WorldWideScience

Sample records for range nuclear instrument

  1. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  2. Application range affected by software failures in safety relevant instrumentation and control systems of nuclear power plants; Auswirkungsbereiche von Softwarefehlern in sicherheitstechnisch wichtigen Einrichtungen von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Jopen, Manuela; Mbonjo, Herve; Sommer, Dagmar; Ulrich, Birte

    2017-03-15

    This report presents results that have been developed within a BMUB-funded research project (Promotion Code 3614R01304). The overall objective of this project was to broaden the knowledge base of GRS regarding software failures and their impact in software-based instrumentation and control (I and C) systems. To this end, relevant definitions and terms in standards and publications (DIN, IEEE standards, IAEA standards, NUREG publications) as well as in the German safety requirements for nuclear power plants were analyzed first. In particular, it was found that the term ''software fault'' is defined differently and partly contradictory in the considered literature sources. For this reason, a definition of software fault was developed on the basis of the software life cycle of software-based I and C systems within the framework of this project, which takes into account the various aspects relevant to software faults and their related effects. It turns out that software failures result from latent faults in a software-based control system, which can lead to a non-compliant behavior of a software-based I and C system. Hereby a distinction should be made between programming faults and specification faults. In a further step, operational experience with software failures in software-based I and C systems in nuclear facilities and in nonnuclear sector was investigated. The identified events were analyzed with regard to their cause and impacts and the analysis results were summarized. Based on the developed definition of software failure and on the COMPSIS-classification scheme for events related to software based I and C systems, the COCS-classification scheme was developed to classify events from operating experience with software failures, in which the events are classified according to the criteria ''cause'', ''affected system'', ''impact'' and ''CCF potential''. This

  3. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  4. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    Science.gov (United States)

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  5. A Wide Range Neutron Detector for Space Nuclear Reactor Applications

    Science.gov (United States)

    Nassif, Eduardo; Matatagui, Emilio; Sismonda, Miguel; Pretorius, Stephan

    2007-01-01

    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  6. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  7. Nuclear instrumentation in VENUS-F

    Directory of Open Access Journals (Sweden)

    Wagemans J.

    2018-01-01

    Full Text Available VENUS-F is a fast zero power reactor with 30 wt% U fuel and Pb/Bi as a coolant simulator. Depending on the experimental configuration, various neutron spectra (fast, epithermal, and thermal islands are present. This paper gives a review of the nuclear instrumentation that is applied for reactor control and in a large variety of physics experiments. Activation foils and fission chambers are used to measure spatial neutron flux profiles, spectrum indices, reactivity effects (with positive period and compensation method or the MSM method and kinetic parameters (with the Rossi-alpha method. Fission chamber calibrations are performed in the standard irradiation fields of the BR1 reactor (prompt fission neutron spectrum and Maxwellian thermal neutron spectrum.

  8. Nuclear instrumentation in VENUS-F

    Science.gov (United States)

    Wagemans, J.; Borms, L.; Kochetkov, A.; Krása, A.; Van Grieken, C.; Vittiglio, G.

    2018-01-01

    VENUS-F is a fast zero power reactor with 30 wt% U fuel and Pb/Bi as a coolant simulator. Depending on the experimental configuration, various neutron spectra (fast, epithermal, and thermal islands) are present. This paper gives a review of the nuclear instrumentation that is applied for reactor control and in a large variety of physics experiments. Activation foils and fission chambers are used to measure spatial neutron flux profiles, spectrum indices, reactivity effects (with positive period and compensation method or the MSM method) and kinetic parameters (with the Rossi-alpha method). Fission chamber calibrations are performed in the standard irradiation fields of the BR1 reactor (prompt fission neutron spectrum and Maxwellian thermal neutron spectrum).

  9. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Science.gov (United States)

    2013-09-09

    ... COMMISSION Seismic Instrumentation for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION..., ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition... Safety Analysis Reports for Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a...

  10. Human factors aspects of advanced instrumentation in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1989-01-01

    An important consideration in regards to the use of advanced instrumentation in the nuclear industry is the interface between the instrumentation system and the human. A survey, oriented towards identifying the human factors aspects of digital instrumentation, was conducted at a number of United States (US) and Canadian nuclear vendors and utilities. Human factors issues, subsumed under the categories of computer-generated displays, controls, organizational support, training, and related topics were identified. 20 refs., 2 tabs.

  11. Recognition of Instrumentation Gauge in the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nuclear emergency robots were developed in 2001 as the countermeasure following the criticality accident at the JCO (uranium refinery facility) in Tokaimura, Japan in 1999. We assumed that these nuclear emergency robots were deployed (or put into) for a mitigation (or management) of severe accident, for example, occurred at Fukushima Daiichi nuclear power plant. In the case, the image understanding using a color CCD camera, loaded on the nuclear emergency robot, is important. We proposed an image processing technique to read indication value of the IC water level gauges using the structural characteristics of the instrumentation panels (water level gauges) located inside the reactor building. At first, we recognized the scales on the instrumentation panel using the geometric shape of the panel. And then, we could read the values of the instrumentation gauge by calculating the slope of the needle on the gauge. Using the proposed algorithm, we deciphered instrumentation panels for the four water level gauges and indicators shown on the IC video released by TEPCO and Japanese Nuclear Regulatory Commission of Japan. In this paper, recognition of the instrumentation gauges inside reactor building of the nuclear power plant by an image processing technology is described.

  12. Nuclear core activity reconstruction using heterogeneous instruments with data assimilation

    OpenAIRE

    Bouriquet Bertrand; Argaud Jean-Philippe; Erhard Patrick; Ponçot Angélique

    2015-01-01

    Evaluating the neutronic state (neutron flux, power…) of the whole nuclear core is a very important topic that has strong implication for nuclear core management and for security monitoring. The core state is evaluated using measurements and calculations. Usually, parts of the measurements are used, and only one kind of instrument is taken into account. However, the core state evaluation should be more accurate when more measurements are collected in the core. But using information from heter...

  13. Calibration of aerosol instruments in a wide particle size range

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Ojanpera, J.

    2012-07-01

    Aerosol particles have an important role in many scientific and technological issues. Aerosol particle measurements are widely applied for example in clean room technology, in atmospheric measurements and in studying the Particulate Matter (PM) emissions from traffic and industry. This thesis concentrates on developing new aerosol instrumentation both for measurement and calibration purposes. On the measurement side, the driving force has been the urgent need for instruments that have a fast time response and are able to measure nanoparticles with reasonable accuracy. In this respect, the nanoparticle resolution of the Electrical Low Pressure Impactor (ELPI, Dekati Ltd.) was improved by designing, manufacturing and implementing a new impactor stage (cutpoint 16.7 nm) to the ELPI cascade impactor. The new impactor stage divides the particle size range measured by the filter stage (7-30 nm) between the new stage and the filter stage. As a result, the nanoparticle resolution of the ELPI was improved. This made the device more suitable, for example, for vehicle engine emission measurements. The new stage is currently being sold as a part of the new ELPI+ instrument, which is an improved version of the original ELPI. On the calibration side, the main driving force behind aerosol instrument development has been the lack of calibration standards available for calibrating the number concentration responses of the instruments in the sub-micrometer size range. In this size range, the most common method to calibrate an instrument is to use a differential mobility analyzer (DMA), for obtaining monodisperse particles for the calibration, and a Faraday cup aerosol electrometer (FCAE), for measuring the reference number concentration. Even though, in principle, the DMA allows size selection up to 1 {mu}m in diameter, the calibrations are usually limited to particles below 100 nm because of the multiple charging of particles. To solve this problem, a new concept for realizing a

  14. Preventive maintenance instrumentation results in Spanish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Palomo, M. J.; Verdu, G. [ISIRYM, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain); Arnaldos, A., E-mail: m.curiel@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    This paper is a recompilation of the most significance results in relation to the researching in preventive and predictive maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and the Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the power plants control and instrumentation department's technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the object to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish nuclear power plants each of them shall give a significant contribution to problem resolution and power plant performance. (Author)

  15. In-Place Filter Tester Instrument for Nuclear Material Containers.

    Science.gov (United States)

    Brown, Austin D; Moore, Murray E; Runnels, Joel T; Reeves, Kirk

    2016-05-01

    A portable instrument was developed to determine filter clogging and container leakage of in-place nuclear material storage canisters. This paper describes the development of an in-place filter tester for determining the "as found" condition of unopened canisters. The U.S. Department of Energy uses several thousand canisters for nuclear material storage, and air filters in the canister lids allow gases to escape while maintaining an equilibrated pressure without release of radioactive contamination. Diagnosing the filter condition and canister integrity is important for ensuring worker and public safety. Customized canister interfaces were developed for suction clamping (during tests) to two of the canister types in use at Los Alamos National Laboratory. Experimental leakage scenarios included: O-rings fouled with dust, cracked O-rings, and loose canister lids. The prototype tester has a measurement range for air leakage rates from 8.2 × 10 mL s up to 3.0 × 10 mL s. This is sufficient to measure a leak rate of 3.4 × 10 mL s, which is the Los Alamos helium leak criterion for post-drop tested canisters. The In-Place-Filter-Tester cannot measure to the lower value of the helium leak criterion for pre-drop tested canisters (1.0 × 10 mL s). However, helium leak testing requires canister disassembly, while the new in-place filter tester is able to assess the assembled condition of as-found and in-situ canisters.

  16. Nuclear Instrumentation and Control Cyber Testbed Considerations – Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez; Cheol-Kwon Lee

    2014-08-01

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energy Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.

  17. Nuclear core activity reconstruction using heterogeneous instruments with data assimilation

    Directory of Open Access Journals (Sweden)

    Bouriquet Bertrand

    2015-01-01

    Full Text Available Evaluating the neutronic state (neutron flux, power… of the whole nuclear core is a very important topic that has strong implication for nuclear core management and for security monitoring. The core state is evaluated using measurements and calculations. Usually, parts of the measurements are used, and only one kind of instrument is taken into account. However, the core state evaluation should be more accurate when more measurements are collected in the core. But using information from heterogeneous sources is at glance a difficult task. This difficulty can be overcome by Data Assimilation techniques. Such a method allows to combine in a coherent framework the information coming from numerical model and the one coming from various types of observations. Beyond the inner advantage to use heterogeneous instruments, this leads to obtaining a significant increase of the quality of neutronic global state reconstruction with respect to individual use of measures. In order to describe this approach, we introduce here the basic principles of data assimilation (focusing on BLUE, Best Unbiased Linear Estimation. Then we present the configuration of the method within the nuclear core problematic. Finally, we present the results obtained on nuclear measurements coming from various instruments.

  18. Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of the tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.

  19. Preventive maintenance instrumentation results in Spanish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Palomo Anaya, M. Jose; Verdu Martin, Gumersindo, E-mail: mpalomo@iqn.upv.es, E-mail: gverdu@iqn.upv.es [ISIRYM Universidad Politecnica de Valencia, Valencia (Spain); Arnaldos Gonzalvez, Adoracion, E-mail: a.arnaldos@titaniast.com [TITANIA Servicios Tecnologicos SL, Valencia (Spain); Nieva, Marcelino Curiel, E-mail: m.curiel@lainsa.com [Logistica y Acondicionamientos Industriales SAU (LAINSA), Valencia (Spain)

    2011-07-01

    This paper is a recompilation of the most significant results in relation to the researching in Preventive and Predictive Maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and The Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the Power Plants Control and Instrumentation Department technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the aim to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish Nuclear Power Plants each of them shall give a significant contribution to problem resolution and power plant performance: Fluctuations in sensor lines (case 1), Air presence in feed water lines (case 2), Root valve partially closed (case 3), Sensor malfunctions (case 4), Electrical source malfunctions (case 5), RTD malfunctions (case 6) and LPRM malfunctions (case 7). (author)

  20. MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR INSTRUMENT

    Directory of Open Access Journals (Sweden)

    M. Garattini

    2013-12-01

    Full Text Available Since 1969 Lunar Laser Ranging (LLR to the Apollo Cube Corner Reflector (CCR arrays has supplied several significant tests of gravity: Geodetic Precession, the Strong and Weak Equivalence Principle (SEP, WEP, the Parametrized Post Newtonian (PPN parameter , the time change of the Gravitational constant (G, 1/r2 deviations and new gravitational theories beyond General Relativity (GR, like the unified braneworld theory (G. Dvali et al., 2003. Now a new generation of LLR can do better using evolved laser retroreflectors, developed from tight collaboration between my institution, INFN–LNF (Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati, and Douglas Currie (University of Maryland, USA, one of the fathers of LLR. The new lunar CCR is developing and characterizing at the “Satellite/Lunar laser ranging Characterization Facility” (SCF, in Frascati, performing our new industry standard space test procedure, the “SCF-Test”; this work contains the experimental results of the SCF-Test applied to the new lunar CCR, and all the new payload developments, including the future SCF tests. The International Lunar Network (ILN research project considers our new retroreflector as one of the possible “Core Instruments”

  1. The Frontiers of Nuclear Science: A Long-Range Plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    In a letter dated July 17, 2006, the Department of Energy’s (DOE) Office of Science for Nuclear Physics and the National Science Foundation’s (NSF) Mathematical and Physical Sciences Directorate charged the Nuclear Science Advisory Committee (NSAC) to “conduct a study of the opportunities and priorities for U.S. nuclear physics research and recommend a long range plan that will provide a framework for coordinated advancement of the nation’s nuclear science research programs over the next decade.” This request set in motion a bottom-up review and forward look by the nuclear science community. With input from this community-wide process, a 59 member working group, which included the present NSAC members, gathered at the beginning of May, 2007, to develop guidance on how to optimize the future research directions for the field based on the projected resources outlined in the charge letter from DOE and NSF. A new long range plan—The Frontiers of Nuclear Science—grew out of this meeting. For the last decade, the top priority for nuclear science has been to utilize the flagship facilities that were built with investments by the nation in the 1980s and 1990s. Research with these facilities has led to many significant new discoveries that have changed our understanding of the world in which we live. But new discoveries demand new facilities, and the successes cannot continue indefinitely without new investment.

  2. Energy-range relations for hadrons in nuclear matter

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  3. Electronic instrumentation for the nuclear radiation measurement; Instrumentacion electronica para la medicion de la radiacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J

    2005-07-01

    This work presents the obtained results in the research, development and construction of the electronic instrumentation required for the measurement of the essential characteristics of the nuclear radiation: The quantity of radiation and its energy components. With this information, many practical instruments can be developed and applied in different fields of science and technology. In this work, some instruments were developed for their application in the areas of medicine, industry, and particle physics research. Several measurement systems based on PIN type diodes are proposed for: a) the measurement of the operational characteristics of the X-ray machines and the X-rays emitted in medical radio-diagnostic, b) X-ray spectroscopy and c) radiation spectroscopy of charged particles. The contribution of this work is, precisely, the development of new instruments that use the PIN diode as the sensorial element. In this way, existing problems in nuclear instrumentation are overcame, specially in the fields of medical physics and particle physics. Likewise, different types of charge and current preamplifiers, with a high signal-to-noise ratio, were developed for these instruments. (Author)

  4. Ion range measurements using fluorescent nuclear track detectors

    DEFF Research Database (Denmark)

    Klimpki, G.; Osinga, J.-M.; Herrmann, R.

    2013-01-01

    Fluorescent nuclear track detectors (FNTDs) show excellent detection properties for heavy charged particles and have, therefore, been investigated in this study in terms of their potential for in-vivo range measurements. We irradiated FNTDs with protons as well as with C, Mg, S, Fe and Xe ion beams...

  5. About the automated instrumentation in nuclear power plants; Sobre la instrumentacion automatizada en plantas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garduno G, M P., E-mail: armando.segovia@inin.gob.mx [Instituto Tecnologica de Toluca, Av. Tecnologico s/n, 52140 Metepec, Estado de Mexico (Mexico)

    2011-11-15

    The automation of the inspection processes and monitoring in nuclear facilities have as main objective the reduction of acquired radiation dose for the operators of the diverse work programs. For example, a typical maintenance task is the problems correction of leaks in the hydraulic facilities of the vapor circuits where is necessary the repair of pipes, measuring and control elements, as the valves. A program of effective maintenance should contemplate strategies of appropriate monitoring for the immediate detection of possible failures, with the purpose of the remedy them opportunely. For this function of failures detection is necessary to have instruments that allow the measuring of the parameters that facilitate their characterization. Given the prevailing conditions in the nuclear facilities, such instruments should possess special characteristics, reason why is necessary a study of them, as well as a careful selection of the susceptible apparatuses of being used. For this reason, this work presents a discussion about some of the existent conditions in the nuclear power plants, as well as the aspects to consider for the automated instrumentation of some places of a nuclear power plant. (Author)

  6. Experimental facility for testing nuclear instruments for planetary landing missions

    Science.gov (United States)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  7. Pairing and Short-Range Correlations in Nuclear Systems

    Science.gov (United States)

    Rios, A.; Polls, A.; Dickhoff, W. H.

    2017-12-01

    The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly deplete the available single-particle strength around the Fermi surface and thus provide a reduction mechanism of the pairing gap. Here, we study this effect in the singlet and triplet channels of both neutron matter and symmetric nuclear matter. Our calculations use phase-shift equivalent interactions and chiral two-body and three-body interactions as a starting point. We find an unambiguous reduction of the gap in all channels with very small dependence on the NN force in the singlet neutron matter and the triplet nuclear matter channel. In the latter channel, SRC alone provide a 50% reduction of the pairing gap.

  8. Visual Range: Concepts, Instrumental Determination, and Aviation Applications

    Science.gov (United States)

    1977-03-01

    radated Crum thilt t *trut! nOt reaci the reeiver in clear weathev. T-nis scattoredi tIght, vorts~tutefl an error In the trtia- ml...component of the measurexent may be iall, and is dependent on both instruments measuring portions rf the atmouphere which are identivul in density and

  9. Establishment of a national program for quality control of nuclear medicine instrumentation.

    Science.gov (United States)

    Coca Perez, Marco A; Torres Aroche, Leonel A; Bejerano, Gladys López; Mayor, Roberto Fraxedas; Corona, Consuelo Varela; López, Adlin

    2008-12-01

    Monitoring the quality of instrumentation used in nuclear medicine is mandatory to guarantee the clinical efficacy of medical practice. A national program for the quality control of nuclear medicine instruments was established in Cuba and was certified and approved by the regulatory authorities. The program, which establishes official regulations and audit services, sets up educational activities, distributes technical documentation, and maintains a national phantom bank, constitutes a valuable and useful tool to guarantee the quality of nuclear medicine instrumentation.

  10. Nuclear Technology Series. Course 6: Instrumentation and Control of Reactors and Plant Systems.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Verification and software validation for nuclear instrumentation; Verificacion y validacion de software para instrumentacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Gaytan G, E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Salgado G, J. R. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); De Andrade O, E. [Universidad Federal de Rio de Janeiro, Caixa Postal 68509, 21945-970 Rio de Janeiro (Brazil); Ramirez G, A., E-mail: elvira.gaytan@inin.gob.mx [Comision Federal de Electricidad, Gerencia de Centrales Nucleoelectricas, Alto Lucero, Veracruz (Mexico)

    2014-10-15

    In this work is presented a Verification Methodology and Software Validation, to be applied in instruments of nuclear use with associate software. This methodology was developed under the auspices of IAEA, through the regional projects RLA4022 (ARCAL XCIX) and RLA1011 (RLA CXXIII), led by Mexico. In the first project three plans and three procedures were elaborated taking into consideration IEEE standards, and in the second project these documents were updated considering ISO and IEC standards. The developed methodology has been distributed to the participant countries of Latin America in the ARCAL projects and two related courses have been imparted with the participation of several countries, and participating institutions of Mexico like Instituto Nacional de Investigaciones Nucleares (ININ), Comision Federal de Electricidad (CFE) and Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). In the ININ due to the necessity to work with Software Quality Guarantee in systems for the nuclear power plant of the CFE, a Software Quality Guarantee Plan and five procedures were developed in the year 2004, obtaining the qualification of the ININ for software development for the nuclear power plant of CFE. These first documents were developed taking like reference IEEE standards and regulator guides of NRC, being the first step for the development of the methodology. (Author)

  12. Imaging using long range dipolar field effects Nuclear magnetic resonance

    CERN Document Server

    Gutteridge, S

    2002-01-01

    The work in this thesis has been undertaken by the except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. Thes...

  13. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.

  14. Short-range correlations in quark and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Froemel, Frank

    2007-06-15

    In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)

  15. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-11-01

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line.

  16. Method study of improving overload characteristic of counter type nuclear instrument

    CERN Document Server

    Xiong Jian Ping

    2002-01-01

    The output characteristic of GM counter can be improved by changing bias voltage of advanced circuit, so that makes overload characteristic of nuclear instrument is well improved. Above mentioned method is introduced

  17. Instrumentation Requirements for the Engineering Evaluation of Nuclear-Electric Spacecraft

    Science.gov (United States)

    Apel, W. C.

    1961-01-01

    Spacecraft employing nuclear-electric propulsion are being proposed for missions to Venus and distances beyond. These spacecraft utilize a nuclear reactor to provide thermal energy to a turboalternator which generates electric power for an ion motor and the other spacecraft systems. This Report discusses the instrumentation and communications system needed to evaluate a nuclear-electric spacecraft in flight, along with the problems expected. A representative spacecraft design is presented, which leads to a discussion of the instrumentation needed to evaluate such a spacecraft. A basic communications system is considered for transmitting the spacecraft data to Earth. The instrumentation and communications system, as well as all electronic systems on a nuclear-electric spacecraft, will be operating in high temperature and nuclear-radiation environments. The problems caused by these environments are discussed, and possible solutions are offered.

  18. Introduction of Nuclear Instrumentations and Radiation Measurements in Experimental Fast Reactor 「JOYO」

    OpenAIRE

    大戸 敏弘; 鈴木 惣十

    1992-01-01

    This report introduces the nuclear instrumentation system and major R&D (research and development) activities using radiation measurement techniques in Experimental Fast Reactor "JOYO". In the introduction of the nuclear instrumentation system, following items are described; (1)system function (2)roles as a reactor plant equipment (3)specifications and charactelistics of neutron detectors, (4)construction and layout of the system. For reactor dosimetry at various irradiation tests and surveil...

  19. An automatic maintenance system for nuclear power plants instrumentation

    OpenAIRE

    Álvarez Torres, María Bárbara; Iborra García, Andrés José; Fernández Andrés, José Carlos

    2000-01-01

    Maintenance and testing of reactor protection systems is an important cause of unplanned reactor trips due to be commonly carried out in manual mode. The execution of surveillance procedures in this mode entails a great number of manual operations. Automated testing is the answer because it minimises test times and reduces the risk of human errors. GAMA-I is an automatic system for testing the reactor protection instrumentation which is based on VXI instrumentation cards. This system has i...

  20. Routine quality control of clinical nuclear medicine instrumentation: a brief review.

    Science.gov (United States)

    Zanzonico, Pat

    2008-07-01

    This article reviews routine quality-control (QC) procedures for current nuclear medicine instrumentation, including the survey meter, dose calibrator, well counter, intraoperative probe, organ ("thyroid") uptake probe, gamma-camera, SPECT and SPECT/CT scanner, and PET and PET/CT scanner. It should be particularly useful for residents, fellows, and other trainees in nuclear medicine, nuclear cardiology, and radiology. The procedures described and their respective frequencies are presented only as general guidelines.

  1. Routine Quality Control of Clinical Nuclear Medicine Instrumentation: A Brief Review*

    OpenAIRE

    Zanzonico, Pat

    2008-01-01

    This article reviews routine quality-control (QC) procedures for current nuclear medicine instrumentation, including the survey meter, dose calibrator, well counter, intraoperative probe, organ (“thyroid”) uptake probe, γ-camera, SPECT and SPECT/CT scanner, and PET and PET/CT scanner. It should be particularly useful for residents, fellows, and other trainees in nuclear medicine, nuclear cardiology, and radiology. The procedures described and their respective frequencies are presented only as...

  2. Recent control and instrumentation systems for BWR nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hiroaki; Higashikawa, Yuichi; Sato, Hideyuki (Hitachi Ltd., Tokyo (Japan))

    1990-10-01

    For the needs of the more stable operation of nuclear power stations, the upgrading of the measurement and control system for BWRs has been promoted by positively introducing remarkably advancing electronic technology. Further, it is aimed at to construct the synthetic digitized measurement and control system for nuclear power stations to heighten the operation reliability in ABWRs. As the first step of the development in the synthetic digitization, the monitoring and control system for radioactive waste treatment was put in practical use for No.5 plant of Kashiwazaki, Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. Hitachi Ltd. has promoted the development and the application to actual plants of the measurement and control system for BWRs, in which digital control technology, optical information transmission technology and the operation-supporting technology using a computer were utilized. Hereafter, it is intended to expand the application of digital measurement and control aiming at improving the reliability, operation performance and maintainability. The nuclear power plant control complex with advanced man-machine interface-90 (NUCAMM-90) was developed, and its application to actual plants is planned. (K.I.).

  3. Maintenance of process instrumentation in nuclear power plants

    CERN Document Server

    Hashemian, H M

    2006-01-01

    Compiles 30 years of practical knowledge gained by the author and his staff in testing the I and C systems of nuclear power plants around the world. This book focuses on process temperature and pressure sensors and the verification of these sensors' calibration and response time.

  4. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    Energy Technology Data Exchange (ETDEWEB)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo [Escuela Politecnica Nacional (EPN), Quito (Ecuador); and others

    2015-11-15

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  5. Instrumentation and controls evaluation for space nuclear power systems

    Science.gov (United States)

    Anderson, J. L.; Oakes, L. C.

    Design of control and protection systems should be coordinated with the design of the neutronic, thermal-hydraulic, and mechanical aspects of the core and plant at the earliest possible stage of concept development. An integrated systematic design approach is necessary to prevent uncoordinated choices in one technology area from imposing impractical or impossible requirements in another. Significant development and qualification will be required for virtually every aspect of reactor control and instrumentation. In-core instrumentation widely used in commercial light water reactors will not likely be usable in the higher temperatures of a space power plant. Thermocouples for temperature measurement and gamma thermometers for flux measurement appear to be the only viable candidates. Recent developments in ex-core neutron detectors may provide achievable alternatives to in-core measurements. Reliable electronic equipment and high-temperature actuators will require major development efforts.

  6. Instrumentation for chemical and radiochemical monitoring in nuclear power plants; Instrumentation de surveillance chimique et radiochimique dans les centrales nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Nordmann, F. [Consultant International en Chimie pour les Centrales Nucleaires (France); Ballard, G. [Electricite de France (EDF), 75 - Paris (France)

    2009-01-15

    This article details the instrumentation implemented in French nuclear power plants for the monitoring of chemical and radiochemical effluents with the aim of limiting their environmental impact. It describes the controls performed with chemical automata for the search for drifts, anomalies or pollution in a given circuit. The operation principles of the different types of chemical automata are explained as well as the manual controls performed on samples manually collected. Content: 1 - general considerations; 2 - objectives of the chemical monitoring: usefulness of continuous monitoring with automata, transmission to control rooms and related actions, redundancy of automata; 3 - instrumentation and explanations for the main circuits: principle of chemical automata monitoring, instrumentation of the main primary circuit, instrumentation of the main secondary circuit, instrumentation of the tertiary circuit, preparation of water makeup (demineralized water), other loops, instrumentation for effluents and environment monitoring, measurement principles of chemical automata, control and maintenance of chemical automata; 4 - manual controls after sampling; 5 - radiochemical monitoring: automatized radiochemical measurements, manual radiochemical measurements; 6 - conclusion.

  7. Unified nuclear core activity map reconstruction using heterogeneous instruments with data assimilation

    OpenAIRE

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Ponçot, Angélique

    2011-01-01

    Evaluating the neutronic state of the whole nuclear core is a very important topic that have strong implication for nuclear core management and for security monitoring. The core state is evaluated using measurements. Usually, part of the measurements are used, and only one kind of instruments are taken into account. However, the core state evaluation should be more accurate when more measurements are collected in the core. But using information from heterogeneous sources is at glance a diffic...

  8. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Holcomb, David Eugene [ORNL; Korsah, Kofi [ORNL; Loebl, Andy [ORNL; Mays, Gary T [ORNL; Muhlheim, Michael David [ORNL; Mullens, James Allen [ORNL; Poore III, Willis P [ORNL; Qualls, A L [ORNL; Wilson, Thomas L [ORNL; Waterman, Michael E. [U.S. Nuclear Regulatory Commission

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within

  9. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  10. Instrument evaluation no. 11. ESI nuclear model 271 C contamination monitor

    CERN Document Server

    Burgess, P H

    1978-01-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to he carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the a...

  11. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, David K [State Univ. of New York (SUNY), Geneseo, NY (United States)

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  12. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    Science.gov (United States)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  13. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    Science.gov (United States)

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  14. WTEC panel report on European nuclear instrumentation and controls. Final report

    Energy Technology Data Exchange (ETDEWEB)

    White, J.D.; Lanning, D.D.; Johnson, P.M.H. [eds.] [World Technology Evaluation Center, Baltimore, MD (United States); Shelton, R.D. [World Technology Evaluation Center, Baltimore, MD (United States)

    1991-12-01

    A study of instrumentation and controls (I and C) technology used in nuclear power plants in Europe was conducted by a panel of US specialists. This study plants in Europe was conducted by a panel of US specialists. This study included a review of the literature on the subject, followed by a visit to some of the leading organizations in Europe in the field nuclear I and C. Areas covered are: (1) role of the operator and control room design; (2) transition from analog to digital technology; (3) computerized operator support systems for fault management; (4) control strategies and techniques; (5) Nuclear power plant I and C architecture; (6) instrumentation and (7) computer standards and tools. The finding relate to poor reactions.

  15. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    Science.gov (United States)

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  16. A novel nuclear dependence of nucleon–nucleon short-range correlations

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Hongkai [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Rong, E-mail: rwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lanzhou University, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Yin [Lanzhou University, Lanzhou 730000 (China); Chen, Xurong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-10

    A linear correlation is found between the magnitude of nucleon–nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon–nucleon short-range correlations of some unmeasured nuclei are predicted. Discussions on nucleon–nucleon pairing energy and nucleon–nucleon short-range correlations are made. The found nuclear dependence of nucleon–nucleon short-range correlations may shed some lights on the short-range structure of nucleus.

  17. Short-Range Correlations and Their Implications for Isospin-Dependent Modification of Nuclear Quark Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Arrington, John

    2016-03-25

    The past decade has provided a much clearer picture of the structure of highmomentum components in nucleons, associated with hard, short-distance interactions between pairs of nucleons. Recent Jefferson Lab data on light nuclei suggest a connection between these so-called ’short-range correlations’ and the modification of the quark structure of nucleons in the nuclear environment. In light of this discovery that the detailed nuclear structure is important in describing the nuclear quark distributions, we examine the potential impact of the isospin-dependent structure of nuclei to see at what level this might yield flavor-dependent effects in nuclear quark distributions.

  18. The NuPECC long range plan 2017: perspectives in nuclear physics

    Science.gov (United States)

    Bracco, Angela

    2017-10-01

    The Nuclear Physics European Collaboration Committee (NuPECC) is an independent Committee associated to European Science Foundation (ESF). Its mission is "to provide advice and make recommendations on the development, organisation, and support of European nuclear research and of particular projects". The delivery of long range plans represents thus the core of the NuPECC's activities. In the past four long-range plans (LRPs) were issued in 1991, 1997, 2004 and 2010.

  19. Corner-cube retro-reflector instrument for advanced lunar laser ranging

    Science.gov (United States)

    Turyshev, Slava G.; Williams, James G.; Folkner, William M.; Gutt, Gary M.; Baran, Richard T.; Hein, Randall C.; Somawardhana, Ruwan P.; Lipa, John A.; Wang, Suwen

    2013-08-01

    Lunar laser ranging (LLR) has made major contributions to our understanding of the Moon's internal structure and the dynamics of the Earth-Moon system. Because of the recent improvements of the ground-based laser ranging facilities, the present LLR measurement accuracy is limited by the retro-reflectors currently on the lunar surface, which are arrays of small corner-cubes. Because of lunar librations, the surfaces of these arrays do not, in general, point directly at the Earth. This effect results in a spread of arrival times, because each cube that comprises the retroreflector is at a slightly different distance from the Earth, leading to the reduced ranging accuracy. Thus, a single, wide aperture corner-cube could have a clear advantage. In addition, after nearly four decades of successful operations the retro-reflectors arrays currently on the Moon started to show performance degradation; as a result, they yield still useful, but much weaker return signals. Thus, fresh and bright instruments on the lunar surface are needed to continue precision LLR measurements. We have developed a new retro-reflector design to enable advanced LLR operations. It is based on a single, hollow corner cube with a large aperture for which preliminary thermal, mechanical, and optical design and analysis have been performed. The new instrument will be able to reach an Earth-Moon range precision of 1-mm in a single pulse while being subjected to significant thermal variations present on the lunar surface, and will have low mass to allow robotic deployment. Here we report on our design results and instrument development effort.

  20. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  1. Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinik, Tomas, E-mail: tomas.martinik@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grape, Sophie; Jansson, Peter [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Swinhoe, Martyn T.; Goodsell, Alison V. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Tobin, Stephen J. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Swedish Nuclear Fuel and Waste Management Company, Blekholmstorget 30, Box 250, SE-101 24 Stockholm (Sweden)

    2016-06-11

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  2. Design of a Prototype Differential Die-Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    Science.gov (United States)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Jansson, Peter; Swinhoe, Martyn T.; Goodsell, Alison V.; Tobin, Stephen J.

    2016-06-01

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  3. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  4. Intra-rater and Inter-instrument Reliability on Range of Movement of Active Knee Extension

    Directory of Open Access Journals (Sweden)

    Germanna de Medeiros Barbosa

    Full Text Available Abstract The objective of the present study was to evaluate the reliability of intra-rater and inter-instrument measures during two flexibility programs. Fifty-three active and healthy males, aged between 18 and 28 years old, were randomly included in three groups: control (Cg, n = 18, static stretching (SSg, n = 17, and dynamic stretching (DSg, n = 18. All participants underwent measurements of their active range of knee extension using manual goniometry and computerized photogrammetry, measured in four separated assessments and analyzed using the SPSS, with ((5%. Both methodologies presented very strongintra-raterreliability (ICC: 0.91(0.99; P<0.001 at all four assessments in all the groups, and the instruments showed weak (r: 0.31-0.6 to strong(r: 0.61-0.9 correlation, in the Cg (P<0.05 and strong (r: 0.61-0.9 in the SSg and DSg (P<0.01, although without differences between groups, indicating that the measures are equally reliable, regardless of interventions.

  5. Instrumentation and Control Needs for Reliable Operation of Lunar Base Surface Nuclear Power Systems

    Science.gov (United States)

    Turso, James; Chicatelli, Amy; Bajwa, Anupa

    2005-01-01

    As one of the near-term goals of the President's Vision for Space Exploration, establishment of a multi-person lunar base will require high-endurance power systems which are independent of the sun, and can operate without replenishment for several years. These requirements may be obtained using nuclear power systems specifically designed for use on the lunar surface. While it is envisioned that such a system will generally be supervised by humans, some of the evolutions required maybe semi or fully autonomous. The entire base complement for near-term missions may be less than 10 individuals, most or all of which may not be qualified nuclear plant operators and may be off-base for extended periods thus, the need for power system autonomous operation. Startup, shutdown, and load following operations will require the application of advanced control and health management strategies with an emphasis on robust, supervisory, coordinated control of, for example, the nuclear heat source, energy conversion plant (e.g., Brayton Energy Conversion units), and power management system. Autonomous operation implies that, in addition to being capable of automatic response to disturbance input or load changes, the system is also capable of assessing the status of the integrated plant, determining the risk associated with the possible actions, and making a decision as to the action that optimizes system performance while minimizing risk to the mission. Adapting the control to deviations from design conditions and degradation due to component failures will be essential to ensure base inhabitant safety and mission success. Intelligent decisions will have to be made to choose the right set of sensors to provide the data needed to do condition monitoring and fault detection and isolation because of liftoff weight and space limitations, it will not be possible to have an extensive set of instruments as used for earth-based systems. Advanced instrumentation and control technologies will be

  6. Availability analysis of the nuclear instrumentation of a research reactor; Analise da disponibilidade da instrumentacao nuclear de um reator de pesquisa

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Filho, Alfredo Marques

    2016-07-01

    The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system. (author)

  7. Nuclear matrix element of neutrinoless double-β decay: Relativity and short-range correlations

    Science.gov (United States)

    Song, L. S.; Yao, J. M.; Ring, P.; Meng, J.

    2017-02-01

    Background:The discovery of neutrinoless double-β (0 ν β β ) decay would demonstrate the nature of neutrinos, have profound implications for our understanding of matter-antimatter mystery, and solve the mass hierarchy problem of neutrinos. The calculations for the nuclear matrix elements M0 ν of 0 ν β β decay are crucial for the interpretation of this process. Purpose: We study the effects of relativity and nucleon-nucleon short-range correlations on the nuclear matrix elements M0 ν by assuming the mechanism of exchanging light or heavy neutrinos for the 0 ν β β decay. Methods:The nuclear matrix elements M0 ν are calculated within the framework of covariant density functional theory, where the beyond-mean-field correlations are included in the nuclear wave functions by configuration mixing of both angular-momentum and particle-number projected quadrupole deformed mean-field states. Results: The nuclear matrix elements M0 ν are obtained for ten 0 ν β β -decay candidate nuclei. The impact of relativity is illustrated by adopting relativistic or nonrelativistic decay operators. The effects of short-range correlations are evaluated. Conclusions: The effects of relativity and short-range correlations play an important role in the mechanism of exchanging heavy neutrinos though the influences are marginal for light neutrinos. Combining the nuclear matrix elements M0 ν with the observed lower limits on the 0 ν β β -decay half-lives, the predicted strongest limits on the effective masses are ||light neutrinos and | |-1>3.065 ×108GeV for heavy neutrinos.

  8. Nuclear-spin-independent short-range three-body physics in ultracold atoms.

    Science.gov (United States)

    Gross, Noam; Shotan, Zav; Kokkelmans, Servaas; Khaykovich, Lev

    2010-09-03

    We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold 7Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross, Phys. Rev. Lett. 103, 163202 (2009)]. We extend the previously reported universality in three-body recombination loss across a Feshbach resonance to the absolute ground state. We show that the positions and widths of recombination minima and Efimov resonances are identical for both states which indicates that the short-range physics is nuclear-spin independent.

  9. Development of a nuclear reactor control system simulator using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.b, E-mail: amir@cdtn.b, E-mail: fsl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  10. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  11. Arm-Locking with the GRACE Follow-On Laser Ranging Instrument

    Science.gov (United States)

    Thorpe, James Ira; Mckenzie, Kirk

    2016-01-01

    Arm-locking is a technique for stabilizing the frequency of a laser in an inter-spacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA), arm-locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the Laser Ranging Instrument flying aboard the upcoming Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly two orders of magnitude around a Fourier frequency of 1Hz with conservative margins on the system's stability. We further demonstrate that `pulling' of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.

  12. Effects of wide dynamic-range compression on the perceived clarity of individual musical instruments.

    Science.gov (United States)

    Madsen, Sara M K; Stone, Michael A; McKinney, Martin F; Fitz, Kelly; Moore, Brian C J

    2015-04-01

    The effects of wide-dynamic-range compression (WDRC) on the ability of hearing-impaired subjects to hear out individual instruments or voices (called "sources") in a mixture were explored. On each trial, the subjects were asked to judge the relative clarity of the target in two repetitions of the same music excerpt (mixture of sources) that were processed in different ways. The stimuli were processed via a five-channel simulated WDRC hearing aid, using individual insertion gains and compression ratios recommended by the CAM2 fitting procedure. Both fast- and slow-acting WDRC and a condition with linear amplification and frequency-response shaping were used. To investigate the role of cross-modulation (the partial correlation of the envelopes of different sources caused by the time-varying gain applied by the compressor), conditions were included where the sounds from different sources were compressed before being added together and where the sounds were added together before being compressed. The results showed no effect of cross-modulation, lower clarity with WDRC than with linear amplification, and no significant overall effect of compression speed, although some subjects consistently rated clarity as greater with slow compression. The deleterious effect of WDRC may be related to changes in temporal-envelope shape or reduced spectral contrast produced by WDRC.

  13. Opportunities in Nuclear Science: A Long-Range Plan for the Next Decade

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-04-01

    The DOE/NSF Nuclear Science Advisory Committee of the Department of Energy and the National Science Foundation is charged with providing advice on a continuing basis regarding the management of the national basic nuclear science research program. In July 2000, the Committee was asked to study the opportunities and priorities for U.S. nuclear physics research, and to develop a long-range plan that will serve as a frame-work for the coordinated advancement of the field for the next decade. The plan contained here is the fifth that has been pre-pared since the Committee was established. Each of the earlier plans has had substantial impact on new directions and initiatives in the field.

  14. German writers and the Intermediate-range Nuclear Forces debate in the 1980s

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, A.M.

    1991-01-01

    In 1979, NATO announced its decision to deploy American intermediate-range nuclear missiles throughout Western Europe. From then until 1987, when the historic Intermediate-range Nuclear forces (INF) treaty provided for the withdrawal of these weapons as well as those deployed by the Soviets in Eastern Europe, the issue of nuclear weapons preoccupied many Europeans, particularly Germans. Beginning in 1980, fear of nuclear war, with the two Germanies as a potential battlefield, mobilized the largest peace movement that the Federal Republic had witnessed since the fifties, occasioned a massive increase in peace propaganda in East Germany, and brought to public notice that country's first unofficial peace movement. Throughout most of the eighties, writers in both German states opposed missile deployment. This study examines their aims and achievements in this effort and investigates the implications of political engagement for the aesthetic production of selected authors. Analysis of press reports, writers' speeches, interviews, essays and literary texts yielded the following results: INF deployment motivated writers of all political persuasions to take up a variety of peace-oriented pursuits.

  15. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    Science.gov (United States)

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  16. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Directory of Open Access Journals (Sweden)

    Michael W Vogel

    Full Text Available We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability.The finite element method (COMSOL® was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field.A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres.A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR and magnetic resonance imaging (MRI instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  17. Nuclear instrumentation and measurement: a review based on the ANIMMA conferences

    Science.gov (United States)

    Giot, Michel; Vermeeren, Ludo; Lyoussi, Abdallah; Reynard-Carette, Christelle; Lhuillier, Christian; Mégret, Patrice; Deconinck, Frank; Gonçalves, Bruno Soares

    2017-12-01

    The ANIMMA conferences offer a unique opportunity to discover research carried out in all fields of nuclear measurements and instrumentation with applications extending from fundamental physics to fission and fusion reactors, medical imaging, environmental protection and homeland security. After four successful editions of the Conference, it was decided to prepare a review based to a large extent but not exclusively on the papers presented during the first four editions of the conference. This review is organized according to the measurement methodologies: neutronic, photonic, thermal, acoustic and optical measurements, as well as medical imaging and specific challenges linked to data acquisition and electronic hardening. The paper describes the main challenges justifying research in these different areas, and summarizes the recent progress reported. It offers researchers and engineers a way to quickly and efficiently access knowledge in highly specialized areas.

  18. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Verbeeck, Jens; Cao, Ying [KU Leuven - KUL, Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz [Fusion for Energy - F4E, c/Josep,n deg. 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Meek, Richard; Haist, Bernhard [Oxford Technologies Ltd. OTL, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); De Cock, Wouter; Vermeeren, Ludo [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Steyaert, Michiel [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium)

    2015-07-01

    Decommissioning, dismantling and remote handling applications in nuclear facilities all require robotic solutions that are able to survive in radiation environments. Recently raised safety, radiation hardness and cost efficiency demands from both the nuclear regulatory and the society impose severe challenges in traditional methods. For example, in case of the dismantling of the Fukushima sites, solutions that survive accumulated doses higher than 1 MGy are mandatory. To allow remote operation of these tools in nuclear environments, electronics were used to be shielded with several centimeters of lead or even completely banned in these solutions. However, shielding electronics always leads to bulky and heavy solutions, which reduces the flexibility of robotic tools. It also requires longer repair time and produces extra waste further in a dismantling or decommissioning cycle. In addition, often in current reactor designs, due to size restrictions and the need to inspect very tight areas there are limitations to the use of shielding. A MGy radiation-hardened sensor instrumentation link developed by MAGyICS provides a solution to build a flexible, easy removable and small I and C module with MGy radiation tolerance without any shielding. Hereby it removes all these pains to implement electronics in robotic tools. The demonstrated solution in this poster is developed for ITER Remote Handling equipments operating in high radiation environments (>1 MGy) in and around the Tokamak. In order to obtain adequately accurate instrumentation and control information, as well as to ease the umbilical management, there is a need of front-end electronics that will have to be located close to those actuators and sensors on the remote handling tool. In particular, for diverter remote handling, it is estimated that these components will face gamma radiation up to 300 Gy/h (in-vessel) and a total dose of 1 MGy. The radiation-hardened sensor instrumentation link presented here, consists

  19. Measurement of soil water potential over an extended range by polymer tensiometers: comparison with other instruments

    Science.gov (United States)

    van der Ploeg, M. J.; Gooren, H. P.; Hoogendam, R. C.; Bakker, G.; Huiskes, C.; Koopal, L. K.; Kruidhof, H.; de Rooij, G. H.

    2007-12-01

    .6% silt, 0.8% clay), and the other with loam (42.8% sand, 38.8% silt, 18.4% clay). The uniformly repacked soils were saturated at the beginning of the experiment, then drained, and left to dry out. Results show that polymer tensiometer data are comparable to the other instruments in their measurement ranges, and highlight the risks of converting water contents to matric potentials. This research is funded by the Dutch Technology Foundation (STW). Contributing companies are: ECO Ceramics BV (www.ecoceramics.nl), ENRIN (www.enrin.nl) and KELLER Meettechniek BV (www.keller-holland.nl).

  20. Effective-range parameters and vertex constants for Λ-nuclear systems

    Science.gov (United States)

    Rakityansky, S. A.; Gopane, I. M.

    For a wide range of the core-nuclei (6 ≤ A ≤ 207), the scattering lengths, effective radii, and the other effective-range parameters (up to the order ˜ k8) for the angular momentum ℓ = 0, 1, 2 are calculated within a two-body ΛA-model. For the same hypernuclear systems, the S-matrix residues as well as the corresponding Nuclear-Vertex and Asymptotic-Normalization constants (NVC’s and ANC’s) for the bound states are also found.

  1. State-of-the-art report for the instrumentation and control technology based on the nuclear-information technology convergence

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Kim, Chang Hwoi; Lee, Dong Young; Lee, Cheol Kwon; Lee, Hyun Chul [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    As digitalized the instrumentation and control systems in nuclear power plants, in the past that were implemented in an analog system or circuit for monitoring, control and protection, most of the them is implemented in embedded software based on hardware platform. Digital instrumentation and control system hardware platforms and a digital safety systems have developed in Korea. The fundamental technology of the software part of MMIS (Man-Machine Interface System) has achieved the localization. But in order to secure our global competitiveness, in the -based software, the source of the content areas / It is needed to develop core technologies of the software and contents areas based on the nuclear-IT convergence technology. In this report, the IT technology centered for the characteristics of embedded software applied to nuclear power is described. Also state-of-the-art IT technologies that will converge to nuclear power plants are mentioned

  2. Hybridization during altitudinal range shifts: nuclear introgression leads to extensive cyto-nuclear discordance in the fire salamander.

    Science.gov (United States)

    Pereira, Ricardo J; Martínez-Solano, Iñigo; Buckley, David

    2016-04-01

    Ecological models predict that, in the face of climate change, taxa occupying steep altitudinal gradients will shift their distributions, leading to the contraction or extinction of the high-elevation (cold-adapted) taxa. However, hybridization between ecomorphologically divergent taxa commonly occurs in nature and may lead to alternative evolutionary outcomes, such as genetic merger or gene flow at specific genes. We evaluate this hypothesis by studying patterns of divergence and gene flow across three replicate contact zones between high- and low-elevation ecomorphs of the fire salamander (Salamandra salamandra) that have experienced altitudinal range shifts over the current postglacial period. Strong population structure with high genetic divergence in mitochondrial DNA suggests that vicariant evolution has occurred over several glacial-interglacial cycles and that it has led to cryptic differentiation within ecomorphs. In current parapatric boundaries, we do not find evidence for local extinction and replacement upon postglacial expansion. Instead, parapatric taxa recurrently show discordance between mitochondrial and nuclear markers, suggesting nuclear-mediated gene flow across contact zones. Isolation with migration models support this hypothesis by showing significant gene flow across all five parapatric boundaries. Together, our results suggest that, while some genomic regions, such as the mitochondria, may follow morphologic species traits and retreat to isolated mountain tops, other genomic regions, such as nuclear markers, may flow across parapatric boundaries, sometimes leading to a complete genetic merger. We show that despite high ecologic and morphologic divergence over prolonged periods of time, hybridization allows for evolutionary outcomes alternative to extinction and replacement of taxa in response to climate change. © 2016 John Wiley & Sons Ltd.

  3. Instrument failure detection and estimation methodology for the nuclear power plant

    Science.gov (United States)

    Oh, D. Y.; No, H. C.

    1990-02-01

    To detect instrument failures in a nuclear power plant, a failure detection and isolation (FDI) method based on the Kalman filter is developed. Each filter is designed to be insensitive to the failed measurements by decreasing the Kalman gain artificially. Since it is mainly dependent upon the dynamic model and averaged outputs, it can exactly indicate the direction of failures. Even though this concept minimizes the number of filters, it performs the role of analytic redundancy for estimation. As soon as the residual exceeds the predetermined bound, the Kalman filter indicates the possibility of failures. However, since the measurement may show false indication owing to abrupt noises, it must be confirmed several times by the multiple consecutive miscomparison counter, which is strongly dependent on measurement history. Then, if it is not in accordance with other measurements, detailed information on the status of the measurements is provided to help the operator's decision. Various simulations were performed to verify and validate the FDI logic in detecting steam generator and pressurizer instrument failures. It is shown that the FDI technique can detect not only a single failure but also simultaneous common-mode and sequential multiple failures of several direct redundancies. It can correctly estimate the physical states in real time, and the remaining time may be used for control with signal validation.

  4. Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-31

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs.

  5. The first Swedish nuclear reactor - from technical prototype to scientific instrument; Sveriges foersta kaernreaktor - fraan teknisk prototyp till vetenskapligt instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fjaestad, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of History of Science and Technology

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused.

  6. Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Georgeta [ORNL; Mueller, Don [ORNL; Goluoglu, Sedat [ORNL; Hollenbach, Daniel F [ORNL; Fox, Patricia B [ORNL

    2007-10-01

    The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform postclosure criticality calculations. The validation process applies the criticality analysis methodology approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report. The application systems for this validation consist of waste packages containing transport, aging, and disposal canisters (TAD) loaded with commercial spent nuclear fuel (CSNF) of varying assembly types, initial enrichments, and burnup values that are expected from the waste stream and of varying degree of internal component degradation that may occur over the 10,000-year regulatory time period. The criticality computational tool being evaluated is the general-purpose Monte Carlo N-Particle (MCNP) transport code. The nuclear cross-section data distributed with MCNP 5.1.40 and used to model the various physical processes are based primarily on the Evaluated Nuclear Data File/B Version VI (ENDF/B-VI) library. Criticality calculation bias and bias uncertainty and lower bound tolerance limit (LBTL) functions for CSNF waste packages are determined based on the guidance in ANSI/ANS 8.1-1998 (Ref. 4) and ANSI/ANS 8.17-2004 (Ref. 5), as described in Section 3.5.3 of Ref. 1. The development of this report is consistent with Test Plan for: Range of Applicability and Bias Determination for Postclosure Criticality. This calculation report has been developed in support of licensing activities for the proposed repository at Yucca Mountain, Nevada, and the results of the calculation may be used in the criticality evaluation for CSNF waste packages based on a conceptual TAD canister.

  7. Overview of a FPGA-based nuclear instrumentation dedicated to primary activity measurements.

    Science.gov (United States)

    Bobin, C; Bouchard, J; Pierre, S; Thiam, C

    2012-09-01

    In National Metrology Institutes like LNE-LNHB, renewal and improvement of the instrumentation is an important task. Nowadays, the current trend is to adopt digital boards, which present numerous advantages over the standard electronics. The feasibility of an on-line fulfillment of nuclear-instrumentation functionalities using a commercial FPGA-based (Field-Programmable Gate Array) board has been validated in the case of TDCR primary measurements (Triple to Double Coincidence Ratio method based on liquid scintillation). The new applications presented in this paper have been included to allow either an on-line processing of the information or a raw-data acquisition for an off-line treatment. Developed as a complementary tool for TDCR counting, a time-to-digital converter specifically designed for this technique has been added. In addition, the description is given of a spectrometry channel based on the connection between conventional shaping amplifiers and the analog-to-digital converter (ADC) input available on the same digital board. First results are presented in the case of α- and γ-counting related to, respectively, the defined solid angle and well-type NaI(Tl) primary activity techniques. The combination of two different channels (liquid scintillation and γ-spectrometry) implementing the live-time anticoincidence processing is also described for the application of the 4πβ-γ coincidence method. The need for an optimized coupling between the analog chain and the ADC stage is emphasized. The straight processing of the signals delivered by the preamplifier connected to a HPGe detector is also presented along with the first development of digital filtering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Thermodynamic instabilities of nuclear matter at finite temperature with finite range effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, J.; Polls, A.; Vinas, X.; Pi, M. (Barcelona Univ. (Spain). Dept. de Estructura y Constituyentes de la Materia); Hernandez, S. (Buenos Aires Univ. (Argentina). Dept. de Fisica)

    1992-08-03

    A systematic study of the equation of state for symmetric nuclear matter is performed in the framework of a finite-temperature density dependent Hartree-Fock method using the Gogny finite-range effective interaction. Special attention is devoted to the density and temperature dependence of the single-particle spectrum, the effective mass and the momentum distributions. The liquid-gas phase transition and the spinodal lines are discussed, in connection with the breakup of heated nucleus into small clusters that takes place in medium energy heavy ion reactions. The level density parameter, which has been derived by a low temperature expansion of the internal energy, is also discussed. Comparisons with previous calculations using zero range effective interactions are also made. (orig.).

  9. A quality control method for nuclear instrumentation and control systems based on software safety prediction

    Science.gov (United States)

    Son, Han Seong; Seong, Poong Hyun

    2000-04-01

    In the case of safety-related applications like nuclear instrumentation and control (NI&C), safety-oriented quality control is required. The objective of this paper is to present a software safety classification method as a safety-oriented quality control tool. Based on this method, we predict the risk (and thus safety) of software items that are at the core of NI&C systems. Then we classify the software items according to the degree of the risk. The method can be used earlier than at the detailed design phase. Furthermore, the method can also be used in all the development phases without major changes. The proposed method seeks to utilize the measures that can be obtained from the safety analysis and requirements analysis. Using the measures proved to be desirable in a few aspects. The authors have introduced fuzzy approximate reasoning to the classification method because experts' knowledge covers the vague frontiers between good quality and bad quality with linguistic uncertainty and fuzziness. Fuzzy Colored Petri Net (FCPN) is introduced in order to offer a formal framework for the classification method and facilitate the knowledge representation, modification, or verification. Through the proposed quality control method, high-quality NI&C systems can be developed effectively and used safely.

  10. Wind Tunnel Test of a C-18 Aircraft Modified with the Advanced Range Instrumentation Aircraft Radome

    Science.gov (United States)

    1982-12-01

    attack (degrees) cc. Angle between fuselage reference line and tunnel 9 axis (degrees) ARIA Advanced Ranae Instrumentation Aircraft b Wing Span BASIC...0.010 -o.0 0 0. ojo -2.76 1).I 1 t 5 1036 -0.76 0~.𔃻*1 3 C .135 3.125 r 0 2(1? C..er, f 3.’ 1 LFAST -S0UAFPF nA F TT ORDEP 2 B3ETA CN CD -6.76

  11. High dynamic range magnetometry with a single nuclear spin in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Waldherr, Gerald; Beck, Johannes; Neumann, Philipp; Nitsche, Matthias; Wrachtrup, Joerg [3. Physikalisches Institut, Universitaet Stuttgart, 70569 Stuttgart (Germany); Said, Ressa S. [Institut fuer Quanten-Informationsverarbeitung, Universitaet Ulm, 89081 Ulm (Germany); Twamley, Jason [Centre for Engineered Quantum Systems, Faculty of Science, Macquarie University, Sydney (Australia); Jelezko, Fedor [Institut fuer Quantenoptik, Universitaet Ulm, 89073 Ulm (Germany)

    2012-07-01

    Sensors based on the nitrogen-vacancy (NV) defect in diamond are being developed to measure weak magnetic and electric fields at nanoscale. However, such sensors rely on measurements of a shift in the Lamor frequency of the defect, so an accumulation of quantum phase causes the measurement signal to exhibit a periodic modulation. This means that the measurement time is either restricted to half of one oscillation period, which limits accuracy, or that the magnetic field range must be known in advance. Moreover, the precision increases only slowly, as T{sup -0.5}, with the measurement time T. We implement a quantum phase estimation algorithm on a single nuclear spin in diamond to combine both high sensitivity and high dynamic range. By achieving a scaling of the precision with time to T{sup -0.85}, we improve the sensitivity by a factor of 7.4, for an accessible field range of 16 mT, or alternatively, we improve the dynamic range by a factor of 130 for a sensitivity of 2.5 {mu}T/Hz{sup 0.5}. These methods are applicable to a variety of field detection schemes, and do not require entanglement.

  12. The program at JPL to investigate the nuclear interaction of RTG's with scientific instruments on deep space probes

    Science.gov (United States)

    Truscello, V.

    1972-01-01

    A major concern in the integration of a radioisotope thermoelectric generator (RTG) with a spacecraft designed to explore the outer planets is the effect of the emitted radiation on the normal operation of scientific instruments. The necessary techniques and tools developed to allow accurate calculation of the neutron and gamma spectrum emanating from the RTG. The specific sources of radiation were identified and quantified. Monte Carlo techniques are then employed to perform the nuclear transport calculations. The results of these studies are presented. An extensive experimental program was initiated to measure the response of a number of scientific components to the nuclear radiation.

  13. Application of the NAVSTAR/GLOBAL positioning system on instrumented ranges

    OpenAIRE

    Reinhart, William L.

    1981-01-01

    Approved for public release; distribution is unlimited This report treats the application of the NAVSTAR/Global Positioning System as the Position/Location System in Real Time Casualty Assessment experiments. The desirable characteristics of a position/location system are listed. A current position/location system, the Range Measuring System, is used as a comparison reference for the Global Positioning System. Operation and parameters of the Global Positioning System are presented. A d...

  14. Survey and analysis on environmental and electromagnetic effect on instrumentation and control equipment of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Koo; Lee, Dong Young; Cha, Kyung Ho

    2001-03-01

    As the instrumentation and control (I and C) equipment suppliers tend to provide digital components rather than conventional analog type components for instrumentation and control systems of nuclear power plants(NPPs), it is unavoidable to adopt digital equipment for safety I and C systems as well as non-safety systems. However, the full introduction of digital equipment for I and C systems of nuclear power plants raises several concerns which have not been considered in conventional analog I and C equipment. The two major examples of the issues of digital systems are environmental/electromagnetic compatibility (EMC) and software reliability. This report presents the survey and research results on environmental and electromagnetic effect on I and C equipment of nuclear power plants to give a guideline for aging management and design process. Electromagnetic site surveys were conducted to be used as a part of technical basis to demonstrate that I and C systems are compatible with the ambient electromagnetic noise in Korean nuclear power plants.

  15. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Austin Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Runnels, Joel T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair

  16. The validity and reliability of a new instrumented device for measuring ankle dorsiflexion range of motion.

    Science.gov (United States)

    Calatayud, Joaquin; Martin, Fernando; Gargallo, Pedro; García-Redondo, Jessica; Colado, Juan Carlos; Marín, Pedro J

    2015-04-01

    A restriction in ankle dorsiflexion range of motion (ROM) has been linked to several clinical manifestations such as metatarsalgia, heel pain, nerve entrapment, ankle joint equinus, patellar and ankle injuries. The purpose of the present study was to examine the validity and reliability of the Leg Motion system for measuring ankle dorsiflexion ROM. Descriptive repeated-measures study. Twenty-six healthy male university students were recruited to test the reliability of the Leg Motion system, which is a portable tool used for assessment of ankle dorsiflexion during the weight-bearing lunge test. The participants were tested two times separated by two weeks and measurements were performed at the same time of the day by the same single rater. To test the validity of the Leg Motion system, other maximal ankle dorsiflexion ROM assessments (goniometer, inclinometer and measuring tape) were measured in a single session (i.e., the first test session) during the weight-bearing lunge position using a standard goniometer, a digital inclinometer and a measuring tape measure with the ability to measure to the nearest 0.1 cm. Paired t-tests showed the absence of significant differences between right and left limb measurements of dorsiflexion in all tests. Mean values ± standard deviations were as follows: Leg Motion test (left 11.6cm±3.9; right 11.9cm ±4.0), tape measure (left 11.6cm±4.0; right 11.8cm±4.2), goniometer (left 40.6º±5.2; right 40.6º±5.2), and digital inclinometer (left 40.0º±5.8; right 39.9º±5.6). The Leg Motion composite values (i.e., average of the two legs) showed a significant (pMotion system as a valid, portable, and easy to use alternative to the weight-bearing lunge test to assess ankle dorsiflexion ROM in healthy participants. 2b.

  17. Integrated conception of hardware/software mixed systems used in nuclear instrumentation; Concepcao integrada de sistemas mistos hardware/software utilizados em instrumentacao nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ailton F. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Informatica; Sorel, Yves [Institut National de Recherches en Informatique et en Automatique (INRIA), Le Chesnay Cedex (France). Projet SOSSO; Akil, Mohamed [Ecole Superieure en Electrotechnique et Electronique, Noisy-le-Grand Cedex (France). Lab. Algorithmique et Architecture des Systemes Informatiques

    2002-07-01

    Hardware/software codesign carries out the design of systems composed by a hardware portion, with specific components, and a software portion, with microprocessor based architecture. This paper describes the Algorithm Architecture Adequation (AAA) design methodology - originally oriented to programmable multicomponent architectures, its extension to reconfigurable circuits and its application to design and development of nuclear instrumentation systems composed by programmable and configurable circuits. AAA methodology uses an unified model to describe algorithm, architecture and implementation, based on graph theory. The great advantage of AAA methodology is the utilization of a same model from the specification to the implementation of hardware/software systems, reducing the complexity and design time. (author)

  18. Panel mounted time code reader. [Day of year, hour, minute, second from standard Inter Range Instrumentation Group time codes

    Energy Technology Data Exchange (ETDEWEB)

    Shaum, R. L.

    1978-02-01

    The time code reader described is composed of an assembly of commonly available electronic components logically arranged to minimize component count while reliably achieving the basic function of decoding and displaying the time of year information which is available in each of several standard Inter Range Instrumentation Group (IRIG) time codes. The time code reader omits all subsidiary functions of the code except that of retrieving a readable time of year (day, hour, minute, second). The reader can be mounted on any equipment panel having an available flat surface that is 2 by 6 inches in dimensions. IRIG time codes A, B, E, and G can be read without the necessity of switching, and a relatively wide range of input voltages is accommodated.

  19. Comparison of the Standards applied to Instrumentation and Control Systems for Nuclear Power Stations in Korea and Russia

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hyun; Hwang, In Koo; Lee, Dong Young

    2005-04-15

    This report describes a comparison result of technical standards applied to instrumentation and control systems for nuclear power plants between in Korea and in Russia. Russia also has a state-run organization authorized to conduct approval, cancellation, and audit in use of nuclear facility or equipment. The Russian standards for nuclear instrumentation and control equipment are analogous with the Korean ones in the aspect of basic concepts and principles. However, there are some differences in document structure, design requirements, qualification test items, depth of contents between two standard systems. The biggest deviation exists in the standard documents for seismic qualification and electromagnetic interference qualification. Korean seismic qualification standard utilizing US approach, defines testing and qualification methods specifically and clearly. Russian standards however provide only conceptual definitions and requirements in the seismic related aspects. Therefore, it is conceived that any equipment or system qualified seismically in accordance with Korean standards should additionally provide technical evidence that it is satisfactory with Russian standards as well. In electromagnetic interference qualification, because Russian standard requires more testing items than the current Korean standard, the additional qualification tests are necessary to meet the Russian requirements. However, these additional test items are based on IEC(International Electrotechnical Commission), therefore it is not a problem to perform those tests in a Korean testing facility.

  20. Implementation of an ASIC for Detector Instrumentation in Nuclear Physics Applications

    OpenAIRE

    McIntosh, James Alexander

    1996-01-01

    A prototype ASIC (EFT1) for silicon strip detector instrumentation has been designed and tested. The ASIC design contains the electronics necessary for preamplification, shaping, hit detection, and data readout control.The specific­ ation of the ASIC makes it suitable for charged particle spectroscopy applications with the implementation of multiple channels on a single chip reducing the cost compared to expensive discrete instrumentation. The ASIC contains features wh...

  1. Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Sorensen, Line C; Riera, Joan

    2011-01-01

    We compared absolute values of regional tissue hemoglobin saturation (StO(2)), reproducibility, and dynamic range of four different instruments on the forearm of adults. The sensors were repositioned 10 times on each subject. Dynamic range was estimated by exercise with subsequent arterial......) were 45.0%, 46.8%, 44.8%, and 27.8%, respectively. In conclusion, the three commercial NIRS instruments showed different absolute values, whereas reproducibility and dynamic range were quite similar....

  2. Quantitative nuclear magnetic resonance characterization of long-range chain dynamics: Polybutadiene, polyethylene-oxide solution

    Science.gov (United States)

    Guillermo, Armel; Cohen Addad, Jean-Pierre

    2002-02-01

    We report two sets of independent nuclear magnetic resonance (NMR) measurements of self-diffusion and proton transverse relaxation in molten cis1,4-polybutadiene (PB) performed in order to investigate chain dynamics properties. Self-diffusion coefficients were measured as a function of temperature and of molecular weight (M) over the range 104 to 6.7×104g/mol. The crossover from the Rouse-type behavior (D≈M-1) to the reptation one was found to occur for MCross≈3×104g/mol; for M>MCross the data were consistent with the scaling dependence: D≈M-2.4±0.05, in agreement with the data analysis recently reported in the literature. The thorough analysis of the transverse relaxation of protons attached to highly entangled PB chains (6.7×104⩽M⩽43×104g/mol) gave evidence for the dynamics partition of one chain into two end-submolecules and one inner part clearly discriminated from one another. The number NEnd of monomeric units in one end-submolecule, independent of M, is shown to be closely related to the monomeric friction coefficient ζ0 measured from short chain diffusion over the temperature range 25 to 85 °C. The interpretation both of diffusion results and of proton relaxation of inner monomeric units lead to the definition of an effective friction coefficient ζ0Eff≈ζ0(M/NEnd)0.4 associated with the curvilinear diffusion of one chain in its tube. The friction coefficient ζLoc associated with local monomeric rotations is discriminated from ζ0 from its weaker temperature dependence. This approach was applied to polyethylene-oxide chains in solution (dimethyl formamide, 0.18⩽c⩽1, w/w) where the segmental size of end-submolecules was found to vary as 1/c. Experimental results are well matched by this specific NMR approach which accounts for the novel properties of the proton relaxation function.

  3. Certification of U.S. instrumentation in Russian nuclear processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    D.H. Powell; J.N. Sumner

    2000-07-12

    Agreements between the United States (U.S.) and the Russian Federation (R.F.) require the down-blending of highly enriched uranium (HEU) from dismantled Russian Federation nuclear weapons. The Blend Down Monitoring System (BDMS) was jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor the enrichments and flow rates in the HEU blending operations at the R.F. facilities. A significant requirement of the implementation of the BDMS equipment in R.F. facilities concerned the certification of the BDMS equipment for use in a Russian nuclear facility. This paper discusses the certification of the BDMS for installation in R.F. facilities, and summarizes the lessons learned from the process that can be applied to the installation of other U.S. equipment in Russian nuclear facilities.

  4. Integrated Optimization of Long-Range Underwater Signal Detection, Feature Extraction, and Classification for Nuclear Treaty Monitoring

    NARCIS (Netherlands)

    Tuma, M.; Rorbech, V.; Prior, M.; Igel, C.

    2016-01-01

    We designed and jointly optimized an integrated signal processing chain for detection and classification of long-range passive-acoustic underwater signals recorded by the global geophysical monitoring network of the Comprehensive Nuclear-Test-Ban Treaty Organization. Starting at the level of raw

  5. Education and training in the field of nuclear instrumentation and measurement: CEA/INSTN (National Institute for Nuclear Sciences and Technologies) strategy to improve and develop new pedagogical tools and methods

    Energy Technology Data Exchange (ETDEWEB)

    Vitart, Xavier; Foulon, Francois; Bodineau, Jean Christophe; Lescop, Bernard; Massiot, Philippe [CEA/INSTN Centre des Saclay 91191 Gif sur Yvette (France)

    2015-07-01

    Part of the French Alternative Energies and Atomic Energy Commission (CEA), the National Institute for Nuclear Science and Technology (INSTN) is a higher education institution whose mission is to provide students and professionals a high level of scientific and technological qualification in all disciplines related to nuclear energy applications. In this frame, INSTN carries out education and training (E and T) programs in nuclear instrumentation and radioprotection. Its strategy has always been to complete theoretical courses by training courses and laboratory works carried out on an extensive range of training tools that includes a large panel of nuclear instrumentation as well as software applications. Since its creation in 1956, the INSTN has conducted both education and vocational programs on ionizing radiation detection. An extensive range of techniques have commonly been used during practical works with students and employees of companies who need to get the knowledge and specialization in this field. Today, the INSTN is mainly equipped with usual detectors and electronics in large numbers in order to be able to accommodate up to 48 trainees at the same time in two classrooms, with only two trainees for one workstation in order to optimize their learning. In the field of the neutron detection systems, the INSTN has strongly developed its offer taking advantage of the use of research reactors, such as ISIS reactor (700 kW) at Saclay. The implementation of neutron detection systems specific to the courses offers a unique way of observing and analysing the signal coming from neutron detectors, as well as learning how to set the parameters of the detection system in real conditions. Providing the trainees with an extensive overview of each part of the neutron monitoring instrumentation apply to a nuclear reactor, hands-on measurements on the ISIS reactor play a major role in ensuring a practical and comprehensive understanding of the neutron detection system and

  6. Isospin transport and reaction mechanism in nuclear reactions in the range 20–40 MeV/n

    Energy Technology Data Exchange (ETDEWEB)

    Barlini, S., E-mail: barlini@fi.infn.it; Piantelli, S.; Casini, G.; Olmi, A.; Bini, M.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Valdré, S.; Pastore, G. [Dipartimento di Fisica ed Astronomia dell’Università and INFN Sezione di Firenze, Firenze (Italy); Bougault, R.; Lopez, O.; Le Neindre, N.; Parlog, M.; Vient, E. [LPC, IN2P3-CNRS, ENSICAEN et Université de Caen, F-14050 Caen-Cedex (France); Bonnet, E.; Chibhi, A.; Frankland, J. D. [GANIL, CEA/DSM-CNRS/IN2P3, B.P.5027, F-14076 Caen cedex (France); Borderie, B.; Rivet, M. F. [Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, F-91406 Orsay cedex (France); and others

    2015-10-15

    In recent years, many efforts have been devoted to the investigation of the isospin degree of freedom in nuclear reactions. Comparing systems involving partners with different N/Z, it has been possible to investigate the isospin transport process and its influence on the final products population. This can be then related to the symmetry energy term of the nuclear EOS. From the experimental point of view, this task requires detectors able to measure both charge and mass of the emitted products, in the widest possible range of energy and size of the fragments. With this objective, the FAZIA and GARFIELD+RCo apparatus have been used with success in some recent experiments.

  7. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  8. Nuclear imaging of the breast: Translating achievements in instrumentation into clinical use

    Science.gov (United States)

    Hruska, Carrie B.; O'Connor, Michael K.

    2013-01-01

    Approaches to imaging the breast with nuclear medicine and/or molecular imaging methods have been under investigation since the late 1980s when a technique called scintimammography was first introduced. This review charts the progress of nuclear imaging of the breast over the last 20 years, covering the development of newer techniques such as breast specific gamma imaging, molecular breast imaging, and positron emission mammography. Key issues critical to the adoption of these technologies in the clinical environment are discussed, including the current status of clinical studies, the efforts at reducing the radiation dose from procedures associated with these technologies, and the relevant radiopharmaceuticals that are available or under development. The necessary steps required to move these technologies from bench to bedside are also discussed. PMID:23635248

  9. The INF (Intermediate-Range Nuclear Forces) Controversy: A Confluence of Foreign and Domestic Interests.

    Science.gov (United States)

    1986-09-01

    Nuclear Policy and Weapons and Its Affect on Policy ............. 79 2. Current Nucler Policy and Capabilities ....... 85 3. The Future of British Policy... nucler forces in its count in a bilateral agreement with the Soviet Union. The 16 8 yost, pp. 272-273. 16 9 1bid, pp. 273-276. 170 Rostow, p. 37. 1 7

  10. Portable instrument for inspecting irradiated nuclear-fuel assemblies in a water-filled storage pond by measurement of induced Cerenkov radiation

    Science.gov (United States)

    Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.J. Jr.

    1982-05-13

    A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

  11. Russian Compliance with the Intermediate Range Nuclear Forces (INF) Treaty: Background and Issues for Congress

    Science.gov (United States)

    2017-01-27

    on Earth ” established a peace camp at Greenham Common, the base where the United Kingdom would house 96 cruise missiles. The women camped outside...in the Netherlands and around 400,000 marching in Great Britain. 17 In one of the more well- known efforts, a Welsh group known as “ Women for Life...had banned the emplacement of nuclear weapons on a seabed or stationing them on celestial bodies ), it was the first to ban a category that each

  12. High-Accuracy Ion Range Measurements using Fluorescent Nuclear Track Detectors

    OpenAIRE

    Klimpki, Grischa

    2012-01-01

    Novel fluorescent nuclear track detectors (FNTDs) are based on single aluminum oxide crystals doped with carbon and magnesium and laser scanning fluorescent microscopy. The detector crystals contain high concentrations of colour centres, consisting of two oxygen vacancies charge compensated by two magnesium ions. These colour centres exhibit radiochromic transformations under ionising radiation. Laser-induced fluorescence can then be stimulated with a red laser without photoionisation of the ...

  13. Knowledge databases as instrument for a fast assessment in nuclear emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Raskob, Wolfgang; Moehrle, Stella [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology (KIT), Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-07-01

    The European project PREPARE (Innovative integrated tools and platforms for radiological emergency preparedness and post-accident response in Europe) aims to close gaps that have been identified in nuclear and radiological preparedness following the first evaluation of the Fukushima disaster. Among others, a work package was established to develop a so called Analytical Platform exploring the scientific and operational means to improve information collection, information exchange and the evaluation of such types of disasters. As methodological approach knowledge databases and case-based reasoning (CBR) will be used. The application of knowledge gained from previous events or the establishment of scenarios in advance to anticipate possible event developments are used in many areas, but so far not in nuclear and radiological emergency management and preparedness. However in PREPARE, knowledge databases and CBR should be combined by establishing a database, which contains historic events and scenarios, their propagation with time, and applied emergency measures and using the CBR methodology to find solutions for events that are not part of the database. The objectives are to provide information about consequences and future developments after a nuclear or radiological event and emergency measures, which include early, intermediate and late phase actions. CBR is a methodology to solve new problems by utilizing knowledge of previously experienced problem situations. In order to solve a current problem, similar problems from a case base are retrieved. Their solutions are taken and, if necessary, adapted to the current situation. The suggested solution is revised and if it is confirmed, it is stored in the case base. Hence, a CBR system learns with time by storing new cases with its solutions. CBR has many advantages, such as solutions can be proposed quickly and do not have to be made from scratch, solutions can be proposed in domains that are not understood completely

  14. Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Sorensen, Line C; Riera, Joan

    2011-01-01

    We compared absolute values of regional tissue hemoglobin saturation (StO(2)), reproducibility, and dynamic range of four different instruments on the forearm of adults. The sensors were repositioned 10 times on each subject. Dynamic range was estimated by exercise with subsequent arterial...

  15. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Reichenberger Michael A.

    2018-01-01

    Full Text Available Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional

  16. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  17. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory.

  18. Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms.

    Science.gov (United States)

    Hove, Michael J; Marie, Céline; Bruce, Ian C; Trainor, Laurel J

    2014-07-15

    The auditory environment typically contains several sound sources that overlap in time, and the auditory system parses the complex sound wave into streams or voices that represent the various sound sources. Music is also often polyphonic. Interestingly, the main melody (spectral/pitch information) is most often carried by the highest-pitched voice, and the rhythm (temporal foundation) is most often laid down by the lowest-pitched voice. Previous work using electroencephalography (EEG) demonstrated that the auditory cortex encodes pitch more robustly in the higher of two simultaneous tones or melodies, and modeling work indicated that this high-voice superiority for pitch originates in the sensory periphery. Here, we investigated the neural basis of carrying rhythmic timing information in lower-pitched voices. We presented simultaneous high-pitched and low-pitched tones in an isochronous stream and occasionally presented either the higher or the lower tone 50 ms earlier than expected, while leaving the other tone at the expected time. EEG recordings revealed that mismatch negativity responses were larger for timing deviants of the lower tones, indicating better timing encoding for lower-pitched compared with higher-pitch tones at the level of auditory cortex. A behavioral motor task revealed that tapping synchronization was more influenced by the lower-pitched stream. Results from a biologically plausible model of the auditory periphery suggest that nonlinear cochlear dynamics contribute to the observed effect. The low-voice superiority effect for encoding timing explains the widespread musical practice of carrying rhythm in bass-ranged instruments and complements previously established high-voice superiority effects for pitch and melody.

  19. Acute effects of instrument assisted soft tissue mobilization for improving posterior shoulder range of motion in collegiate baseball players.

    Science.gov (United States)

    Laudner, Kevin; Compton, Bryce D; McLoda, Todd A; Walters, Chris M

    2014-02-01

    Due to the repetitive rotational and distractive forces exerted onto the posterior shoulder during the deceleration phase of the overhead throwing motion, limited glenohumeral (GH) range of motion (ROM) is a common trait found among baseball players, making them prone to a wide variety of shoulder injuries. Although utilization of instrument-assisted soft tissue mobilization (IASTM), such as the Graston® Technique, has proven effective for various injuries and disorders, there is currently no empirical data regarding the effectiveness of this treatment on posterior shoulder tightness. To determine the effectiveness of IASTM in improving acute passive GH horizontal adduction and internal rotation ROM in collegiate baseball players. Thirty-five asymptomatic collegiate baseball players were randomly assigned to one of two groups. Seventeen participants received one application of IASTM to the posterior shoulder in between pretest and posttest measurements of passive GH horizontal adduction and internal rotation ROM. The remaining 18 participants did not receive a treatment intervention between tests, serving as the controls. Data were analyzed using separate 2× 2 mixed-model analysis of variance, with treatment group as the between-subjects variable and time as the within-subjects variable. A significant group-by-time interaction was present for GH horizontal adduction ROM with the IASTM group showing greater improvements in ROM (11.1°) compared to the control group (-0.12°) (p <0.001). A significant group-by-time interaction was also present for GH internal rotation ROM with the IASTM group having greater improvements (4.8°) compared to the control group (-0.14°) (p < 0.001). The results of this study indicate that an application of IASTM to the posterior shoulder provides acute improvements in both GH horizontal adduction ROM and internal rotation ROM among baseball players. 2b.

  20. The impact of the instrumentation and control systems in the safety of a nuclear plant: a general vision; El impacto de los sistemas de instrumentacion y control en la seguridad de una planta nuclear: una vision general

    Energy Technology Data Exchange (ETDEWEB)

    Celis del Angel, L.; Rivero, T., E-mail: lina.celis@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    One of the fundamental components so much for the sure operation, like in emergency cases or accident are the equipment s and instrumentation and control systems. The nuclear industry has had some accidents where the instrumentation and control have played and important part: a wrong design, instrumentation lack, faulty systems of safety, etc. At the present time the necessity to modernize the instrumentation and control in a nuclear power plant is before the challenge of finding innovative forms to improve the competitiveness and readiness, reducing operation costs without put ing in risk the safety and reliability of the nuclear power plant. Most of the nuclear power plants require actualizing their instrumentation and control systems, here the digital systems represent a great alternative, improving the performance and the safety, increasing the readiness and reducing the maintenance s. However they require of strict tests that allow assuring their application in critical systems. It is also necessary, the development of modernization programs that allow the programmed substitution of the systems without affecting the readiness of the nuclear power plants. During this whole modernization process will be necessary to put special attention in the cyber-safety because the attacks every time they are more elaborated. Therefore will be necessary to go toward the modernization of the instrumentation and control with the challenge of making without detriment some in the safety of the normal operation and with response reliability in emergency conditions or accident that which represents an effort that should not be postponed in the case of the nuclear power plant of Laguna Verde. (Author)

  1. Considerations on fatigue stress range calculations in nuclear power plants using on-line monitoring systems and the ASME Code

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, R., E-mail: ciceror@unican.e [INESCO INGENIEROS S.L., Santander (Spain); Departamento de Ciencia e Ingenieria del Terreno y los Materiales, Universidad de Cantabria, Santander (Spain); Cicero, S. [Departamento de Ciencia e Ingenieria del Terreno y los Materiales, Universidad de Cantabria, Santander (Spain); Gorrochategui, I. [Centro Tecnologico de Componentes, Santander (Spain); Lacalle, R. [INESCO INGENIEROS S.L., Santander (Spain); Departamento de Ciencia e Ingenieria del Terreno y los Materiales, Universidad de Cantabria, Santander (Spain)

    2010-01-15

    Nuclear power plants are generally designed and inspected according to the ASME Code. This code indicates stress intensity (S{sub INT}) as the parameter to be used in the stress analysis of components. One of the particularities of S{sub INT} is that it always takes positive values, independently of the nature of the stress (tensile or compressive). This circumstance is relevant in the Fatigue Monitoring Systems used in nuclear power plants, due to the manner in which the different variable stresses are combined in order to obtain the final total stress range. This paper describes some situations derived from the application of the ASME Code, shows different ways of dealing with them and illustrates their influence on the evaluation of the fatigue usage factor through a case study.

  2. Instrument evaluation no. 16. Nuclear enterprises portable doserate meter type PDR4 and external probes types BP1/1, BP8 and GP9

    CERN Document Server

    Burgess, P H

    1979-01-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the a...

  3. Master on Nuclear Engineering and Applications (MINA): instrument of knowledge management in the nuclear sector; Master en Ingenieria Nuclear y Aplicaciones (MINA): instrumento de gestion del conocimiento en el sector nuclear espanol

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Garcia Cuesta, J. C.; Falcon, S.; Casas, J. A.

    2013-03-01

    Knowledge Management in nuclear industry is indispensable to ensure excellence in performance and safety of nuclear installations. The Master on Nuclear Engineering and Applications (MINA) is a Spanish education venture which foundations and evolution have meant and adaptation to the European Education system and to the domestic and international changes occurred in the nuclear environment. This paper summarizes the most relevant aspects of such transformation, its motivation and the final outcome. Finally, it discusses the potential benefit of a closer collaboration among the existing national education ventures in the frame of Nuclear Engineering. (Author)

  4. A space crystal diffraction telescope for the energy range of nuclear transitions

    Energy Technology Data Exchange (ETDEWEB)

    von Ballmoos, P.; Naya, J.E.; Albernhe, F.; Vedrenne, G. [Centre d`Etude Spatial des Rayonmenments, Toulouse (France); Smither, R.K.; Faiz, M.; Fernandez, P.; Graber, T. [Argonne National Lab., IL (United States)

    1995-04-01

    This paper contains literature from American Power Conference Air Toxics Being Measured Accurately, Controlled Effectively NO{sub x} and SO{sub 2} Emissions Reduced; Surface Condensers Improve Heat Rate; Usable Fuel from Municipal Solid Waste; Cofiring Technology Reduces Gas Turbine Emissions; Trainable, Rugged Microsensor Identifies of Gases; High-Tc Superconductors Fabricated; High-Temperature Superconducting Current Leads; Vitrification of Low-Level Radioactive and Mixed Wastes; Characterization, Demolition, and Disposal of Contaminated Structures; On-Line Plant Diagnostics and Management; Sulfide Ceramic Materials for Improved Batteries; Flywheel Provides Efficient Energy Storage; Battery Systems for Electric Vehicles; Polymer-Electrolyte Fuel Cells for Transportation; Solid-Oxide Fuel Cells for Transportation; Surface Acoustic Wave Sensor Monitors Emissions in Real-Time; Advance Alternative-Fueled Automotive Technologies; Thermal & Mechanical Process; Flow-Induced Vibration & Flow Distribution in Shell-and-Tube Heat Exchangers; Ice Slurries for District Cooling; Advanced Fluids; Compact Evaporator and Condenser Technology; and Analysis of Failed Nuclear Power Station Components.

  5. Externally-Modulated Electro-Optically Coupled Detector Architecture for Nuclear Physics Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wenze [JLAB; McKisson, John E. [JLAB; Weisenberger, Andrew G. [JLAB; Zhang, Shukui [JLAB; Zorn, Carl J. [JLAB

    2014-06-01

    A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over $ sim {hbox {29}}% $ of the modulator’s switching voltage range. Optical spectrum analysis revealed less than $-{hbox {14}}~hbox{dB}$ crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.

  6. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; hide

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  7. A lead user of instruments in science: John D. Roberts and the adaptation of nuclear magnetic resonance to organic chemistry, 1955-1975.

    Science.gov (United States)

    Reinhardt, Carsten

    2006-06-01

    During the 1960s organic chemistry underwent a spectacular transformation as a result of the introduction of high-tech instruments. In this process, nuclear magnetic resonance (NMR) became an important analytical technique in organic chemistry. The theme of this essay is the relationship of Varian Associates of Palo Alto, California, the major manufacturer of NMR spectrometers up to the 1970s, with one early and crucial user, the organic chemist John D. Roberts, who was based at the California Institute of Technology in Pasadena. Roberts's research and teaching contributed to the fast and smooth acceptance of NMR in organic chemistry. He embraced the role of mediator between the instrument manufacturer, which had expertise mainly in physics and electrical engineering, and the customers, who were mostly organic chemists. This essay focuses on the tactics used by Roberts and James N. Shoolery at Varian Associates to implement novel types of instrumentation and on the modes of cooperation between instrument manufacturer and academic scientist.

  8. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation: Report to the NNSA DOE Office of International Nuclear Safeguards (NA-241)

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, Susan E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pickett, Chris A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Queirolo, Al [Brookhaven National Lab. (BNL), Upton, NY (United States); Bachner, Katherine M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Worrall, Louise G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-07

    The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA) convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing environment to ensure existing instruments can continue to perform as designed, with improved security. The approaches to the development and maintenance of instrument software used in the past may not be the best model for the future and, therefore, the organizers’ goal was to investigate these past approaches and to determine an optimal path forward. The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related to the development and maintenance of software used in the implementation of international nuclear safeguards. For example, this guidance can be used when determining whether to fund the development, upgrade, or replacement of a particular software product. The report identifies the challenges related to sustaining software, and makes recommendations for addressing these challenges, supported by summaries and detailed notes from the workshop discussions. In addition the authors provide a set of recommendations for institutionalizing software sustainability practices in the safeguards community. The term “software sustainability” was defined for this workshop as ensuring that safeguards instrument software and algorithm functionality can be maintained efficiently throughout the instrument lifecycle, without interruption and providing the ability to continue to improve that software as needs arise.

  9. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, J., E-mail: jyoshida@gifu-u.ac.jp; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M.K.; Theint, A.M.M.; Tint, K.T.

    2017-03-01

    A new scanning system named “Vertex picker” has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  10. Short- and long-range energy strategies for Japan and the world after the Fukushima nuclear accident

    Science.gov (United States)

    Muraoka, K.; Wagner, F.; Yamagata, Y.; Donné, A. J. H.

    2016-01-01

    The accident at the Fukushima Dai-ichi nuclear power station in 2011 has caused profound effects on energy policies in Japan and worldwide. This is particularly because it occurred at the time of the growing awareness of global warming forcing measures towards decarbonised energy production, namely the use of fossil fuels has to be drastically reduced from the present level of more than 80% by 2050. A dilemma has now emerged because nuclear power, a CO2-free technology with proven large-scale energy production capability, lost confidence in many societies, especially in Japan and Germany. As a consequence, there is a world-wide effort now to expand renewable energies (REs), specifically photo-voltaic (PV) and wind power. However, the authors conjecture that PV and wind power can provide only up to a 40% share of the electricity production as long as sufficient storage is not available. Beyond this level, the technological (high grid power) and economic problems (large surplus production) grow. This is the result of the analysis of the growing use of REs in the electricity systems for Germany and Japan. The key element to overcome this situation is to develop suitable energy storage technologies. This is particularly necessary when electricity will become the main energy source because also transportation, process heat and heating, will be supplied by it. Facing the difficulty in replacing all fossil fuels in all countries with different technology standards, a rapid development of carbon capture and storage (CCS) might also be necessary. Therefore, for the short-range strategy up to 2050, all meaningful options have to be developed. For the long-range strategy beyond 2050, new energy sources (such as thermonuclear fusion, solar fuels and nuclear power—if inherently safe concepts will gain credibility of societies again), and large-scale energy storage systems based on novel concepts (such as large-capacity batteries and hydrogen) is required. It is acknowledged

  11. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling

    OpenAIRE

    Meutter, Pieter; Camps, Johan; Delcloo, Andy; Termonia, Piet

    2017-01-01

    On 6 January 2016, the Democratic People?s Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System. In this pa...

  12. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Smidts, Carol [The Ohio State Univ., Columbus, OH (United States); Huang, Funqun [The Ohio State Univ., Columbus, OH (United States); Li, Boyuan [The Ohio State Univ., Columbus, OH (United States); Li, Xiang [The Ohio State Univ., Columbus, OH (United States)

    2016-03-25

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be a significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty

  13. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    Science.gov (United States)

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  14. Determination of background, signal-to-noise, and dynamic range of a flow cytometer: A novel practical method for instrument characterization and standardization.

    Science.gov (United States)

    Giesecke, Claudia; Feher, Kristen; von Volkmann, Konrad; Kirsch, Jenny; Radbruch, Andreas; Kaiser, Toralf

    2017-09-27

    A well-defined scale calibration in flow cytometry can improve many aspects of data acquisition such as cytometer setup, instrument comparison and sample comparison. The theory for scale calibration was proposed by Steen over two decades ago, but it has never been put into regular use due to the lack of a widely available precision light source. The introduction of such a light source, the quantiFlash(TM) , gave this possibility. Here, we describe how this light source can be used to characterize a cytometer's PMT performance. We, therefore, characterized the instrument's response over the entire PMT voltage range. As a consequence, we propose a practical method to characterize a cytometer's signal-to-noise ratio (SNR) and dynamic range (DNR). This allows the selection of a voltage/gain corresponding to a PMT's maximum efficiency and hence the lowest electronic noise, which can help with experiment design. We further introduced a decibel (dB) scale for the presentation of SNR and DNR values. SNR and DNR are stand-alone values that allow the direct comparison of different instruments. Finally, with this method, it becomes clear that increased SNR comes at the expense of DNR and thus the limiting factor of modern cytometers is the DNR. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  15. National phantoms bank for the service of nuclear medicine in Cuba. Utility for the quality control of the instrumentation; Banco de fantomas nacional para los servicios de medicina nuclear en Cuba. Utilidad para el control de calidad de la instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Varela C, C.; Diaz B, M. [CCEEM, Calle 4 No. 455 (altos) e/19 y 21, Vedado, Ciudad Habana (Cuba); Lopez B, G.M. [CPHR, Calle 20 No. 4113 e/41 y 47, Playa Ciudad Habana (Cuba)]. e-mail: consuelo.varela@infomed.sld.cu

    2006-07-01

    Although, most of the applications in Nuclear Medicine have diagnostic ends, its going enlarging considerably the therapeutic applications. So that the diagnostic accuracy or the therapy effectiveness have not been affected, it becomes indispensable the quality control of the instrumentation, independently of its technological complexity and/or its exploitation period. Before the real lack of phantoms in the institutions, it was created a bank that puts to disposition of all the institutions, the existent phantoms in the country, and those that are going acquired, centralized by the State Control of Medical Equipment Center (CCEEM) and with Web access in its place www.eqmed.sld.cu. Having like base the elaboration of the National Protocol for the Quality Control of the Instrumentation in Nuclear Medicine that keeps in mind the international normative and the own existent conditions, were dictated and established two national regulations and its are being carried out the first audits to the instrumentation quality. These have evidenced the partial realization of the established quality controls in the services, the necessity to make aware as for the fulfillment of the criteria and quality concepts for the instrumentation, as well as the necessity to increase the phantoms number to the bank to guarantee the fulfillment of the Quality Control Programs. (Author)

  16. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling.

    Science.gov (United States)

    De Meutter, Pieter; Camps, Johan; Delcloo, Andy; Termonia, Piet

    2017-08-18

    On 6 January 2016, the Democratic People's Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System. In this paper, atmospheric transport modelling is used to show that the measured radioactive xenon is compatible with a delayed release from the Punggye-ri nuclear test site. An uncertainty quantification on the modelling results is given by using the ensemble method. The latter is important for policy makers and helps advance data fusion, where different nuclear Test-Ban-Treaty monitoring techniques are combined.

  17. French experience on renewing I and C systems in NPPs. Feedback from assessing nuclear instrumentation system (RPN) refurbishment at French CP0-series plants

    Energy Technology Data Exchange (ETDEWEB)

    Elsensohn, O.; Fradet, F.; Peron, J.C.; Soubies, B

    2003-01-01

    In 1996, the utility operating France's nuclear power plants launched feasibility studies for the refurbishment of the nuclear instrumentation system (RPN classed category A) installed in its CPO-series (900 MWe) units. The system was ultimately upgraded with digital I and C system, using a SPINLINE 3 platform. This article describes feedback from an evaluation conducted on the refurbishment by the Institute of Radiological Protection and Nuclear Safety (IRSN), technical support arm of the Directorate General for Nuclear Safety and Radiological Protection (DGSNR). The study begins with a historical overview of the refurbishing operation, then discusses the IRSN assessment method and the lessons learned from this first major revamp of an I and C system in the French nuclear reactor series. Based on its previous experience in evaluating I and C systems for P4/P'4 (1300 MWe) and N4 (1450 MWe) plants and to account for the first-ever aspect of such an upgrade, IRSN partitioned its assessment into four phases. This approach enabled taking into account the impact of RPN refurbishment at every level - system, hardware and qualification, software, operation, onsite requalification, health physics, fire protection and human factors. All six units in the CPO series have now been equipped with the new digital RPN. (authors)

  18. The Quantometer as an analytical instrument in the control of nuclear materials; El cuantometro como instrumento analitico en el control de materiales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Gonzalez, F.; Roca Adell, M.; Fernandez Cellini, R.

    1961-07-01

    In order to solve different problems of chemical analysis in the fields of nuclear industry and research, a Quantometer is used with a high number of channels. A detailed study to choose the more suitable spectral lines is described. The different channels have been distributed into two programs to allow the analysis of high and low concentrations. The Quantometer is being applied successfully to analyse soils, plant ashes, rocks and ores, uranium and its compounds, zirconium, graphite, alloys and other nuclear materials. (Author) 6 refs.

  19. MO-A-213AB-06: Validation of Nuclear Reaction Models to Simulate Proton Therapy Range Verification Using Prompt Gamma-Rays.

    Science.gov (United States)

    Verburg, J; Shih, H; Seco, J

    2012-06-01

    The impact of nuclear reaction model differences on simulation of prompt gamma-ray imaging for proton therapy range verification was assessed. Four nuclear reaction models were used to simulate gamma emission in proton beams, and were validated against experimental cross-sections. Proton-induced nuclear reactions on carbon, oxygen, nitrogen and calcium were investigated with the Monte Carlo toolkits GEANT4 9.5 and MCNPX 2.7, and the dedicated nuclear reaction codes TALYS 1.4 and EMPIRE 3.1. Absolute cross-sections of discrete prompt gamma lines and the total gamma production were obtained for the 1-200 MeV incident proton energy range. They were compared to 34 discrete line measurements reported in literature. Using these cross-sections, we analyzed the gamma production along the path of proton beams passing through various tissues. The differences in absolute discrete line cross-sections as predicted by the models ranged from almost zero to an order of magnitude, depending on the gamma line and incident proton energy. Overall, the dedicated nuclear reaction codes provided a better fit to most experimental excitation functions. For a 150 MeV proton beam stopping in soft tissue, these differences amount to a variation by a factor of 4 of the gamma emission around the Bragg peak location. The maximum of gamma production near the end of proton range differed by 7 mm, and the change of the 50% emission fall-off position was 4 mm. There is a clear need for improvement of nuclear reaction models to accurately simulate proton range verification using prompt gamma-rays. Current simulation codes show large uncertainties in both the total gamma yield and the correlation of gamma emission with the proton Bragg peak. GEANT4 and MCNPX in particular appear to have limited predictive power. © 2012 American Association of Physicists in Medicine.

  20. Establishment of the Auditing National Service of quality to the instrumentation of Nuclear medicine in Cuba; Establecimiento del Servicio Nacional de Auditorias de calidad a la instrumentacion de medicina nuclear en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Varela C, C.; Diaz B, M. [Centro de Control Estatal de Equipos Medicos (CCEEM), Calle 4 No. 455 (altos) e/ 19 y 21 Vedado, Ciudad Habana (Cuba); Lopez B, G.M. [CPHR, Calle 20 No. 4113 e/ 41 y 47, Playa, Ciudad Habana (Cuba); Torres A, L.A.; Coca P, M.A. [Centro de Investigaciones Clinicas, Calle 34 No. 4501, e/ 45 y 47, Roto Kohly, Playa, Ciudad Habana (Cuba)]. e-mail: consuelo.varela@infomed.sld.cu

    2006-07-01

    Next to the vertiginous development of the technology in the Nuclear Medicine field, the possibility of early diagnosis of pathological processes without anatomical alterations, as well as its application with therapeutic purposes in the cancer treatment has grown. To assure a diagnosis and adapted therapy, it is vital to establish quality guarantee programs to the instrumentation. The State Medical Equipment Control Center (CCEEM), as regulator organ attributed to the Public Health Ministry of Cuba, it has licensed the Service of Quality Audits to the Nuclear medicine services, fulfilling all the technical and legal requirements to such effect. As base of these, the National Protocol for the Quality Control of the Instrumentation in Nuclear Medicine has been implemented, put out in vigour 2 national regulations, and an inter-institutional and multidisciplinary auditor equipment has been licensed. The different followed steps, as well as the realization of the first quality audits, its show not only a better execution of the tests and bigger professionalism of the involved specialists, but an increment in the taking of conscience to apply adequately the quality concepts for achieving a better service to the patient. On the other hand, the necessity of incorporating the clinical aspects to the audits, fomenting an integral harmonized advance of the quality guarantee programs is evidenced. (Author)

  1. 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies, San Francisco, CA, USA, June 11–15, 2017

    Energy Technology Data Exchange (ETDEWEB)

    Rashdan, Ahmad Al; Oxstrand, Johanna; Agarwal, Vivek

    2017-02-01

    As part of the ongoing efforts at the U.S. Department of Energy’s Light Water Reactor Sustainability Program, Idaho National Laboratory is conducting several pilot projects in collaboration with the nuclear industry to improve the reliability, safety, and economics of the nuclear power industry, especially as the nuclear power plants extend their operating licenses to 80 years. One of these pilot projects is the automated work package (AWP) pilot project. An AWP is an electronic intelligent and interactive work package. It uses plant condition, resources status, and user progress to adaptively drive the work process in a manner that increases efficiency while reducing human error. To achieve this mission, the AWP acquires information from various systems of a nuclear power plant’s and incorporates several advanced instrumentation and control technologies along with modern human factors techniques. With the current rapid technological advancement, it is possible to envision several available or soon-to-be-available capabilities that can play a significant role in improving the work package process. As a pilot project, the AWP project develops a prototype of an expanding set of capabilities and evaluates them in an industrial environment. While some of the proposed capabilities are based on using technological advances in other applications, others are conceptual; thus, require significant research and development to be applicable in an AWP. The scope of this paper is to introduce a set of envisioned capabilities, their need for the industry, and the industry difficulties they resolve.

  2. Theory of box-model hyperfine couplings and transport signatures of long-range nuclear-spin coherence in a quantum-dot spin valve

    Science.gov (United States)

    Chesi, Stefano; Coish, W. A.

    2015-06-01

    We have theoretically analyzed coherent nuclear-spin dynamics induced by electron transport through a quantum-dot spin valve. The hyperfine interaction between electron and nuclear spins in a quantum dot allows for the transfer of angular momentum from spin-polarized electrons injected from ferromagnetic or half-metal leads to the nuclear spin system under a finite voltage bias. Accounting for a local nuclear-spin dephasing process prevents the system from becoming stuck in collective dark states, allowing a large nuclear polarization to be built up in the long-time limit. After reaching a steady state, reversing the voltage bias induces a transient current response as the nuclear polarization is reversed. Long-range nuclear-spin coherence leads to a strong enhancement of spin-flip transition rates (by an amount proportional to the number of nuclear spins) and is revealed by an intense current burst, analogous to superradiant light emission. The crossover to a regime with incoherent spin flips occurs on a relatively long-time scale, on the order of the single-nuclear-spin dephasing time, which can be much longer than the time scale for the superradiant current burst. This conclusion is confirmed through a general master equation. For the two limiting regimes (coherent/incoherent spin flips), the general master equation recovers our simpler treatment based on rate equations, but is also applicable at intermediate dephasing. Throughout this work, we assume uniform hyperfine couplings, which yield the strongest coherent enhancement. We propose realistic strategies, based on isotopic modulation and wave-function engineering in core-shell nanowires, to realize this analytically solvable "box-model" of hyperfine couplings.

  3. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics.

    Science.gov (United States)

    Im, Hyungsoon; Sutherland, Jamie N; Maynard, Jennifer A; Oh, Sang-Hyun

    2012-02-21

    We demonstrate an affordable low-noise surface plasmon resonance (SPR) instrument based on extraordinary optical transmission (EOT) in metallic nanohole arrays and quantify a broad range of antibody-ligand binding kinetics with equilibrium dissociation constants ranging from 200 pM to 40 nM. This nanohole-based SPR instrument is straightforward to construct, align, and operate, since it is built around a standard microscope and a portable fiber-optic spectrometer. The measured refractive index resolution of this platform is 3.1 × 10(-6) without on-chip cooling, which is among the lowest reported for SPR sensors based on EOT. This is accomplished via rapid full-spectrum acquisition in 10 ms followed by frame averaging of the EOT spectra, which is made possible by the production of template-stripped gold nanohole arrays with homogeneous optical properties over centimeter-sized areas. Sequential SPR measurements are performed using a 12-channel microfluidic flow cell after optimizing surface modification protocols and antibody injection conditions to minimize mass-transport artifacts. The immobilization of a model ligand, the protective antigen of anthrax on the gold surface, is monitored in real-time with a signal-to-noise ratio of ~860. Subsequently, real-time binding kinetic curves were measured quantitatively between the antigen and a panel of small, 25 kDa single-chain antibodies at concentrations down to 1 nM. These results indicate that nanohole-based SPR instruments have potential for quantitative antibody screening and as a general-purpose platform for integrating SPR sensors with other bioanalytical tools.

  4. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  5. Historical spatial range expansion and a very recent bottleneck of Cinnamomum kanehirae Hay. (Lauraceae in Taiwan inferred from nuclear genes

    Directory of Open Access Journals (Sweden)

    Ho Kuo-Chieh

    2010-04-01

    Full Text Available Abstract Background Species in the varied geographic topology of Taiwan underwent obvious demographic changes during glacial periods. Cinnamomum kanehirae has been exploited for timber and to obtain medicinal fungi for the past 100 years. Understanding anthropogenic factors influencing the demography of this species after the last glacial maximum (LGM is critically important for the conservation of this species. Results Populations of C. kanehirae were classified into four geographic regions: northwestern (NW, west-central (WC, southwestern (SW, and southeastern (SE. In total, 113 individuals from 19 localities were sampled, and variations in the chalcone synthase gene (Chs intron and leafy (Lfy intron-2 sequences of nuclear DNA were examined in order to assess phylogeographic patterns, the timescales of demographic and evolutionary events, and recent anthropogenic effects. In total, 210 Chs and 170 Lfy sequences, which respectively constituted 36 and 35 haplotypes, were used for the analyses. Estimates of the migration rate (M through time revealed a pattern of frequent gene flow during previous and the present interglacials. The isolation-by-distance test showed that there generally was no significant correlation between genetic and geographic distances. The level of among-region genetic differentiation was significant when comparing eastern to western populations. However, no significant among-region genetic differentiation was found in comparisons among the four geographic regions. Moreover, essentially no genetic structuring was found for the three regions west of the CMR. A fit of spatial range expansion was found for pooled and regional samples according to the non-significant values of the sum of squared deviations. Using the Bayesian skyline plot (BSP method, a recent bottleneck after the LGM expansion was detected in both regional and pooled samples. Conclusions Common haplotype distributions among geographic regions and the relatively

  6. Quantification of the validity of simulations based on Geant4 and FLUKA for photo-nuclear interactions in the high energy range

    Directory of Open Access Journals (Sweden)

    Quintieri Lina

    2017-01-01

    Full Text Available Photo-nuclear interactions are relevant in many research fields of both fundamental and applied physics and, for this reason, accurate Monte Carlo simulations of photo-nuclear interactions can provide a valuable and indispensable support in a wide range of applications (i.e from the optimisation of photo-neutron source target to the dosimetric estimation in high energy accelerator, etc. Unfortunately, few experimental photo-nuclear data are available above 100 MeV, so that, in the high energy range (from hundreds of MeV up to GeV scale, the code predictions are based on physical models. The aim of this work is to compare the predictions of relevant observables involving photon-nuclear interaction modelling, obtained with GEANT4 and FLUKA, to experimental data (if available, in order to assess the code estimation reliability, over a wide energy range. In particular, the comparison of the estimated photo-neutron yields and energy spectra with the experimental results of the n@BTF experiment (carried out at the Beam Test Facility of DaΦne collider, in Frascati, Italy is here reported and discussed. Moreover, the preliminary results of the comparison of the cross sections used in the codes with the“evaluated’ data recommended by the IAEA are also presented for some selected cases (W, Pb, Zn.

  7. The Politics of NATO Short-Range Nuclear Modernization 1983-1990: The Follow-On-to-Lance Missile Decisions

    Science.gov (United States)

    1991-06-01

    from many sources, including Jay Lorenzen, John Wahlquist, and Paul Viotti in Colorado; Tom Longstreth, Stan Sloan, David Yost, Catherine Kelleher , Bill...and offering to negotiate cuts in Soviet tactical nuclear weapons. He also began a public relations campaign emphasizing the dangers to detente and...as we shall see. Apparently the USSR learned something from the INF decision: that the value of good public relations exceeds the value of strong

  8. KAERI software safety guideline for developing safety-critical software in digital instrumentation and control system of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Kim, Jang Yeol; Eum, Heung Seop

    1997-07-01

    Recently, the safety planning for safety-critical software systems is being recognized as the most important phase in the software life cycle, and being developed new regulatory positions and standards by the regulatory and the standardization organization. The requirements for software important to safety of nuclear reactor are described in such positions and standards. Most of them are describing mandatory requirements, what shall be done, for the safety-critical software. The developers of such a software. However, there have been a lot of controversial factors on whether the work practices satisfy the regulatory requirements, and to justify the safety of such a system developed by the work practices, between the licenser and the licensee. We believe it is caused by the reason that there is a gap between the mandatory requirements (What) and the work practices (How). We have developed a guidance to fill such gap, which can be useful for both licenser and licensee to conduct a justification of the safety in the planning phase of developing the software for nuclear reactor protection systems. (author). 67 refs., 13 tabs., 2 figs.

  9. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants

    Directory of Open Access Journals (Sweden)

    T.S. Nidhin

    2017-12-01

    Full Text Available Field programmable gate arrays (FPGAs are getting more attention in safety-related and safety-critical application development of nuclear power plant instrumentation and control systems. The high logic density and advancements in architectural features make static random access memory (SRAM-based FPGAs suitable for complex design implementations. Devices deployed in the nuclear environment face radiation particle strike that causes transient and permanent failures. The major reasons for failures are total ionization dose effects, displacement damage dose effects, and single event effects. Different from the case of space applications, soft errors are the major concern in terrestrial applications. In this article, a review of radiation effects on FPGAs is presented, especially soft errors in SRAM-based FPGAs. Single event upset (SEU shows a high probability of error in the dependable application development in FPGAs. This survey covers the main sources of radiation and its effects on FPGAs, with emphasis on SEUs as well as on the measurement of radiation upset sensitivity and irradiation experimental results at various facilities. This article also presents a comparison between the major SEU mitigation techniques in the configuration memory and user logics of SRAM-based FPGAs.

  11. Nuclear data and measurements series: Some comments on the effects of long-range correlations in covariance matrices for nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.

    1987-03-01

    Attention is called to the considerable sensitivity of many uncertainty calculations to the magnitude of the long-ranged correlations which appear in covariance matrices. If such correlations do exist, they must be included in order to properly assess the impact of the uncertainties in the data. If, however, certain assumed long-range correlations are unrealistic, then analyses involving such correlation information are almost certain to produce misleading results. The issue is discussed in general terms, and its importance is illustrated by examples based in part on recent work from this laboratory. Some practical suggestions are offered for dealing with the matter of correlations in instances where the available information is incomplete. 23 refs., 2 figs., 1 tab.

  12. Acute effects of instrument assisted soft tissue mobilization vs. foam rolling on knee and hip range of motion in soccer players.

    Science.gov (United States)

    Markovic, Goran

    2015-10-01

    The aim of the present investigation was to evaluate the acute effects of foam rolling (FR) and a new form of instrument-assisted soft tissue mobilization (IASTM), Fascial Abrasion Technique ™ (FAT) on hip and knee range of motion in soccer players. Twenty male soccer players randomly allocated into FR and FAT group (n = 10 each). Passive knee flexion and straight leg raise tests were measured before, immediately after and 24 h after intervention (FR or FAT). The FR group applied a 2-min quadriceps and hamstrings rolling, while FAT group received a 2-min application of FAT to the quadriceps and hamstrings muscles. Both groups significantly improved knee and hip ROM (p < 0.05), with higher gains observed in FAT group (10-19% vs. 5-9%). At 24 h post-treatment, only FAT group preserved most of the gains in ROM (7-13%; p < 0.05). These results support the use of the newly developed IASMT, Fascial Abrasion Technique ™ and FR for increasing lower extremity ROM of athletes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. SHORT-TERM EFFECTS OF INSTRUMENT-ASSISTED SOFT TISSUE MOBILIZATION ON PAIN FREE RANGE OF MOTION IN A WEIGHTLIFTER WITH SUBACROMIAL PAIN SYNDROME.

    Science.gov (United States)

    Coviello, Joseph Paul; Kakar, Rumit Singh; Reynolds, Timothy James

    2017-02-01

    While there is limited evidence supporting the use of soft tissue mobilization techniques for Subacromial Pain Syndrome (SAPS), synonymous with subacromial impingement syndrome, previous studies have reported successful outcomes using soft tissue mobilization as a treatment technique. The purpose of this case report is to document the results of Instrument-Assisted Soft Tissue Mobilization (IASTM) for the treatment of SAPS. Diagnosis was reached based on the subject's history, tenderness to palpation, and four out of five positive tests in the diagnostic cluster. Treatment consisted of three visits where the IASTM technique was applied to the pectoral muscles as well as periscapular musculature followed by retesting pain-free shoulder flexion active range of motion (AROM) and Numerical Pain Rating Scale (NPRS) during active shoulder flexion. Scapulothoracic mobilization and stretching were performed after AROM measurement. The subject reported an NPRS of 0/10 and demonstrated improvements in pain free flexion AROM in each of the three treatment sessions post-IASTM: 85 ° to 181 °, 110 ° to 171 °, and 163 ° to 174 ° with some carryover in pain reduction and pain free AROM to the next treatment. Through three treatments, DASH score improved by 17.34%, Penn Shoulder Score improved 29%, worst NPRS decreased from 4/10 to 0/10, and a GROC score of 6. IASTM may have a beneficial acute effect on pain free shoulder flexion. In conjunction with scapulothoracic mobilizations and stretching, IASTM may improve function, decrease pain, and improve patient satisfaction. While this technique will not ameliorate the underlying pathomechanics contributing to SAPS, it may serve as a valuable tool to restore ROM and decrease pain allowing the patient to reap the full benefits of a multi-modal treatment approach. 5.

  14. Local and integral ulrasonic gauges for two-phase flow instrumentation in nuclear reactor and safety technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chochlov, V.N.; Duncev, A.V.; Ivanov, V.V.; Kontelev, V.V.; Melnikov, V.I.; Stoppel, L.K. [Technical State Univ. of Nishny Novgorod (Russian Federation); Prasser, H.M.; Zippe, W.; Zschau, J. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Sicherheitsforschung; Zboray, R. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    2000-11-01

    The present project was executed in the frame of a co-operation agreement between FZR and the scientific group of Prof. Melnikov of the technical University of Nishny Novgorod (TUNN) in the Russian Federation. It is part of the Federal Government's programme for the provision of advice for Eastern Europe on the building up of democracy and social market economy (TRANSFORM Programme). New methods of two-phase flow instrumentation were developed: Intrusive wave-guide probes can be used for local void fraction measurements. The new ultrasonic mesh sensors allow a fast two-phase flow visualisation with about 250 frames per second. Experiments carried out at the test loop in Rossendorf, but also the tests at the DESIRE facility in Delft have shown that both local wave-guide probes and ultrasonic mesh sensors can be successfully applied under the conditions of high pressure and temperature steam-water mixture, as well as in organic liquids and refrigerants. Furthermore, non-intrusive wave-guide sensors as well as density sensors based on the measurement of the wave propagation velocity in wave-guides immersed into the measuring liquid were developed and tested. In the present stage of the development, the non-intrusive sensors can rather be used for a qualitative gas respectively level detection than for void fraction measurements. The wave-guide density sensor was successfully demonstrated that it is able to measure densities of single-phase liquids. It requires further development of the electronic circuitry. The main innovation was achieved by the development of the ultrasonic mesh sensor, the resoluting capability of which is comparable to methods like electrical wire-mesh sensors and ultra-fast X-ray tomography, while the device itself is robust and low expensive. (orig.) [German] Das vorliegende Projekt wurde im Rahmen einer Kooperationsvereinbarung zwischen dem Forschungszentrum Rossendorf (FZR) und der wissenschaftlichen Gruppe von Prof. Melnikov von der

  15. An approach based on defense-in-depth and diversity (3D) for the reliability assessment of digital instrument and control systems of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Paulo Adriano da; Saldanha, Pedro L.C., E-mail: pasilva@cnen.gov.b, E-mail: Saldanha@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coord. Geral de Reatores Nucleares; Melo, Paulo F. Frutuoso e, E-mail: frutuoso@nuclear.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao em Engenharia. Programa de Engenharia Nuclear; Araujo, Ademir L. de [Associacao Brasileira de Ensino Universitario (UNIABEU), Angra dos Reis, RJ (Brazil)

    2011-07-01

    The adoption of instrumentation and control (I and C) digital technology has been slower in nuclear power plants. The reason has been unfruitful efforts to obtain evidence in order to prove that I and C systems can be used in nuclear safety systems, for example, the Reactor Protection System (RPS), ensuring the proper operation of all its functions. This technology offers a potential improvement for safety and reliability. However, there still no consensus about the model to be adopted for digital systems software to be used in reliability studies. This paper presents the 3D methodology approach to assess digital I and C reliability. It is based on the study of operational events occurring in NPPs. It is easy to identify, in general, the level of I and C system reliability, showing its key vulnerabilities, enabling to trace regulatory actions to minimize or avoid them. This approach makes it possible to identify the main types of digital I and C system failure, with the potential for common cause failures as well as evaluating the dominant failure modes. The MAFIC-D software was developed to assist the implementation of the relationships between the reliability criteria, the analysis of relationships and data collection. The results obtained through this tool proved to be satisfactory and complete the process of regulatory decision-making from licensing I and C digital of NPPs and call still be used to monitor the performance of I and C digital post-licensing during the lifetime of the system, providing the basis for the elaboration of checklists of regulatory inspections. (author)

  16. Plankton Analysis by Automated Submersible Imaging Flow Cytometry: Transforming a Specialized Research Instrument into a Broadly Accessible Tool and Extending its Target Size Range

    Science.gov (United States)

    2011-09-30

    marine applications of flow cytometry, and had sold several slightly-modified instruments (called Influx Marina ) to oceanographic institutions for...and we have begun the transfer of technology by having McLane engineers observing Olson during the construction of the next redesigned IFCB beta unit...3 WORK COMPLETED We have essentially achieved our design goals (the new instrument has already been deployed from the WHOI pier for

  17. Nuclear Physics Department annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  18. Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies

    Science.gov (United States)

    Yong, Gao-Chan; Li, Bao-An

    2017-12-01

    Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.

  19. Visual interface for the automation of the instrumented pendulum of Charpy tests used in the surveillance program of reactors vessel of nuclear power plants; Interfase visual para la automatizacion del pendulo instrumentado de pruebas Charpy utilizado en el programa de vigilancia de la vasija de reactores de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Sainz M, E.; Ruiz E, J.A. [ININ, Carretera Mexico-Toluca Km.36.5, Mpio. de Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: asrs@nuclear.inin.mx; esm@nuclear.inin.mx; jare@nuclear.inin.mx

    2004-07-01

    Inside the Programs of Surveillance of the nuclear power stations periodic information is required on the state that keep the materials with those that builds the vessel of the reactor. This information is obtained through some samples or test tubes that are introduced inside the core of the reactor and it is observed if its physical characteristics remain after having been subjected to the radiation changes and temperature. The rehearsal with the instrumented Charpy pendulum offers information on the behavior of fracture dynamics of a material. In the National Institute of Nuclear Research (ININ) it has an instrumented Charpy pendulum. The operation of this instrument is manual, having inconveniences to carry out rehearsals with radioactive material, handling of high and low temperatures, to fulfill the normative ones for the realization of the rehearsals, etc. In this work the development of a computational program is presented (virtual instrument), for the automation of the instrumented pendulum. The system has modules like: Card of data acquisition, signal processing, positioning system, tempered system, pneumatic system, compute programs like it is the visual interface for the operation of the instrumented Charpy pendulum and the acquisition of impact signals. This system shows that given the characteristics of the nuclear industry with radioactive environments, the virtual instrumentation and the automation of processes can contribute to diminish the risks to the personnel occupationally exposed. (Author)

  20. Hybrid instrument applied to human reliability study in event of loss of external electric power in a nuclear power plant; Instrumento hibrido aplicado ao estudo da confiabilidade humana em evento de perda de energia eletrica externa em usina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Eduardo Ferraz

    2015-04-01

    The study projects in highly complex installations involves robust modeling, supported by conceptual and mathematical tools, to carry out systematic research and structured the different risk scenarios that can lead to unwanted events from occurring equipment failures or human errors. In the context of classical modeling, the Probabilistic Safety Analysis (PSA) seeks to provide qualitative and quantitative information about the project particularity and their operational facilities, including the identification of factors or scenarios that contribute to the risk and consequent comparison options for increasing safety. In this context, the aim of the thesis is to develop a hybrid instrument (CPP-HI) innovative, from the integrated modeling techniques of Failure Mode and Effect Analysis (FMEA), concepts of Human Reliability Analysis and Probabilistic Composition of Preferences (PCP). In support of modeling and validation of the CPP-HI, a simulation was performed on a triggering event 'Loss of External Electric Power' - PEEE, in a Nuclear Power plant. The results were simulated in a virtual environment (sensitivity analysis) and are robust to the study of Human Reliability Analysis (HRA) in the context of the PSA. (author)

  1. Measurement of activation cross-section of long-lived products in deuteron induced nuclear reactions on palladium in the 30-50MeV energy range.

    Science.gov (United States)

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2017-10-01

    Excitation functions were measured in the 31-49.2MeV energy range for the natPd(d,xn)111,110m,106m,105,104g,103Ag, natPd(d,x) 111m,109,101,100Pd, natPd(d,x), 105,102m,102g,101m,101g,100,99m,99gRh and natPd(d,x)103,97Ru nuclear reactions by using the stacked foil irradiation technique. The experimental results are compared with our previous results and with the theoretical predictions calculated with the ALICE-D, EMPIRE-D and TALYS (TENDL libraries) codes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Demonstration of nuclear recoil discrimination using recoil range in a mixed CaF 2 + liquid scintillator gel detector for dark matter searches

    Science.gov (United States)

    Spooner, N. J. C.; Tovey, D. R.; Peak, C. D.; Roberts, J. W.

    1997-12-01

    We present first measurements on a prototype dark matter detector being developed to achieve event by event discrimination of nuclear recoils from electron recoils below 100 keV by utilising the difference in the recoil ranges of these particles. The detector consists of sub-micron scintillating grains of CaF 2 suspended in Dioxan gel scintillator with matched refractive index. We call this form of detector CASPAR (Cocktail of Alkali halide Scintillating PARticles). We present here results of monoenergetic neutron scattering tests on CASPAR and show how scintillation pulse shape analysis can be used as a powerful means of distinguishing Ca, F, C and H recoil events from electron recoils. > 90% discrimination of Ca and F recoils from electrons at 60 keV was observed for <5% loss of signal.

  3. Activation cross-sections of proton induced nuclear reactions on thulium in the 20-45 MeV energy range.

    Science.gov (United States)

    Tárkányi, F; Hermanne, A; Takács, S; Ditrói, F; Spahn, I; Ignatyuk, A V

    2012-01-01

    Cross-sections of proton induced nuclear reactions on (169)Tm were measured in the 20-45MeV energy range using the standard stacked-foil irradiation technique and high resolution gamma-ray spectroscopy. Experimental cross-sections and derived integral yields are reported for the production of (169,167,166)Yb and (168,167,166)Tm radioisotopes. The experimental data are analysed and compared to results of the earlier measurements and the theoretical model codes ALICE-IPPE, EMPIRE and TALYS. Application of the new cross-sections to the production of the (167)Tm medical radioisotope is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Plankton Analysis by Automated Submersible Imaging Flow Cytometry: Transforming a Specialized Research Instrument into a Broadly Accessible Tool and Extending its Target Size Range

    Science.gov (United States)

    2012-09-30

    distribution of the phytoplankton community, for example, help determine the flow of carbon and nutrients through an ecosystem and can be important...researchers with instruments to continuously monitor phytoplankton community structure and investigate questions about the world’s ocean ecosystems...version of Imaging FlowCytobot (IFCB), reproducing its functions via a series of modular components whose integration would result in a simple and

  5. Reports within the area of nuclear power plant instrumentation: Part 1: Laboratory test of analogue and digital instrument components. Part 2: Dynamic deviations in reactor pressure water level signals caused by sensing lines

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, Bengt-Goeran [GSE Power Systems AB, Nykoeping (Sweden)

    2004-11-01

    Reliable measurement signals are of great importance for the safety of a nuclear power plant. The measurement signals are used as input signals to the automatic control systems, they have influence on the reactor protection system and they are the input to the information presented in the control room. Measurement signals are also the basis for analysis of sampled signals after an event. These facts imply that it is important that the measurement data represent physical magnitudes in a correct manner. This holds true both for the static and the dynamic part of the signal. Mainly depending on the fact that the Swedish BWRs were constructed m the seventies and eighties, the instrument systems were originally designed with analogue technique. This is valid for transmitters as well as density converters, isolation amplifiers and controllers. Right now there is an ongoing modernization of the instrument systems in many plants. Old analogue components are in many cases replaced by new digital ones. The delay time is the critical dynamic deviation between an analogue and a digital transmitter. A delay time of up to 200 ms has been observed for a digital transmitter (Hartmann and Braun ASK800) in comparison with an analogue one (Fujii). A long delay time is of course undesirable when the transmitter is a part of the reactor protection system. It is therefore important to pay attention to the delay in response when an analogue transmitter is replaced by a digital one. The laboratory tests also included a comparison between an old analogue density converter (Hartmann and Braun TZA2) and a new digital one (Hartmann and Braun TZA4). These results prove that the analogue unit is faster than the digital. The response time from differential pressure to level signal was 50 ms for TZA2 and 250 ms for TZA4. Corresponding times with pressure as input and level as output was 50 ms for TZA2 and 900 ms for TZA4. The report also includes an investigation of pressure transmitters of the

  6. Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.

  7. Activation cross-sections of proton induced nuclear reactions on thulium in the 20-45 MeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Tarkanyi, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Hermanne, A. [Cyclotron Laboratoryt, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Takacs, S. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Ditroi, F., E-mail: ditroi@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Spahn, I. [Institut fuer Nuklearchemie, Forschungszentrum Juelich GmbH, Juelich (Germany); Ignatyuk, A.V. [Institute of Physics and Power Engineering (IPPE), Obninsk (Russian Federation)

    2012-01-15

    Cross-sections of proton induced nuclear reactions on {sup 169}Tm were measured in the 20-45 MeV energy range using the standard stacked-foil irradiation technique and high resolution gamma-ray spectroscopy. Experimental cross-sections and derived integral yields are reported for the production of {sup 169,167,166}Yb and {sup 168,167,166}Tm radioisotopes. The experimental data are analysed and compared to results of the earlier measurements and the theoretical model codes ALICE-IPPE, EMPIRE and TALYS. Application of the new cross-sections to the production of the {sup 167}Tm medical radioisotope is discussed. - Highlights: Black-Right-Pointing-Pointer Proton induced reactions on thulium target. Black-Right-Pointing-Pointer Stacked foil technique to cover a broad energy range in a single irradiation. Black-Right-Pointing-Pointer Comparison of experimental results with the ALICE, EMPIRE and TALYS theoretical codes. Black-Right-Pointing-Pointer Evaluation of medical impact. Black-Right-Pointing-Pointer Calculation of thick target integral yield.

  8. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  9. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4–50.2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Ahmed Rufai [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, Umaru Musa Yar' adua University, Katsina (Nigeria); Khandaker, Mayeen Uddin, E-mail: mu_khandaker@um.edu.my [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haba, Hiromitsu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Otuka, Naohiko [Nuclear Data Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna (Austria); Murakami, Masashi [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)

    2017-05-15

    Highlights: • Detailed presentation of new results on experimental cross-sections of {sup nat}Ti(α,x) processes. • Calculations of thick target yields for scandium and other radionuclides via the {sup nat}Ti(α,x) production route. • Comparison with TENDL-2015 library. • Detailed review of previous experimental data. - Abstract: We studied the excitation functions of residual radionuclide productions from α particles bombardment on natural titanium in the energy range of 10.4–50.2 MeV. A well-established stacked-foil activation technique combined with HPGe γ-ray spectrometry was used to measure the excitation functions for the {sup 51,49,48}Cr, {sup 48}V, {sup 43}K, and {sup 43,44m,44g,46g+m,47,48}Sc radionuclides. The thick target yields for all assessed radionuclides were also calculated. The obtained experimental data were compared with the earlier experimental ones and also with the evaluated data in the TENDL-2015 library. A reasonable agreement was found between this work and some of the previous ones, while a partial agreement was found with the evaluated data. The present results would further enrich the experimental database and facilitate the understanding of existing discrepancies among the previous measurements. The results would also help to enhance the prediction capability of the nuclear reaction model codes.

  10. Modeling of long range transport pathways for radionuclides to Korea during the Fukushima Dai-ichi nuclear accident and their association with meteorological circulations.

    Science.gov (United States)

    Lee, Kwan-Hee; Kim, Ki-Hyun; Lee, Jin-Hong; Yun, Ju-Yong; Kim, Cheol-Hee

    2015-10-01

    The Lagrangian FLEXible PARTicle (FLEXPART) dispersion model and National Centers for Environmental Prediction/Global Forecast System (NCEP/GFS) meteorological data were used to simulate the long range transport pathways of three artificial radionuclides: (131)I, (137)Cs, and (133)Xe, coming into Korean Peninsula during the Fukushima Dai-ichi nuclear accident. Using emission rates of these radionuclides estimated from previous studies, three distinctive transport routes of these radionuclides toward the Korean Peninsula for a period from 10 March to 20 April 2011 were exploited by three spatial scales: 1) intercontinental scale - plume released since mid-March 2011 and transported to the North to arrive Korea on 23 March 2011, 2) global (hemispherical) scale - plume traveling over the whole northern hemisphere passing through the Pacific Ocean/Europe to reach the Korean Peninsula with relatively low concentrations in late March 2011 and, 3) regional scale - plume released on early April 2011 arrived at the Korean Peninsula via southwest sea of Japan influenced directly by veering mesoscale wind circulations. Our identification of these transport routes at three different scales of meteorological circulations suggests the feasibility of a multi-scale approach for more accurate prediction of radionuclide transport in the study area. In light of the fact that the observed arrival/duration time of peaks were explained well by the FLEXPART model coupled with NCEP/GFS input data, our approach can be used meaningfully as a decision support model for radiation emergency situations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4-50.2 MeV

    Science.gov (United States)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko; Murakami, Masashi

    2017-05-01

    We studied the excitation functions of residual radionuclide productions from α particles bombardment on natural titanium in the energy range of 10.4-50.2 MeV. A well-established stacked-foil activation technique combined with HPGe γ-ray spectrometry was used to measure the excitation functions for the 51,49,48Cr, 48V, 43K, and 43,44m,44g,46g+m,47,48Sc radionuclides. The thick target yields for all assessed radionuclides were also calculated. The obtained experimental data were compared with the earlier experimental ones and also with the evaluated data in the TENDL-2015 library. A reasonable agreement was found between this work and some of the previous ones, while a partial agreement was found with the evaluated data. The present results would further enrich the experimental database and facilitate the understanding of existing discrepancies among the previous measurements. The results would also help to enhance the prediction capability of the nuclear reaction model codes.

  12. High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument

    Energy Technology Data Exchange (ETDEWEB)

    Redfield, Alfred G., E-mail: redfield@brandeis.edu [Brandeis University, Biochemistry Department (United States)

    2012-02-15

    Improvements are described in a shuttling field-cycling device (Redfield in Magn Reson Chem 41:753-768, 2003), designed to allow widespread access to this useful technique by configuring it as a removable module to a commercial 500 MHz NMR instrument. The main improvements described here, leading to greater versatility, high reliability and simple construction, include: shuttling provided by a linear motor driven by an integrated-control servomotor; provision of automated bucking magnets to allow fast two-stage cycling to nearly zero field; and overall control by a microprocessor. A brief review of history and publications that have used the system is followed by a discussion of topics related to such a device including discussion of some future applications. A description of new aspects of the shuttling device follows. The minimum round trip time to 1T and above is less than 0.25 s and to 0.002 T is 0.36 s. Commercial probes are used and sensitivity is that of the host spectrometer reduced only by relaxation during travel. A key element is development of a linkage that prevents vibration of the linear motor from reaching the probe.

  13. Development of nanosensors in nuclear technology

    Science.gov (United States)

    Hassan, Thamir A. A.

    2017-01-01

    Selectivity, sensitivity, and stability (three S parameters) are developed as a new range of sensor this provided instruments for harsh, radioactive waste polluted environment monitoring. Isotope effect is very effective for nuclear radiation sensors preparation.in this presentation are reviewed of the development of Nanosensors in nuclear technology, such as high temperature boron and its compounds with suitable physical and chemical features as sensitive element for temperature and nuclear sensor, Boron isotopes based semiconductor nanosensors and studies of the mechanism of the removal uranium from radioactive wastewater with graphene oxide (GO).

  14. Instrumentation a reader

    CERN Document Server

    Pope, P

    1990-01-01

    This book contains a selection of papers and articles in instrumentation previously pub­ lished in technical periodicals and journals of learned societies. Our selection has been made to illustrate aspects of current practice and applications of instrumentation. The book does not attempt to be encyclopaedic in its coverage of the subject, but to provide some examples of general transduction techniques, of the sensing of particular measurands, of components of instrumentation systems and of instrumentation practice in two very different environments, the food industry and the nuclear power industry. We have made the selection particularly to provide papers appropriate to the study of the Open University course T292 Instrumentation. The papers have been chosen so that the book covers a wide spectrum of instrumentation techniques. Because of this, the book should be of value not only to students of instrumen­ tation, but also to practising engineers and scientists wishing to glean ideas from areas of instrumen...

  15. Applications of Nuclear Physics

    OpenAIRE

    Hayes, Anna C.

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...

  16. Results of joint processing of data on nuclear and chemical explosions recorded on the long-range Quartz profile (Murmansk-Kyzyl)

    Science.gov (United States)

    Pavlenkova, G. A.; Pavlenkova, N. I.

    2008-04-01

    The long-range seismic profile Quartz, measured by the GEON Center (Ministry of Geology of the USSR), crosses a few large geostructures: the East European platform, Timan-Pechora plate, Northern Urals, West Siberian plate (WSP), and Altai. Observations of nuclear and chemical explosions were conducted on the profile. Joint processing of records from sources of both types provided detailed structures of the crust and upper mantle. They have confirmed the known patterns in the structure of these shells of the Earth and revealed new ones. Mountain roots are observed beneath the Urals and Altai, and areas of a higher heat flow are matched by lower velocity zones in the upper mantle. Moreover, it is shown that the Timan-Pechora plate is characterized by a two-layer crust untypical of other young plates of central Eurasia and the upper mantle has the same velocities beneath the ancient East European platform and the young Altai orogen. It is also shown that the vast region including the Timan-Pechora plate, Urals, and WSP is bounded on both sides by deep faults in the upper mantle dipping toward the center of Western Siberia. A few nearly continuous reflectors traceable in the upper mantle are represented by thin-layered heterogeneous beds. The largest horizontal heterogeneity is observed in the upper 100-km layer, often underlain by a lower velocity zone. The asthenosphere, as a layer of lower seismic velocities at the depth of a possible solidus (200 250 km), has not been revealed. The latter is evidently a feature specific to inner parts of the Eurasian continent; in marginal regions, e.g., in Western Europe, the asthenospheric layer is identified almost ubiquitously.

  17. Report to the DOE nuclear data committee. [EV RANGE 10-100; CROSS SECTIONS; PHOTONEUTRONS; NEUTRONS; GAMMA RADIATION; COUPLED CHANNEL THEORY; DIFFERENTIAL CROSS SECTIONS; MEV RANGE 01-10; ; CAPTURE; GAMMA SPECTRA; THERMAL NEUTRONS; COMPUTER CALCULATIONS; DECAY; FISSION PRODUCTS; FISSION YIELD; SHELL MODELS; NUCLEAR DATA COLLECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Haight, R.C.

    1981-03-01

    Topics covered include: studies of (n, charged particle) reactions with 14 to 15 MeV neutrons; photoneutron cross sections for /sup 15/N; neutron radiative capture; Lane-model analysis of (p,p) and (n,n) scattering on the even tin isotopes; neutron scattering cross sections for /sup 181/Ta, /sup 197/Au, /sup 209/Bi, /sup 232/Th, and /sup 238/U inferred from proton scattering and charge exchange cross sections; neutron-induced fission cross sections of /sup 245/Cm and /sup 242/Am; fission neutron multiplicities for /sup 245/Cm and /sup 242/Am; the transport of 14 MeV neutrons through heavy materials 150 < A < 208; /sup 249/Cm energy levels from measurement of thermal neutron capture gamma rays; /sup 231/Th energy levels from neutron capture gamma ray and conversion electron spectroscopy; new measurements of conversion electron binding energies in berkelium and californium; nuclear level densities; relative importance of statistical vs. valence neutron capture in the mass-90 region; determination of properties of short-lived fission products; fission yield of /sup 87/Br and /sup 137/I from 15 nuclei ranging from /sup 232/Th to /sup 249/Cf; evaluation of charged particle data for the ECPL library; evaluation of secondary charged-particle energy and angular distributions for ENDL; and evaluated nuclear structure libraries derived from the table of isotopes. (GHT)

  18. Proposal of a synchro panel meter instrument to replace the obsolete Synchro/Resolver reading device used as position indicator of safety rods assembly of the Brazilian IEA-R1 Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Fabio de; Brancaccio, Franco; Cardenas, Jose Patricio N., E-mail: fatoledo@ipen.br, E-mail: fbrancac@ipen.br, E-mail: ahiru@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) was founded in 1956 (as Atomic Energy Institute - IEA) as a facility complex, for the research, development and application, in the nuclear technology field. The institute is recognized as a national leader in nuclear research and development (R and D), including the areas of reactor operation, radiopharmaceuticals, industrial and laboratory applications, materials science and laser technologies and applications. IPEN's main facility is the IEA-R1, nuclear research reactor (NRR), today, the only one in Brazil with a power level suitable for applications in physics, chemistry, biology and engineering. Some radioisotopes are also produced in IEA-R1, for medical and other applications. A common problem faced in the IEA-R1 maintenance is instrumentation obsolescence; spare parts are no more available, because of discontinued production, and an updating program is mandatory, aiming at modernization of old-aged I and C systems. In the presented context, an electronic system is here proposed, as a replacement for the reactor safety (shim) rods assembly position indicator, based on an open-source physical computing platform called Arduino, which includes a simple microcontroller board and a software-code development environment. A mathematical algorithm for the synchro-motor signal processing was developed, and the obtained resolution was better than 1.5%. (author)

  19. IAEA nuclear security program

    Energy Technology Data Exchange (ETDEWEB)

    Ek, D. [International Atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  20. Applications of nuclear physics

    Science.gov (United States)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  1. Applications of nuclear physics.

    Science.gov (United States)

    Hayes, A C

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  2. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.

  3. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...... provides the performer extensive virtuoso capabilities in terms of instrumental range, harmony, timbre, or spatial, textural, acoustic, technical, or technological qualities. The discussion will be illustrated by a composition case study involving augmented musical instrument electromagnetic resonator...

  4. MC and A instrumentation catalog

    Energy Technology Data Exchange (ETDEWEB)

    Neymotin, L. [ed.] [Brookhaven National Lab., Upton, NY (United States); Sviridova, V. [ed.] [All-Russian Research Inst. of Automatics, Moscow (Russian Federation)

    1998-06-01

    In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog has been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.

  5. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    Science.gov (United States)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  6. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  7. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  8. Atlantic Test Range (ATR)

    Data.gov (United States)

    Federal Laboratory Consortium — ATR controls fully-instrumented and integrated test ranges that provide full-service support for cradle-to-grave testing. Airspace and surface target areas are used...

  9. Holdup measurement for nuclear fuel manufacturing plants

    Energy Technology Data Exchange (ETDEWEB)

    Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  10. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  11. Genetic differentiation of the pine processionary moth at the southern edge of its range: contrasting patterns between mitochondrial and nuclear markers

    OpenAIRE

    El Mokhefi, M'hamed; Kerdelhue, Carole; Burban, Christian; Battisti, Andrea; Chakali, Gahdab; Simonato, Mauro

    2016-01-01

    Abstract The pine processionary moth (Thaumetopoea pityocampa) is an important pest of coniferous forests at the southern edge of its range in Maghreb. Based on mitochondrial markers, a strong genetic differentiation was previously found in this species between western (pityocampa clade) and eastern Maghreb populations (ENA clade), with the contact zone between the clades located in Algeria. We focused on the moth range in Algeria, using both mitochondrial (a 648?bp fragment of the tRNA?cox2)...

  12. Nuclear scales

    Energy Technology Data Exchange (ETDEWEB)

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  13. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  14. Nuclear Instruments and Methods in Physics Research. Section B; Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy

    Science.gov (United States)

    Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe

    1998-01-01

    Thermoset and thermoplastic polyimides have complementary physical/mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. It is expected that a combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPNs) of thermoset LaRC(Trademark)-RP46 and thermoplastic LARC(Trademark)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0: 100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical/mechanical properties. As expected, positronium atoms are not formed in these samples. The second life time component has been used to infer the positron trap dimensions. The "free volume" goes through a minimum at about 50:50 ratio, suggesting that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples have been discussed in this paper.

  15. Luminescence Instrumentation

    DEFF Research Database (Denmark)

    Jain, Mayank; Bøtter-Jensen, Lars

    2014-01-01

    This chapter gives an introduction to instrumentation for stimulated luminescence studies, with special focus on luminescence dating using the natural dosimeters, quartz and feldspars. The chapter covers basic concepts in luminescence detection, and thermal and optical stimulation, and reference...... irradiation. It then briefly describes development of spectrometers in dating applications, and finally gives an overview of recent development in the field directly linked to novel instrumentation. Contents of Paper...

  16. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  17. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  18. A NIM (Nuclear Instrumentation Module) system conjugated with optional input for pHEMT amplifier for beta and gamma spectroscopy; Um sistema de modulos NIM conjugados com entrada opcional por amplificador pHEMT para espectroscopia beta e gama

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Barbara; Lüdke, Everton, E-mail: barbarakonradmev@gmail.com, E-mail: eludke@smail.ufsm.br [Universidade Federal de Santa Maria (LAE/UFSM), RS (Brazil). Lab. de Astrofisica e Eletronica

    2014-07-01

    This work presents a high speed NIM module (Nuclear Instrumentation Module) to detect radiation, gamma and muons, as part of a system for natural radiation monitoring and of extraterrestrial origin. The subsystem developed consists of a preamplifier and an integrated SCA (Single Channel Analyzer), including power supplies of ± 12 and ± 24V with derivations of +3.6 and ± 5V. The single channel analyzer board, consisting of discrete logic components, operating in window modes, normal and integral. The pulse shaping block is made up of two voltage comparators working at 120 MHz with a response time > 60 ns and a logic anticoincidence system. The preamplifier promotes a noise reduction and introduces the impedance matching between the output of anode / diode photomultiplier tubes (PMTs) and subsequent equipment, providing an input impedance of 1MΩ and output impedance of 40 to 140Ω. The shaper amplifier is non-inverting and has variable input capacitance of 1000 pF. The upper and lower thresholds of the SCA are adjustable from 0 to ± 10V, and the equipment is compatible with various types of detectors, like PMTs coupled to sodium iodide crystals. For use with liquid scintillators and photodiodes with crystals (CsI: Tl) is proposed to include a preamplifier circuit pHEMT (pseudomorphic High Electron Mobility Transistor) integrated. Yet, the system presents the possibility of applications for various purposes of gamma spectroscopy and automatic detection of events producing of beta particles.

  19. Nuclear astrophysics

    Science.gov (United States)

    Penionzhkevich, Yu. E.

    2010-08-01

    The International Year of Astronomy 2009 (IYA2009) was declared by the 62nd General Assembly of the United Nations and was also endorsed by UNESCO. Investigations in the realms of particle and nuclear physicsmake a large contribution in the development of our ideas of the properties of the Universe. The present article discusses some problems of the evolution of the Universe, nucleosyntheses, and cosmochronology from the point of view of nuclear and particle physics. Processes occurring in the Universe are compared with the mechanisms of the production and decay of nuclei, as well as with the mechanisms of their interaction at high energies. Examples that demonstrate the potential of nuclearphysics methods for studying cosmic objects and the properties of the Universe are given. The results that come from investigations into nuclear reactions induced by beams of radioactive nuclei and which make it possible to take a fresh look at the nucleosynthesis scenario in the range at light nuclei are presented.

  20. Genetic structure of Bemisia tabaci Med populations from home-range countries, inferred by nuclear and cytoplasmic markers: impact on the distribution of the insecticide resistance genes.

    Science.gov (United States)

    Gauthier, Nathalie; Clouet, Cécile; Perrakis, Andreas; Kapantaidaki, Despoina; Peterschmitt, Michel; Tsagkarakou, Anastasia

    2014-10-01

    Insecticide resistance management in Bemisia tabaci is one of the main issues facing agricultural production today. An extensive survey was undertaken in five Mediterranean countries to examine the resistance status of Med B. tabaci species in its range of geographic origin and the relationship between population genetic structure and the distribution of resistance genes. The investigation combined molecular diagnostic tests, sequence and microsatellite polymorphism studies and monitoring of endosymbionts. High frequencies of pyrethroid (L925I and T929V, VGSC gene) and organophosphate (F331W, ace1 gene) resistance mutations were found in France, Spain and Greece, but not in Morocco or Tunisia. Sequence analyses of the COI gene delineated two closely related mitochondrial groups (Q1 and Q2), which were found either sympatrically (Spain) or separately (France). Only Q1 was observed in Greece, Morocco and Tunisia. Bayesian analyses based on microsatellite loci revealed three geographically delineated genetic groups (France, Spain, Morocco/Greece/Tunisia) and high levels of genetic differentiation even between neighbouring samples. Evidence was also found for hybridisation and asymmetrical gene flow between Q1 and Q2. Med B. tabaci is more diverse and structured than reported so far. On a large geographic scale, resistance is affected by population genetic structure, whereas on a local scale, agricultural practices appear to play a major role. © 2014 Society of Chemical Industry.

  1. Future of radiological instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, A.C.

    1988-08-01

    Future trends in the development of radiation protection instrumentation can be expected to be closely related to current trends in political and social activity that drive legislation, rule-making, and standard practice, with assistance provided by trends in material and electronic technology. Wide-range performance will be emphasized to arm the daily worker with instruments that routinely log background rates and, at the same time, are prepared to measure accident rates. Separate and simultaneous accumulation of data from several sensors to ensure complete coverage of the radiation types will be common. Mathematical manipulation of data will provide for summary data logging and, in some cases, solutions to integral equations to provide corrections to experimental data. Instruments will become more reliable by way of self-checking and correction. Miniaturization and large-scale integration of measuring instruments will provide some instrumentation for the people at large. To be effective, the instruments will necessarily cover a wide range and be very reliable. The net result of these several trends will provide for a widespread understanding of radiation protection and an implementation of as low as reasonably achievable among large segments of the population.

  2. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  3. Resource Letter FNP-1: Frontiers of nuclear physics

    Science.gov (United States)

    Bertsch, G. F.

    2004-08-01

    This Resource Letter provides a bibliography of the current research activities in nuclear physics and also a guide for finding useful nuclear data. The major areas included are nuclear structure and reactions, symmetry tests, nuclear astrophysics, nuclear theory, high-density matter, and nuclear instrumentation.

  4. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  5. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  6. Instrumental aspects

    Science.gov (United States)

    Qureshi, Navid

    2017-10-01

    Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering) with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  7. Nuclear Technology Series. Course 12: Reactor Physics.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 7: Reactor Operations.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 8: Reactor Safety.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course 27: Metrology.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    2015-09-03

    Sep 3, 2015 ... ... frequency characteristics depending upon the experimental requirements as well as the detectors with which they are being used. Charge-sensitive preamplifier (CSPA) have been developed using surface mountable devices such as chip resistors, capacitors and transistors. It uses a conventional circuit.

  12. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    2015-09-03

    Sep 3, 2015 ... Author Affiliations. Akhil Jhingan1 2. Inter University Accelerator Centre, P.O. Box 10502, New Delhi 110 067, India; Department of Physics, Panjab University, Chandigarh 160 014, India ...

  13. RHIC instrumentation

    Science.gov (United States)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  14. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    Science.gov (United States)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  15. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation....

  16. Laser instrument

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, R.J.; Eagar, T.W.

    1986-04-08

    An instrument is described for intercepting a carbon dioxide incident laser beam after it has energized a desired surgical target site but before it energizes material adjacent to the surgical target site. The instrument consists of: a substrate means for transmitting energy received from a laser beam away from a surgical target site, the substrate means having a high thermal conductivity and an exterior surface; a coating means for absorbing laser energy at the wavelength of a carbon dioxide laser, the coating means covering substantially the entirety of the exterior surface of the substrate means and having a high absorptivity for energy at the wavelength of the incident laser beam; and, the coating means having thickness which is large enough to provide high absorptivity but small enough to permit absorbed energy to be readily transferred to the high conductivity substrate means, and the thickness of the coating means being not greater than 0.001 inch.

  17. Instrumentation viewpoint

    OpenAIRE

    Sarti, Centro Tecnológico de Vilanova i la Geltrú

    2010-01-01

    Following our traditional edition line, on this issue our magazine presents the annual summary of the different projects and research activities developed by SARTI research group during 2011. The research projects undertaken by SARTI, in collaboration with other Spanish and international research teams, are linked to the development of instrumentation technology for marine applications, as well as for general industry. SARTI, as research group of the Universitat Politècnica de Cat...

  18. 1985 Nuclear Science Symposium, 32nd, and 1985 Symposium on Nuclear Power Systems, 17th, San Francisco, CA, October 23-25, 1985, Proceedings

    Science.gov (United States)

    1986-01-01

    The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.

  19. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    Science.gov (United States)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  20. The role of nuclear law in nuclear safety after Fukushima; El rol del derecho nuclear en seguridad nuclear luego de Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Diva E. Puig, E-mail: d.puig@adinet.com.uy [International Nuclear Law Association (INLA), Montevideo (Uruguay)

    2013-07-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor.

  1. Autonomous Control of Space Nuclear Reactors

    Science.gov (United States)

    Merk, John

    2013-01-01

    safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints.

  2. Design Concept for a Nuclear Reactor-Powered Mars Rover

    Science.gov (United States)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  3. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  4. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  5. Instrumentation for Colliding Beam Physics

    CERN Document Server

    2017-01-01

    INSTR17, the International Conference on Instrumentation for Colliding Beam Physics, will be held in the Budker Institute of Nuclear Physics, Novosibirsk, Russia, on 27 February – 4 March, 2017. The conference covers novel methods of particle detection used in various experiments at particle accelerators as well as in astrophysics. It is organized in close relationship with the Vienna Conference on Instrumentation (last held in 2016) and the Pisa Meeting on Advanced Detectors (last held in 2015). The deadline for registration and abstract submission is 15 January. For more details visit the conference website instr17.inp.nsk.su. Will be published in: JINST

  6. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L. [Rempe and Associates, LLC, Idaho Falls, ID (United States); Knudson, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lutz, R. J. [Lutz Nuclear Safety Consultant, LLC, Asheville, NC (United States)

    2015-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure that critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that

  7. NEUTRONIC REACTOR CORE INSTRUMENT

    Science.gov (United States)

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  8. DOE Fundamentals Handbook: Instrumentation and Control, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Instrumentation and Control Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems.

  9. Neutron instrumentation for biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, S.A. [Institut Laue-Langevin, Grenoble (France)

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  10. Detection of nuclear radiations; Deteccion de Radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A.

    1967-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations explained by the author in the courses of Nuclear Engineering held at the J.E.N. up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied Electronics to Nuclear Engineering so it has been intended to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author)

  11. Detection of nuclear radiations; Detectores de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A.

    1959-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs.

  12. Axis instrumentation: surgical results

    Directory of Open Access Journals (Sweden)

    Andrei F. Joaquim

    2012-11-01

    Full Text Available OBJECTIVE: Evaluate the surgical results of axis screw instrumentation. METHODS: Retrospective evaluation of the clinical and radiological data of patients submitted to axis fixation using screws. RESULTS: Seventeen patients were surgically treated. The mean age was 41.8 years (range: 12-73. Spinal cord trauma was the most common cause of instability (8 patients - 47%. Bilateral axis fixation was performed in all cases, except one, with laminar screw (total of 33 axis screws. Seven patients (41.1% underwent bilateral pars screws; laminar screws were used in six cases and pedicular screws were used in two. In two cases, we performed a hybrid construction (laminar + pars and pedicle + pars. There was no neurological worsening or death, nor complications directly related to use axis screws. CONCLUSION: Axis instrumentation was effective and safe, regardless of the technique used for stabilization. Based on our learnt experience, we proposed an algorithm to choose the best technique for axis screw fixation.

  13. Instrumental technique in X-ray astronomy

    Science.gov (United States)

    Peterson, L. E.

    1975-01-01

    A detailed review of the development of instruments for X-ray astronomy is given with major emphasis on nonfocusing high-sensitivity counter techniques used to detect cosmic photons in the energy range between 0.20 and 300 keV. The present status of X-ray astronomy is summarized together with significant results of the Uhuru observations, and photon interactions of importance for the detection of X-rays in space are noted. The three principal devices used in X-ray astronomy (proportional, scintillation, and solid-state counters) are described in detail, data-processing systems for these devices are briefly discussed, and the statistics of nuclear counting as applied to X-ray astronomy is outlined analytically. Effects of the near-earth X-ray environment and atmospheric gamma-ray production on X-ray detection by low-orbit satellites are considered. Several contemporary instruments are described (proportional-counter systems, scintillation-counter telescopes, modulation collimators), and X-ray astronomical satellite missions are tabulated.

  14. CARMENES instrument overview

    Science.gov (United States)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  15. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  16. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    , Orbitrap and ion mobility instruments. Together they offer various and complementary capabilities in terms of ionization, sensitivity, speed, resolution, mass accuracy, dynamic range and methods of fragmentation. Mass spectrometers can acquire qualitative and quantitative information on a large scale....... In terms of desired outcome, cost and time, combining and choosing between available instrumentation and methodologies is key to find the best analytical strategy suiting a particular proteomics experiment....

  17. MIRA: Dual wavelength band instrument

    Directory of Open Access Journals (Sweden)

    Robert Georgii

    2015-08-01

    Full Text Available MIRA is a dual wavelength band instrument operated by Technische Universität München TUM, which provides neutrons over a wide range of wavelengths 3.5 Å < λ < 20 Å combining the two beam ports of MIRA-1 and MIRA-2. The instrument´s setup is modular and allows for various different cold neutron experiments such as diffraction, spectroscopy or reflectometry.

  18. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  19. Instrumentation, Control, and Intelligent Systems

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  20. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    nature of spent nuclear fuel, Anticipated evolution of fuel in dry storage, Anticipated evolution of fuel in deep geological disposal); Boiling-water reactor fuel (Similarities, and differences with PWR fuel, Axial and radial zoning, Rod and channel box sizes, Poisoning and reactivity control, Cladding specific characteristics, Trends in fuel evolution); 3 - Liquid-metal-cooled fast reactor fuel: Fast-neutron irradiation damage in structural materials (Fast-neutron-induced damage in metals, What materials should be used?); Fuels and targets for fast-reactor transmutation (Fast reactors: reactors affording the ability to carry out effective actinide transmutation, Recycling: homogeneous, or heterogeneous?); 4 - gas-cooled reactor fuel: Particle fuel (From the initial concept to the advanced TRISO particle concept, Kernel fabrication processes, Particle coating by chemical vapor deposition, Fuel element fabrication: particle compaction, Characterization of fuel particles, and elements, From HTR fuel to VHTR and GFR fuels: the GAIA facility at CEA/Cadarache); Irradiation behavior of particle fuels (Particle fuel: a variety of failure modes for a high-strength object, The amoeba effect, Fission product behavior, and diffusion in particle fuels); Mechanical modeling of particle fuel; Very-high-temperature reactor (VHTR) fuel; Gas-cooled fast reactor (GFR) fuel (The specifications for GFR fuel, GFR fissile material, First containment baffler materials, GFR fuel element concepts); 5 - Research reactor fuels (A considerable feedback from experience, Conversion of French reactors to low-enriched ({<=}20% U-235)U{sub 3}Si{sub 2} fuel, Conversion of all reactors: R and D requirements for high-performance reactors, An 'advanced' research reactor fuel: UMo, The startup fuel for the Jules Horowitz Reactor (JHR) will still be U{sub 3}Si{sub 2}-Al; 6 - An instrument for future fuel research: the Jules Horowitz Reactor (JHR): Fuel irradiation experiments in JHR, JHR: a flexible

  1. Brazilian nuclear legislation. Revision n.1/2002; Legislacao nuclear brasileira. Revisao n. 1/2002

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Gilberto Cardoso de

    2002-07-01

    This work intends to facilitate the access to the Brazilian nuclear legislation and other legal instruments, foreseeing the use of nuclear energy and ionizing radiation in health, work and environment areas up to 2002. Legislation on the civil liability of nuclear damage, the law of licensing taxes, controlling and inspection are also included.

  2. Nuclear Technology Series. Course 15: Metallurgy and Metals Properties.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 13: Power Plant Chemistry.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 9: Reactor Auxiliary Systems.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Nuclear Technology Series. Course 17: Radiation Protection II.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 2: Radiation Protection I.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 10: Power Plant Systems.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 11: Radiation Detection and Measurement.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  11. Developments in analytical instrumentation

    Science.gov (United States)

    Petrie, G.

    The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead

  12. Undergraduate and Graduate Opportunities in Nuclear Science at Simon Fraser University

    Science.gov (United States)

    Andreoiu, Corina; Brodovitch, J.-C.; D'Auria, J. M.; Starosta, K.

    2012-10-01

    The Departments of Chemistry and Physics at Simon Fraser University offer a Nuclear Science Minor at undergraduate level. The program, which is unique in Canada, attracts students from all departments of the Faculty of Science, and, occasionally, from other departments such as engineering and business. Students graduating with this minor have the opportunity to get employment in academia and a variety of industries ranging from nuclear power to nuclear medicine, safety, accelerators, etc. At the graduate level, the Nuclear Science group in the Department of Chemistry attracts students to its in-house program and also in collaboration with TRIUMF, Canada's Laboratory for Nuclear and Particle Physics. The graduate program offer a rich plethora of topics in experimental nuclear science ranging from understanding the matter at subatomic level and its role in astrochemistry to applications of nuclear science in radiation measurements and monitoring, nuclear instrumentation, etc. The academic components of the program, its goals and future developments are presented in this paper along with enrolment statistics for the last ten years.

  13. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  14. Medical aspects of nuclear armament

    Energy Technology Data Exchange (ETDEWEB)

    Janse, M.J.; Schene, A.; Koch, K.

    1983-06-18

    The authors highlight a few medical, biological and psycological aspects of the use of nuclear weapons, drawing attention to their viewpoint that doctors should actively participate in the fight against nuclear armament. The short and long-term radiation effects on man and ecology are presented based on the Hiroshima and Nagasaki experiences. The danger of human error within this framework is emphasised and it is suggested that it is the medical profession's duty to point out how the effect of stress and boredom can lead to a nuclear catastrophe. Medical expertise may also help in the identification of unstable personalities among those who have access to nuclear weapons and in the understanding of the psycology of international conflicts and the psychopathology of those leaders who would use nuclear war as an instrument of national policy. Finally the effects of the nuclear war threat on children and teenagers are considered.

  15. Nuclear Chemistry.

    Science.gov (United States)

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  16. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  17. Micromachining inertial instruments

    Science.gov (United States)

    Weinberg, Marc S.; Bernstein, Jonathan J.; Borenstein, Jeffrey T.; Campbell, J.; Cousens, J.; Cunningham, Robert K.; Fields, R.; Greiff, Paul; Hugh, Brenda; Niles, Les; Sohn, Jerome B.

    1996-09-01

    Draper Laboratory, using silicon microfabrication techniques to achieve high yields by batch processing, has been developing miniature microelectromechanical instruments for over 10 years. During this time, considerable progress has been made in the development and fabrication of micromechanical gyroscopes, accelerometers, and acoustic sensors. Inertial instruments have become a worldwide research and commercial topic. Draper gyroscopes and accelerometers have been fabricated with measurement ranges from 50 to 500 deg/s and 10 to 100,000 g, respectively. In gyroscopes, stabilities are 20 deg/h in room temperature tests and 4.4 deg/h applying 0.3 degrees C thermal control. For accelerometers, less than 1 mg has been demonstrated in room temperature tests. These units have performed successfully across a temperature range of -40 to 85 degrees C, and have survived 80,000- to 120,000-g shock tests along all axes. Continuing development activities are expected to yield over an order of magnitude in performance enhancement. These micromechanical instruments are built using a silicon wafer process that results in crystal silicon structures that are anodically bonded on a Pyrex substrate that contains sensing and control electrodes. This silicon-on-glass configuration has low stray capacitance, and is ideally suited for hybrid or flip-chip bonding technology. Draper's inertial sensors incorporate excellent fabrication, however, building the silicon and Pyrex sensor chip is only one of many important contributions in a complete sensor system. Other equally important steps include: 1) electronics and application-specific integrated circuits (ASICs) 2) packaging, 3) test, and 4) modeling and analysis. This presentation focuses on sensor fabrication. Draper's accelerometers and gyroscopes and the dissolved wafer fabrication process are described. The evolution of gyro design, fabrication, and performance is summarized. Garnered through experience in both conventional and

  18. Nuclear weapons, nuclear effects, nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  19. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  20. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  1. JPRS Report, Nuclear Developments

    National Research Council Canada - National Science Library

    1989-01-01

    Partial Contents: Nuclear Weapons, Nuclear Development, Nuclear Power Plant, Uranium, Missiles, Space Firm Protested, Satellite, Rocket Launching, Nuclear Submarine, Environmental, Radioactivity, Nuclear Plant...

  2. Mean nuclear volume

    DEFF Research Database (Denmark)

    Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.

    1999-01-01

    We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...... (range 5.0-8.4 years). Cox regression analysis (automatic forward selection) showed the MNV to be the most significant prognostic parameter followed by the P-stage. Patients who had localized tumors or tumors with small nuclei had a better probability of surviving than did women with advanced tumors...

  3. Nuclear spectroscopy

    CERN Document Server

    Ajzenberg-Selove, Fay

    1960-01-01

    Nuclear Spectroscopy, Part B focuses on the ways in which experimental data may be analyzed to furnish information about nuclear parameters and nuclear models in terms of which the data are interpreted.This book discusses the elastic and inelastic potential scattering amplitudes, role of beta decay in nuclear physics, and general selection rules for electromagnetic transitions. The nuclear shell model, fundamental coupling procedure, vibrational spectra, and empirical determination of the complex potential are also covered. This publication is suitable for graduate students preparing for exper

  4. Status of nuclear data activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa [Nuclear Data Evaluation Lab., Korea Atomic Energy Research Inst., Yusung, Taejon 305-600 (Korea, Republic of)

    1998-03-01

    Although nuclear data activities in Korea are still in the early stage, considerable demands for more accurate and wide-range nuclear data from nuclear R and D fields activated a new nuclear data project titled as `Development of Nuclear Data System`. It was launched this year as one of nation-wide long-term nuclear R and D programs in Korea for the next decade. Its main goals are (1) to establish nuclear data system, (2) to build up the infra-structure for utilization of nuclear data and (3) to develop highly reliable nuclear data system. To achieve these goals, international cooperation and cultivation of human resource as well as construction of measurement facilities will be indispensable. This report briefly describes the demands of nuclear data from the nuclear R and D programs, current nuclear data activities and future plan with its strategy. (author)

  5. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  6. Nuclear networking.

    Science.gov (United States)

    Xie, Wei; Burke, Brian

    2017-07-04

    Nuclear lamins are intermediate filament proteins that represent important structural components of metazoan nuclear envelopes (NEs). By combining proteomics and superresolution microscopy, we recently reported that both A- and B-type nuclear lamins form spatially distinct filament networks at the nuclear periphery of mouse fibroblasts. In particular, A-type lamins exhibit differential association with nuclear pore complexes (NPCs). Our studies reveal that the nuclear lamina network in mammalian somatic cells is less ordered and more complex than that of amphibian oocytes, the only other system in which the lamina has been visualized at high resolution. In addition, the NPC component Tpr likely links NPCs to the A-type lamin network, an association that appears to be regulated by C-terminal modification of various A-type lamin isoforms. Many questions remain, however, concerning the structure and assembly of lamin filaments, as well as with their mode of association with other nuclear components such as peripheral chromatin.

  7. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  8. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  9. Health physics instrument manual

    Energy Technology Data Exchange (ETDEWEB)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described. (WHK)

  10. Adaptive optics instrument for long-range imaging. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T.M.

    1998-06-01

    The science and history of imaging through a turbulent atmosphere is reviewed in detail. Traditional methods for reducing the effects of turbulence are presented. A simplified method for turbulence reduction called the Sheared Coherent Interferometric Photography (SCIP) method is presented. Implementation of SCIP is discussed along with experimental results. Limitations in the use of this method are discussed along with recommendations for future improvements.

  11. Instrumentation to Enhance Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  12. Nuclear obligations: Nuremberg law, nuclear weapons, and protest

    Energy Technology Data Exchange (ETDEWEB)

    Burroughs, J.R.

    1991-01-01

    Nuclear weapons use and deployment and nonviolent anti-nuclear protests are evaluated. Use of nuclear weapons would constitute war crimes and crimes against humanity as defined in both the Nuremberg Charter and Allied Control Council Law No. 10 and applied by the International Military Tribunal and other Nuremberg courts. Strategic and atomic bombing during World War 2 did not set a precedent for use of nuclear weapons. The consequentialist argument for World War 2 bombing fails and the bombing has also been repudiated by codification of the law of war in Protocol 1 to the 1949 Geneva Conventions. The legality of deploying nuclear weapons as instruments of geopolitical policy is questionable when measured against the Nuremberg proscription of planning and preparation of aggressive war, war crimes, and crimes against humanity and the United Nations Charter's proscription of aggressive threat of force. While states' practice of deploying the weapons and the arms-control treaties that regulate but do not prohibit mere possession provide some support for legality, those treaties recognize the imperative of preventing nuclear war, and the Nuclear Non-Proliferation Treaty commits nuclear-armed states to good-faith negotiation of nuclear disarmament.

  13. Nuclear Science Symposium, 27th, and Symposium on Nuclear Power Systems, 12th, Orlando, Fla., November 5-7, 1980, Proceedings

    Science.gov (United States)

    Martini, M.

    1981-01-01

    Advances in instrumentation for use in nuclear-science studies are described. Consideration is given to medical instrumentation, computerized fluoroscopy, environmental instrumentation, data acquisition techniques, semiconductor detectors, microchannel plates and photomultiplier tubes, reactor instrumentation, neutron detectors and proportional counters, and space instrumentation.

  14. Far ultraviolet instrument technology

    Science.gov (United States)

    Paxton, Larry J.; Schaefer, Robert K.; Zhang, Yongliang; Kil, Hyosub

    2017-02-01

    The far ultraviolet (FUV) spectral range (from about 115 nm to 180 nm) is one of the most useful spectral regions for characterizing the upper atmosphere (thermosphere and ionosphere). The principal advantages are that there are FUV signatures of the major constituents of the upper atmosphere as well as the signatures of the high-latitude energy inputs. Because of the absorption by thermospheric O2, the FUV signatures are seen against a "black" background, i.e., one that is not affected by ground albedo or clouds and, as a consequence, can make useful observations of the aurora during the day or when the Moon is above the horizon. In this paper we discuss the uses of FUV remote sensing, summarize the various techniques, and discuss the technological challenges. Our focus is on a particular type of FUV instrument, the scanning imaging spectrograph or SIS: an instrument exemplified by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Imager and Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager. The SIS combines spatial imaging of the disk with limb profiles as well as spectral information at each point in the scan.

  15. The QUIET Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  16. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  17. A program in medium-energy nuclear physics. Progress report, January 1, 1992--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Berman, B.L.; Dhuga, K.S.

    1994-08-01

    This renewal proposal requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past three years we have focused our attention ever more sharply on experiments with real tagged photons at CEBAF. We are part of the Hall-B Collaboration at CEBAF. We are co-spokespersons on two approved CEBAF experiments, Photoreactions on {sup 3}He and Photoabsorption and Photofission of Nuclei, and we are preparing another, Nondiffractive Photoproduction of the {rho} Meson with Linearly Polarized Photons, for presentation to the next CEBAF PAC. We are part of the team that is instrumenting the Photon Tagger and a high-energy tagged polarized-photon beam for Hall B; some of the instrumentation for these projects is being built at our Nuclear Detector Laboratory, under the auspices of The George Washington University Center for Nuclear Studies. Our recent measurements of pion scattering from {sup 3}H and {sup 3}He at LAMPF and of cluster knockout from few-body nuclei at NIKHEF have yielded very provocative results, showing the importance of the very light nuclei as a laboratory for quantifying important aspects of the nuclear many-body force. We look forward to expanding our studies of short-range forces in nuclei, particularly the very fight nuclei using electromagnetic probes and employing the extraordinary power of CEBAF and the CLAS.

  18. Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  19. Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  20. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  1. Nuclear Mechanics in Disease

    Science.gov (United States)

    Zwerger, Monika; Ho, Chin Yee; Lammerding, Jan

    2015-01-01

    Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell’s microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can affect not only nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer. PMID:21756143

  2. Nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as {sup 99}Mo and {sup 131}I, among several others, used in nuclear medicine, by operating

  3. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  4. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  5. Proceedings of 2nd Korea-China Congress of Nuclear Medicine and the Korean Society Nuclear Medicine Spring Meeting 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This proceedings contains articles of 2nd Korea-China Congress of Nuclear Medicine and 2000 spring meeting of the Korean Society Nuclear Medicine. It was held on May 17-19, 2000 in Seoul, Korean. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, oncology, radiopharmacy and biology, nuclear cardiology, nuclear cardiology: physics and instrumentation and so on. (Yi, J. H.)

  6. High-spin nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  7. Virtual nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  8. Nuclear Astrophysics

    Science.gov (United States)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  9. Nuclear Astrophysics

    CERN Document Server

    Langanke, K

    1999-01-01

    The manuscript reviews progress achieved in recent years in various aspects of nuclear astrophysics, including stellar nucleosynthesis, nuclear aspects of supernova collapse and explosion, neutrino-induced reactions and their possible role in the supernova mechanism and nucleosynthesis, explosive hydrogen burning in binary systems, and finally the observation of gamma-rays from supernova remnants.

  10. New Scientific Instruments Manufactured by Shimadzu Corporation

    Directory of Open Access Journals (Sweden)

    Sukhomlinov, A.B.

    2014-03-01

    Full Text Available The review of new models of scientific instruments manufactured by Japanese corporation SHIMADZU has been made. Lliquid and gas chromatographs, mass spectrometers, LCMS and GCMS, IR range spectrophotometer, energy dispersive X-ray spectrometers, particle size analyzer, micro hardness tester have been considered. The special attention has been paid to extention of analytical possibilities related to technical features of instruments.

  11. Annual congress of the European Association of Nuclear Medicine. EANM'14. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    The proceedings of the annual congress of the European Association of Nuclear Medicine EANM'14 contain abstracts on the following issues: nuclear cardiology practices, PET in lymphoma, advances in nuclear cardiology, dosimetry for intra-arterial treatment in the liver, pediatric nuclear medicine, therapeutic nuclear medicine, SPECT/CT, prostate cancer, extended competencies for nuclear medicine technologists, neurosciences - neurodegeneration and neuroinflammation, radionuclide therapy and dosimetry - preclinical studies, physics and instrumentation, clinical molecular imaging, conventional and specialized nuclear medicine.

  12. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    Science.gov (United States)

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Bernstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta E.; Fields, Brian D.; Fröhlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William G.; McLaughlin, Gail C.; Meyer, Bradley S.; Mezzacappa, Anthony; Nunes, Filomena; O'Shea, Brian W.; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert E.; Schatz, Hendrik; Smith, Michael S.; Stairs, Ingrid H.; Steiner, Andrew W.; Strohmayer, Tod E.; Timmes, F. X.; Townsley, Dean M.; Wiescher, Michael; Zegers, Remco G. T.; Zingale, Michael

    2017-05-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.

  13. Safeguards instrument to monitor spent reactor fuel

    Science.gov (United States)

    Nicholson, N.; Dowdy, E. J.; Holt, D. M.; Stump, C.

    1981-10-01

    A hand held instrument for monitoring irradiated nuclear fuel inventories located in water filled storage ponds has been developed. This instrument provides sufficient precise qualitative and quantitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors, and is believed to be of potential use to nuclear fuel managers and to operators of spent fuel storage facilities, both at reactor and away from reactor, and to operators of nuclear fuel reprocessing plants. Because the Cerenkov radiation glow can barely be seen by the unaided eye under darkened conditions, a night vision device is incorporated to aid the operator in locating the fuel assembly to be measured. Beam splitting optics placed in front of the image intensifier and a preset aperture select a predetermined portion of the observed scene for measurement of the light intensity using a photomultiplier (PM) tube and digital readout. The PM tube gain is adjusted by use of an internal optical reference source, providing long term repeatability and instrument to instrument consistency. Interchangeable lenses accommodate various viewing and measuring conditions.

  14. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  15. Nuclear stress test

    Science.gov (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  16. Nuclear matter and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sick, I. [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)

    1998-06-01

    We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)

  17. The Instrumental Model

    Science.gov (United States)

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  18. Aeroacoustics of Musical Instruments

    NARCIS (Netherlands)

    Fabre, B.; Gilbert, J.; Hirschberg, Abraham; Pelorson, X.

    2012-01-01

    We are interested in the quality of sound produced by musical instruments and their playability. In wind instruments, a hydrodynamic source of sound is coupled to an acoustic resonator. Linear acoustics can predict the pitch of an instrument. This can significantly reduce the trial-and-error process

  19. Nuclear questions

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, M. [Physics World (United Kingdom)

    2006-01-01

    The future of nuclear power has returned to centre stage. Freezing weather on both sides of the Atlantic and last month's climate-change talks in Montreal have helped to put energy and the future of nuclear power right back on the political agenda. The issue is particularly pressing for those countries where existing nuclear stations are reaching the end of their lives. In the UK, prime minister Tony Blair has commissioned a review of energy, with a view to deciding later this year whether to build new nuclear power plants. The review comes just four years after the Labour government published a White Paper on energy that said the country should keep the nuclear option open but did not follow this up with any concrete action. In Germany, new chancellor and former physicist Angela Merkel is a fan of nuclear energy and had said she would extend the lifetime of its nuclear plants beyond 2020, when they are due to close. However, that commitment has had to be abandoned, at least for the time being, following negotiations with her left-wing coalition partners. The arguments in favour of nuclear power will be familiar to all physicists - it emits almost no carbon dioxide and can play a vital role in maintaining a diverse energy supply. To over-rely on imported supplies of oil and gas can leave a nation hostage to fortune. The arguments against are equally easy to list - the public is scared of nuclear power, it generates dangerous waste with potentially huge clean-up costs, and it is not necessarily cheap. Nuclear plants could also be a target for terrorist attacks. Given political will, many of these problems can be resolved, or at least tackled. China certainly sees the benefits of nuclear power, as does Finland, which is building a new 1600 MW station - the world's most powerful - that is set to open in 2009. Physicists, of course, are essential to such developments. They play a vital role in ensuring the safety of such plants and developing new types of

  20. Elements of nuclear safety

    CERN Document Server

    Libmann, Jacques

    1996-01-01

    This basically educational book is intended for all involved in nuclear facility safety. It dissects the principles and experiences conducive to the adoption of attitudes compliant with what is now known as "safety culture". This book is accessible to a wide range of readers.

  1. Comparison of two automated instruments for Epstein-Barr virus serology in a large adult hospital and implementation of an Epstein-Barr virus nuclear antigen-based testing algorithm.

    Science.gov (United States)

    Al Sidairi, Hilal; Binkhamis, Khalifa; Jackson, Colleen; Roberts, Catherine; Heinstein, Charles; MacDonald, Jimmy; Needle, Robert; Hatchette, Todd F; LeBlanc, Jason J

    2017-11-01

    Serology remains the mainstay for diagnosis of Epstein-Barr virus (EBV) infection. This study compared two automated platforms (BioPlex 2200 and Architect i2000SR) to test three EBV serological markers: viral capsid antigen (VCA) immunoglobulins of class M (IgM), VCA immunoglobulins of class G (IgG) and EBV nuclear antigen-1 (EBNA-1) IgG. Using sera from 65 patients at various stages of EBV disease, BioPlex demonstrated near-perfect agreement for all EBV markers compared to a consensus reference. The agreement for Architect was near-perfect for VCA IgG and EBNA-1 IgG, and substantial for VCA IgM despite five equivocal results. Since the majority of testing in our hospital was from adults with EBNA-1 IgG positive results, post-implementation analysis of an EBNA-based algorithm showed advantages over parallel testing of the three serologic markers. This small verification demonstrated that both automated systems for EBV serology had good performance for all EBV markers, and an EBNA-based testing algorithm is ideal for an adult hospital.

  2. Nuclear war and nuclear peace

    Energy Technology Data Exchange (ETDEWEB)

    Segal, G.; Moreton, E.; Freedman, L.; Baylis, J.

    1983-01-01

    This book is an in-depth examination of East-West tactical and strategic nuclear weapons policy. The contributors explore such issues as the history and implications of tactical weapons in Europe, the general conflicts that have characterized US and Soviet interaction, the development of British nuclear weapons policy, and arms control including SALT I and II and the START talks.

  3. Second Nuclear Era

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A.M.; Spiewak, I.; Barkenbus, J.N.; Livingston, R.S.; Phung, D.L.

    1984-03-01

    The Institute for Energy Analysis with support from The Andrew W. Mellon Foundation has studied the decline of the present nuclear era in the United States and the characteristics of a Second Nuclear Era which might be instrumental in restoring nuclear power to an appropriate place in the energy options of our country. The study has determined that reactors operating today are much safer than they were at the time of the TMI accident. A number of concepts for a supersafe reactor were reviewed and at least two were found that show considerable promise, the PIUS, a Swedish pressurized water design, and a gas-cooled modular design of German and US origin. Although new, safer, incrementally improved, conventional reactors are under study by the nuclear industry, the complete lack of new orders in the United States will slow their introduction and they are likely to be more expensive than present designs. The study recommends that supersafe reactors be taken seriously and that federal and private funds both be used to design and, if feasible, to build a prototype reactor of substantial size. 146 references, 8 figures, 2 tables.

  4. Principles of Space Plasma Wave Instrument Design

    Science.gov (United States)

    Gurnett, Donald A.

    1998-01-01

    Space plasma waves span the frequency range from somewhat below the ion cyclotron frequency to well above the electron cyclotron frequency and plasma frequency. Because of the large frequency range involved, the design of space plasma wave instrumentation presents many interesting challenges. This chapter discusses the principles of space plasma wave instrument design. The topics covered include: performance requirements, electric antennas, magnetic antennas, and signal processing. Where appropriate, comments are made on the likely direction of future developments.

  5. Nanomaterials and nanotechnologies in nuclear energy chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F. [Chinese Academy of Sciences, Beijing (China). Nuclear Energy Chemistry Group

    2012-07-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  6. Nuclear Physics

    CERN Document Server

    Savage, Martin J

    2016-01-01

    Lattice QCD is making good progress toward calculating the structure and properties of light nuclei and the forces between nucleons. These calculations will ultimately refine the nuclear forces, particularly in the three- and four-nucleon sector and the short-distance interactions of nucleons with electroweak currents, and allow for a reduction of uncertainties in nuclear many-body calculations of nuclei and their reactions. After highlighting their importance, particularly to the Nuclear Physics and High-Energy Physics experimental programs, I discuss the progress that has been made toward achieving these goals and the challenges that remain.

  7. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This proceedings contains articles of 1998 Autumn meeting of the Korean Society Nuclear Medicine. It was held on November 13-14, 1998 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, radiopharmacy and biology, nuclear cardiology, physics and instrumentation. (Yi, J. H.)

  8. Essential infrastructure: national nuclear regulation.

    Science.gov (United States)

    Paperiello, Carl J

    2011-01-01

    In order for nuclear power to expand to many countries that do not currently have it, it will be essential for these countries to have laws, regulations, guidance and organizations that can license or permit nuclear power plants and support nuclear facilities, ensure compliance by inspection, and enforce nuclear regulations. The viability of nuclear power worldwide depends on an extremely high level of safety everywhere, and compliance with a number of international treaties is required before supplier nations will provide the material, both hardware and software, to build and operate nuclear power plants. While infrastructure support can be obtained from the IAEA and other countries, an essential core of expertise must exist in the country seeking to establish domestic nuclear power generation. While some reliance can be placed on the safety reviews of standard reactor designs by the nuclear regulators in supplier nations, the certification of fuel design, the quality of instruments, and the matching of a new reactor to a proposed site in the importing nation will require site-specific reviews. National arrangements are also needed for emergency preparedness, environmental protection, fuel transportation and the storage, transportation and disposal of radioactive waste. If foreign contractors and consultants are engaged to perform much of the technical work for the regulatory body(s) that has to be performed by the importing nation, that nation must have a core cadre of technically knowledgeable regulators and an organization to provide management and oversight of the contractors and consultants. Consistency in national nuclear regulations, the deployment of standardized nuclear power plant designs and standardized supporting material infrastructure can promote the safe and secure worldwide growth in nuclear power. Copyright © 2010 Health Physics Society

  9. Spring/dimple instrument tube restraint

    Science.gov (United States)

    DeMario, Edmund E.; Lawson, Charles N.

    1993-01-01

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs.

  10. (Nuclear theory). [Research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W.

    1990-01-01

    This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

  11. The nuclear pore complex and nuclear transport.

    Science.gov (United States)

    Wente, Susan R; Rout, Michael P

    2010-10-01

    Internal membrane bound structures sequester all genetic material in eukaryotic cells. The most prominent of these structures is the nucleus, which is bounded by a double membrane termed the nuclear envelope (NE). Though this NE separates the nucleoplasm and genetic material within the nucleus from the surrounding cytoplasm, it is studded throughout with portals called nuclear pore complexes (NPCs). The NPC is a highly selective, bidirectional transporter for a tremendous range of protein and ribonucleoprotein cargoes. All the while the NPC must prevent the passage of nonspecific macromolecules, yet allow the free diffusion of water, sugars, and ions. These many types of nuclear transport are regulated at multiple stages, and the NPC carries binding sites for many of the proteins that modulate and modify the cargoes as they pass across the NE. Assembly, maintenance, and repair of the NPC must somehow occur while maintaining the integrity of the NE. Finally, the NPC appears to be an anchor for localization of many nuclear processes, including gene activation and cell cycle regulation. All these requirements demonstrate the complex design of the NPC and the integral role it plays in key cellular processes.

  12. Nuclear reaction

    CERN Multimedia

    Penwarden, C

    2001-01-01

    At the European Research Organization for Nuclear Research, Nobel laureates delve into the mysteries of particle physics. But when they invited artists from across the continent to visit their site in Geneva, they wanted a new kind of experiment.

  13. Nuclear Fusion

    National Research Council Canada - National Science Library

    Ghoranneviss, Mahmood; Parashar, S. K. S; Aslan, Necdet; Aslaninejad, Morteza; Salar Elahi, A

    2014-01-01

    ... in both inertial and magnetic confinement fusion, with attendees from major fusion energy research centers worldwide. It is one of the most important issues in this field. Nuclear fusion continues t...

  14. The Instruments of Transport Policy

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2006-09-01

    Full Text Available The work proposes the transport policy instruments, suchas the infrastructure measures, management measures and informationprovision measures as the means that could reduceor eliminate transport problems. All these measures have beenfollowed through the provisions for passenger cars, provisionsfor public transport, provisions for cyclists and pedestrians andprovisions regarding transport. A range of solutions is given toreduce congestion, improve accessibility and improve the trafficconditions for those who depend on public transport along withthe improvement of environmental conditions.

  15. Nuclear Structure

    Science.gov (United States)

    Gargano, Angela

    2003-04-01

    An account of recent studies in the field of theoretical nuclear structure is reported. These studies concern essentially research activities performed under the Italian project "Fisica Teorica del Nucleo e dei Sistemi a Molti Corpi". Special attention is addressed to results obtained during the last two years as regards the development of new many-body techniques as well as the interpretation of new experimental aspects of nuclear structure.

  16. Nuclear Data

    Energy Technology Data Exchange (ETDEWEB)

    White, Morgan C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  17. Enhancing laboratory activities in nuclear medicine education.

    Science.gov (United States)

    Grantham, Vesper; Martin, Chris; Schmitz, Casey

    2009-12-01

    Hands-on or active learning is important in nuclear medicine education. As more curricula start to require greater standards and as distance education expands, the effective use of laboratories in nuclear medicine education remains important in physics, instrumentation, and imaging but is often overlooked or underutilized. Laboratory exercises are a unique opportunity for nuclear medicine educators to facilitate students' critical thinking and problem-solving skills in a manner that often cannot occur in lectures or during online education. Given the lack of current laboratory tools and publications, there exists a requirement for nuclear medicine educators to develop, enhance, and monitor educational tools for laboratory exercises. Expanding technologies, variations in imaging and measurement systems, and the need to ensure that the taught technology is relevant to nuclear medicine students are issues faced by nuclear medicine educators. This article, based on principles of instructional design, focuses on the components and development of effective and enhanced nuclear medicine laboratories in our current educational environment.

  18. Experimental techniques in nuclear and particle physics

    CERN Document Server

    Tavernier, Stefaan

    2009-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and...

  19. Theoretical nuclear and subnuclear physics

    CERN Document Server

    Walecka, John Dirk

    1995-01-01

    This comprehensive text expertly details the numerous theoretical techniques central to the discipline of nuclear physics. It is based on lecture notes from a three-lecture series given at CEBAF (the Continuous Electron Beam Accelerator Facility), where John Dirk Walecka at the time was Scientific Director: "Graduate Quantum Mechanics", "Advanced Quantum Mechanics and Field Theory" and "Special Topics in Nuclear Physics". The primary goal of this text is pedagogical; providing a clear, logical, in-depth, and unifying treatment of many diverse aspects of modern nuclear theory ranging from the non-relativistic many-body problem to the standard model of the strong, electromagnetic, and weak interactions. Four key topics are emphasised in this text: basic nuclear structure, the relativistic nuclear many-body problem, strong-coupling QCD, and electroweak interactions with nuclei. The text is designed to provide graduate students with a basic level of understanding of modern nuclear physics so that they in turn can...

  20. Nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  1. Institute of Electrical and Electronics Engineers, Nuclear Science Symposium, 18th, and Nuclear Power Systems Symposium, 3rd, San Francisco, Calif., November 3-5, 1971, Proceedings.

    Science.gov (United States)

    1972-01-01

    Potential advantages of fusion power reactors are discussed together with the protection of the public from radioactivity produced in nuclear power reactors, and the significance of tritium releases to the environment. Other subjects considered are biomedical instrumentation, radiation damage problems, low level environmental radionuclide analysis systems, nuclear techniques in environmental research, nuclear instrumentation, and space and plasma instrumentation. Individual items are abstracted in this issue.

  2. Nuclear Science Symposium, 20th, and Nuclear Power Systems Symposium, 5th, San Francisco, Calif., November 14-16, 1973, Proceedings

    Science.gov (United States)

    1974-01-01

    Subjects considered are in the areas of position sensitive detectors, semiconductor detector materials, semiconductor detector technology, biomedical instrumentation, reactor instrumentation, nuclear instrumentation, and data acquisition and processing. Topics related to photon detection are discussed together with methods for environmental radiation measurement, aspects of environmental gamma-ray analysis, and nuclear techniques for elemental analysis. Attention is also given to operation and design experience with systems at nuclear power plants. Individual items are announced in this issue.

  3. New In-pile Instrumentation to Support Fuel Cycle Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    J. Rempe; H. MacLean; R. Schley; D. Hurley; J. Daw; S. Taylor; J. Smith; J. Svoboda; D. Kotter; D. Knudson; M. Guers; S. C. Wilkins

    2011-01-01

    New and enhanced nuclear fuels are a key enabler for new and improved reactor technologies. For example, the goals of the next generation nuclear plant (NGNP) will not be met without irradiations successfully demonstrating the safety and reliability of new fuels. Likewise, fuel reliability has become paramount in ensuring the competitiveness of nuclear power plants. Recently, the Office of Nuclear Energy in the Department of Energy (DOE-NE) launched a new direction in fuel research and development that emphasizes an approach relying on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time, data are essential for characterizing the performance of new fuels during irradiation testing. A three-year strategic research program is proposed for developing the required test vehicles with sensors of unprecedented accuracy and resolution for obtaining the data needed to characterize three-dimensional changes in fuel microstructure during irradiation testing. When implemented, this strategy will yield test capsule designs that are instrumented with new sensor technologies for the Advanced Test Reactor (ATR) and other irradiation locations for the Fuel Cycle Research and Development (FC R&D) program. Prior laboratory testing, and as needed, irradiation testing, of these sensors will have been completed to give sufficient confidence that the irradiation tests will yield the required data. Obtaining these sensors must draw upon the expertise of a wide-range of organizations not currently supporting nuclear fuels research. This document defines this strategic program and provides the necessary background information related to fuel irradiation testing, desired parameters for detection, and an overview of currently available in-pile instrumentation. In addition, candidate sensor technologies are identified in this document, and a list of proposed criteria for ranking

  4. Materials presented at the 27 All-Polish Seminar on the Nuclear Magnetic Resonance and its application; Materialy 27 ogolnopolskiego seminarium na temat magnetycznego rezonansu jadrowego i jego zastosowan

    Energy Technology Data Exchange (ETDEWEB)

    Hennel, J.W. [comp.

    1995-12-31

    In this report the contributions to the 27 All-Polish seminar on the Nuclear Magnetic Resonance and its Application are presented. They cover wide range of problems as NMR instrumentation, the NMR and spin relaxation theory, image analysis and computerized control systems for NMR spectrometers. The results of investigation using NMR on different scientific fields are also presented.

  5. Materials presented at the 26. All-Polish Seminar on the Nuclear Magnetic Resonance and its application; Materialy 26 ogolnopolskiego seminarium na temat magnetycznego rezonansu jadrowego i jego zastosowan

    Energy Technology Data Exchange (ETDEWEB)

    Hennel, J.W. [comp.

    1994-12-31

    In this report the contributions to the 26. All-Polish seminar on the Nuclear Magnetic Resonance and its Application are presented. They cover wide range of problems as NMR instrumentation, the NMR and spin relaxation theory, image analysis and computerized control systems for NMR spectrometers. The results of investigation using NMR on different scientific fields are also presented.

  6. Small Cold Temperature Instrument Packages

    Science.gov (United States)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  7. Executive committee report: geotechnical instrumentation working group meeting

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, D.G.; Rogue, F.; Beloff, W.R.; Binnall, E.; Gregory, E.C.

    1982-04-26

    Responding to the widespread need for the geotechnical community to discuss instrumentation for nuclear waste repositories, a meeting was held December 2 and 3, 1981, in Denver, Colorado. This report gives the group's consensus recommendations to aid in making decisions for development of instrumentation for future repository work. The main conclusions of the working group meeting were as follows: (1) monitoring of geotechnical parameters in nuclear waste repositories will be necessary to meet licensing requirements; (2) currently available instruments are underdeveloped for this monitoring; (3) research and development to provide adequate instrumentation will need to be performed under federal sponsorship by national laboratories, universities, contractors, and consultants; and (4) a NASA-type reliability program is needed to meet the quality assurance, durability, calibration, and time schedule demands of geotechnical instrumentation development. This will require significant financial commitments from the federal sector.

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  9. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  11. General Nuclear Medicine

    Science.gov (United States)

    ... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  14. Exotic nuclear excitations

    CERN Document Server

    Pancholi, S C

    2011-01-01

    By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...

  15. Networked Instrumentation Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have developed a networked instrumentation system that connects modern experimental payloads to existing analog and digital communications...

  16. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  17. An international comparison of surface texture parameters quantification on polymer artefacts using optical instruments

    DEFF Research Database (Denmark)

    Tosello, Guido; Haitjema, H.; Leach, R.K.

    2016-01-01

    An international comparison of optical instruments measuring polymer surfaces with arithmetic mean height values in the sub-micrometre range has been carried out. The comparison involved sixteen optical surface texture instruments (focus variation instruments, confocal microscopes and coherent...

  18. [Experimental nuclear physics]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  19. Instrumentation Design and Development Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has facilities for design, development and fabrication of: custominstrumentation, mobile instrumentation, miniaturized instrumentation, wirelessinstrumentation,...

  20. The Polar Plasma Wave Instrument

    Science.gov (United States)

    Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.

    1995-01-01

    The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).

  1. Nuclear enthalpies

    Directory of Open Access Journals (Sweden)

    Rozynek Jacek

    2015-01-01

    Full Text Available Even small departures from a nuclear equilibrium density with constant nucleon masses require an increase of a nucleon enthalpy. This process can be described as volume corrections to a nucleon rest energy, which are proportional to pressure and absent in a standard Relativistic Mean Field (RMF with point-like nucleons. Bag model and RMF calculations show the modifications of nucleon mass, nucleon radius and a Parton Distribution Function (PDF of Nuclear Matter (NM above the saturation point originated from the pressure correction.

  2. Nuclear spectroscopy

    CERN Document Server

    Ajzenberg-Selove, Fay

    1960-01-01

    Nuclear Spectroscopy, Part A deals with the experimental and theoretical techniques involved in nuclear spectroscopy.This book discusses the interactions of charged particles with matter, gaseous ionization detectors, and particular mass attenuation coefficients. The magnetic gamma-ray spectrometers for photo or internal-conversion electrons, general characteristics of cross-section variation with energy, and measurement of fast neutron spectra are also elaborated. This text likewise covers the elastic scattering of photons by nuclei and measurement of widths of gamma-radiating levels.This pub

  3. Novel technologies for the detection of undeclared nuclear activities, materials and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Whichello, Julian V.K.; Annese, Cynthia E. [International Atomic Energy Agency, Vienna (Austria). Division of Technical Support

    2008-07-01

    This paper will discuss the International Atomic Energy Agency's (IAEA's) Novel Technologies Project and its main goal of developing improved methods and technologies that will further enhance the detection of undeclared nuclear activities, materials and facilities. A major and fundamental task within the Project has been the development of methodologies and tools for identifying, documenting and utilizing nuclear fuel cycle (NFC) indicators and signatures (I and S) to facilitate a nuclear safeguards technology gap analysis. The outcome of this work will provide a basis for a novel range of methods and instruments, the development of which will contribute to the IAEA's overall objective of enhanced detection capabilities. (author)

  4. Sterilization of endoscopic instruments.

    Science.gov (United States)

    Sabnis, Ravindra B; Bhattu, Amit; Vijaykumar, Mohankumar

    2014-03-01

    Sterilization of endoscopic instruments is an important but often ignored topic. The purpose of this article is to review the current literature on the sterilization of endoscopic instruments and elaborate on the appropriate sterilization practices. Autoclaving is an economic and excellent method of sterilizing the instruments that are not heat sensitive. Heat sensitive instruments may get damaged with hot sterilization methods. Several new endoscopic instruments such as flexible ureteroscopes, chip on tip endoscopes, are added in urologists armamentarium. Many of these instruments are heat sensitive and hence alternative efficacious methods of sterilization are necessary. Although ethylene oxide and hydrogen peroxide are excellent methods of sterilization, they have some drawbacks. Gamma irradiation is mainly for disposable items. Various chemical agents are widely used even though they achieve high-level disinfection rather than sterilization. This article reviews various methods of endoscopic instrument sterilization with their advantages and drawbacks. If appropriate sterilization methods are adopted, then it not only will protect patients from procedure-related infections but prevent hypersensitive allergic reactions. It will also protect instruments from damage and increase its longevity.

  5. Creating a Super Instrument

    DEFF Research Database (Denmark)

    Kallionpää, Maria; Gasselseder, Hans-Peter

    2015-01-01

    traditionally been dependent on their existing instrumental skills, various technological solutions can be used to reach beyond them. This paper focuses on the possibilities of enhancing composers' and performing pianists' technical and expressive vocabulary in the context of electroacoustic super instrument...

  6. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    Science.gov (United States)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  7. Nuclear and High-Energy Astrophysics

    Science.gov (United States)

    Weber, Fridolin

    2003-10-01

    There has never been a more exciting time in the overlapping areas of nuclear physics, particle physics and relativistic astrophysics than today. Orbiting observatories such as the Hubble Space Telescope, Rossi X-ray Timing Explorer (RXTE), Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM) have extended our vision tremendously, allowing us to see vistas with an unprecedented clarity and angular resolution that previously were only imagined, enabling astrophysicists for the first time ever to perform detailed studies of large samples of galactic and extragalactic objects. On the Earth, radio telescopes (e.g., Arecibo, Green Bank, Parkes, VLA) and instruments using adaptive optics and other revolutionary techniques have exceeded previous expectations of what can be accomplished from the ground. The gravitational wave detectors LIGO, LISA VIRGO, and Geo-600 are opening up a window for the detection of gravitational waves emitted from compact stellar objects such as neutron stars and black holes. Together with new experimental forefront facilities like ISAC, ORLAND and RIA, these detectors provide direct, quantitative physical insight into nucleosynthesis, supernova dynamics, accreting compact objects, cosmic-ray acceleration, and pairproduction in high energy sources which reinforce the urgent need for a strong and continuous feedback from nuclear and particle theory and theoretical astrophysics. In my lectures, I shall concentrate on three selected topics, which range from the behavior of superdense stellar matter, to general relativistic stellar models, to strange quark stars and possible signals of quark matter in neutron stars.

  8. Musical Instruments, Models, and Machines.

    Science.gov (United States)

    Gershenfeld, Neil

    1996-11-01

    A traditional musical instrument is an analog computer that integrates equations of motion based on applied boundary conditions. We are approaching a remarkable time when advances in transducers, real-time computing, and mathematical modeling will enable new technology to emulate and generalize the physics of great musical instruments from first principles, helping virtuosic musicians to do more and non-musicians to engage in creative expression. I will discuss the underlying problems, including non-contact sensing and state reconstruction for nonlinear systems, describe exploratory performance collaborations with artists ranging from Yo-Yo Ma to Penn & Teller, and then consider the broader implications of these devices for the interaction between people and machines. Part B of program listing

  9. Science opportunities through nuclear power in space

    Science.gov (United States)

    Harris, Henry M.

    1995-01-01

    With the downsizing or outright elimination of nuclear power capability in space in progress, it is important to understand what this means to science in therms of capability cost. This paper is a survey of the scientific possibilities inherent in the potential availability of between 15 to 30 kW through electrical nuclear power in space. The approach taken has been to interview scientists involved in space-research, especially those whose results are dependent or proportional to power availability and to survey previous work in high-power spacecraft and space-based science instruments. In addition high level studies were done to gather metrics about what kind and quantity of science could be achieved throughout the entire solar system assuming the availability in the power amounts quoted above. It is concluded that: (1) Sustained high power using a 10-30 kW reactor would allow the capture of an unprecedented amount of data on planetary objects through the entire solar system. (2) High power science means high qualtiy data through higher resolution of radars, optics and the sensitivity of many types of instruments. (3) In general, high power in the range of 10-30 kW provides for an order-of-magnitude increase of resolution of synthetic aperture radars over other planetary radars. (4) High power makes possible the use of particle accelerators to probe the atomic structure of planetary surface, particularly in the dim, outer regions of the solar system. (5) High power means active cooling is possible for devices that must operate at low temperature under adverse conditions. (6) High power with electric propulsion provides the mission flexibility to vary observational viewpoints and select targets of opportunity.

  10. Nuclear energy.

    Science.gov (United States)

    Wilson, Peter D

    2010-01-01

    The technical principles and practices of the civil nuclear industry are described with particular reference to fission and its products, natural and artificial radioactivity elements principally concerned and their relationships, main types of reactor, safety issues, the fuel cycle, waste management, issues related to weapon proliferation, environmental considerations and possible future developments.

  11. Physics through the 1990s: Nuclear physics

    Science.gov (United States)

    1986-01-01

    The volume begins with a non-mathematical introduction to nuclear physics. A description of the major advances in the field follows, with chapters on nuclear structure and dynamics, fundamental forces in the nucleus, and nuclei under extreme conditions of temperature, density, and spin. Impacts of nuclear physics on astrophysics and the scientific and societal benefits of nuclear physics are then discussed. Another section deals with scientific frontiers, describing research into the realm of the quark-gluon plasma; the changing description of nuclear matter, specifically the use of the quark model; and the implications of the standard model and grand unified theories of elementary-particle physics; and finishes with recommendations and priorities for nuclear physics research facilities, instrumentation, accelerators, theory, education, and data bases. Appended are a list of national accelerator facilities, a list of reviewers, a bibliography, and a glossary.

  12. The study of ultrasonic reflex-radar waveguide coolant level gage for a nuclear reactor

    Directory of Open Access Journals (Sweden)

    V.I. Mel'nikov

    2016-03-01

    The instrument works reliably and does not require introducing corrections of readings when coolant thermal physical properties change. The measurement instrument is intended for application in heat exchanging equipment in thermal and nuclear power generation.

  13. Dancing genomes: fungal nuclear positioning

    Science.gov (United States)

    Gladfelter, Amy; Berman, Judith

    2009-01-01

    The many different mechanisms that fungi use to transmit and share genetic material are mediated by a broad range of chromosome and nuclear dynamics. The mechanics underlying nuclear migration are well integrated into detailed models, in which the forces supplied by plus- and minus-end-directed microtubule motors position and move the nucleus in a cell. Although we know much about how cells move nuclei, we know much less about why the cell invests in so many different nuclear ‘dances’. Here, we briefly survey the available models for the mechanics of nuclear migration in fungi and then focus on examples of how fungal cells use these nuclear dances — the movement of intact nuclei in and between cells — to control the integrity, ploidy and assortment of specific genomes or individual chromosomes. PMID:19898490

  14. Manganese/cerium clusters spanning a range of oxidation levels and CeMn(8), Ce(2)Mn(4), and Ce(6)Mn(4) nuclearities: structural, magnetic, and EPR properties.

    Science.gov (United States)

    Lampropoulos, Christos; Thuijs, Annaliese E; Mitchell, Kylie J; Abboud, Khalil A; Christou, George

    2014-07-07

    The syntheses, structures, and magnetic properties are reported for three new Ce/Mn clusters with different Ce/Mn ratios: [Ce6Mn4O12(O2CMe)10(NO3)4(py)4] (py = pyridine) (1), [CeMn8O8(O2CCH2(t)Bu)12(DMF)14] (DMF = dimethylformamide) (2), and [Ce2Mn4O2(O2CMe)6(NO3)4(hmp)4] (3; hmp(-) is the anion of 2-(hydroxymethyl)pyridine). 1 and 2 were obtained from the reaction of Ce(IV) with [Mn12O12(O2CMe)16(H2O)4] (Mn(III)8Mn(IV)4) and [Mn8O2(O2CCH2(t)Bu)14((t)BuCH2CO2H)4] (Mn(II)6Mn(III)2), respectively, whereas 3 resulted from the oxidation of Mn(II) acetate with Ce(IV) in the presence of hmpH. Cluster 1 possesses an unusual [Ce6Mn4O12](14+) core topology consisting of a [Ce6O8] face-capped octahedron, which is face-fused at each end to a [Ce(IV)2Mn(III)Mn(IV)O4] cubane. Cluster 2 possesses a nonplanar, saddlelike loop of eight Mn(III) atoms bridged by eight μ3-O(2-) ions to a central Ce(IV) atom. Cluster 3 is similar to 1 in possessing an octahedral core, but this is now a [Ce2Mn4] octahedron consisting of a Ce(III) atom on either side of a Mn4 parallelogram, with the metal atoms bridged by two μ4-O(2-) ions, the alkoxide arms of four hmp(-) groups, and six acetates. Clusters 1, 2, and 3 are thus at the Ce(IV)6Mn(III)2Mn(IV)2, Ce(IV)Mn(III)8, and Ce(III)2Mn(III)4 oxidation levels, respectively. Variable-temperature, solid-state direct current (DC) and alternating current (AC) magnetization studies on 1-3 in the 5.0-300 K range revealed predominantly antiferromagnetic exchange interactions within the complexes. For 1, fitting of the DC data to the theoretical expression for a dinuclear Mn(III)Mn(IV) complex derived using the Van Vleck equation and an isotropic spin Hamiltonian (ℋ = -2JŜi·Ŝj convention) gave a value for the exchange coupling parameter (J) of -60.4(7) cm(-1) and a Landé factor g = 2.00(1), indicating an S = 1/2 ground state. For 2, both DC and AC data indicate an S = 0 ground state, which is unprecedented for a member of the CeMn8 family and now

  15. IMPROVED TECHNNOLOGY TO PREVENT ILLICIT TRAFFICKING IN NUCLEAR MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J H

    2005-07-20

    The proliferation of nuclear, chemical, and biological weapons (collectively known as weapons of mass destruction, or WMD) and the potential acquisition and use of WMD against the world by terrorists are extremely serious threats to international security. These threats are complex and interrelated. There are myriad routes to weapons of mass destruction--many different starting materials, material sources, and production processes. There are many possible proliferators--threshold countries, rogue states, state-sponsored or transnational terrorists groups, domestic terrorists, and even international crime organizations. Motives for acquiring and using WMD are similarly wide ranging--from a desire to change the regional power balance, deny access to a strategic area, or alter international policy to extortion, revenge, or hate. Because of the complexity of this threat landscape, no single program, technology, or capability--no silver bullet--can solve the WMD proliferation and terrorism problem. An integrated program is needed that addresses the WMD proliferation and terrorism problem from end to end, from prevention to detection, reversal, and response, while avoiding surprise at all stages, with different activities directed specifically at different types of WMD and proliferators. Radiation detection technologies are an important tool in the prevention of proliferation. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. The radiation properties of nuclear materials, particularly highly enriched uranium (HEU), make the detection of smuggled nuclear materials technically difficult. A number of efforts are under way to devise improved detector materials and instruments and to identify novel signatures that could be detected. Key applications of this work include monitoring for radioactive

  16. Intraoral Pressure in Ethnic Wind Instruments

    CERN Document Server

    Goss, Clinton F

    2013-01-01

    High intraoral pressure generated when playing some wind instruments has been linked to a variety of health issues. Prior research has focused on Western classical instruments, but no work has been published on ethnic wind instruments. This study measured intraoral pressure when playing six classes of ethnic wind instruments (N = 149): Native American flutes (n = 71) and smaller samples of ethnic duct flutes, reed instruments, reedpipes, overtone whistles, and overtone flutes. Results are presented in the context of a survey of prior studies, providing a composite view of the intraoral pressure requirements of a broad range of wind instruments. Mean intraoral pressure was 8.37 mBar across all ethnic wind instruments and 5.21 +/- 2.16 mBar for Native American flutes. The range of pressure in Native American flutes closely matches pressure reported in other studies for normal speech, and the maximum intraoral pressure, 20.55 mBar, is below the highest subglottal pressure reported in other studies during singing...

  17. Instrumentation reference book

    CERN Document Server

    Boyes, Walt

    2002-01-01

    Instrumentation is not a clearly defined subject, having a 'fuzzy' boundary with a number of other disciplines. Often categorized as either 'techniques' or 'applications' this book addresses the various applications that may be needed with reference to the practical techniques that are available for the instrumentation or measurement of a specific physical quantity or quality. This makes it of direct interest to anyone working in the process, control and instrumentation fields where these measurements are essential.* Comprehensive and authoritative collection of technical information* Writte

  18. The role of general nuclear medicine in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Lacey R, E-mail: lgreene@csu.edu.au [Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales (Australia); Wilkinson, Deborah [Faculty of Health, Wheeling Jesuit University, Wheeling, West Virginia (United States); Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales (Australia)

    2015-03-15

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer.

  19. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  20. Nuclear medical oncology; Nuklearmedizinische Onkologie

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Bernd J.; Buck, Andreas K.; Schwaiger, Markus (eds.) [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik

    2007-07-01

    Modern nuclear oncology is based on molecular imaging techniques and radiotherapy. The book is aimed to integrate efficiently nuclear medical diagnostics and therapy into oncologic patient management. The book covers the following topics: Chapter 1: basics: instrumentation (SPECT, PET, PET/CT), digital image processing, radiopharmaceuticals, radiation protection, nuclear medical dosimetry, radiotherapy planning. Chapter 2: diagnostics: PET and PET/CT, skeleton metastases diagnostics, lymphoma diagnostics in case of mammary carcinomas and malign melanoma, MIBG (metaiodobenzylguanidin) diagnostics. Chapter 3: therapy: Radiotherapy of thyroid carcinomas, radioimmunotherapy of malign melanomas and in haematology, MIBG therapy, radiotherapy of neuroendocrine tumors, radiotherapy of skeleton metastases, intercavitary and locoregional therapy, 32{sup 3}2 phosphor therapy of polycythaemia vera.

  1. U.S. Forward Operating Base Applications of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, George W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  2. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    Science.gov (United States)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  3. Carbon Footprint Reduction Instruments

    Science.gov (United States)

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  4. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  5. Ultrasound physics and instrumentation.

    Science.gov (United States)

    Case, T D

    1998-04-01

    A knowledge of the principles of ultrasound physics and instrumentation allows the surgeon to maintain proper ultrasound techniques and obtain the best possible image. Furthermore, when these principles are understood, artifacts and pitfalls of imaging are avoided.

  6. Medical instruments in museums

    DEFF Research Database (Denmark)

    Söderqvist, Thomas; Arnold, Ken

    2011-01-01

    This essay proposes that our understanding of medical instruments might benefit from adding a more forthright concern with their immediate presence to the current historical focus on simply decoding their meanings and context. This approach is applied to the intriguingly tricky question of what a...... actually is meant by a "medical instrument." It is suggested that a pragmatic part of the answer might lie simply in reconsidering the holdings of medical museums, where the significance of the physical actuality of instruments comes readily to hand.......This essay proposes that our understanding of medical instruments might benefit from adding a more forthright concern with their immediate presence to the current historical focus on simply decoding their meanings and context. This approach is applied to the intriguingly tricky question of what...

  7. Protecting researchers from instrument biohazards.

    Science.gov (United States)

    Hambleton, P; Dedonato, G

    1992-09-01

    The prevention and control of biohazards arising from the use of laboratory instruments have become increasingly important in clinical and research applications. Centrifuges can be susceptible to contamination because of intense wear on primary containers (specimen tubes and bottles), worn O-ring container seals, or rotors and buckets lacking tight seals. A recent study by the Center for Applied Microbiology and Research, Porton Down, UK, has determined the biological safety of certain rotors in various speed ranges. This paper presents and discusses these findings.

  8. Condensation Particle Counter Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The Model 3772 CPC is a compact, rugged, and full-featured instrument that detects airborne particles down to 10 nm in diameter, at an aerosol flow rate of 1.0 lpm, over a concentration range from 0 to 1x104 #/cc. This CPC is ideally suited for applications without high concentration measurements, such as basic aerosol research, filter and air-cleaner testing, particle counter calibrations, environmental monitoring, mobile aerosol studies, particle shedding and component testing, and atmospheric and climate studies.

  9. Nuclear politics

    Science.gov (United States)

    Ranson, John

    2009-04-01

    The sentiments expressed by Sidney Drell in his forum article "The nuclear threat: a new start" (February pp16-17) are laudable, but it was disappointing to find this almost entirely political story in isolation. The article, which outlined the prospects for reducing weapons stockpiles under the new US administration, would have been more pertinent as an introduction to a series describing the technology used in detecting nuclear-testing activity. It would have been interesting to discuss the specific equipment and methods used, together with the analysis and correlation techniques - along with an indication of how sensitive and reliable they are (if the information is not classified). It is far easier to detect an explosive event than it is to detect and quantify weapons stores, which is a key factor for any negotiated solution. Apart from deductions based on actual inspection and satellite surveillance, are there other techniques that can be applied to this issue?

  10. Modeling of Musical Instruments

    Science.gov (United States)

    Bader, Rolf; Hansen, Uwe

    Signal processing techniques in acoustics address many concerns. Included are such things as wave propagation variables, amplitude considerations, spectral content, wavelength, and phase. Phase is primarily of concern when waves interact with each other, as well as with a medium, and the imposition of boundary conditions leads to normal mode vibrations. Such conditions are prevalent in all musical instruments, and thus relevant signal processing techniques are essential to both understanding and modeling the structure of musical instruments and the sound radiated.

  11. [The instrument for thermography].

    Science.gov (United States)

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages.

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... are the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a ... top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is ...

  13. NUCLEAR REACTOR

    Science.gov (United States)

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  14. Strontium Iodide Radiation Instrumentation (SIRI)

    Science.gov (United States)

    Mitchell, Lee J.; Phlips, Bernard F.; Woolf, Richard S.; Finne, Theodore T.; Johnson, W. Neil; Jackson, Emily G.

    2017-08-01

    The Strontium Iodide Radiation Instrumentation (SIRI) is designed to space-qualify new gamma-ray detector technology for space-based astrophysical and defense applications. This new technology offers improved energy resolution, lower power consumption and reduced size compared to similar systems. The SIRI instrument consists of a single europiumdoped strontium iodide (SrI2:Eu) scintillation detector. The crystal has an energy resolution of 3% at 662 keV compared to the 6.5% of traditional sodium iodide and was developed for terrestrial-based weapons of mass destruction (WMD) detection. SIRI's objective is to study the internal activation of the SrI2:Eu material and measure the performance of the silicon photomultiplier (SiPM) readouts over a 1-year mission. The combined detector and readout measure the gammaray spectrum over the energy range of 0.04 - 4 MeV. The SIRI mission payoff is a space-qualified compact, highsensitivity gamma-ray spectrometer with improved energy resolution relative to previous sensors. Scientific applications in solar physics and astrophysics include solar flares, Gamma Ray Bursts, novae, supernovae, and the synthesis of the elements. Department of Defense (DoD) and security applications are also possible. Construction of the SIRI instrument has been completed, and it is currently awaiting integration onto the spacecraft. The expected launch date is May 2018 onboard STPSat-5. This work discusses the objectives, design details and the STPSat-5 mission concept of operations of the SIRI spectrometer.

  15. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  16. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  17. The LUVOIR architecture "A" coronagraph instrument

    Science.gov (United States)

    Pueyo, L.; Zimmerman, N.; Bolcar, M.; Groff, T.; Stark, C.; Ruane, G.; Jewell, J.; Soummer, R.; St. Laurent, K.; Wang, J.; Redding, D.; Mazoyer, J.; Fogarty, K.; Juanola-Parramon, Roser; Domagal-Goldman, S.; Roberge, A.; Guyon, O.; Mandell, A.

    2017-09-01

    In preparation for the Astro 2020 Decadal Survey NASA has commissioned the study four flagship missions spanning to a wide range of observable wavelengths: the Origins Space Telescope (OST, formerly the Far-Infrared Surveyor), Lynx (formerly the X-ray Surveyor), the Large UV/Optical/Infrared Surveyor (LUVOIR) and the Habitable Exoplanet Imager (HabEx). One of the key scientific objectives of the latter two is the detection and characterization of the earth-like planets around nearby stars using the direct imaging technique (along with a broad range of investigations regarding the architecture of and atmospheric composition exoplanetary systems using this technique). As a consequence dedicated exoplanet instruments are being studied for these mission concepts. This paper discusses the design of the coronagraph instrument for the architecture "A" (15 meters aperture) of LUVOIR. The material presented in this paper is aimed at providing an overview of the LUVOIR coronagraph instrument. It is the result of four months of discussions with various community stakeholders (scientists and technologists) regarding the instrument's basic parameters followed by meticulous design work by the the GSFC Instrument Design Laboratory team. In the first section we review the main science drivers, presents the overall parameters of the instrument (general architecture and backend instrument) and delve into the details of the currently envisioned coronagraph masks along with a description of the wavefront control architecture. Throughout the manuscript we describe the trades we made during the design process. Because the vocation of this study is to provide a baseline design for the most ambitious earth-like finding instrument that could be possibly launched into the 2030's, we have designed an complex system privileged that meets the ambitious science goals out team was chartered by the LUVOIR STDT exoplanet Working Group. However in an effort to minimize technological risk we tried

  18. Nondestructive assay instruments for the DYMAC program at the Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, R.S.

    1977-01-01

    A real-time, nuclear materials control system, called DYMAC, will begin operation in November at the new plutonium processing facility at the Los Alamos Scientific Laboratory. The DYMAC system relies on three types of nondestructive assay instruments to control nuclear material dynamically: weighing instruments, neutron counters, and gamma counters. Remoted electronic balances and load cells weigh the nuclear material in process. DYMAC uses two types of neutron counters, thermal-neutron coincidence counters and fast-neutron coincidence counters. There are two types of gamma counters, one assays liquids and another solids; both are gamma spectroscopy instruments which use germanium detectors.

  19. Nuclear photonics

    Science.gov (United States)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  20. Radiac Instruments and Film Badges Used at Atmospheric Nuclear Tests.

    Science.gov (United States)

    1985-09-26

    National TL-chnical Labs *MX-2 12:7 + 25% (est) 2A, 13 National TL-chnical Labs *MX-6 12:7 + 25% (est) 2A, 13 Rauland Manufacturing Co. Z-100/100A (" Zeus ...27, 31 X-325, Victoreen .......................................... ........... 27 - -° • - . . Z-100/100A (" Zeus ") Rau-land...Hillsborough County Public Library UCLA Research Liorary ATTN: XXXXX ATTN: Public Affairs Service, US Docs - Temple University Uniformed Svcs University of the

  1. Particle and nuclear physics instrumentation and its broad connections

    Science.gov (United States)

    Demarteau, M.; Lipton, R.; Nicholson, H.; Shipsey, I.

    2016-10-01

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector research and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. This symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.

  2. Nuclear safety, Volume 38, Number 1, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-03-01

    This journal contains nine articles which fall under the following categories: (1) general safety considerations; (2) control and instrumentation; (3) design features (4) environmental effects; (5) US Nuclear Regulatory Commission information and analyses; and (6) recent developments.

  3. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  4. A portable and wide energy range semiconductor-based neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hoshor, C.B. [Department of Physics, University of Missouri, Kansas City, MO (United States); Oakes, T.M. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R. [Department of Physics, University of Missouri, Kansas City, MO (United States); Miller, W.H. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Missouri University Research Reactor, Columbia, MO (United States); Bellinger, S.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Sobering, T.J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS (United States); Fronk, R.G.; Shultis, J.K.; McGregor, D.S. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Caruso, A.N., E-mail: carusoan@umkc.edu [Department of Physics, University of Missouri, Kansas City, MO (United States)

    2015-12-11

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  5. Virtual Instrumentation and Virtual Environments

    NARCIS (Netherlands)

    Spoelder, H.J.W.

    1999-01-01

    Instrumentation, interaction and virtual environments provide a challenging triplet for the next generation of instrumentation and measurement tools. As such, they are the logical continuation of an increasingly important component within (virtual) instrumentation. Despite these changes, however,

  6. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  7. Instrument evaluation no. 10. Scanray radiation meter type 751

    CERN Document Server

    Burgess, P H; White, D F

    1978-01-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the a...

  8. Instrument evaluation no. 33. Automess Szintomat 6134 radiation survey meter

    CERN Document Server

    McClure, D R

    1986-01-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the a...

  9. Instrument evaluation no. 32. Alnor RD universal survey meter

    CERN Document Server

    McClure, D R

    1984-01-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the a...

  10. Instrument evaluation no. 12. Victoreen panoramic 470 - A survey meter

    CERN Document Server

    Burgess, P H

    1978-01-01

    The various radiations, encountered in radiological protection cover a wide range of energies and radiation measurements, have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the...

  11. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  12. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  13. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  14. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  15. Biochemistry Instrumentation Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — The UCLA-DOE Biochemistry Instrumentation Core Facility provides the UCLA biochemistry community with easy access to sophisticated instrumentation for a wide variety...

  16. Aethalometer™ Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and a “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.

  17. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  18. ISSUERS OF FINANCIAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Cristian GHEORGHE

    2016-05-01

    Full Text Available The rules laid down by Romanian Capital Market Law and the regulations put in force for its implementation apply to issuers of financial instruments admitted to trading on the regulated market established in Romania. But the issuers remain companies incorporated under Company Law of 1990. Such dual regulations need increased attention in order to observe the legal status of the issuers/companies and financial instruments/shares. Romanian legislator has chosen to implement in Capital Market Law special rules regarding the administration of the issuers of financial instruments, not only rules regarding admitting and maintaining to a regulated market. Thus issuers are, in Romanian Law perspective, special company that should comply special rule regarding board of administration and general shareholders meeting.

  19. Musical instruments in the 21st century identities, configurations, practices

    CERN Document Server

    Campo, Alberto; Egermann, Hauke; Hardjowirogo, Sarah-Indriyati; Weinzierl, Stefan

    2017-01-01

    By exploring the many different types and forms of contemporary musical instruments, this book contributes to a better understanding of the conditions of instrumentality in the 21st century. Providing insights from science, humanities and the arts, authors from a wide range of disciplines discuss the following questions: · What are the conditions under which an object is recognized as a musical instrument? · What are the actions and procedures typically associated with musical instruments? · What kind of (mental and physical) knowledge do we access in order to recognize or use something as a musical instrument? · How is this knowledge being shaped by cultural conventions and temporal conditions? · How do algorithmic processes 'change the game' of musical performance, and as a result, how do they affect notions of instrumentality? · How do we address the question of instrumental identity within an instrument's design process? · What properties can be used to differentiate successful and unsuccessful ins...

  20. Nuclear physics experiments with in-beam fast-timing and plunger techniques

    Science.gov (United States)

    Sotty, C.

    2017-06-01

    Nuclear lifetime and g factor are crucial observables in nuclear physics, as they give access to the excited states nuclear wave functions using the well-known electromagnetic transition operators. Thus, they are benchmarks to validate or discard nuclear structure theories. During the last decades, the evolution of the nuclear instruments and methods gave birth to several techniques used to measure lifetimes and moments. Among them, the in-beam Fast Electronic Scintillation Timing (FEST) technique is used to measure lifetimes of nuclear states in the picosecond to nanosecond range. Plunger devices originally developed to perform lifetime measurements of excited states in the picosecond range using the Recoil Distance Doppler Shift (RDDS) are now also employed to measure g factor using the new Time-Differential Recoil-In-Vacuum (TDRIV) technique. Recently commissioned, the ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) is dedicated to perform γ-ray spectroscopy, specially suited for lifetime measurements using the RDDS and in-beam fast-timing techniques at the 9 MV Bucharest-Tandem accelerator facility of the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH). An introduction of above-mentioned techniques is provided and selected results are illustrating them with physics cases. The in-beam fast-timing and RDDS techniques are described using lifetime measurements respectively in 67Cu and 120Te measured at the 9 MV Bucharest-Tandem accelerator. Finally, the precise g factor measurement of the first-excited state in 24Mg using by the new TDRIV technique at the ALTO-Tandem Orsay facility is presented.

  1. Instrument Noise Simulation for GRACE Follow-On

    Science.gov (United States)

    Darbeheshti, N.; Mueller, V.; Wegener, H.; Hewitson, M.; Heinzel, G.; Naeimi, M.; Flury, J.

    2016-12-01

    The quality of the temporal gravity field from GRACE Follow-On mission depends on its multi-sensor system consisting of inter-satellite ranging with microwave and laser ranging instrument, GNSS orbit tracking, accelerometry, and attitude sensing. In this presentation, the noise models for GRACE Follow-On major instruments are described and their effect on the estimation of Earth's gravity field accuracy are discussed. To do this the spectrum of the instruments noise models has been related to the spectrum of the disturbing potential of the Earth's gravity field. The instrument noise models are available to the geodesy community through GRACE Follow-On mock data challenges. The performance of gravity field recovery approaches can be tested by comparing observation residuals to the simulated instrument noises. The instrument noise models will also provide valuable insight for inter-satellite ranging configurations beyond GRACE Follow-On.

  2. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  3. Nuclear Data Needs and Capabilities for Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  4. Beam instrumentation in a multidisciplinary accelerator facility

    NARCIS (Netherlands)

    Schippers, J.M.; Boon, S.N.; Dermois, O.C.; Kiewiet, H.H.

    Some recently developed beam diagnostic devices for the beam lines of the AGOR cyclotron are reviewed. The range of applications is from low background nuclear physics experiments at "zero degree" to radiation therapy with proton beams. In particular a method to improve beam quality and the

  5. Standard NIM Instrumentation System

    Energy Technology Data Exchange (ETDEWEB)

    Costrell, Louis [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Lenkszus, Frank R. [Argonne National Lab. (ANL), Argonne, IL (United States); Rudnick, Stanley J. [Argonne National Lab. (ANL), Argonne, IL (United States); Davey, Eric [Atomic Energy of Canada (AECL), Limited, Chalk River, ON (Canada); Gould, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Rankowitz, Seymour [Brookhaven National Lab. (BNL), Upton, NY (United States); Sims, William P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Whitney, R. Roy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Continuous Electron Beam Accelerator Facility (CEBAF); Dobinson, Robert W. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Verweij, Henk [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Latner, Norman [Environmental Measurements Lab., New York, NY (United States); Negro, Vincent C. [Environmental Measurements Lab., New York, NY (United States); Barsotti, Edward J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Droege, Thomas E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kerns, Cordon [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Turner, Kathleen J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Downing, Robert W. [Univ. of Illinois, Urbana, IL (United States); Kirsten, Frederick A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Larsh, A. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Loken, Stewart C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mack, Dick A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wagner, Lee J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lucena, Robert C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); O' Brien, Dennis W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gjovig, Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naivar, Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Ronald O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, D. Hywell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Akerlof, Carl [Univ. of Michigan, Ann Arbor, MI (United States); Stilwell, Donald E. [National Aeronautics and Space Administration, Washington, DC (United States); Trainor, James H. [National Aeronautics and Space Administration, Washington, DC (United States); Gobbi, Bruno [Northwestern Univ., Evanston, IL (United States); Biggerstaff, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hill, Nat W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schulze, Gerald K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gustavson, David B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Horelick, Dale [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kunz, Paul F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Paffrath, Leo [SLAC National Accelerator Lab., Menlo Park, CA (United States); Walz, Helmut V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dawson, W. Kenneth [TRIUMF, Vancouver, BC (Canada); Cresswell, John [TRIUMF, Vancouver, BC (Canada); Dhawan, Satish [Yale Univ., New Haven, CT (United States); Gingell, Charles E. L. [Yale Univ., New Haven, CT (United States)

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice.

  6. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  7. Standard NIM instrumentation system

    CERN Document Server

    1990-01-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID- 20893 (Rev 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice.

  8. US changes course on nuclear-weapons strategy

    Science.gov (United States)

    Gwynne, Peter

    2010-05-01

    US President Barack Obama has signalled a new approach to nuclear-weapons policy that limits their use against other states and documents how the country will ensure the viability of existing stockpiles. The Nuclear Posture Review (NPR), which sets out the US's nuclear strategy over a 10-year period, also calls for a highly skilled workforce to ensure "the long-term safety, security and effectiveness of the nuclear arsenal and to support the full range of nuclear-security work".

  9. Dictionary of nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sube, R.

    1985-01-01

    Ralf Sube, an experienced compiler of three wellknown four-language reference works has now prepared this glossary of nuclear engineering terms in English, German, French and Russian. Based on the proven lexicography of the Technik-Worterbuch series, it comprises about 30,000 terms in each language covering the following: Nuclear and Atomic Physics; Nuclear Radiation and Isotopes; Nuclear Materials; Nuclear Facilties; Nuclear Power Industry; Nuclear Weapons.

  10. Nuclear Tools For Oilfield Logging-While-Drilling Applications

    Science.gov (United States)

    Reijonen, Jani

    2011-06-01

    Schlumberger is an international oilfield service company with nearly 80,000 employees of 140 nationalities, operating globally in 80 countries. As a market leader in oilfield services, Schlumberger has developed a suite of technologies to assess the downhole environment, including, among others, electromagnetic, seismic, chemical, and nuclear measurements. In the past 10 years there has been a radical shift in the oilfield service industry from traditional wireline measurements to logging-while-drilling (LWD) analysis. For LWD measurements, the analysis is performed and the instruments are operated while the borehole is being drilled. The high temperature, high shock, and extreme vibration environment of LWD imposes stringent requirements for the devices used in these applications. This has a significant impact on the design of the components and subcomponents of a downhole tool. Another significant change in the past few years for nuclear-based oilwell logging tools is the desire to replace the sealed radioisotope sources with active, electronic ones. These active radiation sources provide great benefits compared to the isotopic sources, ranging from handling and safety to nonproliferation and well contamination issues. The challenge is to develop electronic generators that have a high degree of reliability for the entire lifetime of a downhole tool. LWD tool testing and operations are highlighted with particular emphasis on electronic radiation sources and nuclear detectors for the downhole environment.

  11. The broad view of nuclear technology for aerospace

    Science.gov (United States)

    Buden, David; Angelo, Joseph A., Jr.

    1991-01-01

    Nuclear technologies can directly support advanced space initiatives. For near-Earth missions, nuclear technology can be used to power air traffic control, communications and manufacturing platforms, provide emergency power for manned platforms, provide power for maneuvering units, move asteroids for mining, measure the natural radiation environment, provide radiation protection instruments, and design radiation hardened robotic systems. For the Lunar and Mars surfaces, nuclear technology can be used for base stationary, mobile, and emergency power, energy storage, process heat, nuclear thermal and electric rocket propulsion, excavation and underground engineering, water and sewage treatment and sterilization, food processing and preservation, mineral exploration, self-luminous systems, radiation protection instrumentation, radiation environmental warning systems, and habitat shielding design. Outer planet missions can make use of nuclear technology for power and propulsion. Programs need to be initiated to ensure the full beneficial use of nuclear technologies in advanced space missions.

  12. Specification for Instrumentation

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Kofoed, Jens Peter

    This paper is intended to give an overview on instrumentation for monitoring the efficiency of the Converter and the performance of the device. Real-time control of plant and data monitoring and storage are the main objectives of the control system....

  13. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  14. Integrating Nephelometer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  15. Measurement and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold

    2018-01-02

    This is a chapter for a book called the Standard Handbook for Electrical Engineering. Though it is not obvious from the title, the book deals mainly with power engineering. The first chapter (not mine) is about the fundamental quantities used in measurement. This chapter is about the process and the instrumentation.

  16. Economic Policy Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Økonomiske instrumenter begrundes med behovet for politiske indgreb, der muliggør internaliseringen af omkostningerne ved de miljøpåvirkninger, produktion and levevis afstedkommer, således at hensyntagen til miljøet bliver en del af virksomheders og husholdningers omkostninger og dermed en tilsky...

  17. Virtual reality musical instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low cost technologies has created a wide interest in virtual reality (VR), but how to design and evaluate multisensory interactions in VR remains as a challenge. In this paper, we focus on virtual reality musical instruments, present an overview of our...

  18. Anomalons, honey, and glue in nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M.

    1982-12-01

    In these lectures, selected topics in nuclear collisions in the energy range 10/sup -1/ to 10/sup 3/ GeV per nucleon are discussed. The evidence for anomalous projectile fragments with short mean free paths is presented. Theoretical speculations on novel topological nuclear excitation and on quark-nuclear complexes in connection with anomalons are discussed. Recent tests for pion field instabilities are presented. Then evidence for collective nuclear flow phenomena are reviewed. Global event analysis and cascade simulations are presented. We address the question of whether nuclear flow is like viscous honey. Finally, the criteria for the production of a quark-gluon plasma are discussed. Nuclear stopping power and longitudinal growth at high energies are considered. Results from cosmic ray data show that nuclear collision at TeV per nucleon energies are likely to product a plasma.

  19. Summary: 75 years of nuclear fission – present status and ...

    Indian Academy of Sciences (India)

    The ongoing successful three-stage Indian nuclear power programme was covered in three talks: Vohra (pressurized heavy water reactors – 1st stage); Chellapandi (fast breeder reactors – 2nd stage); Vijayan (thorium-based reactors – 3rd stage). The indigenous devel- opment of nuclear instrumentation needed for this ...

  20. Nuclear "waffles"

    Science.gov (United States)

    Schneider, A. S.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Horowitz, C. J.

    2014-11-01

    Background: The dense neutron-rich matter found in supernovae and inside neutron stars is expected to form complex nonuniform phases, often referred to as nuclear pasta. The pasta shapes depend on density, temperature and proton fraction and determine many transport properties in supernovae and neutron star crusts. Purpose: To characterize the topology and compute two observables, the radial distribution function (RDF) g (r ) and the structure factor S (q ) , for systems with proton fractions Yp=0.10 ,0.20 ,0.30 , and 0.40 at about one-third of nuclear saturation density, n =0.050 fm-3 , and temperatures near k T =1 MeV . Methods: We use two recently developed hybrid CPU/GPU codes to perform large scale molecular dynamics (MD) simulations with 51 200 and 409 600 nucleons. From the output of the MD simulations we obtain the two desired observables. Results: We compute and discuss the differences in topology and observables for each simulation. We observe that the two lowest proton fraction systems simulated, Yp=0.10 and 0.20 , equilibrate quickly and form liquidlike structures. Meanwhile, the two higher proton fraction systems, Yp=0.30 and 0.40 , take a longer time to equilibrate and organize themselves in solidlike periodic structures. Furthermore, the Yp=0.40 system is made up of slabs, lasagna phase, interconnected by defects while the Yp=0.30 systems consist of a stack of perforated plates, the nuclear waffle phase. Conclusions: The periodic configurations observed in our MD simulations for proton fractions Yp≥0.30 have important consequences for the structure factors S (q ) of protons and neutrons, which relate to many transport properties of supernovae and neutron star crust. A detailed study of the waffle phase and how its structure depends on temperature, size of the simulation, and the screening length showed that finite-size effects appear to be under control and, also, that the plates in the waffle phase merge at temperatures slightly above 1.0 MeV and

  1. Nuclear Physics Laboratory 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  2. Developments in quantum information processing by nuclear ...

    Indian Academy of Sciences (India)

    Developments in quantum information processing by nuclear magnetic resonance: Use of quadrupolar and dipolar couplings ... Department of Physics, Indian Institute of Science, Bangalore 560 012, India; Sophisticated Instruments Facility, Indian Institute of Science, Bangalore 560 012, India; Media Lab, M.I.T., Cambridge, ...

  3. Nuclear Physics Laboratory 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  4. Deep Impact instrument calibration

    Science.gov (United States)

    Klaasen, K.; A'Hearn, M. F.; Baca, M.; Delamere, A.; Desnoyer, M.; Farnham, T.; Groussin, O.; Hampton, D.; Ipatov, S.; Li, J.-Y.; Lisse, C.; Mastrodemos, N.; McLaughlin, S.; Sunshine, J.; Thomas, P.; Wellnitz, D.

    2008-09-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [~1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of ~9 pixels. The charge coupled device (CCD) read noise is ~1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to ~1%. Spectrometer read noise is ~2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to ~10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of ~2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to ~0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  5. Dynamic-range tests for a gamma-ray sensor

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, R.C.; Longmire, J.L.; Moss, C.E.

    1995-01-01

    The task of detecting and characterizing intense bursts of nuclear radiation requires an instrument capable of operating reliably over wide extremes of signal intensity. Developing techniques for testing and calibrating such a detector involves a combination of experimental measurements, data analyses, and computer simulations. The results of these efforts provide important insight into the instrument`s behavior in the laboratory and in its eventual application. For the present case, such studies not only verify the proper operation of the existing detector, but they also provide the basis for future improvements in its performance.

  6. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  7. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  8. Instrumentation system for improvement of temperature sensor ...

    African Journals Online (AJOL)

    As a result of some intensive research on improvement of the measurement and instrumentation techniques with thermistors, an electronic circuit is developed that is reducing considerably the thermistor non-linearity, its self-heating effect and is increasing its sensitivity in a wider temperature range of measurements and ...

  9. EMPIRE: A code for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-11

    The nuclear reaction code EMPIRE is presented as a useful tool for nuclear astrophysics. EMPIRE combines a variety of the reaction models with a comprehensive library of input parameters providing a diversity of options for the user. With exclusion of the directsemidirect capture all reaction mechanisms relevant to the nuclear astrophysics energy range of interest are implemented in the code. Comparison to experimental data show consistent agreement for all relevant channels.

  10. On China's Nuclear Doctrine

    Directory of Open Access Journals (Sweden)

    Xia Liping

    2015-12-01

    Full Text Available Nuclear weapons have played an important role in China's national strategy. China’s nuclear doctrine has a very strong continuity. Nevertheless, China has made readjustments in its nuclear doctrine according to the changes of its internal and external situation and its general strategic threat perception. China’s nuclear doctrine has experienced a process of evolution from anti-nuclear blackmail to minimum deterrence. There are five major parts in China's nuclear doctrine: policy of declaration, nuclear development, nuclear deployment, nuclear employment, and nuclear disarmament. Because China is faced with a different situation from other nuclear powers and has its own strategic culture, China has a nuclear doctrine with its own characteristics. China’s nuclear doctrine has been affiliated with and has served the national development strategy, national security strategy, national defense policy and military strategy of China.

  11. Reconversion of nuclear weapons

    CERN Document Server

    Kapitza, Sergei P

    1992-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  12. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, E.M. (ed.)

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

  13. Structural Health Monitoring of Piping in Nuclear Power Plants - A Review of Efficiency of Existing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz [Uppsala Univ., Uppsala (Sweden)

    2011-05-15

    In the first part of the report, we review various efforts that have been recently performed in the USA in the field of reactor health monitoring. They were carried out by different organizations and they addressed different issues related to the safety of nuclear reactors. Among other aspects, we present technical issues related to the design of a self-diagnostic monitoring system for the next generation of nuclear reactors. We also give a brief review of the international experience of such systems in today's reactors. In the second part of the report we focus on long range ultrasonic techniques that can be used for monitoring piping in nuclear reactors. Common strategy used in the Swedish nuclear plants is leak before break (LBB), which relies on monitoring leaks from the pipelines as indications of possible pipe break. Significant parts of piping systems are partly or entirely inaccessible for the NDE inspectors, which complicates the use of proactive strategies. One solution to the problem could be implementing monitoring systems capable of monitoring pipelines over a long range. The method, which has shown much promise in such applications is the UT based on guided waves (GW) referred to as long range ultrasound testing (LRUT). In the report we give a brief review of the GW theory followed by the presentation the commercial GW instruments and transducers designed for the LRUT of piping. We also present examples of the baseline based systems using permanently installed transducers. In the final part we report capacity tests of the LRUT instruments performed in collaboration with two different manufactures.

  14. Trends in Nuclear Astrophysics

    OpenAIRE

    Schatz, Hendrik

    2016-01-01

    Nuclear Astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.

  15. Reproducibility of mean nuclear volume and correlation with mean nuclear area in breast cancer

    DEFF Research Database (Denmark)

    Baak, J P; Ladekarl, M; Sørensen, Flemming Brandt

    1994-01-01

    (MNA) was studied. Mean nuclear (profile) area was determined in the AREA only. With bivariate correlation analysis the two sampling methods showed high correlation for the nuclear vv values (range of the correlation coefficient, 0.92 to 0.97). There were no systematic intraobserver differences between...... as to their intraobserver and interobserver reproducibility in 22 invasive breast cancer cases. The mean nuclear volume (nuclear vv) was assessed both in the most atypical area (AREA) (selected on morphologic criteria) and in the whole tumor section (TOTAL). Furthermore, the correlation with mean nuclear (profile) area...... for MNA determinations in the AREA was longer than for nuclear vv assessments in the AREA (15 v 10 minutes). Nuclear vv and MNA (both assessed in the AREA) were (log distributed) significantly correlated (r = .77). Thus, nuclear vv determination in the AREA is the fastest method, and it is also well...

  16. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  17. Reaching for the Horizon: The 2015 NSAC Long Range Plan

    Science.gov (United States)

    Geesaman, Donald

    2015-10-01

    In April 2014, the Nuclear Science Advisory Committee was charged to conduct a new study of the opportunities and priorities for United States nuclear physics research and to recommend a long range plan for the coordinated advancement of the Nation's nuclear science program over the next decade. The entire community actively contributed to developing this plan. Ideas and goals, new and old, were examined and community priorities were established. The Long Range Plan Working Group gathered at Kitty Hawk, NC to converge on the recommendations. In this talk I will discuss the vision for the future that has emerged from this process. The new plan, ``Reaching for the Horizon,'' offers the promise of great leaps forward in our understanding of nuclear science and new opportunities for nuclear science to serve society. This work was supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  18. The TROPOspheric Monitoring Instrument (TROPOMI)

    Science.gov (United States)

    Veefkind, Pepijn; Kleipool, Quintus; Aben, Ilse; Levelt, Pieternel

    2015-04-01

    The Copernicus Sentinel 5 Precursor (S5P), scheduled for launch in 2016, is the first of the sentinels dedicated to monitoring of the atmospheric composition. The main application areas of the mission are air quality, climate and the ozone layer. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI). TROPOMI is a nadir viewing shortwave spectrometer that will measure in the UV-visible wavelength range (270-500 nm), the near infrared (710-770 nm) and the shortwave infrared (2314-2382 nm). TROPOMI will have an unprecedented spatial resolution of about 7x7 km2 at nadir. The spatial resolution is combined with a wide swath to allow for daily global coverage. The high spatial resolution serves two goals: (1) emissions sources can be detected with more accuracy and (2) the number of cloud-free ground pixels will increase substantially. The TROPOMI/S5P geophysical (Level 2) data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulphur dioxide, formaldehyde and aerosol and cloud parameters. In this contribution we will present the TROPOMI instrument performance and the new science opportunities that it will enable.

  19. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...... overview of VRMIs from the viewpoint of the performer. We propose nine design guidelines, describe evaluation methods, analyze case studies, and consider future challenges....

  20. Pesticide reducing instruments

    DEFF Research Database (Denmark)

    Jacobsen, Lars-Bo; Jensen, Jørgen Dejgård; Andersen, Martin

    2005-01-01

    -mentioned models and tools. All three scenarios are constructed such that they result in the same welfare implication (measured by national consumption in the CGE model). The scenarios are: 1) pesticide taxes resulting in a 25 percent overall reduction; 2) use of unsprayed field margins, resulting in the same...... welfare loss as in scenario 1; and finally 3) increased conversion to organic farming also resulting in the same welfare loss as in scenario 1. Biological and geological results from the first part of our analysis suggest that the use of unsprayed field margins is the most cost-effective instrument...... for improving bio-diversity and securing drinking water. That is, combining economic modeling with physical biological modeling and geological evaluation allows us to select unsprayed field margins as the most effective instrument. Sensitivity analysis conducted on bio-diversity suggest that this result...

  1. Social Responsibility Instruments

    Directory of Open Access Journals (Sweden)

    Katarzyna Mizera

    2008-09-01

    Full Text Available Responsible business notion is more and more present in Polish economy, however the results of the research carried out in Polish business still shows a low level of CRS idea knowledge, especially in small and medium companies. Although responsible business notion is generally known, its details, ways of preparing strategy, instruments and what is more its benefits are still narrowly spread. Many business people face the lack of knowledge and information, which on one hand make it easier to spread and deepen wrong stereotypes connected with this notion and on the other hand make business people unwilling to implement CRS in their companies. The subjects of this article are examples of instruments which are responsible for realization of social responsibility strategy.

  2. Data acquisition instruments: Psychopharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  3. Nuclear reaction modeling, verification experiments, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  4. Spectroradiometric Instruments And Applications

    Science.gov (United States)

    Walker, Richard A.; Miller, Kenneth A.; Bulpitt, Thomas H.

    1983-10-01

    This paper discusses spectroradiometric instruments and applications. Multiple-detector spectroradiometers and single-detector scanning spectroradiometers are described, with particular emphasis on current state-of-the-art integrated systems. Applications discussed include: color measurement (colorimetry); photometry and colorimetry of cathode-ray-tubes , light-emitting-diodes and other displays; photometry and colorimetry of light sources and flash lamps; and colorimetry of reflective and transmissive materials. Future trends are also discussed.

  5. Guide to Instrumentation Literature

    Science.gov (United States)

    1955-12-14

    pp. 2622. L. K. Spink, Princirles and practice of flow meter engineering., Iie Foxboro Coo, Foxboro$ Mass., Ed. 7# 1950. 1418 pp. 2623. Reid F...ring. 1952. 269 pp. Vol., 2 - Method- for associating mathematical solutions with common forms, 1953. 827 pp. Vol. 3 - Applications of the instrument...weights, and Volumetric glassware. -13.1 - 2.9. Periodicals P1100. Standards; Metrology; Testing, General (Cont.) P1127. Revista chilena do

  6. Instrumentation: endoscopes and equipment.

    Science.gov (United States)

    Gaab, Michael R

    2013-02-01

    The technology and instrumentation for neuroendoscopy are described: endoscopes (principles, designs, applications), light sources, instruments, accessories, holders, and navigation. Procedures for cleaning, sterilizing, and storing are included. The description is based on the author's own technical development and neuroendoscopic experience, published technology and devices, and publications on endoscopic surgery. The main work horses in neuroendoscopy are rigid glass rod endoscopes (Hopkins optics) due to the optical quality, which allows full high-definition video imaging, different angles of view, and autoclavability, which is especially important in neuroendoscopy due to the risk of Creutzfeldt-Jakob disease infection. Applications are endoscopy assistance to microsurgery, stand-alone endoscopy controlled approaches such as transnasal skull base, ventriculoscopy, and cystoscopy in the cranium. Rigid glass rod optics are also applicable in spinal endoscopy and peripheral nerve decompression using special tubes and cannulas. Rigid minifiberoptics with less resolution may be used in less complex procedures (ventriculoscopy, cystoscopy, endoscopy assistance with pen-designs) and have the advantages of smaller diameters and disposable designs. Flexible fiberoptics are usually used in combination with rigid scopes and can be steered, e.g. through the ventricles, in spinal procedures for indications including syringomyelia and multicystic hydrocephalus. Upcoming flexible chip endoscopes ("chip-in-the-tip") may replace flexible fiberoptics in the future, offering higher resolution and cold LED-illumination, and may provide for stereoscopic neuroendoscopy. Various instruments (mechanical, coagulation, laser guides, ultrasonic aspirators) and holders are available. Certified methods for cleaning and sterilization, with special requirements in neuroapplications, are important. Neuroendoscopic instrumentation is now an established technique in neurosurgical practice and

  7. Range management visual impacts

    Science.gov (United States)

    Bruce R. Brown; David Kissel

    1979-01-01

    Historical overgrazing of western public rangelands has resulted in the passage of the Public Rangeland Improvement Act of 1978. The main purpose of this Act is to improve unsatisfactory range conditions. A contributing factor to unfavorable range conditions is adverse visual impacts. These visual impacts can be identified in three categories of range management: range...

  8. Experiments in nuclear science

    CERN Document Server

    Katz, Sidney A

    2011-01-01

    Characteristics of Geiger-Muller CountersResolving TimeBackground CorrectionsInverse Square LawCorrections for Geometry FactorsBack Scatter of RadiationCorrections for Self-absorptionRange of Beta RadiationsAbsorption of Beta RadiationAbsorption of Gamma RadiationRadioactive Decay and Instrument EfficiencyHalf-life DeterminationInvestigation of Two IndependentlyDecaying RadionuclidesHalf-life of a Long-lived RadionuclideAutoradiographyCalibration and Operation of the ElectroscopeProperties of Proportional CountersIntegral SpectraGamma Spectrometry IGamma Spectrometry IILiquid Scintillation Cou

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... What are the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is ... this time is PET/MRI. top of page What are some common uses of the procedure? Children's ( ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... previous nuclear medicine exam. top of page What are the limitations of Children's (Pediatric) Nuclear Medicine? Nuclear medicine procedures can be time consuming. It can take several hours to days ...

  11. Mean nuclear volume

    DEFF Research Database (Denmark)

    Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.

    1999-01-01

    We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...

  12. Quest for a nuclear georeactor

    NARCIS (Netherlands)

    de Meijer, R.J.; van der Graaf, E.R.; Jungmann, K.P.

    2004-01-01

    Knowledge about the interior of our planet is mainly based on the interpretation of seismic data from earthquakes and nuclear explosions and of composition of meteorites. Additional observations have led to a wide range of hypotheses on the heat flow from the interior to the crust, the abundance of

  13. Nuclear Quadrupole Moments and Nuclear Shell Structure

    Science.gov (United States)

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  14. Instrumentation and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  15. Long-Range WindScanner System

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Courtney, Michael

    2016-01-01

    The technical aspects of a multi-Doppler LiDAR instrument, the long-range WindScanner system, are presented accompanied by an overview of the results from several field campaigns. The long-range WindScanner system consists of three spatially-separated, scanning coherent Doppler LiDARs and a remote......-rangeWindScanner system measures the wind field by emitting and directing three laser beams to intersect, and then scanning the beam intersection over a region of interest. The long-range WindScanner system was developed to tackle the need for high-quality observations of wind fields on scales of modern wind turbine...

  16. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  17. Nuclear Fuel Cycle & Vulnerabilities

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  18. Controlling a wide range of flow rates

    Science.gov (United States)

    Perkins, G. S.

    1979-01-01

    Servo-operated valve and two flowmeters allow accurate control over 1,900:1 flow-rate range. It was developed as part of laboratory instrument for measuring properties of confined fluids under conditions analogous to those encountered in deep drilling operations.

  19. Simulation visualization through dynamic instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Bisset, K.R.

    1998-09-01

    The goal of the instrument composition system is to allow a simulation user to dynamically create instruments as a simulation executes. Instruments can include graphical displays, data collectors, and debugging aides. Instruments are made up of small building blocks which can be easily combined into larger, more complex instruments. Through the sue of an Attribute Server (a distributed publication/subscription mechanism), the actors and instruments in a simulation can interact without direct knowledge of each other. Instead, each actor publishes the attributes which it has available. An instrument subscribes to the attributes in which it is interested, and is notified whenever the value of one of these attribute changes. An instrument can also publish attributes for use by other instruments. Since the Attribute Server is distributed, the publisher of an attribute need not execute on the same machine as the subscriber. This allows CPU intensive data visualization to execute on separate machines from the simulation, minimizing the impact on the simulation.

  20. Autonomous Target Ranging Techniques

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz

    2003-01-01

    For the deep space asteroid mission, Bering, the main goal is the detection and tracking of near Earth objects (NEOs) and asteroids. One of the key science instruments is the 0.3-m telescope used for imaging and tracking of the detected asteroidal objects. For efficient use of the observation tim...

  1. FHR Process Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  2. Terra and Aqua MODIS Instrument Performance

    Science.gov (United States)

    Xiong, X.; Angal, A.; Wu, A.; Barnes, W.; Salomonson, V.

    2016-01-01

    Since launch, Terra and Aqua MODIS have produced an unprecedentedly large amount of high quality data products and supported a broad range of applications by the remote sensing science community and users worldwide. Constant and dedicated efforts have been made to continue instrument normal operation, to monitor and characterize changes in sensor responses, and to update calibration parameters to maintain the quality of MODIS data products. This paper provides an overview of instrument operation and calibration activities, and performance. On-orbit changes in sensor responses are illustrated. Also discussed are challenging issues, calibration strategies, and future efforts.

  3. The DESI Experiment Part II: Instrument Design

    OpenAIRE

    DESI Collaboration; Aghamousa, Amir; Aguilar, Jessica; Ahlen, Steve; Alam, Shadab; Allen, Lori E.; Prieto, Carlos Allende; Annis, James; Bailey, Stephen; Balland, Christophe; Ballester, Otger; Baltay, Charles; Beaufore, Lucas; Bebek, Chris; Beers, Timothy C.

    2016-01-01

    DESI (Dark Energy Spectropic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. The DESI instrument is a robotically-actuated, fiber-fed spectrograph capable of taking up to 5,000 simultaneous spectra over a wavelength range from 360 nm to 980 nm. The fibers feed ten three-arm spectrographs with resolution $R= \\lambda/\\Delta...

  4. Nuclear weapons modernizations

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  5. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  6. Analytical design and performance studies of nuclear furnace tests of small nuclear light bulb models

    Science.gov (United States)

    Latham, T. S.; Rodgers, R. J.

    1972-01-01

    Analytical studies were continued to identify the design and performance characteristics of a small-scale model of a nuclear light bulb unit cell suitable for testing in a nuclear furnace reactor. Emphasis was placed on calculating performance characteristics based on detailed radiant heat transfer analyses, on designing the test assembly for ease of insertion, connection, and withdrawal at the reactor test cell, and on determining instrumentation and test effluent handling requirements. In addition, a review of candidate test reactors for future nuclear light bulb in-reactor tests was conducted.

  7. Nuclear Physicists in Finance

    Science.gov (United States)

    Mattoni, Carlo

    2017-01-01

    The financial services industry presents an interesting alternative career path for nuclear physicists. Careers in finance typically offer intellectual challenge, a fast pace, high caliber colleagues, merit-based compensation with substantial upside, and an opportunity to deploy skills learned as a physicist. Physicists are employed at a wide range of financial institutions on both the ``buy side'' (hedge fund managers, private equity managers, mutual fund managers, etc.) and the ``sell side'' (investment banks and brokerages). Historically, physicists in finance were primarily ``quants'' tasked with applying stochastic calculus to determine the price of financial derivatives. With the maturation of the field of derivative pricing, physicists in finance today find work in a variety of roles ranging from quantification and management of risk to investment analysis to development of sophisticated software used to price, trade, and risk manage securities. Only a small subset of today's finance careers for physicists require the use of advanced math and practically none provide an opportunity to tinker with an apparatus, yet most nevertheless draw on important skills honed during the training of a nuclear physicist. Intellectually rigorous critical thinking, sophisticated problem solving, an attention to minute detail and an ability to create and test hypotheses based on incomplete information are key to both disciplines.

  8. Planning of the development of the MMIS core technology based on nuclear-IT convergence

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Kim, Chang Hwoi; Hwang, In Koo [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    - Drive nuclear-IT convergence technologies such as middleware applied new concept nuclear instrumentation and control architecture, automated operation of future nuclear power plant, virtual reality/augmented reality, design and verification technology of a nuclear power plant main control room, software dependability, and cyber security technology - Write state-of-the-art report for the nuclear instrumentation and control based on IT convergence - A prototype which implemented related equipment and software subject to nuclear reactor operator that reside in the main control room (Reactor Operator, RO) order to a on-site operator (Local Operator, LO) and confirm the task performance matches the RO's intention - 'IT Convergence intelligent instrumentation and control technology' project planning for the Fourth Nuclear Power Research and Development in the long-term plan.

  9. Nuclear forensics using gamma-ray spectroscopy

    CERN Document Server

    Norman, Eric B

    2016-01-01

    Much of George Dracoulis's research career was devoted to utilizing gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the past several years, our research group has made use of both high- and low- resolution gamma ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  10. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  11. 77 FR 15813 - Preoperational Testing of Instrument and Control Air Systems

    Science.gov (United States)

    2012-03-16

    ... describes methods and procedures the staff of the NRC considers acceptable to implement preoperational... COMMISSION Preoperational Testing of Instrument and Control Air Systems AGENCY: Nuclear Regulatory Commission..., ``Preoperational Testing of Instrument and Control Air Systems.'' This regulatory guide is being revised to address...

  12. Instrumentation: Nondestructive Examination for Verification of Canister and Cladding Integrity. FY2014 Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-12

    This report documents FY14 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) verify the integrity of dry storage cask internals.

  13. Instrumentation. Nondestructive Examination for Verification of Canister and Cladding Integrity - FY2013 Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crawford, Susan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This report documents FY13 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) characterize hydrogen effects in UNF cladding to facilitate safe storage and retrieval.

  14. NUCLEAR TEST, POLITICAL FALLOUT, AND DOMESTIC TURMOIL

    National Research Council Canada - National Science Library

    Scott Snyder; See-Won Byun

    2017-01-01

    North Korea's fifth nuclear test on Sept. 9 and the intensified test-firing of a range of missile types throughout 2016 underscored existing weaknesses in using dialogue and sanctions as a response...

  15. A program in medium energy nuclear physics. Progress report, January 1, 1992--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Berman, B.L.; Dhuga, K.S.

    1995-10-01

    This progress report and continuation proposal summarizes our achievements for the period from July 1, 1994 to September 30, 1995 and requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past year we have focused our attention ever more sharply on experiments with real tagged photons, and we have successfully defended two new experimental proposals: Photofission of Actinide and Preactinide Nuclei at SAL and Photoproduction of the {rho} Meson from the Proton with Linearly Polarized Photons at CEBAF. (We are co-spokespersons on two previously approved Hall-B experiments at CEBAF, Photoreactions on {sup 3}He and Photoabsorption and Photofission of Nuclei.) As part of the team that is instrumenting the Photon Tagger for Hall B; we report excellent progress on the focal-plane detector array that is being built at our Nuclear Detector Laboratory, as well as progress on our plans for instrumentation of a tagged polarized-photon beam using coherent bremsstrahlung. Also, we shall soon receive a large computer system (from the SSC) which will form the basis for our new Data Analysis Center, which, like the Nuclear Detector Laboratory, will be operated under the auspices of The George Washington University Center for Nuclear Studies. Finally, during the past year we have published six more papers on the results of our measurements of pion scattering at LAMPF and of electron scattering at NIKHEF and Bates, and we can report that nearly all of the remaining papers documenting this long series of measurements are in the pipeline.

  16. Minnesota Pheasant Range

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and...

  17. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2014-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. We show how to solve substring range reporting with optimal query time and little...... for substring range reporting generalize to substring range counting and substring range emptiness variants. We also obtain non-trivial time-space trade-offs for these problems. Our bounds for substring range reporting are based on a novel combination of suffix trees and range reporting data structures...

  18. Instruments of Transformative Governance

    DEFF Research Database (Denmark)

    Borrás, Susana

    production and distribution channels. PDPs aim at overcoming current market and government failures by pooling resources in the attempt to solve this global social challenge. Thus, PDPs are a case of instruments of transformative research and innovation, operating in a transnational governance context....... They exhibit three novelties: they address strategic long-term problems in a holistic manner, set substantive output-oriented goals, and are implemented through new organizational structures. After characterizing the different types of current PDPs and the context in which they emerged, the paper examines...

  19. Jedem Kind ein Instrument

    DEFF Research Database (Denmark)

    Holst, Finn

    2015-01-01

    I forbindelse med skolereformen 2014 er der kommet øget fokus på samarbejdet mellem musikskole og folkeskole (grundskole). En kortlægningsundersøgelse viste op til reformen, at så godt som alle musikskoler har et samarbejde med grundskolen, mens der er en del folkeskoler, som ikke har et samarbej...... muligheder. Jedem Kind ein Instrument (JeKi) er et grundskoleprogram med instrumentundervisning, som bygger på samarbejde mellem musikskole og grundskole. Der indgår over 70.000 elever årligt, og der er etableret et omfattende forskningsprogram....

  20. Leir beam instrumentation

    CERN Document Server

    Bal, C; Burger, S; Dutriat, C; Gasior, M; Lefèvre, T; Lenardon, F; Odier, P; Raich, U; Soby, L; Tan, J; Tranquille, G; Vuitton, C

    2005-01-01

    The Low Energy Ion Ring (LEIR) is central to the “Ions for LHC” project. Its role is to transform a serie of long low intensity ion pulses from Linac 3, into short high density pulses, which will be further accelerated in the PS and SPS rings, before injection into LHC. To do so the injected pulses are stacked and phase space cooled using electron cooling, before acceleration to the ejection energy of 72 MEV/u. This note describes different types of instruments which will be installed in the LEIR ring and transfer lines.

  1. Payment Instrument Characteristics

    DEFF Research Database (Denmark)

    Holst, Jacques; Kjeldsen, Martin; Hedman, Jonas

    2015-01-01

    Over the last decade, we have witnessed payment innovations that fundamentally have changed the ways we pay. Payment innovations, such as mobile payments and on-line banking, include characteristics or features that are essential to understand if we want to know how and why payers choose among...... payment innovations. Using the Repertory Grid technique to explore 15 payers’ perception of six payment instruments, including coins, banknotes, debit cards, credit cards, mobile payments, and on-line banking, we identify 16 payment characteristics. The characteristics aggregate seventy-six unique...... features. Many of the characteristics and one of the categories are completely novel and unaccounted for in previous works....

  2. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal, E-mail: ana_allves2008@hotmail.co [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10{sup 11}ncm{sup -2}s{sup -1}. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000mug.g{sup -1}. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  3. Gamma thermometer longevity test: Laguna Verde 2 instruments recent performance

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, G. [Global Nuclear Fuel, Americas, 3901 Castle Hayne Road, Wilmington, North Carolina (United States); Avila N, A.; Calleros M, G., E-mail: Gabriel.Cuevas-Vivas@gnf.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verda, Carretera Veracruz-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2013-10-15

    This paper is informative of the General Electric Hitachi and Global Nuclear Fuel - Americas are collaboration with Comision Federal de Electricidad in a longevity test of thermocouples as power monitoring devices. The test conclusions will serve for final engineering design in detailing the Automated Fixed In-core Probes for calibration of the Local Power Range Monitors (LPRMs) of the Economic Simplified Boiling Water Reactor. This paper introduces the collaboration description and some recent performance evaluation of the thermocouples that are sensitive to gamma radiation and are known generically as Gamma Thermometers (G T). The G Ts in Laguna Verde 2 are radially located inside six instrumentation tubes in the core and consist of seven thermocouples, four are aligned with the LPRM heights and three are axially located between LPRM heights. The Laguna Verde 2 G T test has become the longest test of thermocouples as power monitoring devices in a BWR industry history and confirms their reliability in terms of time-dependent small noise under steady state reactor conditions and good agreement against Traversing In-core Probes power measurements. (Author)

  4. Pulse energy measurement at the SXR instrument.

    Science.gov (United States)

    Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J; Wallace, Alex; Jastrow, Ulf; Kreis, Svea; Sorokin, Andrey A; Tiedtke, Kai

    2015-05-01

    A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of data normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.

  5. GUPPI: Green Bank Ultimate Pulsar Processing Instrument

    Science.gov (United States)

    Ransom, Scott M.; Demorest, P.; Ford, J.; McCullough, R.; Ray, J.; DuPlain, R.; Brandt, P.

    2009-12-01

    The high precision radio pulsar timing required for gravitational wave detection experiments (like NANOGrav) and gravitational theory or neutron star equation-of-state tests demands that pulse phase be measured to precisions of 0.01% of the pulse period, or tens to hundreds of nano-seconds for millisecond pulsars (MSPs). This requirement means high precision instrumentation. At NRAO we are developing a state-of-the-art pulsar backend called GUPPI for these scientific problems. GUPPI provides wide bandwidth (up to 800 MHz), high dynamic range (8-bit sampling), substantially improved interference resistance (compared to all other GBT pulsar instruments), and full polarization capabilities. Currently it is being commissioned as a fully supported facility instrument for the GBT in a digital filterbank (i.e. incoherent dedispersion) mode. Within the next six months full coherent dedispersion capabilities are planned.

  6. Hybrid Instrumentation in Lumbar Spinal Fusion: A Biomechanical Evaluation of Three Different Instrumentation Techniques.

    Science.gov (United States)

    Obid, Peter; Danyali, Reza; Kueny, Rebecca; Huber, Gerd; Reichl, Michael; Richter, Alexander; Niemeyer, Thomas; Morlock, Michael; Püschel, Klaus; Übeyli, Hüseyin

    2017-02-01

    Ex vivo human cadaveric study. The development or progression of adjacent segment disease (ASD) after spine stabilization and fusion is a major problem in spine surgery. Apart from optimal balancing of the sagittal profile, dynamic instrumentation is often suggested to prevent or impede ASD. Hybrid instrumentation is used to gain stabilization while allowing motion to avoid hypermobility in the adjacent segment. In this biomechanical study, the effects of two different hybrid instrumentations on human cadaver spines were evaluated and compared with a rigid instrumentation. Eighteen human cadaver spines (T11-L5) were subdivided into three groups: rigid, dynamic, and hook comprising six spines each. Clinical parameters and initial mechanical characteristics were consistent among groups. All specimens received rigid fixation from L3-L5 followed by application of a free bending load of extension and flexion. The range of motion (ROM) for every segment was evaluated. For the rigid group, further rigid fixation from L1-L5 was applied. A dynamic Elaspine system (Spinelab AG, Winterthur, Switzerland) was applied from L1 to L3 for the dynamic group, and the hook group was instrumented with additional laminar hooks at L1-L3. ROM was then evaluated again. There was no significant difference in ROM among the three instrumentation techniques. Based on this data, the intended advantage of a hybrid or dynamic instrumentation might not be achieved.

  7. Microscopically Based Nuclear Energy Functionals

    Science.gov (United States)

    Bogner, S. K.

    2009-05-01

    A major goal of the SciDAC project "Building a Universal Nuclear Energy Density Functional" is to develop next-generation nuclear energy density functionals that give controlled extrapolations away from stability with improved performance across the mass table. One strategy is to identify missing physics in phenomenological Skyrme functionals based on our understanding of the underlying internucleon interactions and microscopic many-body theory. In this contribution, I describe ongoing efforts to use the density matrix expansion of Negele and Vautherin to incorporate missing finite-range effects from the underlying two- and three-nucleon interactions into phenomenological Skyrme functionals.

  8. Instrumentation program for rock mechanics and spent fuel tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, H.R.; Hustrulid, W.H.; Simonson, R.

    1978-08-01

    This report contains a discussion of an instrumentation and rock mechanics program recommended for consideration as part of the overall Lawrence Livermore nuclear waste storage program at NTS. It includes a discussion of (1) rationale for the heater tests, spent fuel facility evaluation, heated room tests, (2) recommended instrumentation types together with estimated delivery schedules, (3) recommended instrumentation layouts, (4) other proposed rock mechanics tests both laboratory and in situ, and (5) data acquisition and reduction requirements.

  9. Accidents in nuclear facilities: classification, incidence and impact; Accidentes en instalaciones nucleares: clasificacion, incidencia e impacto

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Paredes G, L. C., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    A general analysis of the 146 accidents reported officially in nuclear facilities from 1945 to 2012 is presented, among them some took place in: power or research nuclear reactors, critical and subcritical nuclear assemblies, handling of nuclear materials inside laboratories belonging to institutes or universities, in radiochemistry industrial plants and nuclear fuel factories. In form graph the incidence of these accidents is illustrated classified for; category, decades, geographical localization, country classification before the OECD, failure type, and the immediate or later victims. On the other hand, the main learned lessons of the nuclear accidents of Three Mile Island, Chernobyl and Fukushima are stood out, among those that highlight; the human factors, the necessity of designs more innovative and major technology for the operation, control and surveillance of the nuclear facilities, to increase the criterions of nuclear, radiological and physics safety applied to these facilities, the necessity to carry out probabilistic analysis of safety more detailed for cases of not very probable accidents and their impact, to revalue the selection criterions of the sites for nuclear locations, the methodology of post-accident sites recovery and major instrumentation for parameters evaluation and the radiological monitoring among others. (Author)

  10. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  11. The Basic Design Report of the 40M SANS Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young Soo; Lee, Chang Hee; Hwang, Dong Gil; Kim, Hak Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Hwan; Choi, Sung Min [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-04-15

    The HANARO cold neutron research facility project was launched on July 1, 2003. A state of the art SANS instrument was selected as a top-priority instrument by an instrument selection committee, which consisted of domestic users and HANARO personnel. An instrument development team and an international and domestic instrument advisory team were formulated. The guide and the instrument simulation were performed using Vitess software and the optimum basic design was completed based on the simulation results and the international advisory team reviews. The optimum design of the guide for the 40M SANS instrument was completed and the optimum basic design of the 40M the SANS instrument was also completed based on the Vitess simulation results. The Q range of the instrument will cover from 0.0008 to 1.0 A-1 and the maximum flux at a sample position can reach about 5.5x10 7 n/cm2sec. The simulation results and the basic design product will be used for the detailed design and the construction of the SANS instrument. The simulation results could be applied to the development of the other instrument.

  12. Performance evaluation of fiber optic components in nuclear plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, M.C.; Miller, D.W. [Ohio State Univ., Columbus, OH (United States); James, R.W. [Electric Power Research Institute, Palo Alto, CA (United States)

    1996-03-01

    Over the past several years, the Electric Power Research Institute (EPRI) has funded several projects to evaluate the performance of commercially available fiber optic cables, connective devices, light sources, and light detectors under environmental conditions representative of normal and abnormal nuclear power plant operating conditions. Future projects are planned to evaluate commercially available fiber optic sensors and to install and evaluate performance of instrument loops comprised of fiber optic components in operating nuclear power plant applications. The objective of this research is to assess the viability of fiber optic components for replacement and upgrade of nuclear power plant instrument systems. Fiber optic instrument channels offer many potential advantages: commercial availability of parts and technical support, small physical size and weight, immunity to electromagnetic interference, relatively low power requirements, and high bandwidth capabilities. As existing nuclear power plants continue to replace and upgrade I&C systems, fiber optics will offer a low-cost alternative technology which also provides additional information processing capabilities. Results to date indicate that fiber optics are a viable technology for many nuclear applications, both inside and outside of containments. This work is funded and manage& under the Operations & Maintenance Cost Control research target of EPRI`s Nuclear Power Group. The work is being performed by faculty and students in the Mechanical and Nuclear Engineering Departments and the staff of the Nuclear Reactor Laboratory of the Ohio State University.

  13. Nuclear Science Symposium, 31st and Symposium on Nuclear Power Systems, 16th, Orlando, FL, October 31-November 2, 1984, Proceedings

    Science.gov (United States)

    Biggerstaff, J. A. (Editor)

    1985-01-01

    Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.

  14. An Instrumental Innovation

    Science.gov (United States)

    1978-01-01

    Think of guitars and you think of rock and country music, or the vigorous rhythms of the gypsy flamenco, or perhaps the classical strumming of a Segovia. About the last thing you would associate with guitars is aerospace technology. Yet there is a connection. A whole family of quality guitars is an outgrowth of helicopter rotor research conducted for the military services and NASA by an aerospace contractor. These musical spinoffs, commercially available and rapidly gaining in popularity, are the Ovation guitar line, manufactured by Ovation Instruments, Inc., Bloomfield, Connecticut. Ovation Instruments is a subsidiary of Kaman Corporation, a diversified company originally formed to develop and build helicopters. A helicopter's rotor system, with thousands of moving parts, is highly susceptible to vibration. For rotor efficiency, vibration must be "dampened," or reduced. Like other helicopter builders, Kaman Corporation spent years of research toward that end. The technology thus developed, together with the availability of staff experts in vibration engineering, sparked an idea in the mind of the company's president and founder, Charles H. Karnan. A guitarist of professional caliber, Kaman reasoned that vibration-dampening technology could be turned around to enhance vibration and thereby produce a guitar with superior sound.

  15. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  16. Temperature performance of portable radiation survey instruments used for environmental monitoring and clean-up activities in Fukushima

    Science.gov (United States)

    Saegusa, Jun; Yanagisawa, Kayo; Hasumi, Atsushi; Shimizu, Takenori; Uchita, Yoshiaki

    2017-08-01

    Following the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, extensive radiation monitoring and environmental clean-up activities have been conducted throughout the Fukushima region. Outside air temperatures there reach 40 °C in summer and -20 °C in winter, which are beyond the quoted operational range of many radiation survey instruments. Herein, temperature performance of four types of portable Japanese radiation survey instruments widely used in Fukushima was experimentally investigated using a temperature-controlled chamber. They included two ionization chamber type instruments, Fuji NHA1 and Aloka ICS-323C, and two NaI(Tl) scintillation type ones, Fuji NHC7 and Aloka TCS-172B. Experimental results showed significantly diverse characteristics on the temperature dependences from one type of instrument to another. For example, NHA1 overestimated the ambient dose-equivalent rate by as much as 17% at -30 °C and 10% at 40 °C, whereas the TCS-172B readings underestimated the rate by 30% at -30 °C and 7% at 40 °C.

  17. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  18. Bubble measuring instrument and method

    Science.gov (United States)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  19. Instrumentation for Antenna and Radar Cross Section Measurements

    National Research Council Canada - National Science Library

    Narayanan, Ram

    2002-01-01

    ...) Instrumentation System operating over the 45 MHz - 26.5 GHz frequency range was developed and integrated, leading to the completion of the Anechoic Chamber Facility at the University of Nebraska-Lincoln (UNL...

  20. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.