WorldWideScience

Sample records for range limits habitat

  1. Site occupancy of brown-headed nuthatches varies with habitat restoration and range-limit context

    Science.gov (United States)

    Richard A. Stanton; Frank R. Thompson; Dylan C. Kesler

    2015-01-01

    Knowledge about species’ responses to habitat restoration can inform subsequent management and reintroduction planning. We used repeated call-response surveys to study brown-headed nuthatch (Sitta pusilla) patch occupancy at the current limits of its apparently expanding range in an area with active habitat restoration. We fit a probit occupancy...

  2. Dispersal limitation at the expanding range margin of an evergreen tree in urban habitats?

    DEFF Research Database (Denmark)

    Møller, Linda Agerbo; Skou, Anne-Marie Thonning; Kollmann, Johannes Christian

    2012-01-01

    Dispersal limitations contribute to shaping plant distribution patterns and thus are significant for biodiversity conservation and urban ecology. In fleshy-fruited plants, for example, any preference of frugivorous birds affects dispersal capacities of certain fruit species. We conducted a removal...... landscapes. The results should be included in urban forestry and planting of potentially invasive ornamental species. © 2011 Elsevier GmbH. All rights reserved....... experiment with fruits of Ilex aquifolium, a species that is currently expanding its range margin in northern Europe in response to climate change. The species is also a popular ornamental tree and naturalization has been observed in many parts of its range. Fruits of native I. aquifolium and of three...

  3. The distribution and habitat preferences of the declining species Orobanche arenaria Borkh at the northern limit of its geographical range

    Directory of Open Access Journals (Sweden)

    Renata Piwowarczyk

    2011-01-01

    Full Text Available Three new sites of Orobanche arenaria were discovered during floristic investigations in the Wyżyna Małopolska upland in central Poland. The new localities are concentrated in the Ponidzie area (Garb Pińczowski ridge and Niecka Połaniecka basin and form the northern limit of the geographical range of O. arenaria. The paper presents information on the distribution of Orobanche arenaria in Poland, the abundance at the sites and habitats occupied by the species.

  4. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Directory of Open Access Journals (Sweden)

    Gustaf Samelius

    Full Text Available Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1 before and after lynx re-established in the study area and (2 in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection. Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  5. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Science.gov (United States)

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  6. Movement is the glue connecting home ranges and habitat selection.

    Science.gov (United States)

    Van Moorter, Bram; Rolandsen, Christer M; Basille, Mathieu; Gaillard, Jean-Michel

    2016-01-01

    Animal space use has been studied by focusing either on geographic (e.g. home ranges, species' distribution) or on environmental (e.g. habitat use and selection) space. However, all patterns of space use emerge from individual movements, which are the primary means by which animals change their environment. Individuals increase their use of a given area by adjusting two key movement components: the duration of their visit and/or the frequency of revisits. Thus, in spatially heterogeneous environments, animals exploit known, high-quality resource areas by increasing their residence time (RT) in and/or decreasing their time to return (TtoR) to these areas. We expected that spatial variation in these two movement properties should lead to observed patterns of space use in both geographic and environmental spaces. We derived a set of nine predictions linking spatial distribution of movement properties to emerging space-use patterns. We predicted that, at a given scale, high variation in RT and TtoR among habitats leads to strong habitat selection and that long RT and short TtoR result in a small home range size. We tested these predictions using moose (Alces alces) GPS tracking data. We first modelled the relationship between landscape characteristics and movement properties. Then, we investigated how the spatial distribution of predicted movement properties (i.e. spatial autocorrelation, mean, and variance of RT and TtoR) influences home range size and hierarchical habitat selection. In landscapes with high spatial autocorrelation of RT and TtoR, a high variation in both RT and TtoR occurred in home ranges. As expected, home range location was highly selective in such landscapes (i.e. second-order habitat selection); RT was higher and TtoR lower within the selected home range than outside, and moose home ranges were small. Within home ranges, a higher variation in both RT and TtoR was associated with higher selectivity among habitat types (i.e. third-order habitat

  7. Transient habitats limit development time for periodical cicadas.

    Science.gov (United States)

    Karban, Richard

    2014-01-01

    Periodical cicadas (Magicicada spp.) mature in 13 or 17 years, the longest development times for any non-diapausing insects. Selection may favor prolonged development since nymphs experience little mortality and individuals taking 17 years have been shown to have greater fecundity than those taking 13 years. Why don't periodical cicadas take even longer to develop? Nymphs feed on root xylem fluid and move little. Ovipositing females prefer fast-growing trees at forest edges. I hypothesized that (1) adults emerging at edges would be heavier than those from forest interiors and (2) habitat changes could limit development time. I collected newly eclosed females that had neither fed as adults nor moved from their site of development. For M. septendecim, females from edges were 4.9% heavier than those from the interior. I assumed that emergence density indicated habitat quality and measured density at eight sites in 1979, 1996, and 2013. Over three generations, variation in densities was great; densities at two sites crashed, and at one site they exploded to 579/m2 Habitat transience may limit development time because only adults can reassess habitats and reposition offspring. In conclusion, cicadas are affected by habitat characteristics, habitats change over 17 years, and cicadas may emerge, mate, and redistribute their offspring to track habitat dynamics.

  8. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Directory of Open Access Journals (Sweden)

    Ken D Tape

    Full Text Available Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni and Eurasia (A. a. alces. Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  9. Photonic limiters with enhanced dynamic range

    Science.gov (United States)

    Kononchuk, Rodion; Limberopoulos, Nicholaos; Anisimov, Igor; Vitebskiy, Ilya; Chabanov, Andrey

    2018-02-01

    Optical limiters transmit low intensity input light while blocking input light with the intensity exceeding certain limiting threshold. Conventional passive limiters utilize nonlinear optical materials, which are transparent at low light intensity and turn absorptive at high intensity. Strong nonlinear absorption, though, can result in over- heating and destruction of the limiter. Another problem is that the limiting threshold provided by the available optical material with nonlinear absorption is too high for many applications. To address the above problems, the nonlinear material can be incorporated in a photonic structure with engineered dispersion. At low intensity, the photonic structure can display resonant transmission via localized mode(s), while at high intensity the resonant transmission can disappear, and the entire stack can become highly re ective (not absorptive) within a broad frequency range. In the proposed design, the transition from the resonant transmission at low intensity to nearly total re ectivity at high intensity does not rely on nonlinear absorption; instead, it requires only a modest change in the refractive index of the nonlinear material. The latter implies a dramatic increase in the dynamic range of the limiter. The main idea is to eliminate the high-intensity resonant transmission by decoupling the localized (resonant) modes from the input light, rather than suppressing those modes using nonlinear absorption. Similar approach can be used for light modulation and switching.

  10. Limited Range Sesame EOS for Ta

    Energy Technology Data Exchange (ETDEWEB)

    Greeff, Carl William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crockett, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rudin, Sven Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burakovsky, Leonid [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-30

    A new Sesame EOS table for Ta has been released for testing. It is a limited range table covering T ≤ 26, 000 K and ρ ≤ 37.53 g/cc. The EOS is based on earlier analysis using DFT phonon calculations to infer the cold pressure from the Hugoniot. The cold curve has been extended into compression using new DFT calculations. The present EOS covers expansion into the gas phase. It is a multi-phase EOS with distinct liquid and solid phases. A cold shear modulus table (431) is included. This is based on an analytic interpolation of DFT calculations.

  11. Limitations to Wildlife Habitat Connectivity in Urban Areas

    OpenAIRE

    Trask, Melinda

    2007-01-01

    The Oregon Department of Transportation (ODOT) conducted an evaluation of existing wildlife habitat and movement corridors within southeast Portland, where a new section of highway (the Sunrise Corridor) is proposed. The purpose was to develop a comprehensive strategy to preserve and enhance connections for wildlife passage potentially impacted by the Sunrise Corridor project. The evaluation illustrates limitations to urban wildlife protection that are not typically considered. The proposed a...

  12. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat

    Science.gov (United States)

    Tape, Ken D.; Gustine, David D.; Reuss, Roger W.; Adams, Layne G.; Clark, Jason A.

    2016-01-01

    Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  13. Range expansion potential of two co-occurring invasive vines to marginal habitats in Turkey

    Science.gov (United States)

    Farooq, Shahid; Tad, Sonnur; Onen, Huseyin; Gunal, Hikmet; Caldiran, Ugur; Ozaslan, Cumali

    2017-10-01

    Niche distribution models accurately predict the potential distribution range of invasive plants into new habitats based on their climatic requirements in the native regions. However, these models usually ignore the marginal habitats which can limit the distribution of exotic plants. We therefore tested the seedling survival, growth and nutrient acquisition capabilities of two co-occurring invasive vines [Persicaria perfoliata (L.) H. Gross and Sicyos angulatus L.] in three different manipulative greenhouse experiments to infer their range expansion potential to marginal habitats in Turkey. First experiment included five different moisture availability regimes (100, 75, 50, 25 and 12.5% available water), second experiment consisted of four different salinity levels (0, 3, 6 and 12 dSm-1 soil salinity) and third experiment had four different soil textures (clay-1, clay-2, sandy loam and silt-clay-loam). Seedling mortality was only observed under extreme moisture deficiency in both plant species, while most of the transplanted seedlings of both species did not survive under 6 and 12 dSm-1 salinity levels. Soil textures had no effect on seedling survival. POLPE better tolerated low moisture availability and high salinity compared to SIYAN. Biomass production in both plant species was linearly reduced with increasing salinity and moisture deficiency. SIYAN invested more resources towards shoot, accumulated higher K and P, whereas POLPE maintained higher root-to-shoot ratio under all experimental conditions. Both plant species employed different strategies to cope with adverse environmental conditions, but failed to persist under high soil salinity and moisture deficiency. Our study suggest that both plant species have limited potential of range expansion to marginal habitats and will be limited to moist and humid areas only. Therefore, further research activities should be concentrated in these regions to develop effective management strategies against both species.

  14. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Directory of Open Access Journals (Sweden)

    Jens G Froese

    Full Text Available Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  15. HOME RANGE AND HABITAT USE OF SUBURBAN RED-SHOULDERED HAWKS IN SOUTHWESTERN OHIO

    Science.gov (United States)

    Suburban habitats may provide different resources and different challenges to raptors than do more traditional, rural habitats. Suburban red-shouldered hawks (Buteo lineatus) of the eastern subspecies have been little studied. We measured the home ranges and habitat use of 11 su...

  16. Reproduction in moose at their southern range limit

    Science.gov (United States)

    Ruprecht, Joel S.; Hersey, Kent R.; Hafen, Konrad; Monteith, Kevin L.; DeCesare, Nicholas J.; Kauffman, Matthew J.; MacNulty, Daniel R.

    2016-01-01

    Reproduction is a critical fitness component in large herbivores. Biogeographic models predict that populations occurring at the edges of the range may have compromised reproductive rates because of inferior habitat at range peripheries. When reproductive rates are chronically low, ungulate populations may lack the resiliency to rebound quickly after periods of environmental stress, and this effect may be greatest for heat-sensitive organisms at their southern range limit. To assess the demographic vulnerability of moose ( Alces alces ), we studied relationships between reproductive rates, maternal age, and rump fat in the southernmost naturally occurring moose population in North America. For prime-aged moose in our study, pregnancy rates were high (92%), but moose aged 9 years had low pregnancy rates (32% and 38%, respectively). The relationship between rump fat and pregnancy was nonlinear such that a threshold of at least 2mm of rump fat yielded a high probability of being pregnant midwinter. In contrast, among pregnant moose, the probability of both producing a calf and recruiting it until spring increased linearly with rump fat. We also conducted a meta-analysis of pregnancy and twinning rates for adult (≥ 2 years) moose across a latitudinal gradient to compare reproductive rates from our study to other populations in North America. Moose living at southern latitudes tended to have lower reproductive rates than those living in the core of moose range, implying that southern moose populations may be demographically more vulnerable than northern moose populations.

  17. Home range and habitat use of reintroduced Javan Deer in Panaitan Island, Ujung Kulon National Park

    Directory of Open Access Journals (Sweden)

    Pairah

    2015-09-01

    Full Text Available The Javan deer which inhabit Panaitan Island (± 175 Km2 were reintroduced from Peucang Island (± 4.5 Km2 during 1978–1982 (3 males: 13 females. The information of home range and habitat use of these animals were needed for wildlife habitat management especially in the small island habitat. We measured the home range size and habitat use of Javan deer in Peucang Island and Panaitan Island and compared them. The home range size was measured using Minimum Convex Polygon and then the polygon of home ranges were used to measure the habitat use. The results showed that in general the home range size in all age class of Javan deer between both islands did not differ significantly, only subadult males in Peucang Island which have a larger home range size than subadult males in Panaitan Island. Javan deer in Panaitan Island have found suitable conditions.

  18. Ruddy Shelduck Tadorna ferruginea home range and habitat use during the non-breeding season in Assam, India

    Science.gov (United States)

    Namgail, T.; Takekawa, John Y.; Sivananinthaperumal, B.; Areendran, G.; Sathiyaselvam, P.; Mundkur, T.; Mccracken, T.; Newman, S.

    2011-01-01

    India is an important non-breeding ground for migratory waterfowl in the Central Asian Flyway. Millions of birds visit wetlands across the country, yet information on their distribution, abundance, and use of resources is rudimentary at best. Limited information suggests that populations of several species of migratory ducks are declining due to encroachment of wetland habitats largely by agriculture and industry. The development of conservation strategies is stymied by a lack of ecological information on these species. We conducted a preliminary assessment of the home range and habitat use of Ruddy Shelduck Tadorna ferruginea in the northeast Indian state of Assam. Seven Ruddy Shelducks were fitted with solar-powered Global Positioning System (GPS) satellite transmitters, and were tracked on a daily basis during the winter of 2009-2010. Locations from all seven were used to describe habitat use, while locations from four were used to quantify their home range, as the other three had too few locations (2 (range = 22-87 km2) and an average home range (95% contour) of 610 km2 (range = 222-1,550 km2). Resource Selection Functions (RSF), used to describe habitat use, showed that the birds frequented riverine wetlands more than expected, occurred on grasslands and shrublands in proportion to their availability, and avoided woods and cropland habitats. The core use areas for three individuals (75%) were on the Brahmaputra River, indicating their preference for riverine habitats. Management and protection of riverine habitats and nearby grasslands may benefit conservation efforts for the Ruddy Shelduck and waterfowl species that share these habitats during the non-breeding season.

  19. Himalayan ibex (Capra ibex sibirica habitat suitability and range resource dynamics in the Central Karakorum National Park, Pakistan

    Directory of Open Access Journals (Sweden)

    Garee Khan

    2016-07-01

    Full Text Available The study investigates Himalayan ibex (Capra ibex sibirica and their range resource condition within the preferred habitat in the Central Karakoram National Park, Pakistan. We apply ecological niche factor analysis (ENFA using 110 ibex sighting data and 6 key biophysical variables describing the habitat conditions and produce habitat suitability and maps with GIS and statistical tool (BioMapper. The modeling results of specialization factor shows some limitation for ibex over the use of slope, elevation, vegetation types and ruggedness. The habitat area selection for the ibex is adjusted to the ibex friendly habitat available conditions. The model results predicted suitable habitat for ibex in certain places, where field observation was never recorded. The range resource dynamics depict a large area that comes under the alpine meadows has the highest seasonal productivity, assessed by remote sensing based fortnightly vegetation condition data of the last 11 years. These meadows are showing browning trend over the years, attributable to grazing practices or climate conditions. At lower elevation, there are limited areas with suitable dry steppes, which may cause stress on ibex, especially during winter.

  20. A Passive Optical Location with Limited Range

    Directory of Open Access Journals (Sweden)

    Pavel Fiala

    2008-01-01

    Full Text Available We know active and passive methods of a location. This article deals only with a passive location of dynamic targets. The passive optics location is suitable just for tracking of targets with mean velocity which is limited by the hardware basis. The aim of this work is to recognize plasma, particles etc. It is possible to propose such kind of evaluation methods which improve the capture probability markedly. Suggested method is dealing with the short-distance evaluation of targets. We suppose the application of three independent principles how to recognize an object in a scanned picture. These principles use similar stochastic functions in order to evaluate an object location by means of simple mathematical operations. Methods are based on direct evaluation of picture sequence by the help of the histogram and frequency spectrum. We find out the probability of unidentified moving object in pictures. If the probability reaches a setting value we will get a signal.

  1. Greater sage-grouse winter habitat use on the eastern edge of their range

    Science.gov (United States)

    Christopher C. Swanson; Mark A. Rumble; Nicholas W. Kaczor; Robert W. Klaver; Katie M. Herman-Brunson; Jonathan A. Jenks; Kent C. Jensen

    2013-01-01

    Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this...

  2. Linking seasonal home range size with habitat selection and movement in a mountain ungulate.

    Science.gov (United States)

    Viana, Duarte S; Granados, José Enrique; Fandos, Paulino; Pérez, Jesús M; Cano-Manuel, Francisco Javier; Burón, Daniel; Fandos, Guillermo; Aguado, María Ángeles Párraga; Figuerola, Jordi; Soriguer, Ramón C

    2018-01-01

    Space use by animals is determined by the interplay between movement and the environment, and is thus mediated by habitat selection, biotic interactions and intrinsic factors of moving individuals. These processes ultimately determine home range size, but their relative contributions and dynamic nature remain less explored. We investigated the role of habitat selection, movement unrelated to habitat selection and intrinsic factors related to sex in driving space use and home range size in Iberian ibex, Capra pyrenaica . We used GPS collars to track ibex across the year in two different geographical areas of Sierra Nevada, Spain, and measured habitat variables related to forage and roost availability. By using integrated step selection analysis (iSSA), we show that habitat selection was important to explain space use by ibex. As a consequence, movement was constrained by habitat selection, as observed displacement rate was shorter than expected under null selection. Selection-independent movement, selection strength and resource availability were important drivers of seasonal home range size. Both displacement rate and directional persistence had a positive relationship with home range size while accounting for habitat selection, suggesting that individual characteristics and state may also affect home range size. Ibex living at higher altitudes, where resource availability shows stronger altitudinal gradients across the year, had larger home ranges. Home range size was larger in spring and autumn, when ibex ascend and descend back, and smaller in summer and winter, when resources are more stable. Therefore, home range size decreased with resource availability. Finally, males had larger home ranges than females, which might be explained by differences in body size and reproductive behaviour. Movement, selection strength, resource availability and intrinsic factors related to sex determined home range size of Iberian ibex. Our results highlight the need to integrate

  3. How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers?

    Directory of Open Access Journals (Sweden)

    Sophie Monsarrat

    Full Text Available Feeding stations are commonly used to sustain conservation programs of scavengers but their impact on behaviour is still debated. They increase the temporal and spatial predictability of food resources while scavengers have supposedly evolved to search for unpredictable resources. In the Grands Causses (France, a reintroduced population of Griffon vultures Gyps fulvus can find carcasses at three types of sites: 1. "light feeding stations", where farmers can drop carcasses at their farm (spatially predictable, 2. "heavy feeding stations", where carcasses from nearby farms are concentrated (spatially and temporally predictable and 3. open grasslands, where resources are randomly distributed (unpredictable. The impact of feeding stations on vulture's foraging behaviour was investigated using 28 GPS-tracked vultures. The average home range size was maximal in spring (1272 ± 752 km(2 and minimal in winter (473 ± 237 km(2 and was highly variable among individuals. Analyses of home range characteristics and feeding habitat selection via compositional analysis showed that feeding stations were always preferred compared to the rest of the habitat where vultures can find unpredictable resources. Feeding stations were particularly used when resources were scarce (summer or when flight conditions were poor (winter, limiting long-ranging movements. However, when flight conditions were optimal, home ranges also encompassed large areas of grassland where vultures could find unpredictable resources, suggesting that vultures did not lose their natural ability to forage on unpredictable resources, even when feeding stations were available. However during seasons when food abundance and flight conditions were not limited, vultures seemed to favour light over heavy feeding stations, probably because of the reduced intraspecific competition and a pattern closer to the natural dispersion of resources in the landscape. Light feeding stations are interesting tools

  4. How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers?

    Science.gov (United States)

    Monsarrat, Sophie; Benhamou, Simon; Sarrazin, François; Bessa-Gomes, Carmen; Bouten, Willem; Duriez, Olivier

    2013-01-01

    Feeding stations are commonly used to sustain conservation programs of scavengers but their impact on behaviour is still debated. They increase the temporal and spatial predictability of food resources while scavengers have supposedly evolved to search for unpredictable resources. In the Grands Causses (France), a reintroduced population of Griffon vultures Gyps fulvus can find carcasses at three types of sites: 1. "light feeding stations", where farmers can drop carcasses at their farm (spatially predictable), 2. "heavy feeding stations", where carcasses from nearby farms are concentrated (spatially and temporally predictable) and 3. open grasslands, where resources are randomly distributed (unpredictable). The impact of feeding stations on vulture's foraging behaviour was investigated using 28 GPS-tracked vultures. The average home range size was maximal in spring (1272 ± 752 km(2)) and minimal in winter (473 ± 237 km(2)) and was highly variable among individuals. Analyses of home range characteristics and feeding habitat selection via compositional analysis showed that feeding stations were always preferred compared to the rest of the habitat where vultures can find unpredictable resources. Feeding stations were particularly used when resources were scarce (summer) or when flight conditions were poor (winter), limiting long-ranging movements. However, when flight conditions were optimal, home ranges also encompassed large areas of grassland where vultures could find unpredictable resources, suggesting that vultures did not lose their natural ability to forage on unpredictable resources, even when feeding stations were available. However during seasons when food abundance and flight conditions were not limited, vultures seemed to favour light over heavy feeding stations, probably because of the reduced intraspecific competition and a pattern closer to the natural dispersion of resources in the landscape. Light feeding stations are interesting tools for managing

  5. Native-range habitats of invasive plants: are they similar to invaded-range habitats and do they differ according to the geographical direction of invasion?

    Czech Academy of Sciences Publication Activity Database

    Hejda, Martin; Chytrý, M.; Pergl, Jan; Pyšek, Petr

    2015-01-01

    Roč. 21, č. 3 (2015), s. 312-321 ISSN 1366-9516 R&D Projects: GA ČR(CZ) GAP505/11/1112 Institutional support: RVO:67985939 Keywords : biological invasions * direction of invasions * native-range habitats Subject RIV: EF - Botanics Impact factor: 4.566, year: 2015

  6. Home range and habitat use of Trumpeter Hornbills Bycanistes ...

    African Journals Online (AJOL)

    46 km2 (95% LoCoH). However, individual home range sizes varied monthly and seasonally. We found that all individuals tagged used mostly the indigenous forest and frequently utilised urban residential areas (gardens) with little or no use of cultivated land. Observed individual variations in monthly and seasonal home ...

  7. Potential climate change favored expansion of a range limited species, Haematostaphis barteri Hook f.

    Directory of Open Access Journals (Sweden)

    Jacob Koundouonon Moutouama

    2016-12-01

    Full Text Available Understanding impact of climate change on range breadth of rare species can improve the ability to anticipate their decline or expension and take appropriate conservation measures. Haematatostaphis barteri is an agroforestry species of the Sudanian centre of endemism in Africa. We investigeted impact of climate change on range of suitable habitats for this species in Benin,using the Maximum Entropy algorithm under R software. Five environmental variables were used with the regional climate model under the new Representation Concentration Pathways (RCP. Moisture Index of the Moist Quarter and Slope variability had the greatest predictive importance for the range of suitable habitats for H. barteri. Its Potential breadth was found to be currently limited to the Atacora Mountain Chain (AMC and covers 0.51% of national territory. Climate change was projected to favor expansion of suitable habitats for H. barteri by 0.12% and 0.05%, respectively for the RCP4.5 and RCP8.5. These habitats were however mostly out of the local protected areas network. Climate change would extend range of habitats for H. barteri. Observed protection gaps suggest need for integrating this species into formal in situ, on-farm or ex situ conservation schemes.

  8. Habitat modelling limitations - Puck Bay, Baltic Sea - a case study

    Directory of Open Access Journals (Sweden)

    Jan Marcin Węsławski

    2013-02-01

    Full Text Available The Natura 2000 sites and the Coastal Landscape Park in a shallow marine bay in the southern Baltic have been studied in detail for the distribution of benthic macroorganisms, species assemblages and seabed habitats. The relatively small Inner Puck Bay (104.8 km2 is one of the most thoroughly investigated marine areas in the Baltic: research has been carried out there continuously for over 50 years. Six physical parameters regarded as critically important for the marine benthos (depth, minimal temperature, maximum salinity, light, wave intensity and sediment type were summarized on a GIS map showing unified patches of seabed and the near-bottom water conditions. The occurrence of uniform seabed forms is weakly correlated with the distributions of individual species or multi-species assemblages. This is partly explained by the characteristics of the local macrofauna, which is dominated by highly tolerant, eurytopic species with opportunistic strategies. The history and timing of the assemblage formation also explains this weak correlation. The distribution of assemblages formed by long-living, structural species (Zostera marina and other higher plants shows the history of recovery following earlier disturbances. In the study area, these communities are still in the stage of recovery and recolonization, and their present distribution does not as yet match the distribution of the physical environmental conditions favourable to them. Our results show up the limitations of distribution modelling in coastal waters, where the history of anthropogenic disturbances can distort the picture of the present-day environmental control of biota distributions.

  9. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  10. Continuous limit of discrete systems with long-range interaction

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2006-01-01

    Discrete systems with long-range interactions are considered. Continuous medium models as continuous limit of discrete chain system are defined. Long-range interactions of chain elements that give the fractional equations for the medium model are discussed. The chain equations of motion with long-range interaction are mapped into the continuum equation with the Riesz fractional derivative. We formulate the consistent definition of continuous limit for the systems with long-range interactions. In this paper, we consider a wide class of long-range interactions that give fractional medium equations in the continuous limit. The power-law interaction is a special case of this class

  11. Exploring trophic strategies of exotic caprellids (Crustacea: Amphipoda): Comparison between habitat types and native vs introduced distribution ranges

    Science.gov (United States)

    Ros, Macarena; Tierno de Figueroa, José Manuel; Guerra-García, José Manuel; Navarro-Barranco, Carlos; Lacerda, Mariana Baptista; Vázquez-Luis, Maite; Masunari, Setuko

    2014-02-01

    The trophic ecology of non-native species is a key aspect to understand their invasion success and the community effects. Despite the important role of caprellid amphipods as trophic intermediates between primary producers and higher levels of marine food webs, there is very little information on their feeding habits. This is the first comprehensive study on the trophic strategies of two co-occurring introduced caprellids in the Spanish coasts: Caprella scaura and Paracaprella pusilla. The diet of 446 specimens of C. scaura and 230 of P. pusilla was analyzed to investigate whether there were differences in the feeding habits in relation to habitat characteristics (natural vs artificial hard substrata), type of host substrata (bryozoans and hydroids) and native vs introduced distribution ranges (Brazil vs Spain). Results revealed differences in diet preferences of the two species that have important implications for their trophic behaviour and showed a limited food overlap, which may favour their coexistence in introduced areas. In general terms, P. pusilla is a predator species, showing preference by crustacean prey in all of its life stages, while C. scaura feeds mainly on detritus. Although no sex-related diet shifts were observed in either of the species, evidence of ontogenetic variation in diet of C. scaura was found, with juveniles feeding on more amount of prey than adults. No diet differences were found between native and introduced populations within the same habitat type. However, P. pusilla exhibited a shift in its diet when different habitats were compared in the same distribution area, and C. scaura showed a flexible feeding behaviour between different host substrata in the same habitat type. This study shows that habitat characteristics at different scales can have greater influence on the feeding ecology of exotic species than different distribution ranges, and support the hypothesis that a switch between feeding strategies depending on habitat

  12. Variability in leaf optical properties among 26 species from a broad range of habitats

    International Nuclear Information System (INIS)

    Knapp, A.K.; Carter, G.A.

    1998-01-01

    Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r2 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases

  13. Current distribution of Pilularia globulifera L. in Poland – changes of geographical range and habitat preferences

    Directory of Open Access Journals (Sweden)

    Ewa Szczęśniak

    2012-10-01

    Full Text Available Pilularia globulifera is a subatlantic European fern threatened with extinction. In Poland, it reaches the eastern border of its continuous range. Up to the end of the 20th century, it was observed here in 21 stands; only 2 of them existed by the second half of the century, so the species was categorized as critically endangered. Five new locations have been found in western and northwestern Poland during the last 10 years. Abundant and permanent populations grow in 3 locations, while 2 stands were ephemeral. All the current stands are situated in anthropogenic habitats with spontaneous vegetation, in oligotrophic to eutrophic waters. One of the new localities is about 280 km distant from the eastern range of the limit known previously. Pilularia forms its own plant community Pilularietum globuliferae, enters plots of Ranunculo-Juncetum bulbosi and occurs in mesotrophic to eutrophic rushes of Eleocharis palustris, Phragmites australis, Typha angustifolia and Equisetum fluviatile. Specimens are vigorous and regularly produce sporocarps.

  14. Home range, habitat selection and activity patterns of an arid-zone ...

    African Journals Online (AJOL)

    All previous behavioural studies of Temminck's ground pangolins (Smutsia temminckii) have focused on populations in mesic regions. We examined home range size, activity periods, habitat selectivity and refuge site selection of 13 individuals over three years in the Kalahari Desert of South Africa, near the western edge of ...

  15. Habitat-effectiveness index for elk on Blue Mountain Winter Ranges.

    Science.gov (United States)

    Jack Ward Thomas; Donavin A. Leckenby; Mark Henjum; Richard J. Pedersen; Larry D. Bryant

    1988-01-01

    An elk-habitat evaluation procedure for winter ranges in the Blue Mountains of eastern Oregon and Washington is described. The index is based on an interaction of size and spacing of cover and forage areas, roads open to traffic per unit of area, cover quality, and quantity and quality of forage.

  16. Environmental predictors of habitat suitability and biogeographical range of Franciscana dolphins (Pontoporia blainvillei

    Directory of Open Access Journals (Sweden)

    Jonatan J. Gomez

    2015-01-01

    Full Text Available The aim of this study was to use species distribution models to estimate the effects of environmental variables on the habitat suitability of river dolphins Pontoporia blainvillei (franciscanas along their overall biogeographical distribution. Based on the literature, we selected six environmental variables to be included in the models; four climatic factors (surface sea temperature, salinity, turbidity and productivity and two biotic factors (prey availability and fishing effort. We determined that the biographic range is under the following limits: temperature less than 19°C, a salinity of 36 psu and a minimal probability of the occurrence of fish C. guatucupa of 0.297. In the discussion, we postulate hypotheses on the behavioural and physiological mechanisms that cause these associations between environmental predictors and Franciscanas distribution. There was a good fit between the distribution predicted by the species distribution model and the one proposed by the experts of the International Union for Conservation of Nature; however, our analysis failed to highlight the fundamental role of bycatch as the main threat to this dolphin species.

  17. Long range forces and limits on unparticle interactions

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Hsu, Stephen D.H.; Jiang Jing

    2008-01-01

    Couplings between standard model particles and unparticles from a nontrivial scale invariant sector can lead to long range forces. If the forces couple to quantities such as baryon or lepton (electron) number, stringent limits result from tests of the gravitational inverse square law. These limits are much stronger than from collider phenomenology and astrophysics

  18. Widespread range expansions shape latitudinal variation in insect thermal limits

    Science.gov (United States)

    Lancaster, Lesley T.

    2016-06-01

    Current anthropogenic impacts, including habitat modification and climate change, may contribute to a sixth mass extinction. To mitigate these impacts and slow further losses of biodiversity, we need to understand which species are most at risk and identify the factors contributing to current and future declines. Such information is often obtained through large-scale, comparative and biogeographic analysis of lineages or traits that are potentially sensitive to ongoing anthropogenic change--for instance to predict which regions are most susceptible to climate change-induced biodiversity loss. However, for this approach to be generally successful, the underlying causes of identified geographical trends need to be carefully considered. Here, I augment and reanalyse a global data set of insect thermal tolerances, evaluating the contribution of recent and contemporary range expansions to latitudinal variation in thermal niche breadth. Previous indications that high-latitude ectotherms exhibit broad thermal niches and high warming tolerances held only for species undergoing range expansions or invasions. In contrast, species with stable or declining geographic ranges exhibit latitudinally decreasing absolute thermal tolerances and no latitudinal variation in tolerance breadths. Thus, non-range-expanding species, particularly insular or endemic species, which are often of highest conservation priority, are unlikely to tolerate future climatic warming at high latitudes.

  19. Ranging, Activity and Habitat Use by Tigers in the Mangrove Forests of the Sundarban.

    Directory of Open Access Journals (Sweden)

    Dipanjan Naha

    Full Text Available The Sundarban of India and Bangladesh (about 6000 km² are the only mangrove forests inhabited by a sizeable population of tigers. The adjoining area also supports one of the highest human densities and experiences severe human-tiger conflicts. We used GPS-Satellite and VHF radio-collars on 6 (3 males and 3 female tigers to study their ranging patterns and habitat preference. The average home range (95% Fixed Kernel for resident females was 56.4 (SE 5.69 and for males it was 110 (SE 49 km². Tigers crossed an average of 5 water channels > 30 meters per day with a mean width of 54 meters, whereas channels larger than 400 meters were rarely crossed. Tigers spent over 58% of their time within Phoenix habitat but compositional analysis showed a habitat preference of the order Avicennia-Sonneratia > Phoenix > Ceriops > Barren > Water. Average daily distance moved was 4.6 km (range 0.1-23. Activity of tigers peaked between 05:00 hours and 10:00 hours showing some overlap with human activity. Territory boundaries were demarcated by large channels which tigers intensively patrolled. Extra caution should be taken while fishing or honey collection during early morning in Avicennia-Sonneratia and Phoenix habitat types along wide channels to reduce human-tiger conflict. Considering home-range core areas as exclusive, tiger density was estimated at 4.6 (SE range 3.6 to 6.7 tigers/100 km2 giving a total population of 76 (SE range 59-110 tigers in the Indian Sundarban. Reluctance of tigers to cross wide water channels combined with increasing commercial boat traffic and sea level rise due to climate change pose a real threat of fragmenting the Sundarban tiger population.

  20. The Bouguer Correction Algorithm for Gravity with Limited Range

    Directory of Open Access Journals (Sweden)

    MA Jian

    2017-01-01

    Full Text Available The Bouguer correction is an important item in gravity reduction, while the traditional Bouguer correction, whether the plane Bouguer correction or the spherical Bouguer correction, exists approximation error because of far-zone virtual terrain. The error grows as the calculation point gets higher. Therefore gravity reduction using the Bouguer correction with limited range, which was in accordance with the scope of the topographic correction, was researched in this paper. After that, a simplified formula to calculate the Bouguer correction with limited range was proposed. The algorithm, which is innovative and has the value of mathematical theory to some extent, shows consistency with the equation evolved from the strict integral algorithm for topographic correction. The interpolation experiment shows that gravity reduction based on the Bouguer correction with limited range is prior to unlimited range when the calculation point is taller than 1000 m.

  1. Factors affecting seasonal habitat use, and predicted range of two tropical deer in Indonesian rainforest

    Science.gov (United States)

    Rahman, Dede Aulia; Gonzalez, Georges; Haryono, Mohammad; Muhtarom, Aom; Firdaus, Asep Yayus; Aulagnier, Stéphane

    2017-07-01

    There is an urgent recognized need for conservation of tropical forest deer. In order to identify some environmental factors affecting conservation, we analyzed the seasonal habitat use of two Indonesian deer species, Axis kuhlii in Bawean Island and Muntiacus muntjak in south-western Java Island, in response to several physical, climatic, biological, and anthropogenic variables. Camera trapping was performed in different habitat types during both wet and dry season to record these elusive species. The highest number of photographs was recorded in secondary forest and during the dry season for both Bawean deer and red muntjac. In models, anthropogenic and climatic variables were the main predictors of habitat use. Distances to cultivated area and to settlement were the most important for A. kuhlii in the dry season. Distances to cultivated area and annual rainfall were significant for M. muntjak in both seasons. Then we modelled their predictive range using Maximum entropy modelling (Maxent). We concluded that forest landscape is the fundamental scale for deer management, and that secondary forests are potentially important landscape elements for deer conservation. Important areas for conservation were identified accounting of habitat transformation in both study areas.

  2. High Resolution Habitat Suitability Modelling For Restricted-Range Hawaiian Alpine Arthropod Species

    Science.gov (United States)

    Stephenson, N. M.

    2016-12-01

    Mapping potentially suitable habitat is critical for effective species conservation and management but can be challenging in areas exhibiting complex heterogeneity. An approach that combines non-intrusive spatial data collection techniques and field data can lead to a better understanding of landscapes and species distributions. Nysius wekiuicola, commonly known as the wēkiu bug, is the most studied arthropod species endemic to the Maunakea summit in Hawai`i, yet details about its geographic distribution and habitat use remain poorly understood. To predict the geographic distribution of N. wekiuicola, MaxEnt habitat suitability models were generated from a diverse set of input variables, including fifteen years of species occurrence data, high resolution digital elevation models, surface mineralogy maps derived from hyperspectral remote sensing, and climate data. Model results indicate that elevation (78.2 percent), and the presence of nanocrystalline hematite surface minerals (13.7 percent) had the highest influence, with lesser contributions from aspect, slope, and other surface mineral classes. Climatic variables were not included in the final analysis due to auto-correlation and coarse spatial resolution. Biotic factors relating to predation and competition also likely dictate wēkiu bug capture patterns and influence our results. The wēkiu bug range and habitat suitability models generated as a result of this study will be directly incorporated into management and restoration goals for the summit region and can also be adapted for other arthropod species present, leading to a more holistic understanding of metacommunity dynamics. Key words: Microhabitat, Structure from Motion, Lidar, MaxEnt, Habitat Suitability

  3. Controlling range expansion in habitat networks by adaptively targeting source populations.

    Science.gov (United States)

    Hock, Karlo; Wolff, Nicholas H; Beeden, Roger; Hoey, Jessica; Condie, Scott A; Anthony, Kenneth R N; Possingham, Hugh P; Mumby, Peter J

    2016-08-01

    Controlling the spread of invasive species, pests, and pathogens is often logistically limited to interventions that target specific locations at specific periods. However, in complex, highly connected systems, such as marine environments connected by ocean currents, populations spread dynamically in both space and time via transient connectivity links. This results in nondeterministic future distributions of species in which local populations emerge dynamically and concurrently over a large area. The challenge, therefore, is to choose intervention locations that will maximize the effectiveness of the control efforts. We propose a novel method to manage dynamic species invasions and outbreaks that identifies the intervention locations most likely to curtail population expansion by selectively targeting local populations most likely to expand their future range. Critically, at any point during the development of the invasion or outbreak, the method identifies the local intervention that maximizes the long-term benefit across the ecosystem by restricting species' potential to spread. In so doing, the method adaptively selects the intervention targets under dynamically changing circumstances. To illustrate the effectiveness of the method we applied it to controlling the spread of crown-of-thorns starfish (Acanthaster sp.) outbreaks across Australia's Great Barrier Reef. Application of our method resulted in an 18-fold relative improvement in management outcomes compared with a random targeting of reefs in putative starfish control scenarios. Although we focused on applying the method to reducing the spread of an unwanted species, it can also be used to facilitate the spread of desirable species through connectivity networks. For example, the method could be used to select those fragments of habitat most likely to rebuild a population if they were sufficiently well protected. © 2016 Society for Conservation Biology.

  4. Experimental Limits on Gravitational Waves in the MHz frequency Range

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, Robert Jr. [Univ. of Chicago, IL (United States)

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  5. Stability of eelgrass (Zostera marina L.) depth limits: influence of habitat type

    DEFF Research Database (Denmark)

    Greve, T. M.; Krause-Jensen, D.

    2005-01-01

    significantly between habitat types, and neither did stability of physicochemical variables. However, when data from all habitat types were analysed together, they showed that eelgrass populations at the depth limit were significantly more constant and thus, in this respect, more stable when occurring in deep......Seagrass meadows are generally considered stable although few studies have specified and tested this statement. On the basis of a large monitoring dataset from Danish coastal waters, we aimed to test whether the stability of deep eelgrass populations changes along a eutrophication gradient...... waters as compared to shallow waters. Areas of good water quality may thus obtain the double benefit of deeper-growing and more stable eelgrass populations. The most likely reason why this pattern did not appear at habitat-type level is that the habitat types studied represented wide spatial variation...

  6. Habitat use and home range traits of resident and relocated hares (Lepus europaeus, Pallas

    Directory of Open Access Journals (Sweden)

    Marco Bagliacca

    2010-09-01

    Full Text Available The aim of the study was to know the habitat preferences and home range of resident and relocated brown hares during the no hunting period. The trial was carried out in a protected area (PA and in a free hunting territory (FHT, both located in Florence province. During captures 21 hares were equipped with a necklace radio tag: 7 hares, resident group, were released in the same area of capture and 14 hares, relocated group, were relocated in six different locations within the FHT. The effect of place of release was analyzed by ANOVA and/or non parametric methods. Results showed that the home ranges of the resident group were characterised by a greater presence of fallow land and shrub land than relocated group (P< 0.05. Home range sizes and Max distances from the releasing sites differed between the two groups. Resident hares preferred landscape characterized by a higher density of patches than the relocated hares (152 vs. 70 n/100ha, 43 vs. 12 n/100ha, 4703 vs. 8142 sq.m respectively; P<0.01. The landscape structure indexes, the home range sizes and the maximum distance from the releasing sites suggest that the relocated hares even if released in suited habitats, will move from their releasing point to look for better habitats. Landscape with most complexity are preferred from the resident hare, and this result should be consider when a project to reintroduction of this lagomorph in a territory is programmed, or when it is necessary to improve the dynamic of a natural population.

  7. Habitat-based conservation strategies cannot compensate for climate-change-induced range loss

    Science.gov (United States)

    Wessely, Johannes; Hülber, Karl; Gattringer, Andreas; Kuttner, Michael; Moser, Dietmar; Rabitsch, Wolfgang; Schindler, Stefan; Dullinger, Stefan; Essl, Franz

    2017-11-01

    Anthropogenic habitat fragmentation represents a major obstacle to species shifting their range in response to climate change. Conservation measures to increase the (meta-)population capacity and permeability of landscapes may help but the effectiveness of such measures in a warming climate has rarely been evaluated. Here, we simulate range dynamics of 51 species from three taxonomic groups (vascular plants, butterflies and grasshoppers) in Central Europe as driven by twenty-first-century climate scenarios and analyse how three habitat-based conservation strategies (establishing corridors, improving the landscape matrix, and protected area management) modify species' projected range size changes. These simulations suggest that the conservation strategies considered are unable to save species from regional extinction. For those persisting, they reduce the magnitude of range loss in lowland but not in alpine species. Protected area management and corridor establishment are more effective than matrix improvement. However, none of the conservation strategies evaluated could fully compensate the negative impact of climate change for vascular plants, butterflies or grasshoppers in central Europe.

  8. Using a data-constrained model of home range establishment to predict abundance in spatially heterogeneous habitats.

    Directory of Open Access Journals (Sweden)

    Mark C Vanderwel

    Full Text Available Mechanistic modelling approaches that explicitly translate from individual-scale resource selection to the distribution and abundance of a larger population may be better suited to predicting responses to spatially heterogeneous habitat alteration than commonly-used regression models. We developed an individual-based model of home range establishment that, given a mapped distribution of local habitat values, estimates species abundance by simulating the number and position of viable home ranges that can be maintained across a spatially heterogeneous area. We estimated parameters for this model from data on red-backed vole (Myodes gapperi abundances in 31 boreal forest sites in Ontario, Canada. The home range model had considerably more support from these data than both non-spatial regression models based on the same original habitat variables and a mean-abundance null model. It had nearly equivalent support to a non-spatial regression model that, like the home range model, scaled an aggregate measure of habitat value from local associations with habitat resources. The home range and habitat-value regression models gave similar predictions for vole abundance under simulations of light- and moderate-intensity partial forest harvesting, but the home range model predicted lower abundances than the regression model under high-intensity disturbance. Empirical regression-based approaches for predicting species abundance may overlook processes that affect habitat use by individuals, and often extrapolate poorly to novel habitat conditions. Mechanistic home range models that can be parameterized against abundance data from different habitats permit appropriate scaling from individual- to population-level habitat relationships, and can potentially provide better insights into responses to disturbance.

  9. Conflation and aggregation of spatial data improve predictive models for species with limited habitats: a case of the threatened yellow-billed cuckoo in Arizona, USA

    Science.gov (United States)

    Villarreal, Miguel L.; van Riper, Charles; Petrakis, Roy E.

    2013-01-01

    Riparian vegetation provides important wildlife habitat in the Southwestern United States, but limited distributions and spatial complexity often leads to inaccurate representation in maps used to guide conservation. We test the use of data conflation and aggregation on multiple vegetation/land-cover maps to improve the accuracy of habitat models for the threatened western yellow-billed cuckoo (Coccyzus americanus occidentalis). We used species observations (n = 479) from a state-wide survey to develop habitat models from 1) three vegetation/land-cover maps produced at different geographic scales ranging from state to national, and 2) new aggregate maps defined by the spatial agreement of cover types, which were defined as high (agreement = all data sets), moderate (agreement ≥ 2), and low (no agreement required). Model accuracies, predicted habitat locations, and total area of predicted habitat varied considerably, illustrating the effects of input data quality on habitat predictions and resulting potential impacts on conservation planning. Habitat models based on aggregated and conflated data were more accurate and had higher model sensitivity than original vegetation/land-cover, but this accuracy came at the cost of reduced geographic extent of predicted habitat. Using the highest performing models, we assessed cuckoo habitat preference and distribution in Arizona and found that major watersheds containing high-probably habitat are fragmented by a wide swath of low-probability habitat. Focus on riparian restoration in these areas could provide more breeding habitat for the threatened cuckoo, offset potential future habitat losses in adjacent watershed, and increase regional connectivity for other threatened vertebrates that also use riparian corridors.

  10. The Bouguer Correction Algorithm for Gravity with Limited Range

    OpenAIRE

    MA Jian; WEI Ziqing; WU Lili; YANG Zhenghui

    2017-01-01

    The Bouguer correction is an important item in gravity reduction, while the traditional Bouguer correction, whether the plane Bouguer correction or the spherical Bouguer correction, exists approximation error because of far-zone virtual terrain. The error grows as the calculation point gets higher. Therefore gravity reduction using the Bouguer correction with limited range, which was in accordance with the scope of the topographic correction, was researched in this paper. After that, a simpli...

  11. Microcomputer software for calculating an elk habitat effectiveness index on Blue Mountain winter ranges.

    Science.gov (United States)

    Mark Hitchcock; Alan. Ager

    1992-01-01

    National Forests in the Pacific Northwest Region have incorporated elk habitat standards into Forest plans to ensure that elk habitat objectives are met on multiple use land allocations. Many Forests have employed versions of the habitat effectiveness index (HEI) as a standard method to evaluate habitat. Field application of the HEI model unfortunately is a formidable...

  12. Greater sage-grouse winter habitat use on the eastern edge of their range

    Science.gov (United States)

    Swanson, Christopher C.; Rumble, Mark A.; Grovenburg, Troy W.; Kaczor, Nicholas W.; Klaver, Robert W.; Herman-Brunson, Katie M.; Jenks, Jonathan A.; Jensen, Kent C.

    2013-01-01

    Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this region of their distribution. We evaluated factors influencing greater sage-grouse winter habitat use in North Dakota during 2005–2006 and 2006–2007 and in South Dakota during 2006–2007 and 2007–2008. We captured and radio-marked 97 breeding-age females and 54 breeding-age males from 2005 to 2007 and quantified habitat selection for 98 of these birds that were alive during winter. We collected habitat measurements at 340 (177 ND, 163 SD) sage-grouse use sites and 680 random (340 each at 250 m and 500 m from locations) dependent sites. Use sites differed from random sites with greater percent sagebrush cover (14.75% use vs. 7.29% random; P 2 use vs. 0.94 plants/m2 random; P ≤ 0.001), but lesser percent grass cover (11.76% use vs. 16.01% random; P ≤ 0.001) and litter cover (4.34% use vs. 5.55% random; P = 0.001) and lower sagebrush height (20.02 cm use vs. 21.35 cm random; P = 0.13) and grass height (21.47 cm use vs. 23.21 cm random; P = 0.15). We used conditional logistic regression to estimate winter habitat selection by sage-grouse on continuous scales. The model sagebrush cover + sagebrush height + sagebrush cover × sagebrush height (wi = 0.60) was the most supported of the 13 models we considered, indicating that percent sagebrush cover strongly influenced selection. Logistic odds ratios indicated that the probability of selection by sage-grouse increased by 1.867 for every 1% increase in sagebrush cover (95% CI = 1.627–2.141) and by 1.041 for every 1 cm increase in sagebrush height (95% CI = 1.002–1.082). The

  13. Home-range use patterns and movements of the Siberian flying squirrel in urban forests: Effects of habitat composition and connectivity.

    Science.gov (United States)

    Mäkeläinen, Sanna; de Knegt, Henrik J; Ovaskainen, Otso; Hanski, Ilpo K

    2016-01-01

    Urbanization causes modification, fragmentation and loss of native habitats. Such landscape changes threaten many arboreal and gliding mammals by limiting their movements through treeless parts of a landscape and by making the landscape surrounding suitable habitat patches more inhospitable. Here, we investigate the effects of landscape structure and habitat availability on the home-range use and movement patterns of the Siberian flying squirrel (Pteromys volans) at different spatial and temporal scales. We followed radio-tagged individuals in a partly urbanized study area in Eastern Finland, and analysed how landscape composition and connectivity affected the length and speed of movement bursts, distances moved during one night, and habitat and nest-site use. The presence of urban habitat on movement paths increased both movement lengths and speed whereas nightly distances travelled by males decreased with increasing amount of urban habitat within the home range. The probability of switching from the present nest site to another nest site decreased with increasing distance among the nest sites, but whether the nest sites were connected or unconnected by forests did not have a clear effect on nest switching. Flying squirrels preferred to use mature forests for their movements at night. Our results suggest that the proximity to urban habitats modifies animal movements, possibly because animals try to avoid such habitats by moving faster through them. Urbanization at the scale of an entire home range can restrict their movements. Thus, maintaining a large enough amount of mature forests around inhabited landscape fragments will help protect forest specialists in urban landscapes. The effect of forested connections remains unclear, highlighting the difficulty of measuring and preserving connectivity in a species-specific way.

  14. Home range differences by habitat type of raccoon dogs Nyctereutes procyonoides (Carnivora: Canidae

    Directory of Open Access Journals (Sweden)

    Wooseog Jeong

    2017-09-01

    Full Text Available From July 2013 to November 2014, this research was conducted to secure baseline data to find long-term preventive measures against epidemics from the analysis of home range and movement characteristics of raccoon dogs, which are known as carriers of zoonosis. Researchers conducted a follow-up study with 12 raccoon dogs, each attached with a Global Positioning System mobile transmitter. Analysis of home range used the minimum convex polygon (MCP method and kernel density estimation (KDE with accumulating data of time-based locations. Except for three animals that showed unique behavior, the researchers analyzed nine animals and calculated their average home range. As a result, average home range was 0.48±0.35 km2 (MCP method, and KDE result analysis was verified as 0.65±0.66 km2 (95%, 0.31±0.35 km2 (75%, and 0.23±0.28 km2 (50%. Based on the MCP method, acted in range of minimum 0.07 km2 and maximum 1.08 km2, and the core habitat, KDE 50% level showed activity range in 0.02 km2 to 0.37 km2. Three individuals of unique behavior were classified into two types. Two individuals moved 10–20 km and settled at a place different from the existing habitat, and one individual kept moving without a regular sphere of influence. Generally, raccoon dogs are not considered to move if they secure their area of influence; animals in urban areas have a wider area of influence than those living in areas with a rich source of food such as forest and agricultural land.

  15. Evaluation of Limiting Climatic Factors and Simulation of a Climatically Suitable Habitat for Chinese Sea Buckthorn.

    Directory of Open Access Journals (Sweden)

    Guoqing Li

    Full Text Available Chinese sea buckthorn (Hippophae rhamnoides subsp. sinensis has considerable economic potential and plays an important role in reclamation and soil and water conservation. For scientific cultivation of this species across China, we identified the key climatic factors and explored climatically suitable habitat in order to maximize survival of Chinese sea buckthorn using MaxEnt and GIS tools, based on 98 occurrence records from herbarium and publications and 13 climatic factors from Bioclim, Holdridge life zone and Kria' index variables. Our simulation showed that the MaxEnt model performance was significantly better than random, with an average test AUC value of 0.93 with 10-fold cross validation. A jackknife test and the regularized gain change, which were applied to the training algorithm, showed that precipitation of the driest month (PDM, annual precipitation (AP, coldness index (CI and annual range of temperature (ART were the most influential climatic factors in limiting the distribution of Chinese sea buckthorn, which explained 70.1% of the variation. The predicted map showed that the core of climatically suitable habitat was distributed from the southwest to northwest of Gansu, Ningxia, Shaanxi and Shanxi provinces, where the most influential climate variables were PDM of 1.0-7.0 mm, AP of 344.0-1089.0 mm, CI of -47.7-0.0°C, and ART of 26.1-45.0°C. We conclude that the distribution patterns of Chinese sea buckthorn are related to the northwest winter monsoon, the southwest summer monsoon and the southeast summer monsoon systems in China.

  16. Determining Home Range and Preferred Habitat of Feral Horses on the Nevada National Security Site Using Geographic Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Ashley V. [Univ. of Denver, CO (United States)

    2014-05-30

    Feral horses (Equus caballus) are free-roaming descendants of domesticated horses and legally protected by the Wild and Free-Roaming Horses and Burros Act of 1971, which mandates how feral horses and burros should be managed and protected on federal lands. Using a geographic information system to determine the home range and suitable habitat of feral horses on the federally managed Nevada National Security Site can enable wildlife biologists in making best management practice recommendations. Home range was estimated at 88.1 square kilometers. Site suitability was calculated for elevation, forage, slope, water presence and horse observations. These variables were combined in successive iterations into one polygon. Suitability rankings established that 85 square kilometers are most suitable habitat, with 2,052 square kilometers of good habitat 1,252 square kilometers of fair habitat and 122 square kilometers of least suitable habitat.

  17. Habitat use of the Aesculapian Snake, Zamenis Longissimus, at the Northern Extreme of its Range in Northwest Bohemia

    Czech Academy of Sciences Publication Activity Database

    Kovář, R.; Brabec, Marek; Víta, R.; Vodička, R.; Bogdan, V.

    -, č. 136 (2016), s. 1-9 ISSN 1473-0928 Institutional support: RVO:67985807 Keywords : home range estimation * habitat use distribution * aesculapian snake Subject RIV: BB - Applied Statistics, Operational Research

  18. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A; Eckhart, Vincent M; Tiffin, Peter

    2012-05-01

    Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.

  19. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    Science.gov (United States)

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef

  20. Habitat use and home range of the endangered gold-spotted pond frog (Rana chosenica).

    Science.gov (United States)

    Ra, Nam-Yong; Sung, Ha-Cheol; Cheong, Seokwan; Lee, Jung-Hyun; Eom, Junho; Park, Daesik

    2008-09-01

    Because of their complex life styles, amphibians and reptiles living in wetlands require both aquatic and terrestrial buffer zones in their protected conservation areas. Due to steep declines in wild populations, the gold-spotted pond frog (Rana chosenica) is listed as vulnerable by the IUCN. However, lack of data about its movements and use of habitat prevents effective conservation planning. To determine the habitat use and home range of this species, we radio-tracked 44 adult frogs for 37 days between 10 July and 4 Nov. 2007 to observe three different populations in the breeding season, non-breeding season, and late fall. The gold-spotted pond frog was very sedentary; its daily average movement was 9.8 m. Frogs stayed close to breeding ponds (within 6.6 m), and did not leave damp areas surrounding these ponds, except for dormancy migration to terrestrial sites such as dried crop fields. The average distance of dormancy migration of seven frogs from the edge of their breeding ponds was 32.0 m. The average size of an individual's home range was 713.8 m(2) (0.07 ha). The year-round population home range, which accounts for the home ranges of a population of frogs, was determined for two populations to be 8,765.0 m(2) (0.88 ha) and 3,700.9 m(2) (0.37 ha). Our results showed that to conserve this endangered species, appropriately sized wetlands and extended terrestrial buffer areas surrounding the wetlands (at least 1.33 ha, diameter 130 m) should be protected.

  1. Simulating range-wide population and breeding habitat dynamics for an endangered woodland warbler in the face of uncertainty

    Science.gov (United States)

    Adam Duarte,; Hatfield, Jeffrey; Todd M. Swannack,; Michael R. J. Forstner,; M. Clay Green,; Floyd W. Weckerly,

    2015-01-01

    Population viability analyses provide a quantitative approach that seeks to predict the possible future status of a species of interest under different scenarios and, therefore, can be important components of large-scale species’ conservation programs. We created a model and simulated range-wide population and breeding habitat dynamics for an endangered woodland warbler, the golden-cheeked warbler (Setophaga chrysoparia). Habitat-transition probabilities were estimated across the warbler's breeding range by combining National Land Cover Database imagery with multistate modeling. Using these estimates, along with recently published demographic estimates, we examined if the species can remain viable into the future given the current conditions. Lastly, we evaluated if protecting a greater amount of habitat would increase the number of warblers that can be supported in the future by systematically increasing the amount of protected habitat and comparing the estimated terminal carrying capacity at the end of 50 years of simulated habitat change. The estimated habitat-transition probabilities supported the hypothesis that habitat transitions are unidirectional, whereby habitat is more likely to diminish than regenerate. The model results indicated population viability could be achieved under current conditions, depending on dispersal. However, there is considerable uncertainty associated with the population projections due to parametric uncertainty. Model results suggested that increasing the amount of protected lands would have a substantial impact on terminal carrying capacities at the end of a 50-year simulation. Notably, this study identifies the need for collecting the data required to estimate demographic parameters in relation to changes in habitat metrics and population density in multiple regions, and highlights the importance of establishing a common definition of what constitutes protected habitat, what management goals are suitable within those protected

  2. Home Range Characteristics and Habitat Selection by Daurian Hedgehogs ( Mesechinus dauuricus in Ikh Nart Nature Reserve, Mongolia

    Directory of Open Access Journals (Sweden)

    Mirka Zapletal

    2012-12-01

    Full Text Available We examined home range characteristics and habitat selection of Daurian hedgehogs in Ikh Nart Nature Reserve, Mongolia. Home ranges of hedgehogs varied from 113.15 ha to 2,171.97 ha, and were larger in early summer than late summer. Hedgehogs showed relative preference for rocky outcrops and low-density shrub habitats, and relative avoidance of high- density shrub areas. Habitat selection also changed between early and late summer, shifting to greater use of low-density shrub areas and decreased use of forb-dominated short grass. Our baseline data on home ranges and habitat selection expand understanding of hedgehog ecology and provide guidance for future management decisions in Ikh Nart Nature Reserve and elsewhere in Mongolia.

  3. Enhancement and creation of secondary channel habitat: Review of project performance across a range of project types and settings

    Science.gov (United States)

    Epstein, J.; Lind, P.

    2017-12-01

    Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons

  4. Comparison of radio-telemetric home range analysis and acoustic detection for Little Brown Bat habitat evaluation

    Science.gov (United States)

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    With dramatic declines of bat populations due to mortality caused by Pseudogymnoascus destructans (White-nose Syndrome), assessing habitat preferences of bats in the northeastern US is now critical to guide the development of regional conservation efforts. In the summer of 2012, we conducted fixed-station simultaneous telemetry to determine nocturnal spatial use and fixed-kernel home-range estimates of available habitat of a Myotis lucifugus (Le Conte) (Little Brown Bat) maternity colony in an artificial bat house. In summers of 2011 and 2012, we also deployed a 52-ha grid of 4 × 4 Anabat acoustic detectors over five 6–8-day sampling periods in various riparian and non-riparian environments in close proximity to the same bat house. The mean telemetry home range of 143 ha for bats (n = 7) completely overlapped the acoustic grid. Rankings of habitats from telemetry data for these 7 bats and 5 additional bats not included in home-range calculations but added for habitat-use measures (n = 13) revealed a higher proportional use of forested riparian habitats than other types at the landscape scale. Pair-wise comparisons of habitats indicated that bats were found significantly closer to forested riparian habitats and forests than to open water, developed areas, fields, shrublands, or wetland habitats at the landscape scale. Acoustic sampling showed that naïve occupancy was 0.8 and 0.6 and mean nightly detection probabilities were 0.23 and 0.08 at riparian and non-riparian sites, respectively. Our findings suggest that Little Brown Bats select forested riparian and forested habitats for foraging at the landscape scale but may be most easily detected acoustically at riparian sites when a simple occupancy determination for an area is required.

  5. Range estimates and habitat use of invasive Silver Carp (Hypophthalmichthys molitrix): Evidence of sedentary and mobile individuals

    Science.gov (United States)

    Prechtel, Austin R.; Coulter, Alison A.; Etchison, Luke; Jackson, P. Ryan; Goforth, Reuben R.

    2018-01-01

    Unregulated rivers provide unobstructed corridors for the dispersal of both native and invasive species. We sought to evaluate range size and habitat use of an invasive species (Silver Carp, Hypophthalmichthys molitrix) in an unimpounded river reach (Wabash River, IN), to provide insights into the dispersal of invasive species and their potential overlap with native species. We hypothesized that range size would increase with fish length, be similar among sexes, and vary annually while habitats used would be deeper, warmer, lower velocity, and of finer substrate. Silver Carp habitat use supported our hypotheses but range size did not vary with sex or length. 75% home range varied annually, suggesting that core areas occupied by individuals may change relative to climate-based factors (e.g., water levels), whereas broader estimates of range size remained constant across years. Ranges were often centered on landscape features such as tributaries and backwaters. Results of this study indicate habitat and landscape features as potential areas where Silver Carp impacts on native ecosystems may be the greatest. Observed distribution of range sizes indicates the presence of sedentary and mobile individuals within the population. Mobile individuals may be of particular importance as they drive the spread of the invasive species into new habitats.

  6. Impacts of habitat loss and fragmentation on the activity budget, ranging ecology and habitat use of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands.

    Science.gov (United States)

    Mekonnen, Addisu; Fashing, Peter J; Bekele, Afework; Hernandez-Aguilar, R Adriana; Rueness, Eli K; Nguyen, Nga; Stenseth, Nils Chr

    2017-07-01

    Understanding the extent to which primates in forest fragments can adjust behaviorally and ecologically to changes caused by deforestation is essential to designing conservation management plans. During a 12-month period, we studied the effects of habitat loss and degradation on the Ethiopian endemic, bamboo specialist, Bale monkey (Chlorocebus djamdjamensis) by comparing its habitat quality, activity budget, ranging ecology and habitat use in continuous forest and two fragments. We found that habitat loss and fragmentation resulted in major differences in vegetation composition and structure between forest types. We also found that Bale monkeys in continuous forest spent more time feeding and traveling and less time resting and socializing than monkeys in fragments. Bale monkeys in continuous forest also had higher movement rates (m/hr) than monkeys in fragments. Bale monkeys in continuous forest used exclusively bamboo and mixed bamboo forest habitats while conspecifics in fragments used a greater variety of habitats including human use areas (i.e., matrix). Our findings suggest that Bale monkeys in fragments use an energy minimization strategy to cope with the lower availability of the species' primary food species, bamboo (Arundinaria alpina). We contend that Bale monkeys may retain some of the ancestral ecological flexibility assumed to be characteristic of the genus Chlorocebus, within which all extant species except Bale monkeys are regarded as ecological generalists. Our results suggest that, like other bamboo eating primates (e.g., the bamboo lemurs of Madagascar), Bale monkeys can cope with a certain threshold of habitat destruction. However, the long-term conservation prospects for Bale monkeys in fragments remain unclear and will require further monitoring to be properly evaluated. © 2017 Wiley Periodicals, Inc.

  7. Consequences of habitat change and resource selection specialization for population limitation in cavity-nesting birds

    Science.gov (United States)

    Martin, Thomas E.

    2015-01-01

    Resource selection specialization may increase vulnerability of populations to environmental change. One environmental change that may negatively impact some populations is the broad decline of quaking aspen Populus tremuloides, a preferred nest tree of cavity-nesting organisms who are commonly limited by nest-site availability. However, the long-term consequences of this habitat change for cavity-nesting bird populations are poorly studied.

  8. Physiology-based modelling approaches to characterize fish habitat suitability: Their usefulness and limitations

    Science.gov (United States)

    Teal, Lorna R.; Marras, Stefano; Peck, Myron A.; Domenici, Paolo

    2018-02-01

    Models are useful tools for predicting the impact of global change on species distribution and abundance. As ectotherms, fish are being challenged to adapt or track changes in their environment, either in time through a phenological shift or in space by a biogeographic shift. Past modelling efforts have largely been based on correlative Species Distribution Models, which use known occurrences of species across landscapes of interest to define sets of conditions under which species are likely to maintain populations. The practical advantages of this correlative approach are its simplicity and the flexibility in terms of data requirements. However, effective conservation management requires models that make projections beyond the range of available data. One way to deal with such an extrapolation is to use a mechanistic approach based on physiological processes underlying climate change effects on organisms. Here we illustrate two approaches for developing physiology-based models to characterize fish habitat suitability. (i) Aerobic Scope Models (ASM) are based on the relationship between environmental factors and aerobic scope (defined as the difference between maximum and standard (basal) metabolism). This approach is based on experimental data collected by using a number of treatments that allow a function to be derived to predict aerobic metabolic scope from the stressor/environmental factor(s). This function is then integrated with environmental (oceanographic) data of current and future scenarios. For any given species, this approach allows habitat suitability maps to be generated at various spatiotemporal scales. The strength of the ASM approach relies on the estimate of relative performance when comparing, for example, different locations or different species. (ii) Dynamic Energy Budget (DEB) models are based on first principles including the idea that metabolism is organised in the same way within all animals. The (standard) DEB model aims to describe

  9. Home-range use patterns and movements of the Siberian flying squirrel in urban forests: Effects of habitat composition and connectivity

    NARCIS (Netherlands)

    Mäkeläinen, Sanna; Knegt, de H.J.; Ovaskainen, Otso; Hanski, Ilpo K.

    2016-01-01

    Urbanization causes modification, fragmentation and loss of native habitats. Such landscape changes threaten many arboreal and gliding mammals by limiting their movements through treeless parts of a landscape and by making the landscape surrounding suitable habitat patches more inhospitable. Here,

  10. Determination of the range of control limits in radioimmunoassay measurements

    International Nuclear Information System (INIS)

    Fiori, A.M.C.

    1981-01-01

    A grouping technique is proposed for control limits in radioimmunoassay measurements. It has the advantage of working with control limits of 99.7% without the inconvenience of the confidence intervals. The method is practical and simple. It provides considerable flexibility for the processing of data. As the number of samples increases, the control limits become better defined. (author) [es

  11. Nest-site habitat of cavity-nesting birds at the San Joaquin Experimental Range

    Science.gov (United States)

    Kathryn L. Purcell; Jared. Verner

    2008-01-01

    Detailed information about the nesting habitats of birds, including those needed for successful nesting, can provide a better understanding of the ecological factors that permit coexistence of different species and may aid in conservation efforts. From 1989 through 1994, we studied the nesting habitat of secondary cavity-nesting birds in oak woodlands at the San...

  12. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1981-01-01

    The multiple stresses temperature, moisture, and for chemoheterotrophs, sources of carbon and energy of the Dry Valley Antarctica soils allow at best depauperate communities, low in species diversity and population density. The nature of community structure, the operation of biogeochemical cycles, the evolution and mechanisms of adaptation to this habitat are of interest in informing speculations upon life on other planets as well as in modeling the limits of gene life. Yeasts of the Cryptococcus vishniacil complex (Basidiobiastomycetes) are investigated, as the only known indigenes of the most hostile, lichen free, parts of the Dry Valleys. Methods were developed for isolating these yeasts (methods which do not exclude the recovery of other microbiota). The definition of the complex was refined and the importance of nitrogen sources was established as well as substrate competition in fitness to the Dry Valley habitats.

  13. Spatial segregation of spawning habitat limits hybridization between sympatric native Steelhead and Coastal Cutthroat Trout

    Science.gov (United States)

    Buehrens, T.W.; Glasgow, J.; Ostberg, Carl O.; Quinn, T.P.

    2013-01-01

    Native Coastal Cutthroat Trout Oncorhynchus clarkii clarkii and Coastal Steelhead O. mykiss irideus hybridize naturally in watersheds of the Pacific Northwest yet maintain species integrity. Partial reproductive isolation due to differences in spawning habitat may limit hybridization between these species, but this process is poorly understood. We used a riverscape approach to determine the spatial distribution of spawning habitats used by native Coastal Cutthroat Trout and Steelhead as evidenced by the distribution of recently emerged fry. Molecular genetic markers were used to classify individuals as pure species or hybrids, and individuals were assigned to age-classes based on length. Fish and physical habitat data were collected in a spatially continuous framework to assess the relationship between habitat and watershed features and the spatial distribution of parental species and hybrids. Sampling occurred in 35 reaches from tidewaters to headwaters in a small (20 km2) coastal watershed in Washington State. Cutthroat, Steelhead, and hybrid trout accounted for 35%, 42%, and 23% of the fish collected, respectively. Strong segregation of spawning areas between Coastal Cutthroat Trout and Steelhead was evidenced by the distribution of age-0 trout. Cutthroat Trout were located farther upstream and in smaller tributaries than Steelhead were. The best predictor of species occurrence at a site was the drainage area of the watershed that contributed to the site. This area was positively correlated with the occurrence of age-0 Steelhead and negatively with the presence of Cutthroat Trout, whereas hybrids were found in areas occupied by both parental species. A similar pattern was observed in older juveniles of both species but overlap was greater, suggesting substantial dispersal of trout after emergence. Our results offer support for spatial reproductive segregation as a factor limiting hybridization between Steelhead and Coastal Cutthroat Trout.

  14. On Dynamic Range Limitations of CMOS Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1999-01-01

    frequency band and for the situation where the conveyor is used over the full bandwidth achievable. Finally, the optimisation of the current input range is related to the distortion characteristics and it is pointed out that to a first order approximation the distortion is independent of the current range.......This paper is concerned with the dynamic range of continuous time CMOS current mode circuits. As a representative current mode device a class AB current conveyor is examined. First, the voltage input range of the high impedance Y input is investigated. Next, the current input range of the low...... impedance X input is investigated. It is compared to the thermal noise in the X to Z signal path in order to evaluate the dynamic range, and the dependencies of the dynamic range on the supply voltage and the transistor lay-out is derived, both for the situation where the conveyor is used over a narrow...

  15. Impacts of biogeographic history and marginal population genetics on species range limits: a case study of Liriodendron chinense.

    Science.gov (United States)

    Yang, Aihong; Dick, Christopher W; Yao, Xiaohong; Huang, Hongwen

    2016-05-10

    Species ranges are influenced by past climate oscillations, geographical constraints, and adaptive potential to colonize novel habitats at range limits. This study used Liriodendron chinense, an important temperate Asian tree species, as a model system to evaluate the roles of biogeographic history and marginal population genetics in determining range limits. We examined the demographic history and genetic diversity of 29 L. chinense populations using both chloroplast and nuclear microsatellite loci. Significant phylogeographic structure was recovered with haplotype clusters coinciding with major mountain regions. Long-term demographical stability was suggested by mismatch distribution analyses, neutrality tests, and ecological niche models (ENM) and suggested the existence of LGM refuges within mountain regions. Differences in genetic diversity between central and marginal populations were not significant for either genomic region. However, asymmetrical gene flow was inferred from central populations to marginal populations, which could potentially limit range adaptation and expansion of L. chinense.

  16. Living to the range limit: consumer isotopic variation increases with environmental stress

    Directory of Open Access Journals (Sweden)

    Carl J. Reddin

    2016-06-01

    Full Text Available Background: Theoretically, each species’ ecological niche is phylogenetically-determined and expressed spatially as the species’ range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources. Therefore, we expected individuals at greater shore heights to show greater variation in diet alongside lower indices of physiological condition. Methods: We sampled the grazing gastropod Echinolittorina peruviana from the desert coastline of northern Chile at three shore heights, across eighteen regionally-representative shores. Stable isotope values (δ13C and δ15N were extracted from E. peruviana and its putative food resources to estimate Bayesian ellipse area, carbon and nitrogen ranges and diet. Individual physiological condition was tracked by muscle % C and % N. Results: There was an increase in isotopic variation at high shore levels, where E. peruviana’s preferred resource, tide-deposited particulate organic matter (POM, appeared to decrease in dietary contribution, and was expected to be less abundant. Both muscle % C and % N of individuals decreased with height on the shore. Discussion: Individuals at higher stress levels appear to be less discriminating in diet, likely because of abiotic forcing, which decreases both consumer mobility and the availability of a preferred resource. Abiotic stress might be expected to increase trophic variation in other selective dietary generalist species. Where this coincides with a lower physiological condition may be a direct factor in setting their range limit.

  17. Variation in habitat use along the freshwater-marine continuum by grey mullet Mugil cephalus at the southern limits of its distribution.

    Science.gov (United States)

    Górski, K; De Gruijter, C; Tana, R

    2015-10-01

    In this study, habitat use by Mugil cephalus was investigated in the waters of the west coast of the North Island of New Zealand by analysing microchemical composition of otoliths (laser-ablation inductively coupled plasma mass spectrometry) obtained from individuals from commercial fish stocks and research surveys. Results of this study show that M. cephalus at the southern limits of its distribution display highly flexible migratory behaviour with extensive use of freshwater and brackish habitats, potentially enabling them to maximize foraging opportunities. Mugil cephalus can tolerate a wide range of salinities and can therefore utilize higher productivity areas, such as estuaries and eutrophic riverine lakes. Finally, M. cephalus populations across a range of climates and latitudes appear to differ in the extent to which they utilize freshwater and brackish habitats, possibly with increasing penetration of fresh waters with increasing latitude. © 2015 The Fisheries Society of the British Isles.

  18. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate-limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1982-01-01

    The success of the Antarctic Dry Valley yeasts presumeably results from adaptations to multiple stresses, to low temperatures and substrate-limitation as well as prolonged resting periods enforced by low water availability. Previous investigations have suggested that the crucial stress is substrate limitation. Specific adaptations may be pinpointed by comparing the physiology of the Cryptococcus vishniacii complex, the yeasts of the Tyrol Valley, with their congeners from other habitats. Progress was made in methods of isolation and definition of ecological niches, in the design of experiments in competition for limited substrate, and in establishing the relationships of the Cryptococcus vishniacii complex with other yeasts. In the course of investigating relationships, a new method for 25SrRNA homology was developed. For the first time it appears that 25SrRNA homology may reflect parallel or convergent evolution.

  19. Wildlife habitat, range, recreation, hydrology, and related research using Forest Inventory and Analysis surveys: a 12-year compendium

    Science.gov (United States)

    Victor A. Rudis

    1991-01-01

    More than 400 publications are listed for the period 1979 to 1990; these focus on water, range, wildlife habitat, recreation, and related studies derived from U.S. Department of Agriculture, forest Service, Forest Inventory and Analysis unit surveys conducted on private and public land in the continental United States. Included is an overview of problems and progress...

  20. New records of the Japanese seahorse Hippocampus mohnikei in Southeast Asia lead to updates in range, habitat and threats.

    Science.gov (United States)

    Aylesworth, L; Lawson, J M; Laksanawimol, P; Ferber, P; Loh, T-L

    2016-04-01

    New records of the Japanese seahorse Hippocampus mohnikei from Cambodia, Malaysia, Thailand and Vietnam, along with recently published studies from India and Singapore, have greatly expanded the known range of H. mohnikei within Southeast Asia. These new records reveal novel habitat preferences and threats to H. mohnikei in the region. Although the global conservation status of H. mohnikei is classified as Data Deficient according to the IUCN Red List of Threatened Species, new sightings indicate that this species is found in similar habitats and faces similar threats as other Hippocampus species that are considered Vulnerable. © 2016 The Fisheries Society of the British Isles.

  1. Habitat fragmentation and species extirpation in freshwater ecosystems; causes of range decline of the Indus river dolphin (Platanista gangetica minor).

    Science.gov (United States)

    Braulik, Gill T; Arshad, Masood; Noureen, Uzma; Northridge, Simon P

    2014-01-01

    Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world's most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world's most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin's range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin.

  2. Habitat fragmentation and species extirpation in freshwater ecosystems; causes of range decline of the Indus river dolphin (Platanista gangetica minor.

    Directory of Open Access Journals (Sweden)

    Gill T Braulik

    Full Text Available Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world's most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world's most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin's range decline, influencing 1 the spatial pattern of persistence, 2 the temporal pattern of subpopulation extirpation, and 3 the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin.

  3. Maintaining Limited-Range Connectivity Among Second-Order Agents

    Science.gov (United States)

    2016-07-07

    we consider ad-hoc networks of robotic agents with double integrator dynamics. For such networks, the connectivity maintenance problems are: (i) do...connectivity-maintaining controls in a distributed fashion? The proposed solution is based on three contributions. First, we define and characterize...hoc networks of mobile autonomous agents. This loose ter- minology refers to groups of robotic agents with limited mobility and communica- tion

  4. Home Range and Habitat Use of Male Rafinesque's Big-Eared Bats (Corynorhinus rafinesquii)

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, M.A.; Menzel, J.M.; Ford, W.M.; Edwards, J.W.; Carter, T.C.; Churchill, J.B.; Kilgo, J.C.

    2000-03-13

    We examined home range size and habitat use of four reproductively active male Rafinesque Big-eared bats in the upper Coastal Plain of South Carolina during August and September of 1999. Most foraging activity occurred during the first 4 hours after sunset and the first two hours before sunrise. Mean home range size was 93.1 hectares. Most foraging activity occurred in young pines even though large tracks of bottomland hardwood were available. Only 9% of foraging occurred in bottomland hardwoods.

  5. Home ranges and habitat use of sloth bears Melursus ursinus inornatus in Wasgomuwa National Park, Sri Lanka

    Science.gov (United States)

    Ratnayeke, S.; Van Manen, F.T.; Padmalal, U.K.G.K.

    2007-01-01

    We studied home ranges and habitat selection of 10 adult sloth bears Melursus ursinus inornatus at Wasgomuwa National Park, Sri Lanka during 2002-2003. Very little is known about the ecology and behaviour of M. u. inornatus, which is a subspecies found in Sri Lanka. Our study was undertaken to assess space and habitat requirements typical of a viable population of M. u. inornatus to facilitate future conservation efforts. We captured and radio-collared 10 adult sloth bears and used the telemetry data to assess home-range size and habitat use. Mean 95% fixed kernel home ranges were 2.2 km2 (SE = 0.61) and 3.8 km2 (SE = 1.01) for adult females and males, respectively. Although areas outside the national park were accessible to bears, home ranges were almost exclusively situated within the national park boundaries. Within the home ranges, high forests were used more and abandoned agricultural fields (chenas) were used less than expected based on availability. Our estimates of home-range size are among the smallest reported for any species of bear. Thus, despite its relatively small size, Wasgomuwa National Park may support a sizeable population of sloth bears. The restriction of human activity within protected areas may be necessary for long-term viability of sloth bear populations in Sri Lanka as is maintenance of forest or scrub cover in areas with existing sloth bear populations and along potential travel corridors. ?? Wildlife Biology 2007.

  6. Unidirectional hybridization at a species' range boundary: implications for habitat tracking

    DEFF Research Database (Denmark)

    Beatty, Gemma, E.; Philipp, Marianne; Provan, Jim

    2010-01-01

    hybridization may lead to the extinction of peripheral populations of P. minor where the two species grow sympatrically. Extinction could occur as a result of genetic assimilation where F1s are fertile, or via the removal of unidirectionally pollinated sterile F1s, or by a combination of these processes......Aim Introgressive hybridization between a locally rare species and a more abundant congener can drive population extinction via genetic assimilation, or the replacement of the rare species gene pool with that of the common species. To date, however, few studies have assessed the effects...... of such processes at the limits of species' distribution ranges. In this study, we have examined the potential for hybridization between range-edge populations of the wintergreen Pyrola minor and sympatric populations of Pyrola grandiflora. Location Qeqertarsuaq, Greenland and Churchill, Manitoba, Canada. Methods...

  7. Controlling cheatgrass in winter range to restore habitat and endemic fire

    Science.gov (United States)

    Jennifer L. Vollmer; Joseph G. Vollmer

    2008-01-01

    Habitat managers can better prepare a program for prescribed burns, wildfire management, and maximum forage biomass by understanding the response of key shrubs to the tools utilized to reduce cheatgrass (Bromus spp.) competition. Application of Plateau® herbicide, prior to annual brome germination, at rates up to 8 oz/acre with or without surfactant...

  8. Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system

    Science.gov (United States)

    Johnson, Christine K.; Tinker, M. Tim; Estes, James A.; Conrad, Patricia A.; Staedler, Michelle M.; Miller, Melissa A.; Jessup, David A.; Mazet, Jonna A.K.

    2014-01-01

    The processes promoting disease in wild animal populations are highly complex, yet identifying these processes is critically important for conservation when disease is limiting a population. By combining field studies with epidemiologic tools, we evaluated the relationship between key factors impeding southern sea otter (Enhydra lutris nereis) population growth: disease and resource limitation. This threatened population has struggled to recover despite protection, so we followed radio-tagged sea otters and evaluated infection with 2 disease-causing protozoal pathogens, Toxoplasma gondii and Sarcocystis neurona, to reveal risks that increased the likelihood of pathogen exposure. We identified patterns of pathogen infection that are linked to individual animal behavior, prey choice, and habitat use. We detected a high-risk spatial cluster of S. neurona infections in otters with home ranges in southern Monterey Bay and a coastal segment near San Simeon and Cambria where otters had high levels of infection with T. gondii. We found that otters feeding on abalone, which is the preferred prey in a resource-abundant marine ecosystem, had a very low risk of infection with either pathogen, whereas otters consuming small marine snails were more likely to be infected with T. gondii. Individual dietary specialization in sea otters is an adaptive mechanism for coping with limited food resources along central coastal California. High levels of infection with protozoal pathogens may be an adverse consequence of dietary specialization in this threatened species, with both depleted resources and disease working synergistically to limit recovery.

  9. Alteration of sexual reproduction and genetic diversity in the kelp species Laminaria digitata at the southern limit of its range.

    Directory of Open Access Journals (Sweden)

    Luz Valeria Oppliger

    Full Text Available Adaptation to marginal habitats at species range-limits has often been associated with parthenogenetic reproduction in terrestrial animals and plants. Laboratory observations have shown that brown algae exhibit a high propensity for parthenogenesis by various mechanisms. The kelp Laminaria digitata is an important component of the ecosystem in Northern European rocky intertidal habitats. We studied four L. digitata populations for the effects of marginality on genetic diversity and sexual reproduction. Two populations were marginal: One (Locquirec, in Northern Brittany was well within the geographic range, but was genetically isolated from other populations by large stretches of sandy beaches. Another population was at the range limits of the species (Quiberon, in Southern Brittany and was exposed to much higher seasonal temperature changes. Microsatellite analyses confirmed that these populations showed decreased genetic and allelic diversity, consistent with marginality and genetic isolation. Sporophytes from both marginal populations showed greatly diminished spore-production compared to central populations, but only the southern-limit population (Quiberon showed a high propensity for producing unreduced (2N spores. Unreduced 2N spores formed phenotypically normal gametophytes with nuclear area consistent with ≥2N DNA contents, and microsatellite studies suggested these were produced at least in part by automixis. However, despite this being the dominant path of spore production in Quiberon sporophyte individuals, the genetic evidence indicated the population was maintained mostly by sexual reproduction. Thus, although spore production and development showed the expected tendency of geographical parthenogenesis in marginal populations, this appeared to be a consequence of maladaptation, rather than an adaptation to, life in a marginal habitat.

  10. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate‐induced range shifts

    DEFF Research Database (Denmark)

    Hargreaves, Anna; Bailey, Susan; Laird, Robert

    2015-01-01

    Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution....... We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs...... at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient...

  11. Limitations of habitats as biodiversity surrogates for conservation planning in estuaries.

    Science.gov (United States)

    Shokri, Mohammad Reza; Gladstone, William

    2013-04-01

    Increasing pressures on global biodiversity and lack of data on the number and abundance of species have motivated conservation planners and researchers to use more readily available information as proxies or surrogates for biodiversity. "Habitat" is one of the most frequently used surrogates but its assumed value in marine conservation planning is not often tested. The present study developed and tested three alternative habitat classification schemes of increasing complexity for a large estuary in south-east Australia and tested their effectiveness in predicting spatial variation in macroinvertebrate biodiversity and selecting estuarine protected areas to represent species. The three habitat classification schemes were: (1) broad-scale habitats (e.g., mangroves and seagrass), (2) subdivision of each broad-scale habitat by a suite of environmental variables that varied significantly throughout the estuary, and (3) subdivision of each broad-scale habitat by the subset of environmental variables that best explained spatial variation in macroinvertebrate biodiversity. Macroinvertebrate assemblages differed significantly among the habitats in each classification scheme. For each classification scheme, habitat richness was significantly correlated with species richness, total density of macroinvertebrates, assemblage dissimilarity, and summed irreplaceability. However, in a reserve selection process designed to represent examples of each habitat, no habitat classification scheme represented species significantly better than a random selection of sites. Habitat classification schemes may represent variation in estuarine biodiversity; however, the results of this study suggest they are inefficient in designing representative networks of estuarine protected areas.

  12. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola.

    Directory of Open Access Journals (Sweden)

    Ariñe Crespo

    Full Text Available Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.

  13. Permissible Home Range Estimation (PHRE in Restricted Habitats: A New Algorithm and an Evaluation for Sea Otters.

    Directory of Open Access Journals (Sweden)

    L Max Tarjan

    Full Text Available Parametric and nonparametric kernel methods dominate studies of animal home ranges and space use. Most existing methods are unable to incorporate information about the underlying physical environment, leading to poor performance in excluding areas that are not used. Using radio-telemetry data from sea otters, we developed and evaluated a new algorithm for estimating home ranges (hereafter Permissible Home Range Estimation, or "PHRE" that reflects habitat suitability. We began by transforming sighting locations into relevant landscape features (for sea otters, coastal position and distance from shore. Then, we generated a bivariate kernel probability density function in landscape space and back-transformed this to geographic space in order to define a permissible home range. Compared to two commonly used home range estimation methods, kernel densities and local convex hulls, PHRE better excluded unused areas and required a smaller sample size. Our PHRE method is applicable to species whose ranges are restricted by complex physical boundaries or environmental gradients and will improve understanding of habitat-use requirements and, ultimately, aid in conservation efforts.

  14. Application of habitat thresholds in conservation: Considerations, limitations, and future directions

    Directory of Open Access Journals (Sweden)

    Yntze van der Hoek

    2015-01-01

    Full Text Available Habitat thresholds are often interpreted as the minimum required area of habitat, and subsequently promoted as conservation targets in natural resource policies and planning. Unfortunately, several recent reviews and messages of caution on the application of habitat thresholds in conservation have largely fallen on deaf ears, leading to a dangerous oversimplification and generalization of the concept. We highlight the prevalence of oversimplification/over-generalization of results from habitat threshold studies in policy documentation, the consequences of such over-generalization, and directions for habitat threshold studies that have conservation applications without risking overgeneralization. We argue that in order to steer away from misapplication of habitat thresholds in conservation, we should not focus on generalized nominal habitat values (i.e., amounts or percentages of habitat, but on the use of habitat threshold modeling for comparative exercises of area-sensitivity or the identification of environmental dangers. In addition, we should remain focused on understanding the processes and mechanisms underlying species responses to habitat change. Finally, studies could that focus on deriving nominal value threshold amounts should do so only if the thresholds are detailed, species-specific, and translated to conservation targets particular to the study area only.

  15. Herbivory and pollen limitation at the upper elevational range limit of two forest understory plants of eastern North America.

    Science.gov (United States)

    Rivest, Sébastien; Vellend, Mark

    2018-01-01

    Studies of species' range limits focus most often on abiotic factors, although the strength of biotic interactions might also vary along environmental gradients and have strong demographic effects. For example, pollinator abundance might decrease at range limits due to harsh environmental conditions, and reduced plant density can reduce attractiveness to pollinators and increase or decrease herbivory. We tested for variation in the strength of pollen limitation and herbivory by ungulates along a gradient leading to the upper elevational range limits of Trillium erectum (Melanthiaceae) and Erythronium americanum (Liliaceae) in Mont Mégantic National Park, Québec, Canada. In T. erectum, pollen limitation was higher at the range limit, but seed set decreased only slightly with elevation and only in one of two years. In contrast, herbivory of T. erectum increased from 60% at the upper elevational range limit. In E. americanum , we found no evidence of pollen limitation despite a significant decrease in seed set with elevation, and herbivory was low across the entire gradient. Overall, our results demonstrate the potential for relatively strong negative interactions (herbivory) and weak positive interactions (pollination) at plant range edges, although this was clearly species specific. To the extent that these interactions have important demographic consequences-highly likely for herbivory on Trillium , based on previous studies-such interactions might play a role in determining plant species' range limits along putatively climatic gradients.

  16. Optimal population prediction of sandhill crane recruitment based on climate-mediated habitat limitations

    Science.gov (United States)

    Gerber, Brian D.; Kendall, William L.; Hooten, Mevin B.; Dubovsky, James A.; Drewien, Roderick C.

    2015-01-01

    Prediction is fundamental to scientific enquiry and application; however, ecologists tend to favour explanatory modelling. We discuss a predictive modelling framework to evaluate ecological hypotheses and to explore novel/unobserved environmental scenarios to assist conservation and management decision-makers. We apply this framework to develop an optimal predictive model for juvenile (time-scales and spring/summer weather affects recruitment.Our predictive modelling framework focuses on developing a single model that includes all relevant predictor variables, regardless of collinearity. This model is then optimized for prediction by controlling model complexity using a data-driven approach that marginalizes or removes irrelevant predictors from the model. Specifically, we highlight two approaches of statistical regularization, Bayesian least absolute shrinkage and selection operator (LASSO) and ridge regression.Our optimal predictive Bayesian LASSO and ridge regression models were similar and on average 37% superior in predictive accuracy to an explanatory modelling approach. Our predictive models confirmed a priori hypotheses that drought and cold summers negatively affect juvenile recruitment in the RMP. The effects of long-term drought can be alleviated by short-term wet spring–summer months; however, the alleviation of long-term drought has a much greater positive effect on juvenile recruitment. The number of freezing days and snowpack during the summer months can also negatively affect recruitment, while spring snowpack has a positive effect.Breeding habitat, mediated through climate, is a limiting factor on population growth of sandhill cranes in the RMP, which could become more limiting with a changing climate (i.e. increased drought). These effects are likely not unique to cranes. The alteration of hydrological patterns and water levels by drought may impact many migratory, wetland nesting birds in the Rocky Mountains and beyond

  17. Neighborhood and habitat effects on vital rates: expansion of the Barred Owl in the Oregon Coast Ranges

    Science.gov (United States)

    Yackulic, Charles B.; Reid, Janice; Davis, Raymond; Hines, James E.; Nichols, James D.; Forsman, Eric

    2012-01-01

    In this paper, we modify dynamic occupancy models developed for detection-nondetection data to allow for the dependence of local vital rates on neighborhood occupancy, where neighborhood is defined very flexibly. Such dependence of occupancy dynamics on the status of a relevant neighborhood is pervasive, yet frequently ignored. Our framework permits joint inference about the importance of neighborhood effects and habitat covariates in determining colonization and extinction rates. Our specific motivation is the recent expansion of the Barred Owl (Strix varia) in western Oregon, USA, over the period 1990-2010. Because the focal period was one of dramatic range expansion and local population increase, the use of models that incorporate regional occupancy (sources of colonists) as determinants of dynamic rate parameters is especially appropriate. We began our analysis of 21 years of Barred Owl presence/nondetection data in the Tyee Density Study Area (TDSA) by testing a suite of six models that varied only in the covariates included in the modeling of detection probability. We then tested whether models that used regional occupancy as a covariate for colonization and extinction outperformed models with constant or year-specific colonization or extinction rates. Finally we tested whether habitat covariates improved the AIC of our models, focusing on which habitat covariates performed best, and whether the signs of habitat effects are consistent with a priori hypotheses. We conclude that all covariates used to model detection probability lead to improved AIC, that regional occupancy influences colonization and extinction rates, and that habitat plays an important role in determining extinction and colonization rates. As occupancy increases from low levels toward equilibrium, colonization increases and extinction decreases, presumably because there are more and more dispersing juveniles. While both rates are affected, colonization increases more than extinction decreases

  18. Electronic archival tags provide first glimpse of bathythermal habitat use by free-ranging adult lake sturgeon Acipenser fulvescens

    Science.gov (United States)

    Briggs, Andrew S.; Hondorp, Darryl W.; Quinlan, Henry R.; Boase, James C.; Mohr, Lloyd C.

    2016-01-01

    Information on lake sturgeon (Acipenser fulvescens) depth and thermal habitat use during non-spawning periods is unavailable due to the difficulty of observing lake sturgeon away from shallow water spawning sites. In 2002 and 2003, lake sturgeon captured in commercial trap nets near Sarnia, Ontario were implanted with archival tags and released back into southern Lake Huron. Five of the 40 tagged individuals were recaptured and were at large for 32, 57, 286, 301, and 880 days. Temperatures and depths recorded by archival tags ranged from 0 to 23.5 ºC and 0.1 to 42.4 m, respectively. For the three lake sturgeon that were at large for over 200 days, temperatures occupied emulated seasonal fluctuations. Two of these fish occupied deeper waters during winter than summer while the other occupied similar depths during non-spawning periods. This study provides important insight into depth and thermal habitat use of lake sturgeon throughout the calendar year along with exploring the feasibility of using archival tags to obtain important physical habitat attributes during non-spawning periods.

  19. species live in a characteristic limited range of habitats and, within

    African Journals Online (AJOL)

    spamer

    Patch dynamics and stability of some California kelp com- munities. Ecol. .... Evol. 5: 52–57. MENGE, B. A. and J. P. SUTHERLAND 1976 — Species diversity ... PALUMBI, S. R. 1984 — Measurement of intertidal wave forces. J. expl mar. Biol.

  20. Developing landscape habitat models for rare amphibians with small geographic ranges: a case study of Siskiyou Mountains salamanders in the western USA

    Science.gov (United States)

    Nobuya Suzuki; Deanna H. Olson; Edward C. Reilly

    2007-01-01

    To advance the development of conservation planning for rare species with small geographic ranges, we determined habitat associations of Siskiyou Mountains salamanders (Plethodon stormi) and developed habitat suitability models at fine (10 ha), medium (40 ha), and broad (202 ha) spatial scales using available geographic information systems data and...

  1. Home range and habitat use of juvenile green turtles (Chelonia mydas) in the northern Gulf of Mexico

    Science.gov (United States)

    Lamont, Margaret M.; Fujisaki, Ikuko; Stephens, Brail S.; Hackett, Caitlin

    2015-01-01

    Background: For imperiled marine turtles, use of satellite telemetry has proven to be an effective method in determining long distance movements. However, the large size of the tag, relatively high cost and low spatial resolution of this method make it more difficult to examine fine-scale movements of individuals, particularly at foraging grounds where animals are frequently submerged. Acoustic telemetry offers a more suitable method of assessing fine-scale movement patterns with a smaller tag that provides more precise locations. We used acoustic telemetry to define home ranges and describe habitat use of juvenile green turtles at a temperate foraging ground in the northern Gulf of Mexico.

  2. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Science.gov (United States)

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  3. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  4. Limitations to mapping habitat-use areas in changing landscapes using the Mahalanobis distance statistic

    Science.gov (United States)

    Knick, Steven T.; Rotenberry, J.T.

    1998-01-01

    We tested the potential of a GIS mapping technique, using a resource selection model developed for black-tailed jackrabbits (Lepus californicus) and based on the Mahalanobis distance statistic, to track changes in shrubsteppe habitats in southwestern Idaho. If successful, the technique could be used to predict animal use areas, or those undergoing change, in different regions from the same selection function and variables without additional sampling. We determined the multivariate mean vector of 7 GIS variables that described habitats used by jackrabbits. We then ranked the similarity of all cells in the GIS coverage from their Mahalanobis distance to the mean habitat vector. The resulting map accurately depicted areas where we sighted jackrabbits on verification surveys. We then simulated an increase in shrublands (which are important habitats). Contrary to expectation, the new configurations were classified as lower similarity relative to the original mean habitat vector. Because the selection function is based on a unimodal mean, any deviation, even if biologically positive, creates larger Malanobis distances and lower similarity values. We recommend the Mahalanobis distance technique for mapping animal use areas when animals are distributed optimally, the landscape is well-sampled to determine the mean habitat vector, and distributions of the habitat variables does not change.

  5. Habitat area and climate stability determine geographical variation in plant species range sizes

    DEFF Research Database (Denmark)

    Morueta-Holme, Naia; Enquist, Brian J.; McGill, Brian J.

    2013-01-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~85,000 ...

  6. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits.

    Science.gov (United States)

    Sittaro, Fabian; Paquette, Alain; Messier, Christian; Nock, Charles A

    2017-08-01

    Rising global temperatures are suggested to be drivers of shifts in tree species ranges. The resulting changes in community composition may negatively impact forest ecosystem function. However, long-term shifts in tree species ranges remain poorly documented. We test for shifts in the northern range limits of 16 temperate tree species in Quebec, Canada, using forest inventory data spanning three decades, 15° of longitude and 7° of latitude. Range shifts were correlated with climate warming and dispersal traits to understand potential mechanisms underlying changes. Shifts were calculated as the change in the 95th percentile of latitudinal occurrence between two inventory periods (1970-1978, 2000-2012) and for two life stages: saplings and adults. We also examined sapling and adult range offsets within each inventory, and changes in the offset through time. Tree species ranges shifted predominantly northward, although species responses varied. As expected shifts were greater for tree saplings, 0.34 km yr -1 , than for adults, 0.13 km yr -1 . Range limits were generally further north for adults compared to saplings, but the difference diminished through time, consistent with patterns observed for range shifts within each life stage. This suggests caution should be exercised when interpreting geographic range offsets between life stages as evidence of range shifts in the absence of temporal data. Species latitudinal velocities were on average climate change and were mostly unrelated to dispersal traits. Finally, our results add to the body of evidence suggesting tree species are mostly limited in their capacity to track climate warming, supporting concerns that warming will negatively impact the functioning of forest ecosystems. © 2017 John Wiley & Sons Ltd.

  7. Habitat-use and range contraction of Swainson's Spurfowl at the ...

    African Journals Online (AJOL)

    The long-term effect of vegetation changes on the distribution of terrestrial gamebirds is poorly understood. This paper discusses the driving forces of range contraction and population decline of Swainson's Spurfowl Pternistis swainsonii in the 1 400 ha Krugersdorp Game Reserve. Spurfowl sighted, counted and recorded ...

  8. Accessible light detection and ranging: estimating large tree density for habitat identification

    Science.gov (United States)

    Heather A. Kramer; Brandon M. Collins; Claire V. Gallagher; John Keane; Scott L. Stephens; Maggi Kelly

    2016-01-01

    Large trees are important to a wide variety of wildlife, including many species of conservation concern, such as the California spotted owl (Strix occidentalis occidentalis). Light detection and ranging (LiDAR) has been successfully utilized to identify the density of large-diameter trees, either by segmenting the LiDAR point cloud into...

  9. New insights on the rarity of the vulnerable Cinereous Warbling-finch (Aves, Emberizidae based on density, home range, and habitat selection

    Directory of Open Access Journals (Sweden)

    F Marques-Santos

    Full Text Available The Cinereous Warbling-finch Poospiza cinerea (Emberizidae is a Neotropical grassland bird considered rare, with population declining due to habitat loss and classified as vulnerable. However, the species conspicuously remains in several degraded areas, suggesting that it may be favored by these environments. Studies which focus on this species were inexistent until 2012, making questionable any statement about its threaten status. Here we analyzed population density, home range, and habitat selection of two groups of P. cinerea at independent sites that differ in human impact levels. Density was estimated by counting and mapping birds. Kernel density and minimum convex polygon were used to estimate home ranges. Habitat selection was inferred from use and availability of every habitat identified within the home range boundaries. One group positively selected urban tree vegetation, despite the availability of natural habitats in its home range. Based on a review on the literature and our findings, we assume that it is unlikely that P. cinerea is rare owing to habitat degradation, as previously thought. Nevertheless, this species was always recorded around native Cerrado vegetation and thus habitat modification may still threaten this species at some level. It is suggested that this species might be a woodland edge species, but future studies are necessary to confirm this assumption.

  10. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat.

    Directory of Open Access Journals (Sweden)

    Frants H Jensen

    Full Text Available Toothed whales (Cetacea, odontoceti use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica and Irrawaddy dolphins (Orcaella brevirostris within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191 re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

  11. Population genetics and the evolution of geographic range limits in an annual plant.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A; Tiffin, Peter

    2011-10-01

    Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.

  12. Distribution and habitat properties of Carex pulicaris and Pedicularis sylvatica at their range margin in NW Poland

    Directory of Open Access Journals (Sweden)

    Zofia Sotek

    2016-09-01

    Full Text Available This paper presents the distribution dynamics, soil and phytocoenotical conditions of the occurrence of Carex pulicaris and Pedicularis sylvatica at the margin of their range in NW Poland. Dynamic cartograms of these species were made on the basis of our field studies and available contemporary and historical records. The studies showed that the plants grow on organic hemic-muck soils, mucky soils and typical muckous soils. The occurrence of these two species on different types of soils proves that they are able to adapt easily to varying habitat conditions of post-bog areas. Populations of C. pulicaris and P. sylvatica were most frequently not numerous and occurred in small community patches. Analyzed phytocoenoses with C. pulicaris have been classified as the community of the alliance Caricion davallianae or the alliance Molinion. Phytocoenoses with P. sylvatica are represented by the association Nardo-Juncetum squarrosi and the community of the class Molinio-Arrhenatheretea. The distribution dynamics of these species shows that they are disappearing from some parts of this region, which proves the recessive trends. This process is more intensive for P. sylvatica, which should be included in the red list of Polish plants like C. pulicaris. The disappearance of the populations of both species has been caused by worsening habitat conditions (insufficient moisture, eutrophication, expansion of competitive plant species and land abandonment.

  13. Home range and habitat use of little owl (Athene noctua in an agricultural landscape in coastal Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    Framis, H.

    2011-12-01

    Full Text Available In recent decades agricultural landscapes in Catalonia have undergone a profound transformation as in most of Europe. Reforestation and urban development have reduced farmland and therefore the availability of suitable habitat for some bird species such as the little owl (Athene noctua. The outskirts of the city of Mataró by the Mediterranean Sea exemplify this landscape change, but still support a population of little owl where agriculture is carried out. Three resident little owls were monitored with telemetry weekly from November 2007 until the beginning of August 2008 in this suburban agricultural landscape. Mean home range ± SD was 10.9 ± 5.5 ha for minimum convex polygon (MCP100 and 7.4 ± 3.8 ha for Kernel 95% probability function (K95. Home ranges of contiguous neighboring pairs overlapped 18.4% (MCP100 or 6% (K95. Home range varied among seasons reaching a maximum between March and early August but always included the nesting site. Small forested patches were associated with roosting and nesting areas where cavities in Carob trees (Ceratonia siliqua were important. When foraging in crop fields, the owls typically fed where crops had recently been harvested and replanted. All three owls bred successfully.

  14. Microbial ecology of extreme environments: Antarctic yeasts and growth in substrate-limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1984-01-01

    An extreme environment is by definition one with a depauperate biota. While the Ross Desert is by no means homogeneous, the most exposed and arid habitats, soils in the unglaciated high valleys, do indeed contain a very sparse biota of low diversity. So sparse that the natives could easily be outnumbered by airborne exogenous microbes. Native biota must be capable of overwintering as well as growing in the high valley summer. Tourists may undergo a few divisions before contributing their enzymes and, ultimately, elements to the soil - or may die before landing. The simplest way to demonstrate the indigenicity of a particular microbe is therefore to establish unique distribution; occurrence only in the habitat in question precludes foreign origin.

  15. Home-range size and habitat use of European Nightjars Caprimulgus europaeus nesting in a complex plantation-forest landscape

    OpenAIRE

    Sharps, Katrina; Henderson, Ian; Conway, Greg; Armour-Chelu, Neal; Dolman, Paul

    2015-01-01

    In Europe, the consequences of commercial plantation management for birds of conservation concern are poorly understood. The European Nightjar Caprimulgus europaeus is a species of conservation concern across Europe due to population depletion through habitat loss. Pine plantation-forest is now a key Nightjar nesting habitat, particularly in northwestern Europe, and increased understanding of foraging habitat selection is required. We radiotracked 31 Nightjars in an extensive (185-km2) comple...

  16. Mating-related behaviour of grizzly bears inhabiting marginal habitat at the periphery of their North American range.

    Science.gov (United States)

    Edwards, Mark A; Derocher, Andrew E

    2015-02-01

    In comparison to core populations, peripheral populations have low density and recruitment, and are subject to different selective pressures, such as environmental conditions, food type and availability, predation, disease, etc., which may result in behavioural modifications to mating. We test the roam-to-mate hypothesis for a peripheral population of grizzly bears (Ursus arctos) at the northern extent of their North American range, in Canada's Arctic. If bears are roaming-to-mate, we predicted greater range size and daily displacement, and more linear movements for receptive animals during the mating period compared to post-mating. In contrast to our predictions, we found that in general range size and displacement increased from mating to post-mating regardless of reproductive status. When considered across both periods, females with cubs-of-the-year had smaller range use metrics than other reproductive groups, which we attribute to a counter-strategy against sexually selected infanticide and the reduced mobility of cubs. Linearity of movements remained near zero during both periods across all groups, suggesting tortuous movements more characteristic of foraging than of mate-searching. We suggest that for this population, finding quality habitat takes precedence over mate-searching in this marginal Arctic landscape. Alternatively, a more monogamous mating system and sequestering behaviour may have obscured movement differences between the two periods. The behavioural differences in mating that we observed from what is typical of core populations may reflect local adaptation to marginal conditions and could benefit the species in the face of ongoing environmental change. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Foraging range, habitat use and minimum flight distances of East Atlantic Light-bellied Brent Geese Branta bernicla hrota in their spring staging areas

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Clausen, Preben; Hounisen, Jens Peder

    2013-01-01

    Global Positioning System (GPS) satellite telemetry was used to determine the foraging range, habitat use and minimum flight distances for individual East Atlantic Light-bellied Brent Geese Branta bernicla hrota at two spring staging areas in Denmark. Foraging ranges (mean ± s.d. = 53.0 ± 23.4 km...

  18. Why is joint range of motion limited in patients with cerebral palsy?

    NARCIS (Netherlands)

    de Bruin, M.; Smeulders, M. J. C.; Kreulen, M.

    2013-01-01

    Patients with spastic cerebral palsy of the upper limb typically present with various problems including an impaired range of motion that affects the positioning of the upper extremity. This impaired range of motion often develops into contractures that further limit functioning of the spastic hand

  19. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    Science.gov (United States)

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  20. Thriving at the limit: Differential reproductive performance in range-edge populations of a Mediterranean sclerophyll (Olea europaea)

    Science.gov (United States)

    Granado-Yela, Carlos; Balaguer, Luis; García-Verdugo, Carlos; Carrillo, Katty; Méndez, Marcos

    2013-10-01

    Peripheral populations are often lumped together on the assumption of thriving in marginal habitats where reproductive performance is compromised. We have tested this hypothesis in peripheral populations of wild olive tree (Olea europaea L.) presumably limited by different factors at the westernmost limit of the species range. Additionally, we hypothesized that differences in reproductive outcome among populations are better explained by site-specific environmental conditions (PAR, soil water, soil nutrients, air humidity and air temperature) than by differences in phenotypic traits (tree size and leaf traits). To test these hypotheses, we assessed the number of flowering trees, the flowering intensity, fruit set and seed viability in eight populations for three consecutive years. Our findings provided sufficient evidence to reject the first hypothesis. Peripheral populations that occur under oceanic conditions, resembling the Tertiary subtropical climate, consistently presented higher values for all components of reproductive performance than those at the thermal and rainfall tolerance limits. In support of our second hypothesis, the variation in reproductive performance among populations was primarily accounted for by local environmental conditions. Leaf traits, however, also explained reproductive variation but to a lesser extent. Finally, we found that small changes in tree size may cause large differences in reproductive performance. This close relationship between tree size and reproductive performance suggests that any impact on population size structure would likely jeopardize persistence and expansion at the range edge. Our results suggest that reproductive performance of wild olive trees was not shaped by the population geographic position within the species range, but by the interaction between local environment, as the main driver, and individual phenotypic traits.

  1. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    Science.gov (United States)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  2. Correlated growth and survival of juvenile spectacled eiders: Evidence of habitat limitation?

    Science.gov (United States)

    Flint, Paul L.; Morse, Julie A.; Grand, James B.; Moran, Christine L.

    2006-01-01

    We studied the growth and survival of Spectacled Eider (Somateria fischeri) ducklings to 30 days of age along the lower Kashunuk River on the Yukon-Kuskokwim Delta from 1995 to 2000. We replicated this study at a second site, Kigigak Island, in 1999 and 2000. Age-adjusted estimates of duckling mass and survival at 30 days posthatching were highly variable. Duckling survival was consistently higher on Kigigak Island in 1999 and 2000, averaging 67%, while survival on the Kashunuk River averaged 45% during the same time period. Duckling survival was negatively related to hatching date. At the Kashunuk River site our data supported models that indicated age-adjusted mass varied with habitat type and declined with hatching date. Ducklings from Kashunuk River were heavier in 1999, while ducklings from Kigigak Island were heavier in 2000. However, we found a positive correlation between 30-day duckling survival and age-adjusted mass, suggesting a localized environmental effect on both parameters. We conclude that predation may be the proximate mechanism of mortality, but habitat conditions are likely the ultimate factors influencing duckling survival. Geographic variation in rates of duckling survival and apparent growth suggest that spatial heterogeneity in population vital rates is occurring at multiple levels.

  3. Hydroacoustic resolution of small-scale vertical distribution in Baltic cod Gadus morhua - habitat choise and limits during spawning

    DEFF Research Database (Denmark)

    Schaber, Matthias; Hinrichsen, Hans-Harald; Neuenfeldt, Stefan

    2009-01-01

    to cod. The results showed a clear influence of ambient salinity and oxygen concentration on the distribution pattern and distributional limitation of cod during spawning time, and also consistency of data storage tag-derived distribution patterns with those based on individual echotracking. We therefore...... and hence the spatial structure of the ecosystem. Our aim here is to present a method to resolve small-scale distribution on an individual level, as needed for the behaviorally-based prediction of habitat choice and limits. We focused on the small-scale vertical distribution of cod Gadus morhua L....... in the Bornholm Basin, central Baltic Sea, during spawning time in 2 years with different vertical thermohaline and oxygen stratifications. Individual cod were identified by echotracking of real-time in situ hydroacoustic distribution data. In order to resolve and identify hydrographic preferences and limits...

  4. On the structural properties of small-world networks with range-limited shortcut links

    Science.gov (United States)

    Jia, Tao; Kulkarni, Rahul V.

    2013-12-01

    We explore a new variant of Small-World Networks (SWNs), in which an additional parameter (r) sets the length scale over which shortcuts are uniformly distributed. When r=0 we have an ordered network, whereas r=1 corresponds to the original Watts-Strogatz SWN model. These limited range SWNs have a similar degree distribution and scaling properties as the original SWN model. We observe the small-world phenomenon for r≪1, indicating that global shortcuts are not necessary for the small-world effect. For limited range SWNs, the average path length changes nonmonotonically with system size, whereas for the original SWN model it increases monotonically. We propose an expression for the average path length for limited range SWNs based on numerical simulations and analytical approximations.

  5. Dynamic range of frontoparietal functional modulation is associated with working memory capacity limitations in older adults.

    Science.gov (United States)

    Hakun, Jonathan G; Johnson, Nathan F

    2017-11-01

    Older adults tend to over-activate regions throughout frontoparietal cortices and exhibit a reduced range of functional modulation during WM task performance compared to younger adults. While recent evidence suggests that reduced functional modulation is associated with poorer task performance, it remains unclear whether reduced range of modulation is indicative of general WM capacity-limitations. In the current study, we examined whether the range of functional modulation observed over multiple levels of WM task difficulty (N-Back) predicts in-scanner task performance and out-of-scanner psychometric estimates of WM capacity. Within our sample (60-77years of age), age was negatively associated with frontoparietal modulation range. Individuals with greater modulation range exhibited more accurate N-Back performance. In addition, despite a lack of significant relationships between N-Back and complex span task performance, range of frontoparietal modulation during the N-Back significantly predicted domain-general estimates of WM capacity. Consistent with previous cross-sectional findings, older individuals with less modulation range exhibited greater activation at the lowest level of task difficulty but less activation at the highest levels of task difficulty. Our results are largely consistent with existing theories of neurocognitive aging (e.g. CRUNCH) but focus attention on dynamic range of functional modulation asa novel marker of WM capacity-limitations in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Increased seedling establishment via enemy release at the upper elevational range limit of sugar maple.

    Science.gov (United States)

    Urli, Morgane; Brown, Carissa D; Narváez Perez, Rosela; Chagnon, Pierre-Luc; Vellend, Mark

    2016-11-01

    The enemy release hypothesis is frequently invoked to explain invasion by nonnative species, but studies focusing on the influence of enemies on natural plant range expansion due to climate change remain scarce. We combined multiple approaches to study the influence of plant-enemy interactions on the upper elevational range limit of sugar maple (Acer saccharum) in southeastern Québec, Canada, where a previous study had demonstrated intense seed predation just beyond the range limit. Consistent with the hypothesis of release from natural enemies at the range limit, data from both natural patterns of regeneration and from seed and seedling transplant experiments showed higher seedling densities at the range edge than in the core of the species' distribution. A growth chamber experiment manipulating soil origin and temperature indicated that this so-called "happy edge" was not likely caused by temperature (i.e., the possibility that climate warming has made high elevation temperatures optimal for sugar maple) or by abiotic soil factors that vary along the elevational gradient. Finally, an insect-herbivore-exclusion experiment showed that insect herbivory was a major cause of seedling mortality in the core of sugar maple's distribution, whereas seedlings transplanted at or beyond the range edge experienced minimal herbivory (i.e., enemy release). Insect herbivory did not completely explain the high levels of seedling mortality in the core of the species' distribution, suggesting that seedlings at or beyond the range edge may also experience release from pathogens. In sum, while some effects of enemies are magnified beyond range edges (e.g., seed predation), others are dampened at and beyond the range edge (e.g., insect herbivory), such that understanding the net outcome of different biotic interactions within, at and beyond the edge of distribution is critical to predicting species' responses to global change. © 2016 by the Ecological Society of America.

  7. Modeling the Habitat Range of Phototrophic Microorganisms in Yellowstone National Park: Toward the Development of a Comprehensive Fitness Landscape

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2012-06-01

    Full Text Available The extent to which geochemical variation constrains the distribution of phototrophic metabolisms was modeled based on 439 observations in geothermal springs in Yellowstone National Park (YNP, Wyoming. Generalized additive models (GAMs were developed to predict the distribution of photosynthesis as a function of spring temperature, pH, and total sulfide. GAMs comprised of temperature explained 42.7% of the variation in the distribution of phototrophic metabolisms whereas GAMs comprised of sulfide and pH explained 20.7% and 11.7% of the variation, respectively. These results suggest that of the measured variables, temperature is the primary constraint on the distribution of phototrophic metabolism in YNP. GAMs comprised of multiple variables explained a larger percentage of the variation in the distribution of phototrophic metabolism, indicating additive interactions among variables. A GAM that combined temperature and sulfide explained the greatest variation in the dataset (54.8% while minimizing the introduction of degrees of freedom. In an effort to verify the extent to which phototroph distribution reflects constraints on activity, we examined the influence of sulfide and temperature on dissolved inorganic carbon (DIC uptake rates under both light and dark conditions. Light-driven DIC uptake decreased systematically with increasing concentrations of sulfide in acidic, algal-dominated systems, but was unaffected in alkaline, bacterial-dominated systems. In both alkaline and acidic systems, light-driven DIC uptake was suppressed in cultures incubated at temperatures 10°C greater than their in situ temperature. Collectively, these results suggest that the habitat range of phototrophs in YNP springs, specifically that of cyanobacteria and algae, largely results from constraints imposed by temperature and sulfide on the activity and fitness of these populations, a finding that is consistent with the predictions from GAMs.

  8. Physical and chemical constraints limit the habitat window for an endangered mussel

    Science.gov (United States)

    Campbell, Cara; Prestegaard, Karen L.

    2016-01-01

    Development of effective conservation and restoration strategies for freshwater pearly mussels requires identification of environmental constraints on the distributions of individual mussel species. We examined whether the spatial distribution of the endangered Alasmidonta heterodon in Flat Brook, a tributary of the upper Delaware River, was constrained by water chemistry (i.e., calcium availability), bed mobility, or both. Alasmidonta heterodon populations were bracketed between upstream reaches that were under-saturated with respect to aragonite and downstream reaches that were saturated for aragonite during summer baseflow but had steep channels with high bed mobility. Variability in bed mobility and water chemistry along the length of Flat Brook create a “habitat window” for A. heterodon defined by bed stability (mobility index ≤1) and aragonite saturation (saturation index ≥1). We suggest the species may exist in a narrow biogeochemical window that is seasonally near saturation. Alasmidonta heterodon populations may be susceptible to climate change or anthropogenic disturbances that increase discharge, decrease groundwater inflow or chemistry, and thus affect either bed mobility or aragonite saturation. Identifying the biogeochemical microhabitats and requirements of individual mussel species and incorporating this knowledge into management decisions should enhance the conservation and restoration of endangered mussel species.

  9. Least limiting water range of Udox soil under degraded pastures on different sun-exposed faces

    Science.gov (United States)

    Passos, Renato Ribeiro; Marciano da Costa, Liovando; Rodrigues de Assis, Igor; Santos, Danilo Andrade; Ruiz, Hugo Alberto; Guimarães, Lorena Abdalla de Oliveira Prata; Andrade, Felipe Vaz

    2017-07-01

    The efficient use of water is increasingly important and proper soil management, within the specificities of each region of the country, allows achieving greater efficiency. The South and Caparaó regions of Espírito Santo, Brazil are characterized by relief of `hill seas' with differences in the degree of pasture degradation due to sun exposure. The objective of this study was to evaluate the least limiting water range in Udox soil under degraded pastures with two faces of exposure to the sun and three pedoenvironments. In each pedoenvironment, namely Alegre, Celina, and Café, two areas were selected, one with exposure on the North/West face and the other on the South/East face. In each of these areas, undisturbed soil samples were collected at 0-10 cm depth to determine the least limiting water range. The exposed face of the pasture that received the highest solar incidence (North/West) presented the lowest values in least limiting water range. The least limiting water range proved to be a physical quality indicator for Udox soil under degraded pastures.

  10. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification

    International Nuclear Information System (INIS)

    Aziz, M.J.; Boettinger, W.J.

    1994-01-01

    Short-range diffusion-limited growth, collision-limited growth, and the transition between the two regimes are explained as natural consequences of a single model for the kinetics of alloy solidification. Analytical expressions are developed for the velocity-undercooling function of a planar interface during dilute alloy solidification, using Turnbull's collision-limited growth model and the Continuous Growth Solute Trapping Model of Aziz and Kaplan both with and without a solute drag effect. The interface mobility, -dv/dT, is shown to be very high (proportional to the speed of sound) if the alloy is sufficiently dilute or if the growth rate is sufficiently rapid for nearly complete solute trapping. The interface mobility is reduced by the three orders of magnitude (becoming proportional to the diffusive speed) at intermediate growth rates where partial solute trapping occurs. Differences in low velocity predictions of the models with and without solute drag are also discussed. Comparison of the results of the analytical expressions to numerical solutions of the non-dilute kinetic model for Al-Be alloys shows that the dilute approximation breaks down at melt compositions on the order of 10 at.%. Similar variations in the interface mobility are shown for the disorder-trapping model of Boettinger and Aziz

  11. Drought-induced trans-generational tradeoff between stress tolerance and defence: consequences for range limits?

    Science.gov (United States)

    Alsdurf, Jacob D; Ripley, Tayler J; Matzner, Steven L; Siemens, David H

    2013-01-01

    Areas just across species range boundaries are often stressful, but even with ample genetic variation within and among range-margin populations, adaptation towards stress tolerance across range boundaries often does not occur. Adaptive trans-generational plasticity should allow organisms to circumvent these problems for temporary range expansion; however, range boundaries often persist. To investigate this dilemma, we drought stressed a parent generation of Boechera stricta (A.Gray) A. Löve & D. Löve, a perennial wild relative of Arabidopsis, representing genetic variation within and among several low-elevation range margin populations. Boechera stricta is restricted to higher, moister elevations in temperate regions where generalist herbivores are often less common. Previous reports indicate a negative genetic correlation (genetic tradeoff) between chemical defence allocation and abiotic stress tolerance that may prevent the simultaneous evolution of defence and drought tolerance that would be needed for range expansion. In growth chamber experiments, the genetic tradeoff became undetectable among offspring sib-families whose parents had been drought treated, suggesting that the stress-induced trans-generational plasticity may circumvent the genetic tradeoff and thus enable range expansion. However, the trans-generational effects also included a conflict between plastic responses (environmental tradeoff); offspring whose parents were drought treated were more drought tolerant, but had lower levels of glucosinolate toxins that function in defence against generalist herbivores. We suggest that either the genetic or environmental tradeoff between defence allocation and stress tolerance has the potential to contribute to range limit development in upland mustards.

  12. Effects of sample size and sampling frequency on studies of brown bear home ranges and habitat use

    Science.gov (United States)

    Arthur, Steve M.; Schwartz, Charles C.

    1999-01-01

    We equipped 9 brown bears (Ursus arctos) on the Kenai Peninsula, Alaska, with collars containing both conventional very-high-frequency (VHF) transmitters and global positioning system (GPS) receivers programmed to determine an animal's position at 5.75-hr intervals. We calculated minimum convex polygon (MCP) and fixed and adaptive kernel home ranges for randomly-selected subsets of the GPS data to examine the effects of sample size on accuracy and precision of home range estimates. We also compared results obtained by weekly aerial radiotracking versus more frequent GPS locations to test for biases in conventional radiotracking data. Home ranges based on the MCP were 20-606 km2 (x = 201) for aerial radiotracking data (n = 12-16 locations/bear) and 116-1,505 km2 (x = 522) for the complete GPS data sets (n = 245-466 locations/bear). Fixed kernel home ranges were 34-955 km2 (x = 224) for radiotracking data and 16-130 km2 (x = 60) for the GPS data. Differences between means for radiotracking and GPS data were due primarily to the larger samples provided by the GPS data. Means did not differ between radiotracking data and equivalent-sized subsets of GPS data (P > 0.10). For the MCP, home range area increased and variability decreased asymptotically with number of locations. For the kernel models, both area and variability decreased with increasing sample size. Simulations suggested that the MCP and kernel models required >60 and >80 locations, respectively, for estimates to be both accurate (change in area bears. Our results suggest that the usefulness of conventional radiotracking data may be limited by potential biases and variability due to small samples. Investigators that use home range estimates in statistical tests should consider the effects of variability of those estimates. Use of GPS-equipped collars can facilitate obtaining larger samples of unbiased data and improve accuracy and precision of home range estimates.

  13. Limits of deuterium pressure range with neutron production in plasma focus devices

    International Nuclear Information System (INIS)

    Pouzo, J.; Milanese, M.; Piriz, R.; Cortazar, D.; Moroso, R.

    1988-01-01

    In this work we present the experimental curves of neutron yield (Y) respect to the deuterium filling pressure (p) obtained in our plasma focuses device PACO. Y increases with the focus current (I f ) according with the scaling law Y ∼I 4-5 f , but it presents a limited range of p beyond which Y drastically decreases. The higher pressure limit is coincident with recently reported limit due to the energy available to maintain the ionization rate of the neutral gas during the roll-off stage. The lower pressure limit is here explained, through experimental evidences, in terms of a phenomenon connected with the dynamics of the current sheath (cs) during the roll-off stage. (author). 8 refs, 11 figs

  14. Mechanisms Controlling Species Responses to Climate Change: Thermal Tolerances and Shifting Range Limits. (Invited)

    Science.gov (United States)

    Sage, R. F.; Bykova, O.; Coiner, H.

    2010-12-01

    One of the main effects of anthropogenic climate change will be widespread shifts in species distribution, with the common assumption that they will migrate to higher elevation and latitude. While this assumption is supported by migration patterns following climate warming in the past 20,000 years, it has not been rigorously evaluated in terms of physiological mechanism, despite the implication that migration in response to climate warming is controlled by some form of thermal adaptation. We have been evaluating the degree to which species range limits are controlled by physiological patterns of thermal tolerance in bioinvaders of North America. Bioinvaders presumably have few biotic controls over their distribution and thus are more likely to fully exploit their thermal niche. In cheatgrass (Bromus tectorum), the minimum lethal temperature in winter is -32C, which corresponds to the mean winter minimum temperature at its northern range limit. In red brome (Bromus rubens), the minimum lethal temperature is also near -32C, which is well below the minimum winter temperature near -20C that corresponds to its northern distribution limit. In kudzu (Pueraria lobata), the minimum lethal temperature is near -20C, which corresponds to the midwinter minimum at its northern distribution limit; however, overwintering kudzu tissues are insulated by soil and snow cover, and thus do not experience lethal temperatures at kudzu's northern range limit. These results demonstrate that some invasive species can exploit the potential range defined by their low temperature tolerance and thus can be predicted by mechanistic models to migrate to higher latitudes with moderation of winter cold. The distribution of other invaders such as kudzu and red brome are not controlled by tolerance of midwinter cold. Developing mechanistic models of their distributions, and how these might change with climate warming, will require extensive physiological study.

  15. Assessing landscape constraints on species abundance: Does the neighborhood limit species response to local habitat conservation programs?

    Science.gov (United States)

    Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffrey J.; Bishop, Andrew A.; Fontaine, Joseph J.

    2014-01-01

    Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants.

  16. Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range.

    Science.gov (United States)

    He, Chenlong; Feng, Zuren; Ren, Zhigang

    2018-02-03

    For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.

  17. Revealing the distinct habitat ranges and hybrid zone of genetic sub-populations within Pseudo-nitzschia pungens (Bacillariophyceae) in the West Pacific area.

    Science.gov (United States)

    Kim, Jin Ho; Wang, Pengbin; Park, Bum Soo; Kim, Joo-Hwan; Patidar, Shailesh Kumar; Han, Myung-Soo

    2018-03-01

    Genetic sub-populations (clades) of cosmopolitan marine diatom Pseudo-nitzschia pungens might have distinct habitats, and their hybrid zone is suspected in higher latitude area of the West Pacific area, however, it is still unrevealed because of technical difficulties and lack of evidences in natural environments. The aim of this study is to investigate the habitat characteristics of each clade of P. pungens on geographical distribution with the habitat temperature ranges of each clade and to reveal their hybrid zone in the West Pacific area. We employed the 137 number of nucleotide sequences of P. pungens and its sampling data (spatial and temporal scale) originated from the West Pacific area, and used field application of qPCR assay for intra-specific level of P. pungens. Only two genotypes, clade I and III, were identified in the West Pacific area. Clade I was distributed from 39 to 32.3°N, and clade III were from 1.4 to 34.4°N. The estimated habitat temperature for the clade I and clade III ranges were 8.1-26.9 °C and 24.2-31.2 °C, respectively. The latitudinal distributions and temperature ranges of each clade were significantly different. The qPCR assay employed, and results suggested that the hybrid zone for clade I and III has been observed in the southern Korean coasts, and clade III might be introduced from the Southern Pacific area. The cell abundances of clade III were strongly related with the higher seawater temperature and warm current force. This study has defined distinct habitat characteristics of genetically different sub-populations of P. pungens, and revealed its hybrid zone in natural environment for the first time. We also provided strong evidences about dispersion of the population of clade III to higher latitude in the West Pacific area. Copyright © 2018. Published by Elsevier B.V.

  18. Determination of the effects of fine-grained sediment and other limiting variables on trout habitat for selected streams in Wisconsin

    Science.gov (United States)

    Scudder, Barbara C.; Selbig, J.W.; Waschbusch, R.J.

    2000-01-01

    Two Habitat Suitability Index (HSI) models, developed by the U.S. Fish and Wildlife Service, were used to evaluate the effects of fine-grained (less than 2 millimeters) sediment on brook trout (Salvelinusfontinalis, Mitchill) and brown trout (Salmo trutta, Linnaeus) in 11 streams in west-central and southwestern Wisconsin. Our results indicated that fine-grained sediment limited brook trout habitat in 8 of 11 streams and brown trout habitat in only one stream. Lack of winter and escape cover for fry was the primary limiting variable for brown trout at 61 percent of the sites, and this factor also limited brook trout at several stations. Pool area or quality, in stream cover, streambank vegetation for erosion control, minimum flow, thalweg depth maximum, water temperature, spawning substrate, riffle dominant substrate, and dissolved oxygen also were limiting to trout in the study streams. Brook trout appeared to be more sensitive to the effects of fine-grained sediment than brown trout. The models for brook trout and brown trout appeared to be useful and objective screening tools for identifying variables limiting trout habitat in these streams. The models predicted that reduction in the amount of fine-grained sediment would improve brook trout habitat. These models may be valuable for establishing instream sediment-reduction goals; however, the decrease in sediment delivery needed to meet these goals cannot be estimated without quantitative data on land use practices and their effects on sediment delivery and retention by streams.

  19. Movement Patterns, Home Range Size and Habitat Selection of an Endangered Resource Tracking Species, the Black-Throated Finch (Poephila cincta cincta).

    Science.gov (United States)

    Rechetelo, Juliana; Grice, Anthony; Reside, April Elizabeth; Hardesty, Britta Denise; Moloney, James

    2016-01-01

    Understanding movement patterns and home range of species is paramount in ecology; it is particularly important for threatened taxa as it can provide valuable information for conservation management. To address this knowledge gap for a range-restricted endangered bird, we estimated home range size, daily movement patterns and habitat use of a granivorous subspecies in northeast Australia, the black-throated finch (Poephila cincta cincta; BTF) using radio-tracking and re-sighting of colour banded birds. Little is known about basic aspects of its ecology including movement patterns and home range sizes. From 2011-2014 we colour-banded 102 BTF and radio-tracked 15 birds. We generated home ranges (calculated using kernel and Minimum Convex Polygons techniques of the 15 tracked BTF). More than 50% of the re-sightings occurred within 200 m of the banding site (n = 51 out of 93 events) and within 100 days of capture. Mean home-range estimates with kernel (50%, 95% probability) and Minimum Convex Polygons were 10.59 ha, 50.79 ha and 46.27 ha, respectively. Home range size differed between two capture sites but no seasonal differences were observed. BTF home ranges overlapped four habitat types among eight available. Habitat selection was different from random at Site 1 (χ2 = 373.41, df = 42, pmovements may be related to resource bottleneck periods. Daily movement patterns differed between sites, which is likely linked to the fact that the sites differ in the spatial distribution of resources. The work provides information about home range sizes and local movement of BTF that will be valuable for targeting effective management and conservation strategies for this endangered granivore.

  20. Key tiger habitats in the Garo Hills of Meghalaya

    Science.gov (United States)

    Ashish Kumar; Bruce G. Marcot

    2010-01-01

    We describe assumed tiger habitat characteristics and attempt to identify potential tiger habitats in the Garo Hills region of Meghalaya, North East India. Conserving large forest tracts and protected wildlife habitats provides an opportunity for restoring populations of wide-ranging wildlife such as tigers and elephants. Based on limited field observations coupled...

  1. A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography.

    Science.gov (United States)

    Liang, Zhiting; Guan, Yong; Liu, Gang; Chen, Xiangyu; Li, Fahu; Guo, Pengfei; Tian, Yangchao

    2016-03-01

    The `missing wedge', which is due to a restricted rotation range, is a major challenge for quantitative analysis of an object using tomography. With prior knowledge of the grey levels, the discrete algebraic reconstruction technique (DART) is able to reconstruct objects accurately with projections in a limited angle range. However, the quality of the reconstructions declines as the number of grey levels increases. In this paper, a modified DART (MDART) was proposed, in which each independent region of homogeneous material was chosen as a research object, instead of the grey values. The grey values of each discrete region were estimated according to the solution of the linear projection equations. The iterative process of boundary pixels updating and correcting the grey values of each region was executed alternately. Simulation experiments of binary phantoms as well as multiple grey phantoms show that MDART is capable of achieving high-quality reconstructions with projections in a limited angle range. The interesting advancement of MDART is that neither prior knowledge of the grey values nor the number of grey levels is necessary.

  2. TLD personnel monitoring dose estimation- extending the upper limit of the dose range

    International Nuclear Information System (INIS)

    Popli, K.L.; Sathian, Deepa; Divakaran, T.; Massand, O.P.

    2001-01-01

    TLD personnel monitoring was introduced in the year 1975 in India and at present nearly 41,000 radiation workers are being monitored by 13 monitoring laboratories all over India. The BARC- TLD being used for personnel monitoring is based on CaSO 4 :Dy embedded in PTFE and semi-automatic TL reader using hot N 2 Gas for heating the dosimeters. This reader has the range to measure γ dose from ten μSv to 3 μSv and x-ray dose form 1 μ Sv to 0.3 Sv due to the higher sensitivity of CaSO 4 : Dy to lower energy photons (20keV-50 keV) generated by diagnostic x-ray units. The x-ray radiation workers are at present nearly 35% of the total radiation workers monitored and this number is expected to grow as more and more number of x-ray workers are covered under this service. The upper limit of the x-ray dose range of the instrument is 0.3 Sv, whereas in the past one year it has been observed that at least 25% of the total overexposures reported in case of x-ray workers have recorded the dose more than 0.3 Sv. This paper presents the technique developed to extend the upper limit of the range from 0.3 Sv to 1 Sv for x-rays and 10 Sv for γ rays

  3. Oxygen limitation and tissue metabolic potential of the African fish Barbus neumayeri: roles of native habitat and acclimatization

    Directory of Open Access Journals (Sweden)

    Rees Bernard B

    2011-01-01

    Full Text Available Abstract Background Oxygen availability in aquatic habitats is a major environmental factor influencing the ecology, behaviour, and physiology of fishes. This study evaluates the contribution of source population and hypoxic acclimatization of the African fish, Barbus neumayeri, in determining growth and tissue metabolic enzyme activities. Individuals were collected from two sites differing dramatically in concentration of dissolved oxygen (DO, Rwembaita Swamp (annual average DO 1.35 mgO2 L-1 and Inlet Stream West (annual average DO 5.58 mgO2 L-1 in Kibale National Park, Uganda, and reciprocally transplanted using a cage experiment in the field, allowing us to maintain individuals under natural conditions of oxygen, food availability, and flow. Fish were maintained under these conditions for four weeks and sampled for growth rate and the activities of phosphofructokinase (PFK, lactate dehydrogenase (LDH, citrate synthase (CS, and cytochrome c oxidase (CCO in four tissues, liver, heart, brain, and skeletal muscle. Results Acclimatization to the low DO site resulted in lower growth rates, lower activities of the aerobic enzyme CCO in heart, and higher activities of the glycolytic enzyme PFK in heart and skeletal muscle. The activity of LDH in liver tissue was correlated with site of origin, being higher in fish collected from a hypoxic habitat, regardless of acclimatization treatment. Conclusions Our results suggest that the influence of site of origin and hypoxic acclimatization in determining enzyme activity differs among enzymes and tissues, but both factors contribute to higher glycolytic capacity and lower aerobic capacity in B. neumayeri under naturally-occurring conditions of oxygen limitation.

  4. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    Science.gov (United States)

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  5. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development

    Science.gov (United States)

    Alsdurf, Jacob; Anderson, Cynthia; Siemens, David H.

    2016-01-01

    Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented a drought-induced trans-generational plastic trade-off that could contribute to range limit development. Offspring of parents who were drought treated had higher drought tolerance, but lower levels of glucosinolate toxins. Both drought tolerance and defence are thought to be needed to expand the range to lower elevations. Here, we used methylation-sensitive amplified fragment length polymorphisms to determine whether environmentally induced DNA methylation and thus epigenetics could be a mechanism involved in the observed trans-generational plastic trade-off. We compared 110 offspring from the same self-fertilizing lineages whose parents were exposed to experimental drought stress treatments in the laboratory. Using three primer combinations, 643 polymorphic epi-loci were detected. Discriminant function analysis (DFA) on the amount of methylation detected resulted in significant combinations of epi-loci that distinguished the parent drought treatments in the offspring. Principal component (PC) and univariate association analyses also detected the significant differences, even after controlling for lineage, planting flat, developmental differences and multiple testing. Univariate tests also indicated significant associations between the amount of methylation and drought tolerance or glucosinolate toxin concentration. One epi-locus that was implicated in DFA, PC and univariate association analysis may be directly involved in the trade-off because increased methylation at this

  6. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development.

    Science.gov (United States)

    Alsdurf, Jacob; Anderson, Cynthia; Siemens, David H

    2015-12-18

    Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented a drought-induced trans-generational plastic trade-off that could contribute to range limit development. Offspring of parents who were drought treated had higher drought tolerance, but lower levels of glucosinolate toxins. Both drought tolerance and defence are thought to be needed to expand the range to lower elevations. Here, we used methylation-sensitive amplified fragment length polymorphisms to determine whether environmentally induced DNA methylation and thus epigenetics could be a mechanism involved in the observed trans-generational plastic trade-off. We compared 110 offspring from the same self-fertilizing lineages whose parents were exposed to experimental drought stress treatments in the laboratory. Using three primer combinations, 643 polymorphic epi-loci were detected. Discriminant function analysis (DFA) on the amount of methylation detected resulted in significant combinations of epi-loci that distinguished the parent drought treatments in the offspring. Principal component (PC) and univariate association analyses also detected the significant differences, even after controlling for lineage, planting flat, developmental differences and multiple testing. Univariate tests also indicated significant associations between the amount of methylation and drought tolerance or glucosinolate toxin concentration. One epi-locus that was implicated in DFA, PC and univariate association analysis may be directly involved in the trade-off because increased methylation at this

  7. Know your limits? Climate extremes impact the range of Scots pine in unexpected places.

    Science.gov (United States)

    Julio Camarero, J; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel

    2015-11-01

    Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios. © The Author 2015. Published by

  8. Intra-population variation in activity ranges, diel patterns, movement rates, and habitat use of American alligators in a subtropical estuary

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael; Jeffery, Brian M.

    2013-12-01

    Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intra-population variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.

  9. Revision of Nymphaea candida range - new data on the distribution and habitat preferences of the species in southern Poland

    Directory of Open Access Journals (Sweden)

    Arkadiusz Nowak

    2011-01-01

    Full Text Available The paper presents results of geobotanical and taxonomic studies on the distribution and habitat requirements of Nymphaea candida in southern Poland. The researches were conducted in southern Poland in 2003-2009, in the provinces of Lower Silesia, Lublin, Małopolska, Opole, Silesian province as well as, in southern parts of Mazowieckie and Lubuskie. Flowers, leaves and fruits of Nymphaea species were collected from 27 locations. Altogether pollens from 73 populations of N. candida and 18 of N. alba from all the researched area were measured. The trophic level of an ecosystem was evaluated according to the results of the total nitrogen, total phosphorus, chlorophyll a, transparency and biological parameters. As the result of the studies of more than 200 water bodies, 57 localities of N. candida were documented within the investigation area. The populations of N. candida occupy mid-forest water bodies and river ox-bow lakes. A significant number of populations was also found in artificial reservoirs - fish ponds. The most suitable habitat conditions for N. candida occur in shallow waters in the shore zone with the amplitude of the water column vary from 0.5 to 2 m. Regarding the trophy level, N. candida occupies different habitats, mainly mesotrophic and also eutrophic with high content of organic matters. Considering the 15 checked morphological parameters, especially the stigma diameter, the number of carpellary teeth, flower and pollen diameters, the found and collected specimens of N. candida significantly differ from N. alba. The study confirms that N. candida ocurrs in whole lowland Poland without any regional distribution gaps. According to the IUCN guidelines to species assessment the data gathered during the presented study do not allow to classify N. candida as a vulnerable species in Poland. Still existing populations for more than 150 years, numerous stable locations, abundant populations, a habitat accessibility, a biotope extent, an

  10. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  11. Effect of Drought on Herbivore-Induced Plant Gene Expression: Population Comparison for Range Limit Inferences

    Directory of Open Access Journals (Sweden)

    Gunbharpur Singh Gill

    2016-03-01

    Full Text Available Low elevation “trailing edge” range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts.

  12. Common Fixed Point Theorems in Fuzzy Metric Spaces Satisfying -Contractive Condition with Common Limit Range Property

    Directory of Open Access Journals (Sweden)

    Sunny Chauhan

    2013-01-01

    Full Text Available The objective of this paper is to emphasize the role of “common limit range property” to ascertain the existence of common fixed point in fuzzy metric spaces. Some illustrative examples are furnished which demonstrate the validity of the hypotheses and degree of utility of our results. We derive a fixed point theorem for four finite families of self-mappings which can be utilized to derive common fixed point theorems involving any finite number of mappings. As an application to our main result, we prove an integral-type fixed point theorem in fuzzy metric space. Our results improve and extend a host of previously known results including the ones contained in Imdad et al. (2012.

  13. Employing Common Limit Range Property to Prove Unified Metrical Common Fixed Point Theorems

    Directory of Open Access Journals (Sweden)

    Mohammad Imdad

    2013-01-01

    Full Text Available The purpose of this paper is to emphasize the role of “common limit range property” to ascertain the existence of common fixed point in metric spaces satisfying an implicit function essentially due to the paper of Ali and Imdad (2008. As an application to our main result, we derive a fixed point theorem for four finite families of self-mappings which can be utilized to derive common fixed point theorems involving any finite number of mappings. Our results improve and extend a host of previously known results including the ones contained in the paper of Ali and Imdad (2008. We also furnish some illustrative examples to support our main results.

  14. A simplified Excel® algorithm for estimating the least limiting water range of soils

    Directory of Open Access Journals (Sweden)

    Leão Tairone Paiva

    2004-01-01

    Full Text Available The least limiting water range (LLWR of soils has been employed as a methodological approach for evaluation of soil physical quality in different agricultural systems, including forestry, grasslands and major crops. However, the absence of a simplified methodology for the quantification of LLWR has hampered the popularization of its use among researchers and soil managers. Taking this into account this work has the objective of proposing and describing a simplified algorithm developed in Excel® software for quantification of the LLWR, including the calculation of the critical bulk density, at which the LLWR becomes zero. Despite the simplicity of the procedures and numerical techniques of optimization used, the nonlinear regression produced reliable results when compared to those found in the literature.

  15. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest.

    Science.gov (United States)

    Kueppers, Lara M; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B; Germino, Matthew J; de Valpine, Perry; Torn, Margaret S; Mitton, Jeffry B

    2017-06-01

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower

  16. Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal.

    Science.gov (United States)

    Marrotte, R R; Gonzalez, A; Millien, V

    2014-08-01

    We evaluated the effect of habitat and landscape characteristics on the population genetic structure of the white-footed mouse. We develop a new approach that uses numerical optimization to define a model that combines site differences and landscape resistance to explain the genetic differentiation between mouse populations inhabiting forest patches in southern Québec. We used ecological distance computed from resistance surfaces with Circuitscape to infer the effect of the landscape matrix on gene flow. We calculated site differences using a site index of habitat characteristics. A model that combined site differences and resistance distances explained a high proportion of the variance in genetic differentiation and outperformed models that used geographical distance alone. Urban and agriculture-related land uses were, respectively, the most and the least resistant landscape features influencing gene flow. Our method detected the effect of rivers and highways as highly resistant linear barriers. The density of grass and shrubs on the ground best explained the variation in the site index of habitat characteristics. Our model indicates that movement of white-footed mouse in this region is constrained along routes of low resistance. Our approach can generate models that may improve predictions of future northward range expansion of this small mammal. © 2014 John Wiley & Sons Ltd.

  17. Least limiting water range in assessing compaction in a Brazilian Cerrado latosol growing sugarcane

    Directory of Open Access Journals (Sweden)

    Wainer Gomes Gonçalves

    2014-04-01

    Full Text Available In the south-central region of Brazil, there is a trend toward reducing the sugarcane inter-harvest period and increasing traffic of heavy harvesting machinery on soil with high water content, which may intensify the compaction process. In this study, we assessed the structural changes of a distroferric Red Latosol (Oxisol by monitoring soil water content as a function of the Least Limiting Water Range (LLWR and quantified its effects on the crop yield and industrial quality of the first ratoon crop of sugarcane cultivars with different maturation cycles. Three cultivars (RB 83-5054, RB 84-5210 and RB 86-7515 were subjected to four levels of soil compaction brought about by a differing number of passes of a farm tractor (T0 = soil not trafficked, T2 = 2 passes, T10 = 10 passes, and T20 = 20 passes of the tractor in the same place in a 3 × 4 factorial arrangement with three replications. The deleterious effects on the soil structure from the farm machinery traffic were limited to the surface layer (0-10 cm of the inter-row area of the ratoon crop. The LLWR dropped to nearly zero after 20 tractor passes between the cane rows. We detected differences among the cultivars studied; cultivar RB 86-7515 stood out for its industrial processing quality, regardless of the level of soil compaction. Monitoring of soil moisture in the crop showed exposure to water stress conditions, although soil compaction did not affect the production variables of the sugarcane cultivars. We thus conclude that the absence of traffic on the plant row maintained suitable soil conditions for plant development and may have offset the harmful effects of soil compaction shown by the high values for bulk density between the rows of the sugarcane cultivars.

  18. A SINGLE GENOTYPE OF ENCEPHALITOZOON INTESTIINALIS INFECTS FREE-RANGING GORILLAS AND PEOPLE SHARING THEIR HABITATS, UGANDA

    Science.gov (United States)

    For conservation purposes and due to ecotourism free-ranging gorillas of Uganda have been habituated to humans, and molecular epidemiology evidence indicates that this habituation might have enhanced transmission of anthropozoonotic pathogens. Microsporidian spores have been det...

  19. Drought-induced trans-generational tradeoff between stress tolerance and defence: consequences for range limits?

    OpenAIRE

    Alsdurf, Jacob D.; Ripley, Tayler J.; Matzner, Steven L.; Siemens, David H.

    2013-01-01

    Areas just across species range boundaries are often stressful, but even with ample genetic variation within and among range-margin populations, adaptation towards stress tolerance across range boundaries often does not occur. Adaptive trans-generational plasticity should allow organisms to circumvent these problems for temporary range expansion; however, range boundaries often persist. To investigate this dilemma, we drought stressed a parent generation of Boechera stricta (A.Gray) A. L?ve &...

  20. Relative and combined effects of habitat and fishing on reef fish communities across a limited fishing gradient at Ningaloo.

    Science.gov (United States)

    Wilson, Shaun K; Babcock, Russ C; Fisher, Rebecca; Holmes, Thomas H; Moore, James A Y; Thomson, Damian P

    2012-10-01

    Habitat degradation and fishing are major drivers of temporal and spatial changes in fish communities. The independent effects of these drivers are well documented, but the relative importance and interaction between fishing and habitat shifts is poorly understood, particularly in complex systems such as coral reefs. To assess the combined and relative effects of fishing and habitat we examined the composition of fish communities on patch reefs across a gradient of high to low structural complexity in fished and unfished areas of the Ningaloo Marine Park, Western Australia. Biomass and species richness of fish were positively correlated with structural complexity of reefs and negatively related to macroalgal cover. Total abundance of fish was also positively related to structural complexity, however this relationship was stronger on fished reefs than those where fishing is prohibited. The interaction between habitat condition and fishing pressure is primarily due to the high abundance of small bodied planktivorous fish on fished reefs. However, the influence of management zones on the abundance and biomass of predators and target species is small, implying spatial differences in fishing pressure are low and unlikely to be driving this interaction. Our results emphasise the importance of habitat in structuring reef fish communities on coral reefs especially when gradients in fishing pressure are low. The influence of fishing effort on this relationship may however become more important as fishing pressure increases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Quantification of the least limiting water range in an oxisol using two methodological strategies

    Directory of Open Access Journals (Sweden)

    Wagner Henrique Moreira

    2014-12-01

    Full Text Available The least limiting water range (LLWR has been used as an indicator of soil physical quality as it represents, in a single parameter, the soil physical properties directly linked to plant growth, with the exception of temperature. The usual procedure for obtaining the LLWR involves determination of the water retention curve (WRC and the soil resistance to penetration curve (SRC in soil samples with undisturbed structure in the laboratory. Determination of the WRC and SRC using field measurements (in situ is preferable, but requires appropriate instrumentation. The objective of this study was to determine the LLWR from the data collected for determination of WRC and SRC in situ using portable electronic instruments, and to compare those determinations with the ones made in the laboratory. Samples were taken from the 0.0-0.1 m layer of a Latossolo Vermelho distrófico (Oxisol. Two methods were used for quantification of the LLWR: the traditional, with measurements made in soil samples with undisturbed structure; and in situ , with measurements of water content (θ, soil water potential (Ψ, and soil resistance to penetration (SR through the use of sensors. The in situ measurements of θ, Ψ and SR were taken over a period of four days of soil drying. At the same time, samples with undisturbed structure were collected for determination of bulk density (BD. Due to the limitations of measurement of Ψ by tensiometer, additional determinations of θ were made with a psychrometer (in the laboratory at the Ψ of -1500 kPa. The results show that it is possible to determine the LLWR by the θ, Ψ and SR measurements using the suggested approach and instrumentation. The quality of fit of the SRC was similar in both strategies. In contrast, the θ and Ψ in situ measurements, associated with those measured with a psychrometer, produced a better WRC description. The estimates of the LLWR were similar in both methodological strategies. The quantification of

  2. Correlation of shoulder range of motion limitations at discharge with limitations in activities and participation one year later in persons with spinal cord injury.

    Science.gov (United States)

    Eriks-Hoogland, Inge E; de Groot, Sonja; Post, Marcel W M; van der Woude, Lucas H V

    2011-02-01

    To study the correlation between limited shoulder range of motion in persons with spinal cord injury at discharge and the performance of activities, wheeling performance, transfers and participation one year later. Multicentre prospective cohort study. A total of 146 newly injured subjects with spinal cord injury. Shoulder range of motion was measured at discharge. One year later, Functional Independence Measure (FIM), transfer ability, wheelchair circuit and Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) were assessed. Corrections were made for possible confounding factors (age, gender, level and completeness of injury, time since injury and shoulder pain). All subjects with limited shoulder range of motion at discharge had a lower FIM motor score and were less likely (total group 5 times, and subjects with tetraplegia 10 times less likely) to be able to perform an independent transfer one year later. Subjects with limited shoulder range of motion in the total group needed more time to complete the wheelchair circuit. No significant associations with the PASIPD were found in either group. Persons with spinal cord injury and limited shoulder range of motion at discharge are more limited in their activities one year later than those without limited shoulder range of motion.

  3. Limited-area short-range ensemble predictions targeted for heavy rain in Europe

    Directory of Open Access Journals (Sweden)

    K. Sattler

    2005-01-01

    Full Text Available Inherent uncertainties in short-range quantitative precipitation forecasts (QPF from the high-resolution, limited-area numerical weather prediction model DMI-HIRLAM (LAM are addressed using two different approaches to creating a small ensemble of LAM simulations, with focus on prediction of extreme rainfall events over European river basins. The first ensemble type is designed to represent uncertainty in the atmospheric state of the initial condition and at the lateral LAM boundaries. The global ensemble prediction system (EPS from ECMWF serves as host model to the LAM and provides the state perturbations, from which a small set of significant members is selected. The significance is estimated on the basis of accumulated precipitation over a target area of interest, which contains the river basin(s under consideration. The selected members provide the initial and boundary data for the ensemble integration in the LAM. A second ensemble approach tries to address a portion of the model-inherent uncertainty responsible for errors in the forecasted precipitation field by utilising different parameterisation schemes for condensation and convection in the LAM. Three periods around historical heavy rain events that caused or contributed to disastrous river flooding in Europe are used to study the performance of the LAM ensemble designs. The three cases exhibit different dynamic and synoptic characteristics and provide an indication of the ensemble qualities in different weather situations. Precipitation analyses from the Deutsche Wetterdienst (DWD are used as the verifying reference and a comparison of daily rainfall amounts is referred to the respective river basins of the historical cases.

  4. A comparison of habitat use and demography of red squirrels at the southern edge of their range

    Science.gov (United States)

    Katherine M. Leonard; John L. Koprowski

    2009-01-01

    Populations at the edge of their geographic range may demonstrate different population dynamics from central populations. Endangered Mt. Graham red squirrels (Tamiasciurus hudsonicus grahamensis), endemic to southeastern Arizona, represent the southernmost red squirrel population and are found at lower densities than conspecifics in the center of the...

  5. Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient

    Czech Academy of Sciences Publication Activity Database

    Šálek, Martin; Drahníková, L.; Tkadlec, Emil

    2015-01-01

    Roč. 45, č. 1 (2015), s. 1-14 ISSN 0305-1838 Institutional support: RVO:68081766 Keywords : Carnivores * home range size * natural–urban gradient * population density * review Subject RIV: EG - Zoology Impact factor: 4.116, year: 2015

  6. Home Range and Habitat Use of the New Zealand Falcon (Falco novaeseelandiae within a Plantation Forest: A Satellite Tracking Study

    Directory of Open Access Journals (Sweden)

    Bindi Thomas

    2010-01-01

    Full Text Available We tracked two adult and three juvenile New Zealand falcons (Falco novaeseelandiae in Kaingaroa Forest pine plantation from 2002 to 2008 using Argos satellite technology. The home ranges for both adults and juveniles varied, ranging between 44 and 587 km2. The falcons occasionally utilised areas outside the forest and used stands of all ages within the forest, generally in proportion to their availability. For the most part, the juveniles remained within ca. 8 km of their nests and dispersed at 58, 69, and 68 days after fledging. Falcon movement information was obtained from an average of four location points per tracking day per falcon at a putative accuracy of 350 m. The transmitters, including their solar charge capability, performed well in the forest environment. The use of all stand ages highlights the importance of forestry practises that maintain a mosaic of different aged pine stands.

  7. Nitrogen Limitation and Slow Drying Induce Desiccation Tolerance in Conjugating Green Algae (Zygnematophyceae, Streptophyta) from Polar Habitats

    Czech Academy of Sciences Publication Activity Database

    Pichrtová, Martina; Kulichová, J.; Holzinger, A.

    2014-01-01

    Roč. 9, č. 11 (2014), č. článku e113137. E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : Biological soil crust * High-alpine habitat * land plants Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.234, year: 2014

  8. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 100-600 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in the entire mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  9. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 110-150 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in in the low mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  10. Foraging range and habitat use by Cape Vulture Gyps coprotheres from the Msikaba colony, Eastern Cape province, South Africa

    Directory of Open Access Journals (Sweden)

    Morgan B. Pfeiffer

    2015-05-01

    Full Text Available Despite the extent of subsistence farmland in Africa, little is known about endangered species that persist within them. The Cape Vulture (Gyps coprotheres is regionally endangered in southern Africa and at least 20% of the population breeds in the subsistence farmland area previously known as the Transkei in the Eastern Cape province of South Africa. To understand their movement ecology, adult Cape Vultures (n = 9 were captured and fitted with global positioning system/global system for mobile transmitters. Minimum convex polygons (MCPs,and 99% and 50% kernel density estimates (KDEs were calculated for the breeding and non breeding seasons of the Cape Vulture. Land use maps were constructed for each 99% KDE and vulture locations were overlaid. During the non-breeding season, ranges were slightly larger(mean [± SE] MCP = 16 887 km2 ± 366 km2 than the breeding season (MCP = 14 707 km2 ± 2155 km2. Breeding and non-breeding season MCPs overlapped by a total of 92%. Kernel density estimates showed seasonal variability. During the breeding season, Cape Vultures used subsistence farmland, natural woodland and protected areas more than expected. In the non-breeding season, vultures used natural woodland and subsistence farmland more than expected, and protected areas less than expected. In both seasons, human-altered landscapes were used less, except for subsistence farmland. Conservation implications: These results highlight the importance of subsistence farm land to the survival of the Cape Vulture. Efforts should be made to minimise potential threats to vultures in the core areas outlined, through outreach programmes and mitigation measures.The conservation buffer of 40 km around Cape Vulture breeding colonies should be increased to 50 km.

  11. Can a native rodent species limit the invasive potential of a non-native rodent species in tropical agroforest habitats?

    Science.gov (United States)

    Stuart, Alexander M; Prescott, Colin V; Singleton, Grant R

    2016-06-01

    Little is known about native and non-native rodent species interactions in complex tropical agroecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat, and assessed over 6 months the response of R. tanezumi and other rodent species. Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas R. everetti selected microhabitat with a dense canopy. Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, while the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Hydrothermal germination models: Improving experimental efficiency by limiting data collection to the relevant hydrothermal range

    Science.gov (United States)

    Hydrothermal models used to predict germination response in the field are usually parameterized with data from laboratory experiments that examine the full range of germination response to temperature and water potential. Inclusion of low water potential and high and low-temperature treatments, how...

  13. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions

    Science.gov (United States)

    Moyes, Andrew B.; Germino, Matthew J.; Kueppers, Lara M.

    2015-01-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict.

  14. Correlation of shoulder range of motion limitations at discharge with limitations in activities and participation one year later in persons with spinal cord injury

    NARCIS (Netherlands)

    Eriks-Hoogland, Inge E.; de Groot, Sonja; Post, Marcel W. M.; van der Woude, Lucas H. V.

    Objective: To study the correlation between limited shoulder range of motion in persons with spinal cord injury at discharge and the performance of activities, wheeling performance, transfers and participation one year later. Design: Multicentre prospective cohort study. Subjects: A total of 146

  15. Bull trout life history, genetics, habitat needs, and limiting factors in Central and Northeast Oregon. Annual report 1996

    International Nuclear Information System (INIS)

    Bellerud, B.L.; Gunkel, S.; Hemmingsen, A.R.; Buchanan, D.V.; Howell, P.J.

    1997-10-01

    This study is part of a multi-year research project studying aspects of bull trout life history, ecology and genetics. This report covers the activities of the project in 1996. Results and analysis are presented in the following five areas: (1) analysis of the genetic structure of Oregon bull trout populations; (2) distribution and habitat use of bull trout and brook trout in streams containing both species; (3) bull trout spawning surveys; (4) summary and analysis of historical juvenile bull trout downstream migrant trap catches in the Grande Ronde basin; and (5) food habits and feeding behavior of bull trout alone and in sympatry with brook trout

  16. Bull Trout Life History, Genetics, Habitat Needs, and Limiting Factors in Central and Northeast Oregon. Annual Report 1996.

    Energy Technology Data Exchange (ETDEWEB)

    Bellerud, Blane L.; Gunckel, Stephanie; Hemmingsen, Alan R.; Buchanan, David V.; Howell, Philip J.

    1997-10-01

    This study is part of a multi-year research project studying aspects of bull trout life history, ecology and genetics. This report covers the activities of the project in 1996. Results and analysis are presented in the following five areas: (1) analysis of the genetic structure of Oregon bull trout populations; (2) distribution and habitat use of bull trout and brook trout in streams containing both species; (3) bull trout spawning surveys; (4) summary and analysis of historical juvenile bull trout downstream migrant trap catches in the Grande Ronde basin; and (5) food habits and feeding behavior of bull trout alone and in sympatry with brook trout.

  17. On the limiting resolution of silicon detectors for short-range particles

    Energy Technology Data Exchange (ETDEWEB)

    Verbitskaya, E M; Eremin, V K; Malyarenko, A M; Strokan, N B; Sukhanov, V L

    1986-10-20

    The transition to planar tecnology has lead to substantial improvement of energy resolution of Si detectors of strongly ionizing nuclear radiations. For 5 MeV ..cap alpha..-particles the resolution (delta/sub ..cap alpha../) is equal 9.2 keV. The application of the method of local diffusion permitted to attain delta/sub ..cap alpha../=8.1-8.4 keV. The comparison of the new resolution level with the theoretical limit is carried out. It is shown that the combination of partial contributions of fluctuations caused by fundamental mechanisms practically determined delta/sub ..cap alpha../ of obtained detectors.

  18. Bull Trout Life History, Genetics, Habitat Needs, and Limiting Fact in Central and Northeast Oregon. Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Hemmingsen, Alan R.; Gunckel, Stephanie L.; Howell, Philip J.

    2001-08-01

    This section describes work accomplished in 1999 that continued to address two objectives of this project. These objectives are (1) determine the distribution of juvenile and adult bull trout Salvelinus confluentus and habitats associated with that distribution, and (2) determine fluvial and resident bull trout life history patterns. Completion of these objectives is intended through studies of bull trout in the Grande Ronde, Walla Walla, and John Day basins. These basins were selected because they provide a variety of habitats, from relatively degraded to pristine, and bull trout populations were thought to vary from relatively depressed to robust. In all three basins we used radio telemetry to determine the seasonal movements of bull trout. In the John Day and Walla Walla basins we also used traps to capture migrant bull trout. With these traps, we intended to determine the timing of bull trout movements both upstream and downstream, determine the relative abundance, size and age of migrant fish, and capture bull trout to be implanted with radio transmitters. In the John Day basin, we captured adult and juvenile bull trout from the upper John Day River and its tributaries, Call Creek, Reynolds Creek, and Roberts Creek. In the Walla Walla basin, we captured adult and juvenile bull trout from Mill Creek.

  19. Bull trout life history, genetics, habitat needs, and limiting fact in central and northeast Oregon/1999; ANNUAL

    International Nuclear Information System (INIS)

    Hemmingsen, A.R.; Gunckel, S.L.; Howell, P.J.

    2001-01-01

    This section describes work accomplished in 1999 that continued to address two objectives of this project. These objectives are (1) determine the distribution of juvenile and adult bull trout Salvelinus confluentus and habitats associated with that distribution, and (2) determine fluvial and resident bull trout life history patterns. Completion of these objectives is intended through studies of bull trout in the Grande Ronde, Walla Walla, and John Day basins. These basins were selected because they provide a variety of habitats, from relatively degraded to pristine, and bull trout populations were thought to vary from relatively depressed to robust. In all three basins we used radio telemetry to determine the seasonal movements of bull trout. In the John Day and Walla Walla basins we also used traps to capture migrant bull trout. With these traps, we intended to determine the timing of bull trout movements both upstream and downstream, determine the relative abundance, size and age of migrant fish, and capture bull trout to be implanted with radio transmitters. In the John Day basin, we captured adult and juvenile bull trout from the upper John Day River and its tributaries, Call Creek, Reynolds Creek, and Roberts Creek. In the Walla Walla basin, we captured adult and juvenile bull trout from Mill Creek

  20. Gametogenesis of an intertidal population of Mytilus trossulus in NW Greenland: not a limitation for potential Arctic range expansion

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Jensen, Kurt Thomas; Sejr, Mikael Kristian

    2017-01-01

    is found in north Greenland, an area characterised by low temperature, prolonged winters and a short productive period. This population, therefore, provides a unique opportunity to study whether a temperate bivalve species can sustain a population near its pole-ward distribution limit through reproduction...... characterized by limited food supply and sub-zero water temperatures for 9 mo of the year. Instead, for this marine invertebrate with a larval life-stage, oceanographic conditions and dispersal barriers, rather than physiological constraints, could be more important in determining the northern range limit....

  1. Upper limit on a stochastic background of gravitational waves from seismic measurements in the range 0.05-1 Hz.

    Science.gov (United States)

    Coughlin, Michael; Harms, Jan

    2014-03-14

    In this Letter, we present an upper limit of ΩGW<1.2×108 on an isotropic stochastic gravitational-wave (GW) background integrated over a year in the frequency range 0.05-1 Hz, which improves current upper limits from high-precision laboratory experiments by about 9 orders of magnitude. The limit is obtained using the response of Earth itself to GWs via a free-surface effect described more than 40 years ago by Dyson. The response was measured by a global network of broadband seismometers selected to maximize the sensitivity.

  2. The quasi-classical limit of scattering amplitude - L2-approach for short range potentials

    International Nuclear Information System (INIS)

    Yajima, K.; Vienna Univ.

    1984-01-01

    We are concerned with the asymptotic behaviour as Planck's constant h → 0 of the scattering operator Ssup(h) associated with the pair of Schroedinger equations i h/2π delta u/delta t = - ((h/2π) 2 /2m)Δu + V(x) u equivalent to Hsup(h)u and i h/2π delta u/delta t = - ((h/2π) 2 /2m)Δu equivalent to Hsup(h) 0 u. We shall show under certain conditions that the scattering matrix S-circumflexsup(h)(p,q), the distribution kernel of Ssup(h) in momentum representation, may be expressed in terms of a Fourier integral operator. Then applying the stationary phase method to it, we shall prove that S-circumflexsup(h) has an asymptotic expansion in powers of h/2π up to any order in L 2 -space and that the limit as h → 0 of the total cross section is twice the one of classical mechanics, in generic. (Author)

  3. Accuracy and Radiation Dose Reduction of Limited-Range CT in the Evaluation of Acute Appendicitis in Pediatric Patients.

    Science.gov (United States)

    Jin, Michael; Sanchez, Thomas R; Lamba, Ramit; Fananapazir, Ghaneh; Corwin, Michael T

    2017-09-01

    The purpose of this article is to determine the accuracy and radiation dose reduction of limited-range CT prescribed from the top of L2 to the top of the pubic symphysis in children with suspected acute appendicitis. We performed a retrospective study of 210 consecutive pediatric patients from December 11, 2012, through December 11, 2014, who underwent abdominopelvic CT for suspected acute appendicitis. Two radiologists independently reviewed the theoretic limited scans from the superior L2 vertebral body to the top of the pubic symphysis, to assess for visualization of the appendix, acute appendicitis, alternative diagnoses, and incidental findings. Separately, the same parameters were assessed on the full scan by the same two reviewers. Whole-body effective doses were determined for the full- and limited-range scans and were compared using the paired t test. The appendix or entire cecum was visualized on the limited scan in all cases, and no cases of acute appendicitis were missed on the simulated limited scan compared with the full scan. Two alternative diagnoses were missed with the limited scan: one case of hydronephrosis and one of acute acalculous cholecystitis. The mean effective dose for the original scan was 5.6 mSv and that for the simulated limited scan was 3.0 mSv, resulting in a dose reduction of 46.4% (p appendicitis and reduces the dose by approximately 46%.

  4. Dare County Gunnery Range, North Carolina. Limited Surface Observations Climatic Summary (LISOCS). Parts A-F.

    Science.gov (United States)

    1988-01-01

    AIR wEATHER SERVICE/MAC--) STATION NUMBER: ?4695C STATIOK NAME: DARE COUNTY GUNNERY RANGE NC PERIOD OF PECORD: 7887 MONTH: JAN HOURSILSTi: ISO -1700...25D01 776 89.7 87.1 88.2 88.2 88.2 88.2 88.2 88.2 8.2 88.2 88:2 88.2 88.2 88.2 C GE 27001 78.8 85.9 88.2 89.4 89.4 89.9 89.4 89.4 90.6 97.6 93.6 90.6...78.6 81 .9 83. 4 83.4 85. 1 85 .7 86. 7 86.7 86.7 86.9 87.8 C)GE 27001 5 1.9 65.1 73.8 80.4 80.6 83 .9 85. 3 65.3 87.3 87.8 87.8 88.8 88.8 89.2 90. 1 G

  5. Resistance to alveolar shape change limits range of force propagation in lung parenchyma.

    Science.gov (United States)

    Ma, Baoshun; Smith, Bradford J; Bates, Jason H T

    2015-06-01

    We have recently shown that if the lung parenchyma is modeled in 2 dimensions as a network of springs arranged in a pattern of repeating hexagonal cells, the distortional forces around a contracting airway propagate much further from the airway wall than classic continuum theory predicts. In the present study we tested the hypothesis that this occurs because of the negligible shear modulus of a hexagonal spring network. We simulated the narrowing of an airway embedded in a hexagonal network of elastic alveolar walls when the hexagonal cells of the network offered some resistance to a change in shape. We found that as the forces resisting shape change approach about 10% of the forces resisting length change of an individual spring the range of distortional force propagation in the spring network fell of rapidly as in an elastic continuum. We repeated these investigations in a 3-dimensional spring network composed of space-filling polyhedral cells and found similar results. This suggests that force propagation away from a point of local parenchymal distortion also falls off rapidly in real lung tissue. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Bull Trout Life History, Genetics, Habitat Needs, and Limiting Factors in Central and Northeast Oregon, Annual Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Hemmingsen, Alan R.; Gunckel, Stephanie L.; Sankovich, Paul M.; Howell, Philip J.

    2001-11-01

    This section describes work accomplished in 2000 that continued to address two objectives of this project. These objectives are (1) determine the distribution of juvenile and adult bull trout Salvelinus confluentus and habitats associated with that distribution, and (2) determine fluvial and resident bull trout life history patterns. Completion of these objectives is intended through studies of bull trout in the Grande Ronde, Walla Walla, and John Day basins. These basins were selected because they provide a variety of habitats, from relatively degraded to pristine, and bull trout populations were thought to vary from relatively depressed to robust. In all three basins we continued to monitor the movements of bull trout with radio transmitters applied in 1998 (Hemmingsen, Bellerud, Gunckel and Howell 2001) and 1999 (Hemmingsen, Gunckel and Howell 2001). No new radio transmitters were applied to bull trout of the upper John Day River subbasin, Mill Creek (Walla Walla Basin), or the Grande Ronde Basin in 2000. We did implant radio transmitters in two bull trout incidentally captured in the John Day River near the confluence of the North Fork John Day River. In Mill Creek, we used traps to capture migrant bull trout to obtain data for the third successive year in this stream. With these traps, we intended to determine the timing of bull trout movements both upstream and downstream, and to determine the relative abundance, size and age of migrant fish. Because we captured migrant bull trout with traps for three years in the upper John Day River and its tributaries (Hemmingsen, Bellerud, Buchanan, Gunckel, Shappart and Howell 2001; Hemmingsen, Bellerud, Gunckel and Howell 2001; Hemmingsen, Gunckel and Howell 2001) and traps were no longer needed to capture bull trout for radio-tagging, no traps were operated in the John Day Basin in 2000.

  7. Bull trout life history, genetics, habitat needs, and limiting fact in central and northeast Oregon, annual report 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Hemmingsen, Alan R.

    2001-01-01

    This section describes work accomplished in 2000 that continued to address two objectives of this project. These objectives are (1) determine the distribution of juvenile and adult bull trout Salvelinus confluentus and habitats associated with that distribution, and (2) determine fluvial and resident bull trout life history patterns. Completion of these objectives is intended through studies of bull trout in the Grande Ronde, Walla Walla, and John Day basins. These basins were selected because they provide a variety of habitats, from relatively degraded to pristine, and bull trout populations were thought to vary from relatively depressed to robust. In all three basins we continued to monitor the movements of bull trout with radio transmitters applied in 1998 (Hemmingsen, Bellerud, Gunckel and Howell 2001) and 1999 (Hemmingsen, Gunckel and Howell 2001). No new radio transmitters were applied to bull trout of the upper John Day River subbasin, Mill Creek (Walla Walla Basin), or the Grande Ronde Basin in 2000. We did implant radio transmitters in two bull trout incidentally captured in the John Day River near the confluence of the North Fork John Day River. In Mill Creek, we used traps to capture migrant bull trout to obtain data for the third successive year in this stream. With these traps, we intended to determine the timing of bull trout movements both upstream and downstream, and to determine the relative abundance, size and age of migrant fish. Because we captured migrant bull trout with traps for three years in the upper John Day River and its tributaries (Hemmingsen, Bellerud, Buchanan, Gunckel, Shappart and Howell 2001; Hemmingsen, Bellerud, Gunckel and Howell 2001; Hemmingsen, Gunckel and Howell 2001) and traps were no longer needed to capture bull trout for radio-tagging, no traps were operated in the John Day Basin in 2000

  8. The reintroduction of boreal caribou as a conservation strategy: A long-term assessment at the southern range limit

    Directory of Open Access Journals (Sweden)

    Martin-Hugues St-Laurent

    2012-03-01

    Full Text Available Boreal caribou were extirpated from the Charlevoix region (Québec in the 1920s because of hunting and poaching. In 1965, the Québec government initiated a caribou reintroduction program in Charlevoix. During the winters of 1966 and 1967, a total of 48 boreal caribou were captured, translocated by plane, and released within enclosures; only their offspring (82 individuals were released in the wild. Between 1967 and 1980, a wolf control program was applied to support caribou population growth. The caribou population, however, remained relatively stable at 45–55 individuals during this period. During the 1980s, the population grew slowly at a rate of approximately 5% each year to reach a peak of 126 individuals in 1992. At that time, Bergerud & Mercer (1989 reported that the Charlevoix experiment was the only successful attempt at caribou reintroduction in the presence of predators (in North America. Afterwards, the population declined and since then it has been relatively stable at about 80 individuals. Here we reviewed the literature regarding the ecology and population dynamics of the Charlevoix caribou herd since its reintroduction, in an attempt to critically assess the value of reintroduction as a conservation tool for this species. Indeed, the Charlevoix caribou herd is now considered at very high risk of extinction mostly because of its small size, its isolation from other caribou populations, and low recruitment. The Charlevoix region has been heavily impacted by forestry activities since the early 1980s. Recent studies have indicated that these habitat modifications may have benefited populations of wolves and black bears—two predators of caribou—and that caribou range fidelity may have exposed caribou to higher predation risk via maladaptive habitat selection. As females are ageing, and females and calves suffer high predation pressure from wolves and bears respectively, we suggest that the future of this reintroduced herd is in

  9. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape.

    Science.gov (United States)

    Pilliod, David S; Arkle, Robert S; Robertson, Jeanne M; Murphy, Melanie A; Funk, W Chris

    2015-09-01

    Amphibian species persisting in isolated streams and wetlands in desert environments can be susceptible to low connectivity, genetic isolation, and climate changes. We evaluated the past (1900-1930), recent (1981-2010), and future (2071-2100) climate suitability of the arid Great Basin (USA) for the Columbia spotted frog (Rana luteiventris) and assessed whether changes in surface water may affect connectivity for remaining populations. We developed a predictive model of current climate suitability and used it to predict the historic and future distribution of suitable climates. We then modeled changes in surface water availability at each time period. Finally, we quantified connectivity among existing populations on the basis of hydrology and correlated it with interpopulation genetic distance. We found that the area of the Great Basin with suitable climate conditions has declined by approximately 49% over the last century and will likely continue to decline under future climate scenarios. Climate conditions at currently occupied locations have been relatively stable over the last century, which may explain persistence at these sites. However, future climates at these currently occupied locations are predicted to become warmer throughout the year and drier during the frog's activity period (May - September). Fall and winter precipitation may increase, but as rain instead of snow. Earlier runoff and lower summer base flows may reduce connectivity between neighboring populations, which is already limited. Many of these changes could have negative effects on remaining populations over the next 50-80 years, but milder winters, longer growing seasons, and wetter falls might positively affect survival and dispersal. Collectively, however, seasonal shifts in temperature, precipitation, and stream flow patterns could reduce habitat suitability and connectivity for frogs and possibly other aquatic species inhabiting streams in this arid region.

  10. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape

    Science.gov (United States)

    Pilliod, David S.; Arkle, Robert S.; Robertson, Jeanne M; Murphy, Melanie; Funk, W. Chris

    2015-01-01

    Amphibian species persisting in isolated streams and wetlands in desert environments can be susceptible to low connectivity, genetic isolation, and climate changes. We evaluated the past (1900–1930), recent (1981–2010), and future (2071–2100) climate suitability of the arid Great Basin (USA) for the Columbia spotted frog (Rana luteiventris) and assessed whether changes in surface water may affect connectivity for remaining populations. We developed a predictive model of current climate suitability and used it to predict the historic and future distribution of suitable climates. We then modeled changes in surface water availability at each time period. Finally, we quantified connectivity among existing populations on the basis of hydrology and correlated it with interpopulation genetic distance. We found that the area of the Great Basin with suitable climate conditions has declined by approximately 49% over the last century and will likely continue to decline under future climate scenarios. Climate conditions at currently occupied locations have been relatively stable over the last century, which may explain persistence at these sites. However, future climates at these currently occupied locations are predicted to become warmer throughout the year and drier during the frog's activity period (May – September). Fall and winter precipitation may increase, but as rain instead of snow. Earlier runoff and lower summer base flows may reduce connectivity between neighboring populations, which is already limited. Many of these changes could have negative effects on remaining populations over the next 50–80 years, but milder winters, longer growing seasons, and wetter falls might positively affect survival and dispersal. Collectively, however, seasonal shifts in temperature, precipitation, and stream flow patterns could reduce habitat suitability and connectivity for frogs and possibly other aquatic species inhabiting streams in this arid region.

  11. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.

    Science.gov (United States)

    Yando, E S; Osland, M J; Hester, M W

    2018-05-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  12. Microspatial ecotone dynamics at a shifting range limit: plant–soil variation across salt marsh–mangrove interfaces

    Science.gov (United States)

    Yando, Erik S.; Osland, Michael J.; Hester, Mark H.

    2018-01-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  13. What limits the spread of two congeneric butterfly species after their reintroduction: quality or spatial arrangement of habitat?

    NARCIS (Netherlands)

    Langevelde, van F.; Wynhoff, I.

    2009-01-01

    Population growth and spread of recently reintroduced species is crucial for the success of their reintroduction. We analysed what limits the spread of two congeneric butterfly species Maculinea teleius and Maculinea nausithous, over 10 years following their reintroduction. During this time, their

  14. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.

    Science.gov (United States)

    Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M

    2015-09-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Size-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic char

    NARCIS (Netherlands)

    Byström, P.; Andersson, J.; Persson, L.; de Roos, A.M.

    2004-01-01

    Variation in growth and habitat use is closely connected to individual responses to habitat specific resource levels and predation risk. In three mountain lakes which differed in the density of young-of-the-year (YOY) arctic char (Salvelinus alpinus), we studied the growth, diets and habitat use of

  16. Size-dependent resource limitation and foraging-predation risk trade-offs:growth and habitat use in young artic char

    NARCIS (Netherlands)

    Bystrom, P.; Persson, L.; de Roos, A.M.; Andersson, J.A.

    2004-01-01

    Variation in growth and habitat use is closely connected to individual responses to habitat specific resource levels and predation risk. In three mountain lakes which differed in the density of young-of-the-year (YOY) arctic char (Salvelinus alpinus), we studied the growth, diets and habitat use of

  17. Leapfrogging of tree species provenances? Interaction of microclimate and genetics on upward shifts in tree species' range limits

    Science.gov (United States)

    Reinhardt, K.; Castanha, C.; Germino, M. J.; Kueppers, L. M.

    2011-12-01

    The elevation limit of tree growth (alpine treeline) is considered to be constrained by environmental (i.e., thermal) and genetic (i.e., inability to adapt to climatic conditions) limitations to growth. Warming conditions due to climate change are predicted to cause upward shifts in the elevation of alpine treelines, through relief of cold-induced physiological limitations on seedling recruitment beyond current treeline boundaries. To determine how genetics and climate may interact to affect seedling establishment, we transplanted recently germinated seedlings from high- and low-elevation provenances (HI and LO, respectively) of Pinus flexilis in common gardens arrayed along an elevation and canopy gradient from subalpine forest into the alpine zone at Niwot Ridge, CO. We compared differences in microclimate and seedling ecophysiology among sites and between provenances. During the first summer of growth, frequently cloudy skies resulted in similar solar radiation incidence and air and soil temperatures among sites, despite nearly a 500 m-span in elevation across all sites. Preliminary findings suggest that survival of seedlings was similar between the lowest and highest elevations, with greater survival of LO (60%) compared to HI (40%) seedlings at each of these sites. Photosynthesis, carbon balance (photosynthesis/respiration), and conductance increased more than 2X with elevation for both provenances, and were 35-77% greater in LO seedlings compared to HI seedlings. There were no differences in dark-adapted chlorophyll fluorescence (Fv/Fm) among sites or between provenances. However, in a common-garden study at low elevation, we observed no differences in carbon or water relations between two naturally-germinated mitochondrial haplotypes of P. flexilis (of narrow and wide-ranging distributions). We did observe water-related thresholds on seedling carbon balance and survival that occurred when soil volumetric water content dropped below 10% and seedling water

  18. Pleistocene sea level fluctuation and host plant habitat requirement influenced the historical phylogeography of the invasive species Amphiareus obscuriceps (Hemiptera: Anthocoridae) in its native range.

    Science.gov (United States)

    Zhang, Danli; Ye, Zhen; Yamada, Kazutaka; Zhen, Yahui; Zheng, Chenguang; Bu, Wenjun

    2016-08-31

    On account of repeated exposure and submergence of the East China Sea (ECS) land bridge, sea level fluctuation played an important role in shaping the population structure of many temperate species across the ECS during the glacial period. The flower bug Amphiareus obscuriceps (Poppius, 1909) (Hemiptera: Anthocoridae) is an invasive species native to the Sino-Japanese Region (SJR) of East Asia. We tested the hypothesis of the ECS land bridge acting as a dispersal corridor or filter for A. obscuriceps during the glacial period. Specifically, we tested whether and the extent to which dispersal ability and host plant habitat requirement influenced the genetic structure of A. obscuriceps during the exposure of the ECS land bridge. Phylogenetic and network analyses indicated that A. obscuriceps is composed of two major lineages, i.e., China and Japan. Divergence time on both sides of the ECS was estimated to be approximately 1.07 (0.79-1.32) Ma, which was about the same period that the sea level increased. No significant Isolation by Distance (IBD) relationship was found between Фst and Euclidean distances in the Mantel tests, which is consistent with the hypothesis that this species has a good dispersal ability. Our Last Glacial Maximum (LGM) niche modeling of plants that constitute preferred habitats for A. obscuriceps exhibited a similar habitat gap on the exposed ECS continental shelf between China and Japan, but showed a continuous distribution across the Taiwan Strait. Our results suggest that ecological properties (habitat requirement and dispersal ability), together with sea level fluctuation during the Pleistocene across the ECS, have shaped the genetic structure and demographic history of A. obscuriceps in its native area. The host plant habitat requirement could also be a key to the colonization of the A. obscuriceps species during the exposure of the ECS land bridge. Our findings will shed light on the potential role of habitat requirement in the process of

  19. Illumination and the perception of remote habitat patches by whit footed mice

    Science.gov (United States)

    Patrick A. Zollner; Steven L. Lima

    1999-01-01

    Perceptual range, or the distance at which habitat 'patches' can be perceived, constrains an animal's informational window on a given landscape. If such constraints are great, they may limit successful dispersal between distant habitat patches. On dark nights, nocturnal white-footed mice, Peromyscus leucopus, have surprisingly limited...

  20. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  1. Sound transmission at ground level in a short-grass prairie habitat and its implications for long-range communication in the swift fox Vulpes velox

    DEFF Research Database (Denmark)

    Darden, Safi K; Pedersen, Simon B; Larsen, Ole N

    2008-01-01

    The acoustic environment of swift foxes Vulpes velox vocalizing close to the ground and the effect of propagation on individual identity information in vocalizations were quantified in a transmission experiment in prairie habitat. Sounds were propagated (0.45 m above the ground) at distances up t...

  2. Quantifying functional connectivity: The role of breeding habitat, abundance, and landscape features on range-wide gene flow in sage-grouse

    Science.gov (United States)

    Jeffrey R. Row; Kevin E. Doherty; Todd B. Cross; Michael K. Schwartz; Sara Oyler-McCance; Dave E. Naugle; Steven T. Knick; Bradley C. Fedy

    2018-01-01

    Functional connectivity, quantified using landscape genetics, can inform conservation through the identification of factors linking genetic structure to landscape mechanisms. We used breeding habitat metrics, landscape attributes and indices of grouse abundance, to compare fit between structural connectivity and genetic differentiation within five long‐established Sage...

  3. Bull trout life history, genetics, habitat needs, and limiting factors in central and northeast Oregon, Annual Report 1995

    International Nuclear Information System (INIS)

    Hemmingsen, A.R.; Buchanan, D.V.; Howell, P.J.

    1996-03-01

    To fulfill one objective of the present study, genetic characteristics of Oregon bull trout will be determined by analysis of mitochondrial and nuclear DNA. During 1995, the authors collected and sampled a total of 1,217 bull trout from 46 streams in the Columbia River Basin. DNA analysis of those samples will be conducted at University of Montana. They primarily sampled juvenile fish near natal areas to increase the likelihood of identifying discrete populations while minimizing risk of injury to large spawners. Fork lengths of all fish sampled ranged from 2.6 to 60.5 cm with a median of 12 cm. Eighty-four percent of all bull trout sampled were less than 19 cm while two percent were larger than 27 cm. Bull trout were collected by several methods, mostly by electrofishing. Eighty-six percent of all bull trout sampled were collected by electrofishing with a programmable waveform electrofisher. They observed injuries caused by electrofishing to 8% of that proportion. Based on preliminary analysis, no waveform combination used appeared less injurious than others. Highest voltages appeared less injurious than some that were lower. Frequency of electrofishing injury was significantly correlated to fork length over the range-from 4 to 26 cm. There were indications for substantial risk for such injury to bull trout larger than 26 cm. Other species found in association with bull trout included chinook salmon Oncorhynchus tshawytscha, mountain whitefish Prosopium williamsoni, rainbow trout Oncorhynchus mykiss, sculpins Cottus spp., cutthroat trout Oncorhynchus clarki, non-native brook trout Salvelinus fontinalis, and tailed frogs Ascaphus truei. Rainbow trout was the species most frequently associated with bull trout. No injury or mortality was observed for any of the associated species captured

  4. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta from polar habitats.

    Directory of Open Access Journals (Sweden)

    Martina Pichrtová

    Full Text Available Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress.Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks, supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow; viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation.The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed.

  5. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit

    Directory of Open Access Journals (Sweden)

    Kristoffersen Anja B

    2011-05-01

    Full Text Available Abstract Background There is increasing evidence for a latitudinal and altitudinal shift in the distribution range of Ixodes ricinus. The reported incidence of tick-borne disease in humans is on the rise in many European countries and has raised political concern and attracted media attention. It is disputed which factors are responsible for these trends, though many ascribe shifts in distribution range to climate changes. Any possible climate effect would be most easily noticeable close to the tick's geographical distribution limits. In Norway- being the northern limit of this species in Europe- no documentation of changes in range has been published. The objectives of this study were to describe the distribution of I. ricinus in Norway and to evaluate if any range shifts have occurred relative to historical descriptions. Methods Multiple data sources - such as tick-sighting reports from veterinarians, hunters, and the general public - and surveillance of human and animal tick-borne diseases were compared to describe the present distribution of I. ricinus in Norway. Correlation between data sources and visual comparison of maps revealed spatial consistency. In order to identify the main spatial pattern of tick abundance, a principal component analysis (PCA was used to obtain a weighted mean of four data sources. The weighted mean explained 67% of the variation of the data sources covering Norway's 430 municipalities and was used to depict the present distribution of I. ricinus. To evaluate if any geographical range shift has occurred in recent decades, the present distribution was compared to historical data from 1943 and 1983. Results Tick-borne disease and/or observations of I. ricinus was reported in municipalities up to an altitude of 583 metres above sea level (MASL and is now present in coastal municipalities north to approximately 69°N. Conclusion I. ricinus is currently found further north and at higher altitudes than described in

  6. Fourier phase analysis on equilibrium gated radionuclide ventriculography: range of phase spread and cut-off limits in normal individuals

    International Nuclear Information System (INIS)

    Ramaiah, Vijayaraghavan L.; Harish, B.; Sunil, H.V.; Selvakumar, Job; Ravi Kishore, A.G.; Nair, Gopinathan

    2011-01-01

    To define the range of phase spread on equilibrium gated radionuclide ventriculography (ERNV) in normal individuals and derive the cut-off limit for the parameters to detect cardiac dyssynchrony. ERNV was carried out in 30 individuals (age 53±23 years, 25 males and 5 females) who had no history of cardiovascular disease. They all had normal left ventricular ejection fraction (LVEF 55-70%) as determined by echocardiography, were in sinus rhythm, with normal QRS duration (≤120 msec) and normal coronary angiography. First harmonic phase analysis was performed on scintigraphic data acquired in best septal view. Left and right ventricular standard deviation (LVSD and RVSD, respectively) and interventricular mechanical delay (IVMD), the absolute difference of mean phase angles of right and left ventricle, were computed and expressed in milliseconds. Mean + 3 standard deviation (SD) was used to derive the cut-off limits. Average LVEF and duration of cardiac cycle in the study group were 62.5%±5.44% and 868.9±114.5 msec, respectively. The observations of LVSD, RVSD and right and left ventricular mean phase angles were shown to be normally distributed by Shapiro-Wilk test. Cut-off limits for LVSD, RVSD and IVMD were calculated to be 80 msec, 85 msec and 75 msec, respectively. Fourier phase analysis on ERNV is an effective tool for the evaluation of synchronicity of cardiac contraction. The cut-off limits of parameters of dyssynchrony can be used to separate heart failure patients with cardiac dyssynchrony from those without. ERNV can be used to select patients for cardiac resynchronization therapy. (author)

  7. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale

    International Nuclear Information System (INIS)

    Frantz, Adrien; Pottier, Marie-Anne; Karimi, Battle; Corbel, Hélène; Aubry, Emmanuel; Haussy, Claudy; Gasparini, Julien; Castrec-Rouelle, Maryse

    2012-01-01

    Despite restrictions in emissions, heavy metals may remain a major environmental issue due to their numerous sources and their persistence. Here, we assessed current levels of 4 metals (Copper, Cadmium, Lead, Zinc) in the feathers of 91 feral pigeons (Columba livia) from 7 sites in the urbanized region of Paris. Elements were detected in all pigeons, indicating that metals persist in urbanized areas. The ratio between metal concentrations in the feathers vs. in the environment calculated using data from other studies was 2–90 times higher for cadmium than for other metals, underlying its ecological importance. Concentrations in the feathers depended on locality, suggesting that pigeons remain in local habitats at this restricted scale, as expected from previous observations. Overall, our study suggests that urban feral pigeons may represent a good model system for metal biomonitoring. Highlights: ► We measured the concentrations of 4 heavy metals in pigeon feathers through Paris. ► Cadmium, Copper, Lead and Zinc were present in pigeons from all 7 sites. ► Metals thus still persist in the city though their emissions have been reduced. ► Metal concentrations in the feathers depended on the local origin of the pigeons. ► These differences suggest limited pigeon movements at a very restricted scale. - Concentrations of metals in the feathers of Parisian feral pigeons (Columba livia) strongly differ at a restricted spatial scale, suggesting limited movements in urban areas.

  8. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the Betaproteobacterial genus .i.Limnohabitans./i

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Kasalický, Vojtěch; Jezbera, Jan; Jezberová, Jitka; Hejzlar, Josef; Hahn, M.W.

    2010-01-01

    Roč. 76, č. 3 (2010), s. 631-639 ISSN 0099-2240 R&D Projects: GA ČR(CZ) GA206/08/0015; GA MŠk(CZ) MEB060702 Institutional research plan: CEZ:AV0Z60170517 Keywords : R-BT065 cluster * Betaproteobacteria * freshwater habitats * pH * DOC * algal-derived substrates Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.778, year: 2010

  9. Integrating Interdisciplinary Studies Across a Range of Spatiotemporal Scales for the Design of Effective Flood Mitigation and Habitat Restoration Strategies, Green Valley Creek, California

    Science.gov (United States)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2014-12-01

    Green Valley Creek provides some of the most critical habitat for endangered coho salmon in the Russian River Watershed. Extensive changes in land-use over the past century have resulted in a dynamic system characterized by ongoing incision in the upper watershed and deposition and increased flood risk in the lower watershed. Effective management requires a watershed-scale understanding of the underlying controls on sediment erosion and transport as well as site-specific studies to understand local habitat conditions and flood dynamics. Here we combine an evaluation of historical changes in watershed conditions with a regional sediment source assessment and detailed numerical hydraulic and sediment transport models to find a sustainable solution to a chronic flooding problem at the Green Valley Road bridge crossing. Ongoing bank erosion in the upper watershed has been identified as the primary source of coarse sediment being deposited in the rapidly aggrading flood-prone reach upstream of the bridge. Efforts at bank stabilization are part of the overall strategy, however elevated sediment loads can be expected to continue in the near-term. The cessation of historical vegetation removal and maintenance dredging has resulted in a substantial increase in channel roughness as riparian cover has expanded. A positive feedback loop has been developed whereby increased vegetation roughness reduces sediment transport capacity, inducing additional deposition, and providing fresh sediment for continued vegetation recruitment. Our analysis revealed that traditional engineering approaches are ineffective. Dredging is not viable owning to the habitat impacts and short timeframes over which the dredged channel would be maintained. Roadway elevation results in a strong backwater effect increasing flood risk upstream. Initial efforts at designing a bypass channel also proved ineffective due to backwater effects below the bridge. The only viable solution involved reducing the

  10. Characterisation of Beaver Habitat Parameters That Promote the Use of Culverts as Dam Construction Sites: Can We Limit the Damage to Forest Roads?

    Directory of Open Access Journals (Sweden)

    Geneviève Tremblay

    2017-12-01

    Full Text Available The use of forest roads as foundations for dam construction by beavers is a recurrent problem in the management of forest road networks. In order to limit the damage to forest roads, our goal was to calculate the probability of beaver dam installation on culverts, according to surrounding habitat parameters, which could allow for improvement in the spatial design of new roads that minimise conflicts with beavers. Comparisons of culverts with (n = 77 and without (n = 51 dams in northwestern Quebec showed that catchment surface, cumulate length of all local streams within a 2-km radius, and road embankment height had a negative effect on the probability of dam construction on culverts, while flow level and culvert diameter ratio had a positive effect. Nevertheless, predicted probabilities of dam construction on culverts generally exceeded 50%, even on sites that were less favourable to beavers. We suggest that it would be more reasonable to take their probable subsequent presence into account at the earliest steps of road conception. Installing mitigation measures such as pre-dams during road construction would probably reduce the occurrence of conflicts with beavers and thus reduce the maintenance costs of forest roads.

  11. Contributions of biarticular myogenic components to the limitation of the range of motion after immobilization of rat knee joint

    Science.gov (United States)

    2014-01-01

    Background Muscle atrophy caused by immobilization in the shortened position is characterized by a decrease in the size or cross-sectional area (CSA) of myofibers and decreased muscle length. Few studies have addressed the relationship between limitation of the range of motion (ROM) and the changes in CSA specifically in biarticular muscles after atrophy because of immobilization. We aimed to determine the contribution of 2 distinct muscle groups, the biarticular muscles of the post thigh (PT) and those of the post leg (PL), to the limitation of ROM as well as changes in the myofiber CSAs after joint immobilization surgery. Methods Male Wistar rats (n = 40) were randomly divided into experimental and control groups. In the experimental group, the left knee was surgically immobilized by external fixation for 1, 2, 4, 8, or 16 weeks (n = 5 each) and sham surgery was performed on the right knee. The rats in the control groups (n = 3 per time point) did not undergo surgery. After the indicated immobilization periods, myotomy of the PT or PL biarticular muscles was performed and the ROM was measured. The hamstrings and gastrocnemius muscles from the animals operated for 1 or 16 weeks were subjected to morphological analysis. Results In immobilized knees, the relative contribution of the PT biarticular myogenic components to the total restriction reached 80% throughout the first 4 weeks and decreased thereafter. The relative contribution of the PL biarticular myogenic components remained contracture did not significantly change during the experimental period. However, the ratio of hamstrings CSAs to the sham side was larger than the ratio of medial gastrocnemius CSAs to the sham side after complete atrophy because of immobilization. PMID:25001065

  12. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  13. Natural and manipulated populations of the treehole mosquito, Ochlerotatus triseriatus, at its northernmost range limit in southern Ontario, Canada.

    Science.gov (United States)

    Williams, D Dudley; MacKay, Sarah E; Verdonschot, Ralf C M; Tacchino, Pierre J P

    2007-12-01

    Ochlerotatus triseriatus, the eastern treehole mosquito, reaches its northernmost range limit in the extreme southeast of Canada. As a known vector of West Nile and La Crosse encephalitis viruses and a potential vector of eastern equine encephalitis, its population biology is of interest. In southern Ontario, high larval densities occur in urban woodlots within sugar maple and American beech treehole communities comprising rotifers, nematode worms, mites, other dipterans, and scirtid beetles. Treehole water was characterized by low dissolved oxygen levels and seasonally variable pH and temperature, with the latter being most influential on local populations. Densities were significantly higher (up to 503 larvae 100 ml(-1)) in tree holes close to the forest floor (holes seeded with autumn-shed maple leaves as opposed to leaves of black oak and beech. In this locality, weekly sampling showed Oc. triseriatus to be multivoltine, with mass egg hatching beginning under coldwater (hole, population losses of Oc. triseriatus due to washout during major rainfall events were negligible despite high flowthrough of water derived from stemflow.

  14. Structural changes in latosols of the cerrado region: I - relationships between soil physical properties and least limiting water range

    Directory of Open Access Journals (Sweden)

    Eduardo da Costa Severiano

    2011-06-01

    Full Text Available The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR, and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR. The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.

  15. Oxidation limited lifetime of Ni-Base metal foams in the temperature range 700-900 C

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton; Singheiser, Lorenz; Quadakkers, Willem Joseph [Forschungszentrum Juelich GmbH, IEF-2, Juelich (Germany); Schulze, Sebastian Leif; Bleck, Wolfgang [Department of Ferrous Metallurgy, RWTH Aachen University, Aachen (Germany); Piron-Abellan, Javier [Vallourec Mannesmann Tubes, Duesseldorf (Germany)

    2010-09-15

    INCONEL 625 metal foams produced from alloy powder by the slip-reaction-foam-sinter-process are tested in respect to cyclic oxidation behavior in air in the temperature range 700-900 C. The structure of the oxide scales formed on the foam particles is characterized using optical microscopy and SEM/EDX analysis. Main emphasis is put on studying the oxidation limited lifetimes of the foams as function of temperature and foam microstructure. It is shown that mechanical disintegration during long term oxidation at the highest test temperatures is caused by a critical depletion of the Cr content in the alloy as a result of the growth of the initially formed surface chromia layer. This results in chemical breakaway due to accelerated oxide growth of voluminous Ni-rich oxide on chromium exhausted alloy particles. Lifetime modeling based on calculation of Cr-depletion in the alloy at the oxide/metal interface of each individual foam particle using the DICTRA software is in good agreement with the experimentally determined values of the time to breakaway. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Time contour expression of limited range phenomena on stack chart; Jugo chart jo deno kyokuchi gensho jikan contour

    Energy Technology Data Exchange (ETDEWEB)

    Kametani, T

    1997-05-27

    Time contour expression of limited range phenomena on stack chart is examined for further improvement on the result of the ultimate interpretation in the seismic reflection survey. The policy is made clear from the beginning that local phenomena are to be discussed, and data prior CMP stacking is interpreted in detail. For this purpose, it is effective to make use of the time contour expression in the midpoint-offset plane simultaneously with the CMP and COP panels. For the review of data prior to CMP stacking, it is convenient to use the CMP (CDP) stacking chart in which the data is arranged methodically. In this chart, all the channels which are crude data prior to stacking are plotted on midpoint-offset coordinates, which plane is called the MOD (Midpoint Offset Domain) panel. Various panels can be chosen unrestrictedly, and their mutual relations can be easily grasped. When data points are given a time axis, they can be expressed in a time contour. Studies are conducted about the underground structure, multiple reflection paths divided by it, and characteristics of detour reflection attributable to faults. 4 refs., 9 figs.

  17. AFSC/RACE/SAP/Long: Data from: Habitat, predation, growth, and coexistence: Could interactions between juvenile red and blue king crabs limit blue king crab productivity?

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is from a series of laboratory experiments examining the interactions between red and blue king crabs and habitat. We examined how density and predator...

  18. Restricted cross-scale habitat selection by American beavers.

    Science.gov (United States)

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  19. Compilation of hydrologic data for White Sands pupfish habitat and nonhabitat areas, northern Tularosa Basin, White Sands Missile Range and Holloman Air Force Base, New Mexico, 1911-2008

    Science.gov (United States)

    Naus, C.A.; Myers, R.G.; Saleh, D.K.; Myers, N.C.

    2014-01-01

    The White Sands pupfish (Cyprinodon tularosa), listed as threatened by the State of New Mexico and as a Federal species of concern, is endemic to the Tularosa Basin, New Mexico. Because water quality can affect pupfish and the environmental conditions of their habitat, a comprehensive compilation of hydrologic data for pupfish habitat and nonhabitat areas in the northern Tularosa Basin was undertaken by the U.S. Geological Survey in cooperation with White Sands Missile Range. The four locations within the Tularosa Basin that are known pupfish habitat areas are the Salt Creek, Malpais Spring and Malpais Salt Marsh, Main Mound Spring, and Lost River habitat areas. Streamflow data from the Salt Creek near Tularosa streamflow-gaging station indicated that the average annual mean streamflow and average annual total streamflow for water years 1995–2008 were 1.35 cubic feet per second (ft3/s) and 983 acre-feet, respectively. Periods of no flow were observed in water years 2002 through 2006. Dissolved-solids concentrations in Salt Creek samples collected from 1911 through 2007 ranged from 2,290 to 66,700 milligrams per liter (mg/L). The average annual mean streamflow and average annual total streamflow at the Malpais Spring near Oscura streamflow-gaging station for water years 2003–8 were 6.81 ft3/s and 584 acre-feet, respectively. Dissolved-solids concentrations for 16 Malpais Spring samples ranged from 3,882 to 5,500 mg/L. Isotopic data for a Malpais Spring near Oscura water sample collected in 1982 indicated that the water was more than 27,900 years old. Streamflow from Main Mound Spring was estimated at 0.007 ft3/s in 1955 and 1957 and ranged from 0.02 to 0.07 ft3/s from 1996 to 2001. Dissolved-solids concentrations in samples collected between 1955 and 2007 ranged from an estimated 3,760 to 4,240 mg/L in the upper pond and 4,840 to 5,120 mg/L in the lower pond. Isotopic data for a Main Mound Spring water sample collected in 1982 indicated that the water was about

  20. Influence of primary prey on home-range size and habitat-use patterns of northern spotted owls (Strix occidentalis caurina)

    Science.gov (United States)

    Cynthia J. Zabel; Kevin S. McKelvey; James P. Ward

    1995-01-01

    Correlations between the home-range size of northern spotted owls (Strix occidentalis caurina) and proportion of their range in old-growth forest have been reported, but there are few data on the relationship between their home-range size and prey. The primary prey of spotted owls are wood rats and northern flying squirrels (Glaucomys sabrinus). Wood...

  1. Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W

    2017-09-01

    Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. New England wildlife: management forested habitats

    Science.gov (United States)

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  3. Silvicolous on a small scale: possibilities and limitations of habitat suitability models for small, elusive mammals in conservation management and landscape planning.

    Science.gov (United States)

    Becker, Nina I; Encarnação, Jorge A

    2015-01-01

    Species distribution and endangerment can be assessed by habitat-suitability modelling. This study addresses methodical aspects of habitat suitability modelling and includes an application example in actual species conservation and landscape planning. Models using species presence-absence data are preferable to presence-only models. In contrast to species presence data, absences are rarely recorded. Therefore, many studies generate pseudo-absence data for modelling. However, in this study model quality was higher with null samples collected in the field. Next to species data the choice of landscape data is crucial for suitability modelling. Landscape data with high resolution and ecological relevance for the study species improve model reliability and quality for small elusive mammals like Muscardinus avellanarius. For large scale assessment of species distribution, models with low-detailed data are sufficient. For regional site-specific conservation issues like a conflict-free site for new wind turbines, high-detailed regional models are needed. Even though the overlap with optimally suitable habitat for M. avellanarius was low, the installation of wind plants can pose a threat due to habitat loss and fragmentation. To conclude, modellers should clearly state the purpose of their models and choose the according level of detail for species and environmental data.

  4. Can nutrient limitations explain low and declining white spruce growth near the Arctic treeline in the eastern Brooks Range, Alaska?

    Science.gov (United States)

    Ellison, S.; Sullivan, P. F.

    2014-12-01

    The position of the Arctic treeline is of critical importance for global carbon cycling and surface energy budgets. However, controls on tree growth at treeline remain uncertain. In the Alaskan Brooks Range, 20th century warming has caused varying growth responses among treeline trees, with trees in the west responding positively, while trees in the east have responded negatively. The prevailing explanation of this trend ascribes the negative growth response to warming-induced drought stress in the eastern Brooks Range. However, recent measurements of carbon isotope discrimination in tree rings, xylem sap flow and needle gas exchange suggest that drought stress cannot explain these regional growth declines. Additionally, evidence from the western Brooks Range suggests that nutrient availability, rather than drought stress, may be the proximate control on tree growth. In this study, we investigated the hypothesis that low and declining growth of eastern Brooks Range trees is due to low and declining soil nutrient availability, which may continue to decrease with climate change as soils become drier and microbial activity declines. We compared microclimate, tree performance, and a wide range of proxies for soil nutrient availability in four watersheds along a west-east transect in the Brooks Range during the growing seasons of 2013 and 2014. We hypothesized that soil nutrient availability would track closely with the strong west-east precipitation gradient, with higher rainfall and greater soil nutrient availability in the western Brooks Range. We expected to find that soil water contents in the west are near optimum for nitrogen mineralization, while those in the east are below optimum. Needle nitrogen concentration, net photosynthesis, branch extension growth, and growth in the main stem are expected to decline with the hypothesized decrease in soil nutrient availability. The results of our study will elucidate the current controls on growth of trees near the

  5. Seasonal variation in diel behaviour and habitat use by age 1+ steelhead (Oncorhynchus mykiss) in Coast and Cascade Range streams in Oregon, U.S.A

    Science.gov (United States)

    Gordon H. Reeves; Jon B. Grunbaum; Dirk W. Lang

    2009-01-01

    The seasonal diel behaviour of age 1+ steelhead from Coast and Cascade Range streams in Oregon was examined in the field and in laboratory streams. During the summer, fish from both areas were active during the day in natural streams: they held position in the water column in moderate velocities and depths. At night, fish were in slower water, closer to the bottom...

  6. Remote sensing of atmospheric particulates: Technological innovation and physical limitations in applications to short-range weather prediction

    Science.gov (United States)

    Curran, R. J.; Kropfil, R.; Hallett, J.

    1984-01-01

    Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.

  7. Microhabitat features influencing habitat use by Florida black bears

    Directory of Open Access Journals (Sweden)

    Dana L. Karelus

    2018-01-01

    Full Text Available Understanding fine-scale habitat needs of species and the factors influencing heterogeneous use of habitat within home range would help identify limiting resources and inform habitat management practices. This information is especially important for large mammals living in fragmented habitats where resources may be scarcer and more patchily distributed than in contiguous habitats. Using bihourly Global Position System (GPS location data collected from 10 individuals during 2011–2014, we investigated microhabitat features of areas within home ranges that received high vs. low intensity of use by Florida black bears (Ursus americanus floridanus in north-central, Florida. We identified areas receiving high and low levels of use by bears based on their utilization distributions estimated with the dynamic Brownian bridge movement model, and performed vegetation sampling at bear locations within high- and low-use areas. Using univariate analyses and generalized linear mixed models, we found that (1 canopy cover, visual obstruction, and hardwood density were important in defining high-use sites; (2 the probability of high use was positively associated with principal components that represented habitat closer to creeks and with high canopy and shrub cover and higher hardwood densities, likely characteristic of forested wetlands; and (3 the probability of high use was, to a lesser extent, associated with principal components that represented habitat with high canopy cover, high pine density, and low visual obstruction and hardwood density; likely representing sand pine and pine plantations. Our results indicate that the high bear-use sites were in forested wetlands, where cover and food resources for bears are likely to occur in higher abundance. Habitat management plans whereby bears are a focal species should aim to increase the availability and quality of forested wetlands. Keywords: Habitat selection, Heterogeneous habitat use, Forest management

  8. Genetic diversity of a clonal angiosperm near its range limit: The case of Cymodocea nodosa at the Canary Islands

    OpenAIRE

    Alberto, Filipe; Arnaud-Haond, Sophie; Duarte, Carlos M.; Serrao, Ester Álvares

    2006-01-01

    The seagrass Cymodocea nodosa forms a unique community in the Canary Islands, where it is classified as an endangered species. Biogeographic theory predicts that clonal species on islands near their distributional limits might show lower proportions of sexual (versus clonal) reproduction, lower genetic diversity, and higher differentiation. We addressed these hypotheses by comparing the genetic structure of C. nodosa from 10 meadows in the 4 main Canary Islands with 2 Iberian sites (Atlantic ...

  9. High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors †

    Science.gov (United States)

    Mattioli Della Rocca, Francescopaolo

    2018-01-01

    This paper examines methods to best exploit the High Dynamic Range (HDR) of the single photon avalanche diode (SPAD) in a high fill-factor HDR photon counting pixel that is scalable to megapixel arrays. The proposed method combines multi-exposure HDR with temporal oversampling in-pixel. We present a silicon demonstration IC with 96 × 40 array of 8.25 µm pitch 66% fill-factor SPAD-based pixels achieving >100 dB dynamic range with 3 back-to-back exposures (short, mid, long). Each pixel sums 15 bit-planes or binary field images internally to constitute one frame providing 3.75× data compression, hence the 1k frames per second (FPS) output off-chip represents 45,000 individual field images per second on chip. Two future projections of this work are described: scaling SPAD-based image sensors to HDR 1 MPixel formats and shrinking the pixel pitch to 1–3 µm. PMID:29641479

  10. Home range and travels

    Science.gov (United States)

    Stickel, L.F.; King, John A.

    1968-01-01

    . Peromyscus generally used and maintained several or many different home sites and refuges in various parts of their home ranges, and frequently shifted about so that their principal activities centered on different sets of holes at different times. Once established, many Peromyscus remained in the same general area for a long time, perhaps for the duration of their lives. Extent of their travels in different directions and intensity of use of different portions of their home ranges varied within a general area in response to habitat changes, loss of neighbors, or other factors. Various authors have obtained both direct and indirect evidence of territoriality, in some degree, among certain species of Peromyscus. Young mice dispersed from their birth sites to establish home ranges of their own. Adults also sometimes left their home areas; some re-established elsewhere; others returned after exploratory travels. Most populations contained a certain proportion of transients; these may have been wanderers or individuals exploring out from established home ranges or seeking new ones. When areas were depopulated by removal trapping, other Peromyscus invaded. Invasion rates generally followed seasonal trends of reproduction and population density. Peromyscus removed from their home areas and released elsewhere returned home from various distances, but fewer returned from greater distances than from nearby; speed of return increased with successive trials. The consensus from present evidence is that ho-ming is made possible by a combination of random wandering and familiarity with a larger area than the day-to-day range. Records of juvenile wanderings during the dispersal phase and of adult explorations very nearly encompassed the distances over which any substantial amount of successful homing occurred. Methods of measuring sizes of home ranges and the limitations of these measurements were discussed in brief synopsis. It was co

  11. Habitat specialization through germination cueing

    DEFF Research Database (Denmark)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen; Bruun, Hans Henrik

    2013-01-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently...

  12. Climatic Sensitivity of a Mixed Forest Association of White Spruce and Trembling Aspen at Their Southern Range Limit

    Directory of Open Access Journals (Sweden)

    Sophan Chhin

    2016-10-01

    Full Text Available Climatic sensitivity of white spruce (Picea glauca (Moench Voss was examined growing in association with trembling aspen (Populus tremuloides Michx. at their southern limit of distribution in a transitional ecotone between the southern boreal forest and northern prairie region. The study was carried out in the Spruce Woods Provincial Park (SWPP located in southwestern Manitoba, Canada. The dry regional climate restricted trembling aspen growth during the growing season via moisture deficiency and temperature induced drought stress. Warm, mild winters also negatively affected radial growth of trembling aspen. Growth of white spruce was moderated by conditions within the aspen stands as radial growth patterns showed low variability from year to year, a low common growth signal, and a stronger response to temperature than to precipitation. Nonetheless, the dry regional climate still restricted growth of white spruce during the growing season via temperature induced drought stress. The findings of the study for white spruce support the stress gradient hypothesis in which facilitative interactions between tree species are expected under harsher environmental conditions.

  13. Thermal tolerance and preference of exploited turbinid snails near their range limit in a global warming hotspot.

    Science.gov (United States)

    Lah, Roslizawati Ab; Benkendorff, Kirsten; Bucher, Daniel

    2017-02-01

    Predicted global climate change has prompted numerous studies of thermal tolerances of marine species. The upper thermal tolerance is unknown for most marine species, but will determine their vulnerability to ocean warming. Gastropods in the family Turbinidae are widely harvested for human consumption. To investigate the responses of turbinid snails to future conditions we determined critical thermal maxima (CTMax) and preferred temperatures of Turbo militaris and Lunella undulata from the tropical-temperate overlap region of northern New South Wales, on the Australian east coast. CTMax were determined at two warming rates: 1°C/30min and 1°C/12h. The number of snails that lost attachment to the tank wall was recorded at each temperature increment. At the faster rate, T. militaris had a significantly higher CTMax (34.0°C) than L. undulata (32.2°C). At the slower rate the mean of both species was lower and there was no significant difference between them (29.4°C for T. militaris and 29.6°C for L. undulata). This is consistent with differences in thermal inertia possibly allowing animals to tolerate short periods at higher temperatures than is possible during longer exposure times, but other mechanisms are not discounted. The thermoregulatory behaviour of the turban snails was determined in a horizontal thermal gradient. Both species actively sought out particular temperatures along the gradient, suggesting that behavioural responses may be important in ameliorating short-term temperature changes. The preferred temperatures of both species were higher at night (24.0°C and 26.0°C) than during the day (22.0°C and 23.9°C). As the snails approached their preferred temperature, net hourly displacement decreased. Preferred temperatures were within the average seasonal seawater temperature range in this region. However, with future predicted water temperature trends, the species could experience increased periods of thermal stress, possibly exceeding CTMax and

  14. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  15. Habitat preference of Roan Antelope (Hippotragus equinus ...

    African Journals Online (AJOL)

    Key words: Habitat Preference, Roan Antelope, Seasons. INTRODUCTION. Habitat quality and quantity have been identified as the primary limiting factors that influence animal population dynamics. (Jansen et al., 2001). Habitat influences the presence, abundance, distribution, movement and behavior of game animals.

  16. 3.10. Habitat restoration and creation

    OpenAIRE

    2016-01-01

    1.12.1 Terrestrial habitat Based on the collated evidence, what is the current assessment of the effectiveness of interventions for terrestrial habitat restoration and creation? Beneficial ● Replant vegetation Likely to be beneficial ● Clear vegetation● Create artificial hibernacula or aestivation sites● Create refuges● Restore habitat connectivity Unknown effectiveness (limited evidence) ● Change mowing regime No evidence found (no assessment) ● Create habitat connectivity Beneficial Repla...

  17. Some fixed point theorems for weakly compatible mappings in Non-Archimedean Menger probabilistic metric spaces via common limit range property

    Directory of Open Access Journals (Sweden)

    Sunny Chauhan

    2013-11-01

    Full Text Available In this paper, we utilize the notion of common limit range property in Non-Archimedean Menger PM-spaces and prove some fixed point theorems for two pairs of weakly compatible mappings. Some illustrative examples are furnished to support our results. As an application to our main result, we present a common fixed point theorem for four finite families of self mappings. Our results improve and extend several known results existing in the literature.

  18. Our use, misuse, and abandonment of a concept: Whither habitat?

    Science.gov (United States)

    Kirk, David Anthony; Park, Allysia C; Smith, Adam C; Howes, Briar J; Prouse, Brigid K; Kyssa, Naschelly G; Fairhurst, Elizabeth N; Prior, Kent A

    2018-04-01

    The foundational concept of habitat lies at the very root of the entire science of ecology, but inaccurate use of the term compromises scientific rigor and communication among scientists and nonscientists. In 1997, Hall, Krausman & Morrison showed that 'habitat' was used correctly in only 55% of articles. We ask whether use of the term has been more accurate since their plea for standardization and whether use varies across the broader range of journals and taxa in the contemporary literature (1998-2012). We searched contemporary literature for 'habitat' and habitat-related terms, ranking usage as either correct or incorrect, following a simplified version of Hall et al.'s definitions. We used generalized linear models to compare use of the term in contemporary literature with the papers reviewed by Hall et al. and to test the effects of taxa, journal impact in the contemporary articles and effects due to authors that cited Hall et al. Use of the term 'habitat' has not improved; it was still only used correctly about 55% of the time in the contemporary data. Proportionately more correct uses occurred in articles that focused on animals compared to ones that included plants, and papers that cited Hall et al. did use the term correctly more often. However, journal impact had no effect. Some habitat terms are more likely to be misused than others, notably 'habitat type', usually used to refer to vegetation type, and 'suitable habitat' or 'unsuitable habitat', which are either redundant or nonsensical by definition. Inaccurate and inconsistent use of the term can lead to (1) misinterpretation of scientific findings; (2) inefficient use of conservation resources; (3) ineffective identification and prioritization of protected areas; (4) limited comparability among studies; and (5) miscommunication of science-based findings. Correct usage would improve communication with scientists and nonscientists, thereby benefiting conservation efforts, and ecology as a science.

  19. Least Limiting Water Range and Load Bearing Capacity of Soil under Types of Tractor-Trailers for Mechanical Harvesting of Green Sugarcane

    Directory of Open Access Journals (Sweden)

    Antonio Higino Frederico Pereira

    2015-12-01

    Full Text Available ABSTRACT The expansion of the sugarcane industry in Brazil has intensified the mechanization of agriculture and caused effects on the soil physical quality. The purpose of this study was to evaluate the limiting water range and soil bearing capacity of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox under the influence of different tractor-trailers used in mechanical sugarcane harvesting. The experiment was arranged in a randomized block design with five replications. The treatments consisted of green sugarcane harvesting with: harvester without trailer (T1; harvester with two trailers with a capacity of 10 Mg each (T2; harvester with trailer with a capacity of 20 Mg (T3 and harvester and truck with trailer with a capacity of 20 Mg (10 Mg per compartment (T4. The least limiting water range and soil bearing capacity were evaluated. The transport equipment to remove the harvested sugarcane from the field (trailer at harvest decreased the least limiting water range, reducing the structural soil quality. The truck trailer caused the greatest impact on the soil physical properties studied. The soil load bearing capacity was unaffected by the treatments, since the pressure of the harvester (T1 exceeded the pre-consolidation pressure of the soil.

  20. Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes

    Directory of Open Access Journals (Sweden)

    Christidis Les

    2008-07-01

    Full Text Available Abstract Background Little is known about the role ecological shifts play in the evolution of Neotropical radiations that have colonized a variety of environments. We here examine habitat shifts in the evolutionary history of Elaenia flycatchers, a Neotropical bird lineage that lives in a range of forest and open habitats. We evaluate phylogenetic relationships within the genus based on mitochondrial and nuclear DNA sequence data, and then employ parsimony-based and Bayesian methods to reconstruct preferences for a number of habitat types and migratory behaviour throughout the evolutionary history of the genus. Using a molecular clock approach, we date the most important habitat shifts. Results Our analyses resolve phylogenetic relationships among Elaenia species and confirm several species associations predicted by morphology while furnishing support for other taxon placements that are in conflict with traditional classification, such as the elevation of various Elaenia taxa to species level. While savannah specialism is restricted to one basal clade within the genus, montane forest was invaded from open habitat only on a limited number of occasions. Riparian growth may have been favoured early on in the evolution of the main Elaenia clade and subsequently been deserted on several occasions. Austral long-distance migratory behaviour evolved on several occasions. Conclusion Ancestral reconstructions of habitat preferences reveal pronounced differences not only in the timing of the emergence of certain habitat preferences, but also in the frequency of habitat shifts. The early origin of savannah specialism in Elaenia highlights the importance of this habitat in Neotropical Pliocene and late Miocene biogeography. While forest in old mountain ranges such as the Tepuis and the Brazilian Shield was colonized early on, the most important colonization event of montane forest was in conjunction with Pliocene Andean uplift. Riparian habitats may have

  1. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    Science.gov (United States)

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  2. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    Science.gov (United States)

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  3. Prevalence of Panulirus argus Virus 1 (PaV1) and habitation patterns of healthy and diseased Caribbean spiny lobsters in shelter-limited habitats.

    Science.gov (United States)

    Lozano-Alvarez, Enrique; Briones-Fourzán, Patricia; Ramírez-Estévez, Aurora; Placencia-Sánchez, David; Huchin-Mian, Juan Pablo; Rodríguez-Canul, Rossana

    2008-07-07

    Caribbean spiny lobsters Panulirus argus are socially gregarious, preferring shelters harboring conspecifics over empty shelters. In laboratory trials, however, healthy lobsters strongly avoided shelters harboring lobsters infected with the highly pathogenic Panulirus argus Virus 1 (PaV1). Because PaV1 is transmitted by contact, this behavior may thwart its spread in wild lobsters. In a field experiment conducted from 1998 to 2002 in a shelter-poor reef lagoon (Puerto Morelos, Mexico), densities of juvenile P. argus increased significantly on sites enhanced with artificial shelters (casitas) but not on control sites. Because PaV1 emerged in this location during 2000, we reexamined these data to assess whether casitas could potentially increase transmission of PaV1. In 2001, PaV1 prevalence was 2.5% and the cohabitation level (percentage of healthy lobsters cohabiting with diseased lobsters) was similar between natural shelters (3.5%) and casitas (2.4 %). The relative lobster densities in casita sites and control sites did not change significantly before (1998-1999) or after (2001-2002) the disease emergence. In late 2006, data from casita sites showed a significant increase in prevalence (10.9%) and cohabitation level (29.4%), but no significant changes in lobster density. In May 2006, casitas were deployed on shelter-poor sites within Chinchorro Bank, 260 km south of Puerto Morelos. In late 2006, prevalence and cohabitation level were 7.4 and 21.7%, respectively. Our results are inconclusive as to whether or not casitas increase PaV1 transmission, but suggest that across shelter-poor habitats, lobsters make a trade-off between avoiding diseased conspecifics and avoiding predation risk.

  4. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I.; Sasai, Keisuke; Veld, Aart A. van't; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D_2 − D_9_8, where D_2 and D_9_8 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to 98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and

  5. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators.

    Directory of Open Access Journals (Sweden)

    Bradley A Strickland

    Full Text Available Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17 on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their

  6. Scale-dependent habitat selection and size-based dominance in adult male American alligators

    Science.gov (United States)

    Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  7. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim [Department of Electro-Optical Engineering and TheIlse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602 (Singapore)

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark line is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.

  8. Prioritizing tiger conservation through landscape genetics and habitat linkages.

    Science.gov (United States)

    Yumnam, Bibek; Jhala, Yadvendradev V; Qureshi, Qamar; Maldonado, Jesus E; Gopal, Rajesh; Saini, Swati; Srinivas, Y; Fleischer, Robert C

    2014-01-01

    Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2) of forest habitat was found to be only 21,290 km(2). After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (FST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status

  9. Prioritizing tiger conservation through landscape genetics and habitat linkages.

    Directory of Open Access Journals (Sweden)

    Bibek Yumnam

    Full Text Available Even with global support for tiger (Panthera tigris conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2 of forest habitat was found to be only 21,290 km(2. After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (FST between populations were better explained by modeled linkage costs (r>0.5, p<0.05 compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should

  10. Determining effects of an all weather logging road on winter woodland caribou habitat use in south-eastern Manitoba

    Directory of Open Access Journals (Sweden)

    Doug W. Schindler

    2007-04-01

    Full Text Available The Owl Lake boreal woodland caribou population is the most southerly population in Manitoba. It is provincially ranked as a High Conservation Concern Population. Forestry operations exist in the area and there are plans for further forest harvest and renewal. The Happy Lake logging road is the only main access through the Owl Lake winter range. This logging road is currently closed to the public and access is limited to forestry operations during specific times of the year. An integrated forestry/caribou management strategy for the area provides for the maintenance of minimum areas of functional habitat. Habitat quality along the road was compared to habitat quality in the winter core use areas, within the winter range and outside the winter range. To evaluate the extent of functional habitat near the road, we conducted animal location and movement analysis using GPS data collected from January 2002 to March 2006. Habitat quality in the winter range, core use areas and along the road were assessed and found to be similar. Analysis of caribou locations and movement illustrate less use of high quality habitat adjacent to the Happy Lake Road. Loss of functional habitat is suggested to occur within 1 kilometre of the road. This potential loss of functional habitat should be incorporated into integrated forestry and caribou conservation strategies. Road management is recommended to minimize the potential sensory disturbance and associated impacts of all weather access on boreal woodland caribou.

  11. Influence of northern limit range on genetic diversity and structure in a widespread North American tree, sugar maple (Acer saccharum Marshall).

    Science.gov (United States)

    Graignic, Noémie; Tremblay, Francine; Bergeron, Yves

    2018-03-01

    Due to climate change, the ranges of many North American tree species are expected to shift northward. Sugar maple ( Acer saccharum Marshall) reaches its northern continuous distributional limit in northeastern North America at the transition between boreal mixed-wood and temperate deciduous forests. We hypothesized that marginal fragmented northern populations from the boreal mixed wood would have a distinct pattern of genetic structure and diversity. We analyzed variation at 18 microsatellite loci from 23 populations distributed along three latitudinal transects (west, central, and east) that encompass the continuous-discontinuous species range. Each transect was divided into two zones, continuous (temperate deciduous) and discontinuous (boreal mixed wood), based on sugar maple stand abundance. Respective positive and negative relationships were found between the distance of each population to the northern limit (D_north), and allelic richness ( A R ) and population differentiation ( F ST ). These relations were tested for each transect separately; the pattern (discontinuous-continuous) remained significant only for the western transect. structure analysis revealed the presence of four clusters. The most northern populations of each transect were assigned to a distinct group. Asymmetrical gene flow occurred from the southern into the four northernmost populations. Southern populations in Québec may have originated from two different postglacial migration routes. No evidence was found to validate the hypothesis that northern populations were remnants of a larger population that had migrated further north of the species range after the retreat of the ice sheet. The northernmost sugar maple populations possibly originated from long-distance dispersal.

  12. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tatsuya [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Widder, Joachim; Dijk, Lisanne V. van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Takegawa, Hideki [Department of Radiation Oncology, Kansai Medical University Hirakata Hospital, Osaka (Japan); Koizumi, Masahiko; Takashina, Masaaki [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Saito, Anneyuko I. [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Korevaar, Erik W., E-mail: e.w.korevaar@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-11-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range

  13. The Habitat Connection.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  14. Movements and habitat utilization of nembwe, Serranochromis ...

    African Journals Online (AJOL)

    distance migrations onto the floodplains. It is concluded that although staying within relatively small home ranges, nembwe appears as a species with a variable and flexible habitat utilization. Keywords: fish, radio-tagging, telemetry, home range ...

  15. A revision of distribution and the ecological description of Orobanche picridis (Orobanchaceae at the NE limit of its geographical range from Poland and Ukraine

    Directory of Open Access Journals (Sweden)

    Renata Piwowarczyk

    2012-12-01

    Full Text Available The paper presents the current distribution of Orobanche picridis in Poland and Ukraine, within the Polish borders in the interwar period, based on a critical revision of herbarium and literature data as well as the results of my field studies. The largest number of its localities is in S and SE Poland in the Wyżyna Śląsko-Krakowska, Wyżyna Małopolska, Wyżyna Lubelska uplands, Middle Roztocze, Small Polesie, the Pogórze Przemyskie foreland and in the former Tarnopol province (W Ukraine. These are the north-easternmost sites known for the species and extend its limit range. A map of its distribution in Poland and Ukraine is included. The taxonomy, biology, and ecology of O. picridis are also discussed.

  16. Hellsgate Winter Range Mitigation Project; Long-term Management Plan, Project Report 1993, Final Draft.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.

    1994-01-01

    A study was conducted on the Hellsgate Winter Range Mitigation Project area, a 4,943 acre ranch purchased for mitigating some habitat losses associated with the original construction of Grand Coulee Dam and innundation of habitat by Lake Roosevelt. A Habitat Evaluation Procedure (HEP) study was used to determine habitat quality and quantity baseline data and future projections. Target species used in the study were sharp-tailed grouse (Tympanuchus phasianellus), mule deer (Odocoileus hemoinus), mink (Mustela vison), spotted sandpiper (Actiius colchicus), bobcat (Felis reufs), blue grouse (Dendragapus obscurus), and mourning dove (Zenaida macroura). From field data collected, limiting life values or HSI's (Habitat Suitability Index's) for each indicator species was determined for existing habitats on project lands. From this data a long term management plan was developed. This report is designed to provide guidance for the management of project lands in relation to the habitat cover types discussed and the indicator species used to evaluate these cover types. In addition, the plan discusses management actions, habitat enhancements, and tools that will be used to enhance, protect and restore habitats to desired conditions. Through planned management actions biodiversity and vegetative structure can be optimized over time to reduce or eliminate, limiting HSI values for selected wildlife on project lands.

  17. What Limits the Distribution of Liriomyza huidobrensis and Its Congener Liriomyza sativae in Their Native Niche: When Temperature and Competition Affect Species' Distribution Range in Guatemala.

    Science.gov (United States)

    Rodríguez-Castañeda, G; MacVean, C; Cardona, C; Hof, A R

    2017-07-01

    Factors limiting distribution range for most species are generally unknown regardless of whether they are native or invasive. We studied factors that could enable or restrict the distribution of two cosmopolitan invasive leafminer fly species, Liriomyza huidobrensis (Blanchard) and Liriomyza sativae (Blanchard) in their native niche. In order to test which ecological and environmental factors affect leafminer distribution we conducted thermal tolerance assays, sampled along elevation gradients and modeled species distribution. Findings from the field and rearing chambers showed a physiological restriction due to high temperatures for L. huidobrensis at 28-29 °C, above which adult emergence is compromised. We also found that maximum temperatures below 22 °C, typical of tropical highlands, favored L. huidobrensis. L. sativae was found across a wider temperature range (i.e., from 21 to 36 °C) in Guatemala. Our finding of a physiological threshold in temperature for L. huidobrensis may enable us to predict its invasive risk when combined with the environmental conditions at horticultural ports of entry and the global agricultural landscape. Further, it strengthens our predictions on shifts in distribution of the leafminer fly under future climate. We also found a temperature mediated competitive exclusion interaction between the two herbivore species, where L. sativae occurred at temperatures < 22 °C only in the absence of L. huidobrensis. We show that parasitoids had a negative effect on the leafminer flies, which varied with host plant. Finally, we show the importance of taking a multiaspect approach when investigating what limits distribution and invasiveness of a species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  18. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits

    International Nuclear Information System (INIS)

    Zhou, Jian; Li, Xi; Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan; Zhang, Chaocan

    2015-01-01

    A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu 3 (BTC) 2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L −1 (R HQ  = 0.9999) for HQ and 0.1–1150 μmol L −1 (R CT  = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L −1 , respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results. - Highlights: • Cu-MOF-199/SWCNTs/GCE was facilely fabricated by the electrodeposition on SWCNTs/GCE. • An electrochemical sensor for detecting HQ and CT was constructed based on this modified electrode. • The proposed electrochemical sensor showed an extended linear range and lower detection limits. • The proposed electrochemical sensor had an excellent stability and reproducibility.

  19. Altered Knee and Ankle Kinematics During Squatting in Those With Limited Weight-Bearing–Lunge Ankle-Dorsiflexion Range of Motion

    Science.gov (United States)

    Dill, Karli E.; Begalle, Rebecca L.; Frank, Barnett S.; Zinder, Steven M.; Padua, Darin A.

    2014-01-01

    Context: Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. Objective: To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Main Outcome Measure(s): Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. Results: We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Conclusions: Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during

  20. Internal variability of fine-scale components of meteorological fields in extended-range limited-area model simulations with atmospheric and surface nudging

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei

    2015-09-01

    Internal variability (IV) in dynamical downscaling with limited-area models (LAMs) represents a source of error inherent to the downscaled fields, which originates from the sensitive dependence of the models to arbitrarily small modifications. If IV is large it may impose the need for probabilistic verification of the downscaled information. Atmospheric spectral nudging (ASN) can reduce IV in LAMs as it constrains the large-scale components of LAM fields in the interior of the computational domain and thus prevents any considerable penetration of sensitively dependent deviations into the range of large scales. Using initial condition ensembles, the present study quantifies the impact of ASN on IV in LAM simulations in the range of fine scales that are not controlled by spectral nudging. Four simulation configurations that all include strong ASN but differ in the nudging settings are considered. In the fifth configuration, grid nudging of land surface variables toward high-resolution surface analyses is applied. The results show that the IV at scales larger than 300 km can be suppressed by selecting an appropriate ASN setup. At scales between 300 and 30 km, however, in all configurations, the hourly near-surface temperature, humidity, and winds are only partly reproducible. Nudging the land surface variables is found to have the potential to significantly reduce IV, particularly for fine-scale temperature and humidity. On the other hand, hourly precipitation accumulations at these scales are generally irreproducible in all configurations, and probabilistic approach to downscaling is therefore recommended.

  1. Habitat and sex differences in physiological condition of breeding Southwestern Willow Flycatchers (Empidonax traillii extimus)

    Science.gov (United States)

    Owen, J.C.; Sogge, M.K.; Kern, M.D.

    2005-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus; here- after “flycatcher”) is a federally listed endangered species that breeds in densely vegetated riparian habitats dominated by native and exotic plants, including introduced monotypic saltcedar (Tamarix ramosissima). Some workers have theorized that saltcedar is unsuitable habitat for the flycatcher, primarily because it generally supports a smaller and less diverse invertebrate community (the flycatcher's food base) than native habitats (e.g. Salix spp.). However, differences in insect communities between native and saltcedar habitats are not proof that saltcedar habitats are inferior. The only way to evaluate whether the habitats differ in dietary or energetic quality is to document actual food limitation or its manifestations. Measurements of an individual's body condition and metabolic state can serve as indicators of environmental stressors, such as food limitation and environmental extremes. We captured 130 flycatchers breeding in native and saltcedar habitats in Arizona and New Mexico and measured 12 variables of physiological condition. These variables included body mass, fat level, body condition index, hematocrit, plasma triglycerides, plasma free fatty acids and glycerol, plasma glucose and beta-hydroxybutyrate, plasma uric acid, total leukocyte count, and heterophil-to-lymphocyte ratio. We found substantial sex-based differences in the condition of male and female flycatchers. Ten of the 12 measures of physiological condition differed significantly between the sexes. In all cases where male and female condition differed (except mass), the differences suggest that males were in poorer condition than females. We found few habitat-based differences in flycatcher condition. Only 3 of the 12 physiological condition indices differed significantly between habitats. Our data show that, at least in some parts of the flycatcher's range, there is no evidence that flycatchers breeding in

  2. Predicted deep-sea coral habitat suitability for the U.S. West coast.

    Directory of Open Access Journals (Sweden)

    John M Guinotte

    Full Text Available Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington. Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH and identify suitable habitat within U.S. National Marine Sanctuaries (NMS. Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.

  3. Habitat connectivity and ecosystem productivity: implications from a simple model.

    Science.gov (United States)

    Cloern, James E

    2007-01-01

    The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.

  4. Intervalo hídrico ótimo num nitossolo vermelho distroférrico irrigado Least limiting water range of an irrigated dystroferric red nitosol

    Directory of Open Access Journals (Sweden)

    Everton Blainski

    2009-04-01

    Full Text Available O manejo da irrigação tem-se baseado no controle do potencial da água no solo (Ψ como fator limitante do crescimento das plantas. Entretanto, outras variáveis podem influenciar a cultura mesmo que o Ψ não seja limitante. O Intervalo Hídrico Ótimo (IHO é um conceito de disponibilidade de água no solo que leva em consideração a porosidade de aeração e a resistência do solo à penetração em adição ao Ψ. O objetivo deste estudo foi quantificar o IHO num Nitossolo Vermelho distroférrico irrigado e utilizá-lo no estabelecimento de critérios para o manejo de água e do solo em áreas irrigadas. A resistência do solo à penetração foi a variável que limitou o IHO com maior frequência, diminuindo sua magnitude com o aumento da densidade do solo (Ds. Com o aumento da Ds, ocorreu redução na frequência com que θ manteve-se dentro dos limites do IHO. A Ds crítica (Dsc foi de 1,40 Mg m-3, indicando severa degradação física do solo para Ds > Dsc. Para Ds 2,0 MPa; para 1,28 -800 hPa visando ao controle da RP. Para áreas em que Ds > Dsc, medidas que visem a redução da Ds poderiam ser tomadas em função da severa degradação física do solo.The establishment of irrigation management has been based on the soil water potential (Ψ as a limiting factor for plant growth. However, other variables can affect crop growth even when Ψ is not limiting. The least limiting water range (LLWR is a concept of available water that take account the influence of aeration and soil resistance to penetration (SR in addition to Ψ. The objective of this study was to quantify the LLWR in an irrigated Dystroferric Red Nitosol and to use it to determine the soil and water management for irrigated areas. Soil penetration resistance limited LLRW most often, reducing its magnitude with the increase of soil bulk density (Bd. Therefore, the higher Bd, the less often θ was inside the limits of LLWR. The critical Bd (Bdc was 1.40 Mg m-3, indicating

  5. Quantity and configuration of available elephant habitat and related conservation concerns in the Lower Kinabatangan floodplain of Sabah, Malaysia.

    Directory of Open Access Journals (Sweden)

    Jason G Estes

    Full Text Available The approximately 300 (298, 95% CI: 152-581 elephants in the Lower Kinabatangan Managed Elephant Range in Sabah, Malaysian Borneo are a priority sub-population for Borneo's total elephant population (2,040, 95% CI: 1,184-3,652. Habitat loss and human-elephant conflict are recognized as the major threats to Bornean elephant survival. In the Kinabatangan region, human settlements and agricultural development for oil palm drive an intense fragmentation process. Electric fences guard against elephant crop raiding but also remove access to suitable habitat patches. We conducted expert opinion-based least-cost analyses, to model the quantity and configuration of available suitable elephant habitat in the Lower Kinabatangan, and called this the Elephant Habitat Linkage. At 184 km(2, our estimate of available habitat is 54% smaller than the estimate used in the State's Elephant Action Plan for the Lower Kinabatangan Managed Elephant Range (400 km(2. During high flood levels, available habitat is reduced to only 61 km(2. As a consequence, short-term elephant densities are likely to surge during floods to 4.83 km(-2 (95% CI: 2.46-9.41, among the highest estimated for forest-dwelling elephants in Asia or Africa. During severe floods, the configuration of remaining elephant habitat and the surge in elephant density may put two villages at elevated risk of human-elephant conflict. Lower Kinabatangan elephants are vulnerable to the natural disturbance regime of the river due to their limited dispersal options. Twenty bottlenecks less than one km wide throughout the Elephant Habitat Linkage, have the potential to further reduce access to suitable habitat. Rebuilding landscape connectivity to isolated habitat patches and to the North Kinabatangan Managed Elephant Range (less than 35 km inland are conservation priorities that would increase the quantity of available habitat, and may work as a mechanism to allow population release, lower elephant density, reduce

  6. Habitat classification modelling with incomplete data: Pushing the habitat envelope

    Science.gov (United States)

    Phoebe L. Zarnetske; Thomas C. Edwards; Gretchen G. Moisen

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical...

  7. Anthropogenic areas as incidental substitutes for original habitat.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  8. California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape

    Science.gov (United States)

    Eyes, Stephanie; Roberts, Susan L.; Johnson, Matthew D.

    2017-01-01

    Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.

  9. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  10. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, James E. [North Carolina State University

    2014-04-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technical resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.

  11. Habitat Use and Selection by Giant Pandas

    Science.gov (United States)

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking. PMID:27627805

  12. Habitat Use and Selection by Giant Pandas.

    Directory of Open Access Journals (Sweden)

    Vanessa Hull

    Full Text Available Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca. We constructed spatial autoregressive resource utilization functions (RUF to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking.

  13. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    Science.gov (United States)

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  14. Freshwater Ecosystems and Resilience of Pacific Salmon: Habitat Management Based on Natural Variability

    Directory of Open Access Journals (Sweden)

    Peter A. Bisson

    2009-06-01

    Full Text Available In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability.

  15. Coastal Critical Habitat Designations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Endangered Species Act (ESA) requires the Federal government to designate critical habitat, areas of habitat essential to the species' conservation, for ESA...

  16. California Condor Critical Habitat

    Data.gov (United States)

    California Natural Resource Agency — These Data identify (in general) the areas where critical habitat for the California Condor occur. Critical habitat for the species consists of the following 10...

  17. Indicators: Physical Habitat Complexity

    Science.gov (United States)

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  18. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    Science.gov (United States)

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  19. Intervalo hídrico óptimo en suelos argiudoles plantados con Eucalyptus dunnii Maiden Least limiting water range in argiudoll soils under eucalyptus dunnii maiden

    Directory of Open Access Journals (Sweden)

    Francisco Damiano

    2011-07-01

    Full Text Available El Intervalo Hídrico Óptimo (IHO es el rango de agua del suelo dentro del cual el crecimiento de la planta está menos limitado por el potencial de agua, la aireación y la resistencia del suelo a la penetración de raíces. El IHO es a menudo determinado en cultivos, pero su aplicación en estudios de plantaciones forestales son escasos. Los objetivos fueron: a estimar el IHO del suelo en plantaciones de Eucalyptus dunnii joven y adulto usando funciones de edafo-transferencia; b relacionar funcionalmente la frecuencia de humedad observada localizada fuera del IHO (p fuera con el IHO y determinar si la relación es influenciada por el tipo de suelo y las condiciones meteorológicas del período de crecimiento. Se estimó el IHO en suelos Argiudoles Típico y Abrúptico, usando funciones de edafo-transferencia (FT de retención hídrica y resistencia del suelo. La frecuencia de humedad observada fuera del rango del IHO (p fuera fue evaluada estadísticamente usando el modelo PROC CATMOD. El IHO aumentó de 0,009 cm³ cm-³ (horizonte Bt arcillo limoso a 0,207 cm³ cm-3 (horizonte C franco limoso. El modelo de regresión logística muestra que pfuera se relacionó negativamente con el IHO (R² = 0,83***. La pendiente del modelo (b1 = -30,5475 no varió por condiciones climáticas pero la ordenada al origen resultó influenciada por este parámetro (b o seco = 5,0083; b o húmedo = 3,5207. El modelo fundamental-empírico sostuvo al IHO como un indicador de calidad física del suelo apto para evaluar factores climáticos que inciden sobre el consumo de agua en eucaliptos.The Least Limiting Water Range (LLWR integrates water potential, aeration and mechanical resistance conditions that can be limiting to plant growth. The LLWR was often determined in field crops, but studies performed under tree plantations are scarce. In this study, soil LLWR was determined in young and mature Eucalyptus dunnii plantations using pedo-transfer functions. Frequency

  20. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    Science.gov (United States)

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  1. Willow Flycatcher Range - CWHR [ds594

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  2. Great Blue Heron Range - CWHR [ds609

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  3. Western Pond Turtle Range - CWHR [ds598

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  4. Caspian Tern Range - CWHR [ds604

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  5. Bank Swallow Range - CWHR [ds606

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  6. Common Loon Range - CWHR [ds603

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  7. Yellow Warbler Range - CWHR [ds607

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  8. Black Swift Range - CWHR [ds605

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  9. Black Rail Range - CWHR [ds595

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  10. Bald Eagle Range - CWHR [ds600

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  11. California Tiger Salamander Range - CWHR [ds588

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  12. Snowy Egret Range - CWHR [ds611

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  13. Giant Garter Snake Range - CWHR [ds599

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  14. Least Bittern Range - CWHR [ds608

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  15. Arroyo Toad Range - CWHR [ds612

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  16. Habitat diversity in the Northeastern Gulf of Mexico: Selected video clips from the Gulfstream Natural Gas Pipeline digital archive

    Science.gov (United States)

    Raabe, Ellen A.; D'Anjou, Robert; Pope, Domonique K.; Robbins, Lisa L.

    2011-01-01

    This project combines underwater video with maps and descriptions to illustrate diverse seafloor habitats from Tampa Bay, Florida, to Mobile Bay, Alabama. A swath of seafloor was surveyed with underwater video to 100 meters (m) water depth in 1999 and 2000 as part of the Gulfstream Natural Gas System Survey. The U.S. Geological Survey (USGS) in St. Petersburg, Florida, in cooperation with Eckerd College and the Florida Department of Environmental Protection (FDEP), produced an archive of analog-to-digital underwater movies. Representative clips of seafloor habitats were selected from hundreds of hours of underwater footage. The locations of video clips were mapped to show the distribution of habitat and habitat transitions. The numerous benthic habitats in the northeastern Gulf of Mexico play a vital role in the region's economy, providing essential resources for tourism, natural gas, recreational water sports (fishing, boating, scuba diving), materials, fresh food, energy, a source of sand for beach renourishment, and more. These submerged natural resources are important to the economy but are often invisible to the general public. This product provides a glimpse of the seafloor with sample underwater video, maps, and habitat descriptions. It was developed to depict the range and location of seafloor habitats in the region but is limited by depth and by the survey track. It should not be viewed as comprehensive, but rather as a point of departure for inquiries and appreciation of marine resources and seafloor habitats. Further information is provided in the Resources section.

  17. Multiscale habitat use and selection in cooperatively breeding Micronesian kingfishers

    Science.gov (United States)

    Kesler, D.C.; Haig, S.M.

    2007-01-01

    Information about the interaction between behavior and landscape resources is key to directing conservation management for endangered species. We studied multi-scale occurrence, habitat use, and selection in a cooperatively breeding population of Micronesian kingfishers (Todiramphus cinnamominus) on the island of Pohnpei, Federated States of Micronesia. At the landscape level, point-transect surveys resulted in kingfisher detection frequencies that were higher than those reported in 1994, although they remained 15-40% lower than 1983 indices. Integration of spatially explicit vegetation information with survey results indicated that kingfisher detections were positively associated with the amount of wet forest and grass-urban vegetative cover, and they were negatively associated with agricultural forest, secondary vegetation, and upland forest cover types. We used radiotelemetry and remote sensing to evaluate habitat use by individual kingfishers at the home-range scale. A comparison of habitats in Micronesian kingfisher home ranges with those in randomly placed polygons illustrated that birds used more forested areas than were randomly available in the immediate surrounding area. Further, members of cooperatively breeding groups included more forest in their home ranges than birds in pair-breeding territories, and forested portions of study areas appeared to be saturated with territories. Together, these results suggested that forest habitats were limited for Micronesian kingfishers. Thus, protecting and managing forests is important for the restoration of Micronesian kingfishers to the island of Guam (United States Territory), where they are currently extirpated, as well as to maintaining kingfisher populations on the islands of Pohnpei and Palau. Results further indicated that limited forest resources may restrict dispersal opportunities and, therefore, play a role in delayed dispersal and cooperative behaviors in Micronesian kingfishers.

  18. Comparison of detection limits in environmental analysis--is it possible? An approach on quality assurance in the lower working range by verification.

    Science.gov (United States)

    Geiss, S; Einax, J W

    2001-07-01

    Detection limit, reporting limit and limit of quantitation are analytical parameters which describe the power of analytical methods. These parameters are used for internal quality assurance and externally for competing, especially in the case of trace analysis in environmental compartments. The wide variety of possibilities for computing or obtaining these measures in literature and in legislative rules makes any comparison difficult. Additionally, a host of terms have been used within the analytical community to describe detection and quantitation capabilities. Without trying to create an order for the variety of terms, this paper is aimed at providing a practical proposal for answering the main questions for the analysts concerning quality measures above. These main questions and related parameters were explained and graphically demonstrated. Estimation and verification of these parameters are the two steps to get real measures. A rule for a practical verification is given in a table, where the analyst can read out what to measure, what to estimate and which criteria have to be fulfilled. In this manner verified parameters detection limit, reporting limit and limit of quantitation now are comparable and the analyst himself is responsible to the unambiguity and reliability of these measures.

  19. Cam Deformities and Limited Hip Range of Motion Are Associated With Early Osteoarthritic Changes in Adolescent Athletes: A Prospective Matched Cohort Study.

    Science.gov (United States)

    Wyles, Cody C; Norambuena, Germán A; Howe, Benjamin M; Larson, Dirk R; Levy, Bruce A; Yuan, Brandon J; Trousdale, Robert T; Sierra, Rafael J

    2017-11-01

    The natural history of femoroacetabular impingement (FAI) remains incompletely understood. In particular, there is limited documentation of joint damage in adolescent patients with limited range of motion (LROM) of the hip, which is commonly associated with FAI. To evaluate changes in magnetic resonance imaging (MRI), radiographs, and clinical examinations over 5 years in a group of athletes from a wide variety of sports with asymptomatic LROM of the hip compared with matched controls. Cohort study (prognosis); Level of evidence, 2. The authors screened 226 male and female athletes aged 12 to 18 years presenting for preparticipation sports physical examinations. Using a goniometer, we identified 13 participants with at least one hip having internal rotation hip flexed to 90°. Overall, 21 of 26 hips (81%) had internal rotation 10°. At the time of enrollment, all participants were asymptomatic and underwent a complete hip examination and radiographic imaging with radiographs (anteroposterior [AP] and von Rosen views) and non-arthrogram MRI. Participants returned at 5-year follow-up and underwent repeat hip examinations, imaging (AP and lateral radiographs and non-arthrogram MRI), and hip function questionnaires. MRI scans were classified as "normal" versus "abnormal" based on the presence of any of 13 scored chondral, labral, or osseous abnormalities. Comparisons between the LROM group and control group were performed using generalized linear models (either linear, logistic, or log-binomial regression as appropriate for the outcome) with generalized estimating equations to account for the within-participant correlation due to patients having both hips included. Relative risk (RR) estimates are reported with 95% CIs. At the time of study enrollment, 16 of 26 hips (62%) in the LROM group had abnormal MRI findings within the acetabular labrum or cartilage compared with 8 of 26 hips (31%) in the control group (RR, 2.0; 95% CI, 0.95-4.2; P = .067). The mean alpha angle

  20. Selecting habitat to survive: the impact of road density on survival in a large carnivore.

    Directory of Open Access Journals (Sweden)

    Mathieu Basille

    Full Text Available Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.

  1. Life stage and species identity affect whether habitat subsidies enhance or simply redistribute consumer biomass.

    Science.gov (United States)

    Keller, Danielle A; Gittman, Rachel K; Bouchillon, Rachel K; Fodrie, F Joel

    2017-10-01

    Quantifying the response of mobile consumers to changes in habitat availability is essential for determining the degree to which population-level productivity is habitat limited rather than regulated by other, potentially density-independent factors. Over landscape scales, this can be explored by monitoring changes in density and foraging as habitat availability varies. As habitat availability increases, densities may: (1) decrease (unit-area production decreases; weak habitat limitation); (2) remain stable (unit-area production remains stable; habitat limitation) or (3) increase (unit-area production increases; strong habitat limitation). We tested the response of mobile estuarine consumers over 5 months to changes in habitat availability in situ by comparing densities and feeding rates on artificial reefs that were or were not adjacent to neighbouring artificial reefs or nearby natural reefs. Using either constructed or natural reefs to manipulate habitat availability, we documented threefold density decreases among juvenile stone crabs as habitat increased (i.e. weak habitat imitation). However, for adult stone crabs, density remained stable across treatments, demonstrating that habitat limitation presents a bottleneck in this species' later life history. Oyster toadfish densities also did not change with increasing habitat availability (i.e. habitat limitation), but densities of other cryptic fishes decreased as habitat availability increased (i.e. weak limitation). Feeding and abundance data suggested that some mobile fishes experience habitat limitation, or, potentially in one case, strong limitation across our habitat manipulations. These findings of significant, community-level habitat limitation provide insight into how global declines in structurally complex estuarine habitats may have reduced the fishery production of coastal ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  2. Global patterns of fragmentation and connectivity of mammalian carnivore habitat.

    Science.gov (United States)

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; Rondinini, Carlo; Boitani, Luigi

    2011-09-27

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.

  3. Space Use and Habitat Selection by Resident and Transient Red Wolves (Canis rufus.

    Directory of Open Access Journals (Sweden)

    Joseph W Hinton

    Full Text Available Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans. Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009-2011, we used global positioning system (GPS radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that

  4. Space use and habitat selection by resident and transient red wolves (Canis rufus)

    Science.gov (United States)

    Hinton, Joseph W.; Proctor, Christine; Kelly, Marcella J.; van Manen, Frank T.; Vaughan, Michael R.; Chamberlain, Michael J.

    2016-01-01

    Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus) has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans). Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009–2011, we used global positioning system (GPS) radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that facilitates

  5. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    NARCIS (Netherlands)

    Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans

  6. Landscape biology of western white pine: implications for conservation of a widely-distributed five-needle pine at its southern range limit

    Science.gov (United States)

    Patricia Maloney; Andrew Eckert; Detlev Vogler; Camille Jensen; Annette Delfino Mix; David Neale

    2016-01-01

    Throughout much of the range of western white pine, Pinus monticola Dougl., timber harvesting, fire exclusion and the presence of Cronartium ribicola J. C. Fisch., the white pine blister rust (WPBR) pathogen, have led to negative population and genetic consequences. To address these interactions, we examined population dynamics...

  7. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.

    Science.gov (United States)

    Harborne, Alastair R; Mumby, Peter J; Micheli, Fiorenza; Perry, Christopher T; Dahlgren, Craig P; Holmes, Katherine E; Brumbaugh, Daniel R

    2006-01-01

    Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values. Habitat types are considered at the scale discriminated by remotely-sensed imagery and we envisage that functional values can be combined with habitat maps to provide spatially explicit information on processes across ecosystems. We provide examples of mapping the functional values of habitats for populations of three commercially important species. The resulting data layers were then used to generate seascape-scale assessments of "hot spots" of functional value that might be considered priorities for conservation. We also provide an example of how the literature reviewed here can be used to parameterise a habitat-specific model investigating reef resilience under different scenarios of herbivory. Finally, we use multidimensional scaling to provide a basic analysis of the

  8. The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity

    Science.gov (United States)

    Patrick D. Culbert; Volker C. Radeloff; Curtis H. Flather; Josef M. Kellndorfer; Chadwick D. Rittenhouse; Anna M. Pidgeon

    2013-01-01

    With limited resources for habitat conservation, the accurate identification of high-value avian habitat is crucial. Habitat structure affects avian biodiversity but is difficult to quantify over broad extents. Our goal was to identify which measures of vertical and horizontal habitat structure are most strongly related to patterns of avian biodiversity across the...

  9. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  10. Landscape Biology of Western White Pine: Implications for Conservation of a Widely-Distributed Five-Needle Pine at Its Southern Range Limit

    Directory of Open Access Journals (Sweden)

    Patricia E. Maloney

    2016-04-01

    Full Text Available Throughout much of the range of western white pine, Pinus monticola Dougl., timber harvesting, fire exclusion and the presence of Cronartium ribicola J. C. Fisch., the white pine blister rust (WPBR pathogen, have led to negative population and genetic consequences. To address these interactions, we examined population dynamics and genetic diversity in 10 populations of western white pine in upper montane forests of the Lake Tahoe Basin. We documented negative population trends for three of the 10 populations. These populations exhibited low estimated growth rates (λ, moderate to high incidences of WPBR and mountain pine beetle (MPB, and high levels of mortality. In contrast, seven populations appear to be stable (λ ≥ 1.0, with low to moderate disease and insect incidence, and evidence for genetic resistance to WPBR. Genetic diversity (HE for a set of 160 single nucleotide polymorphisms was in the range of 0.245–0.272 across populations, and population-specific estimates of FST ranged from 0.0062 to 0.0244. Allele frequency of the Cr2 gene, which confers complete resistance to C. ribicola in western white pine, was low, averaging 0.009 for all populations sampled. However, a low frequency of pollen receptors (i.e., susceptible maternal parents pollinated by a local resistant parent was found in nine of 10 populations. A moderate and negative relationship was found between the frequency of pollen receptors in a population and the incidence of WPBR (r2 = 0.32. In the context of an introduced pathogen, climate driven outbreaks of MPB, fire exclusion, and prolonged drought, conservation and management strategies are warranted for this species in the Lake Tahoe Basin and likely other locations in California. These strategies include gene conservation of western white pine, WPBR resistance screening, and forest restoration treatments.

  11. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  12. Scale dependency of American marten (Martes americana) habitat relations [Chapter 12

    Science.gov (United States)

    Andrew J. Shirk; Tzeidle N. Wasserman; Samuel A. Cushman; Martin G. Raphael

    2012-01-01

    Animals select habitat resources at multiple spatial scales; therefore, explicit attention to scale-dependency when modeling habitat relations is critical to understanding how organisms select habitat in complex landscapes. Models that evaluate habitat variables calculated at a single spatial scale (e.g., patch, home range) fail to account for the effects of...

  13. Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases

    Science.gov (United States)

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  14. Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.).

    Science.gov (United States)

    Bean, Daniel W; Dudley, Tom L; Keller, Julie C

    2007-02-01

    The leaf beetle Diorhabda elongata Brullé subspecies deserticola Chen, collected in northwestern China, has been released in the western United States to control tamarisk (Tamarix spp.). While beetle establishment and saltcedar defoliation have been noted at northern study sites, this species has not established at latitudes south of the 38th parallel. Critical daylength for diapause induction was measured in the laboratory and ranged between 14 h 50 min to 15 h 08 min, depending on temperature, and adults were shown to cease reproduction and enter diapause at daylengths of 14 h 30 min or less. Critical daylength in the field was measured at approximately 14 h 39 min and occurred 13 d before 50% of the population reached diapause. South of 36 degrees 20' N, the longest days of the year are shorter than 14 h 39 min, making the beetles univoltine in the southern United States. North of 36 degrees 20' N, a window of reproductive activity opens 13 d after the critical daylength is reached in the spring and closes 13 d after it is passed in the summer, allowing at least a partial second summer generation. It is predicted that south of the 38th parallel, premature diapause will increase mortality and disrupt synchrony between the life cycle of the beetle and host plant availability. This could hinder establishment and help explain the failure of this population south of the 38th parallel, providing a rationale for testing other populations of D. elongata in the southern range of Tamarix in North America.

  15. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Science.gov (United States)

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  16. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Lauren A Freeman

    Full Text Available Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  17. Wildlife Habitat Evaluation Handbook.

    Science.gov (United States)

    Neilson, Edward L., Jr.; Benson, Delwin E.

    The National 4-H Wildlife Invitational is a competitive event to teach youth about the fundamentals of wildlife management. Youth learn that management for wildlife means management of wildlife habitat and providing for the needs of wildlife. This handbook provides information about wildlife habitat management concepts in both urban and rural…

  18. Wildlife habitat considerations

    Science.gov (United States)

    Helen Y. Smith

    2000-01-01

    Fire, insects, disease, harvesting, and precommercial thinning all create mosaics on Northern Rocky Mountain landscapes. These mosaics are important for faunal habitat. Consequently, changes such as created openings or an increase in heavily stocked areas affect the water, cover, and food of forest habitats. The “no action” alternative in ecosystem management of low...

  19. Critical Habitat :: NOAA Fisheries

    Science.gov (United States)

    occupied by the species at the time of listing, if they contain physical or biological features essential essential for conservation. Critical Habitat Maps NOTE: The critical habitat maps provided here are for Data Leatherback Turtle (U.S. West Coast) » Biological Report » Economic Report 2012 77 FR 4170 Go to

  20. Mourning Dove nesting habitat and nest success in Central Missouri

    Science.gov (United States)

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  1. Does learning or instinct shape habitat selection?

    Directory of Open Access Journals (Sweden)

    Scott E Nielsen

    Full Text Available Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  2. Global habitat suitability for framework-forming cold-water corals.

    Directory of Open Access Journals (Sweden)

    Andrew J Davies

    Full Text Available Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2 global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts, which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine

  3. Casimir force, excess free energy and C-function in O(n) systems with long-range interactions in the n → ∞ limit

    International Nuclear Information System (INIS)

    Chamati, H.; Dantchev, D.M.

    2004-06-01

    We present exact results on the behavior of the thermodynamic Casimir force and the excess free energy and the C-function in the framework of the d-dimensional spherical model with a power law long-range interaction decaying at large distances r as r -d- σ, where σ c , as well as for T > Tc and T c . The universal finite-size scaling function governing the behavior of the force in the critical region is derived and its asymptotics are investigated. While in the critical and under -d -d-, critical region the force is of the order of L -d , for T > T c it decays as L -dσ , where L is the thickness of the film. We consider both the case of a finite system that has no phase transition of its own, when d - σ when one observes a dimensional crossover from d to a d - 1 dimensional critical behavior. The behavior of the force along the phase coexistence line for a magnetic field H = 0 and T c . is also derived. We have proven analytically that the excess free energy is always negative ad monotonically increasing function of T and H, while the C-function is always non-negative and monotonically decreasing function of T and H. For the Casimir force we have demonstrated that for any σ > it is everywhere negative, i.e. an attraction between the surfaces bounding the system is to be observed. At T = T c the force is an increasing function of T for σ > 1 and a decreasing one for σ c is always achieved at some H ≠ 0 . (author)

  4. The evolution of mapping habitat for northern spotted owls (Strix occidentalis caurina): A comparison of photo-interpreted, Landsat-based, and lidar-based habitat maps

    Science.gov (United States)

    Ackers, Steven H.; Davis, Raymond J.; Olsen, K.; Dugger, Catherine

    2015-01-01

    performance of the Landsat-based map was within acceptable limits (AUC = 0.717 ± 0.021). As is common with photo-interpreted maps, there was no accuracy assessment available for comparison. The photo-interpreted map produced the highest and lowest estimates of habitat area, depending on which habitat classes were included (nesting, roosting, and foraging habitat = 9962 ha, nesting habitat only = 6036 ha). The Landsat-based map produced an estimate of habitat area that was within this range (95% CI: 6679–9592 ha), while the lidar-based map produced an area estimate similar to what was interpreted by local wildlife biologists as nesting (i.e., high quality) habitat using aerial imagery (95% CI: 5453–7216). Confidence intervals of habitat area estimates from the SDMs based on Landsat and lidar overlapped.We concluded that both Landsat- and lidar-based SDMs produced reasonable maps and area estimates for northern spotted owl habitat within the study area. The lidar-based map was more precise and spatially similar to what local wildlife biologists considered spotted owl nesting habitat. The Landsat-based map provided a less precise spatial representation of habitat within the relatively small geographic confines of the study area, but habitat area estimates were similar to both the photo-interpreted and lidar-based maps.Photo-interpreted maps are time consuming to produce, subjective in nature, and difficult to replicate. SDMs provide a framework for efficiently producing habitat maps that can be replicated as habitat conditions change over time, provided that comparable remotely sensed data are available. When the SDM uses predictor variables extracted from lidar data, it can produce a habitat map that is both accurate and useful at large and small spatial scales. In comparison, SDMs using Landsat-based data are more appropriate for large scale analyses of amounts and general spatial patterns of habitat at regional scales.

  5. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  6. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    Science.gov (United States)

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon-rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass.2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free-flowing river system in the Columbia River Basin that contains an upstream expanding population of non-native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel-unit scales.3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co-occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23

  7. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    Science.gov (United States)

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  8. Designated Critical Habitat

    Data.gov (United States)

    Kansas Data Access and Support Center — Critical habitats include those areas documented as currently supporting self-sustaining populations of any threatened or endangered species of wildlife as well as...

  9. VT Wildlife Linkage Habitat

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Wildlife Linkage Habitat Analysis uses landscape scale data to identify or predict the location of potentially significant wildlife linkage...

  10. Deep Space Habitat Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Deep Space Habitat was closed out at the end of Fiscal Year 2013 (September 30, 2013). Results and select content have been incorporated into the new Exploration...

  11. Smalltooth Sawfish Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for smalltooth sawfish (Pristis pectinatat) as designated by 74 FR 45353, September 2, 2009, Rules and Regulations.

  12. Right Whale Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for Right Whale as designated by Federal Register Vol. 59, No. 28805, May 19, 1993, Rules and Regulations.

  13. Johnsons Seagrass Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for Johnson's Seagrass as designated by Federal Register Vol. 65, No. 66, Wednesday, April 5, 2000, Rules and Regulations.

  14. Green Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  15. Habitat Mapping Camera (HABCAM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset entails imagery collected using the HabCam towed underwater vehicle and annotated data on objects or habitats in the images and notes on image...

  16. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  17. Space Use and Habitat Selection by Resident and Transient Coyotes (Canis latrans.

    Directory of Open Access Journals (Sweden)

    Joseph W Hinton

    Full Text Available Little information exists on coyote (Canis latrans space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2. Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009-2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as "biding" areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality.

  18. Space use and habitat selection by resident and transient coyotes (Canis latrans)

    Science.gov (United States)

    Hinton, Joseph W; van Manen, Frank T.; Chamberlain, Michael J

    2015-01-01

    Little information exists on coyote (Canis latrans) space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2). Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009–2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as “biding” areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality.

  19. Habitat Restoration as a Key Conservation Lever for Woodland Caribou: A review of restoration programs and key learnings from Alberta

    Directory of Open Access Journals (Sweden)

    Paula Bentham

    2015-12-01

    Full Text Available The Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou, Boreal Population in Canada (EC, 2012, identifies coordinated actions to reclaim woodland caribou habitat as a key step to meeting current and future caribou population objectives. Actions include restoring industrial landscape features such as roads, seismic lines, pipelines, cut-lines, and cleared areas in an effort to reduce landscape fragmentation and the changes in caribou population dynamics associated with changing predator-prey dynamics in highly fragmented landscapes. Reliance on habitat restoration as a recovery action within the federal recovery strategy is high, considering all Alberta populations have less than 65% undisturbed habitat, which is identified in the recovery strategy as a threshold providing a 60% chance that a local population will be self-sustaining. Alberta’s Provincial Woodland Caribou Policy also identifies habitat restoration as a critical component of long-term caribou habitat management. We review and discuss the history of caribou habitat restoration programs in Alberta and present outcomes and highlights of a caribou habitat restoration workshop attended by over 80 representatives from oil and gas, forestry, provincial and federal regulators, academia and consulting who have worked on restoration programs. Restoration initiatives in Alberta began in 2001 and have generally focused on construction methods, revegetation treatments, access control programs, and limiting plant species favourable to alternate prey. Specific treatments include tree planting initiatives, coarse woody debris management along linear features, and efforts for multi-company and multi-stakeholder coordinated habitat restoration on caribou range. Lessons learned from these programs have been incorporated into large scale habitat restoration projects near Grande Prairie, Cold Lake, and Fort McMurray. A key outcome of our review is the opportunity to provide a

  20. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  1. 75 FR 11080 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Carex lutea

    Science.gov (United States)

    2010-03-10

    ..., commercial, or industrial development; mining, drainage for silviculture and agriculture; highway expansion... alteration; conversion of its limited habitat for residential, commercial, or industrial development; mining... conversion of habitat for residential, commercial, or industrial development can change the topography, soils...

  2. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat

    Science.gov (United States)

    Campbell, Stuart J.; McKenzie, Len J.; Kerville, Simon P.; Bité, Juanita S.

    2007-07-01

    Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETR max), photosynthetic efficiency ( α), saturating irradiance ( Ek) and effective quantum yield (Δ F/ Fm') were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETR max and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETR max, Ek and Δ F/ Fm' were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.

  3. Global patterns of fragmentation and connectivity of mammalian carnivore habitat

    OpenAIRE

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; Rondinini, Carlo; Boitani, Luigi

    2011-01-01

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges...

  4. Proceedings of a workshop on fish habitat suitability index models

    Science.gov (United States)

    Terrell, James W.

    1984-01-01

    One of the habitat-based methodologies for impact assessment currently in use by the U.S. Fish and Wildlife Service is the Habitat Evaluation Procedures (HEP) (U.S. Fish and Wildlife Service 1980). HEP is based on the assumption that the quality of an area as wildlife habitat at a specified target year can be described by a single number, called a Habitat Suitability Index (HSI). An HSI of 1.0 represents optimum habitat: an HSI of 0.0 represents unsuitable habitat. The verbal or mathematical rules by which an HSI is assigned to an area are called an HSI model. A series of Habitat Suitability Index (HSI) models, described by Schamberger et al. (1982), have been published to assist users in applying HEP. HSI model building approaches are described in U.S. Fish and Wildlife Service (1981). One type of HSI model described in detail requires the development of Suitability Index (SI) graphs for habitat variables believed to be important for the growth, survival, standing crop, or other measure of well-being for a species. Suitability indices range from 0 to 1.0, with 1.0 representing optimum conditions for the variable. When HSI models based on suitability indices are used, habitat variable values are measured, or estimated, and converted to SI's through the use of a Suitability Index graph for each variable. Individual SI's are aggregated into an HSI. Standard methods for testing this type of HSI model did not exist at the time the studies reported in this document were performed. A workshop was held in Fort Collins, Colorado, February 14-15, 1983, that brought together biologists experienced in the use, development, and testing of aquatic HSI models, in an effort to address the following objectives: (1) review the needs of HSI model users; (2) discuss and document the results of aquatic HSI model tests; and (3) provide recommendations for the future development, testing, modification, and use of HSI models. Individual presentations, group discussions, and group

  5. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    Science.gov (United States)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  6. Habitat specialization in tropical continental shelf demersal fish assemblages.

    Directory of Open Access Journals (Sweden)

    Ben M Fitzpatrick

    Full Text Available The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304 collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth, down the fore reef slope to the reef base (10-30 m depth then across the adjacent continental shelf (30-110 m depth. Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of

  7. Modelling the negative effects of landscape fragmentation on habitat selection

    NARCIS (Netherlands)

    Langevelde, van F.

    2015-01-01

    Landscape fragmentation constrains movement of animals between habitat patches. Fragmentation may, therefore, limit the possibilities to explore and select the best habitat patches, and some animals may have to cope with low-quality patches due to these movement constraints. If so, these individuals

  8. The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems.

    Science.gov (United States)

    Webb, Matthew H; Terauds, Aleks; Tulloch, Ayesha; Bell, Phil; Stojanovic, Dejan; Heinsohn, Robert

    2017-10-01

    The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating their population size and geographic range can be problematic and affect the accuracy of conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. We quantified change in availability and use of key ecological resources required for breeding for a critically endangered nomadic habitat specialist, the Swift Parrot (Lathamus discolor). We compared estimates of occupied habitat derived from dynamic presence-background (i.e., presence-only data) climatic models with estimates derived from dynamic occupancy models that included a direct measure of food availability. We then compared estimates that incorporate fine-resolution spatial data on the availability of key ecological resources (i.e., functional habitats) with more common approaches that focus on broader climatic suitability or vegetation cover (due to the absence of fine-resolution data). The occupancy models produced significantly (P increase or decrease in the area of one functional habitat (foraging or nesting) did not necessarily correspond to an increase or decrease in the other. Thus, an increase in the extent of occupied area may not equate to improved habitat quality or function. We argue these patterns are typical for mobile resource specialists but often go unnoticed because of limited data over relevant spatial and temporal scales and lack of spatial data on the availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile resource specialists. © 2017 Society for Conservation Biology.

  9. Habitat use and movement of the endangered Arroyo Toad (Anaxyrus californicus) in coastal southern California

    Science.gov (United States)

    Gallegos, Elizabeth; Lyren, Lisa M.; Lovich, Robert E.; Mitrovich, Milan J.; Fisher, Robert N.

    2011-01-01

    Information on the habitat use and movement patterns of Arroyo Toads (Anaxyrus californicus) is limited. The temporal and spatial characteristics of terrestrial habitat use, especially as it relates to upland use in coastal areas of the species' range, are poorly understood. We present analyses of radiotelemetry data from 40 individual adult toads tracked at a single site in coastal southern California from March through November of 2004. We quantify adult Arroyo Toad habitat use and movements and interpret results in the context of their life history. We show concentrated activity by both male and female toads along stream terraces during and after breeding, and, although our fall sample size is low, the continued presence of adult toads in the floodplain through the late fall. Adult toads used open sandy flats with sparse vegetation. Home-range size and movement frequency varied as a function of body mass. Observed spatial patterns of movement and habitat use both during and outside of the breeding period as well as available climatological data suggest that overwintering of toads in floodplain habitats of near-coastal areas of southern California may be more common than previously considered. If adult toads are not migrating out of the floodplain at the close of the breeding season but instead overwinter on stream terraces in near-coastal areas, then current management practices that assume toad absence from floodplain habitats may be leaving adult toads over-wintering on stream terraces vulnerable to human disturbance during a time of year when Arroyo Toad mortality is potentially highest.

  10. HABITAT PREFERENSIAL TARSIUS BELITUNG (Cephalopachus bancanus saltator Elliot, 1910

    Directory of Open Access Journals (Sweden)

    Fifin Fitriana

    2017-04-01

    Full Text Available Belitung tarsier (Cephalopachus bancanus saltator is an endemic species in Belitung Island from Cephalopachus genus. Existence of belitung tarsier in its habitat is now under threatened by deforestatition. Due to lack information about its habitat and as conservation effort, this research was tackled to reveal the characteristic of habitat preference of belitung tarsier. The aim of this study are to identify characteristic of habitat preference of belitung tarsier. This research was conducted in March until May 2016 at around Mount Tajam Protected Forest and plantation area. Presence of tarsiers were identified by direct observation, urine odor detection, identifying based tarsier habitat suitability and the local information. Chi-square and Neu methode was used to analyze the variable of habitat preference of belitung tarsiers. This research found that characteristics of habitat preference of belitung tarsier consisted of its homerange was prefer to dry land agricultural and shurb land cover type, not too tight canopy cover (Leaf Area Index /LAI value of 0,83-2,46, close to the edge of forest (0 -874 m, roads (0 – 3.698 m and settlements (0-403 m, elevation range was between 1 -142 m asl, slope slightly (0-15%, temperature 24-25 0C and high rainfall (3.222 – 3.229 mm/year. Characteristic of habitat preference information could be considered to develop conservation action of belitung tarsier. Keywords: belitung tarsiers, habitat, habitat preference, tarsier  

  11. Distribution, habitat and adaptability of the genus Tapirus.

    Science.gov (United States)

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  12. Behavioural cues surpass habitat factors in explaining prebreeding resource selection by a migratory diving duck

    Science.gov (United States)

    O'Neil, Shawn T.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Cutting, Kyle A.; Parker, Michael W.; Yee, Julie L.

    2014-01-01

    Prebreeding habitat selection in birds can often be explained in part by habitat characteristics. However, females may also select habitats on the basis of fidelity to areas of previous reproductive success or use by conspecifics. The relative influences of sociobehavioural attributes versus habitat characteristics in habitat selection has been primarily investigated in songbirds, while less is known about how these factors affect habitat selection processes in migratory waterfowl. Animal resource selection models often exhibit much unexplained variation; spatial patterns driven by social and behavioural characteristics may account for some of this. We radiomarked female lesser scaup, Aythya affinis, in the southwestern extent of their breeding range to explore hypotheses regarding relative roles of habitat quality, site fidelity and conspecific density in prebreeding habitat selection. We used linear mixed-effects models to relate intensity of use within female home ranges to habitat features, distance to areas of reproductive success during the previous breeding season and conspecific density. Home range habitats included shallow water (≤118 cm), moderate to high densities of flooded emergent vegetation/open water edge and open water areas with submerged aquatic vegetation. Compared with habitat features, conspecific female density and proximity to successful nesting habitats from the previous breeding season had greater influences on habitat use within home ranges. Fidelity and conspecific attraction are behavioural characteristics in some waterfowl species that may exert a greater influence than habitat features in influencing prebreeding space use and habitat selection within home ranges, particularly where quality habitat is abundant. These processes may be of critical importance to a better understanding of habitat selection in breeding birds.

  13. Sierra Madre Yellow-legged Frog Range - CWHR [ds613

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  14. California Red-Legged Frog Range - CWHR [ds587

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  15. Foothill Yellow-legged Frog Range - CWHR [ds589

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  16. Landsat ETM+ and SRTM Data Provide Near Real-Time Monitoring of Chimpanzee (Pan troglodytes Habitats in Africa

    Directory of Open Access Journals (Sweden)

    Samuel M. Jantz

    2016-05-01

    Full Text Available All four chimpanzee sub-species populations are declining due to multiple factors including human-caused habitat loss. Effective conservation efforts are therefore needed to ensure their long-term survival. Habitat suitability models serve as useful tools for conservation planning by depicting relative environmental suitability in geographic space over time. Previous studies mapping chimpanzee habitat suitability have been limited to small regions or coarse spatial and temporal resolutions. Here, we used Random Forests regression to downscale a coarse resolution habitat suitability calibration dataset to estimate habitat suitability over the entire chimpanzee range at 30-m resolution. Our model predicted habitat suitability well with an r2 of 0.82 (±0.002 based on 50-fold cross validation where 75% of the data was used for model calibration and 25% for model testing; however, there was considerable variation in the predictive capability among the four sub-species modeled individually. We tested the influence of several variables derived from Landsat Enhanced Thematic Mapper Plus (ETM+ that included metrics of forest canopy and structure for four three-year time periods between 2000 and 2012. Elevation, Landsat ETM+ band 5 and Landsat derived canopy cover were the strongest predictors; highly suitable areas were associated with dense tree canopy cover for all but the Nigeria-Cameroon and Central Chimpanzee sub-species. Because the models were sensitive to such temporally based predictors, our results are the first to highlight the value of integrating continuously updated variables derived from satellite remote sensing into temporally dynamic habitat suitability models to support  near real-time monitoring of habitat status and decision support systems.

  17. Saproxylic Hemiptera Habitat Associations

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Robert L. Blinn; Gene. Kritsky

    2012-01-01

    Understanding the habitat requirements of organisms associated with dead wood is important in order to conserve them in managed forests. Unfortunately, many of the less diverse saproxylic taxa, including Hemiptera, remain largely unstudied. An effort to rear insects from dead wood taken from two forest types (an upland pine-dominated and a bottomland mixed hardwood),...

  18. Fitness consequences of habitat variability, trophic position, and energy allocation across the depth distribution of a coral-reef fish

    Science.gov (United States)

    Goldstein, E. D.; D'Alessandro, E. K.; Sponaugle, S.

    2017-09-01

    Environmental clines such as latitude and depth that limit species' distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems ( 30-150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish ( Stegastes partitus) ranging from shallow shelf (SS, restrict foraging. Fish in MP environments had a broader diet niche, higher trophic position, and higher muscle C:N ratios compared to shallower environments. High C:N ratios suggest increased tissue lipid content in fish in MP habitats that coincided with higher investment in reproduction based on gonado-somatic index. These results suggest that peripheral MP reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.

  19. Movements and habitat use of mallard broods in northeastern California

    Science.gov (United States)

    Mauser, D.M.; Jarvis, R.L.; Gilmer, D.S.

    1994-01-01

    To increase recruitment of mallards (Anas platyrhynchos), wildlife managers must understand the habitat and space needs of mallard broods. During 1989-90, we examined the movements, home range, and habitat use of 27 radio-marked mallard broods on Lower Klamath National Wildlife Refuge, California. Twelve of the 27 broods made 22 relocation movements (>1,000 m in 24 hr) in the first week (n = 6) and after the fourth (n = 16) week of life. Mean home range size was 0.93 km2 (SE = 0.25) and did not differ between years (P = 0.26). Brood-rearing females selected seasonally flooded wetlands with a cover component and avoided open or permanently flooded habitats. In 1989, broods hatched in permanent wetlands were less successful in fledging (P = 0.006) radio-marked ducklings than broods from seasonal wetlands, suggesting habitat availability or movement to preferred habitats may affect duckling survival.

  20. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success

    Science.gov (United States)

    James E. Garabedian; Christopher E. Moorman; M. Nils Peterson; John C. Kilgo

    2014-01-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides...

  1. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  2. NORTHWOODS Wildlife Habitat Data Base

    Science.gov (United States)

    Mark D. Nelson; Janine M. Benyus; Richard R. Buech

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. Several electronic file formats of NORTHWOODS data base and documentation are available on floppy disks for microcomputers.

  3. Sound solutions for habitat monitoring

    Science.gov (United States)

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  4. Coyote abundance in relation to habitat characteristics in Sierra San Luis, Sonora, Mexico

    Science.gov (United States)

    Eduardo Ponce Guevara; Karla Pelz Serrano; Carlos A. Lopez Gonzalez

    2005-01-01

    Coyotes have expanded their historical distribution range because of anthropogenic activities and habitat transformation, where forests have been considered marginal habitat. We tested the relationship between vegetation structure and coyote abundance in different habitat types. We expected to find a higher abundance in open lands than in thicker areas. We used scent...

  5. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  6. Bull trout (Salvelinus confluentus) movement in relation to water temperature, season, and habitat features in Arrowrock Reservoir, Idaho, 2012

    Science.gov (United States)

    Maret, Terry R.; Schultz, Justin E.

    2013-01-01

    Acoustic telemetry was used to determine spring to summer (April–August) movement and habitat use of bull trout (Salvelinus confluentus) in Arrowrock Reservoir (hereafter “Arrowrock”), a highly regulated reservoir in the Boise River Basin of southwestern Idaho. Water management practices annually use about 86 percent of the reservoir water volume to satisfy downstream water demands. These practices might be limiting bull trout habitat and movement patterns. Bull trout are among the more thermally sensitive coldwater species in North America, and the species is listed as threatened throughout the contiguous United States under the Endangered Species Act. Biweekly water-temperature and dissolved-oxygen profiles were collected by the Bureau of Reclamation at three locations in Arrowrock to characterize habitat conditions for bull trout. Continuous streamflow and water temperature also were measured immediately upstream of the reservoir on the Middle and South Fork Boise Rivers, which influence habitat conditions in the riverine zones of the reservoir. In spring 2012, 18 bull trout ranging in total length from 306 to 630 millimeters were fitted with acoustic transmitters equipped with temperature and depth sensors. Mobile boat tracking and fixed receivers were used to detect released fish. Fish were tagged from March 28 to April 20 and were tracked through most of August. Most bull trout movements were detected in the Middle Fork Boise River arm of the reservoir. Fifteen individual fish were detected at least once after release. Water surface temperature at each fish detection location ranged from 6.0 to 16.2 degrees Celsius (°C) (mean=10.1°C), whereas bull trout body temperatures were colder, ranging from 4.4 to 11.6°C (mean=7.3°C). Bull trout were detected over deep-water habitat, ranging from 8.0 to 42.6 meters (m) (mean=18.1 m). Actual fish depths were shallower than total water depth, ranging from 0.0 to 24.5 m (mean=6.7 m). The last bull trout was

  7. Global screening for Critical Habitat in the terrestrial realm.

    Science.gov (United States)

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  8. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    Science.gov (United States)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  9. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  10. Evaluation of landscape level habitat characteristics of golden eagle habitat in Northwestern Mexico

    OpenAIRE

    Bravo Vinaja, Maria Guadalupe

    2012-01-01

    Golden eagles (Aquila chrysaetos canadensis Linnaeus 1758) are declining in some areas throughout their Nearctic range (Sauer et al. 2011). This reduction is linked to changes in their habitat caused by human activities. Golden eagles inhabit an extensive range of environments (Watson 1997, Kochert et al. 2002). In the American Continent, the golden eagleâ s range encompasses Alaska, Canada, the United States and the Northern and Central portions of Mexico. Northern golden eagle populations...

  11. Tracking changes and preventing loss in critical tiger habitat.

    Science.gov (United States)

    Joshi, Anup R; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L; Olson, David; Jones, Benjamin S; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C; Sizer, Nigel C; Davis, Crystal L; Palminteri, Suzanne; Hahn, Nathan R

    2016-04-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion.

  12. Underwater Ranging

    OpenAIRE

    S. P. Gaba

    1984-01-01

    The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  13. Response of chironomid species (Diptera, Chironomidae to water temperature: effects on species distribution in specific habitats

    Directory of Open Access Journals (Sweden)

    L. Marziali

    2013-09-01

    Full Text Available The response of 443 chironomid species to water temperature was analyzed, with the aim of defining their thermal optimum, tolerance limits and thermal habitat. The database included 4442 samples mainly from Italian river catchments collected from the 1950s up to date. Thermal preferences were calculated separately for larval and pupal specimens and for different habitats: high altitude and lowland lakes in the Alpine ecoregion; lowland lakes in the Mediterranean ecoregion; heavily modified water bodies; kryal, krenal, rhithral and potamal in running waters. Optimum response was calculated as mean water temperature, weighted by species abundances; tolerance as weighted standard deviation; skewness and kurtosis as 3rd and 4th moment statistics. The responses were fitted to normal uni- or plurimodal Gaussian models. Cold stenothermal species showed: i unimodal response, ii tolerance for a narrow temperature range, iii optima closed to their minimum temperature values, iv leptokurtic response. Thermophilous species showed: i optima at different temperature values, ii wider tolerance, iii optima near their maximum temperature values, iv platikurtic response, often fitting a plurimodal model. As expected, lower optima values and narrower tolerance were obtained for kryal and krenal, than for rhithral, potamal and lakes. Thermal response curves were produced for each species and were discussed according to species distribution (i.e. altitudinal range in running water and water depth in lakes, voltinism and phylogeny. Thermal optimum and tolerance limits and the definition of the thermal habitat of species can help predicting the impact of global warming on freshwater ecosystems.

  14. Movement patterns, habitat use, and survival of Lahontan cutthroat trout in the Truckee River

    Science.gov (United States)

    Alexiades, Alexander V.; Peacock, Mary M.; Al-Chokhachy, Robert K.

    2012-01-01

    Habitat fragmentation, hybridization, and competition with nonnative salmonids are viewed as major threats to Lahontan cutthroat trout Oncorhynchus clarkii henshawi. Understanding Lahontan cutthroat trout behavior and survival is a necessary step in the reintroduction and establishment of naturally reproducing populations of Lahontan cutthroat trout. We used weekly radiotelemetry monitoring to examine movement patterns, habitat use, and apparent survival of 42 hatchery-reared Lahontan cutthroat trout in a 16.5-km stretch of the Truckee River, Nevada, across three reaches separated by barriers to upstream movement. We found differences in total movement distances and home range sizes of fish in different reaches within our study area. Fish used pool habitats more than fast water habitats in all reaches. Time of year, stream temperature, and fish standard length covariates had the strongest relationship with apparent survival. Monthly apparent survival was lowest in January, which coincided with the lowest flows and temperatures during the study period. Our results verify the mobility of Lahontan cutthroat trout and indicate that conditions during winter may limit the survival and reintroduction success in the portions of the Truckee River evaluated in this study.

  15. Simulating the influences of various fire regimes on caribou winter habitat

    Science.gov (United States)

    Rupp, T. Scott; Olson, Mark; Adams, Layne G.; Dale, Bruce W.; Joly, Kyle; Henkelman, Jonathan; Collins, William B.; Starfield, Anthony M.

    2006-01-01

    Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5‐fold increase in the area burned annually and an associated 41% decrease in the amount of spruce–lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.

  16. Climate change, elevational range shifts, and bird extinctions.

    Science.gov (United States)

    Sekercioglu, Cagan H; Schneider, Stephen H; Fay, John P; Loarie, Scott R

    2008-02-01

    Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8 degrees C, projected a best guess of 400-550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1 degrees C warming) to 30.0% (6.4 degrees C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100-500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.

  17. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution

    Science.gov (United States)

    Keith, S. A.; Baird, A. H.; Hughes, T. P.; Madin, J. S.; Connolly, S. R.

    2013-01-01

    Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions. PMID:23698011

  18. Landscape structure shapes habitat finding ability in a butterfly.

    Directory of Open Access Journals (Sweden)

    Erik Öckinger

    Full Text Available Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L. from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.

  19. Landscape Structure Shapes Habitat Finding Ability in a Butterfly

    Science.gov (United States)

    Öckinger, Erik; Van Dyck, Hans

    2012-01-01

    Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape. PMID:22870227

  20. Movement pathways and habitat selection by woodland caribou during spring migration

    Directory of Open Access Journals (Sweden)

    D. Joanne Saher

    2005-05-01

    Full Text Available Woodland caribou (Rangifer tarandus caribou are a threatened species throughout Canada. Special management is therefore required to ensure habitat needs are met, particularly because much of their current distribution is heavily influenced by resource extraction activities. Although winter habitat is thought to be limiting and is the primary focus of conservation efforts, maintaining connectivity between summer and winter ranges has received little attention. We used global positioning system data from an interprovincial, woodland caribou herd to define migratory movements on a relatively pristine range. Non-linear models indicated that caribou movement during migration was punctuated; caribou traveled for some distance (movement phase followed by a pause (resting/foraging phase. We then developed resource selection functions (RSFs, using case-controlled logistic regression, to describe resting/foraging sites and movement sites, at the landscape scale. The RSFs indicated that caribou traveled through areas that were less rugged and closer to water than random and that resting/foraging sites were associated with older forests that have a greater component of pine, and are further from water than were random available locations. This approach to analyzing animal location data allowed us to identify two patterns of habitat selection (travel and foraging/resting for caribou during the migratory period. Resultant models are important tools for land use planning to ensure that connectivity between caribou summer and winter ranges is maintained.

  1. Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK)

    Science.gov (United States)

    Weitowitz, Damiano C.; Maurice, Louise; Lewis, Melinda; Bloomfield, John P.; Reiss, Julia; Robertson, Anne L.

    2017-12-01

    Groundwater ecosystems comprising micro-organisms and metazoans provide an important contribution to global biodiversity. Their complexity depends on geology, which determines the physical habitat available, and the chemical conditions within it. Despite this, methods of classifying groundwater habitats using geological data are not well established and researchers have called for higher resolution habitat frameworks. A novel habitat typology for England and Wales (UK) is proposed, which distinguishes 11 geological habitats (geo-habitats) on hydrogeological principles and maps their distribution. Hydrogeological and hydrochemical data are used to determine the characteristics of each geo-habitat, and demonstrate their differences. Using these abiotic parameters, a new method to determine abiotic habitat quality is then developed. The geo-habitats had significantly different characteristics, validating the classification system. All geo-habitats were highly heterogeneous, containing both high quality habitat patches that are likely to be suitable for fauna, and areas of low quality that may limit faunal distributions. Karstic and porous habitats generally were higher quality than fractured habitats. Overall, 70% of England and Wales are covered by lower quality fractured habitats, with only 13% covered by higher quality habitats. The main areas of high quality habitats occur in central England as north-south trending belts, possibly facilitating dispersal along this axis. They are separated by low quality geo-habitats that may prevent east-west dispersal of fauna. In south-west England and Wales suitable geo-habitats occur as small isolated patches. Overall, this paper provides a new national-scale typology that is adaptable for studies in other geographic areas.

  2. H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center.

    Science.gov (United States)

    Abdalla, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Andersson, T; Angüner, E O; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; Devin, J; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M-H; Grudzińska, M; Hadasch, D; Hahn, J; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Liu, R; Lohse, T; Lorentz, M; Lypova, I; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Ohm, S; Ostrowski, M; Öttl, S; Oya, I; Padovani, M; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tluczykont, M; Trichard, C; Tuffs, R; van der Walt, J; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N

    2016-10-07

    A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l=-1.5°, b=0° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

  3. Spatial heterogeneity and scale-dependent habitat selection for two sympatric raptors in mixed-grass prairie.

    Science.gov (United States)

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-08-01

    Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red-tailed hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyanea ) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine-scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red-tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected.

  4. Habitat prioritization across large landscapes, multiple seasons, and novel areas: an example using greater sage-grouse in Wyoming

    Science.gov (United States)

    Fedy, Bradley C.; Doherty, Kevin E.; Aldridge, Cameron L.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Gummer, David; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Pratt, Aaron C.; Swanson, Christopher C.; Walker, Brett L.

    2014-01-01

    Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever-increasing extents because of the appreciation for the role of landscape-scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large-scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse) occur in western semi-arid landscapes in North America. Range-wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage-grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high-quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage-grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage-grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred

  5. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  6. Group dynamics of zebra and wildebeest in a woodland savanna: effects of predation risk and habitat density.

    Directory of Open Access Journals (Sweden)

    Maria Thaker

    Full Text Available BACKGROUND: Group dynamics of gregarious ungulates in the grasslands of the African savanna have been well studied, but the trade-offs that affect grouping of these ungulates in woodland habitats or dense vegetation are less well understood. We examined the landscape-level distribution of groups of blue wildebeest, Connochaetes taurinus, and Burchell's zebra, Equus burchelli, in a predominantly woodland area (Karongwe Game Reserve, South Africa; KGR to test the hypothesis that group dynamics are a function of minimizing predation risk from their primary predator, lion, Panthera leo. METHODOLOGY/PRINCIPAL FINDINGS: Using generalized linear models, we examined the relative importance of habitat type (differing in vegetation density, probability of encountering lion (based on utilization distribution of all individual lions in the reserve, and season in predicting group size and composition. We found that only in open scrub habitat, group size for both ungulate species increased with the probability of encountering lion. Group composition differed between the two species and was driven by habitat selection as well as predation risk. For both species, composition of groups was, however, dominated by males in open scrub habitats, irrespective of the probability of encountering lion. CONCLUSIONS/SIGNIFICANCE: Distribution patterns of wildebeest and zebra groups at the landscape level directly support the theoretical and empirical evidence from a range of taxa predicting that grouping is favored in open habitats and when predation risk is high. Group composition reflected species-specific social, physiological and foraging constraints, as well as the importance of predation risk. Avoidance of high resource open scrub habitat by females can lead to loss of foraging opportunities, which can be particularly costly in areas such as KGR, where this resource is limited. Thus, landscape-level grouping dynamics are species specific and particular to the

  7. Smartphone technologies and Bayesian networks to assess shorebird habitat selection

    Science.gov (United States)

    Zeigler, Sara; Thieler, E. Robert; Gutierrez, Ben; Plant, Nathaniel G.; Hines, Megan K.; Fraser, James D.; Catlin, Daniel H.; Karpanty, Sarah M.

    2017-01-01

    Understanding patterns of habitat selection across a species’ geographic distribution can be critical for adequately managing populations and planning for habitat loss and related threats. However, studies of habitat selection can be time consuming and expensive over broad spatial scales, and a lack of standardized monitoring targets or methods can impede the generalization of site-based studies. Our objective was to collaborate with natural resource managers to define available nesting habitat for piping plovers (Charadrius melodus) throughout their U.S. Atlantic coast distribution from Maine to North Carolina, with a goal of providing science that could inform habitat management in response to sea-level rise. We characterized a data collection and analysis approach as being effective if it provided low-cost collection of standardized habitat-selection data across the species’ breeding range within 1–2 nesting seasons and accurate nesting location predictions. In the method developed, >30 managers and conservation practitioners from government agencies and private organizations used a smartphone application, “iPlover,” to collect data on landcover characteristics at piping plover nest locations and random points on 83 beaches and barrier islands in 2014 and 2015. We analyzed these data with a Bayesian network that predicted the probability a specific combination of landcover variables would be associated with a nesting site. Although we focused on a shorebird, our approach can be modified for other taxa. Results showed that the Bayesian network performed well in predicting habitat availability and confirmed predicted habitat preferences across the Atlantic coast breeding range of the piping plover. We used the Bayesian network to map areas with a high probability of containing nesting habitat on the Rockaway Peninsula in New York, USA, as an example application. Our approach facilitated the collation of evidence-based information on habitat selection

  8. Smartphone-based distributed data collection enables rapid assessment of shorebird habitat suitability

    Science.gov (United States)

    Thieler, E. Robert; Zeigler, Sara; Winslow, Luke; Hines, Megan K.; Read, Jordan S.; Walker, Jordan I.

    2016-01-01

    Understanding and managing dynamic coastal landscapes for beach-dependent species requires biological and geological data across the range of relevant environments and habitats. It is difficult to acquire such information; data often have limited focus due to resource constraints, are collected by non-specialists, or lack observational uniformity. We developed an open-source smartphone application called iPlover that addresses these difficulties in collecting biogeomorphic information at piping plover (Charadrius melodus) nest sites on coastal beaches. This paper describes iPlover development and evaluates data quality and utility following two years of collection (n = 1799 data points over 1500 km of coast between Maine and North Carolina, USA). We found strong agreement between field user and expert assessments and high model skill when data were used for habitat suitability prediction. Methods used here to develop and deploy a distributed data collection system have broad applicability to interdisciplinary environmental monitoring and modeling.

  9. Habitat selection and management of the Hawaiian crow

    Science.gov (United States)

    Giffen, J.G.; Scott, J.M.; Mountainspring, S.

    1987-01-01

    The abundance and range of the Hawaiian crow, or alala, (Corvus hawaiiensis) have decreased drastically since the 1890's. Fewer than 10 breeding pairs remained in the wild in 1985. A sample of 82 nests during 1970-82 were used to determine habitat associations. Two hundred firty-nine alala observations were used to estimate densities occurring in different vegetation types in 1978. Compared to available habitat, more nests and higher bird densities during the breeding season occurred in areas where: (1) canopy cover was > 60%; (2) koa (Acacia koa) and ohia (Metrosideros polymorpha) were dominant species in the crown layer; (3) native plants constituted > 75% of the understory cover; and (4) the elevation was 1,100-1,500 m. Compared to breeding habitat, nonbreeding habitat tended to lie at lower elevations and in wetter forests having the crown layer dominated by ohia but lacking koa. Habitat loss is a major factor underlying the decline of this species although predation on fledgings, avian disease, and shooting also have reduced the population. Remaining key habitat areas have little or no legal protection through zoning and land ownership. Preserves should be established to encompass the location of existing pairs and to assure the provision of optimum breeding habitat and suitable nonbreeding habitat.

  10. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  11. Impacts of climate change on range expansion by the mountain pine beetle

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, A.L.; Taylor, S.W. [Canadian Forest Service, Victoria, BC (Canada). Pacific Forestry Centre; Regniere, J. [Canadian Forest Service, Quebec, PQ (Canada). Laurentian Forestry Centre; Logan, J.A.; Bentz, B.J. [United States Dept. of Agriculture, Logan, UT (United States). Logan Forestry Sciences Laboratory; Powell, J.A. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    2006-07-01

    The elevational and latitudinal range of mountain pine beetle (MPB) has been limited by climatic conditions that are currently unfavorable for brood development. This study examined the impact of climatic conditions on the establishment and persistence of MPB using a spatially explicit, climate-driven simulation tool. Historic weather records were also used to create maps of past habitats for MPB in British Columbia. Map overlays were then created to determine if MPB has expanded its range due to changes in the province's climate. The distribution of climatically suitable habitats was examined in 10-year increments. Results of the study showed an increase in benign habitats. MPB populations have expanded into new areas as a result of changes in climate. Additional range expansion for MPB was then assessed using a global circulation model along with a conservative forcing scenario that forecast a doubling of carbon dioxide (CO{sub 2}) by 2050. Weather conditions were then combined with a climatic suitability model in order to examine areas of climatically suitable habitats. It was concluded that continued eastward expansion by MPB is probable. 44 refs., 4 tabs., 7 figs.

  12. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  13. Global habitat preferences of commercially valuable tuna

    KAUST Repository

    Arrizabalaga, Haritz; Dufour, Florence; Kell, Laurence T.; Merino, Gorka; Ibaibarriaga, Leire; Chust, Guillem; Irigoien, Xabier; Santiago, Josu; Murua, Hilario; Fraile, Igaratza; Chifflet, Marina; Goikoetxea, Nerea; Sagarminaga, Yolanda; Aumont, Olivier; Bopp, Laurent; Herrera, Miguel Angel; Marc Fromentin, Jean; Bonhomeau, Sylvain

    2015-01-01

    In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided. © 2014 Elsevier Ltd.

  14. Global habitat preferences of commercially valuable tuna

    KAUST Repository

    Arrizabalaga, Haritz

    2015-03-01

    In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided. © 2014 Elsevier Ltd.

  15. Vacant habitats in the Universe.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Habitat assessment for giant pandas in the Qinling Mountain region of China

    Science.gov (United States)

    Feng, Tian-Tian; Van Manen, Frank T.; Zhao, Na-Xun; Li, Ming; Wei, Fu-Wen

    2009-01-01

    Because habitat loss and fragmentation threaten giant pandas (Ailuropoda melanoleuca), habitat protection and restoration are important conservation measures for this endangered species. However, distribution and value of potential habitat to giant pandas on a regional scale are not fully known. Therefore, we identified and ranked giant panda habitat in Foping Nature Reserve, Guanyinshan Nature Reserve, and adjacent areas in the Qinling Mountains of China. We used Mahalanobis distance and 11 digital habitat layers to develop a multivariate habitat signature associated with 247 surveyed giant panda locations, which we then applied to the study region. We identified approximately 128 km2 of giant panda habitat in Foping Nature Reserve (43.6% of the reserve) and 49 km2 in Guanyinshan Nature Reserve (33.6% of the reserve). We defined core habitat areas by incorporating a minimum patch-size criterion (5.5 km2) based on home-range size. Percentage of core habitat area was higher in Foping Nature Reserve (41.8% of the reserve) than Guanyinshan Nature Reserve (26.3% of the reserve). Within the larger analysis region, Foping Nature Reserve contained 32.7% of all core habitat areas we identified, indicating regional importance of the reserve. We observed a negative relationship between distribution of core areas and presence of roads and small villages. Protection of giant panda habitat at lower elevations and improvement of habitat linkages among core habitat areas are important in a regional approach to giant panda conservation.

  17. A smartphone app and analysis framework for rapidly characterizing and predicting shorebird habitat

    Science.gov (United States)

    Thieler, E. R.; Zeigler, S. L.; Plant, N. G.; Gutierrez, B.; Winslow, L. A.; Hines, M. K.; Read, J. S.; Walker, J. I.

    2016-12-01

    We developed a smartphone application called iPlover as a distributed data collection system to gather synoptic observations of shorebird habitat selection preferences, and a Bayesian network that exploits the data to predict habitat suitability. We tested this approach to modeling habitat suitability for the federally listed piping plover (Charadrius melodus) on coastal beaches and barrier islands along 1500 km of coast from North Carolina to Maine, USA. Using agile software development approaches, the iPlover application was conceived, developed and deployed in just a few months following Hurricane Sandy in 2012. This application supported collaborative efforts of nearly 100 stakeholders, resulting in over 2000 data points describing piping plover habitat selection patterns. The data were analyzed in a Bayesian network to evaluate the probability that a specific combination of habitat variables is associated with a nesting site. Subsequent testing shows that iPlover data are robust to variability in user classification and that the Bayesian network has a high level of predictive accuracy. Our work addresses a variety of scientific problems in understanding and managing dynamic coastal landscapes for beach-dependent species that require biological and geological data that (1) span the range of relevant environments and habitats, (2) can be updated seasonally to interannually, and (3) capture spatial detail. It is difficult to acquire such data; the data often have limited focus due to resource constraints, can be challenging to coordinate between different regions, are collected by non-specialists, or lack observational uniformity. Furthermore, associated data analysis techniques are often limited in their ability to consider new information as data are collected from additional study sites and updated. We present examples of how this approach can be used to map past, present, and future habitat suitability for sites of interest. We also describe lessons learned

  18. Ampliación del ámbito geográfico-altitudinal y uso de hábitats suburbanos por la mascarita pico grueso (Geothlypis poliocephala Geographic-altitudinal range extension and suburban habitat use of the Grey-crowned Yellowthroat (Geothlypis poliocephala

    Directory of Open Access Journals (Sweden)

    Ian MacGregor-Fors

    2008-12-01

    Full Text Available Se presenta el primer registro de la mascarita pico grueso (Geothlypis poliocephala para la región del Eje Neovolcánico Transversal, México. Los sitios donde registramos/capturamos esta especie se encuentran en los suburbios de la ciudad de Morelia, 427 m arriba del ámbito altitudinal descrito para la especie. Esto puede deberse a 2 factores: 1 la urbanización que genera hábitats propicios para la especie en su periferia, y 2 el incremento de la temperatura en la región en la que se encuentra la ciudad de Morelia. Ambos factores facilitan que esta especie de tierras bajas pueda habitar en áreas de mayor altitud. Así, nuestros registros sugieren que la mascarita pico grueso puede catalogarse como especie potencial a utilizar hábitats suburbanos cuando éstos son similares a los hábitats en los que se distribuye de manera natural.The first record of the Grey-crowned Yellowthroat (Geothlypis poliocephala in the Transmexican Volcanic Belt biogeographic region (Mexico, within the Morelia city suburbs is presented. Sites were this parulid was sighted / captured were located 427 m higher than its described altitudinal range. This could be due to 2 factors: 1 urbanization generates suitable habitats for this species in periurban areas, and 2 temperature values have increased in the region where the city of Morelia is located. These factors allow that a lowland bird species can inhabit in more elevated areas. Thus, our records suggest that the Grey-crowned Yellowthroat can be catalogued as potential to use suburban environments when these are similar to those used by the species on its natural distribution area.

  19. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  20. Varying energetic costs of Brent Geese along a continuum from aquatic to agricultural habitats: the importance of habitat-specific energy expenditure

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Clausen, Preben; Fox, Anthony David

    2013-01-01

    and alert than birds feeding in aquatic areas, and also spent much less time roosting. Frequency of disturbance was found to be higher in terrestrial habitats compared to aquatic habitats. These stress-related behavioural differences between habitats highlight the vulnerability of the species associated...... with adapting to different food sources. Combining time-budgets with activity-specific BMR-multiplicators showed that activity-based metabolic rates ranged from 1.7 to 2.7 × BMR within habitats exploited by Brent Geese, and emphasized that aquatic areas represent the energetically least expensive foraging...... habitat for these birds. This is largely the result of habitat-specific variation in time spent flying. These findings underline the importance of measuring habitat-specific behaviour and disturbance when studying avian energetics, and demonstrate the risk of uncritically using allometric relationships...

  1. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    Science.gov (United States)

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  2. Assessment and management of dead-wood habitat

    Science.gov (United States)

    Hagar, Joan

    2007-01-01

    The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches. Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al., 2001). In

  3. European red list of habitats. Part 1: Marine habitats

    NARCIS (Netherlands)

    Gubbay, S.; Sanders, N.; Haynes, T.; Janssen, J.A.M.; Rodwell, J.R.; Nieto, A.; Garcia Criado, M.; Beal, S.; Borg, J.

    2016-01-01

    The European Red List of Habitats provides an overview of the risk
    of collapse (degree of endangerment) of marine, terrestrial and
    freshwater habitats in the European Union (EU28) and adjacent
    regions (EU28+), based on a consistent set of categories and
    criteria, and detailed data

  4. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E.; Baron, L.A.; Jackson, B.L.

    1995-08-01

    Historically, ecological risk assessment at CERCLA sites [such as the Oak Ridge Reservation (ORR)], has focused on species that may be definitively associated with a contaminated area or source operable unit. Consequently the species that are generally considered are those with home ranges small enough such that multiple individuals or a distinct population can be expected to reside within the boundaries of the contaminated site. This approach is adequate for sites with single, discrete areas of contamination that only provide habitat for species with limited requirements. This approach is not adequate however for large sites with multiple, spatially separated contaminated areas that provide habitat for wide-ranging wildlife species. Because wide-ranging wildlife species may travel between and use multiple contaminated sites they may be exposed to and be at risk from contaminants from multiple locations. Use of a particular contaminated site by wide-ranging species will be dependent upon the amount of suitable habitat available at that site. Therefore to adequately evaluate risks to wide-ranging species at the ORR-wide scale, the use of multiple contaminated sites must be weighted by the amount of suitable habitat on OUs. This reservation-wide ecological risk assessment is intended to identify which endpoints are significantly at risk; which contaminants are responsible for this risk; and which OUs significantly contribute to risk.

  5. The micro-habitat methodology. Application protocols

    Energy Technology Data Exchange (ETDEWEB)

    Sabaton, C; Valentin, S; Souchon, Y

    1995-06-01

    A strong need has been felt for guidelines to help various entities in applying the micro-habitat methodology, particularly in impact studies on hydroelectric installations. CEMAGREF and Electricite de France have developed separately two protocols with five major steps: reconnaissance of the river, selection of representative units to be studied in greater depth, morpho-dynamic measurements at one or more rates of discharge and hydraulic modeling, coupling of hydraulic and biological models, calculation of habitat-quality scores for fish, analysis of results. The two approaches give very comparable results and are essentially differentiated by the hydraulic model used. CEMAGREF uses a one-dimensional model requiring measurements at only one discharge rate. Electricite de France uses a simplified model based on measurements at several rates of discharge. This approach is possible when discharge can be controlled in the study area during data acquisition, as is generally the case downstream of hydroelectric installations. The micro-habitat methodology is now a fully operational tool with which to study changes in fish habitat quality in relation to varying discharge. It provides an element of assessment pertinent to the choice of instreaming flow to be maintained downstream of a hydroelectric installation; this information is essential when the flow characteristics (velocity, depth) and the nature of the river bed are the preponderant factors governing habitat suitability for trout or salmon. The ultimate decision must nonetheless take into account any other potentially limiting factors for the biocenoses on the one hand, and the target water use objectives on the other. In many cases, compromises must be found among different uses, different species and different stages in the fish development cycle. (Abstract Truncated)

  6. Hellsgate Winter Range: Wildlife Mitigation Project. Final Environmental Assessment

    International Nuclear Information System (INIS)

    1995-03-01

    BPA proposes to fund the Hellsgate Winter Range: Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The Project is intended to mitigate for wildlife and wildlife habitat adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs. The Project would allow the sponsors to secure land and conduct wildlife habitat improvement and long-term management activities within the boundaries of the Colville Indian Reservation. BPA has prepared an Environmental Assessment (EA) (DOE/EA-0940) evaluating the potential environmental effects of the proposed Project (Alternative B) and No Action (Alternative A). Protection and re-establishment of riparian and upland habitat on the Colville Indian Reservation, under Alternative B, would not have a significant adverse environmental impact because: (1) there would be only limited, mostly short-term adverse impacts on soils, water quality, air quality, vegetation, and wildlife (including no effect on endangered species); and (2) there would be no adverse effect on water quantity, cultural resources, or land use. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI

  7. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    Science.gov (United States)

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. © 2014 John Wiley & Sons Ltd.

  8. Landscape Analysis of Adult Florida Panther Habitat.

    Directory of Open Access Journals (Sweden)

    Robert A Frakes

    Full Text Available Historically occurring throughout the southeastern United States, the Florida panther is now restricted to less than 5% of its historic range in one breeding population located in southern Florida. Using radio-telemetry data from 87 prime-aged (≥3 years old adult panthers (35 males and 52 females during the period 2004 through 2013 (28,720 radio-locations, we analyzed the characteristics of the occupied area and used those attributes in a random forest model to develop a predictive distribution map for resident breeding panthers in southern Florida. Using 10-fold cross validation, the model was 87.5 % accurate in predicting presence or absence of panthers in the 16,678 km2 study area. Analysis of variable importance indicated that the amount of forests and forest edge, hydrology, and human population density were the most important factors determining presence or absence of panthers. Sensitivity analysis showed that the presence of human populations, roads, and agriculture (other than pasture had strong negative effects on the probability of panther presence. Forest cover and forest edge had strong positive effects. The median model-predicted probability of presence for panther home ranges was 0.81 (0.82 for females and 0.74 for males. The model identified 5579 km2 of suitable breeding habitat remaining in southern Florida; 1399 km2 (25% of this habitat is in non-protected private ownership. Because there is less panther habitat remaining than previously thought, we recommend that all remaining breeding habitat in south Florida should be maintained, and the current panther range should be expanded into south-central Florida. This model should be useful for evaluating the impacts of future development projects, in prioritizing areas for panther conservation, and in evaluating the potential impacts of sea-level rise and changes in hydrology.

  9. Landscape Analysis of Adult Florida Panther Habitat.

    Science.gov (United States)

    Frakes, Robert A; Belden, Robert C; Wood, Barry E; James, Frederick E

    2015-01-01

    Historically occurring throughout the southeastern United States, the Florida panther is now restricted to less than 5% of its historic range in one breeding population located in southern Florida. Using radio-telemetry data from 87 prime-aged (≥3 years old) adult panthers (35 males and 52 females) during the period 2004 through 2013 (28,720 radio-locations), we analyzed the characteristics of the occupied area and used those attributes in a random forest model to develop a predictive distribution map for resident breeding panthers in southern Florida. Using 10-fold cross validation, the model was 87.5 % accurate in predicting presence or absence of panthers in the 16,678 km2 study area. Analysis of variable importance indicated that the amount of forests and forest edge, hydrology, and human population density were the most important factors determining presence or absence of panthers. Sensitivity analysis showed that the presence of human populations, roads, and agriculture (other than pasture) had strong negative effects on the probability of panther presence. Forest cover and forest edge had strong positive effects. The median model-predicted probability of presence for panther home ranges was 0.81 (0.82 for females and 0.74 for males). The model identified 5579 km2 of suitable breeding habitat remaining in southern Florida; 1399 km2 (25%) of this habitat is in non-protected private ownership. Because there is less panther habitat remaining than previously thought, we recommend that all remaining breeding habitat in south Florida should be maintained, and the current panther range should be expanded into south-central Florida. This model should be useful for evaluating the impacts of future development projects, in prioritizing areas for panther conservation, and in evaluating the potential impacts of sea-level rise and changes in hydrology.

  10. Using multiscale spatial models to assess potential surrogate habitat for an imperiled reptile.

    Directory of Open Access Journals (Sweden)

    Jennifer M Fill

    Full Text Available In evaluating conservation and management options for species, practitioners might consider surrogate habitats at multiple scales when estimating available habitat or modeling species' potential distributions based on suitable habitats, especially when native environments are rare. Species' dependence on surrogates likely increases as optimal habitat is degraded and lost due to anthropogenic landscape change, and thus surrogate habitats may be vital for an imperiled species' survival in highly modified landscapes. We used spatial habitat models to examine a potential surrogate habitat for an imperiled ambush predator (eastern diamondback rattlesnake, Crotalus adamanteus; EDB at two scales. The EDB is an apex predator indigenous to imperiled longleaf pine ecosystems (Pinus palustris of the southeastern United States. Loss of native open-canopy pine savannas and woodlands has been suggested as the principal cause of the species' extensive decline. We examined EDB habitat selection in the Coastal Plain tidewater region to evaluate the role of marsh as a potential surrogate habitat and to further quantify the species' habitat requirements at two scales: home range (HR and within the home range (WHR. We studied EDBs using radiotelemetry and employed an information-theoretic approach and logistic regression to model habitat selection as use vs.We failed to detect a positive association with marsh as a surrogate habitat at the HR scale; rather, EDBs exhibited significantly negative associations with all landscape patches except pine savanna. Within home range selection was characterized by a negative association with forest and a positive association with ground cover, which suggests that EDBs may use surrogate habitats of similar structure, including marsh, within their home ranges. While our HR analysis did not support tidal marsh as a surrogate habitat, marsh may still provide resources for EDBs at smaller scales.

  11. Effect of substrate size on sympatric sand darter benthic habitat preferences

    Science.gov (United States)

    Thompson, Patricia A.; Welsh, Stuart A.; Rizzo, Austin A.; Smith, Dustin M.

    2017-01-01

    The western sand darter, Ammocrypta clara, and the eastern sand darter, A. pellucida, are sand-dwelling fishes that have undergone range-wide population declines, presumably owing to habitat loss. Habitat use studies have been conducted for the eastern sand darter, but literature on the western sand darter remains sparse. To evaluate substrate selection and preference, western and eastern sand darters were collected from the Elk River, West Virginia, one of the few remaining rivers where both species occur sympatrically. In the laboratory, individuals were given the choice to bury into five equally available and randomly positioned substrates ranging from fine sand to granule gravel (0.12–4.0 mm). The western sand darter selected for coarse and medium sand, while the eastern sand darter was more of a generalist selecting for fine, medium, and coarse sand. Substrate selection was significantly different (p = 0.02) between species in the same environment, where the western sand darter preferred coarser substrate more often compared to the eastern sand darter. Habitat degradation is often a limiting factor for many species of rare freshwater fish, and results from this study suggest that western and eastern sand darters may respond differently to variations in benthic substrate composition.

  12. Chamaedorea: diverse species in diverse habitats

    Directory of Open Access Journals (Sweden)

    1992-01-01

    Full Text Available DIVERSES ESPÈCES DANS DIVERS HABITATS. Des espèces extraordinairement diverses se trouvant dans des habitats également divers caractérisent Chamaedorea, un genre qui compte environ 90 espèces dioïques limitées aux sous-bois des forêts néo-tropicales constamment dans la pluie et les nuages du Mexique à la Bolivie et à l’Équateur. Une vaste gamme de formes biologiques, de tiges, de feuilles, d’inflorescences, de fleurs, et de fruits reflète la diversité des espèces. Bien que le genre soit plus riche en espèces dans les forêts denses et humides situées entre 800-1,500 mètres d’altitude, quelques espèces exceptionnelles se trouvent dans des forêts moins denses et/ou occasionnellement sèches, sur des substances dures ou dans d’autres habitats inhabituels. DIVERSAS ESPECIES EN DIVERSOS HÁBITATS. Especies notablemente diversas presentes en habitats igualmente diversos caracterizan a Chamaedorea, un genero de aproximadamente 90 especies dioicas limitadas al sotobosque de los bosques lluviosos y nubosos neotropicales desde Mexico hasta Bolivia y Ecuador. Una amplia gama de formas biológicas, tallos, hojas, inflorescencias, flores, y frutos refleja la diversidad de las especies. Aunque el género es más rico en especies en los bosques densos y húmedos de 800-1,500 metros de altura, unas pocas especies excepcionales ocurren en bosques abiertos o ocasionalmente secos, en substrato severo o en otros habitats extraordinarios. Remarkably diverse species occurring in equally diverse habitats characterize Chamaedorea, a genus of about 90, dioecious species restricted to the understory of neotropical rain and cloud forests from Mexico to Bolivia and Ecuador. A vast array of habits, stems, leaves, inflorescences, flowers, and fruits reflect the diversity of species. Although the genus is most species-rich in dense, moist or wet, diverse forests from 800-1,500 meters elevation, a few exceptional species occur in open and/or seasonally

  13. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  14. Trade-offs between wood supply and caribou habitat in northwestern Ontario

    Directory of Open Access Journals (Sweden)

    Daniel McKenney

    1998-03-01

    Full Text Available Woodland caribou habitat management in northwestern Ontario is a complex spatial problem. The Strategic Forest Management Model (SFMM, a linear programming PC-based planning tool being developed in Ontario, was used to examine the impacts of alternative management strategies on caribou habitat. The management alternatives investigated included the cessation of timber management and maximising the present value of wood production without any explicit concern (in the model for caribou. Three major findings are worth noting: 1 trying to maintain prime caribou habitat within active Forest Management Units will come at a cost to wood supply but the cost will depend on the absolute amount of area affected and the spatial configuration of that land in relation to mills. The cost of maintaining caribou habitat in one management unit at a level about 25 000 hectares is roughly $324 000 per year (about 3 cents for each Ontario resident. The imposition of an even-flow constraint on wood production is in fact potentially more costly; 2 Given the region is heavily dominated by spruce aged 90 years and over, forest succession and fire disturbance will likely cause large declines in prime caribou habitat in the near to medium term (20 to 40 years even if no timber harvesting occurs; 3 The complexities of the trade-offs in this resource management problem highlight the limitations of any single modelling tool to satisfactorily address all issues. Planners need to take advantage of a wide range of analytical techniques to quantify the issues and formulate integrated policies.

  15. Intercohort density dependence drives brown trout habitat selection

    Science.gov (United States)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat

  16. Our cosmic habitat

    CERN Document Server

    Rees, Martin

    2001-01-01

    Our universe seems strangely 'biophilic,' or hospitable to life. Is this providence or coincidence? According to Martin Rees, the answer depends on the answer to another question, the one posed by Einstein's famous remark: 'What interests me most is whether God could have made the world differently.' This highly engaging book centres on the fascinating consequences of the answer being 'yes'. Rees explores the notion that our universe is just part of a vast 'multiverse,' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be local by laws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge.

  17. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals

    Science.gov (United States)

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; King, Sarah R. B.; Rondinini, Carlo; Boitani, Luigi

    2017-01-01

    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world’s terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, and most high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world’s terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation. PMID:28673992

  18. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  19. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  20. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  1. Intervalo hídrico ótimo em um latossolo vermelho distroférrico sob diferentes sistemas de produção Least limiting water range in a distroferric red latossol under different growing systems

    Directory of Open Access Journals (Sweden)

    Milson E. Serafim

    2008-12-01

    Full Text Available Este trabalho teve o objetivo de caracterizar sistemas de cultivo quanto à qualidade estrutural do solo para o desenvolvimento de plantas por meio da determinação do Intervalo Hídrico Ótimo (IHO. O estudo foi realizado com amostras indeformadas de um Latossolo Vermelho distroférrico, sob os sistemas de cultivo convencional, direto e integração lavoura-pecuária, no município de Dourados - MS. Em cada sistema de cultivo, foram amostrados 28 pontos, nas camadas de 0-0,05 m, 0,05-0,10 m, e 0,10-0,20 m, totalizando 84 amostras por sistema, que foram utilizadas para a determinação da curva de retenção de água no solo, da curva de resistência do solo à penetração e da porosidade. No sistema de cultivo convencional e no direto, a menor limitação ao desenvolvimento radicular foi na camada de 0-0,05 m, e na integração, a limitação foi menor na camada de 0,10-0,20 m. Na camada de 0-0,05 m do convencional, o IHO foi igual à capacidade de água disponível. Nos sistemas direto e integração, a resistência à penetração foi limitante. A resistência à penetração foi o principal fator limitante do IHO na maioria das situações estudadas.The objective of this work was to characterize the growing systems related to the structural soil quality for plants development by the Least Limiting Water Range (LLWR. The study was developed using soil samples with preserved structure of a Distroferric Red Latossol under the conventional, no tillage and integrated growing systems in de county of Dourados-MS, Brazil. In each system 28 points were sampled, in 0-0.05, 0.05-0.10 and 0.10-0.20 m deep layers, ending up with 84 samples by system which was used to adjust the water retention curve in the soil, soil resistance to penetration curve and porosity determination, all of them necessary to the LLWR determination. In the conventional and no-tillage systems the smallest restriction to de roots development was in the 0-0.05 m layer, while in

  2. Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially?

    Science.gov (United States)

    Zabel, Jörg; Tscharntke, Teja

    1998-09-01

    Effects of habitat fragmentation on the insect community of stinging nettle (Urtica dioica L.) were studied, using 32 natural nettle patches of different area and degree of isolation in an agricultural landscape. Habitat fragmentation reduced the species richness of Heteroptera, Auchenorrhyncha, and Coleoptera, and the abundance of populations. Habitat isolation and area reduction did not affect all insect species equally. Monophagous herbivores had a higher probability of absence from small patches than all (monophagous and polyphagous) herbivore species, and the percentage of monophagous herbivores increased with habitat area. Abundance and population variability of species were negatively correlated and could both be used as a predictor of the percentage of occupied habitats. Species richness of herbivores correlated (positively) with habitat area, while species richness of predators correlated (negatively) with habitat isolation. In logistic regressions, the probability of absence of monophagous herbivores from habitat patches could only be explained by habitat area (in 4 out of 10 species) and predator absence probability only by habitat isolation (in 3 out of 14 species). Presumably because of the instability of higher-trophic-level populations and dispersal limitation, predators were more affected by habitat isolation than herbivores, while they did not differ from herbivore populations with respect to abundance or variability. Thus increasing habitat connectivity in the agricultural landscape should primarily promote predator populations.

  3. Linking occurrence and fitness to persistence: Habitat-based approach for endangered Greater Sage-Grouse

    Science.gov (United States)

    Aldridge, Cameron L.; Boyce, Mark S.

    2007-01-01

    Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel

  4. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  5. Desert tortoise use of burned habitat in the Eastern Mojave desert

    Science.gov (United States)

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  6. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    Science.gov (United States)

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  7. Stopover habitats of spring migrating surf scoters in southeast Alaska

    Science.gov (United States)

    Lok, E.K.; Esler, Daniel; Takekawa, John Y.; De La Cruz, S.W.; Sean, Boyd W.; Nysewander, D.R.; Evenson, J.R.; Ward, D.H.

    2011-01-01

    Habitat conditions and nutrient reserve levels during spring migration have been suggested as important factors affecting population declines in waterfowl, emphasizing the need to identify key sites used during spring and understand habitat features and resource availability at stopover sites. We used satellite telemetry to identify stopover sites used by surf scoters migrating through southeast Alaska during spring. We then contrasted habitat features of these sites to those of random sites to determine habitat attributes corresponding to use by migrating scoters. We identified 14 stopover sites based on use by satellite tagged surf scoters from several wintering sites. We identified Lynn Canal as a particularly important stopover site for surf scoters originating throughout the Pacific winter range; approximately half of tagged coastally migrating surf scoters used this site, many for extended periods. Stopover sites were farther from the mainland coast and closer to herring spawn sites than random sites, whereas physical shoreline habitat attributes were generally poor predictors of site use. The geography and resource availability within southeast Alaska provides unique and potentially critical stopover habitat for spring migrating surf scoters. Our work identifies specific sites and habitat resources that deserve conservation and management consideration. Aggregations of birds are vulnerable to human activity impacts such as contaminant spills and resource management decisions. This information is of value to agencies and organizations responsible for emergency response planning, herring fisheries management, and bird and ecosystem conservation. Copyright ?? 2011 The Wildlife Society.

  8. Ecological Flow Assessment to Improve the Spawning Habitat for the Four Major Species of Carp of the Yangtze River: A Study on Habitat Suitability Based on Ultrasonic Telemetry

    Directory of Open Access Journals (Sweden)

    Lixiong Yu

    2018-05-01

    Full Text Available Four major species of Chinese carp, namely black carp (Mylopharyngodon piceus, grass carp (Ctenopharyngodon idellus, silver carp (Hypophthalmichthys molitrix and bighead carp (Hypophthalmichthys nobilis, are important economic freshwater fish varieties in China. They primarily inhabit and breed in the Yangtze River. Unfortunately, the construction and operation of the Gezhouba Dam and the Three Gorges Dam have dramatically changed the hydrodynamic conditions in the middle reaches of the Yangtze River, leading to a sharp decline in the reproduction rates of these carp. The egg abundance of the four species of carp downstream from the Three Gorges Dam reached 8.35 billion in 1965, but abundance during 2005–2012 was only 0.25 billion. One of the main reasons was that the hydrodynamic conditions of the spawning ground could not meet the four species’ breeding requirements. However, due to the limitations of traditional detection tools, the spawning characteristics of these four species of carp were still unclear. In this study, the ultrasonic telemetry and a three–dimensional hydrodynamic model were utilized to build the habitat suitability index (HSI curves for the four species of carp. The habitat suitability model was then built based on HSI curves to assess spawning habitat quantity under different flow conditions. Finally, the habitat suitability model in the Yidu spawning ground was validated using 32 groups of sampling data in 2015 and 2017. The statistical results showed that the most suitable velocity ranged from 0.78 m/s to 0.93 m/s. The most suitable water depth ranged from 14.56 m to 16.35 m, and the most suitable Froude number ranged from 0.049 to 0.129. The habitat suitability model simulation results indicated that when the discharge was between 15,000 m3/s and 21,300 m3/s, the weighted usable area (WUA values in both the Yidu and Zhicheng spawning grounds would remain at a high level. The validation results showed that most

  9. Adaptive breeding habitat selection: Is it for the birds?

    Science.gov (United States)

    Chalfoun, Anna D.; Schmidt, Kenneth A.

    2012-01-01

    The question of why animals choose particular habitats has important implications for understanding behavioral evolution and distribution of organisms in the wild and for delineating between habitats of different quality for conservation and management. Habitats chosen by animals can influence fitness outcomes via the costs (e.g., predation risk) and benefits (e.g., food availability) of habitat use. Habitat preferences should therefore be under selection to favor those that confer fitness advantages (Clark and Shutler 1999). Indeed, prevailing theory suggests that the habitat preferences of animals should be adaptive, such that fitness is higher in preferred habitats (Hildén 1965, Southwood 1977, Martin 1998). However, studies have often identified apparent mismatches between observed habitat preferences and fitness outcomes across a wide variety of taxa (Valladares and Lawton 1991, Mayhew 1997, Kolbe and Janzen 2002, Arlt and Pärt 2007, Mägi et al. 2009). Certainly, one limitation of studies may be that assessment of “fitness” is typically constrained to fitness surrogates such as nest success rather than lifetime reproductive success or classic Fisherian fitness (Endler 1986). Nevertheless, important habitat choices such as nest sites influence the probability that temporarily sedentary, dependent young are discovered by enemies such as predators and parasites. We therefore expect, on average, to see congruence between evolved habitat preferences and relevant components of fitness (e.g., nest success). Here, we (1) review the prevalence of apparent mismatches between avian breeding-habitat preferences and fitness outcomes using nest-site selection as a focus; (2) describe several potential mechanisms for such mismatches, including anthropogenic, methodological, and ecological–evolutionary; and (3) suggest a framework for understanding the contexts in which habitat preferences represent adaptive decisions, with a primary focus on ecological information

  10. Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico

    Science.gov (United States)

    Rivieccio, M.; Thompson, B.C.; Gould, W.R.; Boykin, K.G.

    2003-01-01

    that could substantially reduce habitat of chipmunks over a mountain range.

  11. Habitats and Species Covered by the EEC Habitats Directive

    DEFF Research Database (Denmark)

    Pihl, S.; Søgaard, B.; Ejrnæs, R.

    of Conservation (SAC's), Natura 2000. The designations are based upon the presence of 60 of the natural habitat types listed in Annex I of the Directive and approx. 44 of the species listed in Annex II which occur within the territory of Denmark and for the conservation of which the Community has a special...... and the Danish county authorities have initiated a co-operative programme to provide and compile the data necessary to assess the conservation status of the natural habitat types and species concerned. The purpose of this report is to present the conservation status of the habitats and species in Denmark...

  12. Habitat Evaluation Procedures Report; Carl Property - Yakama Nation.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul; Muse, Anthony

    2008-02-01

    A baseline habitat evaluation procedures (HEP) analysis was conducted on the Carl property (160 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also helped assess the general ecological condition of the property. The Carl property appeared damaged from livestock grazing and exhibited a high percentage of invasive forbs. Exotic grasses, while present, did not comprise a large percentage of the available cover in most areas. Cover types were primarily grassland/shrubsteppe with a limited emergent vegetation component. Baseline HEP surveys generated 356.11 HUs or 2.2 HUs per acre. Habitat units were associated with the following HEP models: California quail (47.69 HUs), western meadowlark (114.78 HUs), mallard (131.93 HUs), Canada goose (60.34 HUs), and mink (1.38 HUs).

  13. Thermal carrying capacity for a thermally-sensitive species at the warmest edge of its range.

    Directory of Open Access Journals (Sweden)

    Daniel Ayllón

    Full Text Available Anthropogenic environmental change is causing unprecedented rates of population extirpation and altering the setting of range limits for many species. Significant population declines may occur however before any reduction in range is observed. Determining and modelling the factors driving population size and trends is consequently critical to predict trajectories of change and future extinction risk. We tracked during 12 years 51 populations of a cold-water fish species (brown trout Salmo trutta living along a temperature gradient at the warmest thermal edge of its range. We developed a carrying capacity model in which maximum population size is limited by physical habitat conditions and regulated through territoriality. We first tested whether population numbers were driven by carrying capacity dynamics and then targeted on establishing (1 the temperature thresholds beyond which population numbers switch from being physical habitat- to temperature-limited; and (2 the rate at which carrying capacity declines with temperature within limiting thermal ranges. Carrying capacity along with emergent density-dependent responses explained up to 76% of spatio-temporal density variability of juveniles and adults but only 50% of young-of-the-year's. By contrast, young-of-the-year trout were highly sensitive to thermal conditions, their performance declining with temperature at a higher rate than older life stages, and disruptions being triggered at lower temperature thresholds. Results suggest that limiting temperature effects were progressively stronger with increasing anthropogenic disturbance. There was however a critical threshold, matching the incipient thermal limit for survival, beyond which realized density was always below potential numbers irrespective of disturbance intensity. We additionally found a lower threshold, matching the thermal limit for feeding, beyond which even unaltered populations declined. We predict that most of our study

  14. Relating Yellow Rail (Coturnicops noveboracensis) occupancy to habitat and landscape features in the context of fire

    Science.gov (United States)

    Austin, Jane E.; Buhl, Deborah A.

    2013-01-01

    The Yellow Rail (Coturnicops noveboracensis) is a focal species of concern associated with shallowly flooded emergent wetlands, most commonly sedge (Carex spp.) meadows. Their populations are believed to be limited by loss or degradation of wetland habitat due to drainage, altered hydrology, and fire suppression, factors that have often resulted in encroachment of shrubs into sedge meadows and change in vegetative cover. Nocturnal call-playback surveys for Yellow Rails were conducted over 3 years at Seney National Wildlife Refuge in the Upper Peninsula of Michigan. Effects of habitat structure and landscape variables on the probability of use by Yellow Rails were assessed at two scales, representing a range of home range sizes, using generalized linear mixed models. At the 163-m (8-ha) scale, year with quadratic models of maximum and mean water depths best explained the data. At the 300-m (28-ha) scale, the best model contained year and time since last fire (≤ 1, 2–5, and > 10 years). The probability of use by Yellow Rails was 0.285 ± 0.132 (SE) for points burned 2-5 years ago, 0.253 ± 0.097 for points burned ≤ 1 year ago, and 0.028 ± 0.019 for points burned > 10 years ago. Habitat differences relative to fire history and comparisons between sites with and without Yellow Rails indicated that Yellow Rails used areas with the deepest litter and highest ground cover, and relatively low shrub cover and heights, as well as landscapes having greater sedge-grass cover and less lowland woody or upland cover types. Burning every 2-5 years appears to provide the litter, ground-level cover, and woody conditions attractive to Yellow Rails. Managers seeking to restore and sustain these wetland systems would benefit from further investigations into how flooding and fire create habitat conditions attractive to breeding Yellow Rails

  15. Modeling amphibian energetics, habitat suitability, and movements of western toads, Anaxyrus (=Bufo) boreas, across present and future landscapes

    Science.gov (United States)

    Bartelt, Paul E.; Klaver, Robert W.; Porter, Warren P.

    2010-01-01

    Effective conservation of amphibian populations requires the prediction of how amphibians use and move through a landscape. Amphibians are closely coupled to their physical environment. Thus an approach that uses the physiological attributes of amphibians, together with knowledge of their natural history, should be helpful. We used Niche Mapper™ to model the known movements and habitat use patterns of a population of Western toads (Anaxyrus (=Bufo) boreas) occupying forested habitats in southeastern Idaho. Niche Mapper uses first principles of environmental biophysics to combine features of topography, climate, land cover, and animal features to model microclimates and animal physiology and behavior across landscapes. Niche Mapper reproduced core body temperatures (Tc) and evaporation rates of live toads with average errors of 1.6 ± 0.4 °C and 0.8 ± 0.2 g/h, respectively. For four different habitat types, it reproduced similar mid-summer daily temperature patterns as those measured in the field and calculated evaporation rates (g/h) with an average error rate of 7.2 ± 5.5%. Sensitivity analyses indicate these errors do not significantly affect estimates of food consumption or activity. Using Niche Mapper we predicted the daily habitats used by free-ranging toads; our accuracy for female toads was greater than for male toads (74.2 ± 6.8% and 53.6 ± 15.8%, respectively), reflecting the stronger patterns of habitat selection among females. Using these changing to construct a cost surface, we also reconstructed movement paths that were consistent with field observations. The effect of climate warming on toads depends on the interaction of temperature and atmospheric moisture. If climate change occurs as predicted, results from Niche Mapper suggests that climate warming will increase the physiological cost of landscapes thereby limiting the activity for toads in different habitats.

  16. Effect of ice formation and streamflow on salmon incubation habitat in the lower Bradley River, Alaska

    Science.gov (United States)

    Rickman, R.L.

    1996-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate salmon egg incubation habitat. The study that determined this minimum flow did not account for the effects of ice formation on habitat. An investigation was made during periods of ice formation. Hydraulic properties and field water-quality data were measured in winter only from March 1993 to April 1995 at six transects in the lower Bradley River. Discharge in the lower Bradley River ranged from 42.6 to 73.0 cubic feet per second (average 57 cubic feet per second) with ice conditions ranging from near ice free to 100 percent ice cover. Stream water velocity and depth were adequate for habitat protection for all ice conditions and discharges. No relation was found between percent ice cover and mean velocity and depth for any given discharge and no trends were found with changes in discharge for a given ice condition. Velocity distribution within each transect varied significantly from one sampling period to the next. Mean depth and velocity at flows of 40 cubic feet per second or less could not be predicted. No consistent relation was found between the amount of wetted perimeter and percent ice cover. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface and intragravel-water dissolved-oxygen levels were adequate for all flows and ice conditions. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Excellent oxygen exchange was indicated throughout the study reach. Stranding potential of salmon fry was found to be low throughout the study reach. The limiting factors for determining the minimal acceptable flow limit appear to be stream-water velocity and depth, although specific limits could not be estimated because of the high flows that occurred during this study.

  17. Steelhead Critical Habitat, Coast - NOAA [ds122

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the Coastal California Steelhead ESUs (evolutionarily...

  18. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Natural Resource Agency — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  19. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    Science.gov (United States)

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and

  20. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    Science.gov (United States)

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  1. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  2. Habitat variability does not generally promote metabolic network modularity in flies and mammals.

    Science.gov (United States)

    Takemoto, Kazuhiro

    2016-01-01

    The evolution of species habitat range is an important topic over a wide range of research fields. In higher organisms, habitat range evolution is generally associated with genetic events such as gene duplication. However, the specific factors that determine habitat variability remain unclear at higher levels of biological organization (e.g., biochemical networks). One widely accepted hypothesis developed from both theoretical and empirical analyses is that habitat variability promotes network modularity; however, this relationship has not yet been directly tested in higher organisms. Therefore, I investigated the relationship between habitat variability and metabolic network modularity using compound and enzymatic networks in flies and mammals. Contrary to expectation, there was no clear positive correlation between habitat variability and network modularity. As an exception, the network modularity increased with habitat variability in the enzymatic networks of flies. However, the observed association was likely an artifact, and the frequency of gene duplication appears to be the main factor contributing to network modularity. These findings raise the question of whether or not there is a general mechanism for habitat range expansion at a higher level (i.e., above the gene scale). This study suggests that the currently widely accepted hypothesis for habitat variability should be reconsidered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  4. A radiation analysis of lunar surface habitats

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Tripathi, R.K.; Clowdsley, M.S.; Nealy, J.E.

    2003-01-01

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to minimize the astronaut radiation exposure and at the same time control the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process performs minimization of mass along all phases of a mission scenario, considered in terms of time frame, equipment, location, crew characteristics and performance required, radiation exposure annual and career limit constraints (those proposed in NCRP 132), and implementation of the ALARA principle. In the lunar environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in detail (e.g. shape, thickness, materials, etc) with considerations of various shielding strategies. The results for all scenarios clearly showed that the direct exposure to the space environment like in transfers and EVAs phases gives the most of the dose, with the proposed shielded habitats and shelters giving quite a good protection from radiation. Operational constraints on hardware and scenarios have all been considered by the optimization techniques. Within the limits of this preliminary analysis, the three Moon Base related mission scenarios are perfectly feasible from the astronaut radiation safety point of view with the currently adopted and proposed

  5. A study on biological activity of marine fungi from different habitats in coastal regions

    OpenAIRE

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results show...

  6. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Natural Resource Agency — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  7. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  8. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  9. Leatherback Sea Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for leatherback turtle as designated by Federal Register Vol. 44, No. 17711, March 23, 1979, Rules and Regulations....

  10. Hawksbill Sea Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for hawksbill turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations....

  11. Endangered Species Act Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Critical habitat (CH) is designated for the survival and recovery of species listed as threatened or endangered under the Endangered Species Act (ESA). Critical...

  12. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  13. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  14. Habitat Preferences of Juvenile Abalone (Haliotis mariae Wood, 1828 Along the Dhofar Coast of Oman and Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Schalk Willem Petrus de Waal

    2012-01-01

    Full Text Available Surveys were conducted along the eastern Dhofar coast of Oman to investigate densities and habitat preferences of juvenile Haliotis mariae ( 50 cm Ø, respectively. B values were highest for urchins (6 times that for small boulders, and for boulders <50 cm Ø. B values for boulder habitats decreased as boulder size increased. Urchin utilisation by juvenile abalone as shelter ranged between geographic areas from a minimum of 15.5% to a maximum of 47.6%. The proportion of total habitat that is preferred by more than 97% of juvenile abalone found, including urchins and boulders < 50 cm Ø, comprises 29% of surveyed substratum. While the role urchins play on wild juvenile H. mariae has not proved vital, it is definitely significant. Although juvenile densities are low and are not currently limited by the availability of suitable habitat, it is crucial to identify and conserve those microhabitats that support recruitment of H. mariae. The abundance of these areas should be among the criteria used in selecting protected conservation areas.

  15. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a

  16. Grizzly bear habitat selection is scale dependent.

    Science.gov (United States)

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  17. Naturalization of European plants on other continents: The role of donor habitats.

    Science.gov (United States)

    Kalusová, Veronika; Chytrý, Milan; van Kleunen, Mark; Mucina, Ladislav; Dawson, Wayne; Essl, Franz; Kreft, Holger; Pergl, Jan; Weigelt, Patrick; Winter, Marten; Pyšek, Petr

    2017-12-26

    The success of European plant species as aliens worldwide is thought to reflect their association with human-disturbed environments. However, an explicit test including all human-made, seminatural and natural habitat types of Europe, and their contributions as donor habitats of naturalized species to the rest of the globe, has been missing. Here we combine two databases, the European Vegetation Checklist and the Global Naturalized Alien Flora, to assess how human influence in European habitats affects the probability of naturalization of their plant species on other continents. A total of 9,875 native European vascular plant species were assigned to 39 European habitat types; of these, 2,550 species have become naturalized somewhere in the world. Species that occur in both human-made habitats and seminatural or natural habitats in Europe have the highest probability of naturalization (64.7% and 64.5% of them have naturalized). Species associated only with human-made or seminatural habitats still have a significantly higher probability of becoming naturalized (41.7% and 28.6%, respectively) than species confined to natural habitats (19.4%). Species associated with arable land and human settlements were recorded as naturalized in the largest number of regions worldwide. Our findings highlight that plant species' association with native-range habitats disturbed by human activities, combined with broad habitat range, play an important role in shaping global patterns of plant invasions.

  18. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species.

  19. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    International Nuclear Information System (INIS)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species

  20. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  1. Oil patch fitting in with wildlife habitat

    Energy Technology Data Exchange (ETDEWEB)

    Lea, N.

    2003-06-01

    Changes in grizzly bear and caribou populations associated with roads, seismic lines, and pipelines are of great concern to the oil, gas and forestry industries since the presence of structures are providing easier access to wildlife habitats for predatory wolves and humans. This article provides details of this concern and describes efforts, such as the Caribou Range Recovery Project, towards mitigating the impact of the industry and hastening the reclamation of the woodland caribou habitat disturbed by humans. This project, funded by a consortium of government, industry and the University of Alberta, is a three-year project which focuses on the revegetation of disturbed areas in the highly-impacted caribou ranges of northern and west-central Alberta, the development of a preliminary set of guidelines for reclamation of industrial developments in caribou ranges, development of a long-term monitoring strategy for assessing the success of these reclamation efforts, and on promoting First Nations involvement through consultation and participation. Previous projects focused on Little Smoky, Redrock, Red Earth, and Stony Mountain areas. Details are also provided of the Foot Hills Model Forest Grizzly Bear Research project, a five-year, $3 million study deigned to ensure healthy grizzly bear populations in west-central Alberta by better integrating their needs into land management decisions.

  2. Attributes of seasonal home range influence choice of migratory strategy in white-tailed deer

    Science.gov (United States)

    Henderson, Charles R.; Mitchell, Michael S.; Myers, Woodrow L.; Lukacs, Paul M.; Nelson, Gerald P.

    2018-01-01

    Partial migration is a common life-history strategy among ungulates living in seasonal environments. The decision to migrate or remain on a seasonal range may be influenced strongly by access to high-quality habitat. We evaluated the influence of access to winter habitat of high quality on the probability of a female white-tailed deer (Odocoileus virginianus) migrating to a separate summer range and the effects of this decision on survival. We hypothesized that deer with home ranges of low quality in winter would have a high probability of migrating, and that survival of an individual in winter would be influenced by the quality of their home range in winter. We radiocollared 67 female white-tailed deer in 2012 and 2013 in eastern Washington, United States. We estimated home range size in winter using a kernel density estimator; we assumed the size of the home range was inversely proportional to its quality and the proportion of crop land within the home range was proportional to its quality. Odds of migrating from winter ranges increased by 3.1 per unit increase in home range size and decreased by 0.29 per unit increase in the proportion of crop land within a home range. Annual survival rate for migrants was 0.85 (SD = 0.05) and 0.84 (SD = 0.09) for residents. Our finding that an individual with a low-quality home range in winter is likely to migrate to a separate summer range accords with the hypothesis that competition for a limited amount of home ranges of high quality should result in residents having home ranges of higher quality than migrants in populations experiencing density dependence. We hypothesize that density-dependent competition for high-quality home ranges in winter may play a leading role in the selection of migration strategy by female white-tailed deer.

  3. A management-oriented framework for selecting metrics used to assess habitat- and path-specific quality in spatially structured populations

    Science.gov (United States)

    Nicol, Sam; Wiederholt, Ruscena; Diffendorfer, James E.; Mattsson, Brady; Thogmartin, Wayne E.; Semmens, Darius J.; Laura Lopez-Hoffman,; Norris, Ryan

    2016-01-01

    Mobile species with complex spatial dynamics can be difficult to manage because their population distributions vary across space and time, and because the consequences of managing particular habitats are uncertain when evaluated at the level of the entire population. Metrics to assess the importance of habitats and pathways connecting habitats in a network are necessary to guide a variety of management decisions. Given the many metrics developed for spatially structured models, it can be challenging to select the most appropriate one for a particular decision. To guide the management of spatially structured populations, we define three classes of metrics describing habitat and pathway quality based on their data requirements (graph-based, occupancy-based, and demographic-based metrics) and synopsize the ecological literature relating to these classes. Applying the first steps of a formal decision-making approach (problem framing, objectives, and management actions), we assess the utility of metrics for particular types of management decisions. Our framework can help managers with problem framing, choosing metrics of habitat and pathway quality, and to elucidate the data needs for a particular metric. Our goal is to help managers to narrow the range of suitable metrics for a management project, and aid in decision-making to make the best use of limited resources.

  4. Intervalo hídrico ótimo na avaliação de sistemas de pastejo contínuo e rotacionado Least limiting water range in the evaluation of continuous and short-duration grazing systems

    Directory of Open Access Journals (Sweden)

    T. P. Leão

    2004-06-01

    Full Text Available A qualidade física do solo sob sistemas de pastejo contínuo e rotacionado foi avaliada pelo Intervalo Hídrico Ótimo (IHO. A amostragem foi realizada na área experimental da Embrapa Gado de Corte. Foi estudado um Latossolo Vermelho distrófico. Foram avaliados quatro piquetes, sendo dois no sistema de pastejo contínuo e dois no sistema de pastejo rotacionado. No sistema de pastejo contínuo, implementado com a espécie Brachiaria decumbens cv. Basilisk, foram retiradas 30 amostras por piquete, não tendo um dos piquetes recebido adubação de manutenção (Cs, enquanto o outro havia recebido adubação bianual de manutenção (Cc. No sistema de pastejo rotacionado, implementado com a espécie Panicum maximum cv. Tanzânia, foram retiradas 30 amostras por piquete; em um dos piquetes, o resíduo pós-pastejo era mantido entre 2,0 e 2,5 t ha-1 de matéria seca total (MST (R1, enquanto no outro era mantido entre 3,0 e 3,5 t ha-1 MST (R2. As amostras foram submetidas a um gradiente de tensão de água e, posteriormente, utilizadas nas determinações da densidade do solo (Ds, resistência do solo à penetração (RP, umidade volumétrica (tetav e do IHO. O sistema de pastejo rotacionado apresentou piores condições físicas do solo para o crescimento vegetal, avaliadas pelo critério do IHO. Os maiores valores de Ds e menor IHO foram observados no R1, o que foi atribuído às taxas de lotação mais elevadas aplicadas neste piquete.Soil physical quality in continuous and short-duration rotational cattle grazing systems was evaluated using the Least Limiting Water Range (LLWR approach. Soil samples were collected on an experimental site at the Embrapa - Beef Cattle Research Center (Campo Grande, MS, Brazil. The studied soil was a Typic Acrudox. Four sampling sites were selected: two under a short-duration continuous grazing system and two under intensive short-duration rotational grazing system. Thirty soil cores were collected in each site

  5. Least limiting water range and physical quality of soil under groundcover management systems in citrus Intervalo hídrico ótimo e qualidade física do solo em sistemas de manejo nas entrelinhas de citros

    Directory of Open Access Journals (Sweden)

    Jonez Fidalski

    2010-08-01

    Full Text Available Machinery-based farming operations used for perennial fruit crops often damage soils, particularly if the soil is wet and prone to compaction. We hypothesized that perennial vegetation growing in the interrows of orange orchards can mitigate the soil physical degradation from machinery traffic. The objective of this study was to investigate the effects of different groundcover management systems on the soil physical quality indicators including the least limiting water range (LLWR. An experiment was started in 1993 in a Typic Paleudult to evaluate three groundcover management systems: Bahia grass (Paspalum notatum with mowing, perennial peanut (Arachis pintoi, and natural regrowth in which weeds were controlled by herbicide. The experimental design was randomized complete block with three replications. In May 2003, 216 undisturbed soil samples were collected at 0-0.15-m depths under and between wheel tracks in the orchard interrows. The soil bulk density, soil organic carbon content, resistance to penetration, soil water retention curve and soil resistance to penetration curve were determined in order to estimate the LLWR. The higher LLWR under wheel tracks in Bahia grass compared to perennial peanut or natural regrowth suggest that a better soil physical quality was achieved with Bahia grass.Operações motomecanizadas utilizadas no manejo das entrelinhas dos pomares de frutas com freqüência causam a degradação física do solo, especialmente quando realizadas com o solo úmido e suscetível à compactação. A hipótese desse estudo é que a manutenção da vegetação permanente nas entrelinhas do pomar pode mitigar a degradação física do solo causada pelo tráfego de máquinas. O objetivo desse estudo é verificar o efeito de diferentes sistemas de manejo da cobertura permanente das entrelinhas sobre o intervalo hídrico ótimo (IHO e a qualidade física do solo. Um experimento foi iniciado em 1993 num Argissolo Vermelho distr

  6. Fish assemblages associated with natural and anthropogenically-modified habitats in a marine embayment: comparison of baited videos and opera-house traps.

    Directory of Open Access Journals (Sweden)

    Corey B Wakefield

    Full Text Available Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment and modified (rockwall and dredge channel habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.

  7. Do ampharetids take sedimented steps between vents and seeps? Phylogeny and habitat-use of Ampharetidae (Annelida, Terebelliformia) in chemosynthesis-based ecosystems.

    Science.gov (United States)

    Eilertsen, Mari H; Kongsrud, Jon A; Alvestad, Tom; Stiller, Josefin; Rouse, Greg W; Rapp, Hans T

    2017-10-31

    A range of higher animal taxa are shared across various chemosynthesis-based ecosystems (CBEs), which demonstrates the evolutionary link between these habitats, but on a global scale the number of species inhabiting multiple CBEs is low. The factors shaping the distributions and habitat specificity of animals within CBEs are poorly understood, but geographic proximity of habitats, depth and substratum have been suggested as important. Biogeographic studies have indicated that intermediate habitats such as sedimented vents play an important part in the diversification of taxa within CBEs, but this has not been assessed in a phylogenetic framework. Ampharetid annelids are one of the most commonly encountered animal groups in CBEs, making them a good model taxon to study the evolution of habitat use in heterotrophic animals. Here we present a review of the habitat use of ampharetid species in CBEs, and a multi-gene phylogeny of Ampharetidae, with increased taxon sampling compared to previous studies. The review of microhabitats showed that many ampharetid species have a wide niche in terms of temperature and substratum. Depth may be limiting some species to a certain habitat, and trophic ecology and/or competition are identified as other potentially relevant factors. The phylogeny revealed that ampharetids have adapted into CBEs at least four times independently, with subsequent diversification, and shifts between ecosystems have happened in each of these clades. Evolutionary transitions are found to occur both from seep to vent and vent to seep, and the results indicate a role of sedimented vents in the transition between bare-rock vents and seeps. The high number of ampharetid species recently described from CBEs, and the putative new species included in the present phylogeny, indicates that there is considerable diversity still to be discovered. This study provides a molecular framework for future studies to build upon and identifies some ecological and

  8. A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING

    Directory of Open Access Journals (Sweden)

    A. KUN

    2007-01-01

    Full Text Available Today the documentation of natural heritage with scientific methods but for conservation practice – like mapping of actual vegetation – becomes more and more important. For this purpose mapping guides containing only the names and descriptions of vegetation types are not sufficient. Instead, new, mapping-oriented vegetation classification systems and handbooks are needed. There are different standardised systems fitted to the characteristics of a region already published and used successfully for surveying large territories. However, detailed documentation of the aims and steps of their elaboration is still missing. Here we present a habitat-classification method developed specifically for mapping and the steps of its development. Habitat categories and descriptions reflect site conditions, physiognomy and species composition as well. However, for species composition much lower role was given deliberately than in the phytosociological systems. Recognition and mapping of vegetation types in the field is highly supported by a definition, list of subtypes and list of ‘types not belonging to this habitat category’. Our system is two-dimensional: the first dimension is habitat type, the other is naturalness based habitat quality. The development of the system was conducted in two steps, over 200 mappers already tested it over 7000 field days in different projects.

  9. Complementary habitat use by wild bees in agro-natural landscapes.

    Science.gov (United States)

    Mandelik, Yael; Winfree, Rachael; Neeson, Thomas; Kremen, Claire

    2012-07-01

    Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat

  10. Inter-annual variability of North Sea plaice spawning habitat

    Science.gov (United States)

    Loots, C.; Vaz, S.; Koubbi, P.; Planque, B.; Coppin, F.; Verin, Y.

    2010-11-01

    Potential spawning habitat is defined as the area where environmental conditions are suitable for spawning to occur. Spawning adult data from the first quarter (January-March) of the International Bottom Trawl Survey have been used to study the inter-annual variability of the potential spawning habitat of North Sea plaice from 1980 to 2007. Generalised additive models (GAM) were used to create a model that related five environmental variables (depth, bottom temperature and salinity, seabed stress and sediment type) to presence-absence and abundance of spawning adults. Then, the habitat model was applied each year from 1970 to 2007 to predict inter-annual variability of the potential spawning habitat. Predicted responses obtained by GAM for each year were mapped using kriging. A hierarchical classification associated with a correspondence analysis was performed to cluster spawning suitable areas and to determine how they evolved across years. The potential spawning habitat was consistent with historical spawning ground locations described in the literature from eggs surveys. It was also found that the potential spawning habitat varied across years. Suitable areas were located in the southern part of the North Sea and along the eastern coast of England and Scotland in the eighties; they expanded further north from the nineties. Annual survey distributions did not show such northward expansion and remained located in the southern North Sea. This suggests that this species' actual spatial distribution remains stable against changing environmental conditions, and that the potential spawning habitat is not fully occupied. Changes in environmental conditions appear to remain within plaice environmental ranges, meaning that other factors may control the spatial distribution of plaice spawning habitat.

  11. Mapping Habitats and Developing Baselines in Offshore Marine Reserves with Little Prior Knowledge: A Critical Evaluation of a New Approach.

    Directory of Open Access Journals (Sweden)

    Emma Lawrence

    Full Text Available The recently declared Australian Commonwealth Marine Reserve (CMR Network covers a total of 3.1 million km2 of continental shelf, slope, and abyssal habitat. Managing and conserving the biodiversity values within this network requires knowledge of the physical and biological assets that lie within its boundaries. Unfortunately very little is known about the habitats and biological assemblages of the continental shelf within the network, where diversity is richest and anthropogenic pressures are greatest. Effective management of the CMR estate into the future requires this knowledge gap to be filled efficiently and quantitatively. The challenge is particularly great for the shelf as multibeam echosounder (MBES mapping, a key tool for identifying and quantifying habitat distribution, is time consuming in shallow depths, so full coverage mapping of the CMR shelf assets is unrealistic in the medium-term. Here we report on the results of a study undertaken in the Flinders Commonwealth Marine Reserve (southeast Australia designed to test the benefits of two approaches to characterising shelf habitats: (i MBES mapping of a continuous (~30 km2 area selected on the basis of its potential to include a range of seabed habitats that are potentially representative of the wider area, versus; (ii a novel approach that uses targeted mapping of a greater number of smaller, but spatially balanced, locations using a Generalized Random Tessellation Stratified sample design. We present the first quantitative estimates of habitat type and sessile biological communities on the shelf of the Flinders reserve, the former based on three MBES analysis techniques. We contrast the quality of information that both survey approaches offer in combination with the three MBES analysis methods. The GRTS approach enables design based estimates of habitat types and sessile communities and also identifies potential biodiversity hotspots in the northwest corner of the reserve's IUCN

  12. Mapping Habitats and Developing Baselines in Offshore Marine Reserves with Little Prior Knowledge: A Critical Evaluation of a New Approach.

    Science.gov (United States)

    Lawrence, Emma; Hayes, Keith R; Lucieer, Vanessa L; Nichol, Scott L; Dambacher, Jeffrey M; Hill, Nicole A; Barrett, Neville; Kool, Johnathan; Siwabessy, Justy

    2015-01-01

    The recently declared Australian Commonwealth Marine Reserve (CMR) Network covers a total of 3.1 million km2 of continental shelf, slope, and abyssal habitat. Managing and conserving the biodiversity values within this network requires knowledge of the physical and biological assets that lie within its boundaries. Unfortunately very little is known about the habitats and biological assemblages of the continental shelf within the network, where diversity is richest and anthropogenic pressures are greatest. Effective management of the CMR estate into the future requires this knowledge gap to be filled efficiently and quantitatively. The challenge is particularly great for the shelf as multibeam echosounder (MBES) mapping, a key tool for identifying and quantifying habitat distribution, is time consuming in shallow depths, so full coverage mapping of the CMR shelf assets is unrealistic in the medium-term. Here we report on the results of a study undertaken in the Flinders Commonwealth Marine Reserve (southeast Australia) designed to test the benefits of two approaches to characterising shelf habitats: (i) MBES mapping of a continuous (~30 km2) area selected on the basis of its potential to include a range of seabed habitats that are potentially representative of the wider area, versus; (ii) a novel approach that uses targeted mapping of a greater number of smaller, but spatially balanced, locations using a Generalized Random Tessellation Stratified sample design. We present the first quantitative estimates of habitat type and sessile biological communities on the shelf of the Flinders reserve, the former based on three MBES analysis techniques. We contrast the quality of information that both survey approaches offer in combination with the three MBES analysis methods. The GRTS approach enables design based estimates of habitat types and sessile communities and also identifies potential biodiversity hotspots in the northwest corner of the reserve's IUCN zone IV, and in

  13. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient.

    Science.gov (United States)

    Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo

    2007-09-01

    Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together

  14. Habitat and conservation status of the beaver in the Sierra San Luis Sonora, Mexico

    Science.gov (United States)

    Karla Pelz Serrano; Eduardo Ponce Guevara; Carlos A. Lopez Gonzalez

    2005-01-01

    The status of beaver (Castor canadensis) in northeastern Sonora, Mexico, is uncertain. We surveyed the Cajon Bonito River to assess the beaver’s status and habitat and found five colonies. Limiting factors appear to be pollution due to animal waste, deforestation of riparian trees, and human exploitation. Beavers did not appear to require habitat...

  15. Season and landscape composition affect pollen foraging distances and habitat use of honey bees.

    Science.gov (United States)

    Danner, Nadja; Molitor, Anna Maria; Schiele, Susanne; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2016-09-01

    Honey bees (Apis mellifera L.) show a large variation in foraging distances and use a broad range of plant species as pollen resources, even in regions with intensive agriculture. However, it is unknown how increasing areas of mass-flowering crops like oilseed rape (Brassica napus; OSR) or a decrease of seminatural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. We studied pollen foraging of honey bee colonies in 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km and used waggle dances and digital geographic maps with major land cover types to reveal the distance and visited habitat type on a landscape level. Mean pollen foraging distance of 1347 decoded bee dances was 1015 m (± 26 m; SEM). In spring, increasing area of flowering OSR within 2 km reduced mean pollen foraging distances from 1324 m to only 435 m. In summer, increasing cover of SNH areas close to the colonies (within 200 m radius) reduced mean pollen foraging distances from 846 to 469 m. Frequency of pollen foragers per habitat type, measured as the number of dances per hour and hectare, was equally high for SNH, grassland, and OSR fields, but lower for other crops and forests. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating that pollen resources in such simple agricultural landscapes are more limited. Overall, we conclude that SNH and mass-flowering crops can reduce foraging distances of honey bee colonies at different scales and seasons with possible benefits for the performance of honey bee colonies. Further, mixed agricultural landscapes with a high proportion of SNH reduce foraging densities of honey bees in SNH and thus possible competition for pollen resources. © 2016 by the Ecological Society of America.

  16. Identifying western yellow-billed cuckoo breeding habitat with a dual modelling approach

    Science.gov (United States)

    Johnson, Matthew J.; Hatten, James R.; Holmes, Jennifer A.; Shafroth, Patrick B.

    2017-01-01

    The western population of the yellow-billed cuckoo (Coccyzus americanus) was recently listed as threatened under the federal Endangered Species Act. Yellow-billed cuckoo conservation efforts require the identification of features and area requirements associated with high quality, riparian forest habitat at spatial scales that range from nest microhabitat to landscape, as well as lower-suitability areas that can be enhanced or restored. Spatially explicit models inform conservation efforts by increasing ecological understanding of a target species, especially at landscape scales. Previous yellow-billed cuckoo modelling efforts derived plant-community maps from aerial photography, an expensive and oftentimes inconsistent approach. Satellite models can remotely map vegetation features (e.g., vegetation density, heterogeneity in vegetation density or structure) across large areas with near perfect repeatability, but they usually cannot identify plant communities. We used aerial photos and satellite imagery, and a hierarchical spatial scale approach, to identify yellow-billed cuckoo breeding habitat along the Lower Colorado River and its tributaries. Aerial-photo and satellite models identified several key features associated with yellow-billed cuckoo breeding locations: (1) a 4.5 ha core area of dense cottonwood-willow vegetation, (2) a large native, heterogeneously dense forest (72 ha) around the core area, and (3) moderately rough topography. The odds of yellow-billed cuckoo occurrence decreased rapidly as the amount of tamarisk cover increased or when cottonwood-willow vegetation was limited. We achieved model accuracies of 75–80% in the project area the following year after updating the imagery and location data. The two model types had very similar probability maps, largely predicting the same areas as high quality habitat. While each model provided unique information, a dual-modelling approach provided a more complete picture of yellow-billed cuckoo habitat

  17. Gene flow connects coastal populations of a habitat specialist, the Clapper Rail Rallus crepitans

    Science.gov (United States)

    Coster, Stephanie S.; Welsh, Amy B.; Costanzo, Gary R.; Harding, Sergio R.; Anderson, James T.; Katzner, Todd

    2018-01-01

    Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographic range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of North America, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks, and a weak pattern of genetic differentiation that increased with geographic distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the North American Atlantic coast, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioral factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.

  18. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups.

    Directory of Open Access Journals (Sweden)

    Haigen Xu

    Full Text Available Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability