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species’ ranges, are correlations between species’ range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species’ realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated. PMID:27855201

  16. The ATLAS Silicon Pixel Sensors

    CERN Document Server

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  17. Home range sizes of Cape Mountain Zebras Equus Zebra Zebra in the Mountain Zebra National Park

    OpenAIRE

    Penzhorn, B.L.

    1982-01-01

    The mean home range size of Cape mountain zebra breeding herds was 9,4 km2 (range 3,1 @ 16,0 km2). In two herds which split up, the home ranges of the resultant herds included the original home ranges, but were larger.

  18. Dependence of simulations of long range transport on meteorology, model and dust size

    Science.gov (United States)

    Mahowald, N. M.; Albani, S.; Smith, M.; Losno, R.; Marticorena, B.; Ridley, D. A.; Heald, C. L.; Qu, Z.

    2015-12-01

    Mineral aerosols interact with radiation directly, as well as modifying climate, and provide important micronutrients to ocean and land ecosystems. Mineral aerosols are transported long distances from the source regions to remote regions, but the rates at which this occurs can be difficult to deduce from either observations or models. Here we consider interactions between the details of the simulation of dust size and long-range transport. In addition, we compare simulations of dust using multiple reanalysis datasets, as well as different model basis to understand how robust the mean, seasonality and interannual variability are in models. Models can provide insight into how long observations are required in order to characterize the atmospheric concentration and deposition to remote regions.

  19. Finite-size effects on long-range correlations: implications for analyzing DNA sequences

    Science.gov (United States)

    Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Simons, M.; Stanley, H. E.

    1993-01-01

    We analyze the fluctuations in the correlation exponents obtained for noncoding DNA sequences. We find prominent sample-to-sample variations as well as variations within a single sample in the scaling exponent. To determine if these fluctuations may result from finite system size, we generate correlated random sequences of comparable length and study the fluctuations in this control system. We find that the DNA exponent fluctuations are consistent with those obtained from the control sequences having long-range power-law correlations. Finally, we compare our exponents for the DNA sequences with the exponents obtained from power-spectrum analysis and correlation-function techniques, and demonstrate that the original "DNA-walk" method is intrinsically more accurate due to reduced noise.

  20. Influences of landscape heterogeneity on home-range sizes of brown bears

    Science.gov (United States)

    Mangipane, Lindsey S.; Belant, Jerrold L.; Hiller, Tim L.; Colvin, Michael E.; Gustine, David; Mangipane, Buck A.; Hilderbrand, Grant

    2018-01-01

    Animal space use is influenced by many factors and can affect individual survival and fitness. Under optimal foraging theory, individuals use landscapes to optimize high-quality resources while minimizing the amount of energy used to acquire them. The spatial resource variability hypothesis states that as patchiness of resources increases, individuals use larger areas to obtain the resources necessary to meet energetic requirements. Additionally, under the temporal resource variability hypothesis, seasonal variation in available resources can reduce distances moved while providing a variety of food sources. Our objective was to determine if seasonal home ranges of brown bears (Ursus arctos) were influenced by temporal availability and spatial distribution of resources and whether individual reproductive status, sex, or size (i.e., body mass) mediated space use. To test our hypotheses, we radio collared brown bears (n = 32 [9 male, 23 female]) in 2014–2016 and used 18 a prioriselected linear models to evaluate seasonal utilization distributions (UD) in relation to our hypotheses. Our top-ranked model by AICc, supported the spatial resource variability hypothesis and included percentage of like adjacency (PLADJ) of all cover types (P  0.17 for males, solitary females, and females with dependent young), and body mass (kg; P = 0.66). Based on this model, for every percentage increase in PLADJ, UD area was predicted to increase 1.16 times for all sex and reproductive classes. Our results suggest that landscape heterogeneity influences brown bear space use; however, we found that bears used larger areas when landscape homogeneity increased, presumably to gain a diversity of food resources. Our results did not support the temporal resource variability hypothesis, suggesting that the spatial distribution of food was more important than seasonal availability in relation to brown bear home range size.

  1. Variation in home range size of red foxes Vulpes vulpes along a gradient of productivity and human landscape alteration

    Science.gov (United States)

    2017-01-01

    Home range size is a fundamental concept for understanding animal dispersion and ecological needs, and it is one of the most commonly reported ecological attributes of free-ranging mammals. Previous studies indicate that red foxes Vulpes vulpes display great variability in home range size. Yet, there has been little consensus regarding the reasons why home range sizes of red foxes vary so extensively. In this study, we examine possible causes of variation in red fox home range sizes using data from 52 GPS collared red foxes from four study areas representing a gradient of landscape productivity and human landscape alteration in Norway and Sweden. Using 90% Local Convex Hull home range estimates, we examined how red fox home range size varied in relation to latitude, elevation, vegetation zone, proportion of agricultural land and human settlement within a home range, and sex and age. We found considerable variation in red fox home range sizes, ranging between 0.95 km2 to 44 km2 (LoCoH 90%) and 2.4 km2 to 358 km2 (MCP 100%). Elevation, proportion of agricultural land and sex accounted for 50% of the variation in home range size found amongst foxes, with elevation having the strongest effect. Red foxes residing in more productive landscapes (those in more southern vegetation zones), had home ranges approximately four times smaller than the home ranges of foxes in the northern boreal vegetation zone. Our results indicate that home range size was influenced by a productivity gradient at both the landscape (latitude) and the local (elevation) scale. The influence of the proportion of agriculture land on home range size of foxes illustrates how human landscape alteration can affect the space use and distribution of red foxes. Further, the variation in home range size found in this study demonstrates the plasticity of red foxes to respond to changing human landscape alteration as well as changes in landscape productivity, which may be contributing to red fox population

  2. Predictable variation of range-sizes across an extreme environmental gradient in a lizard adaptive radiation: evolutionary and ecological inferences.

    Directory of Open Access Journals (Sweden)

    Daniel Pincheira-Donoso

    Full Text Available Large-scale patterns of current species geographic range-size variation reflect historical dynamics of dispersal and provide insights into future consequences under changing environments. Evidence suggests that climate warming exerts major damage on high latitude and elevation organisms, where changes are more severe and available space to disperse tracking historical niches is more limited. Species with longer generations (slower adaptive responses, such as vertebrates, and with restricted distributions (lower genetic diversity, higher inbreeding in these environments are expected to be particularly threatened by warming crises. However, a well-known macroecological generalization (Rapoport's rule predicts that species range-sizes increase with increasing latitude-elevation, thus counterbalancing the impact of climate change. Here, I investigate geographic range-size variation across an extreme environmental gradient and as a function of body size, in the prominent Liolaemus lizard adaptive radiation. Conventional and phylogenetic analyses revealed that latitudinal (but not elevational ranges significantly decrease with increasing latitude-elevation, while body size was unrelated to range-size. Evolutionarily, these results are insightful as they suggest a link between spatial environmental gradients and range-size evolution. However, ecologically, these results suggest that Liolaemus might be increasingly threatened if, as predicted by theory, ranges retract and contract continuously under persisting climate warming, potentially increasing extinction risks at high latitudes and elevations.

  3. Physiological, ecological, and behavioural correlates of the size of the geographic ranges of sea kraits (Laticauda; Elapidae, Serpentes): A critique

    Science.gov (United States)

    Heatwole, Harold; Lillywhite, Harvey; Grech, Alana

    2016-09-01

    Recent, more accurate delineation of the distributions of sea kraits and prior dubious use of proxy temperatures and mean values in correlative studies requires re-assessment of the relationships of temperature and salinity as determinants of the size of the geographic ranges of sea kraits. Correcting the sizes of geographic ranges resolved the paradox of lack of correspondence of size of range with degree of terrestrialism, but did not form a definitive test of the theory. Recent ecological, physiological, and behavioural studies provide an example of the kind of approach likely to either validate or refute present theory.

  4. A linear piezoelectric stepper motor with submicrometer step size and centimeter travel range.

    Science.gov (United States)

    Judy, J W; Polla, D L; Robbins, W P

    1990-01-01

    A linear stepper motor capable of submicrometer controlled movement has been constructed using the piezoelectric material lead zirconate titanate (PZT). This motor consists of a 25.4-mmx12.7-mmx1.6-mm piezoelectric driving element connected between a glider base and an attached load. The device is inset in a trench to constrain motion to one dimension. An electrode on the bottom of the glider is used with an electrode on the top of the trench to implement an electrostatic clamp. This clamp enables the stepper motor to climb slopes of up to 12 degrees , whereas without the clamp only slopes of 6 degrees or less are tolerated. A linear inertial sliding motion can be achieved by expanding and contracting the piezoelectric bar, but the addition of the electrostatic clamp enhances the movement capabilities of the glider by the periodic clamping and unclamping of the glider. Glider velocities of 5.7-476 mum/s are measured by timing the movement of the glider over a 1.0-mm portion of the track through an optical microscope. Displacement steps of 0.07-1.1 mum are calculated by dividing the measured glider velocity by the frequency of the applied voltage pulses. Displacement step size and glider velocity are controlled by the application of PZT extension voltages ranging from +/-(60-340) V.

  5. ALICE Silicon Pixel Detector

    CERN Multimedia

    2003-01-01

    The Silicon Pixel Detector (SPD) is part of the Inner Tracking System (ITS) of the ALICE experiment : . SPD Structure . Bump Bonding . Test beam . ALICE1LHCb Readout Chip . Chip Tests . Data from the SPD

  6. Performance of diethylene glycol-based particle counters in the sub-3 nm size range

    CERN Document Server

    Wimmer, D; Franchin, A; Kangasluoma, J; Kreissl, F; Kürten, A; Kupc, A; Metzger, A; Mikkilä, J; Petäjä, J; Riccobono, F; Vanhanen, J; Kulmala, M; Curtius, J

    2013-01-01

    When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently, CPCs able to reliably detect particles below 2 nm in size and even close to 1 nm became available. Using these instruments, the corrections needed for calculating nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous-flow CPCs using diethylene glycol (DEG) as the working fluid. The desig...

  7. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2016-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e- Compact Linear Collider (CLIC). A single point resolution of 3μm for the vertex detector and 7μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2 % X0 per layer in the ver- tex detector and 1-2%X0 in the tracker. A fast time slicing of 10ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25x25μm2 and 55x55μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50μm-500μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  8. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Directory of Open Access Journals (Sweden)

    Daniel D Bjornlie

    Full Text Available Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE, recent decline of whitebark pine (WBP; Pinus albicaulis, an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  9. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Science.gov (United States)

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  10. Hemicellulose block copolymers made from woods for wide-range directed self-assembly lithography enabling wider range of applicable patterning size

    Science.gov (United States)

    Morita, Kazuyo; Yamamoto, Kimiko

    2017-03-01

    Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.

  11. From Pixels to Planets

    Science.gov (United States)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  12. Speciation and extinction drive the appearance of directional range size evolution in phylogenies and the fossil record.

    Science.gov (United States)

    Pigot, Alex L; Owens, Ian P F; Orme, C David L

    2012-01-01

    While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk, the evolutionary dynamics of species' ranges remain poorly understood. Based on statistical associations between range size and species age, many studies have claimed support for general models of range evolution in which the area occupied by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of trends in range size with species' age can arise even when range sizes have evolved at random through time. This occurs because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the full spectrum of empirical age-area relationships, implying that such trends cannot be simply interpreted as evidence for models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable phases of geographic expansion and contraction through time.

  13. Speciation and Extinction Drive the Appearance of Directional Range Size Evolution in Phylogenies and the Fossil Record

    Science.gov (United States)

    Pigot, Alex L.; Owens, Ian P. F.; Orme, C. David L.

    2012-01-01

    While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk, the evolutionary dynamics of species' ranges remain poorly understood. Based on statistical associations between range size and species age, many studies have claimed support for general models of range evolution in which the area occupied by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of trends in range size with species' age can arise even when range sizes have evolved at random through time. This occurs because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the full spectrum of empirical age–area relationships, implying that such trends cannot be simply interpreted as evidence for models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable phases of geographic expansion and contraction through time. PMID:22371689

  14. Speciation and extinction drive the appearance of directional range size evolution in phylogenies and the fossil record.

    Directory of Open Access Journals (Sweden)

    Alex L Pigot

    Full Text Available While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk, the evolutionary dynamics of species' ranges remain poorly understood. Based on statistical associations between range size and species age, many studies have claimed support for general models of range evolution in which the area occupied by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of trends in range size with species' age can arise even when range sizes have evolved at random through time. This occurs because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the full spectrum of empirical age-area relationships, implying that such trends cannot be simply interpreted as evidence for models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable phases of geographic expansion and contraction through time.

  15. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  16. Geographic location and phylogeny are the main determinants of the size of the geographical range in aquatic beetles

    Directory of Open Access Journals (Sweden)

    Abellán Pedro

    2011-11-01

    Full Text Available Abstract Background Why some species are widespread while others are very restricted geographically is one of the most basic questions in biology, although it remains largely unanswered. This is particularly the case for groups of closely related species, which often display large differences in the size of the geographical range despite sharing many other factors due to their common phylogenetic inheritance. We used ten lineages of aquatic Coleoptera from the western Palearctic to test in a comparative framework a broad set of possible determinants of range size: species' age, differences in ecological tolerance, dispersal ability and geographic location. Results When all factors were combined in multiple regression models between 60-98% of the variance was explained by geographic location and phylogenetic signal. Maximum latitudinal and longitudinal limits were positively correlated with range size, with species at the most northern latitudes and eastern longitudes displaying the largest ranges. In lineages with lotic and lentic species, the lentic (better dispersers display larger distributional ranges than the lotic species (worse dispersers. The size of the geographical range was also positively correlated with the extent of the biomes in which the species is found, but we did not find evidence of a clear relationship between range size and age of the species. Conclusions Our findings show that range size of a species is shaped by an interplay of geographic and ecological factors, with a phylogenetic component affecting both of them. The understanding of the factors that determine the size and geographical location of the distributional range of species is fundamental to the study of the origin and assemblage of the current biota. Our results show that for this purpose the most relevant data may be the phylogenetic history of the species and its geographical location.

  17. Pixel detectors from fundamentals to applications

    CERN Document Server

    Rossi, Leonardo; Rohe, Tilman; Wermes, Norbert

    2006-01-01

    Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.

  18. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs

    Directory of Open Access Journals (Sweden)

    Vences Miguel

    2011-07-01

    Full Text Available Abstract Background The rate and mode of lineage diversification might be shaped by clade-specific traits. In Madagascar, many groups of organisms are characterized by tiny distribution ranges and small body sizes, and this high degree of microendemism and miniaturization parallels a high species diversity in some of these groups. We here investigate the geographic patterns characterizing the radiation of the frog family Mantellidae that is virtually endemic to Madagascar. We integrate a newly reconstructed near-complete species-level timetree of the Mantellidae with georeferenced distribution records and maximum male body size data to infer the influence of these life-history traits on each other and on mantellid diversification. Results We reconstructed a molecular phylogeny based on nuclear and mitochondrial DNA for 257 species and candidate species of the mantellid frog radiation. Based on this phylogeny we identified 53 well-supported pairs of sister species that we used for phylogenetic comparative analyses, along with whole tree-based phylogenetic comparative methods. Sister species within the Mantellidae diverged at 0.2-14.4 million years ago and more recently diverged sister species had geographical range centroids more proximate to each other, independently of their current sympatric or allopatric occurrence. The largest number of sister species pairs had non-overlapping ranges, but several examples of young microendemic sister species occurring in full sympatry suggest the possibility of non-allopatric speciation. Range sizes of species included in the sister species comparisons increased with evolutionary age, as did range size differences between sister species, which rejects peripatric speciation. For the majority of mantellid sister species and the whole mantellid radiation, range and body sizes were associated with each other and small body sizes were linked to higher mitochondrial nucleotide substitution rates and higher clade

  19. The mid-domain effect matters: simulation analyses of range-size distribution data from Mount Kinabalu, Borneo

    DEFF Research Database (Denmark)

    Grytnes, John-Arvid; Beaman, John H.; Romdal, Tom Skovlund

    2008-01-01

    within the domain (range-restricted MDE), and a model encompassing all species with the theoretical midpoint within the domain (midpoint-restricted MDE). These predictions are compared with observations from the elevational pattern of range-size distributions and species richness of vascular plants...

  20. Gossip: Gaseous pixels

    Science.gov (United States)

    Koffeman, E. N.

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  1. Gossip: Gaseous pixels

    Energy Technology Data Exchange (ETDEWEB)

    Koffeman, E.N. [Nikhef, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)], E-mail: d77@nikhef.nl

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a {sup 55}Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  2. Home-range size and overlap within an introduced population of the Cuban Knight Anole, Anolis equestris (Squamata: Iguanidae

    Directory of Open Access Journals (Sweden)

    Paul M. Richards

    2011-07-01

    Full Text Available Many studies have investigated the spatial relationships of terrestrial lizards, but arboreal species remain poorly studiedbecause they are difficult to observe. The conventional view of home-range size and overlap among territorial, polygynous species of lizards is that: (1 male home ranges are larger than those of females; (2 male home ranges usually encompass, or substantiallyoverlap, those of several females; and (3 male home-range overlap varies but often is minimal, but female home ranges frequently overlap extensively. However, the paucity of pertinent studies makes it difficult to generalize these patterns to arboreal lizards. Weinvestigated home-range size and overlap in the arboreal Knight Anole, Anolis equestris, and compared our findings to published home-range data for 15 other species of Anolis. Using radiotelemetry and mark-recapture/resight techniques, we analyzed the home rangesof individuals from an introduced population of Knight Anoles in Miami, Florida. The home ranges of both sexes substantially overlapped those of the same- and different-sex individuals. In addition, male and female home ranges did not differ significantly, an unusual observation among lizard species. If one compares both male and female home ranges to those of other Anolis species, Knight Anoles have significantly larger home ranges, except for two species for which statistical comparisons were not possible. Our results suggest that home ranges and sex-specific spatial arrangements of canopy lizards may differ from those of more terrestrial species.

  3. Characterization of Pixel Sensors

    CERN Document Server

    Oliveira, Felipe Ferraz

    2017-01-01

    It was commissioned at CERN ATLAS pixel group a fluorescence setup for characterization of pixel sensors. The idea is to measure the energies of different targets to calibrate your sensor. It was measured four matrices (80, 95, 98 and 106) of the Investigator1 sensor with different deep PW using copper, iron and titanium as target materials. The matrix 80 has a higher gain (0.065 ± 0.002) and matrix 106 has a better energy resolution (0.05 ± 0.04). The noise of the setup is around 3.6 mV .

  4. Home range size and breeding dispersal of a common buzzard (Buteo buteo

    Directory of Open Access Journals (Sweden)

    Väli Ülo

    2017-12-01

    Full Text Available Telemetric studies have provided ample information on threatened raptors, but still little is known about space use and dispersal of common species. Here I describe the home range and breeding dispersal of a GPS-tracked adult male common buzzard, studied in south-eastern Estonia in 2014–16. This buzzard’s home range covered 8.3 km2 (kernel 95% estimate with the core range being 2.1 km2 (kernel 50%. The home range increased in the course of the breeding season but decreased again before migration. Surprisingly, the nests in the two successive breeding years were located in the opposite margins of the home range, 1.7 km from each other.

  5. SNR improvement for hyperspectral application using frame and pixel binning

    Science.gov (United States)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  6. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  7. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  8. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  9. The relationship between diet breadth and geographic range size in the butterfly subfamily Nymphalinae--a study of global scale.

    Directory of Open Access Journals (Sweden)

    Jessica Slove

    Full Text Available The "oscillation hypothesis" has been proposed as a general explanation for the exceptional diversification of herbivorous insect species. The hypothesis states that speciation rates are elevated through repeated correlated changes--oscillations--in degree of host plant specificity and geographic range. The aim of this study is to test one of the predictions from the oscillation hypothesis: a positive correlation between diet breadth (number of host plants used and geographic range size, using the globally distributed butterfly subfamily Nymphalinae. Data on diet breadth and global geographic range were collected for 182 Nymphalinae butterflies species and the size of the geographic range was measured using a GIS. We tested both diet breadth and geographic range size for phylogenetic signal to see if species are independent of each other with respect to these characters. As this test gave inconclusive results, data was analysed both using cross-species comparisons and taking phylogeny into account using generalised estimating equations as applied in the APE package in R. Irrespective of which method was used, we found a significant positive correlation between diet breadth and geographic range size. These results are consistent for two different measures of diet breadth and removal of outliers. We conclude that the global range sizes of Nymphalinae butterflies are correlated to diet breadth. That is, butterflies that feed on a large number of host plants tend to have larger geographic ranges than do butterflies that feed on fewer plants. These results lend support for an important step in the oscillation hypothesis of plant-driven diversification, in that it can provide the necessary fuel for future population fragmentation and speciation.

  10. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe.

    Science.gov (United States)

    Morellet, Nicolas; Bonenfant, Christophe; Börger, Luca; Ossi, Federico; Cagnacci, Francesca; Heurich, Marco; Kjellander, Petter; Linnell, John D C; Nicoloso, Sandro; Sustr, Pavel; Urbano, Ferdinando; Mysterud, Atle

    2013-11-01

    1. Because many large mammal species have wide geographical ranges, spatially distant populations may be confronted with different sets of environmental conditions. Investigating how home range (HR) size varies across environmental gradients should yield a better understanding of the factors affecting large mammal ecology. 2. We evaluated how HR size of a large herbivore, the roe deer (Capreolus capreolus), varies in relation to seasonality, latitude (climate), weather, plant productivity and landscape features across its geographical range in Western Europe. As roe deer are income breeders, expected to adjust HR size continuously to temporal variation in food resources and energetic requirements, our baseline prediction was for HR size to decrease with proxies of resource availability. 3. We used GPS locations of roe deer collected from seven study sites (EURODEER collaborative project) to estimate fixed-kernel HR size at weekly and monthly temporal scales. We performed an unusually comprehensive analysis of variation in HR size among and within populations over time across the geographical range of a single species using generalized additive mixed models and linear mixed models, respectively. 4. Among populations, HR size decreased with increasing values for proxies of forage abundance, but increased with increases in seasonality, stochastic variation of temperature, latitude and snow cover. Within populations, roe deer HR size varied over time in relation to seasonality and proxies of forage abundance in a consistent way across the seven populations. Thus, our findings were broadly consistent across the distributional range of this species, demonstrating a strong and ubiquitous link between the amplitude and timing of environmental seasonality and HR size at the continental scale. 5. Overall, the variability in average HR size of roe deer across Europe reflects the interaction among local weather, climate and seasonality, providing valuable insight into the

  11. Hedgehogs on the move: Testing the effects of land use change on home range size and movement patterns of free-ranging Ethiopian hedgehogs.

    Directory of Open Access Journals (Sweden)

    Mohammad A Abu Baker

    Full Text Available Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀ and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀. Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g in comparison to the natural desert area (376.37±12.71SE g. Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE for males and 42 ha (±11SE for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE for males and 150 ha (±29 SE for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats, whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle

  12. Hedgehogs on the move: Testing the effects of land use change on home range size and movement patterns of free-ranging Ethiopian hedgehogs.

    Science.gov (United States)

    Abu Baker, Mohammad A; Reeve, Nigel; Conkey, April A T; Macdonald, David W; Yamaguchi, Nobuyuki

    2017-01-01

    Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀) and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀). Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g) in comparison to the natural desert area (376.37±12.71SE g). Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE) for males and 42 ha (±11SE) for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE) for males and 150 ha (±29 SE) for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters) influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats), whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle East where

  13. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus.

    Science.gov (United States)

    Sheth, Seema N; Angert, Amy L

    2014-10-01

    The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within-population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  14. Application of ferrofluid density separation to particles in the micrometer-size range

    Energy Technology Data Exchange (ETDEWEB)

    Strebin, R.S. Jr.; Johnson, J.W.; Robertson, D.M.

    1976-02-01

    A device designed and described by AVCO* as a ''Ferrofluid Density Separator''/sup (1)/ develops an apparent fluid density from nominally 2 to 20 g/cm/sup 3/ dependent on the magnitude of an imposed magnetic field gradient. The ferrofluid retains other normal properties of a liquid. One of these devices and a concentration series of ferrofluids were obtained in order to determine the practicality of separating groups of micrometer-size particles into density fractions. Such separations would be of enormous value in the study of various particle burdens because particles of interest are almost always diluted with overwhelming amounts of other particles. The results of a study of separations of micrometer-size particles with the ferrofluid density separator are presented.

  15. Among-Individual Variation in Desert Iguanas (Squamata: Dipsosaurus dorsalis): Endurance Capacity Is Positively Related to Home Range Size.

    Science.gov (United States)

    Singleton, Jennifer M; Garland, Theodore

    Among species of lizards, endurance capacity measured on a motorized treadmill is positively related to daily movement distance and time spent moving, but few studies have addressed such relationships at the level of individual variation within a sex and age category in a single population. Both endurance capacity and home range size show substantial individual variation in lizards, rendering them suitable for such studies. We predicted that these traits would be positively related because endurance capacity is one of the factors that has the potential to limit home range size. We measured the endurance capacity and home range size of adult male desert iguanas (Dipsosaurus dorsalis). Lizards were field captured for measurements of endurance, and home range data were gathered using visual identification of previously marked individuals. Endurance was significantly repeatable between replicate trials, conducted 1-17 d apart ([Formula: see text] for log-transformed values, [Formula: see text], [Formula: see text]). The log of the higher of two endurance trials was positively but not significantly related to log body mass. The log of home range area was positively but not significantly related to log body mass, the number of sightings, or the time span from first to last sighting. As predicted, log endurance was positively correlated with log home range area ([Formula: see text], [Formula: see text], one-tailed [Formula: see text]; for body-mass residual endurance values: [Formula: see text], one-tailed [Formula: see text]). These results suggest that endurance capacity may have a permissive effect on home range size. Alternatively, individuals with larger home ranges may experience training effects (phenotypic plasticity) that increase their endurance.

  16. The range of local public services and population size: Is there a “zoo effect” in French jurisdictions?

    OpenAIRE

    Quentin Frère; Hakim Hammadou; Sonia Paty

    2011-01-01

    This article contributes to the small literature on the relationship between the range of local public services and population size. Using new data on French local jurisdictions, we test the hypothesis that larger jurisdictions provide a broader range of public goods (the so-called “zoo effect”, Oates (1988)). We take advantage of the fact that, in France, many municipalities recently joined together, forming groups of municipalities (or communities) in order to achieve economies of scale. Us...

  17. Intensity of space use reveals conditional sex-specific effects of prey and conspecific density on home range size.

    Science.gov (United States)

    Aronsson, Malin; Low, Matthew; López-Bao, José V; Persson, Jens; Odden, John; Linnell, John D C; Andrén, Henrik

    2016-05-01

    Home range (HR) size variation is often linked to resource abundance, with sex differences expected to relate to sex-specific fitness consequences. However, studies generally fail to disentangle the effects of the two main drivers of HR size variation, food and conspecific density, and rarely consider how their relative influence change over spatiotemporal scales. We used location data from 77 Eurasian lynx (Lynx lynx) from a 16-year Scandinavian study to examine HR sizes variation relative to prey and conspecific density at different spatiotemporal scales. By varying the isopleth parameter (intensity of use) defining the HR, we show that sex-specific effects were conditional on the spatial scale considered. Males had larger HRs than females in all seasons. Females' total HR size declined as prey and conspecific density increased, whereas males' total HR was only affected by conspecific density. However, as the intensity of use within the HR increased (from 90% to 50% isopleth), the relationship between prey density and area showed opposing patterns for females and males; for females, the prey density effect was reduced, while for males, prey became increasingly important. Thus, prey influenced the size of key regions within male HRs, despite total HR size being independent of prey density. Males reduced their HR size during the mating season, likely to remain close to individual females in estrous. Females reduced their HR size postreproduction probably because of movement constrains imposed by dependent young. Our findings highlight the importance of simultaneously considering resources and intraspecific interactions as HR size determinants. We show that sex-specific demands influence the importance of prey and conspecific density on space use at different spatiotemporal scales. Thus, unless a gradient of space use intensity is examined, factors not related to total HR size might be disregarded despite their importance in determining size of key regions within

  18. Video-rate optical coherence tomography imaging with smart pixels

    Science.gov (United States)

    Beer, Stephan; Waldis, Severin; Seitz, Peter

    2003-10-01

    A novel concept for video-rate parallel acquisition of optical coherence tomography imaging is presented based on in-pixel demodulation. The main restrictions for parallel detection such as data rate, power consumption, circuit size and poor sensitivity are overcome with a smart pixel architecture incorporating an offset compensation circuit, a synchronous sampling stage, programmable time averaging and random pixel accessing, allowing envelope and phase detection in large 1D and 2D arrays.

  19. Summer Home Range Size of Female Indiana Bats (Myotis Sodalis) in Missouri, USA

    Science.gov (United States)

    Kathryn M. Womack; Sybill K. Amelon; Frank R. Thompson

    2013-01-01

    Knowledge of space use by wildlife that are a conservation concern is critical to ensure that management and conservation provides adequate resources to ensure survival and reproductive success. We radio tracked 13 pregnant and 12 lactating Myotis sodalis (Indiana bat) during the maternity season in northern Missouri. Mean (± SE) home range...

  20. Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient

    Czech Academy of Sciences Publication Activity Database

    Šálek, Martin; Drahníková, L.; Tkadlec, Emil

    2015-01-01

    Roč. 45, č. 1 (2015), s. 1-14 ISSN 0305-1838 Institutional support: RVO:68081766 Keywords : Carnivores * home range size * natural–urban gradient * population density * review Subject RIV: EG - Zoology Impact factor: 4.116, year: 2015

  1. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  2. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  3. CMS pixel upgrade project

    CERN Document Server

    Kaestli, Hans-Christian

    2010-01-01

    The LHC machine at CERN finished its first year of pp collisions at a center of mass energy of 7~TeV. While the commissioning to exploit its full potential is still ongoing, there are plans to upgrade its components to reach instantaneous luminosities beyond the initial design value after 2016. A corresponding upgrade of the innermost part of the CMS detector, the pixel detector, is needed. A full replacement of the pixel detector is planned in 2016. It will not only address limitations of the present system at higher data rates, but will aggressively lower the amount of material inside the fiducial tracking volume which will lead to better tracking and b-tagging performance. This article gives an overview of the project and illuminates the motivations and expected improvements in the detector performance.

  4. CMS pixel upgrade project

    CERN Document Server

    INSPIRE-00575876

    2011-01-01

    The LHC machine at CERN finished its first year of pp collisions at a center of mass energy of 7 TeV. While the commissioning to exploit its full potential is still ongoing, there are plans to upgrade its components to reach instantaneous luminosities beyond the initial design value after 2016. A corresponding upgrade of the innermost part of the CMS detector, the pixel detector, is needed. A full replacement of the pixel detector is planned in 2016. It will not only address limitations of the present system at higher data rates, but will aggressively lower the amount of material inside the fiducial tracking volume which will lead to better tracking and b-tagging performance. This article gives an overview of the project and illuminates the motivations and expected improvements in the detector performance.

  5. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA.

    Science.gov (United States)

    Cansler, C Alina; McKenzie, Donald

    2014-07-01

    Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We used remotely sensed burn-severity data from 125 fires in the northern Cascade Range of Washington, USA, to explore relationships between fire size, severity, and the spatial pattern of severity. We examined relationships between climate and the annual area burned and the size of wildfires over a 25-year period. We tested the hypothesis that increased fire size is commensurate with increased burn severity and increased spatial aggregation of severely burned areas. We also asked how local ecological controls might modulate these relationships by comparing results over the whole study area (the northern Cascade Range) to those from four ecological subsections within it. We found significant positive relationships between climate and fire size, and between fire size and the proportion of high severity and spatial-pattern metrics that quantify the spatial aggregation of high-severity areas within fires, but the strength and significance of these relationships varied among the four subsections. In areas with more contiguous subalpine forests and less complex topography, the proportion and spatial aggregation of severely burned areas were more strongly correlated with fire size. If fire sizes increase in a warming climate, changes in the extent, severity, and spatial pattern of fire regimes are likely to be more pronounced in higher-severity fire regimes with less complex topography and more continuous fuels.

  6. Wafer-scale pixelated detector system

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah; Deptuch, Grzegorz; Zimmerman, Tom

    2017-10-17

    A large area, gapless, detection system comprises at least one sensor; an interposer operably connected to the at least one sensor; and at least one application specific integrated circuit operably connected to the sensor via the interposer wherein the detection system provides high dynamic range while maintaining small pixel area and low power dissipation. Thereby the invention provides methods and systems for a wafer-scale gapless and seamless detector systems with small pixels, which have both high dynamic range and low power dissipation.

  7. Development of a CMOS SOI pixel detector

    CERN Document Server

    Ishino, Hirokazu; Hazumi, M; Ikegami, Y; Kohriki, T; Tajima, O; Terada, S; Tsuboyama, T; Unno, Y; Ushiroda, Y; Ikeda, H; Hara, K; Ishino, H; Kawasaki, T; Miyake, H; Martin, E; Varner, G; Tajima, H; Ohno, M; Fukuda, K; Komatsubara, H; Ida, J

    2007-01-01

    We have developed a monolithic radiation pixel detector using silicon on insulator (SOI) with a commercial 0.15 m fullydepleted- SOI technology and a Czochralski high resistivity silicon substrate in place of a handle wafer. The SOI TEG (Test Element Group) chips with a size of 2.5 x 2.5mm2 consisting of 20 x 20 um2 pixels have been designed and manufactured. Performance tests with a laser light illumination and a . ray radioactive source indicate successful operation of the detector. We also brie y discuss the back gate effect as well as the simulation study.

  8. Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.

    Science.gov (United States)

    Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Strugnell, Jan M; León, Rafael I; Semmens, Jayson M

    2014-01-01

    Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.

  9. CMOS monolithic pixel sensors research and development at LBNL

    Indian Academy of Sciences (India)

    Abstract. This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS ...

  10. Similarities and differences of recent hybrid pixel detectors for X-ray and high energy physics developed at the Paul Scherrer Institut

    Science.gov (United States)

    Tinti, G.; Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Horisberger, R.; Johnson, I.; Jungmann-Smith, J. H.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.

    2015-04-01

    Hybrid pixel detectors are being developed for both photon science and high energy physics. The article will cover similarities and differences in pixel detectors for both applications using two of the pixel detectors developed at the Paul Scherrer Institute (Switzerland) as examples: the EIGER photon counting detector and the psi46dig chip, which has been developed for the Compact Muon Solenoid (CMS) tracking pixel detector upgrade. EIGER is a single photon counting hybrid pixel detector for applications at synchrotron light sources in the energy range from a few to 25 keV. It is characterized by a small pixel size (75 × 75 μm2), high count rate capability (106 counts/pixel/s) and very high data rate, which reaches 6 Gb/s for a 256 × 256 pixel chip. The CMS pixel detector is designed to provide charge information from the pixels in the harsh radiation environment at the Large Hadron Collider. The short time between bunches of 25 ns and the high event rate at luminosity up to 2 × 1034cm-2s-1 require a detector with high hit efficiency, with good timing resolution and the ability to retain timestamp information for the hits. The readout architecture is based on the transfer of hits from the pixels to the periphery, where the trigger validation is performed before data transfer. The data rates of the digitized output reach 160 Mb/s for a 52×80 pixel chip.The specific timing and rate requirements for the detectors, the analog performances (minimum threshold and noise), the power consumption and the radiation hardness will be compared. An overview on future developments based on mutual learning and common solutions will be discussed.

  11. Active Pixel Sensors: Are CCD's Dinosaurs?

    Science.gov (United States)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  12. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase of the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies’ qualification with particular emphasis on irradiation and beam tests are presented.

  13. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, I

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented.

  14. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  15. Nonlinear Pixel Replacement Estimation.

    Science.gov (United States)

    1986-04-01

    taken by the LANDSAT and NIMBUS-7 satellites. They also show the effect of noisy pixels on these techniques arid the types of performance... surface clutter and may not give the best representation of the true intensity values which should be there. The intent of this report is to describe...end c shell sort c sort the real arr~jy elements I(,) to I()) C ascending orde~r c subroutine sliell,,orA(x ri) real*4 x(*i, temp * rnteger*4 i~yn

  16. Parallel averaging of size is possible but range-limited: a reply to Marchant, Simons, and De Fockert.

    Science.gov (United States)

    Utochkin, Igor S; Tiurina, Natalia A

    2014-02-01

    In their recent paper, Marchant, Simons, and De Fockert (2013) claimed that the ability to average between multiple items of different sizes is limited by small samples of arbitrarily attended members of a set. This claim is based on a finding that observers are good at representing the average when an ensemble includes only two sizes distributed among all items (regular sets), but their performance gets worse when the number of sizes increases with the number of items (irregular sets). We argue that an important factor not considered by Marchant et al. (2013) is the range of size variation that was much bigger in their irregular sets. We manipulated this factor across our experiments and found almost the same efficiency of averaging for both regular and irregular sets when the range was stabilized. Moreover, highly regular sets consisting only of small and large items (two-peaks distributions) were averaged with greater error than sets with small, large, and intermediate items, suggesting a segmentation threshold determining whether all variable items are perceived as a single ensemble or distinct subsets. Our results demonstrate that averaging can actually be parallel but the visual system has some difficulties with it when some items differ too much from others. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The kilopixel array pathfinder project (KAPPa), a 16-pixel integrated heterodyne focal plane array: characterization of the single pixel prototype

    Science.gov (United States)

    Wheeler, Caleb H.; Groppi, Christopher E.; Mani, Hamdi; McGarey, Patrick; Kuenzi, Linda; Weinreb, Sander; Russell, Damon S.; Kooi, Jacob W.; Lichtenberger, Arthur W.; Walker, Christopher K.; Kulesa, Craig

    2014-07-01

    We report on the laboratory testing of KAPPa, a 16-pixel proof-of-concept array to enable the creation THz imaging spectrometer with ~1000 pixels. Creating an array an order of magnitude larger than the existing state of the art of 64 pixels requires a simple and robust design as well as improvements to mixer selection, testing, and assembly. Our testing employs a single pixel test bench where a novel 2D array architecture is tested. The minimum size of the footprint is dictated by the diameter of the drilled feedhorn aperture. In the adjoining detector block, a 6mm × 6mm footprint houses the SIS mixer, LNA, matching and bias networks, and permanent magnet. We present an initial characterization of the single pixel prototype using a computer controlled test bench to determine Y-factors for a parameter space of LO power, LO frequency, IF bandwidth, magnet field strength, and SIS bias voltage. To reduce the need to replace poorly preforming pixels that are already mounted in a large format array, we show techniques to improve SIS mixer selection prior to mounting in the detector block. The 2D integrated 16-pixel array design has been evolved as we investigate the properties of the single pixel prototype. Carful design of the prototype has allowed for rapid translation of single pixel design improvements to be easily incorporated into the 16-pixel model.

  18. Response of the pixel detector Timepix to heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Jakubek, Jan [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Koester, Ulli [Institute Laue Langevin, 6 rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France); Platkevic, Michal; Pospisil, Stanislav [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic)

    2011-05-15

    The response of the pixel detector Timepix to ions in the 4-110 MeV kinetic energy range and A=3-136 mass range has been studied at the fission-fragment separator Lohengrin of the Institute Laue Langevin in Grenoble. Timepix detects single ions measuring their position, kinetic energy, and time of arrival. Heavy ions with energy above several tens of 10 MeV produce a distortion of the electronic pixel signal response which arises when the energy collected is, under conventional detector settings, of around {approx}1 MeV per pixel. This effect can be suppressed, and the detector energy range extended, by suitable pixel signal baseline and threshold levels, together with optimally low sensor chip bias voltage. Reasonable results are achieved within the range of ion mass and energy studied extending the linearity level of per pixel measured energy up to {approx}2 MeV.

  19. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  20. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  1. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.

    2008-01-01

    Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.

  2. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tilocca, Antonio [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2013-09-21

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ∼10{sup 3} atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their

  3. Per-Pixel Lighting Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Inanici, Mehlika

    2005-08-01

    This report presents a framework for per-pixel analysis of the qualitative and quantitative aspects of luminous environments. Recognizing the need for better lighting analysis capabilities and appreciating the new measurement abilities developed within the LBNL Lighting Measurement and Simulation Toolbox, ''Per-pixel Lighting Data Analysis'' project demonstrates several techniques for analyzing luminance distribution patterns, luminance ratios, adaptation luminance and glare assessment. The techniques are the syntheses of the current practices in lighting design and the unique practices that can be done with per-pixel data availability. Demonstrated analysis techniques are applicable to both computer-generated and digitally captured images (physically-based renderings and High Dynamic Range photographs).

  4. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim Farah, Fahim Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  5. Small pixel cross-talk MTF and its impact on MWIR sensor performance

    Science.gov (United States)

    Goss, Tristan M.; Willers, Cornelius J.

    2017-05-01

    As pixel sizes reduce in the development of modern High Definition (HD) Mid Wave Infrared (MWIR) detectors the interpixel cross-talk becomes increasingly difficult to regulate. The diffusion lengths required to achieve the quantum efficiency and sensitivity of MWIR detectors are typically longer than the pixel pitch dimension, and the probability of inter-pixel cross-talk increases as the pixel pitch/diffusion length fraction decreases. Inter-pixel cross-talk is most conveniently quantified by the focal plane array sampling Modulation Transfer Function (MTF). Cross-talk MTF will reduce the ideal sinc square pixel MTF that is commonly used when modelling sensor performance. However, cross-talk MTF data is not always readily available from detector suppliers, and since the origins of inter-pixel cross-talk are uniquely device and manufacturing process specific, no generic MTF models appear to satisfy the needs of the sensor designers and analysts. In this paper cross-talk MTF data has been collected from recent publications and the development for a generic cross-talk MTF model to fit this data is investigated. The resulting cross-talk MTF model is then included in a MWIR sensor model and the impact on sensor performance is evaluated in terms of the National Imagery Interoperability Rating Scale's (NIIRS) General Image Quality Equation (GIQE) metric for a range of fnumber/ detector pitch Fλ/d configurations and operating environments. By applying non-linear boost transfer functions in the signal processing chain, the contrast losses due to cross-talk may be compensated for. Boost transfer functions, however, also reduce the signal to noise ratio of the sensor. In this paper boost function limits are investigated and included in the sensor performance assessments.

  6. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  7. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    Vicente Barreto Pinto, Mateus

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  8. Sex-biased inbreeding effects on reproductive success and home range size of the critically endangered black rhinoceros.

    Science.gov (United States)

    Cain, Bradley; Wandera, Antony B; Shawcross, Susan G; Edwin Harris, W; Stevens-Wood, Barry; Kemp, Stephen J; Okita-Ouma, Benson; Watts, Phillip C

    2014-04-01

    A central premise of conservation biology is that small populations suffer reduced viability through loss of genetic diversity and inbreeding. However, there is little evidence that variation in inbreeding impacts individual reproductive success within remnant populations of threatened taxa, largely due to problems associated with obtaining comprehensive pedigree information to estimate inbreeding. In the critically endangered black rhinoceros, a species that experienced severe demographic reductions, we used model selection to identify factors associated with variation in reproductive success (number of offspring). Factors examined as predictors of reproductive success were age, home range size, number of nearby mates, reserve location, and multilocus heterozygosity (a proxy for inbreeding). Multilocus heterozygosity predicted male reproductive success (p58%) and correlated with male home range size (p 44%). Such effects were not apparent in females, where reproductive success was determined by age (p < 0.01, explained deviance 34%) as females raise calves alone and choose between, rather than compete for, mates. This first report of a 3-way association between an individual male's heterozygosity, reproductive output, and territory size in a large vertebrate is consistent with an asymmetry in the level of intrasexual competition and highlights the relevance of sex-biased inbreeding for the management of many conservation-priority species. Our results contrast with the idea that wild populations of threatened taxa may possess some inherent difference from most nonthreatened populations that necessitates the use of detailed pedigrees to study inbreeding effects. Despite substantial variance in male reproductive success, the increased fitness of more heterozygous males limits the loss of heterozygosity. Understanding how individual differences in genetic diversity mediate the outcome of intrasexual competition will be essential for effective management, particularly

  9. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    Science.gov (United States)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  10. How do low dispersal species establish large range sizes? The case of the water beetle Graphoderus bilineatus

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann; Rannap, Riinu; Thomsen, Philip Francis

    2013-01-01

    important than species phylogeny or local spatial attributes. In this study we used the water beetle Graphoderus bilineatus a philopatric species of conservation concern in Europe as a model to explain large range size and to support effective conservation measures for such species that also have limited...... systems and wetlands which used to be highly connected throughout the central plains of Europe. Our data suggest that a broad habitat niche can prevent landscape elements from becoming barriers for species like G. bilineatus. Therefore, we question the usefulness of site protection as conservation...... measures for G. bilineatus and similar philopatric species. Instead, conservation actions should be focused at the landscape level to ensure a long-term viability of such species across their range....

  11. Evaluation of Argos Telemetry Accuracy in the High-Arctic and Implications for the Estimation of Home-Range Size.

    Directory of Open Access Journals (Sweden)

    Sylvain Christin

    Full Text Available Animal tracking through Argos satellite telemetry has enormous potential to test hypotheses in animal behavior, evolutionary ecology, or conservation biology. Yet the applicability of this technique cannot be fully assessed because no clear picture exists as to the conditions influencing the accuracy of Argos locations. Latitude, type of environment, and transmitter movement are among the main candidate factors affecting accuracy. A posteriori data filtering can remove "bad" locations, but again testing is still needed to refine filters. First, we evaluate experimentally the accuracy of Argos locations in a polar terrestrial environment (Nunavut, Canada, with both static and mobile transmitters transported by humans and coupled to GPS transmitters. We report static errors among the lowest published. However, the 68th error percentiles of mobile transmitters were 1.7 to 3.8 times greater than those of static transmitters. Second, we test how different filtering methods influence the quality of Argos location datasets. Accuracy of location datasets was best improved when filtering in locations of the best classes (LC3 and 2, while the Douglas Argos filter and a homemade speed filter yielded similar performance while retaining more locations. All filters effectively reduced the 68th error percentiles. Finally, we assess how location error impacted, at six spatial scales, two common estimators of home-range size (a proxy of animal space use behavior synthetizing movements, the minimum convex polygon and the fixed kernel estimator. Location error led to a sometimes dramatic overestimation of home-range size, especially at very local scales. We conclude that Argos telemetry is appropriate to study medium-size terrestrial animals in polar environments, but recommend that location errors are always measured and evaluated against research hypotheses, and that data are always filtered before analysis. How movement speed of transmitters affects location

  12. Diamond pixel modules

    CERN Document Server

    Gan, K K; Robichaud, A; Potenza, R; Kuleshov, S; Kagan, H; Kass, R; Wermes, N; Dulinski, W; Eremin, V; Smith, S; Sopko, B; Olivero, P; Gorisek, A; Chren, D; Kramberger, G; Schnetzer, S; Weilhammer, P; Martemyanov, A; Hugging, F; Pernegger, H; Lagomarsino, S; Manfredotti, C; Mishina, M; Trischuk, W; Dobos, D; Cindro, V; Belyaev, V; Duris, J; Claus, G; Wallny, R; Furgeri, A; Tuve, C; Goldstein, J; Sciortino, S; Sutera, C; Asner, D; Mikuz, M; Lo Giudice, A; Velthuis, J; Hits, D; Griesmayer, E; Oakham, G; Frais-Kolbl, H; Bellini, V; D'Alessandro, R; Cristinziani, M; Barbero, M; Schaffner, D; Costa, S; Goffe, M; La Rosa, A; Bruzzi, M; Schreiner, T; de Boer, W; Parrini, G; Roe, S; Randrianarivony, K; Dolenc, I; Moss, J; Brom, J M; Golubev, A; Mathes, M; Eusebi, R; Grigoriev, E; Tsung, J W; Mueller, S; Mandic, I; Stone, R; Menichelli, D

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10(16) protons/cm(2) illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel m...

  13. ATLAS Pixel Detector System Test

    CERN Document Server

    Triplett, N

    2007-01-01

    On June 25th of 2007 the ATLAS collaboration lowered the pixel detector into place, however before this the detector had to be qualified through a series of tests. Prior to assembly, each individual piece of the detector and services chain passed a set of quality controls. This was followed by the construction and test of the whole pixel detector. This test of the full chain of services -including the voltage supplies, opto-boards, cooling, temperature monitoring, control software, and the pixel modules themselves- is referred to as the Pixel System Test. The System Test took place in an above-ground laboratory setting at CERN and consisted of two main parts. The first half of the test focused on one of the pixel detector’s endcaps. This endcap consists of 144 modules, making up roughly 10% of the total pixel detector. For the pixel endcap test, most of the 144 modules were operated simultaneously which required that the pixel endcap’s cooling system be functioning as well[1]. Additionally, four scintilla...

  14. Commissioning the CMS pixel detector with Cosmic Rays

    CERN Document Server

    Heyburn, Bernadette

    2009-01-01

    The Compact Muon Solenoid (CMS) is one of two general purpose experiments at the Large Hadron Collider. The CMS experiment prides itself on an ambitious, all silicon based, tracking system. After almost 20 years of design and construction the CMS tracker detector has been installed and commissioned. The tracker detector consists of ten layers of silicon microstrip detectors while three layers of pixel detector modules are situated closest to the interaction point. The pixel detector consists of 66 million pixels of 100mm 150mm size, and is designed to use the shape of the actual charge distribution of charged particles to gain hit resolutions down to 12mm. This paper will focus on commissioning activities in the CMS pixel detector. Results from cosmic ray studies will be presented, in addition to results obtained from the integration of the pixel detector within the CMS detector and various calibration and alignment analyses.

  15. Development of radiation hardened pixel sensors for charged particle detection

    CERN Document Server

    Koziel, Michal

    2014-01-01

    CMOS Pixel Sensors are being developed since a few years to equip vertex detectors for future high-energy physics experiments with the crucial advantages of a low material budget and low production costs. The features simultaneously required are a short readout time, high granularity and high tolerance to radiation. This thesis mainly focuses on the radiation tolerance studies. To achieve the targeted readout time (tens of microseconds), the sensor pixel readout was organized in parallel columns restricting in addition the readout to pixels that had collected the signal charge. The pixels became then more complex, and consequently more sensitive to radiation. Different in-pixel architectures were studied and it was concluded that the tolerance to ionizing radiation was limited to 300 krad with the 0.35- m fabrication process currently used, while the targeted value was several Mrad. Improving this situation calls for implementation of the sensors in processes with a smaller feature size which naturally imp...

  16. Movement Patterns, Home Range Size and Habitat Selection of an Endangered Resource Tracking Species, the Black-Throated Finch (Poephila cincta cincta)

    National Research Council Canada - National Science Library

    Rechetelo, Juliana; Grice, Anthony; Reside, April Elizabeth; Hardesty, Britta Denise; Moloney, James

    2016-01-01

    .... To address this knowledge gap for a range-restricted endangered bird, we estimated home range size, daily movement patterns and habitat use of a granivorous subspecies in northeast Australia, the black-throated finch...

  17. ImageSURF: An ImageJ Plugin for Batch Pixel-Based Image Segmentation Using Random Forests

    Directory of Open Access Journals (Sweden)

    Aidan O'Mara

    2017-11-01

    Full Text Available Image segmentation is a necessary step in automated quantitative imaging. ImageSURF is a macro-compatible ImageJ2/FIJI plugin for pixel-based image segmentation that considers a range of image derivatives to train pixel classifiers which are then applied to image sets of any size to produce segmentations without bias in a consistent, transparent and reproducible manner. The plugin is available from ImageJ update site http://sites.imagej.net/ImageSURF/ and source code from https://github.com/omaraa/ImageSURF. Funding statement: This research was supported by an Australian Government Research Training Program Scholarship.

  18. Pixel-level Analog-To-Digital Converters for Hybrid Pixel Detectors with energy sensitivity

    NARCIS (Netherlands)

    San Segundo Bello, D.; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  19. Design of pixel-level ADCs for energy-sensitive hybrid pixel detectors

    NARCIS (Netherlands)

    San Segundo Bello, D.; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  20. Hybrid Pixel Detectors for gamma/X-ray imaging

    Science.gov (United States)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  1. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-07-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a {approx}10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38.

  2. The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design

    Science.gov (United States)

    Riza, Nabeel A.

    2017-02-01

    Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.

  3. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  4. OMI/Aura Zoom-in Ground Pixel Corners 1-Orbit L2 Swath 13x12km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The Version-3 Aura/OMI Zoom-in Pixel Corner Coordinates and Pixel Size Product, OMPIXCORZ, is available (http://disc.gsfc.nasa.gov/Aura/OMI/ompixcorz_v003.shtml)...

  5. The role of corpus size and syntax in deriving lexico-semantic representations for a wide range of concepts.

    Science.gov (United States)

    De Deyne, Simon; Verheyen, Steven; Storms, Gert

    2015-01-01

    One of the most significant recent advances in the study of semantic processing is the advent of models based on text and other corpora. In this study, we address what impact both the quantitative and qualitative properties of corpora have on mental representations derived from them. More precisely, we evaluate models with different linguistic and mental constraints on their ability to predict semantic relatedness between items from a vast range of domains and categories. We find that a model based on syntactic dependency relations captures significantly less of the variability for all kinds of words, regardless of the semantic relation between them or their abstractness. The largest difference was found for concrete nouns, which are commonly used to assess semantic processing. For both models we find that limited amounts of data suffice in order to obtain reliable predictions. Together, these findings suggest new constraints for the construction of mental models from corpora, both in terms of the corpus size and in terms of the linguistic properties that contribute to mental representations.

  6. Development of silicon micropattern pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Heijne, E.H.M.; Antinori, F.; Beker, H.; Batignani, G.; Beusch, W.; Bonvicini, V.; Bosisio, L.; Boutonnet, C.; Burger, P.; Campbell, M.; Cantoni, P.; Catanesi, M.G.; Chesi, E.; Claeys, C.; Clemens, J.C.; Cohen Solal, M.; Darbo, G.; Da Via, C.; Debusscheere, I.; Delpierre, P.; Di Bari, D.; Di Liberto, S.; Dierickx, B.; Enz, C.C.; Focardi, E.; Forti, F.; Gally, Y.; Glaser, M.; Gys, T.; Habrard, M.C.; Hallewell, G.; Hermans, L.; Heuser, J.; Hurst, R.; Inzani, P.; Jaeger, J.J.; Jarron, P.; Karttaavi, T.; Kersten, S.; Krummenacher, F.; Leitner, R.; Lemeilluer, F.; Lenti, V.; Letheren, M.; Lokajicek, M.; Loukas, D.; Macdermott, M.; Maggi, G.; Manzari, V.; Martinengo, P.; Meddeler, G.; Meddi, F.; Mekkaoui, A.; Menetrey, A.; Middelkamp, P.; Morando, M.; Munns, A.; Musico, P.; Nava, P.; Navach, F.; Neyer, C.; Pellegrini, F.; Pengg, F.; Perego, R.; Pindo, M.; Pospisil, S.; Potheau, R.; Quercigh, E.; Redaelli, N.; Ridky, J.; Rossi, L.; Sauvage, D.; Segato, G.; Simone, S.; Sopko, B.; Stefanini, G.; CERN RD19 collaboration

    1994-09-01

    Successive versions of high speed, active silicon pixel detectors with integrated readout electronics have been developed for particle physics experiments using monolithic and hybrid technologies. Various matrices with binary output as well as a linear detector with analog output have been made. The hybrid binary matrix with 1024 cells (dimension 75 [mu]mx500 [mu]m) can capture events at similar 5 MHz and a selected event can then be read out in <10 [mu]s. In different beam tests at CERN a precision of 25 [mu]m has been achieved and the efficiency was better than 99.2%. Detector thicknesses of 300 [mu]m and 150 [mu]m of silicon have been used. In a test with a [sup 109]Cd source a noise level of 170 e[sup -]r.m.s. (1.4 keV fwhm) has been measured with a threshold non-uniformity of 750 e[sup -] r.m.s. Objectives of the development work are the increase of the size of detecting area without loss of efficiency, the design of an appropriate readout architecture for collider operation, the reduction of material thickness in the detector, understanding of the threshold non-uniformity, study of the sensitivity of the pixel matrices to light and low energy electrons for scintillating fiber detector readout and last but not least, the optimization of cost and yield of the pixel detectors in production. ((orig.))

  7. The Belle II DEPFET pixel detector

    Science.gov (United States)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  8. Leakage current measurements on pixelated CdZnTe detectors

    NARCIS (Netherlands)

    Dirks, B.; Blondel, C.; Daly, F.; Gevin, O.; Limousin, O.; Lugiez, F.

    2006-01-01

    In the field of the R&D of a new generation hard X-ray cameras for space applications we focus on the use of pixelated CdTe or CdZnTe semiconductor detectors. They are covered with 64 (0.9×0.9 mm2) or 256 (0.5×0.5 mm2) pixels, surrounded by a guard ring and operate in the energy ranging from several

  9. The 025 mum front-end for the CMS pixel detector

    CERN Document Server

    Erdmann, W

    2005-01-01

    The front-end for the CMS pixel detector has been translated from the radiation hard DMILL process to a commercial 0.25 mum technology. The smaller feature size of this technology permitted a reduction of the pixel size and other improvements. First results obtained with the translated chip are discussed.

  10. Body size and geographic range do not explain long term variation in fish populations: a Bayesian phylogenetic approach to testing assembly processes in stream fish assemblages.

    Directory of Open Access Journals (Sweden)

    Stephen J Jacquemin

    Full Text Available We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 - 2010 local scale population variation of fishes in West Fork White River (Indiana, USA. The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon's local scale habitat and biotic assemblages.

  11. Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics

    Science.gov (United States)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Pellegrini, G.; Lozano, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2017-03-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of nova and supernova explosions in X and gamma rays, with the use of space missions such as INTEGRAL, XMM-Newton and Swift. We have been also involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes, such as GRI, DUAL and e-ASTROGAM. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs). In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm, with a pixel pitch of 1mm x 1mm. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. An ohmic CdTe pixel detector has been characterised by means of 57Co, 133Ba and 22Na sources. Based on this, its spectroscopic performance and the influence of charge sharing is reported here. The pixel study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the pixel size selection.

  12. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  13. Determining Sample Size with a Given Range of Mean Effects in One-Way Heteroscedastic Analysis of Variance

    Science.gov (United States)

    Shieh, Gwowen; Jan, Show-Li

    2013-01-01

    The authors examined 2 approaches for determining the required sample size of Welch's test for detecting equality of means when the greatest difference between any 2 group means is given. It is shown that the actual power obtained with the sample size of the suggested approach is consistently at least as great as the nominal power. However, the…

  14. Simultaneous pixel detection probabilities and spatial resolution estimation of pixelized detectors by means of correlation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Grabski, V. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico, DF (Mexico)], E-mail: varlen.grabski@cern.ch

    2008-02-21

    On the basis of the determination of statistical correlations between neighboring detector pixels, a novel method of estimating the simultaneous detection probability of pixels and the spatial resolution of pixelized detectors is proposed. The correlations are determined using noise variance measurement for isolated pixels and for the difference between neighboring pixels. The method is validated using images from two image-acquisition devices, a General Electric Senographe 2000D and a SD mammographic unit. The pixelized detector is irradiated with X-rays over its entire surface. It is shown that the simultaneous pixel detection probabilities can be estimated with an accuracy of 0.001-0.003, with an estimated systematic error of less than 0.005. The two-dimensional pre-sampled point-spread function (PSF{sup 0}) is determined using a single Gaussian approximation and a sum of two Gaussian approximations. The results obtained for the pre-sampled PSF{sup 0} show that the single Gaussian approximation is not appropriate, and the sum of two Gaussian approximations providing the best fit predicts the existence of a large ({approx}50%) narrow component. Support for this observation can be found in the recent simulation study of columnar indirect digital detectors by Badano et al. The sampled two-dimensional PSF is determined using Monte Carlo simulation for the L-shaped, uniformly distributed acceptance function for different fill-factor values. The calculation of the pre-sampled modulation transfer function based on the estimated PSF{sup 0} shows that the observed data can be reproduced only by the single Gaussian approximation, and that when the sum of two Gaussians is used, significantly larger values are apparent in the higher-frequency region for images from both detection devices. The proposed method does not require a precisely, constructed tool. It is insensitive to beam collimation and to system physical size and may be indispensable in cases where thin

  15. Simultaneous pixel detection probabilities and spatial resolution estimation of pixelized detectors by means of correlation measurements

    Science.gov (United States)

    Grabski, V.

    2008-02-01

    On the basis of the determination of statistical correlations between neighboring detector pixels, a novel method of estimating the simultaneous detection probability of pixels and the spatial resolution of pixelized detectors is proposed. The correlations are determined using noise variance measurement for isolated pixels and for the difference between neighboring pixels. The method is validated using images from two image-acquisition devices, a General Electric Senographe 2000D and a SD mammographic unit. The pixelized detector is irradiated with X-rays over its entire surface. It is shown that the simultaneous pixel detection probabilities can be estimated with an accuracy of 0.001-0.003, with an estimated systematic error of less than 0.005. The two-dimensional pre-sampled point-spread function (PSF 0) is determined using a single Gaussian approximation and a sum of two Gaussian approximations. The results obtained for the pre-sampled PSF 0 show that the single Gaussian approximation is not appropriate, and the sum of two Gaussian approximations providing the best fit predicts the existence of a large (˜50%) narrow component. Support for this observation can be found in the recent simulation study of columnar indirect digital detectors by Badano et al. The sampled two-dimensional PSF is determined using Monte Carlo simulation for the L-shaped, uniformly distributed acceptance function for different fill-factor values. The calculation of the pre-sampled modulation transfer function based on the estimated PSF 0 shows that the observed data can be reproduced only by the single Gaussian approximation, and that when the sum of two Gaussians is used, significantly larger values are apparent in the higher-frequency region for images from both detection devices. The proposed method does not require a precisely, constructed tool. It is insensitive to beam collimation and to system physical size and may be indispensable in cases where thin absorption slits or edges are

  16. Size segregated mass concentration and size distribution of near surface aerosols over a tropical Indian semi-arid station, Anantapur: Impact of long range transport.

    Science.gov (United States)

    Raghavendra Kumar, K; Narasimhulu, K; Balakrishnaiah, G; Suresh Kumar Reddy, B; Rama Gopal, K; Reddy, R R; Moorthy, K Krishna; Suresh Babu, S

    2009-10-15

    Regular measurements of size segregated as well as total mass concentration and size distribution of near surface composite aerosols, made using a ten-channel Quartz Crystal Microbalance (QCM) cascade impactor during the period of September 2007-May 2008 are used to study the aerosol characteristics in association with the synoptic meteorology. The total mass concentration varied from 59.70+/-1.48 to 41.40+/-1.72 microg m(-3), out of which accumulation mode dominated by approximately 50%. On a synoptic scale, aerosol mass concentration in the accumulation (submicron) mode gradually increased from an average low value of approximately 26.92+/-1.53 microg m(-3) during the post monsoon season (September-November) to approximately 34.95+/-1.32 microg m(-3) during winter (December-February) and reaching a peak value of approximately 43.56+/-1.42 microg m(-3) during the summer season (March-May). On the contrary, mass concentration of aerosols in the coarse (supermicron) mode increased from approximately 9.23+/-1.25 microg m(-3)during post monsoon season to reach a comparatively high value of approximately 25.89+/-1.95 microg m(-3) during dry winter months and a low value of approximately 8.07+/-0.76 microg m(-3) during the summer season. Effective radius, a parameter important in determining optical (scattering) properties of aerosol size distribution, varied between 0.104+/-0.08 microm and 0.167+/-0.06 microm with a mean value of 0.143+/-0.01 microm. The fine mode is highly reduced during the post monsoon period and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. It can be seen that among the two parameters measured, correlation of total mass concentration with air temperature is positive (R(2)=0.82) compared with relative humidity (RH) (R(2)=0.75).

  17. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jain, G., E-mail: geetikajain.hep@gmail.com [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Bhardwaj, A.; Dalal, R. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Eber, R. [Institute fur Experimentelle Kernphysik (Germany); Eichorn, T. [Deutsches Elektronen Synchrotron (Germany); Fernandez, M. [Instituto de Fisica de Cantabria (Spain); Lalwani, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Messineo, A. [Universita di Pisa & INFN sez. di Pisa (Italy); Palomo, F.R. [Escuela Superior de Ingenieros, Universidad de Sevilla (Spain); Peltola, T. [Helsinki Institute of Physics (Finland); Printz, M. [Institute fur Experimentelle Kernphysik (Germany); Ranjan, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Villa, I. [Instituto de Fisica de Cantabria (Spain); Hidalgo, S. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica (Spain)

    2016-07-11

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  18. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Science.gov (United States)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.; CMS Collaboration

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  19. VNR CMS Pixel detector replacement

    CERN Multimedia

    2017-01-01

    Joel Butler, spokesperson of the CMS collaboration explains how a team from many different partner institutes installed a new detector in CMS. This detector is the silicon pixel detector and they’ve been working on it for about five years, to replace one of our existing detectors. This detectors measures particles closer to the beam than any of the other components of this huge detector behind me. It gives us the most precise picture of tracks as they come out of the collisions and expand and travel through the detector. This particular device has twice as many pixels, 120 million, as opposed to about 68 million in the old detector and it can take data faster and pump it out to the analysis more quickly. 00’53’’ Images of the descent, insertion and installation of first piece of the Pixel detector on Tue Feb 28. Images of the descent, insertion and installation of second piece of the Pixel and the two cylinders being joined.

  20. Apodized pixel lenses in compact shadow-casting correlators.

    Science.gov (United States)

    Raj, K; Athale, R A

    1995-04-10

    We present a compact two-dimensional shadow-casting correlator that can perform correlation between inputs of size 256 × 256 and a point-spread function of size 32 × 32. A two-dimensional array of mutually incoherent sources is used to encode the point-spread function, and each source is individually steered to improve the light uniformity and the light-utilization efficiency. The geometric optics constraint requires that the shadow region be very close to the input plane. This constraint is removed by the introduction of apodized pixel lenses in the input spatial light modulator. The pixel lenses move the shadow plane to their Fourier plane, and pixel apodization reduces the interchannel cross talk, thereby improving the signal-to-noise ratio. Simulation and experimental results verifying these concepts are presented.

  1. Influence of Grain Size Distribution on the Mechanical Behavior of Light Alloys in Wide Range of Strain Rates

    Science.gov (United States)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2015-06-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) Al 1560 aluminum and Ma2-1 magnesium alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution. This research carried out in 2014-2015 was supported by grant from ``The Tomsk State University Academic D.I. Mendeleev Fund Program''.

  2. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    Science.gov (United States)

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  3. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  4. Status of the ATLAS pixel detector

    CERN Document Server

    Saavedra Aldo, F

    2005-01-01

    The ATLAS pixel detector is currently being constructed and will be installed in 2006 to be ready for commissioning at the Large Hadron Collider. The complete pixel detector is composed of three concentric barrels and six disks that are populated by 1744 ATLAS Pixel modules. The main components of the pixel module are the readout electronics and the silicon sensor whose active region is instrumented with rectangular pixels. The module has been designed to be able to survive 10 years of operation within the ATLAS detector. A brief description of the pixel detector will be presented with results and problems encountered during the production stage.

  5. SAR Image Complex Pixel Representations

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  6. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu; Shi, Linxi; Gounis, Matthew J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo [Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy and Pixirad Imaging Counters s.r.l., L. Pontecorvo 3, Pisa 56127 (Italy)

    2016-05-15

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  7. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    Science.gov (United States)

    Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-01-01

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  8. A Long-Term Comparison of Yellowstone Cutthroat Trout Abundance and Size Structure in Their Historical Range in Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Kevin A.; Schill, Daniel J.; Elle, F. Steven

    2002-05-23

    We compared estimates of population abundance and size structure for Yellowstone cutthroat trout Oncorhynchus clarki bouvieri obtained by electrofishing 77 stream segments across southeastern Idaho in the 1980s and again in 1999-2000 to test whether populations of Yellowstone cutthroat trout had changed. Sites sampled in the 1980s were relocated in 1999-2000 by using maps and photographs or by finding original site-boundary stakes, so that the same reach of stream was sampled during both periods. Abundance of Yellowstone cutthroat trout longer than 10 cm did not change, averaging 41 fish/100 m of stream during both the 1980s and 1999-2000. The proportion of the total catch of trout composed of Yellowstone cutthroat trout also did not change, averaging 82% in the 1980s and 78% in 1999-2000. At the 48 sites where size structure could be estimated for both periods, the proportion of Yellowstone cutthroat trout that were 10-20 cm long declined slightly (74% versus 66%), but the change was due entirely to the shift in size structure at the Teton River sites. The number of sites that contained rainbow trout O. mykiss or cutthroat trout 3 rainbow trout hybrids rose from 23 to 37, but the average proportion of the catch composed of rainbow trout and hybrids did not increase (7% in both the 1980s and 1999-2000). Although the distribution and abundance of Yellowstone cutthroat trout have been substantially reduced in Idaho over the last century, our results indicate that Yellowstone cutthroat trout abundance and size structure in Idaho have remained relatively stable at a large number of locations for the last 10-20 years. The expanding distribution of rainbow trout and hybrids in portions of the upper Snake River basin, however, calls for additional monitoring and active management actions.

  9. The Pixels system: last but not late!

    CERN Multimedia

    Kevin Einsweiler

    The Pixel Detector for ATLAS is one of the smallest, but most challenging components of the experiment. It lives in the dangerous territory directly outside the beampipe, where the radiation environment is particularly fierce, and it must be roughly one million times more radiation-hard than its human designers. Starting at a radius of just 5cm from the interaction point where the proton beams collide, it occupies a volume of slightly more than one meter in length and a half meter in diameter. In this compact region, there are eighty million channels of electronics (most of the electronics channels in ATLAS!), each capable of measuring the charge deposited by a track in a silicon pixel measuring only 50 microns by 400 microns in size (a volume of 0.005 cubic millimeters). A total cooling capacity of 15 KWatts is available to keep it operating comfortably at -5C. This detector is built around, and provides the support for, the central beampipe of ATLAS. It is supported on carbon fiber rails inside of the Pix...

  10. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2017-01-01

    Run 2 of the LHC collider sets new challenges to track and vertex reconstruction because of its higher energy, pileup and luminosity. The ATLAS tracking performance relies critically on the Pixel Detector. Therefore, in view of Run 2, the ATLAS collaboration has constructed the first 4-layer pixel detector in Particle Physics by installing a new pixel layer, called Insertable B-Layer (IBL). Operational experience and performance of the 4-layer Pixel Detector during Run 2 are presented.

  11. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  12. {sup 18}F-FDG positron autoradiography with a particle counting silicon pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, and INFN Sezione di Napoli, I-80126 Napoli (Italy); Marotta, M [Dipartimento di Medicina Sperimentale, Universita di Napoli Federico II, I-80131 Napoli (Italy); Aloj, L; Lastoria, S [Medicina Nucleare, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione G. Pascale, I-80131 Napoli (Italy)], E-mail: adele.lauria@na.infn.it

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with {sup 18}F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm{sup 2} sensitive area, 300 {mu}m thick) has high intrinsic resolution (55 {mu}m pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with {sup 18}F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with {sup 18}F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of {sup 18}F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for {beta}{sup +} of 0.377 cps Bq{sup -1}, a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm{sup -2}. Real-time {sup 18}F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 {mu}m) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with {approx}100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  13. Optical Cloud Pixel Recovery via Machine Learning

    Directory of Open Access Journals (Sweden)

    Subrina Tahsin

    2017-05-01

    Full Text Available Remote sensing derived Normalized Difference Vegetation Index (NDVI is a widely used index to monitor vegetation and land use change. NDVI can be retrieved from publicly available data repositories of optical sensors such as Landsat, Moderate Resolution Imaging Spectro-radiometer (MODIS and several commercial satellites. Studies that are heavily dependent on optical sensors are subject to data loss due to cloud coverage. Specifically, cloud contamination is a hindrance to long-term environmental assessment when using information from satellite imagery retrieved from visible and infrared spectral ranges. Landsat has an ongoing high-resolution NDVI record starting from 1984. Unfortunately, this long time series NDVI data suffers from the cloud contamination issue. Though both simple and complex computational methods for data interpolation have been applied to recover cloudy data, all the techniques have limitations. In this paper, a novel Optical Cloud Pixel Recovery (OCPR method is proposed to repair cloudy pixels from the time-space-spectrum continuum using a Random Forest (RF trained and tested with multi-parameter hydrologic data. The RF-based OCPR model is compared with a linear regression model to demonstrate the capability of OCPR. A case study in Apalachicola Bay is presented to evaluate the performance of OCPR to repair cloudy NDVI reflectance. The RF-based OCPR method achieves a root mean squared error of 0.016 between predicted and observed NDVI reflectance values. The linear regression model achieves a root mean squared error of 0.126. Our findings suggest that the RF-based OCPR method is effective to repair cloudy pixels and provides continuous and quantitatively reliable imagery for long-term environmental analysis.

  14. The influence of landscape characteristics and home-range size on the quantification of landscape-genetics relationships

    Science.gov (United States)

    Tabitha A. Graves; Tzeidle N. Wasserman; Milton Cezar Ribeiro; Erin L. Landguth; Stephen F. Spear; Niko Balkenhol; Colleen B. Higgins; Marie-Josee Fortin; Samuel A. Cushman; Lisette P. Waits

    2012-01-01

    A common approach used to estimate landscape resistance involves comparing correlations of ecological and genetic distances calculated among individuals of a species. However, the location of sampled individuals may contain some degree of spatial uncertainty due to the natural variation of animals moving through their home range ormeasurement error in plant or animal...

  15. Climate change velocity since the Last Glacial Maximum and its importance for patterns of species richness and range size

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Arge, Lars Allan; Svenning, J.-C.

    these predictions using global data on mammal and amphibian distributions. Consistent with our predictions, richness of small-ranged species of both groups was negatively associated with velocity. Velocity generally explained more variation in richness than did the simple climate anomaly. Climate velocity appears...... to capture an important historical signal on current mammal and amphibian distributions....

  16. Home range size and habitat-use pattern of nesting prairie falcons near oil developments in northeastern Wyoming

    Science.gov (United States)

    John R. Squires; Stanley H. Anderson; Robert Oakleaf

    1993-01-01

    Movements and habitat-use patterns were evaluated for a small population (n = 6 pairs) of Prairie Falcons (Falco mexicanus) nesting near Gillette, Wyoming. A total of 2462 falcon relocations was documented through telemetry. The average (n = 6) harmonic-mean 95%-contour home-range was 69 km2, whereas the average 75% contour was 26.6 km2. The convex polygon...

  17. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    In the immediate vicinity of the collision point, CMS will be equipped with pixel detectors consisting of no fewer than 50 million pixels measuring 150 microns along each side. Each of the pixels, which receive the signal, is connected to its own electronic circuit by a tiny sphere (seen here in the electron microscope image) measuring 15 to 20 microns in diameter.

  18. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  19. ATLAS pixel detector electronics and sensors

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G; Bernardet, K [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Ackers, M; Barbero, M B [Physikalisches Institut der Universitaet Bonn, Nussallee 12, D - 53115 Bonn (Germany); Alberti, F A; Aleppo, M; Alimonti, G; Andreani, A; Andreazza, A [INFN Milano, via Celoria 16, IT - 20133 Milano (Italy); Alonso, J; Anderssen, E C; Arguin, J-F; Beringer, J [Lawrence Berkeley National Laboratory and University of California, Physics Division MS50B-6227, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States); Arms, K E [Ohio State University, 191 West Woodruff Ave, Columbus, OH 43210-1117, United States of America (United States); Barberis, D; Beccherle, R B [INFN Genova, via Dodecaneso 33, IT - 16146 Genova (Italy); Bazalova, M [Institute of Physics, Academy of Sciences of the Czech Republic Na Slovance 2, CZ - 18221 Praha 8 (Czech Republic); Becks, K H; Bellina, F [Bergische Universitaet, Fachbereich C, Physik Postfach 100127, Gauss-Strasse 20, D- 42097 Wuppertal (Germany); Behera, P K [203 VAN ALLEN HALL, IOWA CITY IA 52242-1479, United States of America (United States)], E-mail: MGGilchriese@lbl.gov (and others)

    2008-07-15

    The silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized. Detailed descriptions of the pixel detector electronics and the silicon sensors are given. The design, fabrication, assembly and performance of the pixel detector modules are presented. Data obtained from test beams as well as studies using cosmic rays are also discussed.

  20. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  1. The effect of kauri (Agathis australis) on grain size distribution and clay mineralogy of andesitic soils in the Waitakere Ranges, New Zealand

    NARCIS (Netherlands)

    Jongkind, A.G.; Buurman, P.

    2006-01-01

    Kauri (Agathis australis) is generally associated with intense podzolisation, but little research has been carried out to substantiate this. We studied soil profiles, grain size distribution patterns and clay mineralogy under kauri and broadleaf/tree fern vegetation in the Waitakere Ranges, North

  2. Pixel-structured scintillators for digital x-ray imaging

    Science.gov (United States)

    Yun, Seung Man; Lim, Chang Hwy; Kim, Tae Woo; Kim, Ho Kyung

    2009-02-01

    We exploit the development of a pixel-structured scintillator that would match the readout pixel array, such as a photodiode array. This combination may become an indirect-conversion detector having high x-ray sensitivity without sacrificing the inherent resolving power defined by the pixel geometry of the photodiodes, because the scintillation material has a relatively high atomic number and density compared with the photoconductors, and the pixel-structured design may provide a band-limited modulation-transfer function (MTF) characteristic even with a thicker scintillator. For the realization of pixel-structured scintillators, two-dimensional (2D) array of pixel-structured wells with a depth of 100μm was prepared by using a deep reactive ion etching (DRIE) process on a silicon wafer. Then, Gd2O2S:Tb phosphor powders with organic binders were filled within the well array by using a sedimentation method. Three different pixel designs of 50, 100 and 200 μm with a wall (or septum) thickness of 10 μm were considered. Each sample size was 20 × 30 mm2 considering intra-oral imaging. The samples were coupled to the CMOS photodiode array with a pixel pitch of 48 μm and the imaging performances were evaluated in terms of MTF, NPS (noise-power spectrum) and DQE (detective quantum efficiency) at intra-oral imaging conditions. From the measurement results, the sensitivities of the samples with 50, 100 and 200 μm pitch designs were about 12, 25 and 41% of that of the reference commercial phosphor screen (MinR-2000). Hence the DQE performances at 0.2 lp/mm were about 3.7, 9.6, 22.7% of the reference screen. According to the Monte Carlo simulations, the lower sensitivity was due to the loss of optical photons in silicon walls. However, the MTF performance was mainly determined by the designed pixel apertures. If we make pixel-structured scintillators with a deeper depth and provide reflectance on walls, much enhanced DQE performance is expected.

  3. CMOS-Compatible PureGaB Ge-on-Si APD pixel arrays

    NARCIS (Netherlands)

    Sammak, A.; Aminian, Mahdi; Nanver, L.K.; Charbon, E.E.E.

    2016-01-01

    Pure gallium and pure boron (PureGaB) Ge-on-Si photodiodes were fabricated in a CMOS compatible process and operated in linear and avalanche mode. Three different pixel geometries with very different area-to-perimeter ratios were investigated in linear arrays of 300 pixels with each a size of 26 ×

  4. Is the Recently Proposed Mars-Sized Perturber at 65–80 AU Ruled Out by the Cassini Ranging Data?

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2017-10-01

    Full Text Available Recently, the existence of a pointlike pertuber PX with 1 m♂ ≲ mX ≲ 2.4 m⊕ (the symbol “♂” denotes Mars supposedly moving at 65–80 AU along a moderately inclined orbit has been hypothesized in order to explain certain features of the midplane of the Kuiper Belt Objects (KBOs. We preliminarily selected two possible scenarios for such a PX, and numerically simulated its effect on the Earth-Saturn range ρ(t by varying some of its orbital parameters over a certain time span; then, we compared our results with some existing actual range residuals. By assuming mX = 1 m♂ and a circular orbit, such a putative new member of our Solar System would nominally perturb ρ(t by a few km over Δt = 12 year (2004 − 2016. However, the Cassini spacecraft accurately measured ρ(t to the level of σρ ≃ 100 m. Nonetheless, such a scenario should not be considered as necessarily ruled out since the Cassini data were reduced so far without explicitly modeling any PX. Indeed, a NASA JPL team recently demonstrated that an extra-signature as large as 4 km affecting the Kronian range would be almost completely absorbed in fitting incomplete dynamical models, i.e., without PX itself, to such simulated data, thus not showing up in the standard post-fit range residuals. Larger anomalous signatures would instead occur for mX > 1 m♂. Their nominal amplitude could be as large as 50 − 150 km for mX = 2.4 m⊕, thus making less plausible their existence.

  5. Physical characterization and performance comparison of active- and passive-pixel CMOS detectors for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Elbakri, I A; Rickey, D W [CancerCare Manitoba, Winnipeg, MB (Canada); McIntosh, B J [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB (Canada)], E-mail: Idris.Elbakri@cancercare.mb.ca

    2009-03-21

    We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 {mu}m detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.

  6. Physical characterization and performance comparison of active- and passive-pixel CMOS detectors for mammography

    Science.gov (United States)

    Elbakri, I A; McIntosh, B J; Rickey, D W

    2009-03-01

    We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 µm detector element (del) size and an active area of 5 cm × 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.

  7. Pixel mask-based three-dimensional display with uniform resolution

    Science.gov (United States)

    Zhao, Bai-Chuan; Lv, Guo-Jiao; Wu, Fei; Zhao, Wu-Xiang; Deng, Huan; Wang, Qiong-Hua

    2017-07-01

    A pixel mask-based three-dimensional (3-D) display with uniform resolution is proposed. This 3-D display consists of a reflected light source, a pixel mask, a liquid crystal display (LCD) panel, and a lenticular lens. The reflected light source is located on the bottom layer of the proposed 3-D display. It has a reflective structure to improve optical efficiency, so it can make up the brightness loss, which is caused by the pixel mask. The pixel mask is located between the reflected light source and the LCD panel, and is attached on the back surface of the LCD panel. This pixel mask is made of a reflective material, and some transparent areas are etched on it. The pixel mask redefines the pixels of the two-dimensional display panel located in front of it, so the size and location of redefined pixels depend on the transparent area of the pixel mask. The arrangement of the redefined pixels can increase the column numbers of synthetic images. Therefore, the synthetic images can make 3-D images have uniform resolution. A 4-view prototype of this display is developed and the experimental result shows the proposed method can improve resolution uniformity successfully.

  8. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  9. A single pixel camera video ophthalmoscope

    Science.gov (United States)

    Lochocki, B.; Gambin, A.; Manzanera, S.; Irles, E.; Tajahuerce, E.; Lancis, J.; Artal, P.

    2017-02-01

    There are several ophthalmic devices to image the retina, from fundus cameras capable to image the whole fundus to scanning ophthalmoscopes with photoreceptor resolution. Unfortunately, these devices are prone to a variety of ocular conditions like defocus and media opacities, which usually degrade the quality of the image. Here, we demonstrate a novel approach to image the retina in real-time using a single pixel camera, which has the potential to circumvent those optical restrictions. The imaging procedure is as follows: a set of spatially coded patterns is projected rapidly onto the retina using a digital micro mirror device. At the same time, the inner product's intensity is measured for each pattern with a photomultiplier module. Subsequently, an image of the retina is reconstructed computationally. Obtained image resolution is up to 128 x 128 px with a varying real-time video framerate up to 11 fps. Experimental results obtained in an artificial eye confirm the tolerance against defocus compared to a conventional multi-pixel array based system. Furthermore, the use of a multiplexed illumination offers a SNR improvement leading to a lower illumination of the eye and hence an increase in patient's comfort. In addition, the proposed system could enable imaging in wavelength ranges where cameras are not available.

  10. The simulation of charge sharing in semiconductor X-ray pixel detectors

    CERN Document Server

    Mathieson, K; O'Shea, V; Passmore, M S; Rahman, M; Smith, K M; Watt, J; Whitehill, C

    2002-01-01

    Two simulation packages were used to model the sharing of charge, due to the scattering and diffusion of carriers, between adjacent pixel elements in semiconductors X-ray detectors. The X-ray interaction and the consequent multiple scattering was modelled with the aid of the Monte Carlo package, MCNP. The resultant deposited charge distribution was then used to create the charge cloud profile in the finite element semiconductor simulation code MEDICI. The analysis of the current pulses induced on pixel electrodes for varying photon energies was performed for a GaAs pixel detector. For a pixel pitch of 25 mu m, the charge lost to a neighbouring pixel was observed to be constant, at 0.6%, through the energies simulated. Ultimately, a fundamental limit on the pixel element size for imaging and spectroscopic devices may be set due to these key physical principles.

  11. [Altitudinal patterns of species richness and species range size of vascular plants in Xiaolong- shan Reserve of Qinling Mountain: a test of Rapoport' s rule].

    Science.gov (United States)

    Zheng, Zhi; Gong, Da-Jie; Sun, Cheng-Xiang; Li, Xiao-Jun; Li, Wan-Jiang

    2014-09-01

    Altitudinal patterns of species richness and species range size and their underlying mechanisms have long been a key topic in biogeography and biodiversity research. Rapoport's rule stated that the species richness gradually declined with the increasing altitude, while the species ranges became larger. Using altitude-distribution database from Xiaolongshan Reverse, this study explored the altitudinal patterns of vascular plant species richness and species range in Qinling Xiaolongshan Reserve, and examined the relationships between species richness and their distributional middle points in altitudinal bands for different fauna, taxonomic units and growth forms and tested the Rapoport's rule by using Stevens' method, Pagel's method, mid-point method and cross-species method. The results showed that the species richness of vascular plants except small-range species showed a unimodal pattern along the altitude in Qinling Xiaolongshan Reserve and the highest proportion of small-range species was found at the lower altitudinal bands and at the higher altitudinal bands. Due to different assemblages and examining methods, the relationships between species distributing range sizes and the altitudes were different. Increasing taxonomic units was easier to support Rapoport's rule, which was related to niche differences that the different taxonomic units occupied. The mean species range size of angiosperms showed a unimodal pattern along the altitude, while those of the gymnosperms and pteridophytes were unclearly regular. The mean species range size of the climbers was wider with the increasing altitude, while that of the shrubs which could adapt to different environmental situations was not sensitive to the change of altitude. Pagel's method was easier to support the Rapoport's rule, and then was Steven's method. On the contrary, due to the mid-domain effect, the results of the test by using the mid-point method showed that the mean species range size varied in a unimodal

  12. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  13. X-Ray Beam Studies of Charge Sharing in Small Pixel, Spectroscopic, CdZnTe Detectors

    Science.gov (United States)

    Allwork, Christopher; Kitou, Dimitris; Chaudhuri, Sandeep; Sellin, Paul J.; Seller, Paul; Veale, Matthew C.; Tartoni, Nicola; Veeramani, Perumal

    2012-08-01

    Recent advances in the growth of CdZnTe material have allowed the development of small pixel, spectroscopic, X-ray imaging detectors. These detectors have applications in a diverse range of fields such as medical, security and industrial sectors. As the size of the pixels decreases relative to the detector thickness, the probability that charge is shared between multiple pixels increases due to the non zero width of the charge clouds drifting through the detector. These charge sharing events will result in a degradation of the spectroscopic performance of detectors and must be considered when analyzing the detector response. In this paper charge sharing and charge loss in a 250 μm pitch CdZnTe pixel detector has been investigated using a mono-chromatic X-ray beam at the Diamond Light Source, U.K. Using a 20 μm beam diameter the detector response has been mapped for X-ray energies both above (40 keV) and below (26 keV) the material K-shell absorption energies to study charge sharing and the role of fluorescence X-rays in these events.

  14. Validity of Dynamic Light Scattering Method to Analyze a Range of Gold and Copper Nanoparticle Sizes Attained by Solids Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Yu. V. Golubenko

    2014-01-01

    Full Text Available Nanoparticles of metals possess a whole series of features, concerned with it’s sizes, this leads to appearing or unusual electromagnetic and optical properties, which are untypical for particulates.An extended method of receiving nanoparticles by means of laser radiation is pulse laser ablation of hard targets in liquid medium.Varying the parameters of laser radiation, such as wavelength of laser radiation, energy density, etc., we can operate the size and shape of the resultant particles.The greatest trend of application in medicine have the nanoparticles of iron, copper, silver, silicon, magnesium, gold and zinc.The subject matter in this work is nanoparticles of copper and gold, received by means of laser ablation of hard targets in liquid medium.The aim of exploration, represented in the article, is the estimation of application of the dynamic light scattering method for determination of the range of nanoparticles sizes in the colloidal solution.For studying of the laser ablation process was chosen the second harmonic of Nd:YAG laser with the wavelength of 532 nm. Special attention was spared for the description of the experiment technique of receiving of nanoparticles.As the liquid medium ethanol and distillation water were used.For exploration of the received colloidal system have been used the next methods: DLS, transmission electron microscopy (TEM and scanning electron microscopy (SEM.The results of measuring by DLS method showed that colloidal solution of the copper in the ethanol is the steady system. Copper nanoparticle’s size reaches 200 nm and is staying in the same size for some time.Received system from the gold’s nanoparticles is polydisperse, unsteady and has a big range of the nanoparticle’s sizes. This fact was confirmed by means of photos, got from the TEM FEI Tecnai G2F20 + GIF and SEM Helios NanoLab 660. The range of the gold nanoparticle’s sizes is from 5 to 60 nm. So, it has been proved that the DLS method is

  15. Proceedings of PIXEL98 -- International pixel detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.; Kwan, S. [eds.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  16. Multiport solid-state imager characterization at variable pixel rates

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; Albright, K.A. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley Lab., CA (United States)

    1993-08-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  17. Virus based Full Colour Pixels using a Microheater

    Science.gov (United States)

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-09-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature’s inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future.

  18. Planar Pixel Sensors for the ATLAS Upgrade: Beam Tests results

    CERN Document Server

    Weingarten, J

    2012-01-01

    The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.

  19. Electrical simulation of a DEPFET pixel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Koffmane, Christian; Moser, Hans-Guenther; Ninkovic, Jelena; Richter, Rainer; Wassatsch, Andreas [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: DEPFET-Collaboration

    2011-07-01

    The Belle II experiment will use two layers of pixel detectors to achieve a good vertex resolution. The two layers will consist of 40 pixel sensors each with roughly 190.000 DEPFET pixels to provide the necessary spatial resolution. In addition to the array of DEPFET pixels steering and read-out ASICs are bump bonded on the pixel sensor. The high luminosity of the Belle-II experiment requires a fast and parallel read-out. The pixel sensor will be read-out in rolling shutter-mode with a row read-out time of 100 ns and a frame time of 20 {mu}s. To find design solutions which allow such short read-out times simulations and measurements of prototypes are performed. The electrical simulations incorporating the ASICs and DEPFET pixel array allow early investigations on the interaction between the chips and the pixel array e.g. the pixel output signal depending on the position of the pixel within the array. In the following a model describing the DEPFETs intrinsic properties like the MOS-FET characteristic, the internal amplification and the reset mechanism as well as parasitic resistive and capacitive elements is presented and simulation results are discussed.

  20. Enrichment and distribution of 24 elements within the sub-sieve particle size distribution ranges of fly ash from wastes incinerator plants.

    Science.gov (United States)

    Raclavská, Helena; Corsaro, Agnieszka; Hartmann-Koval, Silvie; Juchelková, Dagmar

    2017-12-01

    The management of an increasing amount of municipal waste via incineration has been gaining traction. Fly ash as a by-product of incineration of municipal solid waste is considered a hazardous waste due to the elevated content of various elements. The enrichment and distribution of 24 elements in fly ash from three wastes incinerators were evaluated. Two coarse (>100 μm and particle size fractions separated on a cyclosizer system were analyzed. An enhancement in the enrichment factor was observed in all samples for the majority of elements in >100 μm range compared with particle size ranges. These variations were attributed primarily to: (i) the vaporization and condensation mechanisms, (ii) the different design of incineration plants, (iii) incineration properties, (iv) the type of material being incinerated, and (v) the affinity of elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Design of a 3D-IC multi-resolution digital pixel sensor

    Science.gov (United States)

    Brochard, N.; Nebhen, J.; Dubois, J.; Ginhac, D.

    2016-04-01

    This paper presents a digital pixel sensor (DPS) integrating a sigma-delta analog-to-digital converter (ADC) at pixel level. The digital pixel includes a photodiode, a delta-sigma modulation and a digital decimation filter. It features adaptive dynamic range and multiple resolutions (up to 10-bit) with a high linearity. A specific row decoder and column decoder are also designed to permit to read a specific pixel chosen in the matrix and its neighborhood of 4 x 4. Finally, a complete design with the CMOS 130 nm 3D-IC FaStack Tezzaron technology is also described, revealing a high fill-factor of about 80%.

  2. Cyclops: single-pixel imaging lidar system based on compressive sensing

    Science.gov (United States)

    Magalhães, F.; Correia, M. V.; Farahi, F.; Pereira do Carmo, J.; Araújo, F. M.

    2017-11-01

    Mars and the Moon are envisaged as major destinations of future space exploration missions in the upcoming decades. Imaging LIDARs are seen as a key enabling technology in the support of autonomous guidance, navigation and control operations, as they can provide very accurate, wide range, high-resolution distance measurements as required for the exploration missions. Imaging LIDARs can be used at critical stages of these exploration missions, such as descent and selection of safe landing sites, rendezvous and docking manoeuvres, or robotic surface navigation and exploration. Despite these devices have been commercially available and used for long in diverse metrology and ranging applications, their size, mass and power consumption are still far from being suitable and attractive for space exploratory missions. Here, we describe a compact Single-Pixel Imaging LIDAR System that is based on a compressive sensing technique. The application of the compressive codes to a DMD array enables compression of the spatial information, while the collection of timing histograms correlated to the pulsed laser source ensures image reconstruction at the ranged distances. Single-pixel cameras have been compared with raster scanning and array based counterparts in terms of noise performance, and proved to be superior. Since a single photodetector is used, a better SNR and higher reliability is expected in contrast with systems using large format photodetector arrays. Furthermore, the event of failure of one or more micromirror elements in the DMD does not prevent full reconstruction of the images. This brings additional robustness to the proposed 3D imaging LIDAR. The prototype that was implemented has three modes of operation. Range Finder: outputs the average distance between the system and the area of the target under illumination; Attitude Meter: provides the slope of the target surface based on distance measurements in three areas of the target; 3D Imager: produces 3D ranged

  3. Causal Pixel Purity Index (PPI)

    Science.gov (United States)

    Wu, Chao-Cheng; Chang, Chein-I.

    2009-05-01

    Pixel Purity Index (PPI) has been widely used in endmember extraction. While it is available in ENVI software there are several interesting issues arising in its implementation. This paper re-invents the wheel by re-visiting the design rationale of the PPI and re-designing algorithms to implement PPI. More specifically, it develops the so-called Causal PPI (CPPI) which implements the PPI in a causal manner in the sense that the information used for data processing is only up to the data sample currently being visited. If the time required for computer processing is negligible, the CPPI actually becomes a real time PPI. The proposed CPPI can be implemented automatically and resolves the main issue of requiring human intervention to determine parameters.

  4. FROM IMAGE CONTOURS TO PIXELS

    Directory of Open Access Journals (Sweden)

    G. Scarmana

    2012-07-01

    Full Text Available This paper relates to the reconstruction of digital images using their contour representations. The process involves determining the pixel intensity value which would exist at the intersections of a regular grid using the nodes of randomly spaced contour locations. The reconstruction of digital images from their contour maps may also be used as a tool for image compression. This reconstruction process may provide for more accurate results and improved visual details than existing compressed versions of the same image, while requiring similar memory space for storage and speed of transmission over digital links. For the class of images investigated in this work, the contour approach to image reconstruction and compression requires contour data to be filtered and eliminated from the reconstruction process. Statistical tests which validate the proposed process conclude this paper.

  5. ATLAS Pixel Opto-Electronics

    CERN Document Server

    Arms, K E; Gan, K K; Holder, M; Jackson, P; Johnson, M; Kagan, H; Kass, R; Rahimi, A M; Roggenbuck, A; Rush, C; Schade, P; Smith, S; Ter-Antonian, R; Ziolkowski, M; Zoeller, M M

    2005-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 micron CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results of the performance of these chips, including irradiation with 24 GeV protons up to 61 Mrad (2.3 x 10e15 p/cm^2).

  6. Pixel readout chip for the ATLAS experiment

    CERN Document Server

    Ackers, M; Blanquart, L; Bonzom, V; Comes, G; Fischer, P; Keil, M; Kühl, T; Meuser, S; Delpierre, P A; Treis, J; Raith, B A; Wermes, N

    1999-01-01

    Pixel detectors with a high granularity and a very large number of sensitive elements (cells) are a very recent development used for high precision particle detection. At the Large Hadron Collider LHC at CERN (Geneva) a pixel detector with 1.4*10/sup 8/ individual pixel cells is developed for the ATLAS detector. The concept is a hybrid detector. Consisting of a pixel sensor connected to a pixel electronics chip by bump and flip chip technology in one-to-one cell correspondence. The development and prototype results of the pixel front end chip are presented together with the physical and technical requirements to be met at LHC. Lab measurements are reported. (6 refs).

  7. Dead pixel replacement in LWIR microgrid polarimeters.

    Science.gov (United States)

    Ratliff, Bradley M; Tyo, J Scott; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-06-11

    LWIR imaging arrays are often affected by nonresponsive pixels, or "dead pixels." These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data.

  8. The ALICE Silicon Pixel Detector System (SPD)

    CERN Document Server

    Kluge, A; Antinori, Federico; Burns, M; Cali, I A; Campbell, M; Caselle, M; Ceresa, S; Dima, R; Elias, D; Fabris, D; Krivda, Marian; Librizzi, F; Manzari, Vito; Morel, M; Moretto, Sandra; Osmic, F; Pappalardo, G S; Pepato, Adriano; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Stefanini, G; Torcato De Matos, C; Turrisi, R; Tydesjo, H; Viesti, G; PH-EP

    2007-01-01

    The ALICE silicon pixel detector (SPD) comprises the two innermost layers of the ALICE inner tracker system. The SPD includes 120 detector modules (half-staves) each consisting of 10 ALICE pixel chips bump bonded to two silicon sensors and one multi-chip read-out module. Each pixel chip contains 8192 active cells, so that the total number of pixel cells in the SPD is ≈ 107. The on-detector read-out is based on a multi-chip-module containing 4 ASICs and an optical transceiver module. The constraints on material budget and detector module dimensions are very demanding.

  9. Sub-pixel spatial resolution wavefront phase imaging

    Science.gov (United States)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  10. First Light with a 67-Million-Pixel WFI Camera

    Science.gov (United States)

    1999-01-01

    optical system is indispensible to focus correctly a field of this large size - 0.8 degree diameter - on the flat CCD mosaic (12 x 12 cm 2 ). The WFI achromatic corrector consists of 6 lenses of up to 28 cm diameter and is able to concentrate 80% of the light of a point source into the area of one pixel in a flat focal plane. Up to 50 filters will be permanently mounted in the camera. A unique facility is provided by a set of 26 interference filters which cover the entire optical range from 380 - 930 nm and thus allows a rough analysis of the spectra of the typically 100,000 objects that are recorded in one field of view. The CCD's possess a very high sensitivity to ultraviolet light and the WFI is only the second UV-sensitive wide-field imager in service in the world. The camera mechanics was designed and built at the MPI-A which also provided the filters. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  11. Pixel size and pitch measurements of liquid crystal spatial light ...

    Indian Academy of Sciences (India)

    polarization control, optical data processing, wavefront correction using adaptive optics, holographic data storage etc [1–6]. These devices are capable of modulating light depending on the applied voltage and polarization state of the input light. One of the important figures of merit is its spatial resolution that is determined.

  12. Generalized Mittag-Leffler functions in the theory of finite-size scaling for systems with strong anisotropy and/or long-range interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chamati, H; Tonchev, N S [Institute of Solid State Physics, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria)

    2006-01-20

    The difficulties arising in the investigation of finite-size scaling in d-dimensional O(n) systems with strong anisotropy and/or long-range interaction, decaying with the interparticle distance r as r{sup -d-{sigma}}(0 < {sigma} {<=} 2), are discussed. Some integral representations aiming at the simplification of the investigations are presented for the classical and quantum lattice sums that take place in the theory. Special attention is paid to a more general form allowing to treat both cases on an equal footing and in addition cases with strong anisotropic interactions and different geometries. The analysis is simplified further by expressing this general form in terms of a generalization of the Mittag-Leffler special functions. This turned out to be very useful for the extraction of asymptotic finite-size behaviours of the thermodynamic functions.

  13. Monte Carlo Optimization of Crystal Configuration for Pixelated Molecular SPECT Scanners

    Energy Technology Data Exchange (ETDEWEB)

    Mahani, Hojjat [Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Research Center for Molecular and Cellular Imaging, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of); Raisali, Gholamreza [Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Kamali-Asl, Alireza [Radiation Medicine Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ay, Mohammad Reza, E-mail: mohammadreza_ay@sina.tums.ac.ir [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of)

    2017-02-01

    Resolution-sensitivity-PDA tradeoff is the most challenging problem in design and optimization of pixelated preclinical SPECT scanners. In this work, we addressed such a challenge from a crystal point-of-view by looking for an optimal pixelated scintillator using GATE Monte Carlo simulation. Various crystal configurations have been investigated and the influence of different pixel sizes, pixel gaps, and three scintillators on tomographic resolution, sensitivity, and PDA of the camera were evaluated. The crystal configuration was then optimized using two objective functions: the weighted-sum and the figure-of-merit methods. The CsI(Na) reveals the highest sensitivity of the order of 43.47 cps/MBq in comparison to the NaI(Tl) and the YAP(Ce), for a 1.5×1.5 mm{sup 2} pixel size and 0.1 mm gap. The results show that the spatial resolution, in terms of FWHM, improves from 3.38 to 2.21 mm while the sensitivity simultaneously deteriorates from 42.39 cps/MBq to 27.81 cps/MBq when pixel size varies from 2×2 mm{sup 2} to 0.5×0.5 mm{sup 2} for a 0.2 mm gap, respectively. The PDA worsens from 0.91 to 0.42 when pixel size decreases from 0.5×0.5 mm{sup 2} to 1×1 mm{sup 2} for a 0.2 mm gap at 15° incident-angle. The two objective functions agree that the 1.5×1.5 mm{sup 2} pixel size and 0.1 mm Epoxy gap CsI(Na) configuration provides the best compromise for small-animal imaging, using the HiReSPECT scanner. Our study highlights that crystal configuration can significantly affect the performance of the camera, and thereby Monte Carlo optimization of pixelated detectors is mandatory in order to achieve an optimal quality tomogram. - Highlights: • We optimized pixelated crystal configuration for the purpose of molecular SPECT imaging. • The weighted-sum and the figure-of-merit methods were used in order to search for an optimal crystal configuration. • The higher the pixel size, the poorer the resolution and simultaneously the higher the sensitivity and the PDA. • The

  14. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The bump-bonded silicon pixel detector, developed at CERN by the EP-MIC group, is shown here in its ceramic carrier. Both represent the ISPA-tube anode. The chip features between 1024 (called OMEGA-1) and 8196 (ALICE-1) active pixels.

  15. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Rossi, Leonardo Paolo; The ATLAS collaboration

    2018-01-01

    The upgrade of the ATLAS experiment for the operation at the High Luminosity Large Hadron Collider requires a new and more performant inner tracker, the ITk. The innermost part of this tracker will be built using silicon pixel detectors. This paper describes the ITk pixel project, which, after few years of design and test e ort, is now defined in detail.

  16. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  17. Simulation of single-event energy-deposition spreading in a hybrid pixellated detector for gamma imaging

    CERN Document Server

    Manach, E

    2002-01-01

    In the framework of the Medipix2 Collaboration, a new photon-counting chip is being developed made of a 256x256 array of 55 mu m-side square pixels. Although the chip was primarily developed for semiconductor X-ray imagers, we think that this type of device could be used in applications such as decommissioning of nuclear facilities where typical sources have gamma-ray energies in the range of a few hundred keV. In order to enhance the detection efficiency in this energy range, we envisage connecting the Medipix2 chip to a CdTe or CdZnTe substrate (at least 1 mm thick). The small pixel size, the thickness of the Cd(Zn)Te substrate and the high photon energy motivate us to estimate first the spatial energy spreading following a photon interaction inside the detector. Estimations were made using the MCNP Monte Carlo package by simulating the individual energy distribution for each primary photon interaction. As an illustration of our results, simulating a 660 keV gamma source, we found that there are two pixels ...

  18. Development and Characterization of Diamond and 3D-Silicon Pixel Detectors with ATLAS-Pixel Readout Electronics

    CERN Document Server

    Mathes, Markus

    2008-01-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10^16 particles per cm^2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 × 50 um^2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm^2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 × 6 cm^2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection ...

  19. Dingoes at the Doorstep: Home Range Sizes and Activity Patterns of Dingoes and Other Wild Dogs around Urban Areas of North-Eastern Australia

    Directory of Open Access Journals (Sweden)

    Alice T. McNeill

    2016-08-01

    Full Text Available Top-predators around the world are becoming increasingly intertwined with humans, sometimes causing conflict and increasing safety risks in urban areas. In Australia, dingoes and dingo×domesticdoghybridsarecommoninmanyurbanareas,andposeavarietyofhumanhealth and safety risks. However, data on urban dingo ecology is scant. We GPS-collared 37 dingoes in north-easternAustraliaandcontinuouslymonitoredthemeach30minfor11–394days. Mostdingoes were nocturnal, with an overall mean home range size of 17.47 km2. Overall mean daily distance travelled was 6.86 km/day. At all times dingoes were within 1000 m of houses and buildings. Home ranges appeared to be constrained to patches of suitable vegetation fragments within and around human habitation. These data can be used to reallocate dingo management effort towards mitigating actual conflicts between humans and dingoes in urban areas.

  20. Dingoes at the Doorstep: Home Range Sizes and Activity Patterns of Dingoes and Other Wild Dogs around Urban Areas of North-Eastern Australia.

    Science.gov (United States)

    McNeill, Alice T; Leung, Luke K-P; Goullet, Mark S; Gentle, Matthew N; Allen, Benjamin L

    2016-08-16

    Top-predators around the world are becoming increasingly intertwined with humans, sometimes causing conflict and increasing safety risks in urban areas. In Australia, dingoes and dingo×domesticdoghybridsarecommoninmanyurbanareas,andposeavarietyofhumanhealth and safety risks. However, data on urban dingo ecology is scant. We GPS-collared 37 dingoes in north-easternAustraliaandcontinuouslymonitoredthemeach30minfor11-394days. Mostdingoes were nocturnal, with an overall mean home range size of 17.47 km2. Overall mean daily distance travelled was 6.86 km/day. At all times dingoes were within 1000 m of houses and buildings. Home ranges appeared to be constrained to patches of suitable vegetation fragments within and around human habitation. These data can be used to reallocate dingo management effort towards mitigating actual conflicts between humans and dingoes in urban areas.

  1. Fully depleted CMOS pixel sensor development and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Baudot, J.; Kachel, M. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  2. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong, E-mail: gscho@kaist.ac.kr

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 µm{sup 2} was fabricated by using a 6-metal 1-poly 0.18 µm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  3. Hyperspectral Anomaly Detection by Graph Pixel Selection.

    Science.gov (United States)

    Yuan, Yuan; Ma, Dandan; Wang, Qi

    2016-12-01

    Hyperspectral anomaly detection (AD) is an important problem in remote sensing field. It can make full use of the spectral differences to discover certain potential interesting regions without any target priors. Traditional Mahalanobis-distance-based anomaly detectors assume the background spectrum distribution conforms to a Gaussian distribution. However, this and other similar distributions may not be satisfied for the real hyperspectral images. Moreover, the background statistics are susceptible to contamination of anomaly targets which will lead to a high false-positive rate. To address these intrinsic problems, this paper proposes a novel AD method based on the graph theory. We first construct a vertex- and edge-weighted graph and then utilize a pixel selection process to locate the anomaly targets. Two contributions are claimed in this paper: 1) no background distributions are required which makes the method more adaptive and 2) both the vertex and edge weights are considered which enables a more accurate detection performance and better robustness to noise. Intensive experiments on the simulated and real hyperspectral images demonstrate that the proposed method outperforms other benchmark competitors. In addition, the robustness of the proposed method has been validated by using various window sizes. This experimental result also demonstrates the valuable characteristic of less computational complexity and less parameter tuning for real applications.

  4. Characterization of new hybrid pixel module concepts for the ATLAS Insertable B-Layer upgrade

    CERN Document Server

    Backhaus, M; The ATLAS collaboration

    2011-01-01

    For the ATLAS pixel detector, a fourth hybrid pixel detector layer known as Insertable B-Layer (IBL) is developed, which will be slid into the present pixel detector. Due to the very small distance to the interaction point of about 3.4 cm, the IBL will improve the track reconstruction and vertexing of the pixel detector. In order to handle the extreme particle flux and radiation damage close to the interaction point, new sensor concepts as well as a new readout chip, FE-I4, are currently developed. To reduce the pixel occupancy, the pixel size in FE-I4 is reduced from the 50 x 400 µm² of the readout chip of the current ATLAS pixel detector (FE-I3) to 50 x 250 µm². The FE-I4 active area will cover ~ 2 x 1.7 cm², resulting in 26.880, a nearly ten fold increase in pixel number with respect to FE-I3. This translates into an increased active over inactive area ratio of less than 75% in FE-I3 to 90% in FE-I4. This enables a better, more integrated module concept, with a smaller amount of periphery to achieve a...

  5. Characterisation of new hybrid pixel module concepts for the ATLAS Insertable B-Layer upgrade

    CERN Document Server

    Backhaus, M; The ATLAS collaboration

    2011-01-01

    For the ATLAS pixel detector, a fourth hybrid pixel detector layer known as Insertable B-Layer (IBL) is developed, which will be slid into the present pixel detector. Due to the very small distance to the interaction point of about 3.4 cm, the IBL will improve the track reconstruction and vertexing of the pixel detector. In order to handle the extreme particle flux and radiation damage close to the interaction point, new sensor concepts as well as a new readout chip, FE-I4, are currently developed. To reduce the pixel occupancy, the pixel size in FE-I4 is reduced from the 50 x 400 µm² of the readout chip of the current ATLAS pixel detector (FE-I3) to 50 x 250 µm². The FE-I4 active area will cover ~ 2 x 1.7 cm², resulting in 26.880, a nearly ten fold increase in pixel number with respect to FE-I3. This translates into an increased active over inactive area ratio of less than 75% in FE-I3 to 90% in FE-I4. This enables a better, more integrated module concept, with a smaller amount of periphery to achieve a...

  6. Pixel hybrid photon detectors for the ring imaging Cherenkov detectors of LHCb

    CERN Document Server

    Somerville, L

    2005-01-01

    A Pixel Hybrid Photon Detector (pixel HPD) has been developed for the LHCb Ring Imaging Cherenkov (RICH) detectors. The pixel HPD is a vacuum tube with a multi-alkali photocathode, high-voltage cross- focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a CMOS readout chip; the readout chip is thus fully encapsulated in the device. The pixel HPD fulfils the stringent requirements for the RICH detectors of LHCb, combining single photon sensitivity, high signal-to-noise ratio and fast readout with an ~8cm diameter active area and an effective pixel size of 2.5mm 2.5mm at the photocathode. The performance and characteristics of two prototype pixel HPDs have been studied in laboratory measurements and in recent beam tests. The results of all measurements agree with expectations and fulfil the LHCb RICH requirements. In readiness for production of the ~500pixel HPDs for the RICH detectors, a test programme was designed and implemented to ensure component quality control at eac...

  7. First results from the ALICE silicon pixel detector prototype

    CERN Document Server

    Riedler, P; Antinori, Federico; Burns, M; Banicz, K; Caliandro, R; Campbell, M; Caselle, M; Chochula, P; Dinapoli, R; Easo, S; Elia, D; Formenti, F; Girone, M; Gys, Thierry

    2003-01-01

    System prototyping of the ALICE silicon pixel detector (SPD) is well underway. The ALICE SPD consists of two barrel layers with 9.83 million channels in total. These are read out by the ALICE1LHCb pixel chip, which has been developed in a commercial 0.25 mum process with radiation hardening by design layout. The readout chip contains 8192 pixel cells each with a fast analog preamplifier and shaper followed by a discriminator and digital delay lines. Test results show a pixel cell noise of about 110 electrons rms and a mean minimum threshold of about 1000 electrons rms before threshold fine tuning. Several readout chips have been flip-chip bonded to detectors using two different bump-bonding techniques (solder, indium). Results of radioactive source measurements of these assemblies are presented for **9**0Sr and **5**5Fe sources. Several chip-detector assemblies have been tested in a 150 GeV/c pion beam at CERN where an online efficiency of about 99% across a wide range of detector bias and threshold settings ...

  8. Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging.

    Science.gov (United States)

    Miao, Jinshui; Song, Bo; Xu, Zhihao; Cai, Le; Zhang, Suoming; Dong, Lixin; Wang, Chuan

    2018-01-01

    Infrared imaging systems have wide range of military or civil applications and 2D nanomaterials have recently emerged as potential sensing materials that may outperform conventional ones such as HgCdTe, InGaAs, and InSb. As an example, 2D black phosphorus (BP) thin film has a thickness-dependent direct bandgap with low shot noise and noncryogenic operation for visible to mid-infrared photodetection. In this paper, the use of a single-pixel photodetector made with few-layer BP thin film for near-infrared imaging applications is demonstrated. The imaging is achieved by combining the photodetector with a digital micromirror device to encode and subsequently reconstruct the image based on compressive sensing algorithm. Stationary images of a near-infrared laser spot (λ = 830 nm) with up to 64 × 64 pixels are captured using this single-pixel BP camera with 2000 times of measurements, which is only half of the total number of pixels. The imaging platform demonstrated in this work circumvents the grand challenges of scalable BP material growth for photodetector array fabrication and shows the efficacy of utilizing the outstanding performance of BP photodetector for future high-speed infrared camera applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluation of the size segregation of elemental carbon (EC emission in Europe: influence on the simulation of EC long-range transportation

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2016-02-01

    Full Text Available Elemental Carbon (EC has a significant impact on human health and climate change. In order to evaluate the size segregation of EC emission in the EUCAARI inventory and investigate its influence on the simulation of EC long-range transportation in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number and/or mass size distributions were evaluated with observations at the central European background site Melpitz. The fine mode particle concentration was reasonably well simulated, but the coarse mode was substantially overestimated by the model mainly due to the plume with high EC concentration in coarse mode emitted by a nearby point source. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that the coarse mode EC (ECc emitted from the nearby point sources might be overestimated by a factor of 2–10. The fraction of ECc was overestimated in the emission inventory by about 10–30 % for Russia and 5–10 % for Eastern Europe (e.g., Poland and Belarus. This incorrect size-dependent EC emission results in a shorter atmospheric life time of EC particles and inhibits the long-range transport of EC. A case study showed that this effect caused an underestimation of 20–40 % in the EC mass concentration in Germany under eastern wind pattern.

  10. Fast distributed large-pixel-count hologram computation using a GPU cluster.

    Science.gov (United States)

    Pan, Yuechao; Xu, Xuewu; Liang, Xinan

    2013-09-10

    Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.

  11. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Baselga, M.; Pellegrini, G., E-mail: giulio.pellegrini@imb-cnm.csic.es; Quirion, D.

    2017-03-01

    The LHC is expected to reach luminosities up to 3000 fb{sup −1} and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non-passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade. It shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large η angles.

  12. Test beam performance of the ALICE silicon pixel detector

    CERN Document Server

    Nilsson, P; Ohnishi, H; Olmos-Giner, A; Osmic F; Pappalardo, G S; Anelli, G; Antinori, F; Boccardi, A; Burns, M; Cali, I A; Campbell, M; Caselle, M; Chochula, P; Cinausero, M; D'Alessandro, A; Dima, R; Dinapoli, R; Elia, D; Enyo, H; Fabris, D; Fini, R; Fioretto, E; Formenti, F; Fujiwara, K; Heuser, J M; Kano, J; Kapusta, S; Kluge, A; Krivda, M; Lenti, V; Librizzi, F; Lunardon, M; Manzari, V; Morel, M; Olmos-Giner, A; Osmic, F; Pepato, Adriano; Prete, G; Riedler, P; Santoro, R; Scarlassara, F; Segato, G F; Soramel, F; Stefanini, G; Tanida, K; Taketani, A; Turrisi, R; Vannucci, L; Viesti, G; Virgili, T

    2004-01-01

    The ALICE Silicon Pixel Detector (SPD) will include 1200 bump-bonded readout chips produced in a commercial 0.25 mu CMOS process. Each chip has 8192 pixels of size 50 * 425 mu m/sup 2/, which leads to about 10 million readout channels in the whole detector system. Test beam measurements were recently carried out at the CERN SPS using a positive proton/pion beam as well as a 158 AGeV/c heavy ion beam (In) with a fixed Pb target. Analysis show good performance of the ALICE chip and assemblies in the positive beam as well as in the high multiplicity In beam. Preliminary results from data analysis show good performance of the SPD and fulfill the ALICE requirements.

  13. Optimization of amplifiers for monolithic active pixel sensors

    CERN Document Server

    Dorokhov, A

    2007-01-01

    High precision particle tracking and imaging applications require position sensitive detectors with high granularity, good radiation tolerance, low material budget, fast read-out and low power dissipation. Monolithic Active Pixel Sensors (MAPS) [1] fabricated in a standard microelectronic technology provide an attractive solution for these demanding applications. The signal-to-noise ratio of MAPS can be increased by using in-pixel ampli ers. The compromise between speed, noise, gain and power consumption has to be achieved in the design of the ampli er. The charge collection ef ciency and total capacitance at the ampli er input is in uenced by the size of charge collecting diode. Therefore, in order to achieve better MAPS performances, both the geometry of the charge collecting diode and the ampli er design have to be considered in the optimization process. In this work different ampli er designs and geometries of the charge collecting diode are proposed. The characterization measurements of the ampli ers fab...

  14. LISe pixel detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Elan; Hamm, Daniel [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Wiggins, Brenden [Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Milburn, Rob [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Burger, Arnold [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Department of Life and Physical Sciences, Fisk University, Nashville, TN (United States); Bilheux, Hassina [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Santodonato, Louis [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chvala, Ondrej [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Stowe, Ashley [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Lukosi, Eric, E-mail: elukosi@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States)

    2016-10-11

    Semiconducting lithium indium diselenide, {sup 6}LiInSe{sub 2} or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of {sup 6}Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 µm pitch on a 5×5×0.56 mm{sup 3} LISe substrate. An experimentally verified spatial resolution of 300 µm was observed utilizing a super-sampling technique.

  15. Design and Simulations of an Energy Harvesting Capable CMOS Pixel for Implantable Retinal Prosthesis

    Science.gov (United States)

    Ansaripour, Iman; Karami, Mohammad Azim

    2017-12-01

    A new pixel is designed with the capability of imaging and energy harvesting for the retinal prosthesis implant in 0.18 µm standard Complementary Metal Oxide Semiconductor technology. The pixel conversion gain and dynamic range, are 2.05 \\upmu{{V}}/{{e}}^{ - } and 63.2 dB. The power consumption 53.12 pW per pixel while energy harvesting performance is 3.87 nW in 60 klx of illuminance per pixel. These results have been obtained using post layout simulation. In the proposed pixel structure, the high power production capability in energy harvesting mode covers the demanded energy by using all available p-n junction photo generated currents.

  16. EDITORIAL: Micro-pixellated LEDs for science and instrumentation

    Science.gov (United States)

    Dawson, Martin D.; Neil, Mark A. A.

    2008-05-01

    This Cluster Issue of Journal of Physics D: Applied Physics highlights micro-pixellated gallium nitride light-emitting diodes or `micro-LEDs', an emerging technology offering considerable attractions for a broad range of scientific and instrumentation applications. It showcases the results of a Research Councils UK (RCUK) Basic Technology Research programme (http://bt-onethousand.photonics.ac.uk), running from 2004-2008, which has drawn together a multi-disciplinary and multi-institutional research partnership to develop these devices and explore their potential. Images of LEDs Examples of GaN micro-pixel LEDs in operation. Images supplied courtesy of the Guest Editors. The partnership, of physicists, engineers and chemists drawn from the University of Strathclyde, Heriot-Watt University, the University of Sheffield and Imperial College London, has sought to move beyond the established mass-market uses of gallium nitride LEDs in illumination and lighting. Instead, it focuses on specialised solid-state micro-projection devices the size of a match-head, containing up to several thousand individually-addressable micro-pixel elements emitting light in the ultraviolet or visible regions of the spectrum. Such sources are pattern-programmable under computer control and can project into materials fixed or high-frame rate optical images or spatially-controllable patterns of nanosecond excitation pulses. These materials can be as diverse as biological cells and tissues, biopolymers, photoresists and organic semiconductors, leading to new developments in optical microscopy, bio-sensing and chemical sensing, mask-free lithography and direct writing, and organic electronics. Particular areas of interest are multi-modal microscopy, integrated forms of organic semiconductor lasers, lab-on-a-chip, GaN/Si optoelectronics and hybrid inorganic/organic semiconductor structures. This Cluster Issue contains four invited papers and ten contributed papers. The invited papers serve to set

  17. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    Science.gov (United States)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-06-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.

  18. The power supply system for the DEPFET pixel detector at BELLE II

    Science.gov (United States)

    Rummel, Stefan; Depfet Collaboration

    2013-01-01

    The upgrade of the KEKB accelerator towards 8×1035 cm-2 s-1 poses several challenges for the BELLE II detector. Especially the innermost detector will be faced with a significant radiation of several MRad per year as well as a high hit density. To cope with this a silicon pixel detector will be used for the inner layers of the silicon tracker. The pixel detector (PXD) consists of two layers of DEPFET active pixel sensors. The DEPFET technology has an unique set of advantages like low power dissipation in the active area, flexible device size, radiation hardness and a thinning procedure allowing to adjust the thickness of the device over a wide range. The two layers close to the interaction point together with a low material budget will improve the IP resolution by a factor of 2 compared to the previous installed silicon detector. In addition silicon stand-alone pattern recognition will be possible together with the four layers of double sided strip detectors (DSSD) of the strip detector. The PXD detector system consists of the DEPFET modules with integrated readout chips, the data handling hybrid receiving the data and sending them to compute nodes performing an online pattern recognition. Moreover the power supply system provides the supply voltages for the DEPFET from a position outside of the detector. The power distribution is designed to provide low output impedance over all frequencies and transient response with appropriate overshoots. The PXD pose several challenges to the power distribution system—number of voltages, tight requirements on regulation and noise.

  19. Superheated Water Atomization: Some New Aspects of Control and Determining Disperse Characteristics of Atomization Plume in Micron and Submicron Ranges of Droplet Size*

    Science.gov (United States)

    Zalkind, V. I.; Zeigarnik, Yu. A.; Nizovskiy, V. L.; Nizovskiy, L. V.; Schigel, S. S.

    2017-11-01

    New experimental data on superheated water atomization is presented. It is shown that in contrast to the case of short cylindrical nozzles, which provide bimodal water-droplet sprays, the application of divergent nozzles makes it possible to obtain one-modal water atomization with droplets of about micron diameter being obtained. This fact is due to changes in the mechanism of superheated water jet fragmentation and it is very important for engineering applications. A modified experimental technique for processing integral monochromatic scattering indicatrix was developed and tested. In addition, a new calculation code was worked out for calculating atomized water drop-size distribution (on the basis of Mi theory) in micron and submicron ranges.

  20. Giga-pixels and Sky Surveys

    Science.gov (United States)

    Tonry, J. L.; Luppino, G.; Kaiser, N.; Burke, B. E.; Jacoby, G. H.

    We describe a project to build a new type of astronomical CCD that should significantly decrease the cost per pixel of detectors. This device should also provide very fast readout, autoguiding capability, image motion compensation, and good red sensitivity.

  1. Adopt a Pixel Photographs: 2013-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The photographs in the Adopt a Pixel collection were provided by volunteers with a digital camera, a Global Positioning System (GPS), and a compass or a smart mobile...

  2. Rate of transformation and normal range about cardiac size and cardiothoracic ratio according to patient position and age at chest radiography of Korean adult man

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Cheol [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Lim, Cheong Hwan; Jung, Hong Ryang [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of); Kim, Yun Min [Dept. of Radiotechnology, Wonkwang Health Science University, Iksan (Korea, Republic of); Hong, Dong Hee [Dept. of Radiological Science, Far East University, Eumseong (Korea, Republic of)

    2017-06-15

    Purpose of this study is present the normal range of cardiac size and cardiothoracic ratio according to patient position(chest PA and AP) and age of Korean adult male on digital chest X - ray, And to propose a mutually compatible conversion rate. 1,024 males were eligible for this study, among 1,300 normal chest patients who underwent chest PA and low-dose CT examinations on the same day at the 'S' Hospital Health Examination Center in Seoul From January to December 2014. CS and CTR were measured by Danzer (1919). The mean difference between CS and CTR was statistically significant (p<0.01) in Chest PA (CS 135.48 mm, CTR 43.99%) and Chest AP image (CS 155.96 mm, CTR 51.75%). There was no statistically significant difference between left and right heart in chest PA and AP images(p>0.05). CS showed statistically significant difference between Chest PA (p>0. 05) and Chest AP (p<0.05). The thorax size and CTR were statistically significant (p<0.01) in both age and chest PA and AP. Result of this study, On Chest AP image CS was magnified 15%, CTR was magnified 17% compare with Chest PA image. CS and CTR were about 10% difference by changing posture at all ages.

  3. Computer-assisted 2-D agarose electrophoresis of Haemophilus influenzae type B meningitis vaccines and analysis of polydisperse particle populations in the size range of viruses: a review.

    Science.gov (United States)

    Tietz, Dietmar

    2007-02-01

    When protein-polysaccharide conjugated vaccines were first developed for the immunization of small children against meningitis caused by infection with Haemophilus influenzae type b (Hib), the vaccine preparations varied in immunogenicity. Testing for immunogenicity was time-consuming and alternative analytical procedures for determining vaccine quality were unsatisfactory. For example, due to the very high molecular weight of the vaccine particles, immunogens could only be physically characterized as a fraction in the void volume of Sepharose gel filtration. In search of better analytical methods, a computer-assisted electrophoretic technique for analyzing such vaccines was developed in the period from 1983 to 1995. This new approach made it possible to analyze highly negatively charged particles as large as or larger than intact viruses. 2-D gel patterns were generated that varied depending on the conditions of the particular vaccine preparation and were therefore characteristic of each vaccine sample. Thus, vaccine particle populations with a continuous size variation over a wide range (polydisperse) could be characterized according to size and free mobility (related to particle surface net charge density). These advances are reviewed in this article, since the developed methods are still a promising tool for vaccine quality control and for predicting immunogen effectiveness in the production of vaccines. The technique is potentially beneficial for Hib immunogens and other high-molecular-mass vaccines. Additional biomedical applications for this nondenaturing electrophoretic technique are briefly discussed and detailed information about computational and mathematical procedures and theoretical aspects is provided in the Appendices.

  4. Characteristics of dimethylaminium and trimethylaminium in atmospheric particles ranging from supermicron to nanometer sizes over eutrophic marginal seas of China and oligotrophic open oceans.

    Science.gov (United States)

    Yu, Peiran; Hu, Qingjing; Li, Kai; Zhu, Yujiao; Liu, Xiaohuan; Gao, Huiwang; Yao, Xiaohong

    2016-12-01

    In this study, we characterized dimethylaminium (DMA+) and trimethylaminium (TMA+) in size-segregated atmospheric particles during three cruise campaigns in the marginal seas of China and one cruise campaign mainly in the northwest Pacific Ocean (NWPO). An 14-stage nano-MOUDI sampler was utilized for sampling atmospheric particles ranging from 18μm to 0.010μm. Among the four cruise campaigns, the highest concentrations of DMA+ and TMA+ in PM10 were observed over the South Yellow Sea (SYS) in August 2015, i.e., 0.76±0.12nmolm-3 for DMA+ (average value±standard deviation) and 0.93±0.13nmolm-3 for TMA+. The lowest values were observed over the NWPO in April 2015, i.e., 0.28±0.16nmolm-3 for DMA+ and 0.22±0.12nmolm-3 for TMA+. In general, size distributions of the two ions exhibited a bi-modal pattern, i.e., one mode at 0.01-0.1μm and the other at 0.1-1.8μm. The two ions' mode at 0.01-0.1μm was firstly observed. The mode was largely enhanced in samples collected over the SYS in August 2015, leading to high mole ratios of (DMA++TMA+)/NH4+ in PM0.1 (0.4±0.8, median value±standard deviation) and the ions' concentrations in PM0.1 accounting for ~10% and ~40% of their corresponding concentrations in PM10. This implied that (DMA++TMA+) likely played an important role in neutralizing acidic species in the smaller particles. Using SO42-, NO3- and NH4+ as references, we confirm that the elevated concentrations of DMA+ and TMA+ in the 0.01-0.1μm size range were probably real signals rather than sampling artifacts. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Simulation of monolithic active pixels in deep sub-micron technologies

    CERN Document Server

    Manolopoulos, S; Turchetta, R

    2002-01-01

    The use of monolithic active pixels (MAPS) has quickly spread in a number of scientific fields ranging from imaging to high-energy particle physics applications. The success of MAPS is due to a number of reasons, for example their low power consumption, fast readout, high spatial resolution and low cost. The latter reflects the use of standard CMOS processes for fabrication. In this paper, the performance of MAPS designed in 0.25 mu m technology will be modelled by means of TCAD device simulation software. The dependence of the device performance on parameters that affect the detection of minimum ionising particles (MIP) will be studied aiming at the optimisation of the detector performance. More specifically, the simulations will focus on the influence of the epitaxial layer thickness on the amount of collected charge, that defines the signal and the cluster size, that affects the spatial resolution.

  6. Digital pixel sensor array with logarithmic delta-sigma architecture.

    Science.gov (United States)

    Mahmoodi, Alireza; Li, Jing; Joseph, Dileepan

    2013-08-16

    Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs). To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC) in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS) technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia.

  7. Front end electronics for pixel detector of the PANDA MVD

    CERN Document Server

    Kugathasan, Thanushan; De Remigis, P; Mazza, G; Mignone, M; Rivetti, A; Wheadon, R

    2009-01-01

    ToPix 2.0 is a prototype in a CMOS 0.13 ¹m technology of the front-end chip for the hybrid pixel sensors that will equip the Micro-Vertex Detector of the PANDA experiment at GSI. The Time over Threshold (ToT) approach has been employed to provide a high charge dynamic range (up to 100 fC) with a low power dissipation (15 ¹W/cell). In an area of 100¹m£100¹m each cell incorporates the analog and digital electronics necessary to amplify the detector signal and to digitize the time and charge information. The ASIC includes 320 pixel readout cells organized in four columns and a simplified version of the end of column readout.

  8. A beam monitor using silicon pixel sensors for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: zwang@mails.ccnu.edu.cn; Zou, Shuguang; Fan, Yan; Liu, Jun; Sun, Xiangming, E-mail: sphy2007@126.com; Wang, Dong; Kang, Huili; Sun, Daming; Yang, Ping; Pei, Hua; Huang, Guangming; Xu, Nu; Gao, Chaosong; Xiao, Le

    2017-03-21

    We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, Topmetal-II{sup -}, as the anode array. Topmetal-II{sup -} is a charge sensor designed in a CMOS 0.35 µm technology. Each Topmetal-II{sup -} sensor has 72×72 pixels and the pixel size is 83×83 µm{sup 2}. In our design, the beam passes through the beam monitor without hitting the electrodes, making the beam monitor especially suitable for monitoring heavy ion beams. This design also reduces radiation damage to the beam monitor itself. The beam monitor is tested with a carbon ion beam at the Heavy Ion Research Facility in Lanzhou (HIRFL). Results indicate that the beam monitor can measure position, incidence angle and intensity of the beam with a position resolution better than 20 µm, angular resolution about 0.5° and intensity statistical accuracy better than 2%.

  9. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Munoz Sanchez, Francisca Javiela; The ATLAS collaboration

    2017-01-01

    ATLAS is preparing for an extensive modification of its detector in the course of the planned HL-LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice that is expected to take place in 2017. A new on-detector readout chip is designed in the context of the RD53 collaboration in 65 nm CMOS technology. This paper will present the on-going R&D within the ATLAS ITK project towards the new pixel modules and the off-detector electronics. Planar and 3D sensors are being re-designed with cell sizes of 50x50 or 25x100 μm2, compatible with the RD53 chip. A sensor thickness equal or less th...

  10. Testbeam Measurements with Pixel Sensors for the ATLAS Insertable b-Layer Project

    CERN Document Server

    George, Matthias; Quadt, Arnulf

    During the current long machine shutdown of the Large Hadron Collider (LHC) at CERN (Geneva), the innermost part of the ATLAS experiment, the pixel detector, is upgraded. The existing ATLAS pixel system is equipped with silicon sensors, organized in three barrel layers and three end cap disks on either side. To cope with the higher instantaneous luminosity in the future and for compensation of radiation damages due to past and near future running time of the experiment, a new fourth pixel detector layer is inserted into the existing system. This additional pixel layer is called “Insertable b-Layer” (IBL). The IBL is a detector system, based on silicon pixel sensors. Due to the smaller radius, compared to all other detectors of the ATLAS experiment, it has to be more radiation tolerant, than e.g. the current pixel layers. Furthermore, a reduced pixel size is necessary to cope with the expected higher particle flux. During the planning phase for the IBL upgrade, three different sensor technologies were comp...

  11. Spatial clustering of pixels of a multispectral image

    Science.gov (United States)

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  12. First functionality tests of a 64 × 64 pixel DSSC sensor module connected to the complete ladder readout

    Science.gov (United States)

    Donato, M.; Hansen, K.; Kalavakuru, P.; Kirchgessner, M.; Kuster, M.; Porro, M.; Reckleben, C.; Turcato, M.

    2017-03-01

    The European X-ray Free Electron Laser (XFEL.EU) will provide every 0.1 s a train of 2700 spatially coherent ultrashort X-ray pulses at 4.5 MHz repetition rate. The Small Quantum Systems (SQS) instrument and the Spectroscopy and Coherent Scattering instrument (SCS) operate with soft X-rays between 0.5 keV-6 keV. The DEPFET Sensor with Signal Compression (DSSC) detector is being developed to meet the requirements set by these two XFEL.EU instruments. The DSSC imager is a 1 mega-pixel camera able to store up to 800 single-pulse images per train. The so-called ladder is the basic unit of the DSSC detector. It is the single unit out of sixteen identical-units composing the DSSC-megapixel camera, containing all representative electronic components of the full-size system and allows testing the full electronic chain. Each DSSC ladder has a focal plane sensor with 128× 512 pixels. The read-out ASIC provides full-parallel readout of the sensor pixels. Every read-out channel contains an amplifier and an analog filter, an up-to 9 bit ADC and the digital memory. The ASIC amplifier have a double front-end to allow one to use either DEPFET sensors or Mini-SDD sensors. In the first case, the signal compression is a characteristic intrinsic of the sensor; in the second case, the compression is implemented at the first amplification stage. The goal of signal compression is to meet the requirement of single-photon detection capability and wide dynamic range. We present the first results of measurements obtained using a 64× 64 pixel DEPFET sensor attached to the full final electronic and data-acquisition chain.

  13. Smart pixels for real-time optical coherence tomography

    Science.gov (United States)

    Beer, Stephan; Zeller, Philipp; Blanc, Nicolas; Lustenberger, Felix; Seitz, Peter

    2004-04-01

    Optical Coherence Tomography (OCT) is an optical imaging technique allowing the acquisition of three-dimensional images with micrometer resolution. It is very well suited to cross-sectional imaging of highly scattering materials, such as most biomedical tissues. A novel custom image sensor based on smart pixels dedicated to parallel OCT (pOCT) is presented. Massively parallel detection and signal processing enables a significant increase in the 3D frame rate and a reduction of the mechanical complexity of the complete setup compared to conventional point-scanning OCT. This renders the parallel OCT technique particularly advantageous for high-speed applications in industrial and biomedical domains while also reducing overall system costs. The sensor architecture presented in this article overcomes the main challenges for OCT using parallel detection such as data rate, power consumption, circuit size, and optical sensitivity. Each pixel of the pOCT sensor contains a low-power signal demodulation circuit allowing the simultaneous detection of the envelope and the phase information of the optical interferometry signal. An automatic photocurrent offset-compensation circuit, a synchronous sampling stage, programmable time averaging, and random pixel accessing are also incorporated at the pixel level. The low-power demodulation principle chosen as well as alternative implementations are discussed. The characterization results of the sensor exhibit a sensitivity of at least 74 dB, which is within 4 dB of the theoretical limit of a shot-noise limited OCT system. Real-time high-resolution three-dimensional tomographic imaging is demonstrated along with corresponding performance measurements.

  14. Single-pixel 3D imaging with time-based depth resolution

    CERN Document Server

    Sun, Ming-Jie; Gibson, Graham M; Sun, Baoqing; Radwell, Neal; Lamb, Robert; Padgett, Miles J

    2016-01-01

    Time-of-flight three dimensional imaging is an important tool for many applications, such as object recognition and remote sensing. Unlike conventional imaging approach using pixelated detector array, single-pixel imaging based on projected patterns, such as Hadamard patterns, utilises an alternative strategy to acquire information with sampling basis. Here we show a modified single-pixel camera using a pulsed illumination source and a high-speed photodiode, capable of reconstructing 128x128 pixel resolution 3D scenes to an accuracy of ~3 mm at a range of ~5 m. Furthermore, we demonstrate continuous real-time 3D video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost 3D imaging devices for precision ranging at wavelengths beyond the visible spectrum.

  15. Design and implementation of 3D LIDAR based on pixel-by-pixel scanning and DS-OCDMA

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Yongwan

    2017-02-01

    We designed a prototype for testing feasibility of a proposed light detection and ranging (LIDAR) system, which was designed to encode pixel location information in its laser pulses using the direct-sequence optical code division multiple access method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. The prototype was built using commercial o -the-shelf optical components and development kits. It comprised of an optical modulator, an amplified photodetector, an MEMS mirror development kit, an analog-to-digital converter evaluation module, a digital signal processor with ARM evaluation kit and a Windows personal computer. The prototype LIDAR system has capable of acquiring 120 x 32-pixel images at 5 frames/s. We measured a watering pot to demonstrate the imaging performance of the prototype LIDAR system.

  16. Proceeding Paper for HSTD11 Conference about Luminosity Measurement by Pixel-Cluster-Counting

    CERN Document Server

    Liu, Peilian; The ATLAS collaboration

    2018-01-01

    The Insertable B-Layer (IBL) is the innermost layer of the ATLAS tracking system. It consists of planar pixel modules in the central region and 3D pixel modules at two extremities. We use the longitudinal cluster size distributions in 3D modules of the IBL to determine the number of pixel clusters produced by primary charged particles per event and suppress backgrounds. This Pixel Cluster Counting (PCC) algorithm provides a bunch-by-bunch luminosity measurement. An accurate luminosity measurement is a key component for precision measurements at the Large Hadron Collider (LHC) and one of the largest uncertainties on the luminosity determination in ATLAS arises from the long-term stability of the measurement technique. The comparison of the PCC algorithm with other existing algorithms provides key insights in assessing and reducing such uncertainty.

  17. Segmentation of large images based on super-pixels and community detection in graphs

    OpenAIRE

    Linares, Oscar A. C.; Botelho, Glenda Michele; Rodrigues, Francisco Aparecido; Neto, João Batista

    2016-01-01

    Image segmentation has many applications which range from machine learning to medical diagnosis. In this paper, we propose a framework for the segmentation of images based on super-pixels and algorithms for community identification in graphs. The super-pixel pre-segmentation step reduces the number of nodes in the graph, rendering the method the ability to process large images. Moreover, community detection algorithms provide more accurate segmentation than traditional approaches, such as tho...

  18. Phagocytosis of environmental or metabolic crystalline particles induces cytotoxicity by triggering necroptosis across a broad range of particle size and shape.

    Science.gov (United States)

    Honarpisheh, Mohsen; Foresto-Neto, Orestes; Desai, Jyaysi; Steiger, Stefanie; Gómez, Lidia Anguiano; Popper, Bastian; Boor, Peter; Anders, Hans-Joachim; Mulay, Shrikant R

    2017-11-14

    In crystallopathies, crystals or crystalline particles of environmental and metabolic origin deposit within tissues, induce inflammation, injury and cell death and eventually lead to organ-failure. The NLRP3-inflammasome is involved in mediating crystalline particles-induced inflammation, but pathways leading to cell death are still unknown. Here, we have used broad range of intrinsic and extrinsic crystal- or crystalline particle-sizes and shapes, e.g. calcium phosphate, silica, titanium dioxide, cholesterol, calcium oxalate, and monosodium urate. As kidney is commonly affected by crystallopathies, we used human and murine renal tubular cells as a model system. We showed that all of the analysed crystalline particles induce caspase-independent cell death. Deficiency of MLKL, siRNA knockdown of RIPK3, or inhibitors of necroptosis signaling e.g. RIPK-1 inhibitor necrostatin-1s, RIPK3 inhibitor dabrafenib, and MLKL inhibitor necrosulfonamide, partially protected tubular cells from crystalline particles cytotoxicity. Furthermore, we identify phagocytosis of crystalline particles as an upstream event in their cytotoxicity since a phagocytosis inhibitor, cytochalasin D, prevented their cytotoxicity. Taken together, our data confirmed the involvement of necroptosis as one of the pathways leading to cell death in crystallopathies. Our data identified RIPK-1, RIPK3, and MLKL as molecular targets to limit tissue injury and organ failure in crystallopathies.

  19. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions

    Science.gov (United States)

    Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  20. Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment

    Science.gov (United States)

    Pixels, polygons, and blocks of pixels are all potentially viable spatial assessment units for conducting an accuracy assessment. We develop a statistical population-based framework to examine how the spatial unit chosen affects the outcome of an accuracy assessment. The populati...

  1. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  2. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237541; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will al...

  3. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider -- Plot Approval (Pixel, IBL) : This is a submission of plot approval request for Pixel+IBL, facing on a talk at ICHEP 2014 conference

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  4. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  5. Detection of sub-pixel fractures in X-ray dark-field tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Torsten; Feidenhans' l, Robert [University of Copenhagen, Niels Bohr Institute, Copenhagen (Denmark); Willner, Marian; Pfeiffer, Franz [Technische Universitaet Muenchen, Department of Physics and Institute of Medical Engineering, Garching (Germany); Bech, Martin [Lund University, Medical Radiation Physics, Lund (Sweden)

    2015-11-15

    We present a new method for detecting fractures in solid materials below the resolution given by the detector pixel size by using grating-based X-ray interferometry. The technique is particularly useful for detecting sub-pixel cracks in large samples where the size of the sample is preventing high-resolution μCT studies of the entire sample. The X-ray grating interferometer produces three distinct modality signals: absorption, phase and dark field. The method utilizes the unique scattering features of the dark-field signal. We have used tomograms reconstructed from each of the three signals to detect cracks in a model sample consisting of stearin. (orig.)

  6. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  7. 18k Channels single photon counting readout circuit for hybrid pixel detector

    Science.gov (United States)

    Maj, P.; Grybos, P.; Szczygiel, R.; Zoladz, M.; Sakumura, T.; Tsuji, Y.

    2013-01-01

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm×20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96×192 pixels with 100 μm×100 μm pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 μW/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 μV/e- and the equivalent noise charge is 168 e- rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  8. Urban air quality in a mid-size city - PM2.5 composition, sources and identification of impact areas: From local to long range contributions

    Science.gov (United States)

    Squizzato, Stefania; Cazzaro, Marta; Innocente, Elena; Visin, Flavia; Hopke, Philip K.; Rampazzo, Giancarlo

    2017-04-01

    Urban air quality represents a major public health burden and is a long-standing concern to European citizens. Combustion processes and traffic-related emissions represent the main primary particulate matter (PM) sources in urban areas. Other sources can also affect air quality (e.g., secondary aerosol, industrial) depending on the characteristics of the study area. Thus, the identification and the apportionment of all sources is of crucial importance to make effective corrective decisions within environmental policies. The aim of this study is to evaluate the impacts of different emissions sources on PM2.5 concentrations and compositions in a mid-size city in the Po Valley (Treviso, Italy). Data have been analyzed to highlight compositional differences (elements and major inorganic ions), to determine PM2.5 sources and their contributions, and to evaluate the influence of air mass movements. Non-parametric tests, positive matrix factorization (PMF), conditional bivariate probability function (CBPF), and concentration weighted trajectory (CWT) have been used in a multi-chemometrics approach to understand the areal-scale (proximate, local, long-range) where different sources act on PM2.5 levels and composition. Results identified three levels of scale from which the pollution arose: (i) a proximate local scale (close to the sampling site) for traffic non-exhaust and resuspended dust sources; (ii) a local urban scale (including both sampling site and areas close to them) for combustion and industrial; and (iii) a regional scale characterized by ammonium nitrate and ammonium sulfate. This approach and results can help to develop and adopt better air quality policy action.

  9. Wrong place, wrong time: climate change-induced range shift across fragmented habitat causes maladaptation and declined population size in a modelled bird species

    NARCIS (Netherlands)

    Cobben, M.M.P.; Verboom, J.; Opdam, P.F.M.; Hoekstra, R.F.; Jochem, R.; Smulders, M.J.M.

    2012-01-01

    Many species are locally adapted to decreased habitat quality at their range margins, and therefore show genetic differences throughout their ranges. Under contemporary climate change, range shifts may affect evolutionary processes at the expanding range margin due to founder events. Additionally,

  10. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...

  11. Shadow-free single-pixel imaging

    Science.gov (United States)

    Li, Shunhua; Zhang, Zibang; Ma, Xiao; Zhong, Jingang

    2017-11-01

    Single-pixel imaging is an innovative imaging scheme and receives increasing attention in recent years, for it is applicable for imaging at non-visible wavelengths and imaging under weak light conditions. However, as in conventional imaging, shadows would likely occur in single-pixel imaging and sometimes bring negative effects in practical uses. In this paper, the principle of shadows occurrence in single-pixel imaging is analyzed, following which a technique for shadows removal is proposed. In the proposed technique, several single-pixel detectors are used to detect the backscattered light at different locations so that the shadows in the reconstructed images corresponding to each detector shadows are complementary. Shadow-free reconstruction can be derived by fusing the shadow-complementary images using maximum selection rule. To deal with the problem of intensity mismatch in image fusion, we put forward a simple calibration. As experimentally demonstrated, the technique is able to reconstruct monochromatic and full-color shadow-free images.

  12. Performance of active edge pixel sensors

    CERN Document Server

    Bomben, Marco; Bagolini, Alvise; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; D'Eramo, Louis; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola; Rummler, Andre; Weingarten, Jens

    2017-01-01

    this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  13. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    At the core of CMS, particles will come into contact with tiny detector components, known as pixels, which are almost invisible to the naked eye. With these elementary cells measuring a mere 150 microns (or about 1/10 of a millimetre) along each side, a real technological leap has been made.

  14. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  15. Exploring the limits of identifying sub-pixel thermal features using ASTER TIR data

    Science.gov (United States)

    Vaughan, R.G.; Keszthelyi, L.P.; Davies, A.G.; Schneider, D.J.; Jaworowski, C.; Heasler, H.

    2010-01-01

    Understanding the characteristics of volcanic thermal emissions and how they change with time is important for forecasting and monitoring volcanic activity and potential hazards. Satellite instruments view volcanic thermal features across the globe at various temporal and spatial resolutions. Thermal features that may be a precursor to a major eruption, or indicative of important changes in an on-going eruption can be subtle, making them challenging to reliably identify with satellite instruments. The goal of this study was to explore the limits of the types and magnitudes of thermal anomalies that could be detected using satellite thermal infrared (TIR) data. Specifically, the characterization of sub-pixel thermal features with a wide range of temperatures is considered using ASTER multispectral TIR data. First, theoretical calculations were made to define a "thermal mixing detection threshold" for ASTER, which quantifies the limits of ASTER's ability to resolve sub-pixel thermal mixing over a range of hot target temperatures and % pixel areas. Then, ASTER TIR data were used to model sub-pixel thermal features at the Yellowstone National Park geothermal area (hot spring pools with temperatures from 40 to 90 ??C) and at Mount Erebus Volcano, Antarctica (an active lava lake with temperatures from 200 to 800 ??C). Finally, various sources of uncertainty in sub-pixel thermal calculations were quantified for these empirical measurements, including pixel resampling, atmospheric correction, and background temperature and emissivity assumptions.

  16. A design of optical modulation system with pixel-level modulation accuracy

    Science.gov (United States)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  17. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  18. Fabrication of defect-free full-field pixelated phase mask

    Science.gov (United States)

    Cheng, Wen-Hao; Farnsworth, Jeff; Kwok, Wai; Jamieson, Andrew; Wilcox, Nathan; Vernon, Matt; Yung, Karmen; Liu, Yi-Ping; Kim, Jun; Frendberg, Eric; Chegwidden, Scott; Schenker, Richard; Borodovsky, Yan

    2008-03-01

    Pixelated phase masks rendered from computational lithography techniques demand one generation-ahead mask technology development. In this paper, we reveal the accomplishment of fabricating Cr-less, full field, defect-free pixilated phase masks, including integration of tapeout, front-end patterning and backend defect inspection, repair, disposition and clean. This work was part of a comprehensive program within Intel which demonstrated microprocessor device yield. To pattern mask pixels with lateral sizes tool insertion and process integration were co-optimized to ensure good linearity of lateral, vertical dimensions and sidewall angle of glass pixels of arbitrary pixelated layout, including singlets, doublets, triplets, touch-corners and larger scale features of structural tones including pit/trench and pillar/mesa. The final residual systematic mask patterning imperfections were corrected and integrated upstream in the optical model and design layout. The volume of 100nm phase pixels on a full field reticle is on the order tera-scale magnitude. Multiple breakthroughs in backend mask technology were required to achieve a defect free full field mask. Specifically, integration of aerial image-based defect inspection, 3D optical model-based high resolution ebeam repair and disposition were introduced. Significant reduction of pixel mask specific defect modes, such as electro static discharge and glass pattern collapse, were executed to drive defect level down to single digit before attempt of repair. The defect printability and repair yield were verified downstream through silicon wafer print test to validate defect free mask performance.

  19. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    Run-2 of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed as well as a new read-out chip within CMOS 130nm technology and with larger area, smaller pixel size and faster readout capability. The new detector is the first large scale application of of 3D detectors and CMOS 130nm technology. An overview of the lessons learned during the IBL project will be presented, focusing on the challenges and highlighting the issues met during the productio...

  20. The ATLAS Pixel Detector for Run II at the Large Hadron Collider

    CERN Document Server

    Marx, Marilyn; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  1. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    ATLAS Pixel Collaboration; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  2. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00237659

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detect or and of the IBL project as...

  3. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  4. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Takubo, Y; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair the modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using light weight staves and CO$_{2}$ based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and the IBL pr...

  5. Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector

    Science.gov (United States)

    Maneuski, D.; Astromskas, V.; Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Marchal, J.; O'Shea, V.; Stewart, G.; Tartoni, N.; Wilhelm, H.; Wraight, K.; Zain, R. M.

    2012-01-01

    In this work the results on imaging and spectroscopic performances of 14 × 14 × 1 mm CdTe detectors with 55 × 55 μm and 110 × 110 μm pixel pitch bump-bonded to a Timepix chip are presented. The performance of the 110 × 110 μm pixel detector was evaluated at the extreme conditions beam line I15 of the Diamond Light Source. The energy of X-rays was set between 25 and 77 keV. The beam was collimated through the edge slits to 20 μm FWHM incident in the middle of the pixel. The detector was operated in the time-over-threshold mode, allowing direct energy measurement. Energy in the neighbouring pixels was summed for spectra reconstruction. Energy resolution at 77 keV was found to be ΔE/E = 3.9%. Comparative imaging and energy resolution studies were carried out between two pixel size detectors with a fluorescence target X-ray tube and radioactive sources. The 110 × 110 μm pixel detector exhibited systematically better energy resolution in comparison to 55 × 55 μm. An imaging performance of 55 × 55 μm pixellated CdTe detector was assessed using the Modulation Transfer Function (MTF) technique and compared to the larger pixel. A considerable degradation in MTF was observed for bias voltages below -300 V. Significant room for improvement of the detector performance was identified both for imaging and spectroscopy and is discussed.

  6. First large DEPFET pixel modules for the Belle II Pixel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Felix; Avella, Paola; Kiesling, Christian; Koffmane, Christian; Moser, Hans-Guenther; Valentan, Manfred [Max-Planck-Institut fuer Physik, Muenchen (Germany); Andricek, Ladislav; Richter, Rainer [Halbleiterlabor der Max-Planck-Gesellschaft, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2016-07-01

    DEPFET pixel detectors offer excellent signal to noise ratio, resolution and low power consumption with a low material budget. They will be used at Belle II and are a candidate for an ILC vertex detector. The pixels are integrated in a monolithic piece of silicon which also acts as PCB providing the signal and control routings for the ASICs on top. The first prototype DEPFET sensor modules for Belle II have been produced. The modules have 192000 pixels and are equipped with SMD components and three different kinds of ASICs to control and readout the pixels. The entire readout chain has to be studied; the metal layer interconnectivity and routings need to be verified. The modules are fully characterized, and the operation voltages and control sequences of the ASICs are investigated. An overview of the DEPFET concept and first characterization results is presented.

  7. Scaled photographs of surf over the full range of breaker sizes on the north shore of Oahu and Jaws, Maui, Hawaiian Islands (NODC Accession 0001753)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital surf photographs were scaled using surfers as height benchmarks to estimate the size of the breakers. Historical databases for surf height in Hawaii are...

  8. Advanced processing of CdTe pixel radiation detectors

    Science.gov (United States)

    Gädda, A.; Winkler, A.; Ott, J.; Härkönen, J.; Karadzhinova-Ferrer, A.; Koponen, P.; Luukka, P.; Tikkanen, J.; Vähänen, S.

    2017-12-01

    We report a fabrication process of pixel detectors made of bulk cadmium telluride (CdTe) crystals. Prior to processing, the quality and defect density in CdTe material was characterized by infrared (IR) spectroscopy. The semiconductor detector and Flip-Chip (FC) interconnection processing was carried out in the clean room premises of Micronova Nanofabrication Centre in Espoo, Finland. The chip scale processes consist of the aluminum oxide (Al2O3) low temperature thermal Atomic Layer Deposition (ALD), titanium tungsten (TiW) metal sputtering depositions and an electroless Nickel growth. CdTe crystals with the size of 10×10×0.5 mm3 were patterned with several photo-lithography techniques. In this study, gold (Au) was chosen as the material for the wettable Under Bump Metalization (UBM) pads. Indium (In) based solder bumps were grown on PSI46dig read out chips (ROC) having 4160 pixels within an area of 1 cm2. CdTe sensor and ROC were hybridized using a low temperature flip-chip (FC) interconnection technique. The In-Au cold weld bonding connections were successfully connecting both elements. After the processing the detector packages were wire bonded into associated read out electronics. The pixel detectors were tested at the premises of Finnish Radiation Safety Authority (STUK). During the measurement campaign, the modules were tested by exposure to a 137Cs source of 1.5 TBq for 8 minutes. We detected at the room temperature a photopeak at 662 keV with about 2 % energy resolution.

  9. Characterization and correction of charge-induced pixel shifts in DECam

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D.; Bernstein, G. M.; Jarvis, M.; Rowe, B.; Vikram, V.; Plazas, A. A.; Seitz, S.

    2015-05-01

    Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the {Poissonian} noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measurements of flat-field {Poissonian} noise correlations. The latter fall off approximately as a power-law r(-)(2.5) with pixel separation r, are isotropic except for an asymmetry in the direct neighbors along rows and columns, are stable in time, and are weakly dependent on wavelength. They show variations from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts predicted by the model cause biased shape measurements, primarily due to their effect on bright stars, at levels exceeding weak lensing science requirements. We measure the flux dependence of star images and show that the effect can be mitigated by applying the reverse charge shifts at the pixel level during image processing. Differences in stellar size, however, remain significant due to residuals at larger distance from the centroid.

  10. Commissioning Perspectives for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2067982; Klingenberg, Reiner

    2007-01-01

    The ATLAS Pixel Detector, the innermost sub-detector of the ATLAS experiment at the Large Hadron Collider, CERN, is an 80 million channel silicon pixel tracking detector designed for high-precision charged particle tracking and secondary vertex reconstruction. It was installed in the ATLAS experiment and commissioning for the first proton-proton collision data taking in 2008 has begun. Due to the complex layout and limited accessibility, quality assurance measurements were continuously performed during production and assembly to ensure that no problematic components are integrated. The assembly of the detector at CERN and related quality assurance measurement results, including comparison to previous production measurements, will be presented. In order to verify that the integrated detector, its data acquisition readout chain, the ancillary services and cooling system as well as the detector control and data acquisition software perform together as expected approximately 8% of the detector system was progress...

  11. Advanced monolithic pixel sensors using SOI technology

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Toshinobu, E-mail: miyoshi@post.kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Arai, Yasuo [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Asano, Mari [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577 (Japan); Fujita, Yowichi [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Hamasaki, Ryutaro [SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama 240-0193 (Japan); Hara, Kazuhiko; Honda, Shunsuke [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577 (Japan); Ikegami, Yoichi; Kurachi, Ikuo [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Mitsui, Shingo [Kanazawa University, Kadoma-cho, Kanazawa 920-1192 (Japan); Nishimura, Ryutaro [SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama 240-0193 (Japan); Tauchi, Kazuya [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Tobita, Naoshi [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577 (Japan); Tsuboyama, Toru; Yamada, Miho [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2016-07-11

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  12. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  13. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  14. Efficient segmentation by sparse pixel classification

    DEFF Research Database (Denmark)

    Dam, Erik B; Loog, Marco

    2008-01-01

    Segmentation methods based on pixel classification are powerful but often slow. We introduce two general algorithms, based on sparse classification, for optimizing the computation while still obtaining accurate segmentations. The computational costs of the algorithms are derived, and they are dem......Segmentation methods based on pixel classification are powerful but often slow. We introduce two general algorithms, based on sparse classification, for optimizing the computation while still obtaining accurate segmentations. The computational costs of the algorithms are derived......, and they are demonstrated on real 3-D magnetic resonance imaging and 2-D radiograph data. We show that each algorithm is optimal for specific tasks, and that both algorithms allow a speedup of one or more orders of magnitude on typical segmentation tasks....

  15. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  16. X-ray characterization of a multichannel smart-pixel array detector.

    Science.gov (United States)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  17. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  18. Electrical characteristics of silicon pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gorelov, I.; Gorfine, G.; Hoeferkamp, M.; Mata-Bruni, V.; Santistevan, G.; Seidel, S.C. E-mail: seidel@dot.phys.unm.edu; Ciocio, A.; Einsweiler, K.; Emes, J.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Marchesini, R.; McCormack, F.; Milgrome, O.; Palaio, N.; Pengg, F.; Richardson, J.; Zizka, G.; Ackers, M.; Comes, G.; Fischer, P.; Keil, M.; Martinez, G.; Peric, I.; Runolfsson, O.; Stockmanns, T.; Treis, J.; Wermes, N.; Goessling, C.; Huegging, F.; Klaiber-Lodewigs, J.; Krasel, O.; Wuestenfeld, J.; Wunstorf, R.; Barberis, D.; Beccherle, R.; Caso, C.; Cervetto, M.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Netchaeva, P.; Osculati, B.; Rossi, L.; Charles, E.; Fasching, D.; Blanquart, L.; Breugnon, P.; Calvet, D.; Clemens, J.-C.; Delpierre, P.; Hallewell, G.; Laugier, D.; Mouthuy, T.; Rozanov, A.; Valin, I.; Andreazza, A.; Caccia, M.; Citterio, M.; Lari, T.; Meroni, C.; Ragusa, F.; Troncon, C.; Vegni, G.; Lutz, G.; Richter, R.H.; Rohe, T.; Boyd, G.R.; Skubic, P.L.; Sicho, P.; Tomasek, L.; Vrba, V.; Holder, M.; Ziolkowski, M.; Cauz, D.; Cobal-Grassmann, M.; D' Auria, S.; De Lotto, B.; Del Papa, C.; Grassmann, H.; Santi, L.; Becks, K.H.; Lenzen, G.; Linder, C

    2002-08-21

    Prototype sensors for the ATLAS silicon pixel detector have been electrically characterized. The current and voltage characteristics, charge-collection efficiencies, and resolutions have been examined. Devices were fabricated on oxygenated and standard detector-grade silicon wafers. Results from prototypes which examine p-stop and standard and moderated p-spray isolation are presented for a variety of geometrical options. Some of the comparisons relate unirradiated sensors with those that have received fluences relevant to LHC operation.

  19. Optical Link of the Atlas Pixel Detector

    CERN Document Server

    Gan, K.K.; Jackson, P.D.; Johnson, M.; Kagan, H.; Buchholz, P.; Holder, M.; Roggenbuck, A.; Schade, P.

    2007-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the irradiation studies with 24 GeV protons up to 32 Mrad (1.2 x 10^15 p/cm^2) and the experience from the production.

  20. Production chain of CMS pixel modules

    CERN Multimedia

    2006-01-01

    The pictures show the production chain of pixel modules for the CMS detector. Fig.1: overview of the assembly procedure. Fig.2: bump bonding with ReadOut Chip (ROC) connected to the sensor. Fig.3: glueing a raw module onto the baseplate strips. Fig.4: glueing of the High Density Interconnect (HDI) onto a raw module. Fig.5: pull test after heat reflow. Fig.6: wafer sensor processing, Indium evaporation.

  1. Large format, small pixel pitch and hot detectors at SOFRADIR

    Science.gov (United States)

    Reibel, Y.; Rouvie, A.; Nedelcu, A.; Augey, T.; Pere-Laperne, N.; Rubaldo, L.; Billon-Lanfrey, D.; Gravrand, O.; Rothman, J.; Destefanis, G.

    2013-10-01

    Recently Sofradir joined a very small circle of IR detector manufacturers with expertise every aspect of the cooled and uncooled IR technologies, all under one roof by consolidating all IR technologies available in France. These different technologies are complementary and are used depending of the needs of the applications mainly concerning the detection range needs as well as their ability to detect in bad weather environmental conditions. SNAKE (InGaAs) and SCORPIO LW (MCT) expand Sofradir's line of small pixel pitch TV format IR detectors from the mid-wavelength to the short and long wavelengths. Our dual band MW-LW QWIP detectors (25μm, 384×288 pixels) benefit to tactical platforms giving an all-weather performance and increasing flexibility in the presence of battlefield obscurants. In parallel we have been pursuing further infrared developments on future MWIR detectors, such as the VGA format HOT detector that consumes 2W and the 10μm pitch IR detector which gives us a leading position in innovation. These detectors are designed for long-range surveillance equipment, commander or gunner sights, ground-to-ground missile launchers and other applications that require higher resolution and sensitivity to improve reconnaissance and target identification. This paper discusses the system level performance in each detector type.

  2. Quasi-pixel structured nanocrystalline Gd2O3(Eu) scintillation screens and imaging performance for indirect X-ray imaging sensors

    Science.gov (United States)

    Cha, Bo Kyung; Kim, Jong Yul; Cho, Gyuseong; Seo, Chang-Woo; Jeon, Sungchae; Huh, Young

    2011-08-01

    A novel quasi-pixel structured scintillation screen with nanocrystalline Gd2O3:Eu particle sizes was introduced for indirect X-ray imaging sensors with high sensitivity and high spatial resolution. A nanocrystalline Gd2O3:Eu scintillating phosphor with average 100 nm sizes was used as a conversion material for incident X-rays into optical photons. In this work, silicon-based pixel structures with different 100 and 50 μm pixel sizes, 10 μm wall width and 120 μm thickness were fabricated by a standard photolithography and deep reactive ion etching (DRIE) process. The pixelated scintillation screen was fabricated by filling the synthesized nanocrystalline Gd2O3:Eu scintillating phosphor into pixel-structured silicon arrays, and X-ray imaging performance such as relative light intensity, X-ray to light response and spatial resolution in terms of modulation transfer function (MTF) of the fabricated samples were measured. Although high spatial resolution imaging was largely achieved by pixel-structured nanocrystalline Gd2O3:Eu scintillation screens, X-ray sensitivity was still low for medical imaging applications. As a result, novel quasi-pixel structured screens with additional thin Gd2O2S:Tb scintillating layer were proposed for X-ray imaging detector with suitable sensitivity and spatial resolution in comparison with pixel-structured screens, and X-ray imaging performance of quasi-pixel structured nanocrystalline Gd2O3:Eu scintillating screens was investigated.

  3. Pixel electronics for the ATLAS experiment

    CERN Document Server

    Fischer, P

    2001-01-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2*5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mm*60.8 mm which include an n/sup +/ on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode...

  4. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  5. ATLAS ITk and new pixel sensors technologies

    CERN Document Server

    Gaudiello, A

    2016-01-01

    During the 2023–2024 shutdown, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×10$^{34}$ cm$^{−2}$s$^{−1}$. This upgrade of the accelerator is called High-Luminosity LHC (HL-LHC). The ATLAS detector will be changed to meet the challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing, and an integrated luminosity of 3000 fb $^{−1}$ over ten years. The HL-LHC luminosity conditions are too extreme for the current silicon (pixel and strip) detectors and straw tube transition radiation tracker (TRT) of the current ATLAS tracking system. Therefore the ATLAS inner tracker is being completely rebuilt for data-taking and the new system is called Inner Tracker (ITk). During this upgrade the TRT will be removed in favor of an all-new all-silicon tracker composed only by strip and pixel detectors. An overview of new layouts in study will be reported and the new pixel sensor technologies in development will be explained.

  6. XPAD: A photons counting pixel detector for material sciences and small-animal imaging

    Science.gov (United States)

    Delpierre, P.; Basolo, S.; Berar, J.-F.; Bordesoule, M.; Boudet, N.; Breugnon, P.; Caillot, B.; Chantepie, B.; Clemens, J. C.; Dinkespiler, B.; Hustache-Ottini, S.; Meessen, C.; Menouni, M.; Morel, C.; Mouget, C.; Pangaud, P.; Potheau, R.; Vigeolas, E.

    2007-03-01

    Experiments on high-flux and high-brilliance third-generation synchrotron X-ray sources are now limited by detector performance. Photon-counting hybrid pixel detectors are being investigated as a solution to improve the dynamic range and the readout speed of the available 2D detectors. The XPAD2 is a large-surface hybrid pixel detector (68×65 mm 2) with a dynamic response, which ranges from 0.01 to 10 6 photons/pixel/s. High-resolution data were recorded using the XPAD2. The comparison with data measured using a conventional setup shows a gain on measurement duration by a factor 20 and on dynamic range. A new generation of pixel detector (XPAD3) is presently under development. For this, a new electronic chip (the XPAD3) is designed to improve spatial resolution by using 130 μm pixels and detector efficiency by using CdTe sensors. XPAD2 is also operated with PIXSCAN, a CT scanner for mice.

  7. Pixel-Cluster Counting Luminosity Measurement In ATLAS

    CERN Document Server

    AUTHOR|(SzGeCERN)782710; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measure- ments of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster- counting method a...

  8. Pixel-based OPC optimization based on conjugate gradients.

    Science.gov (United States)

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  9. Pixel-Cluster Counting Luminosity Measurement in ATLAS

    CERN Document Server

    McCormack, William Patrick; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measurements of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster-counting method are ...

  10. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    Science.gov (United States)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  11. The FoCal prototype—an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors

    Science.gov (United States)

    de Haas, A. P.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Röhrich, D.; Ullaland, K.; van den Brink, A.; van Leeuwen, M.; Wang, H.; Yang, S.; Zhang, C.

    2018-01-01

    A prototype of a Si-W EM calorimeter was built with Monolithic Active Pixel Sensors as the active elements. With a pixel size of 30 μm it allows digital calorimetry, i.e. the particle's energy is determined by counting pixels, not by measuring the energy deposited. Although of modest size, with a width of only four Moliere radii, it has 39 million pixels. In this article the construction and tuning of the prototype is described. Results from beam tests are compared with predictions of GEANT-based Monte Carlo simulations. The shape of showers caused by electrons is shown in unprecedented detail. Results for energy and position resolution are also given.

  12. Sentinel-2’s Potential for Sub-Pixel Landscape Feature Detection

    Directory of Open Access Journals (Sweden)

    Julien Radoux

    2016-06-01

    Full Text Available Land cover and land use maps derived from satellite remote sensing imagery are critical to support biodiversity and conservation, especially over large areas. With its 10 m to 20 m spatial resolution, Sentinel-2 is a promising sensor for the detection of a variety of landscape features of ecological relevance. However, many components of the ecological network are still smaller than the 10 m pixel, i.e., they are sub-pixel targets that stretch the sensor’s resolution to its limit. This paper proposes a framework to empirically estimate the minimum object size for an accurate detection of a set of structuring landscape foreground/background pairs. The developed method combines a spectral separability analysis and an empirical point spread function estimation for Sentinel-2. The same approach was also applied to Landsat-8 and SPOT-5 (Take 5, which can be considered as similar in terms of spectral definition and spatial resolution, respectively. Results show that Sentinel-2 performs consistently on both aspects. A large number of indices have been tested along with the individual spectral bands and target discrimination was possible in all but one case. Overall, results for Sentinel-2 highlight the critical importance of a good compromise between the spatial and spectral resolution. For instance, the Sentinel-2 roads detection limit was of 3 m and small water bodies are separable with a diameter larger than 11 m. In addition, the analysis of spectral mixtures draws attention to the uneven sensitivity of a variety of spectral indices. The proposed framework could be implemented to assess the fitness for purpose of future sensors within a large range of applications.

  13. The role of breeding range, diet, mobility and body size in associations of raptor communities and land-use in a West African savannah

    NARCIS (Netherlands)

    Buij, R.; Croes, B.M.; Gort, G.; Komdeur, J.

    2013-01-01

    To provide insight into raptor declines in western Africa, we investigated associations between land-use and raptor distribution patterns in Cameroon. We examined the role of breeding distribution, species’ migratory mobility, diet, body size, and thus area requirements, on 5-km scale patterns of

  14. The role of breeding range, diet, mobility and body size in associations of raptor communities and land-use in a West African savanna

    NARCIS (Netherlands)

    Buij, Ralph; Croes, Barbara M.; Gort, Gerrit; Komdeur, Jan

    2013-01-01

    To provide insight into raptor declines in western Africa, we investigated associations between land-use and raptor distribution patterns in Cameroon. We examined the role of breeding distribution, species' migratory mobility, diet, body size, and thus area requirements, on 5-km scale patterns of

  15. Channel bed particle size distribution procedure used to evaluate watershed cumulative effects for range permit re-issuance on the Santa Fe National Forest

    Science.gov (United States)

    Bruce Sims; Jim Piatt; Lee Johnson; Carol Purchase; John Phillips

    1996-01-01

    Personnel on the Santa Fe National Forest used methodologies adapted from Bevenger and King (1995) to collect base line particle size data on streams within grazing allotments currently scheduled for permit reissuance. This information was used to determine the relative current health of the watersheds as well as being used in the development of potential alternatives...

  16. 4T CMOS Active Pixel Sensors under Ionizing Radiation

    NARCIS (Netherlands)

    Tan, J.

    2013-01-01

    This thesis investigates the ionizing radiation effects on 4T pixels and the elementary in-pixel test devices with regard to the electrical performance and the optical performance. In addition to an analysis of the macroscopic pixel parameter degradation, the radiation-induced degradation mechanisms

  17. Adaptive Resolution Upconversion for Compressed Video Using Pixel Classification

    Directory of Open Access Journals (Sweden)

    Shao Ling

    2007-01-01

    Full Text Available A novel adaptive resolution upconversion algorithm that is robust to compression artifacts is proposed. This method is based on classification of local image patterns using both structure information and activity measure to explicitly distinguish pixels into content or coding artifacts. The structure information is represented by adaptive dynamic-range coding and the activity measure is the combination of local entropy and dynamic range. For each pattern class, the weighting coefficients of upscaling are optimized by a least-mean-square (LMS training technique, which trains on the combination of the original images and the compressed downsampled versions of the original images. Experimental results show that our proposed upconversion approach outperforms other classification-based upconversion and artifact reduction techniques in concatenation.

  18. ACS/WFC Pixel History, Bringing the Pixels Back to Science

    Science.gov (United States)

    Borncamp, David; Grogin, Norman; Bourque, Matthew; Ogaz, Sara

    2017-06-01

    Excess thermal energy within a Charged Coupled Device (CCD) results in excess electrical current that is trapped within the lattice structure of the electronics. This excess signal from the CCD itself can be present through multiple exposures, which will have an adverse effect on its science performance unless it is corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as ``dark'' images, allow for the measurement of thermal-electron contamination at each pixel of the CCD. This so-called ``dark current'' can then be subtracted from the science images by re-scaling to the science exposure times. Pixels that have signal above a certain value are traditionally marked as ``hot'' and flagged in the data quality array. Many users will discard these pixels as being bad. However, these pixels may not be bad in the sense that they cannot be reliably dark-subtracted; if these pixels are shown to be stable over a given anneal period, the charge can be properly subtracted and the extra Poisson noise from this dark current can be taken into account and put into the error arrays.

  19. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    Energy Technology Data Exchange (ETDEWEB)

    Wuestling, Sascha, E-mail: sascha.wuestling@kit.ed [Forschungszentrum Karlsruhe, Institut fuer Prozessdatenverarbeitung und Elektronik, Postfach 3640, 76021 Karlsruhe (Germany); Fraenkle, F.; Habermehl, F.; Renschler, P. [Universitaet Karlsruhe - TH, Institut fuer Experimentelle Kernphysik, Postfach 6980, 76128 Karlsruhe (Germany); Steidl, M [Forschungszentrum Karlsruhe, Institut fuer Kernphysik, Postfach 3640, 76021 Karlsruhe (Germany)

    2010-12-11

    The KATRIN neutrino mass experiment is based on a precise energy measurement ({Delta}E/E=5x10{sup -5}) of electrons emerging from tritium beta decay (E{sub max}=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area ({approx}80 cm{sup 2}), a certain energy resolution ({Delta}E=600 eV - 18.6 keV) but also a certain spatial resolution ({approx}3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm{sup 2}) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. , this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement . The detector allows for background searches with a sensitivity as low as 1.3x10{sup -3} cps/cm{sup 2} in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10{sup 5} and the search for ultra low Penning discharge emissions.

  20. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    Science.gov (United States)

    Cavicchioli, C.; Chalmet, P. L.; Giubilato, P.; Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M.; Marin Tobon, C. A.; Martinengo, P.; Mattiazzo, S.; Mugnier, H.; Musa, L.; Pantano, D.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Van Hoorne, J. W.; Yang, P.

    2014-11-01

    Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget ( 0.3 %X0 in total for each inner layer) and higher granularity ( 20 μm × 20 μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ > 1 kΩ cm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a 55Fe X-ray source and 1-5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented.

  1. Pixel Grafting: An Evolution of Mincing for Transplantation of Full-Thickness Wounds.

    Science.gov (United States)

    Singh, Mansher; Nuutila, Kristo; Kruse, Carla; Dermietzel, Alexander; Caterson, E J; Eriksson, Elof

    2016-01-01

    Split-thickness skin grafting is the gold standard for treatment of major skin loss. This technique is limited by donor-site availability in large burn injuries. With micrografting, a technique where split-thickness skin graft is minced into 0.8 × 0.8-mm pieces, the authors have demonstrated an expansion ratio of 1:100 and healing comparable to that achieved with split-thickness skin grafting. In this study, the authors explore the regenerative potential of a skin graft by cutting split-thickness skin grafts to pixel size (0.3 × 0.3 mm) grafts. Wound healing was studied in full-thickness wounds in a porcine model by creating an incubator-like microenvironment using polyurethane wound chambers. Multiple wound healing parameters were used to study the outcome of pixel grafting and compare it to micrografting and nontransplanted wounds. The authors' results show that 0.3 × 0.3-mm pixel grafts remain viable and contribute to skin regeneration. The pixel graft-transplanted wounds demonstrated a faster reepithelialization rate, decreased wound contraction, and increased mechanical stability compared with nontransplanted wounds. The reepithelialization rates of the wounds were significantly increased with pixel grafting at day 6 after wounding compared with micrografting. Among the other wound healing parameters, there were no significant differences between wounds transplanted with pixel grafts and micrografts. Pixel grafting technique would address the most commonly encountered limitations of the split-thickness skin graft with the possibility of an even larger expansion ratio than micrografting. This technique is simple and fast and can be conducted in the operating room or in the clinic.

  2. Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows.

    Science.gov (United States)

    Rolston, D R; Robertson, B; Hinton, H S; Plant, D V

    1996-03-10

    A design analysis of a telecentric microchannel relay system developed for use with a smart-pixel-based photonic backplane is presented. The interconnect uses a clustered-window geometry in which optoelectronic device windows are grouped together about the axis of each microchannel. A Gaussian-beam propagation model is used to analyze the trade-off between window size, window density, transistor count per smart pixel, and lenslet ƒ-number for three cases of window clustering. The results of this analysis show that, with this approach, a window density of 4000 windows/cm(2) is obtained for a window size of 30 µm and a device plane separation of 25 mm. In addition, an optical power model is developed to determine the nominal power requirements of a 32 × 32 smart-pixel array as a function of window size. The power requirements are obtained assuming a complementary metal-oxide semiconductor inverter-amplifier and dual-rail multiple-quantum-well self-electro-optic-effect devices as the receiver stage of the smart pixel.

  3. CMOS pixel sensor for a space radiation monitor with very low cost, power and mass

    Science.gov (United States)

    Zhou, Y.; Baudot, J.; Duverger, C.; Hu-Guo, Ch; Hu, Y.; Winter, M.

    2012-12-01

    With the purpose of measuring simultaneously the proton and electron environment using a single sensitive device, we propose a CMOS pixel sensor featuring a 10 mm2 sensitive area, counting capability up to 107/cm2/s and with a minimal error due to pileup of two close particle impacts on the matrix. The proposed architecture includes a 64 × 64 square pixel matrix with 50 μm pitch size, 64 column level 3-bit ADCs to provide an appropriate energy resolution, and an embedded digital logic that directly calculates the particle properties from the hit information provided by the pixels. To validate experimentally the expected performance within the year 2012, a first prototype has been designed and fabricated in a 0.35 μm process without the integrated digital processing part. The device simulation and design architecture are presented.

  4. Application of a new interconnection technology for the ATLAS pixel upgrade at SLHC

    CERN Document Server

    Macchiolo, A; Beimforde, M; Moser, H G; Nisius, R; Richter, R H

    2009-01-01

    We present an R&D activity aiming towards a new detector concept in the framework of the ATLAS pixel detector upgrade exploiting a vertical integration technology developed at the Fraunhofer Institute IZMMunich. The Solid-Liquid InterDiffusion (SLID) technique is investigated as an alternative to the bump-bonding process. We also investigate the extraction of the signals from the back of the read-out chip through Inter-Chip-Vias to achieve a higher fraction of active area with respect to the present ATLAS pixel module. We will present the layout and the first results obtained with a production of test-structures designed to investigate the SLID interconnection efficiency as a function of different parameters, i.e. the pixel size and pitch, as well as the planarity of the underlying layers.

  5. A Design of a New Column-Parallel Analog-to-Digital Converter Flash for Monolithic Active Pixel Sensor.

    Science.gov (United States)

    Chakir, Mostafa; Akhamal, Hicham; Qjidaa, Hassan

    2017-01-01

    The CMOS Monolithic Active Pixel Sensor (MAPS) for the International Linear Collider (ILC) vertex detector (VXD) expresses stringent requirements on their analog readout electronics, specifically on the analog-to-digital converter (ADC). This paper concerns designing and optimizing a new architecture of a low power, high speed, and small-area 4-bit column-parallel ADC Flash. Later in this study, we propose to interpose an S/H block in the converter. This integration of S/H block increases the sensitiveness of the converter to the very small amplitude of the input signal from the sensor and provides a sufficient time to the converter to be able to code the input signal. This ADC is developed in 0.18  μ m CMOS process with a pixel pitch of 35  μ m. The proposed ADC responds to the constraints of power dissipation, size, and speed for the MAPS composed of a matrix of 64 rows and 48 columns where each column ADC covers a small area of 35 × 336.76  μ m 2 . The proposed ADC consumes low power at a 1.8 V supply and 100 MS/s sampling rate with dynamic range of 125 mV. Its DNL and INL are 0.0812/-0.0787 LSB and 0.0811/-0.0787 LSB, respectively. Furthermore, this ADC achieves a high speed more than 5 GHz.

  6. Direct and quantitative comparison of pixelated density profiles with high-resolution X-ray reflectivity data.

    Science.gov (United States)

    Fenter, P; Lee, S S; Skelton, A A; Cummings, P T

    2011-03-01

    A method for comparing pixelated density profiles (e.g. obtained from molecular dynamics or other computational techniques) with experimental X-ray reflectivity data both directly and quantitatively is described. The conditions under which such a comparison can be made quantitatively (e.g. with errors X-ray reflectivity calculations for binned density profiles is defined in terms of the inter-relationships between resolution of the X-ray reflectivity data (i.e. its range in momentum transfer), the chosen bin size and the width of the intrinsic density profile. These factors play a similar role in the application of any structure-factor calculations that involve the use of pixelated density profiles, such as those obtained from iterative phasing algorithms for inverting structures from X-ray reflectivity and coherent diffraction imaging data. Finally, it is shown how simulations of a quartz-water interface can be embedded into an exact description of the `bulk' phases (including the substrate crystal and the fluid water, below and above the actual interface) to quantitatively reproduce the experimental reflectivity data of a solid-liquid interface.

  7. Geometry optimization of a barrel silicon pixelated tracker

    Science.gov (United States)

    Liu, Qing-Yuan; Wang, Meng; Winter, Marc

    2017-08-01

    We have studied optimization of the design of a barrel-shaped pixelated tracker for given spatial boundaries. The optimization includes choice of number of layers and layer spacing. Focusing on tracking performance only, momentum resolution is chosen as the figure of merit. The layer spacing is studied based on Gluckstern’s method and a numerical geometry scan of all possible tracker layouts. A formula to give the optimal geometry for curvature measurement is derived in the case of negligible multiple scattering to deal with trajectories of very high momentum particles. The result is validated by a numerical scan method, which could also be implemented with any track fitting algorithm involving material effects, to search for the optimal layer spacing and to determine the total number of layers for the momentum range of interest under the same magnetic field. The geometry optimization of an inner silicon pixel tracker proposed for BESIII is also studied by using a numerical scan and these results are compared with Geant4-based simulations. Supported by National Natural Science Foundation of China (U1232202)

  8. Pixel hybrid photon detector magnetic distortions characterization and compensation

    CERN Document Server

    Aglieri-Rinella, G; D'Ambrosio, Carmelo; Forty, Roger W; Gys, Thierry; Patel, Mitesh; Piedigrossi, Didier; Van Lysebetten, Ann

    2004-01-01

    The LHCb experiment requires positive kaon identification in the momentum range 2-100 GeV/c. This is provided by two ring imaging Cherenkov detectors. The stringent requirements on the photon detectors are fully satisfied by the novel pixel hybrid photon detector, HPD. The HPD is a vacuum tube with a quartz window, S20 photo-cathode, cross-focusing electron optics and a silicon anode encapsulated within the tube. The anode is a 32*256 pixels hybrid detector, with a silicon sensor bump-bonded onto a readout chip containing 8192 channels with analogue front-end and digital read-out circuitry. An external magnetic field influences the trajectory of the photoelectrons and could thereby degrade the inherent excellent space resolution of the HPD. The HPDs must be operational in the fringe magnetic field of the LHCb magnet. This paper reports on an extensive experimental characterization of the distortion effects. The characterization has allowed the development of parameterisations and of a compensation algorithm. ...

  9. Advanced monolithic active pixel sensors for tracking, vertexing and calorimetry with full CMOS capability

    Science.gov (United States)

    Stanitzki, M.; SPiDeR Collaboration, www. spider. ac. uk

    2011-09-01

    We present test results from the "TPAC" and "F ORTIS" sensors produced using the 180 nm CMOS INMAPS process. The TPAC sensor has a 50 μm pixel size with advanced in-pixel electronics. Although TPAC was developed for digital electromagnetic calorimetry, the technology can be readily extended to tracking and vertexing applications where highly granular pixels with in-pixel intelligence are required. By way of example, a variant of the TPAC sensor has been proposed for the Super B vertex detector. The F ORTIS sensor is a prototype with several pixel variants to study the performance of a four transistors (4T) architecture and is the first sensor of this type tested for particle physics applications. TPAC and F ORTIS sensors have been fabricated with some of the processing innovations available in INMAPS such as deep p-wells and high-resistivity epitaxial layers. The performance of these sensor variants has been measured both in the laboratory and at test beams and results showing significant improvements due to these innovations are presented. We have recently manufactured the "C HERWELL" sensor, building on the experience with both TPAC and F ORTIS and making use of the 4T approach. C HERWELL is designed for tracking and vertexing and has an integrated ADC and targets very low-noise performance. The principal features of C HERWELL are described.

  10. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors

    Directory of Open Access Journals (Sweden)

    Matteo Perenzoni

    2016-05-01

    Full Text Available This paper reviews the state of the art of single-photon avalanche diode (SPAD image sensors for time-resolved imaging. The focus of the paper is on pixel architectures featuring small pixel size (<25 μm and high fill factor (>20% as a key enabling technology for the successful implementation of high spatial resolution SPAD-based image sensors. A summary of the main CMOS SPAD implementations, their characteristics and integration challenges, is provided from the perspective of targeting large pixel arrays, where one of the key drivers is the spatial uniformity. The main analog techniques aimed at time-gated photon counting and photon timestamping suitable for compact and low-power pixels are critically discussed. The main features of these solutions are the adoption of analog counting techniques and time-to-analog conversion, in NMOS-only pixels. Reliable quantum-limited single-photon counting, self-referenced analog-to-digital conversion, time gating down to 0.75 ns and timestamping with 368 ps jitter are achieved.

  11. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    CERN Document Server

    Cavicchioli, C; Giubilato, P; Hillemanns, H; Junique, A; Kugathasan, T; Mager, M; Marin Tobon, C A; Martinengo, P; Mattiazzo, S; Mugnier, H; Musa, L; Pantano, D; Rousset, J; Reidt, F; Riedler, P; Snoeys, W; Van Hoorne, J W; Yang, P

    2014-01-01

    Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (~0.3%X0~0.3%X0 in total for each inner layer) and higher granularity (View the MathML source~20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity View the MathML source(ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge c...

  12. Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI.

    Science.gov (United States)

    Rea, Marc; McRobbie, Donald; Elhawary, Haytham; Tse, Zion T H; Lamperth, Michael; Young, Ian

    2009-04-01

    Electromechanical devices enable increased accuracy in surgical procedures, and the recent development of MRI-compatible mechatronics permits the use of MRI for real-time image guidance. Integrated imaging of resonant micro-coil fiducials provides an accurate method of tracking devices in a scanner with increased flexibility compared to gradient tracking. Here we report on the ability of ten different image-processing algorithms to track micro-coil fiducials with sub-pixel accuracy. Five algorithms: maximum pixel, barycentric weighting, linear interpolation, quadratic fitting and Gaussian fitting were applied both directly to the pixel intensity matrix and to the cross-correlation matrix obtained by 2D convolution with a reference image. Using images of a 3 mm fiducial marker and a pixel size of 1.1 mm, intensity linear interpolation, which calculates the position of the fiducial centre by interpolating the pixel data to find the fiducial edges, was found to give the best performance for minimal computing power; a maximum error of 0.22 mm was observed in fiducial localisation for displacements up to 40 mm. The inherent standard deviation of fiducial localisation was 0.04 mm. This work enables greater accuracy to be achieved in passive fiducial tracking.

  13. Improved Surface Reflectance from Remote Sensing Data with Sub-Pixel Topographic Information

    Directory of Open Access Journals (Sweden)

    Laure Roupioz

    2014-10-01

    Full Text Available Several methods currently exist to efficiently correct topographic effects on the radiance measured by satellites. Most of those methods use topographic information and satellite data at the same spatial resolution. In this study, the 30 m spatial resolution data of the Digital Elevation Model (DEM from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer are used to account for those topographic effects when retrieving land surface reflectance from satellite data at lower spatial resolution (e.g., 1 km. The methodology integrates the effects of sub-pixel topography on the estimation of the total irradiance received at the surface considering direct, diffuse and terrain irradiance. The corrected total irradiance is then used to compute the topographically corrected surface reflectance. The proposed method has been developed to be applied on various kilometric pixel size satellite data. In this study, it was tested and validated with synthetic Landsat data aggregated at 1 km. The results obtained after a sub-pixel topographic correction are compared with the ones obtained after a pixel level topographic correction and show that in rough terrain, the sub-pixel topography correction method provides better results even if it tends to slightly overestimate the retrieved land surface reflectance in some cases.

  14. A new generation of small pixel pitch/SWaP cooled infrared detectors

    Science.gov (United States)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  15. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  16. The Pixel Detector of the ATLAS Experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO$_2$ based cooling system have been adopted. The IBL construction and installation in the ATLAS Experiment has been completed very successfu...

  17. The Pixel Detector of the ATLAS experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is the fourth layer of the Run 2 Pixel Detector, and it was installed in May 2014 between the existing Pixel Detector and the new smaller-radius beam pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project...

  18. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  19. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, Heinz; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and hit occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as we...

  20. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey Andre; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed. A new readout chip has been developed within CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performan...

  1. Dynamical pixel manipulation of metasurfaces (Conference Presentation)

    Science.gov (United States)

    Zhong, Jin-Qian

    2017-05-01

    Two-dimensional (2D) metamaterials or known as metasurfaces have attracted researchers' attention due to their capability to manipulate the amplitudes, phases and polarization states of incident electromagnetic waves by conferring extra phase different phase at different positions through a super cell that is composed of different oriented structures. In other words, metasurfaces can achieve beam steering and wave shaping by imparting local, gradient phase shift to the incoming waves. With these abilities, metasurfaces can be applied to applications such as ultrathin invisibility cloaks, metasurface holograms, planar lenses and a vortex generator. With the above mentioned advantages and applications of metasurfaces, yet, all the demonstrated metasurfaces possess a main insufficiency that once the metasurfaces are designed and fabricated, their optical properties are then fixed without any chance for further manipulation, which limits their versatility in practical applications. Moreover, although some researchers employed dynamically changeable materials to achieve an active metasurface, such manipulation can only change the overall performance such as an operating frequency instead of changing the provided phase on each pixel of a metasurface. To solve this issue, we employ liquid crystal integrated with a metasurface and the combination could be thus be dynamically tuned via electric bias on each pixel of liquid crystals. Through this setup, we can alter the polarization state of the incident electromagnetic wave dynamically and thus manipulate the extra phase provided by each pixel. In this combination, liquid crystal is employed to change the incident polarization from 0 to 360-degree and the metasurface is designed to achieve four different output signals including phase modulated linear- and circular-polarized light and amplitude-modulated linear- and circular-polarized light. Meanwhile, the metasurfaces could also control the transmission efficiency of the

  2. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  3. ATLAS Tracker and Pixel Operational Experience

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00222525; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pile-up and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker, are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  4. Swift Foxes and Ideal Free Distribution: Relative Influence of Vegetation and Rodent Prey Base on Swift Fox Survival, Density, and Home Range Size

    Science.gov (United States)

    2012-01-01

    extensive shortgrass prairie regions from central Canada into New Mexico and Texas and from the Rocky Mountains east into Iowa [1, 2]. Today, they are...woodland ( Pinus edulis and Juniperus monosperma). Elevation varied between 1,310 and 1,740m, average temperatures ranged from 1◦C in January to 23◦C in July

  5. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T. [Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Cornell University, Ithaca, NY 14853 (United States); Cornell University, Ithaca, NY 14853 (United States)

    2016-01-28

    A high-speed pixel array detector for time-resolved X-ray imaging at synchrotrons has been developed. The ability to isolate single synchrotron bunches makes it ideal for time-resolved dynamical studies. A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  6. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  7. The Phase1 CMS Pixel detector upgrade

    CERN Document Server

    Tavolaro, Vittorio Raoul

    2016-01-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of $1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO$_{2}$ cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detect...

  8. Further applications for mosaic pixel FPA technology

    Science.gov (United States)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  9. Alignment of the upgraded CMS pixel detector

    CERN Document Server

    Schroder, Matthias

    2018-01-01

    The all-silicon tracking system of the CMS experiment provides excellent resolution for charged tracks and an efficient tagging of heavy-flavour jets. After a new pixel detector has been installed during the LHC technical stop at the beginning of 2017, the positions, orientations, and surface curvatures of the sensors needed to be determined with a precision at the order of a few micrometres to ensure the required physics performance. This is far beyond the mechanical mounting precision but can be achieved using a track-based alignment procedure that minimises the track-hit residuals of reconstructed tracks. The results are carefully validated with data-driven methods. In this article, results of the CMS tracker alignment in 2017 from the early detector-commissioning phase and the later operation are presented, that were derived using several million reconstructed tracks in pp-collision and cosmic-ray data. Special emphasis is put on the alignment of the new pixel detector.

  10. The Phase II ATLAS ITk Pixel Upgrade

    CERN Document Server

    Terzo, Stefano; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the "ITk" (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and and ring-shaped supports in the endcap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m$^2$ , depending on the final layout choice, which is expected to take place in early 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel-endcap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as $|\\eta| < 4$. Supporting structures will be ...

  11. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  12. Pixel-Tilecal-MDT Combined Test Beam

    CERN Document Server

    B. Di Girolamo

    A test with many expectations When an additional week of running (from September 11th to 18th) was allocated for the test-beam, it was decided to give priority to a combined run with the participation of the Pixel, Tilecal and MDT sub-detectors. The integration of these three sub-detectors was possible as they all use the baseline (DAQ-1/EF based) DAQ for test beams (as reported in a previous e-news). The tests and the addition of a common trigger and busy were organized in a short timescale by experts from the three sub-detectors and DAQ/EF. The expectations were many; both looking for problems and finding solutions. The setup The setup, shown in the figure, consisted of the Pixel telescope normally used during the sub-detector tests, two Tilecal barrel modules, two Tilecal extended barrel modules, and six MDT barrel chambers. This fully occupied a length of some 30 meters in the H8 line of the SPS North Area. Each sub-detector used their own specialized front-end electronics. The data collected by modu...

  13. Performance of large area Micro Pixel Chamber

    CERN Document Server

    Nagayoshi, T; Miuchi, K; Ochi, A; Orito, R; Takada, A; Tanimori, T; Ueno, M

    2003-01-01

    A novel gaseous two-dimensional imaging detector "Micro Pixel Chamber (micro-PIC)" has been developed. This detector is based on double sided printed circuit board (PCB). We have developed large area (10cm x 10cm) micro-PICs with 65536 pixel anodes of 400um pitch on a 100um thick insulating substrate. Achieved energy resolution was 30% (FWHM) at 5.9keV, and a gas gain of 7000 was obtained with argon ethane (8:2) gas mixture. This gain is high enough to detect minimum ionizing particles with such a small electrode pitch. Although several discharges occurred during 65 hours continuous operation, the detectors have kept stable operation with high gain. The micro-PIC is a useful detector for many applications e.g. X-ray, gamma ray, and charged particle imaging. The micro electrode structure allows us to measure directions of primary electrons due to incident X-rays or gamma rays, which provide a strong method for X-ray polarimetry and gamma-ray imaging.

  14. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    Energy Technology Data Exchange (ETDEWEB)

    Allman, M. S., E-mail: shane.allman@boulder.nist.gov; Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3328 (United States); Marsili, F.; Beyer, A.; Shaw, M. D. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, California 91109 (United States); Kumor, D. [Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907 (United States)

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  15. A Proposed Extension to the Soil Moisture and Ocean Salinity Level 2 Algorithm for Mixed Forest and Moderate Vegetation Pixels

    Science.gov (United States)

    Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward

    2011-01-01

    The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the

  16. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    CERN Document Server

    Snoeys, W; Cantatore, E; Cencelli, V; Dinapoli, R; Heijne, Erik H M; Jarron, Pierre; Lamanna, P; Minervini, D; O'Shea, V; Quiquempoix, V; San Segundo-Bello, D; Van Koningsveld, B; Wyllie, Ken H

    2001-01-01

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 collaboration provided the basis to obtain radiation tolerance in commercial submicron CMOS through special circuit layout. The new ALICE1LMB chip was developed to serve two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 mu m*435 mu m pixel cells in the 256*32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32*32 array of 400 mu m*425 mu m cells. The circuit is currently being manufactured in a commercial 0.25 mu m CMO...

  17. A CMOS-based high-resolution fluoroscope (HRF) detector prototype with 49.5μm pixels for use in endovascular image guided interventions (EIGI)

    Science.gov (United States)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.

  18. Readout of a 176 pixel FDM system for SAFARI TES arrays

    Science.gov (United States)

    Hijmering, R. A.; den Hartog, R.; Ridder, M.; van der Linden, A. J.; van der Kuur, J.; Gao, J. R.; Jackson, B.

    2016-07-01

    In this paper we present the results of our 176-pixel prototype of the FDM readout system for SAFARI, a TES-based focal-plane instrument for the far-IR SPICA mission. We have implemented the knowledge obtained from the detailed study on electrical crosstalk reported previously. The effect of carrier leakage is reduced by a factor two, mutual impedance is reduced to below 1 nH and mutual inductance is removed. The pixels are connected in stages, one quarter of the array half of the array and the full array, to resolve intermediate technical issues. A semi-automated procedure was incorporated to find all optimal settings for all pixels. And as a final step the complete array has been connected and 132 pixels have been read out simultaneously within the frequency range of 1-3.8MHz with an average frequency separation of 16kHz. The noise was found to be detector limited and was not affected by reading out all pixels in a FDM mode. With this result the concept of using FDM for multiplexed bolometer read out for the SAFARI instrument has been demonstrated.

  19. Noise characteristics of stacked CMOS active pixel sensor for charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kunihiro, Takuya E-mail: kunihiro@geo.titech.ac.jp; Nagashima, Kazuhide; Takayanagi, Isao; Nakamura, Junichi; Kosaka, Koji; Yurimoto, Hisayoshi

    2001-09-11

    The noise characteristics of a stacked CMOS active pixel sensor (SCAPS) for incident charged particles have been analyzed under 4.5 keV Si{sup +} ion irradiation. The source of SCAPS dark current was found to change from thermal to electron leakage with decreasing device temperature. Leakage current at charge integration part in a pixel has been reduced to 0.1 electrons s{sup -1} at 77 K. The incident ion signals are computed by subtracting reset frame values from each frame using a non-destructive readout operation. With increase of irradiated ions, the dominant noise source changed from read noise, and shot noise from the incident ions, to signal frame fixed-pattern noise from variations in sensitivity between pixels. Pixel read noise is equivalent to ten incident ions. The charge of an incident ion is converted to 1.5 electrons in the pixel capacitor. Shot noise corresponds to the statistical fluctuation of incident ions. Signal frame fixed-pattern noise is 0.7% of the signal. By comparing full well conditions to noise floor, a dynamic range of 80 dB is achieved. SCPAS is useful as a two-dimensional detector for microanalyses such as stigmatic secondary ion mass spectrometry.

  20. Recent Results of the ATLAS Upgrade Planar Pixel Sensors R&D Project

    CERN Document Server

    Weigell, Philipp

    2013-01-01

    To cope with the higher occupancy and radiation damage at the HL-LHC also the LHC experiments will be upgraded. The ATLAS Planar Pixel Sensor R&D Project (PPS) is an international collaboration of 17 institutions and more than 80 scientists, exploring the feasibility of employing planar pixel sensors for this scenario. Depending on the radius, different pixel concepts are investigated using laboratory and beam test measurements. At small radii the extreme radiation environment and strong space constraints are addressed with very thin pixel sensors active thickness in the range of (75-150) mum, and the development of slim as well as active edges. At larger radii the main challenge is the cost reduction to allow for instrumenting the large area of (7-10) m^2. To reach this goal the pixel productions are being transferred to 6 inch production lines. Additionally, investigated are more cost-efficient and industrialised interconnection techniques as well as the n-in-p technology, which, being a single-sided pr...

  1. Interactive Isogeometric Volume Visualization with Pixel-Accurate Geometry.

    Science.gov (United States)

    Fuchs, Franz G; Hjelmervik, Jon M

    2016-02-01

    A recent development, called isogeometric analysis, provides a unified approach for design, analysis and optimization of functional products in industry. Traditional volume rendering methods for inspecting the results from the numerical simulations cannot be applied directly to isogeometric models. We present a novel approach for interactive visualization of isogeometric analysis results, ensuring correct, i.e., pixel-accurate geometry of the volume including its bounding surfaces. The entire OpenGL pipeline is used in a multi-stage algorithm leveraging techniques from surface rendering, order-independent transparency, as well as theory and numerical methods for ordinary differential equations. We showcase the efficiency of our approach on different models relevant to industry, ranging from quality inspection of the parametrization of the geometry, to stress analysis in linear elasticity, to visualization of computational fluid dynamics results.

  2. Serial pixel analog-to-digital converter (ADC)

    Science.gov (United States)

    Larson, Eric D.

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and "one-hot" counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  3. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  4. High-resolution pixel detectors for second generation digital mammography

    Science.gov (United States)

    Tümer, Tümay O.; Yin, Shi; Cajipe, Victoria; Flores, Henry; Mainprize, James; Mawdsley, Gord; Rowlands, John A.; Yaffe, Martin J.; Gordon, Eli E.; Hamilton, William J.; Rhiger, David; Kasap, Safa O.; Sellin, Paul; Shah, Kanai S.

    2003-01-01

    Hybrid CdZnTe, CdTe, GaAs, selenium and PbI 2 pixel detector arrays with 50×50 μm 2 pixel sizes that convert X-rays directly into charge signals are under development at NOVA for application to digital mammography. These detectors have superior X-ray quantum efficiency compared to either emulsion-based film, phosphor-based detectors or other low-Z, solid-state detectors such as silicon. During this work, CdZnTe and CdTe pixel detectors gave the best results. The other detectors are at very early stages of development and need significant improvement. Among other detectors, selenium is showing the highest potential. The preliminary results show that single crystal CdZnTe detectors yield better results in Detective Quantum Efficiency (DQE) as well as in images obtained from phantoms, compared to the polycrystalline CdZnTe detectors. This is due to the non-uniformities in the polycrystaline CdZnTe that degrade the charge transport properties. In this paper, preliminary results from thin (0.15 to 0.2 mm) CdZnTe and CdTe detectors will be presented in terms of MTF, DQE and phantom images. Because of the charge-coupling limitation of the readout Application Specific Integrated Circuit (ASIC) that was originally designed for Si detectors, the detector is biased to collect holes from the input. This charge collection mode limits the CdZnTe detector performance. Their DQE measurements yield 25% and 65% for the polycrystal and single-crystal CdZnTe detectors, respectively. Polycrystal CdTe test detectors were also hybridized to the same type charge readout chip. Since CdTe has much longer hole-propagation lengths compared to CdZnTe, it shows better performance in the hole-collecting mode. However, it suffers from polarization. Excellent images were also obtained from the CdTe detectors. Future work to redesign the readout ASIC and thus improve the detector performance will be discussed. These detectors can also be used for other medical radiography with increased thickness

  5. High-resolution pixel detectors for second generation digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Tuemer, T.O. E-mail: tumay.tumer@novarad.com; Yin, Shi; Cajipe, Victoria; Flores, Henry; Mainprize, James; Mawdsley, Gord; Rowlands, John A.; Yaffe, Martin J.; Gordon, Eli E.; Hamilton, William J.; Rhiger, David; Kasap, Safa O.; Sellin, Paul; Shah, Kanai S

    2003-01-21

    Hybrid CdZnTe, CdTe, GaAs, selenium and PbI{sub 2} pixel detector arrays with 50x50 {mu}m{sup 2} pixel sizes that convert X-rays directly into charge signals are under development at NOVA for application to digital mammography. These detectors have superior X-ray quantum efficiency compared to either emulsion-based film, phosphor-based detectors or other low-Z, solid-state detectors such as silicon. During this work, CdZnTe and CdTe pixel detectors gave the best results. The other detectors are at very early stages of development and need significant improvement. Among other detectors, selenium is showing the highest potential. The preliminary results show that single crystal CdZnTe detectors yield better results in Detective Quantum Efficiency (DQE) as well as in images obtained from phantoms, compared to the polycrystalline CdZnTe detectors. This is due to the non-uniformities in the polycrystaline CdZnTe that degrade the charge transport properties. In this paper, preliminary results from thin (0.15 to 0.2 mm) CdZnTe and CdTe detectors will be presented in terms of MTF, DQE and phantom images. Because of the charge-coupling limitation of the readout Application Specific Integrated Circuit (ASIC) that was originally designed for Si detectors, the detector is biased to collect holes from the input. This charge collection mode limits the CdZnTe detector performance. Their DQE measurements yield 25% and 65% for the polycrystal and single-crystal CdZnTe detectors, respectively. Polycrystal CdTe test detectors were also hybridized to the same type charge readout chip. Since CdTe has much longer hole-propagation lengths compared to CdZnTe, it shows better performance in the hole-collecting mode. However, it suffers from polarization. Excellent images were also obtained from the CdTe detectors. Future work to redesign the readout ASIC and thus improve the detector performance will be discussed. These detectors can also be used for other medical radiography with

  6. The SCUBA-2 Ambitious Sky Survey: a catalogue of beam-sized sources in the Galactic longitude range 120°-140°

    Science.gov (United States)

    Nettke, Will; Scott, Douglas; Gibb, Andy G.; Thompson, Mark; Chrysostomou, Antonio; Evans, A.; Hill, Tracey; Jenness, Tim; Joncas, Gilles; Moore, Toby; Serjeant, Stephen; Urquhart, James; Vaccari, Mattia; Weferling, Bernd; White, Glenn; Zhu, Ming

    2017-06-01

    The SCUBA-2 Ambitious Sky Survey (SASSy) is composed of shallow 850-μm imaging using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) on the James Clerk Maxwell Telescope. Here we describe the extraction of a catalogue of beam-sized sources from a roughly 120 deg2 region of the Galactic plane mapped uniformly (to an rms level of about 40 mJy), covering longitude 120° extraction procedure through estimates of the false discovery rate, as well as by adding artificial sources to the real images. The primary catalogue contains a total of 189 sources at 850 μm, down to an S/N threshold of approximately 4.6. Additionally, we list 136 sources detected down to S/N = 4.3, but recognize that as we go lower in S/N, the reliability of the catalogue rapidly diminishes. We perform follow-up observations of some of our lower significance sources through small targeted SCUBA-2 images and list 265 sources detected in these maps down to S/N = 5. This illustrates the real power of SASSy: inspecting the shallow maps for regions of 850-μm emission and then using deeper targeted images to efficiently find fainter sources. We also perform a comparison of the SASSy sources with the Planck Catalogue of Compact Sources and the IRAS Point Source Catalogue, to determine which sources discovered in this field might be new, and hence potentially cold regions at an early stage of star formation.

  7. Comparison of Aerodynamic Particle Size Distribution Between a Next Generation Impactor and a Cascade Impactor at a Range of Flow Rates.

    Science.gov (United States)

    Yoshida, Hiroyuki; Kuwana, Akemi; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro

    2017-04-01

    Wide variation in respiratory flow rates between patients emphasizes the importance of evaluating the aerodynamic particle size distribution (APSD) of dry powder inhaler (DPI) using a multi-stage impactor at different flow rates. US Pharmacopeia recently listed modified configurations of the Andersen cascade impactor (ACI) and new sets of cut-off diameter specifications for the operation at flow rates of 60 and 90 L/min. The purpose of this study was to clarify the effect of these changes on the APSD of DPI products at varied flow rates. We obtained APSD profiles of four DPIs and device combinations, Relenza®-Diskhaler® (GlaxoSmithKline Co.), Seebri®-Breezhaler® (Novartis Pharma Co.), Pulmicort®-Turbuhaler® (Astrazeneca Co.), and Spiriva®-Handihaler® (Nippon Boehringer Ingelheim Co.) using Next Generation Impactors (NGIs) and ACIs at flow rates from 28.3 to 90 L/min to evaluate the difference in the use of previous and new sets of cut-off diameter specifications. Processing the data using the new specifications for ACI apparently reduced large differences in APSD obtained by NGI and ACI with the previous specifications at low and high flow rates in all the DPIs. Selecting the appropriate configuration of ACI corresponding to the flow rate provided comparable APSD profiles of Pulmicort®-Turbuhaler® to those using NGIs at varied flow rates. The results confirmed the relevance of the current US Pharmacopeia specifications for ACI analysis in obtaining APSD profiles of DPI products at wide flow rates.

  8. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  9. Super pixel-level dictionary learning for hyperspectral image classification

    Science.gov (United States)

    Zhao, Wei; Zhu, Wen; Liao, Bo; Fu, Xiangzheng

    2017-08-01

    This paper presents a superpixel-level dictionary learning model for hyperspectral data. The idea is to divide the hyperspectral image into a number of super-pixels by means of the super-pixel segmentation method. Each super-pixel is a spatial neighborhood called contextual group. That is, each pixel is represented using a linear combination of a few dictionary items learned from the train data, but since pixels inside a super-pixel are often consisting of the same materials, their linear combinations are constrained to use common items from the dictionary. To this end, the sparse coefficients of the context group have a common sparse pattern by using the joint sparse regularizer for dictionary learning. The sparse coefficients are then used for classification using linear support vector machines. The validity of the proposed method is experimentally verified on a real hyperspectral images.

  10. The Floe Size Distribution in the Marginal Ice Zone of the Beaufort and Chukchi Seas

    Science.gov (United States)

    Schweiger, A. J. B.; Stern, H. L., III; Stark, M.; Zhang, J.; Steele, M.; Hwang, P. B.

    2014-12-01

    Several key processes in the Marginal Ice Zone (MIZ) of the Arctic Ocean are related to the size of the ice floes, whose diameters range from meters to tens of kilometers. The floe size distribution (FSD) influences the mechanical properties of the ice cover, air-sea momentum and heat transfer, lateral melting, and light penetration. However, no existing sea-ice/ocean models currently simulate the FSD in the MIZ. Model development depends on observations of the FSD for parameterization, calibration, and validation. To support the development and implementation of the FSD in the Marginal Ice Zone Modeling and Assimilation System (MIZMAS), we have analyzed the FSD in the Beaufort and Chukchi seas using multiple sources of satellite imagery: NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites (250 m pixel size), the USGS Landsat 8 satellite (80 m pixel size), the Canadian Space Agency's synthetic aperture radar (SAR) on RADARSAT (50 meter pixel size), and declassified National Technical Means imagery from the Global Fiducials Library (GFL) of the USGS (1 m pixel size). The procedure for identifying ice floes in the imagery begins with manually delineating cloud-free regions (if necessary). A threshold is then chosen to separate ice from water. Morphological operations and other semi-automated techniques are used to identify individual floes, whose properties are then easily calculated. We use the mean caliper diameter as the measure of floe size. The FSD is adequately described by a power-law in which the exponent characterizes the relative number of large and small floes. Changes in the exponent over time and space reflect changes in physical processes in the MIZ, such as sea-ice deformation, fracturing, and melting. We report results of FSD analysis for the spring and summer of 2013 and 2014, and show how the FSD will be incorporated into the MIZMAS model.

  11. Comparison of three sub-pixel computation approaches

    Science.gov (United States)

    Zhao, An; Zheng, Lin; Jiang, Meixin

    2005-10-01

    Sub-pixel classification is a tough issue in remote sensing field. Although many kinds of software or its Module can be used to address this problem, their rationale, algorithms and methodologies are different, resulting in different use of different method for different purpose. This makes many users feel confused when they want to detect mixed feature content within a pixel and to use sub-pixel approach for practical application. It is necessary to make an in-depth comparison study for different sub-pixel methods in order for RS&GIS users to choose proper sub-pixel methods for their specific applications. After reviewing the basic theories and methods in dealing with sub-pixels, this paper made an introductory analysis to their principles, algorithms, parameters and computing process of three sub-pixel calculation methods, or Linear Unmixing in platform ILWIS3.0, Erdas8.5's Sub-pixel Classifier, eCognition3.0's Nearest Neighbor. A case study of three sub-pixel methods was then made of flood monitoring in Poyang Lake region of P.R.China with image data of band-1 and band-2 of NOAA AVHRR image. Finally, a theoretic, technological and practical comparison study was made of these three sub-pixel methods in aspects of the basic principles, the parameters to be set, the suitable application fields and their respective use limitation. Opinions and comments were presented in the end on the use of the sub-pixel calculation results of these three methods in a hope to provide some reference to future sub-pixel application study for the researchers in interest.

  12. Bier and Pastis, a pixel readout prototype chip for LHC

    CERN Document Server

    Berg, C; Bonzom, V; Delpierre, P A; Desch, Klaus; Fischer, P; Keil, M; Meuser, S; Raith, B A; Wermes, N

    2000-01-01

    The 12*63 pixel readout prototype chip Bieu&Pastis, designed to cope with the environment imposed on a pixel detector by high-energy proton-proton collisions as expected at the Large Hadron Collider (LHC), is described. The chip contains the full pixel cell functionality, but not yet the full peripheral architecture for data transfer and readout with LHC speed. Design considerations and lab tests to characterize the performance as well as some test beam results are described. (7 refs).

  13. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    Science.gov (United States)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  14. Optimization and limits of electrostatic sorting by bi-polar charge of mineral mixtures in the fine grain size range. Final report. Optimierung und Grenzen der elektrostatischen Sortierung durch bipolare Aufladung von Mineralgemischen im Feinkornbereich. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In this work, the charge distribution in mineral mixtures and the electrostatic sorting according to tribo-charging is examined on R-10 fractions in the particle size range of 50-200 {mu}m. The purpose of the investigations was combinations of pairs from quartz, calcite, heavy spar, river spar and the pairing anthracite/quartz. Separation experiments were also carried out for the quartz/calcite pair in the particle size range of 20-50 {mu}m. After a survey of the literature and the electrical processes in the contact of two materials, some theoretical considerations procede the investigations, which are concerned with the maximum surface charge density on particles, the electrostatic agglomeration and the calculation of particle track curves in an homogeneous electrical field. It is shown that in principle, electrostatic agglomerates can always be separated in an electrical field. (orig.).

  15. Hit efficiency study of CMS prototype forward pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  16. Qualification Procedures of the CMS Pixel Barrel Modules

    CERN Document Server

    Starodumov, A; Horisberger, R.; Kastli, H.Chr.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Trueb, P.

    2006-01-01

    The CMS pixel barrel system will consist of three layers built of about 800 modules. One module contains 66560 readout channels and the full pixel barrel system about 48 million channels. It is mandatory to test each channel for functionality, noise level, trimming mechanism, and bump bonding quality. Different methods to determine the bump bonding yield with electrical measurements have been developed. Measurements of several operational parameters are also included in the qualification procedure. Among them are pixel noise, gains and pedestals. Test and qualification procedures of the pixel barrel modules are described and some results are presented.

  17. Dead pixel correction techniques for dual-band infrared imagery

    Science.gov (United States)

    Nguyen, Chuong T.; Mould, Nick; Regens, James L.

    2015-07-01

    We present two new dead pixel correction algorithms for dual-band infrared imagery. Specifically, we address the problem of repairing unresponsive elements in the sensor array using signal processing techniques to overcome deficiencies in image quality that are present following the nonuniformity correction process. Traditionally, dead pixel correction has been performed almost exclusively using variations of the nearest neighbor technique, where the value of the dead pixel is estimated based on pixel values associated with the neighboring image structure. Our approach differs from existing techniques, for the first time we estimate the values of dead pixels using information from both thermal bands collaboratively. The proposed dual-band statistical lookup (DSL) and dual-band inpainting (DIP) algorithms use intensity and local gradient information to estimate the values of dead pixels based on the values of unaffected pixels in the supplementary infrared band. The DSL algorithm is a regression technique that uses the image intensities from the reference band to estimate the dead pixel values in the band undergoing correction. The DIP algorithm is an energy minimization technique that uses the local image gradient from the reference band and the boundary values from the affected band to estimate the dead pixel values. We evaluate the effectiveness of the proposed algorithms with 50 dual-band videos. Simulation results indicate that the proposed techniques achieve perceptually and quantitatively superior results compared to existing methods.

  18. Novel nanocrystalline Gd 2O 3(Eu) scintillator screens with a micro-pixel structure for high spatial resolution X-ray imaging

    Science.gov (United States)

    Cha, Bo Kyung; Lee, Seung Jun; Muralidharan, P.; Kim, Do Kyung; Kim, Jong Yul; Cho, Gyuseong; Jeon, Sungchae; Huh, Young

    2011-10-01

    We developed a novel pixel-structured scintillation screen with nanocrystalline Gd 2O 3:Eu particle sizes for high spatial resolution X-ray imaging detectors. Nanocrystalline Gd 2O 3:Eu scintillators were successfully synthesized with a hydrothermal method and a subsequent calcination treatment, which were used as a material for converting incident X-rays into visible light. In this work, silicon-based pixel structures with different 100, 50 and 30 μm pixel sizes, a 10 μm wall width and a 120 μm thickness were prepared with the standard photolithography and the deep reactive ion etching (DRIE) process. Subsequently, a micro-pixel-structured scintillation screen was fabricated by adding the synthesized nanocrystalline Gd 2O 3:Eu scintillating phosphor to pixel-structured silicon arrays. Additionally, X-ray imaging performance such as relative light intensity, X-ray to light response and the spatial resolution in terms of modulation transfer function (MTF) were measured by using an X-ray source and a lens-coupled charge coupled device (CCD) camera system. The light intensity of the pixel-structured nanocrystalline Gd 2O 3:Eu screen was much higher than that of a pixel-structured sample made with a commercial microcrystalline Gd 2O 3:Eu product due to the density of the nanocrystalline Gd 2O 3:Eu scintillating powder-filled silicon structure. As the pixel size of the pixel-structured silicon decreased, the light intensity decreased. However, as the pixel size decreased, the spatial resolution significantly improved with no evident crosstalk from the emitted optical photons between adjacent scintillating pixels. The MTF of pixel-structured nanocrystalline Gd 2O 3:Eu screens with a 100 and a 50 μm pixel size was 20% and 30% at 6 lp/mm, respectively. As a result, this new technology showed that a microchannel structure based on a nanocrystalline Gd 2O 3:Eu scintillator could provide higher light intensity and high spatial resolution imaging compared to conventional

  19. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  20. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    Science.gov (United States)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  1. [Observations of spectral data and characteristics analysis of snow-bare soil mixed pixel generated by micro-simulation].

    Science.gov (United States)

    Liu, Yan; Li, Yang

    2014-07-01

    To explore the differences of mixed-pixel in spectral mixing mechanism at micro-and macro -scale, the micro- simulation of snow-bare soil mixed pixel was taken as the object of study in an artificial test environment. Reflectance spectra of mixed pixel and snow, bare soil endmember with different area ratio were collected by full-band spectrometer with fixed probe distance. Qualitative and quantitative analysis of original reflectance spectra was done, and reflectance spectra form 350 to 2 500 nm and normalized reflectance spectral data of 350 to 1 815 nm excluding noise were normalized. At the same time, we collected EOS/MODIS and Environment and Disaster Monitoring Satellites data of the same period over the same area and analyzed the correlation of channels in visible, near-infrared and shortwave infrared wavelength range at different resolution scales and the relationship between spectrum of mixed snow-soil and endmember pixel in MODIS image was analyzed. The results showed that, (1) At the micro scale, non-linear relationship existed between mixed pixel and endmember within the scope of the full-wave and linear relationship existed in sub-band wavelength range; (2) At the macro scale, linear relationship existed between mixed pixel and endmember. (3) In statistics of spectral values, the correlation between snow-soil mixture and endmember is positive for snow-soil mixture and snow endmember, and is negative for snow-soil mixture and soil endmember.

  2. Pixel Stability in HST Advanced Camera for Surveys Images

    Science.gov (United States)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current that is propagated into individual pixels in an exposure. This excess signal from the CCD itself can be persistently existent through multiple exposures and can have an adverse effect on the detectors science performance unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed to map the location of these pixels. These images, generally referred to as “dark” images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This "dark current" can then be subtracted from the science images by re-scaling the dark to the science exposure times. Pixels that have signal above a certain threshold are traditionally marked as “hot” and flagged in the data quality array. Many users will discard these pixels as being bad because of this extra current. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra Poisson noise from this hot pixel’s dark current can be taken into account. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously marked as bad to be brought back into the science image as a reliable pixel.

  3. Electrical measurements of a multi-mode hybrid pixel detector ASIC for radiation detection

    Science.gov (United States)

    Wong, W. S.; Anton, G.; Ballabriga, R.; Blaj, G.; Böhnel, M.; Campbell, M.; Gabor, T.; Heijne, E.; Llopart, X.; Michel, T.; Ritter, I.; Poikela, T.; Sievers, P.; Tlustos, L.; Valerio, P.

    2012-01-01

    We present the first electrical measurements of an application-specific integrated circuit (ASIC) to be used in a hybrid pixel detector intended for dosimetry and radiation detection. The dosimeter has three programmable modes of operation: photon counting mode, energy integration mode, and dosimetry mode. The ASIC comprises a matrix of 16 by 16 (256 total) square pixels of 220 μm pitch, providing 12.4 mm2 of segmented active area. Each pixel can be configured to operate in one of the three radiation measurement modes, with programmable-depth counters and shift registers to tailor the data word size and optimise the readout frame-rate in a given mode. The individual energies of impinging photons are determined through programmable analogue energy threshold discrimination, time over threshold measurement, or a combination thereof. Furthermore, the dosimetry mode contains 16 digital energy thresholds and automatically sorts data into 16 corresponding energy bin registers. The chip's output is therefore pre-processed charge spectra of the radiation field. This paper discusses results from measurements taken using programmable test-pulses to inject controlled stimuli into the pixel circuits.

  4. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J.

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  5. Evaluation of testing strategies for the radiation tolerant ATLAS n **+-in-n pixel sensor

    CERN Document Server

    Klaiber Lodewigs, Jonas M

    2003-01-01

    The development of particle tracker systems for high fluence environments in new high-energy physics experiments raises new challenges for the development, manufacturing and reliable testing of radiation tolerant components. The ATLAS pixel detector for use at the LHC, CERN, is designed to cover an active sensor area of 1.8 m**2 with 1.1 multiplied by 10 **8 read-out channels usable for a particle fluence up to 10 **1**5 cm**-**2 (1 MeV neutron equivalent) and an ionization dose up to 500 kGy of mainly charged hadron radiation. To cope with such a harsh environment the ATLAS Pixel Collaboration has developed a radiation hard n **+-in-n silicon pixel cell design with a standard cell size of 50 multiplied by 400 mum**2. Using this design on an oxygenated silicon substrate, sensor production has started in 2001. This contribution describes results gained during the development of testing procedures of the ATLAS pixel sensor and evaluates quality assurance procedures regarding their relevance for detector operati...

  6. The LAMBDA photon-counting pixel detector and high-Z sensor development

    Science.gov (United States)

    Pennicard, D.; Smoljanin, S.; Struth, B.; Hirsemann, H.; Fauler, A.; Fiederle, M.; Tolbanov, O.; Zarubin, A.; Tyazhev, A.; Shelkov, G.; Graafsma, H.

    2014-12-01

    Many X-ray experiments at third-generation synchrotrons benefit from using single-photon-counting detectors, due to their high signal-to-noise ratio and potential for high-speed measurements. LAMBDA (Large Area Medipix3-Based Detector Array) is a pixel detector system based on the Medipix3 readout chip. It combines the features of Medipix3, such as a small pixel size of 55 μm and flexible functionality, with a large tileable module design consisting of 12 chips (1536 × 512 pixels) and a high-speed readout system capable of running at 2000 frames per second. To enable high-speed experiments with hard X-rays, the LAMBDA system has been combined with different high-Z sensor materials. Room-temperature systems using GaAs and CdTe systems have been produced and tested with X-ray tubes and at synchrotron beamlines. Both detector materials show nonuniformities in their raw image response, but the pixel yield is high and the uniformity can be improved by flat-field correction, particularly in the case of GaAs. High-frame-rate experiments show that useful information can be gained on millisecond timescales in synchrotron experiments with these sensors.

  7. 3D silicon pixel detectors for the High-Luminosity LHC

    Science.gov (United States)

    Lange, J.; Carulla Areste, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.; Vázquez Furelos, D.

    2016-11-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50 × 250 μm2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12-15 mW/cm2 at a fluence of about 1016 neq/cm2, measured at -25°C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50 × 50 and 25 × 100 μm2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1-2 V before irradiation.

  8. Pixel-Level and Robust Vibration Source Sensing in High-Frame-Rate Video Analysis

    Directory of Open Access Journals (Sweden)

    Mingjun Jiang

    2016-11-01

    Full Text Available We investigate the effect of appearance variations on the detectability of vibration feature extraction with pixel-level digital filters for high-frame-rate videos. In particular, we consider robust vibrating object tracking, which is clearly different from conventional appearance-based object tracking with spatial pattern recognition in a high-quality image region of a certain size. For 512 × 512 videos of a rotating fan located at different positions and orientations and captured at 2000 frames per second with different lens settings, we verify how many pixels are extracted as vibrating regions with pixel-level digital filters. The effectiveness of dynamics-based vibration features is demonstrated by examining the robustness against changes in aperture size and the focal condition of the camera lens, the apparent size and orientation of the object being tracked, and its rotational frequency, as well as complexities and movements of background scenes. Tracking experiments for a flying multicopter with rotating propellers are also described to verify the robustness of localization under complex imaging conditions in outside scenarios.

  9. High-speed imaging at high x-ray energy: CdTe sensors coupled to charge-integrating pixel array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Julian; Tate, Mark W.; Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Purohit, Prafull [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Chamberlain, Darol [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm){sup 2} pixels.

  10. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Rossi, Leonardo Paolo; The ATLAS collaboration

    2018-01-01

    The entire tracking system of the ATLAS experiment will be replaced in 2025 during the LHC Phase-II shutdown by an all-silicon detector called the “ITk” (Inner Tracker). The innermost part of ITk will be a pixel detector containing about 12.5m2 of sensitive silicon. The silicon modules are arranged on 5 layers of stave-like support structures in the most central region and ring-shaped supports in the endcap regions covering out to |η| < 4; a mid-eta region (~1 < |η| < ~2) will be occupied by novel inclined support structures which keep the angle of incidence of high-momentum tracks more closely normal to the sensitive silicon. All supports will be based on low mass, highly stable and highly thermally-conductive carbon-based materials cooled by evaporative carbon dioxide flowing in thin-walled titanium pipes. An extensive prototyping programme, including thermal, mechanical and electrical studies, is being carried out on all the types of support structures. The HL-LHC is expected to deliver up t...

  11. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Benoit, Mathieu; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The innermost portion of the ITk will consist of a pixel detector with stave-like support structures in the most central region and ring-shaped supports in the endcap regions; there may also be novel inclined support structures in the barrel-endcap overlap regions. The new detector could have as much as 14 m2 of sensitive silicon. Support structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide. The ITk will be instrumented with new sensors and readout electronics to provide improved tracking performance compared to the current detector. All the module components must be performant enough and robust enough to cope with the expected high particle multiplicity and severe radiation background of the High-Luminosity LHC. Readout...

  12. Precision tracking with a single gaseous pixel detector

    NARCIS (Netherlands)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N.P.; de Jong, P.; Kluit, R.

    2015-01-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips.

  13. Centi-pixel accurate real-time inverse distortion correction

    CSIR Research Space (South Africa)

    De Villiers, Johan P

    2008-11-01

    Full Text Available Inverse distortion is used to create an undistorted image from a distorted image. For each pixel in the undistorted image it is required to determine which pixel in the distorted image should be used. However the process of characterizing a lens...

  14. Novel integrated CMOS pixel structures for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  15. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    Spannagel, Simon

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  16. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  17. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    Energy Technology Data Exchange (ETDEWEB)

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  18. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  19. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372086; The ATLAS collaboration

    2016-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  20. Range size patterns in European freshwater trematodes

    DEFF Research Database (Denmark)

    Thieltges, David; Hof, Christian; Borregaard, Michael Krabbe

    2011-01-01

    to the north, with similar values for allogenic and autogenic trematodes. Finally, we observed an increasing proportion of autogenic species toward the north of Europe. Main conclusions The richness of definitive hosts appears to be the driver of trematode diversity at a continental scale. The latitudinal...... biogeographical regions in Europe from the Limnofauna Europaea and used multiple regression analyses to test for correlations between the diversity of definitive (vertebrates) or first intermediate (gastropods) hosts and that of trematodes, and for latitudinal gradients in trematode diversity. In particular, we...... investigated patterns in beta diversity among latitudinal bands and between trematode species that parasitize host groups with low (autogenic) and high (allogenic) dispersal capacity.We also tested for a latitudinal gradient in the proportional representation of these two trematode groups within regional...

  1. Study of the chemical interaction between the beryllium powders of different particles size and the air in the temperature range 500-1000degC form the viewpoint of ITER safety

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, D.A. [State Scientific Center of Russian Federation, Moscow (Russian Federation); Konovalov, Y.V.; Gorokhov, V.A.; Levin, V.B.; Chekhlatov, G.M.; Khomutov, A.M.

    1998-01-01

    Under an effect of some factors characteristic for the ITER- operating condition a dense beryllium facing plasma can transit into various forms, changing its structural states. As a result of the bombardment of beryllium plasma facing components by ion fluxes, the production of a dust including the particles from a few micrometers to a few millimeters in size is possible. The specific features in the behaviour of various beryllium forms under emergency conditions are of an essential interest from the viewpoint of ITER safety. Some grades of powders of different average particles size (14-31 micron) have been produced in a given study, and their chemical interaction at high temperatures with air (500-1100degC), test duration effects simulating the emergency situation at ITER in the first approximation have been studied. The temperature dependence of beryllium powders (different particles size after disc abrased) interaction with air in the temperature range 500-1000degC at the exposure of 5 hours long for each temperature and kinetic dependence of interaction of these powders with air at 800degC for the exposure from half an hour to 7 hours long were studied. An analysis of granulometric weight fraction in the metallic and oxidized beryllium powders with different particles size has been done by the photosedimentational technique with the instrument `Analysette-20`. Construction of a mathematical model for the chemical interaction of beryllium powders with air at high temperatures have been carried out. (author)

  2. Active pixel as dosimetric device for interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Servoli, L., E-mail: leonello.servoli@pg.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Baldaccini, F. [Universitá degli Studi di Perugia, Perugia (Italy); Biasini, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Universitá degli Studi di Perugia, Perugia (Italy); Checcucci, B. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Chiocchini, S.; Cicioni, R. [Universitá degli Studi di Perugia, Perugia (Italy); Conti, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Universitá degli Studi di Perugia, Perugia (Italy); Di Lorenzo, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); ASL 3 Umbria, Ospedale di Foligno, Foligno (Italy); Dipilato, A.C. [Universitá degli Studi di Perugia, Perugia (Italy); Esposito, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Universitá “Sapienza”, Roma (Italy); Fanó, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Universitá degli Studi di Perugia, Perugia (Italy); Paolucci, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); ASL 3 Umbria, Ospedale di Foligno, Foligno (Italy); Passeri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Universitá degli Studi di Perugia, Perugia (Italy); Pentiricci, A. [ASL 1 Umbria, Ospedale di Cittá di Castello, Cittá di Castello (Italy); and others

    2013-08-21

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ∼5% for all the sensors under test.

  3. Reproducibility of pixel values for two photostimulable phosphor plates in consecutive standardized scannings Reprodutibilidade dos valores de "pixels" de duas placas de fósforo fotoestimuláveis em leituras padronizadas consecutivas

    Directory of Open Access Journals (Sweden)

    Patrícia Freitas

    2006-09-01

    Full Text Available The objective of the present study was to determine the reproducibility of the pixel values obtained with the Digora system (Soredex, Finland. Exposures were standardized, with variation in exposure and scanning time of two photostimulable phosphor plates containing a stepwedge image. The smallest variation in pixel values ranged from 50 to 75%, with the widest variations being observed in less dense steps. A significant difference in pixel values was observed in terms of X-ray exposure and scanning times and between the two plates themselves (ANOVA, p O objetivo do presente trabalho foi determinar a reprodutibilidade dos valores de "pixels" obtidos com o sistema Digora (Soredex, Finlândia. As exposições foram padronizadas, com variação no tempo de exposição e leitura de duas placas de fósforo fotoestimuláveis contendo a imagem de um penetrômetro. A menor variação nos valores de "pixels" foi de 50 a 75%, sendo as maiores variações oriundas nas faixas mais claras. Uma diferença significante nos valores de "pixels" foi observada em relação ao tempo de exposição e leitura das placas e entre as duas placas (ANOVA, p < 0,01. Utilizando a presente metodologia, a reprodutibilidade dos valores de "pixels" das placas testadas do sistema Digora não foi satisfatória. Essa grande variação na digitalização pode ter sido influenciada pela quantidade de Raios X que sensibilizou as placas. Isso pode ser importante para estabelecer a reprodutibilidade dos valores de "pixels" em estudos quantitativos usando imagem digital.

  4. Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images

    Directory of Open Access Journals (Sweden)

    Jaime Almonacid-Caballer

    2017-10-01

    Full Text Available Multi-temporal analysis is one of the main applications of remote sensing, and Landsat imagery has been one of the main resources for many years. However, the moderate spatial resolution (30 m restricts their use for high precision applications. In this paper, we simulate Landsat scenes to evaluate, by means of an exhaustive number of tests, a subpixel registration process based on phase correlation and the upsampling of the Fourier transform. From a high resolution image (0.5 m, two sets of 121 synthetic images of fixed translations are created to simulate Landsat scenes (30 m. In this sense, the use of the point spread function (PSF of the Landsat TM (Thematic Mapper sensor in the downsampling process improves the results compared to those obtained by simple averaging. In the process of obtaining sub-pixel accuracy by upsampling the cross correlation matrix by a certain factor, the limit of improvement is achieved at 0.1 pixels. We show that image size affects the cross correlation results, but for images equal or larger than 100 × 100 pixels similar accuracies are expected. The large dataset used in the tests allows us to describe the intra-pixel distribution of the errors obtained in the registration process and how they follow a waveform instead of random/stochastic behavior. The amplitude of this waveform, representing the highest expected error, is estimated at 1.88 m. Finally, a validation test is performed over a set of sub-pixel shorelines obtained from actual Landsat-5 TM, Landsat-7 ETM+ (Enhanced Thematic Mapper Plus and Landsat-8 OLI (Operation Land Imager scenes. The evaluation of the shoreline accuracy with respect to permanent seawalls, before and after the registration, shows the importance of the registering process and serves as a non-synthetic validation test that reinforce previous results.

  5. International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL2016)

    CERN Document Server

    Rossi, Leonardo; PIXEL2016

    2016-01-01

    The workshop will cover various topics related to pixel detector technology. Development and applications will be discussed for charged particle tracking in High Energy Physics, Nuclear Physics and Astrophysics, and for X-ray imaging in Astronomy, Biology, Medicine and Material Science. The conference program will also include reports on front and back end electronics, radiation effects, low mass mechanics, environmental control and construction techniques. Emerging technologies, such as monolithic and HV&HR CMOS, will also be treated. Will be published in: http://pos.sissa.it/

  6. Test-beam activities and results for the ATLAS ITk pixel detector

    Science.gov (United States)

    Bisanz, T.

    2017-12-01

    The Phase-II upgrade of the LHC aims at an increase of the instantaneous luminosity up to about 5×1034 cm‑2 s‑1. To cope with the resulting challenges the current Inner Detector will be replaced by an all-silicon Inner Tracker (ITk) system. The Pixel Detector will have to deal with occupancies of about 300 hits/FE/s as well as a fluence of around 2×1016 neq cm‑2. Various sensor layouts are under development, aiming at providing a high performance, cost effective pixel instrumentation to cover an active area of about 10 m2. These range from thin planar silicon, 3D silicon, to active CMOS sensors. After extensive characterization of the sensors in the lab, their charge collection properties and hit efficiency are measured in common testbeam campaigns, which provide valuable feedback for improvements of the layout. Testbeam measurements of the final prototypes will be used for the decision of which sensor types will be installed in ITk. The setups used in the ITk Pixel testbeam campaigns will be presented, including the common track reconstruction and analysis software. Results from the latest measurements will be shown, highlighting some of the developments and challenges for the ITk Pixel sensors.

  7. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    Science.gov (United States)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  8. Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector

    Science.gov (United States)

    Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2014-02-01

    A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.

  9. Neighborhood size of training data influences soil map disaggregation

    Science.gov (United States)

    Soil class mapping relies on the ability of sample locations to represent portions of the landscape with similar soil types; however, most digital soil mapping (DSM) approaches intersect sample locations with one raster pixel per covariate layer regardless of pixel size. This approach does not take ...

  10. Optimization of convergent collimators for pixelated SPECT systems

    Energy Technology Data Exchange (ETDEWEB)

    Capote, Ricardo M.; Matela, Nuno; Conceicao, Raquel C.; Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Campo Grande, 1749-016 Lisboa (Portugal)

    2013-06-15

    Purpose: The optimization of the collimator design is essential to obtain the best possible sensitivity in single photon emission computed tomography imaging. The aim of this work is to present a methodology for maximizing the sensitivity of convergent collimators, specifically designed to match the pitch of pixelated detectors, for a fixed spatial resolution value and to present some initial results using this approach. Methods: Given the matched constraint, the optimal collimator design cannot be simply found by allowing the highest level of septal penetration and spatial resolution consistent with the imposed restrictions, as it is done for the optimization of conventional collimators. Therefore, an algorithm that interactively calculates the collimator dimensions, with the maximum sensitivity, which respect the imposed restrictions was developed and used to optimize cone and fan beam collimators with tapered square-shaped holes for low (60-300 keV) and high energy radiation (300-511 keV). The optimal collimator dimensions were locally calculated based on the premise that each hole and septa of the convergent collimator should locally resemble an appropriate optimal matched parallel collimator. Results: The optimal collimator dimensions, calculated for subcentimeter resolutions (3 and 7.5 mm), common pixel sizes (1.6, 2.1, and 2.5 mm), and acceptable septal penetration at 140 keV, were approximately constant throughout the collimator, despite their different hole incidence angles. By using these input parameters and a less strict septal penetration value of 5%, the optimal collimator dimensions and the corresponding mass per detector area were calculated for 511 keV. It is shown that a low value of focal distance leads to improvements in the average sensitivity at a fixed source-collimator distance and resolution. The optimal cone beam performance outperformed that of other optimal collimation geometries (fan and parallel beam) in imaging objects close to the

  11. SPIDR, a general-purpose readout system for pixel ASICs

    Science.gov (United States)

    van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.

    2017-02-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit

  12. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  13. Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Ott, J. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Laboratory of Radio Chemistry, University of Helsinki (Finland); Mäkelä, M. [Laboratory of Inorganic Chemistry, University of Helsinki (Finland); Arsenovich, T.; Gädda, A.; Peltola, T. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Tuovinen, E. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); VTT Technical Research Centre of Finland, Microsystem and Nanoelectronics (Finland); Luukka, P.; Tuominen, E. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Niinistö, J.; Ritala, M. [Laboratory of Inorganic Chemistry, University of Helsinki (Finland)

    2016-09-21

    In this report we cover two special applications of Atomic Layer Deposition (ALD) thin films to solve these challenges of the very small size pixel detectors. First, we propose to passivate the p-type pixel detector with ALD grown Al{sub 2}O{sub 3} field insulator with a negative oxide charge instead of using the commonly adopted p-stop or p-spray technologies with SiO{sub 2}, and second, to use plasma-enhanced ALD grown titanium nitride (TiN) bias resistors instead of the punch through biasing structures. Surface passivation properties of Al{sub 2}O{sub 3} field insulator was studied by Photoconductive Decay (PCD) method and our results indicate that after appropriate annealing Al{sub 2}O{sub 3} provides equally low effective surface recombination velocity as thermally oxidized Si/SiO{sub 2} interface. Furthermore, with properly designed annealing steps, the TiN thin film resistors can be tuned to have up to several MΩ resistances with a few µm of physical size required in ultra-fine pitch pixel detectors.

  14. Selenium coated CMOS passive pixel array for medical imaging

    Science.gov (United States)

    Majid, Shaikh Hasibul; Goldan, Amir H.; Hadji, Bahman; Belev, George; Kasap, Safa; Karim, Karim S.

    2011-03-01

    Digital imaging systems for medical applications use amorphous silicon thin-film transistor (TFT) technology due to its ability to be manufactured over large areas. However, TFT technology is far inferior to crystalline silicon CMOS technology in terms of the speed, stability, noise susceptibility, and feature size. This work investigates the feasibility of integrating an imaging array fabricated in CMOS technology with an a-Se detector. The design of a CMOS passive pixel sensor (PPS) array is presented, in addition to how an 8×8 PPS array is integrated with the 75 micron thick stabilized amorphous selenium detector. A non-linear increase in the dark current of 200 pA, 500 pA and 2 nA is observed with 0.27, 0.67 and 1.33 V/micron electric field respectively, which shows a successful integration of selenium layer with the CMOS array. Results also show that the integrated Selenium-CMOS PPS array has good responsivity to optical light and X-rays, leaving the door open for further research on implementing CMOS imaging architectures going forward. Demonstrating that the PPS chips using CMOS technology can use a-Se as a detector is thus the first step in a promising path of research, which should yield substantial and exciting results for the field. Though area may still prove challenging, larger CMOS wafers can be manufactured and tiled to allow for a large enough size for certain diagnostic imaging applications and potentially even large area applications like digital mammography.

  15. Monolithic pixel detectors with 0.2 μm FD-SOI pixel process technology

    Science.gov (United States)

    Miyoshi, Toshinobu; Arai, Yasuo; Chiba, Tadashi; Fujita, Yowichi; Hara, Kazuhiko; Honda, Shunsuke; Igarashi, Yasushi; Ikegami, Yoichi; Ikemoto, Yukiko; Kohriki, Takashi; Ohno, Morifumi; Ono, Yoshimasa; Shinoda, Naoyuki; Takeda, Ayaki; Tauchi, Kazuya; Tsuboyama, Toru; Tadokoro, Hirofumi; Unno, Yoshinobu; Yanagihara, Masashi

    2013-12-01

    Truly monolithic pixel detectors were fabricated with 0.2 μm SOI pixel process technology by collaborating with LAPIS Semiconductor Co., Ltd. for particle tracking experiment, X-ray imaging and medical applications. CMOS circuits were fabricated on a thin SOI layer and connected to diodes formed in the silicon handle wafer through the buried oxide layer. We can choose the handle wafer and therefore high-resistivity silicon is also available. Double SOI (D-SOI) wafers fabricated from Czochralski (CZ)-SOI wafers were newly obtained and successfully processed in 2012. The top SOI layers are used as electric circuits and the middle SOI layers used as a shield layer against the back-gate effect and cross-talk between sensors and CMOS circuits, and as an electrode to compensate for the total ionizing dose (TID) effect. In 2012, we developed two SOI detectors, INTPIX5 and INTPIX3g. A spatial resolution study was done with INTPIX5 and it showed excellent performance. The TID effect study with D-SOI INTPIX3g detectors was done and we confirmed improvement of TID tolerance in D-SOI sensors.

  16. A Design of a New Column-Parallel Analog-to-Digital Converter Flash for Monolithic Active Pixel Sensor

    Directory of Open Access Journals (Sweden)

    Mostafa Chakir

    2017-01-01

    Full Text Available The CMOS Monolithic Active Pixel Sensor (MAPS for the International Linear Collider (ILC vertex detector (VXD expresses stringent requirements on their analog readout electronics, specifically on the analog-to-digital converter (ADC. This paper concerns designing and optimizing a new architecture of a low power, high speed, and small-area 4-bit column-parallel ADC Flash. Later in this study, we propose to interpose an S/H block in the converter. This integration of S/H block increases the sensitiveness of the converter to the very small amplitude of the input signal from the sensor and provides a sufficient time to the converter to be able to code the input signal. This ADC is developed in 0.18 μm CMOS process with a pixel pitch of 35 μm. The proposed ADC responds to the constraints of power dissipation, size, and speed for the MAPS composed of a matrix of 64 rows and 48 columns where each column ADC covers a small area of 35 × 336.76 μm2. The proposed ADC consumes low power at a 1.8 V supply and 100 MS/s sampling rate with dynamic range of 125 mV. Its DNL and INL are 0.0812/−0.0787 LSB and 0.0811/−0.0787 LSB, respectively. Furthermore, this ADC achieves a high speed more than 5 GHz.

  17. New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    CERN Document Server

    Neyret, D.; Anfreville, M.; Bedfer, Y.; Burtin, E.; Coquelet, C.; d'Hose, N.; Desforge, D.; Giganon, A.; Jourde, D.; Kunne, F.; Magnon, A.; Makke, N.; Marchand, C.; Paul, B.; Platchkov, S.; Thibaud, F.; Usseglio, M.; Vandenbroucke, M.

    2012-01-01

    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very go...

  18. Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments

    CERN Document Server

    Senyukov, Serhiy; Besson, Auguste; Claus, Giles; Cousin, Loic; Dulinski, Wojciech; Goffe, Mathieu; Hippolyte, Boris; Maria, Robert; Molnar, Levente; Sanchez Castro, Xitzel; Winter, Marc

    2014-01-01

    CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel pitch ($\\sim 20 \\mu m$) and low material budget ($\\sim 0.2-0.3\\% X_0$) per layer. These characteristics make CPS an attractive option for vertexing and tracking systems of high energy physics experiments. Moreover, thanks to the mass production industrial CMOS processes used for the manufacturing of CPS the fabrication construction cost can be significantly reduced in comparison to more standard semiconductor technologies. However, the attainable performance level of the CPS in terms of radiation hardness and readout speed is mostly determined by the fabrication parameters of the CMOS processes available on the market rather than by the CPS intrinsic potential. The permanent evolution of commercial CMOS processes towards smaller feature sizes and high resistivity ...

  19. Optimisation of CMOS pixel sensors for high performance vertexing and tracking

    CERN Document Server

    Baudot, Jérôme; Claus, Gilles; Dulinski, Wojciech; Dorokhov, Andrei; Goffe, Mathieu; Hu-Guo, Christine; Molnar, Levente; Sanchez-Castro, Xitzel; Senyukov, Serhiy; Winter, Marc

    2013-01-01

    CMOS Pixel Sensors tend to become relevant for a growing spectrum of charged particle detection instruments. This comes mainly from their high granularity and low material budget. However, several potential applications require a higher read-out speed and radiation tolerance than those achieved with available devices based on a 0.35 micrometers feature size technology. This paper shows preliminary test results of new prototype sensors manufactured in a 0.18 micrometers process based on a high resistivity epitaxial layer of sizeable thickness. Grounded on these observed performances, we discuss a development strategy over the coming years to reach a full scale sensor matching the specifications of the upgraded version of the Inner Tracking System (ITS) of the ALICE experiment at CERN, for which a sensitive area of up to about 10 square meters may be equipped with pixel sensors.

  20. Towards Shift Tolerant Visual Secret Sharing Schemes without Pixel Expansion

    Directory of Open Access Journals (Sweden)

    Juan Justie Su-Tzu

    2016-01-01

    Full Text Available Naor and Shamir proposed the visual cryptography in 1995, they encrypted secret image into two meaningless random images, called shares, and it can be decrypted by human vision without any calculations. However, there would be problems in alignment when these two shares are staked by hand in practical. Therefore, this paper presents the fault-tolerant schemes of stacking two shares which are acquired from secret image encryption without pixel expansion. The main idea of these schemes is combining several pixels to be a unit, then encrypting every unit into a specific combination of pixels. It makes visual secret sharing scheme more practical.

  1. Dual readout 3D direct/induced-signals pixel systems

    CERN Document Server

    Parker, Sherwood; Deile, Mario; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; Watts, Stephen

    2008-01-01

    In this paper, 3D-electrode pixel detectors are described, in which the bias electrode systems have additional elements. Adding resistors between the bias supply line and each bias electrode together with a signal electrode readout that can measure pulse heights of both polarities could simultaneously provide lower capacitance and improved spatial resolution in both directions. A separate paper (“Dual-readout—strip/pixel systems”) covers an alternative—pixels with an added strip readout in one direction which could be used with either planar or 3D-electrodes, and could simultaneously provide a fast trigger and significantly increase the spatial resolution in both directions.

  2. The ATLAS Pixel nSQP Readout Chain

    CERN Document Server

    Welch, S; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel New Service Quarter Panel (nSQP) project aims to deliver replacements for all on-detector services of the ATLAS Pixel Detector. The nSQPs will have replacements for the electro-optical converters. The replacement devices are LVDS transceiver boards (E-Boards) and they communicate with the existing ATLAS Pixel MCC chips over the original type 0 cables. In the other direction the E-Boards communicate over a 6.6 meter long transmission line with the VCSEL driver chips in the new electro-optical converters. These converters have been relocated to a region that is much more accessible.

  3. Dual collection mode optical microscope with single-pixel detection

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Fernández-Alonso, Mercedes; Tajahuerce, E.; Lancis, J.

    2015-07-01

    In this work we have developed a single-pixel optical microscope that provides both re ection and transmission images of the sample under test by attaching a diamond pixel layout DMD to a commercial inverted microscope. Our system performs simultaneous measurements of re ection and transmission modes. Besides, in contrast with a conventional system, in our single-element detection system both images belong, unequivocally, to the same plane of the sample. Furthermore, we have designed an algorithm to modify the shape of the projected patterns that improves the resolution and prevents the artifacts produced by the diamond pixel architecture.

  4. Adaptive Image Restoration and Segmentation Method Using Different Neighborhood Sizes

    Directory of Open Access Journals (Sweden)

    Chengcheng Li

    2003-04-01

    Full Text Available The image restoration methods based on the Bayesian's framework and Markov random fields (MRF have been widely used in the image-processing field. The basic idea of all these methods is to use calculus of variation and mathematical statistics to average or estimate a pixel value by the values of its neighbors. After applying this averaging process to the whole image a number of times, the noisy pixels, which are abnormal values, are filtered out. Based on the Tea-trade model, which states that the closer the neighbor, more contribution it makes, almost all of these methods use only the nearest four neighbors for calculation. In our previous research [1, 2], we extended the research on CLRS (image restoration and segmentation by using competitive learning algorithm to enlarge the neighborhood size. The results showed that the longer neighborhood range could improve or worsen the restoration results. We also found that the autocorrelation coefficient was an important factor to determine the proper neighborhood size. We then further realized that the computational complexity increased dramatically along with the enlargement of the neighborhood size. This paper is to further the previous research and to discuss the tradeoff between the computational complexity and the restoration improvement by using longer neighborhood range. We used a couple of methods to construct the synthetic images with the exact correlation coefficients we want and to determine the corresponding neighborhood size. We constructed an image with a range of correlation coefficients by blending some synthetic images. Then an adaptive method to find the correlation coefficients of this image was constructed. We restored the image by applying different neighborhood CLRS algorithm to different parts of the image according to its correlation coefficient. Finally, we applied this adaptive method to some real-world images to get improved restoration results than by using single

  5. CMOS photodetectors/receivers for smart-pixel based photonic systems

    Science.gov (United States)

    Tang, Jianjing; Konanki, Sunil; Seshadri, Bharath; Lee, Boon K.; Chi, Robert C. J.; Steckl, Andrew J.; Beyette, Fred R., Jr.

    2000-11-01

    The design, characterization and evaluation of CMOS based silicon photodetectors/photoreceivers suitable for smart-pixel based applications are presented. Implemented with a conventional CMOS fabrication process, these photodetectors/receiver circuits can be reliably fabricated for smart-pixel based photonic information processing systems that combine the parallelism associated with optics and the data processing capabilities associated with CMOS logic. Several different CMOS based photodetector structures including p-n junction detectors and bipolar phototransistors are presented. Simulation results indicate that the p-n junction detectors will provide photocurrents in the range of nanoamps with rise/fall times on the order of picoseconds. Although slower response is expected with the phototransistor structure, the optoelectronic gain increases the photocurrent to the microamps range. In addition to fabrication and evaluation of individual photodetectors, we present the design and evaluation of high gain photoreceiver array. Based on a standard 1.2 micrometer CMOS fabrication process the monolithic photodetector/receiver circuit includes a bipolar phototransistor, a three-stage current amplifier and a differential amplifier that produces output at digital logic levels. The photoreceiver with high gain and adjustable threshold has a wide dynamic range. For a reference voltage of 3.2 V, the optical power threshold has been measured at less than 1 nW. A page-oriented optical data detection is demonstrated using a 5 X 5 smart-pixel photoreceiver array.

  6. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol [Cornell Univ., Ithaca, NY (United States)

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  7. Beam test results of pixel triggerless prototypes for the P{sup ¯}ANDA MVD

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Daniela, E-mail: calvo@to.infn.it [INFN–Sezione di Torino, Torino (Italy); De Remigis, Paolo; Filippi, Alessandra; Mazza, Giovanni; Rivetti, Angelo; Wheadon, Richard [INFN–Sezione di Torino, Torino (Italy); De Mori, Francesca; Marcello, Simonetta; Zotti, Laura [INFN–Sezione di Torino, Torino (Italy); Universita' di Fisica, Torino (Italy); Bianco, Simone; Zaunick, Hans-Georg [HISKP, Universität Bonn (Germany); Brinkmann, Kai-Thomas; Quagli, Tommaso; Schnell, Robert [II. Physikalisches Institut, Justus–Liebig Universität Giessen, Giessen (Germany)

    2013-12-21

    Hybrid pixel and double sided silicon microstrip devices will equip the Micro Vertex Detector of the P{sup ¯}ANDA experiment. The most challenging request of the experiment is the continuous readout at the rate of 2×10{sup 7} interactions/s. The detector is in an advanced R and D phase and pixel assemblies, composed of thinned epitaxial sensor read out by the custom chip prototype ToPix, developed in the 130 nm CMOS technology, were produced. The triggerless ASIC implements readout channels that are able to detect signals and transmit the information with a precise timestamp. It performs the energy loss measurement using the Time over Threshold technique, in the input range to about 50 fC. A dedicated testing bench allows the control and the readout of each single chip assembly. Two experimental setups were assembled for testing these first single chip prototypes with pions at CERN, T9, in August 2012. The first one is based on a pixel assembly positioned in the middle of a telescope composed of double sided silicon strips sensors. A 50 MHz clock signal synchronizes these two systems, the triggerless pixels and the strip detectors triggered by scintillation detectors. The second experimental setup is a tracking station housing four pixel assemblies. First results will be reported. -- Highlights: •The most challenge request of the experiment is the continuous readout. •The triggerless circuit transmits the information with a precise timestamp. •The sensor is based on a epitaxial silicon layer. •Timestamp matching of the detected hits belonging to the same event.

  8. Digital column readout architectures for hybrid pixel detector readout chips

    CERN Document Server

    Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.

  9. Active pixel sensors with substantially planarized color filtering elements

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  10. Modulation coding for pixel-matched holographic data storage.

    Science.gov (United States)

    Burr, G W; Ashley, J; Coufal, H; Grygier, R K; Hoffnagle, J A; Jefferson, C M; Marcus, B

    1997-05-01

    We describe a digital holographic storage system for the study of noise sources and the evaluation of modulation and error-correction codes. A precision zoom lens and Fourier transform optics provide pixel-to-pixel matching between any input spatial light modulator and output CCD array over magnifications from 0.8 to 3. Holograms are angle multiplexed in LiNbO(3):Fe by use of the 90 degrees geometry, and reconstructions are detected with a 60-frame/s CCD camera. Modulation codes developed on this platform permit image transmission down to signal levels of ~2000 photons per ON camera pixel, at raw bit-error rates (BER's) of better than 10(-5). Using an 8-12-pixel modulation code, we have stored and retrieved 1200 holograms (each with 45,600 user bits) without error, for a raw BER of <2x10(-8).

  11. Initial Measurements on Pixel Detector Modules for the ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Delicate conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel Detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming Pixel Detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation for silicon planar and 3D pixel sensors, which give a first impression on the charge collection properties of the different sensor technologies, are presented.

  12. Small Pixel Hybrid CMOS X-ray Detectors

    Science.gov (United States)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  13. A passive CMOS pixel sensor for the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The high luminosity upgrade for the Large Hadron Collider at CERN requires a new inner tracking detector for the ATLAS experiment. About 200 m{sup 2} of silicon detectors are needed demanding new, low cost hybridization- and sensor technologies. One promising approach is to use commercial CMOS technologies to produce the passive sensor for a hybrid pixel detector design. In this talk a fully functional prototype of a 300 μm thick, backside biased CMOS pixel sensor in 150 nm LFoundry technology is presented. The sensor is bump bonded to the ATLAS FE-I4 with AC and DC coupled pixels. Results like leakage current, noise performance, and charge collection efficiency are presented and compared to the actual ATLAS pixel sensor design.

  14. Evaluating Pixel vs. Segmentation based Classifiers with Height ...

    African Journals Online (AJOL)

    Windows User

    2017-10-13

    Oct 13, 2017 ... classification of digital imagery. ... Traditional pixel-based classifiers have been widely used for classifying optical imagery from ..... Chavez, P, Sides, SC & Anderson, JA 1991, 'Comparison of three different methods to merge.

  15. A 20 Mfps high frame-depth CMOS burst-mode imager with low power in-pixel NMOS-only passive amplifier

    Science.gov (United States)

    Wu, L.; San Segundo Bello, D.; Coppejans, P.; Craninckx, J.; Wambacq, P.; Borremans, J.

    2017-02-01

    This paper presents a 20 Mfps 32 × 84 pixels CMOS burst-mode imager featuring high frame depth with a passive in-pixel amplifier. Compared to the CCD alternatives, CMOS burst-mode imagers are attractive for their low power consumption and integration of circuitry such as ADCs. Due to storage capacitor size and its noise limitations, CMOS burst-mode imagers usually suffer from a lower frame depth than CCD implementations. In order to capture fast transitions over a longer time span, an in-pixel CDS technique has been adopted to reduce the required memory cells for each frame by half. Moreover, integrated with in-pixel CDS, an in-pixel NMOS-only passive amplifier alleviates the kTC noise requirements of the memory bank allowing the usage of smaller capacitors. Specifically, a dense 108-cell MOS memory bank (10fF/cell) has been implemented inside a 30μm pitch pixel, with an area of 25 × 30μm2 occupied by the memory bank. There is an improvement of about 4x in terms of frame depth per pixel area by applying in-pixel CDS and amplification. With the amplifier's gain of 3.3, an FD input-referred RMS noise of 1mV is achieved at 20 Mfps operation. While the amplification is done without burning DC current, including the pixel source follower biasing, the full pixel consumes 10μA at 3.3V supply voltage at full speed. The chip has been fabricated in imec's 130nm CMOS CIS technology.

  16. Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors

    CERN Document Server

    Andricek, L; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tunability, charge collection, cluster sizes and hit efficiencies. Targeting at ...

  17. arXiv The FoCal prototype - an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors

    CERN Document Server

    Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Roehrich, D.; Ullaland, K.; van den Brink, A.; van Leeuwen, M.; Wang, H.; Yang, S.; Zhang, C.

    A prototype of a Si-W EM calorimeter was built with Monolithic Active Pixel Sensors as the active elements. With a pixelsize of 30 $\\mu$m it allows digital calorimetry, i.e. the particles' energy is determined by counting pixels, not by measuring the energy deposited. Although of modest size, with a width of only four Moliere radii, it has 39 million pixels. We describe the construction and tuning of the prototype and present results from beam tests and compare them with predictions of GEANT-based Monte Carlo simulations. We show the shape of showers caused by electrons in unprecedented detail. Results for energy and position resolution will also be given.

  18. Small pitch pixel sensors for the CMS Phase II upgrade

    CERN Document Server

    AUTHOR|(CDS)2069790

    2015-01-01

    The CMS collaboration has undertaken two sensor R\\&D programs on thin n-in-p planar and 3D silicon sensor technologies. To cope with the increase in instantaneous luminosity, the pixel area has to be reduced to approximately 2500 $\\mu$m$^{2}$ to keep the occupancy at the percent level. Suggested pixel cell geometries to match this requirement are {50$\\times$50 }$\\mu$...

  19. Pixel-based meshfree modelling of skeletal muscles

    OpenAIRE

    Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu

    2015-01-01

    This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A ...

  20. Pixel readout electronics for LHC and biomedical applications

    CERN Document Server

    Blanquart, L; Comes, G; Delpierre, P A; Fischer, P; Hausmann, J C; Keil, M; Lindner, Manfred; Meuser, S; Wermes, N

    2000-01-01

    The demanding requirements for pixel readout electronics for high- energy physics experiments and biomedical applications are reviewed. Some examples of the measured analog performance of prototype chips are given. The readout architectures of the PIxel readout for the ATlas experiment (PIRATE) chip suited for LHC experiments and of the multi-picture element counter (MPEC) counting chip targeted for biomedical applications are presented. First results with complete chip-sensor assemblies are also shown. (12 refs).

  1. FPIX2, the BTeV pixel readout chip

    CERN Document Server

    Christian, D C; Chiodini, G; Hoff, J; Kwan, S; Mekkaoui, A; Yarema, R; 10.1016/j.nima.2005.04.046

    2005-01-01

    A radiation tolerant pixel readout chip, FPIX2, has been developed at Fermilab for use by BTeV. Some of the requirements of the BTeV pixel readout chip are reviewed and contrasted with requirements for similar devices in LHC experiments. A description of the FPIX2 is given, and results of initial tests of its performance are presented, as is a summary of measurements planned for the coming year.

  2. New results on diamond pixel sensors using ATLAS frontend electronics

    CERN Document Server

    Keil, Markus; Berdermann, E; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W

    2003-01-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  3. Characterisation of Hybrid Pixel Detectors with capacitive charge division

    CERN Document Server

    Caccia, M; Battaglia, Marco; Kucewicz, W; Palka, H; Zalewska-Bak, A; Domanski, K; Marczewski, J; Tomaszewski, D

    2001-01-01

    In order to fully exploit the physics potential of the future high energy e+ e- linear collider, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells between the readout nodes has been developed to improve the single point resolution. The results of the characterisation of the first processed prototypes are reported.

  4. Adaptive pixel/patch-based synthesis for texture compression

    OpenAIRE

    Racapé, Fabien; Lefort, Simon; Francois, Edouard; Babel, Marie; Déforges, Olivier

    2011-01-01

    International audience; This paper presents an adaptive scheme for synthesizing missing textured regions. In synthesis-based compression approaches, large textures are removed at encoder side and filled in at decoder side. This work proposes a synthesizer in which both complementary pixel-based and patch-based approaches are used. According to results shown by synthesis algorithms, patch-based and pixel-based approaches are efficient with different kinds of texture. Two algorithms are adapted...

  5. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  6. Pixel History for Advanced Camera for Surveys Wide Field Channel

    Science.gov (United States)

    Borncamp, D.; Grogin, N.; Bourque, M.; Ogaz, S.

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current. This excess charge is trapped within the silicon lattice structure of the CCD electronics. It can persist through multiple exposures and have an adverse effect on science performance of the detectors unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as "dark" images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This so-called "dark current" can then be subtracted from the science images by re-scaling the dark to the corresponding exposure times. Pixels that have signal above a certain threshold are traditionally marked as "hot" and flagged in the data quality array. Many users will discard these because of the extra current. However, these pixels may not be unusable because of an unreliable dark subtraction; if we find these pixels to be stable over an anneal period, we can properly subtract the charge and the extra Poisson noise from this dark current will be propagated into the error arrays. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously flagged as unusable to be brought back into the science image as a reliable pixel.

  7. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  8. Imaging by photon counting with 256 x 256 pixel matrix

    CERN Document Server

    Tlustos, Lukas; Heijne, Erik H M; Llopart-Cudie, Xavier

    2004-01-01

    Using 0.25 mum standard CMOS we have developed 2-D semiconductor matrix detectors with sophisticated functionality integrated inside each pixel of a hybrid sensor module. One of these sensor modules is a matrix of 256 multiplied by 256 square 55mum pixels intended for X- ray imaging. This device is called 'Medipix2' and features a fast amplifier and two-level discrimination for signals between 1000 and 100000 equivalent electrons, with overall signal noise similar to 150 e- rms. Signal polarity and comparator thresholds are programmable. A maximum count rate of nearly 1 MHz per pixel can be achieved, which corresponds to an average flux of 3 multiplied by 10exp10 photons per cm2. The selected signals can be accumulated in each pixel in a 13- bit register. The serial readout takes 5-10 ms. A parallel readout of similar to 300 mus could also be used. Housekeeping functions such as local dark current compensation, test pulse generation, silencing of noisy pixels and threshold tuning in each pixel contribute to t...

  9. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407702

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  10. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A.E., E-mail: bolotnik@bnl.gov [Brookhaven National Laboratory, Upton, NY 11793 (United States); Camarda, G.S.; Cui, Y.; De Geronimo, G. [Brookhaven National Laboratory, Upton, NY 11793 (United States); Eger, J.; Emerick, A. [eV Products Inc., Saxonburg, PA 16056 (United States); Fried, J.; Hossain, A.; Roy, U.; Salwen, C. [Brookhaven National Laboratory, Upton, NY 11793 (United States); Soldner, S. [eV Products Inc., Saxonburg, PA 16056 (United States); Vernon, E.; Yang, G.; James, R.B. [Brookhaven National Laboratory, Upton, NY 11793 (United States)

    2016-01-01

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm{sup 3} pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices. - Highlights: • We investigated performances of 3D position sensitive CdZnTe pixelated detectors. • We employed the readout electronics based on H3D ASIC and data processing. • We demonstrated the feasibility of correcting response nonuniformities in CdZnTe pixelated detectors.

  11. The phase-II ATLAS pixel tracker upgrade: layout and mechanics.

    CERN Document Server

    Sharma, Abhishek; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment will upgrade its tracking detector during the Phase-II LHC shutdown, to better take advantage of the increased luminosity of the HL-LHC. The upgraded tracker will consist of silicon-strip modules surrounding a pixel detector, and will likely cover an extended eta range, perhaps as far as |eta|<4.0. A number of layout and supporting-structure options are being considered for the pixel detector, with the final choice expected to be made in early 2017. The proposed supporting structures are based on lightweight, highly-thermally-conductive carbon-based materials and are cooled by evaporative carbon dioxide. The various layouts will be described and a description of the supporting structures will be presented, along with results from testing of prototypes.

  12. The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL

    Science.gov (United States)

    Henrich, B.; Becker, J.; Dinapoli, R.; Goettlicher, P.; Graafsma, H.; Hirsemann, H.; Klanner, R.; Krueger, H.; Mazzocco, R.; Mozzanica, A.; Perrey, H.; Potdevin, G.; Schmitt, B.; Shi, X.; Srivastava, A. K.; Trunk, U.; Youngman, C.

    2011-05-01

    The European X-ray free electron laser is a new research facility currently under construction in Hamburg, Germany. Typical for XFEL machines is the high peak brilliance several orders of magnitudes above existing synchrotron facilities. With a pulse length below 100 fs and an extremely high luminosity of 30,000 flashes per second the European XFEL will have a worldwide unique time structure that enables researchers to record movies of ultrafast processes. This demands the development of new detectors tailored to the requirements imposed by the experiments while complying with the machine specific operation parameters. The adaptive gain integrating pixel detector (AGIPD) is one response to the need for large 2D detectors, able to cope with the 5 MHz repetition rate, as well as with the high dynamic range needed by XFEL experiments (from single photons to 104 12 keV photons per pixel per pulse). In addition, doses up to 1 GGy over three years are expected.

  13. Towards binary robust fast features using the comparison of pixel blocks

    Science.gov (United States)

    Oszust, Mariusz

    2016-03-01

    Binary descriptors have become popular in many vision-based applications, as a fast and efficient replacement of floating point, heavy counterparts. They achieve a short computation time and low memory footprint due to many simplifications. Consequently, their robustness against a variety of image transformations is lowered, since they rely on pairwise pixel intensity comparisons. This observation has led to the emergence of techniques performing tests on intensities of predefined pixel regions. These approaches, despite a visible improvement in the quality of the obtained results, suffer from a long computation time, and their patch partitioning strategies produce long binary strings requiring the use of salient bit detection techniques. In this paper, a novel binary descriptor is proposed to address these shortcomings. The approach selects image patches around a keypoint, divides them into a small number of pixel blocks and performs binary tests on gradients which are determined for the blocks. The size of each patch depends on the keypoint’s scale. The robustness and distinctiveness of the descriptor are evaluated according to five demanding image benchmarks. The experimental results show that the proposed approach is faster to compute, produces a short binary string and offers a better performance than state-of-the-art binary and floating point descriptors.

  14. Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses

    Directory of Open Access Journals (Sweden)

    Hyun Seok Kim

    2017-10-01

    Full Text Available Most of the retinal prostheses use a head-fixed camera and a video processing unit. Some studies proposed various image processing methods to improve visual perception for patients. However, previous studies only focused on using spatial information. The present study proposes a spatiotemporal pixelization method mimicking fixational eye movements to generate stimulation images for artificial retina arrays by combining spatial and temporal information. Input images were sampled with a resolution that was four times higher than the number of pixel arrays. We subsampled this image and generated four different phosphene images. We then evaluated the recognition scores of characters by sequentially presenting phosphene images with varying pixel array sizes (6 × 6, 8 × 8 and 10 × 10 and stimulus frame rates (10 Hz, 15 Hz, 20 Hz, 30 Hz, and 60 Hz. The proposed method showed the highest recognition score at a stimulus frame rate of approximately 20 Hz. The method also significantly improved the recognition score for complex characters. This method provides a new way to increase practical resolution over restricted spatial resolution by merging the higher resolution image into high-frame time slots.

  15. A three-phase time-correlation image sensor using pinned photodiode active pixels

    Science.gov (United States)

    Han, Sangman; Iwahori, Tomohiro; Sawada, Tomonari; Kawahito, Shoji; Ando, Shigeru

    2010-01-01

    A time correlation (TC) image sensor is a device that produces 3-phase time-correlated signals between the incident light intensity and three reference signals. A conventional implementation of the TC image sensor using a standard CMOS technology works at low frequency and with low sensitivity. In order to achieve higher modulation frequency and high sensitivity, the TC image sensor with a dual potential structure using a pinned diode is proposed. The dual potential structure is created by changing the impurity doping concentration in the two different potential regions. In this structure, high-frequency modulation can be achieved, while maintaining a sufficient light receiving area. A prototype TC image sensor with 366×390pixels is implemented with 0.18-μm 1P4M CMOS image sensor technology. Each pixel with the size of 12μm×12μm has one pinned photodiode with the dual potential structure, 12 transistors and 3capacitors to implement three-parallel-output active pixel circuits. A fundamental operation of the implemented TC sensor is demonstrated.

  16. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass

    Directory of Open Access Journals (Sweden)

    Guoliang Han

    2017-11-01

    Full Text Available Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0 . 15 ∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation.

  17. Silvaco ATLAS model of ESA's Gaia satellite e2v CCD91-72 pixels

    Science.gov (United States)

    Seabroke, George; Holland, Andrew; Burt, David; Robbins, Mark

    2010-07-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented accuracy requirements with detailed calibration and correction for CCD radiation damage and CCD geometric distortion. In this paper, the third of the series, we present our 3D Silvaco ATLAS model of the Gaia e2v CCD91-72 pixel. We publish e2v's design model predictions for the capacities of one of Gaia's pixel features, the supplementary buried channel (SBC), for the first time. Kohley et al. (2009) measured the SBC capacities of a Gaia CCD to be an order of magnitude smaller than e2v's design. We have found the SBC doping widths that yield these measured SBC capacities. The widths are systematically 2 μm offset to the nominal widths. These offsets appear to be uncalibrated systematic offsets in e2v photolithography, which could either be due to systematic stitch alignment offsets or lateral ABD shield doping diffusion. The range of SBC capacities were used to derive the worst-case random stitch error between two pixel features within a stitch block to be +/-0.25 μm, which cannot explain the systematic offsets. It is beyond the scope of our pixel model to provide the manufacturing reason for the range of SBC capacities, so it does not allow us to predict how representative the tested CCD is. This open question has implications for Gaia's radiation damage and geometric calibration models.

  18. Giga-pixel lensfree holographic microscopy and tomography using color image sensors.

    Science.gov (United States)

    Isikman, Serhan O; Greenbaum, Alon; Luo, Wei; Coskun, Ahmet F; Ozcan, Aydogan

    2012-01-01

    We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2). This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total). Furthermore, by changing the illumination angle (e.g., ± 50°) and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3) across a sample volume of ~5 mm(3), which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.

  19. Giga-pixel lensfree holographic microscopy and tomography using color image sensors.

    Directory of Open Access Journals (Sweden)

    Serhan O Isikman

    Full Text Available We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2. This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total. Furthermore, by changing the illumination angle (e.g., ± 50° and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3 across a sample volume of ~5 mm(3, which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.

  20. Giga-Pixel Lensfree Holographic Microscopy and Tomography Using Color Image Sensors

    Science.gov (United States)

    Coskun, Ahmet F.; Ozcan, Aydogan

    2012-01-01

    We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ∼350 nm lateral resolution, corresponding to a numerical aperture of ∼0.8, across a field-of-view of ∼20.5 mm2. This constitutes a digital image with ∼0.7 Billion effective pixels in both amplitude and phase channels (i.e., ∼1.4 Giga-pixels total). Furthermore, by changing the illumination angle (e.g., ±50°) and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ∼0.35 µm×0.35 µm×∼2 µm, in x, y and z, respectively, creating an effective voxel size of ∼0.03 µm3 across a sample volume of ∼5 mm3, which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode. PMID:22984606