Inter-atomic interaction between electrons, 2
International Nuclear Information System (INIS)
Haga, Eijiro; Kato, Tomohiko; Aisaka, Tsuyoshi.
1978-01-01
Intra- and inter-atomic interactions in the exchange process are defined with respect to the Wannier function rather than the atomic function. In relation to the neutron scattering data for nickel, the behavior for the effective exchange parameter I(q) in the q-dependent susceptibility is, in RPA, investigated by taking into account the main types of the nearest neighbor interactions and by extending our previous treatment. The different types of interactions lead to different behavior for the q-dependence of I(q). The contribution to I(q) from inter-atomic interactions other than the exchange type decreases as the surface area of the Fermi surface becomes large. For the exchange type, the l-th neighbor interaction with l<=4 is taken into account, and, from the comparison with the empirical result for I(q), it is found that the inter-atomic contribution to I(0) is about thirty percent with a reasonable decrease against l. (author)
Orientational anharmonicity of interatomic interaction in cubic monocrystals
International Nuclear Information System (INIS)
Belomestnykh, Vladimir N.; Tesleva, Elena P.
2010-01-01
Anharmonicity of interatomic interaction from a position of physical acoustics under the standard conditions is investigated. It is shown that the measure of anharmonicity of interatomic interaction (Grilneisen parameter) is explicitly expressed through velocities of sound. Calculation results of orientation anharmonicity are shown on the example of 116 cubic monocrystals with different lattice structural type and type of chemical bond. Two types of anharmonicity interatomic interaction anisotropy are determined. Keywords: acoustics, orientational anharmonicity, Gruneisen parameter, velocity of sound
Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum
International Nuclear Information System (INIS)
Onwuagba, B.N.; Pal, S.
1987-01-01
It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum
Interatomic interactions in the effective medium theory
International Nuclear Information System (INIS)
Jacobsen, K.W.; Puska, M.J.
1986-08-01
An expression is derived for the total energy of a system of interacting atoms based on an ansatz for the total electron density of the system as a superposition of atom densities taken from calculations for the atoms embedded in a homogeneous electron gas. This leads to an expression for the interaction energy in terms of the embedding energy of the atoms in a homogeneous electron gas, and corrections accounting for instance for the d-d hybridization in the transition metals. The density of the homogeneous electron gas is chosen as the average of the density from the surrounding atoms. Due to the variational property of the total energy functional the errors in the interaction energy is second order in the deviation of the ansatz density from the true ground state values. The applicability of the approach is illustrated by calculations of the chohesive properties of some simple metals and all the 3d transition metals. The interaction energy can be expressed in a form simple enough to allow calculations for low symmetry systems and will be very well suited for simulations of time dependent and finite temperature problems. Preliminary results for the phonon dispersion relations and the surface energies and relaxations for Al are used to illustrate the versatility of the approach. The division of the total energy into a density dependent part, an electrostatic 'pair potential' part, and a hybridization part provides a very simple way of understanding a number of these phenomena. (orig.)
Cheng, Szu-Cheng; Jheng, Shih-Da
2016-08-22
This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.
Eutectic composite NiAl-Cr properties modeling based on interatomic interaction forces
Badamshin, I. Kh
2018-03-01
For new materials, information on the elasticity and strength characteristics necessary for calculating the stress-strain state of the turbine blades is limited. In these conditions, there is a need for theoretical methods for calculating the elastic and strength characteristics. The proposed theoretical methods are based on forces of interatomic interaction calculation. The classical methods based on the hypothesis of continuity do not allow calculating the material strength and thermophysical properties.
Directory of Open Access Journals (Sweden)
Марина Анатоліівна Рябікіна
2016-07-01
Full Text Available Modern industry uses a lot of elements as additives to improve the service characteristics of metal products that are to be used for various purposes. These elements can be divided into two groups: the first group includes the elements interacting with iron and improving its characteristics (alloying elements, and the second group includes the elements, that modify the characteristics of the structure and properties in an undesirable direction. These are trace elements: S, P, O, As, and others in steel. The negative impact of these elements shows itself as banding, the formation of non-metallic inclusions, flakes, grain boundary segregations et al. The influence of the elements of the both groups on the properties of steel depends on the nature and level of interatomic interaction in the alloy. Computational and analytical study of the major impurity elements in steel impact on the interatomic bond strength and the probability of forming complexes, clusters, and chemical compounds with the basic alloying elements in the steel has been carried out in the work. The theoretical parameter which defines the strength of the ion-covalent bond of two atoms: non-metallic – metallic is the electronegativity of elements. The electronegativity difference of the metal and non-metallic elements increasing, the ionic bonding and thermodynamic stability of these compounds increase. On the other hand, concentration of valent electrons is a universal characteristic of an atomic element which determines many of its properties, and especially the energy of interatomic interaction. Energy calculations of pairwise interatomic impurity elements: H, C, N, S, P, As interaction with Fe and major alloying elements in steel: Mn, Cr, Si, V, Al, Ti, W, Cu, Mo, Nb were made. It has been stated that all the impurity elements except phosphorus, hydrogen and arsenic have sufficient high adhesion with the majority of the metal elements in the modern steels. Phosphorus does
A general transformation to canonical form for potentials in pairwise interatomic interactions.
Walton, Jay R; Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W
2015-06-14
A generalized formulation of explicit force-based transformations is introduced to investigate the concept of a canonical potential in both fundamental chemical and intermolecular bonding. Different classes of representative ground electronic state pairwise interatomic interactions are referenced to a chosen canonical potential illustrating application of such transformations. Specifically, accurately determined potentials of the diatomic molecules H2, H2(+), HF, LiH, argon dimer, and one-dimensional dissociative coordinates in Ar-HBr, OC-HF, and OC-Cl2 are investigated throughout their bound potentials. Advantages of the current formulation for accurately evaluating equilibrium dissociation energies and a fundamentally different unified perspective on nature of intermolecular interactions will be emphasized. In particular, this canonical approach has significance to previous assertions that there is no very fundamental distinction between van der Waals bonding and covalent bonding or for that matter hydrogen and halogen bonds.
International Nuclear Information System (INIS)
Ryazanov, A.I.; Metelkin, E.V.
1980-01-01
Cascades of atomic collisions created by high energy particles as a result of irradiation of solids by them are considered. The solution of the problem is based on the investigation of the Boltzmann stationary kinetic equation for moving atoms. For this equation a model scattering indicatrix is constructed with an arbitrary form of the potential of interaction of moving atoms with lattice atoms. The choice of the model scattering indicatrix of atoms is determined by the normalization, the average energy loss in a single collision and by the deviation of the energy losses really occurring in the collision from the mean value, as well as by the initial kinetic equation for moving atoms. The energy distribution of moving atoms for arbitrary interatomic interaction potentials has been obtained using the constructed model scattering indicatrix. On the basis of the theory constructed a cascade is calculated with an interatomic interaction potential in the form of the Thomas-Fermi potential and the power potential. (author)
Energy Technology Data Exchange (ETDEWEB)
Ghasemian, E. [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Tavassoly, M.K., E-mail: mktavassoly@yazd.ac.ir [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Photonics Research Group, Engineering Research Center, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of)
2016-09-23
In this paper, we consider a model in which N two-level atoms in a Bose–Einstein condensate (BEC) interact with a single-mode quantized laser field. Our goal is to investigate the quantum dynamics of atoms in the BEC in the presence of interatom interactions. To achieve the purpose, at first, using the collective angular momentum operators, we try to reduce the dynamical Hamiltonian of the system to a well-known Jaynes–Cummings like model (JCM). We also use the Dicke model to construct the state of atomic subsystem, by which the analytical solution of the system may be obtained. Then, we analyze the atomic population inversion, the degree of entanglement between the “atoms in BEC” and the “field” as well as the Mandel parameter. Numerical results show that, the atomic population inversion, atom-field entanglement and quantum statistics of photons are very sensitive to the evolved parameters in the model (and so can be well-adjusted), such as the number of atoms in BEC, the intensity of initial field, the interatom coupling constant and detuning. To investigate the entanglement properties, we pay attention to the entropy and linear entropy. It is shown that, oscillations in the two entropy criteria may be seen, with some maxima of entanglement at some moments of time. Finally, looking for the quantum statistics, we evaluate the Mandel parameter, by which we demonstrate the sub-Poissonian statistics and so the nonclassical characteristics of the field state of system. Collapse-revival phenomenon, which is a distinguishable nonclassical characteristic of the system, can be apparently observed in the atomic population inversion and the Mandel parameter. - Highlights: • N two-level atoms in a BEC interacting with a laser field in the presence of interatom interactions is considered. • The atomic population inversion, degree of entanglement between the “atoms in BEC” and the “field” and the Mandel parameter are investigated. • Collapse
Cheng, Szu-Cheng; Jheng, Shih-Da
2016-01-01
This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coh...
DEFF Research Database (Denmark)
Hansen, Tim; Solomon, Gemma C.; Hansen, Thorsten
2017-01-01
In order to identify the location of an inelastic event and to distinguish between situations that are before or after this event, we derive equations for the interatomic inelastic transmission as a perturbation series in the electron-phonon interaction. This series contains both even and odd...... to second order and the 1st order correction represents the lowest order term of this new family of terms. We apply this to three model systems and are able to distinguish between situations before and after the inelastic event as steps in the 2nd order transmission. We also see that when the transmission...
Handbook of interatomic potentials
International Nuclear Information System (INIS)
Stoneham, A.M.; Taylor, R.
1981-08-01
This Handbook collects together interatomic potentials for a large number of metals. Most of the potentials describe the interactions of host metal atoms with each other, and these, in some cases, may be applied to solid and liquid metals. In addition, there are potentials (a) for a metallic impurity alloyed with the host, (b) for a small number of chemical impurities in the metal (eg H, O), and (c) for rare-gas impurities, notably He. The Handbook is intended to be a convenient source of potentials for bulk, surface and defect calculations, both static and dynamic. (author)
Interatomic spacing distribution in multicomponent alloys
International Nuclear Information System (INIS)
Toda-Caraballo, I.; Wróbel, J.S.; Dudarev, S.L.; Nguyen-Manh, D.; Rivera-Díaz-del-Castillo, P.E.J.
2015-01-01
A methodology to compute the distribution of interatomic distances in highly concentrated multicomponent alloys is proposed. By using the unit cell parameter and bulk modulus of the elements involved, the method accurately describes the distortion in the lattice produced by the interaction of the different atomic species. To prove this, density functional theory calculations have been used to provide the description of the lattice in a monophasic BCC MoNbTaVW high entropy alloy and its five sub-quaternary systems at different temperatures. Short-range order is also well described by the new methodology, where the mean error in the predicted atomic coordinates in comparison with the atomistic simulations is in the order of 1–2 pm over all the compositions and temperatures considered. The new method can be applied to tailor solid solution hardening, highly dependent on the distribution of interatomic distances, and guide the design of new high entropy alloys with enhanced properties
Brandt, Benedikt B.; Yannouleas, Constantine; Landman, Uzi
2018-05-01
Identification and understanding of the evolution of interference patterns in two-particle momentum correlations as a function of the strength of interatomic interactions are important in explorations of the nature of quantum states of trapped particles. Together with the analysis of two-particle spatial correlations, they offer the prospect of uncovering fundamental symmetries and structure of correlated many-body states, as well as opening vistas into potential control and utilization of correlated quantum states as quantum-information resources. With the use of the second-order density matrix constructed via exact diagonalization of the microscopic Hamiltonian, and an analytic Hubbard-type model, we explore here the systematic evolution of characteristic interference patterns in the two-body momentum and spatial correlation maps of two entangled ultracold fermionic atoms in a double well, for the entire attractive- and repulsive-interaction range. We uncover quantum-statistics-governed bunching and antibunching, as well as interaction-dependent interference patterns, in the ground and excited states, and interpret our results in light of the Hong-Ou-Mandel interference physics, widely exploited in photon indistinguishability testing and quantum-information science.
Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction
Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing
2018-06-01
We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.
International Nuclear Information System (INIS)
Schwarzer, N
2014-01-01
In order to understand the principle differences between rheological or simple stress tests like the uniaxial tensile test to contact mechanical tests and the differences between quasistatic contact experiments and oscillatory ones, this study resorts to effective first principles. This study will show how relatively simple models simulating bond interactions in solids using effective potentials like Lennard-Jones and Morse can be used to investigate the effect of time dependent stress-induced softening or stiffening of these solids. The usefulness of the current study is in the possibility of deriving relatively simple dependences of the bulk-modulus B on time, shear and pressure P with time t. In cases where it is possible to describe, or at least partially describe a material by Lennard-Jones potential approaches, the above- mentioned dependences are even completely free of microscopic material parameters. Instead of bond energies and length, only specific integral parameters like Young’s modulus and Poisson’s ratio are required. However, in the case of time dependent (viscose) material behavior the parameters are not constants anymore. They themselves depend on time and the actual stress field, especially the shear field. A body completely consisting of so called standard linear solid interacting particles will then phenomenologically show a completely different and usually much more complicated mechanical behavior. The influence of the time dependent pressure-shear-induced Young’s modulus change is discussed with respect to mechanical contact experiments and their analysis in the case of viscose materials. (papers)
Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica
Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.
2018-03-01
Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated
Phonon transport in a one-dimensional harmonic chain with long-range interaction and mass disorder
Zhou, Hangbo; Zhang, Gang; Wang, Jian-Sheng; Zhang, Yong-Wei
2016-11-01
Atomic mass and interatomic interaction are the two key quantities that significantly affect the heat conduction carried by phonons. Here, we study the effects of long-range (LR) interatomic interaction and mass disorder on the phonon transport in a one-dimensional harmonic chain with up to 105 atoms. We find that while LR interaction reduces the transmission of low-frequency phonons, it enhances the transmission of high-frequency phonons by suppressing the localization effects caused by mass disorder. Therefore, LR interaction is able to boost heat conductance in the high-temperature regime or in the large size regime, where the high-frequency modes are important.
Overview of interatomic potentials
International Nuclear Information System (INIS)
Bonny, G.; Malerba, L.
2005-12-01
In this report an overview on interatomic potentials is given. This overview is by no means complete and it has merely the intention to give the reader an idea of where interatomic potentials come from, as well as to provide the basic ideas behind some commonly used methods for deriving interatomic potentials for molecular dynamics applications. We start by giving a short introduction about the concept of interatomic potential in the framework of quantum mechanics, followed by a short description of commonly used methods for deriving semi-empirical interatomic potentials. After some short theoretical notions on each method, some practical parameterizations of commonly used potentials are given, including very recent ones. An effort has been made to classify existing approaches within a rational and consequent scheme, which is believed to be of use for a thorough comprehension of the topic. Although these approaches can be used in a variety of different materials, we will only discuss the practical cases of metals. Following this, some widespread ad hoc modification of the general methods are discussed. The report is concluded by a generalization of the methods to multi-component materials, in particular metallic alloys. (author)
Phonon optimized interatomic potential for aluminum
Directory of Open Access Journals (Sweden)
Murali Gopal Muraleedharan
2017-12-01
Full Text Available We address the problem of generating a phonon optimized interatomic potential (POP for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA to optimize the free parameters in an empirical interatomic potential (EIP. For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT calculations. Existing potentials for aluminum, such as the embedded atom method (EAM and charge-optimized many-body (COMB3 potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE, employing Fermi’s Golden Rule to predict the phonon-phonon relaxation times.
Phonon optimized interatomic potential for aluminum
Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun
2017-12-01
We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.
Interatomic Coulombic electron capture
International Nuclear Information System (INIS)
Gokhberg, K.; Cederbaum, L. S.
2010-01-01
In a previous publication [K. Gokhberg and L. S. Cederbaum, J. Phys. B 42, 231001 (2009)] we presented the interatomic Coulombic electron capture process--an efficient electron capture mechanism by atoms and ions in the presence of an environment. In the present work we derive and discuss the mechanism in detail. We demonstrate thereby that this mechanism belongs to a family of interatomic electron capture processes driven by electron correlation. In these processes the excess energy released in the capture event is transferred to the environment and used to ionize (or to excite) it. This family includes the processes where the capture is into the lowest or into an excited unoccupied orbital of an atom or ion and proceeds in step with the ionization (or excitation) of the environment, as well as the process where an intermediate autoionizing excited resonance state is formed in the capturing center which subsequently deexcites to a stable state transferring its excess energy to the environment. Detailed derivation of the asymptotic cross sections of these processes is presented. The derived expressions make clear that the environment assisted capture processes can be important for many systems. Illustrative examples are presented for a number of model systems for which the data needed to construct the various capture cross sections are available in the literature.
International Nuclear Information System (INIS)
Bereau, Tristan; Lilienfeld, O. Anatole von
2014-01-01
We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and electrostatics for more than 1300 neutral and charged, small organic molecular dimers. Applications to water clusters, the benzene crystal, the anti-cancer drug ellipticine—intercalated between two Watson-Crick DNA base pairs, as well as six macro-molecular host-guest complexes highlight the potential of this method and help to identify points of future improvement. The mean absolute error made by the combination of static electrostatics with many-body dispersion reduces at larger distances, while it plateaus for two-body dispersion, in conflict with the common assumption that the simple 1/R 6 correction will yield proper dissociative tails. Overall, the method achieves an accuracy well within conventional molecular force fields while exhibiting a simple parametrization protocol
International Nuclear Information System (INIS)
Korolev, D.A.; Chezhina, N.V.; Lopatin, S.I.
2015-01-01
Highlights: • Single phase LaCo x Ga 1−1.2x Mg 0.2x O 3 and LaCo x Ga 1−1.5x Mg 0.5x O 3 solutions were obtained. • Two crystalline modifications of solid solutions were found by Rietveld method. • Ferromagnetic clusters including Co, Mg and accompanying oxygen vacancies are found. • Magnetic behavior of clusters is of superparamagnetic type. - Abstract: For the first time by X-ray method two phases of the solid solutions LaCo x Ga 1−1.2x Mg 0.2x O 3−δ and LaCo x Ga 1−1.5x Mg 0.5x O 3−δ (x = 0.01–0.10) with different structure were found – rhombohedral and orthorhombic phases. On the basis of the data on evaporation of the components a synthetic procedure was advanced allowing the losses of cobalt to be minimized. The study of magnetic characteristics of obtained solid solutions showed the formation of high nuclearity clusters containing cobalt atoms, and also magnesium and associated vacancies even in diluted solid solutions. Clusters are characterized by a competition between ferro- and antiferromagnetic exchange interactions, whereas the long order exchange is antiferromagnetic
Energy Technology Data Exchange (ETDEWEB)
Korolev, D.A., E-mail: chemdim@mail.ru; Chezhina, N.V.; Lopatin, S.I.
2015-03-05
Highlights: • Single phase LaCo{sub x}Ga{sub 1−1.2x}Mg{sub 0.2x}O{sub 3} and LaCo{sub x}Ga{sub 1−1.5x}Mg{sub 0.5x}O{sub 3} solutions were obtained. • Two crystalline modifications of solid solutions were found by Rietveld method. • Ferromagnetic clusters including Co, Mg and accompanying oxygen vacancies are found. • Magnetic behavior of clusters is of superparamagnetic type. - Abstract: For the first time by X-ray method two phases of the solid solutions LaCo{sub x}Ga{sub 1−1.2x}Mg{sub 0.2x}O{sub 3−δ} and LaCo{sub x}Ga{sub 1−1.5x}Mg{sub 0.5x}O{sub 3−δ} (x = 0.01–0.10) with different structure were found – rhombohedral and orthorhombic phases. On the basis of the data on evaporation of the components a synthetic procedure was advanced allowing the losses of cobalt to be minimized. The study of magnetic characteristics of obtained solid solutions showed the formation of high nuclearity clusters containing cobalt atoms, and also magnesium and associated vacancies even in diluted solid solutions. Clusters are characterized by a competition between ferro- and antiferromagnetic exchange interactions, whereas the long order exchange is antiferromagnetic.
Energy Technology Data Exchange (ETDEWEB)
Bereau, Tristan, E-mail: bereau@mpip-mainz.mpg.de [Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany and Department of Chemistry, University of Basel, 4056 Basel (Switzerland); Lilienfeld, O. Anatole von [Department of Chemistry, Institute of Physical Chemistry, University of Basel, 4056 Basel, Switzerland and Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2014-07-21
We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and electrostatics for more than 1300 neutral and charged, small organic molecular dimers. Applications to water clusters, the benzene crystal, the anti-cancer drug ellipticine—intercalated between two Watson-Crick DNA base pairs, as well as six macro-molecular host-guest complexes highlight the potential of this method and help to identify points of future improvement. The mean absolute error made by the combination of static electrostatics with many-body dispersion reduces at larger distances, while it plateaus for two-body dispersion, in conflict with the common assumption that the simple 1/R{sup 6} correction will yield proper dissociative tails. Overall, the method achieves an accuracy well within conventional molecular force fields while exhibiting a simple parametrization protocol.
International Nuclear Information System (INIS)
Coors, D.
1990-01-01
This report contains the Interatom results for Stage 2 of the ''IWGFR Programme on Intercomparison of LMFBR Core Mechanics Codes'' which was agreed upon on a Consultants Meeting in Vienna, 8-10 December, 1987. The calculations were performed with the 3D core mechanics code system DDT developed at Interatom and with the 2D core mechanics code FIAT. (author). 5 refs, 11 figs, 8 tabs
Tkatchenko, Alexandre; Ambrosetti, Alberto; DiStasio, Robert A.
2013-02-01
Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD-RPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy.
Long-range interaction of anisotropic systems
Zhang, Junyi
2015-02-01
The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.
Long-range interaction of anisotropic systems
Zhang, Junyi; Schwingenschlö gl, Udo
2015-01-01
The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.
Tensorial analysis of the long-range interaction between metastable alkaline-earth-metal atoms
International Nuclear Information System (INIS)
Santra, Robin; Greene, Chris H.
2003-01-01
Alkaline-earth-metal atoms in their lowest (nsnp) 3 P 2 state are exceptionally long lived and can be trapped magnetically. The nonspherical atomic structure leads to anisotropic long-range interactions between two metastable alkaline-earth-metal atoms. The anisotropy affects the rotational motion of the diatomic system and couples states of different rotational quantum numbers. This paper develops a tensorial decomposition of the most important long-range interaction operators, and a systematic inclusion of molecular rotations, in the presence of an external magnetic field. This analysis illuminates the nature of the coupling between the various degrees of freedom. The consequences are illustrated by application to a system of practical interest: metastable 88 Sr. Using atomic parameters determined in a nearly ab initio calculation, we compute adiabatic potential-energy curves. The anisotropic interatomic interaction, in combination with the applied magnetic field, is demonstrated to induce the formation of a long-range molecular potential well. This curve correlates to two fully polarized, low-field seeking atoms in a rotational s-wave state. The coupling among molecular rotational states controls the existence of the potential well, and its properties vary as a function of magnetic-field strength, thus allowing the scattering length in this state to be tuned. The scattering length of metastable 88 Sr displays a resonance at a field of 339 G
Narrow resonances and short-range interactions
International Nuclear Information System (INIS)
Gelman, Boris A.
2009-01-01
Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.
Interatomic potentials for fusion reactor material simulations
International Nuclear Information System (INIS)
Bjoerkas, C.
2009-01-01
In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, i.e. interatomic potentials, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electronphonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage
Interatomic potentials and the simulation of lattice defects in metals
International Nuclear Information System (INIS)
Heugten, W.F.W.M. van.
1979-01-01
The computer simulation technique is applied to investigate the properties of point defects and line defects in metals. For that purpose crystallites are constructed in which these defects are simulated. In the case of line defects (dislocations) the initial positions of the atoms, surrounding the dislocations, are determined using the elastic theory of anisotropic media. Hereafter the atoms in such crystallites are allowed to relax to there minimum potential energy positions under the influence of the interatomic forces. These forces are derived from interatomic interaction potentials. These potentials are together with the boundary conditions of the simulated crystallite the main input data in these computer simulation models. The metals considered include molybdenum, tungsten and tantalum. (Auth.)
The screening length of interatomic potential in atomic collisions
International Nuclear Information System (INIS)
Yamamura, Y.; Takeuchi, W.; Kawamura, T.
1998-03-01
In computer studies on the interaction of charged particle with solids, many authors treat the nuclear collision by the Thomas-Fermi screened Coulomb potential. For better agreement with experiment, the screening length is modified sometimes. We investigate the theoretical background for the correction factor of the screening length in the interatomic potential which can be deduced from two steps. The first step is to select the correction factor of an isolated atom so as to match the average radius of the Thomas-Fermi electron distribution with that of the Hartree-Fock electron distribution, where we use the Clementi and Roetti's table. The second step is to determine the correction factor of the screening length of the interatomic potential by using a combination rule. The correction factors obtained for the screening length are in good agreement with those determined by the computer analysis of the Impact Collision Ion Scattering Spectroscopy (ICISS) data. (author)
International Nuclear Information System (INIS)
Keil, M.; Kuppermann, A.
1978-01-01
The ability of diffraction oscillations in atomic beam scattering experiments to uniquely determine interatomic potentials for highly quantal systems is examined. Assumed but realistic potentials are used to generate, by scattering calculations and incorporation of random errors, differential cross sections which are then treated as if they were ''experimental'' data. From these, attempts are made to recover the initial potential by varying the parameters of assumed mathematical forms different from the original one, until a best fit to the ''experimental'' results is obtained. It is found that the region of the interaction potential around the van der Waals minimum is accurately determined by the ''measured'' differential cross sections over a range of interatomic separations significantly wider than would be expected classically. It is also found, for collision energies at which the weakly repulsive wall is appreciably sampled, that the SPF--Dunham and double Morse--van der Waals types of potentials lead to accurate determinations of the interatomic potential, whereas many other mathematical forms do not. Analytical parameterizations most appropriate for obtaining accurate interatomic potentials from thermal DCS experiments, for a given highly quantal system, may depend on the collision energy used
FAST TRACK COMMUNICATION: A Be-W interatomic potential
Björkas, C.; Henriksson, K. O. E.; Probst, M.; Nordlund, K.
2010-09-01
In this work, an interatomic potential for the beryllium-tungsten system is derived. It is the final piece of a potential puzzle, now containing all possible interactions between the fusion reactor materials beryllium, tungsten and carbon as well as the plasma hydrogen isotopes. The potential is suitable for plasma-wall interaction simulations and can describe the intermetallic Be2W and Be12W phases. The interaction energy between a Be surface and a W atom, and vice versa, agrees qualitatively with ab initio calculations. The potential can also reasonably describe BexWy molecules with x, y = 1, 2, 3, 4.
International Nuclear Information System (INIS)
Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.
2000-01-01
Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase. (c) 2000 The American Physical Society
Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.
2000-08-01
Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.
Continuous limit of discrete systems with long-range interaction
International Nuclear Information System (INIS)
Tarasov, Vasily E
2006-01-01
Discrete systems with long-range interactions are considered. Continuous medium models as continuous limit of discrete chain system are defined. Long-range interactions of chain elements that give the fractional equations for the medium model are discussed. The chain equations of motion with long-range interaction are mapped into the continuum equation with the Riesz fractional derivative. We formulate the consistent definition of continuous limit for the systems with long-range interactions. In this paper, we consider a wide class of long-range interactions that give fractional medium equations in the continuous limit. The power-law interaction is a special case of this class
Long-range interaction between spins
International Nuclear Information System (INIS)
Naik, P.C.; Pradhan, T.
1981-01-01
It is shown that invariance of Lagrangian field theory under a class of the coordinate-dependent Lorentz group of transformations requires the introduction of a massless axial vector gauge field which gives rise to a super-weak long-range spin-spin force between particles in vacuum. Recent experiments demonstrating repulsion and attraction between circularly polarised laser beams are interpreted to be due to such a force enhanced by spin polarisation of sodium vapour, through which these beams pass. (author)
The effect of interatomic potential in molecular dynamics simulation of low energy ion implantation
International Nuclear Information System (INIS)
Chan, H.Y.; Nordlund, K.; Peltola, J.; Gossmann, H.-J.L.; Ma, N.L.; Srinivasan, M.P.; Benistant, F.; Chan, Lap
2005-01-01
Being able to accurately predict dopant profiles at sub-keV implant energies is critical for the microelectronic industry. Molecular Dynamics (MD), with its capability to account for multiple interactions as energy lowers, is an increasingly popular simulation method. We report our work on sub-keV implantation using MD and investigate the effect of different interatomic potentials on the range profiles. As an approximation, only pair potentials are considered in this work. Density Functional Theory (DFT) is used to calculate the pair potentials for a wide range of dopants (B, C, N, F, Si, P, Ga, Ge, As, In and Sb) in single crystalline silicon. A commonly used repulsive potential is also included in the study. Importance of the repulsive and attractive regions of the potential has been investigated with different elements and we show that a potential depicting the right attractive forces is especially important for heavy elements at low energies
Accurate Ne-heavier rare gas interatomic potentials
International Nuclear Information System (INIS)
Candori, R.; Pirani, F.; Vecchiocattivi, F.
1983-01-01
Accurate interatomic potential curves for Ne-heavier rare gas systems are obtained by a multiproperty analysis. The curves are given via a parametric function which consists of a modified Dunham expansion connected at long range with the van der Waals expansion. The experimental properties considered in the analysis are the differential scattering cross sections at two different collision energies, the integral cross sections in the glory energy range and the second virial coefficients. The transport properties are considered indirectly by using the potential energy values recently obtained by inversion of the transport coefficients. (author)
Spectral long-range interaction of temporal incoherent solitons.
Xu, Gang; Garnier, Josselin; Picozzi, Antonio
2014-02-01
We study the interaction of temporal incoherent solitons sustained by a highly noninstantaneous (Raman-like) nonlinear response. The incoherent solitons exhibit a nonmutual interaction, which can be either attractive or repulsive depending on their relative initial distance. The analysis reveals that incoherent solitons exhibit a long-range interaction in frequency space, which is in contrast with the expected spectral short-range interaction described by the usual approach based on the Raman-like spectral gain curve. Both phenomena of anomalous interaction and spectral long-range behavior of incoherent solitons are described in detail by a long-range Vlasov equation.
Resonant long-range interactions between polar macromolecules
International Nuclear Information System (INIS)
Preto, Jordane; Pettini, Marco
2013-01-01
Motivated by its prospective biological relevance, the issue of resonant long-range interactions between two molecules displaying oscillating dipole moments is reinvestigated within the framework of classical electrodynamics. In particular, our findings shed new light on Fröhlich's theory of selective long-range interactions between biomolecules. First, terms of a very long-range kind – which have never been reported so far – are found in the interaction potential, due to field retardation. Second, at variance with a long-standing belief, it is shown that sizable resonant long-range interactions may exist only if the interacting system is out of thermal equilibrium.
Parameterization of interatomic potential by genetic algorithms: A case study
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Partha S., E-mail: psghosh@barc.gov.in; Arya, A.; Dey, G. K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Ranawat, Y. S. [Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi-221005 (India)
2015-06-24
A framework for Genetic Algorithm based methodology is developed to systematically obtain and optimize parameters for interatomic force field functions for MD simulations by fitting to a reference data base. This methodology is applied to the fitting of ThO{sub 2} (CaF{sub 2} prototype) – a representative of ceramic based potential fuel for nuclear applications. The resulting GA optimized parameterization of ThO{sub 2} is able to capture basic structural, mechanical, thermo-physical properties and also describes defect structures within the permissible range.
VoroMQA: Assessment of protein structure quality using interatomic contact areas.
Olechnovič, Kliment; Venclovas, Česlovas
2017-06-01
In the absence of experimentally determined protein structure many biological questions can be addressed using computational structural models. However, the utility of protein structural models depends on their quality. Therefore, the estimation of the quality of predicted structures is an important problem. One of the approaches to this problem is the use of knowledge-based statistical potentials. Such methods typically rely on the statistics of distances and angles of residue-residue or atom-atom interactions collected from experimentally determined structures. Here, we present VoroMQA (Voronoi tessellation-based Model Quality Assessment), a new method for the estimation of protein structure quality. Our method combines the idea of statistical potentials with the use of interatomic contact areas instead of distances. Contact areas, derived using Voronoi tessellation of protein structure, are used to describe and seamlessly integrate both explicit interactions between protein atoms and implicit interactions of protein atoms with solvent. VoroMQA produces scores at atomic, residue, and global levels, all in the fixed range from 0 to 1. The method was tested on the CASP data and compared to several other single-model quality assessment methods. VoroMQA showed strong performance in the recognition of the native structure and in the structural model selection tests, thus demonstrating the efficacy of interatomic contact areas in estimating protein structure quality. The software implementation of VoroMQA is freely available as a standalone application and as a web server at http://bioinformatics.lt/software/voromqa. Proteins 2017; 85:1131-1145. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Long-range interactions among three alkali-metal atoms
International Nuclear Information System (INIS)
Marinescu, M.; Starace, A.F.
1996-01-01
The long-range asymptotic form of the interaction potential surface for three neutral alkali-metal atoms in their ground states may be expressed as an expansion in inverse powers of inter-nuclear distances. The first leading powers are proportional to the dispersion coefficients for pairwise atomic interactions. They are followed by a term responsible for a three body dipole interaction. The authors results consist in evaluation of the three body dipole interaction coefficient between three alkali-metal atoms. The generalization to long-range n atom interaction terms will be discussed qualitatively
Interatomic potentials for materials of nuclear interest
International Nuclear Information System (INIS)
Fernandez, Julian R.; Monti, Ana M.; Pasianot, Roberto C.; Simonelli, G.
2007-01-01
Procedures to develop embedded atom method (EAM) interatomic potentials are described, with foreseeable applications in nuclear materials. Their reliability is shown by evaluating relevant properties. The studied materials are Nb, Zr and U. The first two were then used to develop an inter species potential for the Zr-Nb binary system. In this sense, the Fe-Cu system was also studied starting from Fe and Cu potentials extracted from the literature. (author) [es
Interaction range perturbation theory for three-particle problem
International Nuclear Information System (INIS)
Simenog, I.V.; Shapoval, D.V.
1988-01-01
The limit of zero interaction range is correctly defined for a system of three spinless particles and three particles in a doublet state. The scattering amplitude is expanded with respect to the interaction range r, and the corrections of order r ln r, r, and r 2 ln2 r are found. An explicit model-independent asymptotic expression is obtained for the scattering amplitude in terms of the scattering length, and its accuracy is established
Moriarty, John A.
1988-08-01
The first-principles, density-functional version of the generalized pseudopotential theory (GPT) developed in papers I and II of this series [Phys. Rev. B 16, 2537 (1977); 26, 1754 (1982)] for empty- and filled-d-band metals is here extended to pure transition metals with partially filled d bands. The present focus is on a rigorous, real-space expansion of the bulk total energy in terms of widely transferable, structure-independent interatomic potentials, including both central-force pair interactions and angular-force triplet and quadruplet interactions. To accomplish this expansion, a specialized set of starting equations is derived from the basic local-density formalism for a pure metal, including refined expansions for the exchange-correlation terms and a simplified yet accurate representation of the cohesive energy. The parent pseudo-Green's-function formalism of the GPT is then used to develop these equations in a plane-wave, localized-d-state basis. In this basis, the cohesive energy divides quite naturally into a large volume component and a smaller structural component. The volume component,which includes all one-ion intra-atomic energy contributions, already gives a good description of the cohesion in lowest order. The structural component is expanded in terms of weak interatomic matrix elements and gives rise to a multi-ion series which establishes the interatomic potentials. Special attention is focused on the dominant d-electron contributions to this series and complete formal results for the two-ion, three-ion, and four-ion d-state potentials (vd2, vd3, and vd4) are derived. In addition, a simplified model is used to demonstrate that while vd3 can be of comparable importance to vd2, vd4 is inherently small and the series is rapidly convergent beyond three-ion interactions. Analytic model forms are also derived for vd2 and vd3 in the case of canonical d bands. In this limit, vd2 is purely attractive and varies with interatomic distance as r-10, while
Long-range interactions in dilute granular systems
Müller, M.K
2008-01-01
In this thesis, on purpose, we focussed on the most challenging, longest ranging potentials. We analyzed granular media of low densities obeying 1/r long-range interaction potentials between the granules. Such systems are termed granular gases and differ in their behavior from ordinary gases by
Entanglement Growth in Quench Dynamics with Variable Range Interactions
Directory of Open Access Journals (Sweden)
J. Schachenmayer
2013-09-01
Full Text Available Studying entanglement growth in quantum dynamics provides both insight into the underlying microscopic processes and information about the complexity of the quantum states, which is related to the efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar molecules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems, identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin interactions in a transverse Ising chain is varied. Computing the buildup of bipartite entanglement as well as mutual information between distant spins, we identify linear growth of entanglement entropy corresponding to propagation of quasiparticles for shorter-range interactions, with the maximum rate of growth occurring when the Hamiltonian parameters match those for the quantum phase transition. Counterintuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic for most regimes, i.e., substantially slower than for shorter-range interactions. Experiments with trapped ions allow for the realization of this system with a tunable interaction range, and we show that the different phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct guide for the generation of large-scale entanglement in such experiments, towards a regime where the entanglement growth can render existing classical simulations inefficient.
INTERATOM experience of cleaning sodium-wetted components
International Nuclear Information System (INIS)
Haubold, W.
1978-01-01
INTERATOM has been concerned since 1967 with the development, testing, and application of methods to clean sodium wetted components by moist nitrogen, vacuum distillation or alcohol. The activities of INTERATOM in this area have been reported at the IAEA Specialists Meeting on 'Decontamination of Plant Components from Sodium and Radioactivity' in Dounreay, April 9-12, 1973. The three cleaning methods mentioned above are practised at present, too - with minor modifications - by INTERATOM and in the facilities of the SNR project. This note summarizes the experiences of INTERATOM with methods of sodium removal since 1973
Crystals of Janus colloids at various interaction ranges
Energy Technology Data Exchange (ETDEWEB)
Preisler, Z. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Vissers, T. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); SUPA and School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); Smallenburg, F. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Sciortino, F. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy)
2016-08-14
We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete with the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.
Crystals of Janus colloids at various interaction ranges
International Nuclear Information System (INIS)
Preisler, Z.; Vissers, T.; Smallenburg, F.; Sciortino, F.
2016-01-01
We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete with the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.
Schroedinger operators with point interactions and short range expansions
International Nuclear Information System (INIS)
Albeverio, S.; Hoeegh-Krohn, R.; Oslo Univ.
1984-01-01
We give a survey of recent results concerning Schroedinger operators with point interactions in R 3 . In the case where the point interactions are located at a discrete set of points we discuss results about the resolvent, the spectrum, the resonances and the scattering quantities. We also discuss the approximation of point interactions by short range local potentials (short range or low energy expansions) and the one electron model of a 3-dimensional crystal. Moreover we discuss Schroedinger operators with Coulomb plus point interactions, with applications to the determination of scattering lengths and of level shifts in mesic atoms. Further applications to the multiple well problem, to multiparticle systems, to crystals with random impurities, to polymers and quantum fields are also briefly discussed. (orig.)
Analysis of pattern formation in systems with competing range interactions
International Nuclear Information System (INIS)
Zhao, H J; Misko, V R; Peeters, F M
2012-01-01
We analyzed pattern formation and identified various morphologies in a system of particles interacting through a non-monotonic potential with a competing range interaction characterized by a repulsive core (r c ) and an attractive tail (r > r c ), using molecular-dynamics simulations. Depending on parameters, the interaction potential models the inter-particle interaction in various physical systems ranging from atoms, molecules and colloids to vortices in low κ type-II superconductors and in recently discovered ‘type-1.5’ superconductors. We constructed a ‘morphology diagram’ in the plane ‘critical radius r c -density n’ and proposed a new approach to characterizing the different types of patterns. Namely, we elaborated a set of quantitative criteria in order to identify the different pattern types, using the radial distribution function (RDF), the local density function and the occupation factor. (paper)
Long-range interactions in lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Rabin, J.M.
1981-06-01
Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.
Long-range interactions in lattice field theory
International Nuclear Information System (INIS)
Rabin, J.M.
1981-06-01
Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations
Variable range of the RKKY interaction in edged graphene
DEFF Research Database (Denmark)
Duffy, J M; Gorman, P D; Power, S R
2014-01-01
The indirect exchange interaction is one of the key factors in determining the overall alignment of magnetic impurities embedded in metallic host materials. In this work we examine the range of this interaction in magnetically doped graphene systems in the presence of armchair edges using...... calculations, and the result for semi-infinite graphene can be interpreted as an intermediate case between ribbon and bulk systems....
Long-range interaction between heterogeneously charged membranes.
Jho, Y S; Brewster, R; Safran, S A; Pincus, P A
2011-04-19
Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society
Long-range interaction between dust grains in plasma
Directory of Open Access Journals (Sweden)
D.Yu. Mishagli
2014-03-01
Full Text Available The nature of long-range interactions between dust grains in plasma is discussed. The dust grain interaction potential within a cell model of dusty plasma is introduced. The attractive part of inter-grain potential is described by multipole interaction between two electro-neutral cells. This allowed us to draw an analogy with molecular liquids where attraction between molecules is determined by dispersion forces. Also main ideas of the fluctuation theory for electrostatic field in cell model are formulated, and the dominating contribution to attractive part of inter-grain potential is obtained.
Helioseismology with long-range dark matter-baryon interactions
DEFF Research Database (Denmark)
Lopes, I.; Panci, Paolo; Silk, J.
2014-01-01
Assuming the existence of a primordial asymmetry in the dark sector, we study how long-range dark matter (DM)-baryon interactions, induced by the kinetic mixing of a new U(1) gauge boson and a photon, affect the evolution of the Sun and, in turn, the sound speed the profile obtained from...
Landau parameters for finite range density dependent nuclear interactions
International Nuclear Information System (INIS)
Farine, M.
1997-01-01
The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules
Fluctuation-induced long-range interactions in polymer systems
International Nuclear Information System (INIS)
Semenov, A N; Obukhov, S P
2005-01-01
We discover a new universal long-range interaction between solid objects in polymer media. This polymer-induced interaction is directly opposite to the van der Waals attraction. The predicted effect is deeply related to the classical Casimir interactions, providing a unique example of universal fluctuation-induced repulsion rather than normal attraction. This universal repulsion comes from the subtracted soft fluctuation modes in the ideal counterpart of the real polymer system. The effect can also be interpreted in terms of subtracted (ghost) large-scale polymer loops. We establish the general expressions for the energy of polymer-induced interactions for arbitrary solid particles in a concentrated polymer system. We find that the correlation function of the polymer density in a concentrated solution of very long chains follows a scaling law rather than an exponential decay at large distances. These novel universal long-range interactions can be of importance in various polymer systems. We discuss the ways to observe/simulate these fluctuation-induced effects
Nonequilibrium statistical mechanics of systems with long-range interactions
Energy Technology Data Exchange (ETDEWEB)
Levin, Yan, E-mail: levin@if.ufrgs.br; Pakter, Renato, E-mail: pakter@if.ufrgs.br; Rizzato, Felipe B., E-mail: rizzato@if.ufrgs.br; Teles, Tarcísio N., E-mail: tarcisio.teles@fi.infn.it; Benetti, Fernanda P.C., E-mail: fbenetti@if.ufrgs.br
2014-02-01
Systems with long-range (LR) forces, for which the interaction potential decays with the interparticle distance with an exponent smaller than the dimensionality of the embedding space, remain an outstanding challenge to statistical physics. The internal energy of such systems lacks extensivity and additivity. Although the extensivity can be restored by scaling the interaction potential with the number of particles, the non-additivity still remains. Lack of additivity leads to inequivalence of statistical ensembles. Before relaxing to thermodynamic equilibrium, isolated systems with LR forces become trapped in out-of-equilibrium quasi-stationary states (qSSs), the lifetime of which diverges with the number of particles. Therefore, in the thermodynamic limit LR systems will not relax to equilibrium. The qSSs are attained through the process of collisionless relaxation. Density oscillations lead to particle–wave interactions and excitation of parametric resonances. The resonant particles escape from the main cluster to form a tenuous halo. Simultaneously, this cools down the core of the distribution and dampens out the oscillations. When all the oscillations die out the ergodicity is broken and a qSS is born. In this report, we will review a theory which allows us to quantitatively predict the particle distribution in the qSS. The theory is applied to various LR interacting systems, ranging from plasmas to self-gravitating clusters and kinetic spin models.
Three methods for estimating a range of vehicular interactions
Krbálek, Milan; Apeltauer, Jiří; Apeltauer, Tomáš; Szabová, Zuzana
2018-02-01
We present three different approaches how to estimate the number of preceding cars influencing a decision-making procedure of a given driver moving in saturated traffic flows. The first method is based on correlation analysis, the second one evaluates (quantitatively) deviations from the main assumption in the convolution theorem for probability, and the third one operates with advanced instruments of the theory of counting processes (statistical rigidity). We demonstrate that universally-accepted premise on short-ranged traffic interactions may not be correct. All methods introduced have revealed that minimum number of actively-followed vehicles is two. It supports an actual idea that vehicular interactions are, in fact, middle-ranged. Furthermore, consistency between the estimations used is surprisingly credible. In all cases we have found that the interaction range (the number of actively-followed vehicles) drops with traffic density. Whereas drivers moving in congested regimes with lower density (around 30 vehicles per kilometer) react on four or five neighbors, drivers moving in high-density flows respond to two predecessors only.
Is there a contraction of the interatomic distance in small metal particles?
DEFF Research Database (Denmark)
Hansen, Lars Bruno; Stoltze, Per; Nørskov, Jens Kehlet
1990-01-01
A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very s...... small changes in bond length with particle size, but the motion in the small particles is very anharmonic. We use this observation to resolve the current experimental controversy about the existence of bond contraction for small metal particles.......A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very...
International Nuclear Information System (INIS)
Chezhina, N.V.; Kuznetsova, I.V.
1995-01-01
Solid solutions of LaCa 0.5 Sr 0.5 Ni x Al 1-x O 4 (0≤x≤0.10) have been synthesized and their magnetic susceptibility in the temperature range of 77-400 K has been studied. The change in the basic state of nickel atoms in case of partial substitution of calcium for strontium atoms has been studied. The change in the basic state of nickel atoms in case of partial substitution of calcium for strontium atoms has been studied, as well as the way it affects exchange interaction in a complex oxide. It is shown that the substitution results in increase of the degree of paramagnetic atoms aggregation in solid solution. 9 refs., 2 figs., 1 tab
Folding of polymer chains with short-range binormal interactions
International Nuclear Information System (INIS)
Craig, A; Terentjev, E M
2006-01-01
We study the structure of chains which have anisotropic short-range contact interactions that depend on the alignment of the binormal vectors of chain segments. This represents a crude model of hydrogen bonding or 'stacking' interactions out of the plane of curvature. The polymers are treated as ribbon-like semi-flexible chains, where the plane of the ribbon is determined by the local binormal. We show that with dipole-dipole interactions between the binormals of contacting chain segments, mean-field theory predicts a first-order transition to a binormally aligned state. We describe the onset of this transition as a function of the temperature-dependent parameters that govern the chain stiffness and the strength of the binormal interaction, as well as the binormal alignment's coupling to chain collapse. We also examine a metastable state governing the folding kinetics. Finally, we discuss the possible mesoscopic structure of the aligned phase, and application of our model to secondary structure motifs like β-sheets and α-helices, as well as composite structures like β-(amyloid) fibrils
Wide-Range Probing of Dzyaloshinskii-Moriya Interaction
Kim, Duck-Ho; Yoo, Sang-Cheol; Kim, Dae-Yun; Min, Byoung-Chul; Choe, Sug-Bong
2017-03-01
The Dzyaloshinskii-Moriya interaction (DMI) in magnetic objects is of enormous interest, because it generates built-in chirality of magnetic domain walls (DWs) and topologically protected skyrmions, leading to efficient motion driven by spin-orbit torques. Because of its importance for both potential applications and fundamental research, many experimental efforts have been devoted to DMI investigation. However, current experimental probing techniques cover only limited ranges of the DMI strength and have specific sample requirements. Thus, there are no versatile methods to quantify DMI over a wide range of values. Here, we present such an experimental scheme, which is based on the angular dependence of asymmetric DW motion. This method can be used to determine values of DMI much larger than the maximum strength of the external magnetic field strength, which demonstrates that various DMI strengths can be quantified with a single measurement setup. This scheme may thus prove essential to DMI-related emerging fields in nanotechnology.
Modelling control of epidemics spreading by long-range interactions.
Dybiec, Bartłomiej; Kleczkowski, Adam; Gilligan, Christopher A
2009-10-06
We have studied the spread of epidemics characterized by a mixture of local and non-local interactions. The infection spreads on a two-dimensional lattice with the fixed nearest neighbour connections. In addition, long-range dynamical links are formed by moving agents (vectors). Vectors perform random walks, with step length distributed according to a thick-tail distribution. Two distributions are considered in this paper, an alpha-stable distribution describing self-similar vector movement, yet characterized by an infinite variance and an exponential power characterized by a large but finite variance. Such long-range interactions are hard to track and make control of epidemics very difficult. We also allowed for cryptic infection, whereby an infected individual on the lattice can be infectious prior to showing any symptoms of infection or disease. To account for such cryptic spread, we considered a control strategy in which not only detected, i.e. symptomatic, individuals but also all individuals within a certain control neighbourhood are treated upon the detection of disease. We show that it is possible to eradicate the disease by using such purely local control measures, even in the presence of long-range jumps. In particular, we show that the success of local control and the choice of the optimal strategy depend in a non-trivial way on the dispersal patterns of the vectors. By characterizing these patterns using the stability index of the alpha-stable distribution to change the power-law behaviour or the exponent characterizing the decay of an exponential power distribution, we show that infection can be successfully contained using relatively small control neighbourhoods for two limiting cases for long-distance dispersal and for vectors that are much more limited in their dispersal range.
Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades
Becquart, C S; Legris, A; Van Duysen, J C
2000-01-01
Molecular dynamics (MD) is a powerful tool to study the displacement cascades initiated by the neutrons when they interact with matter. Key components of this technique are the interatomic potentials which model the binding of the different constitutive atoms. There exist many interatomic potentials dedicated to alpha-Fe and we have tested three of them for the study of radiation damage. We have found that the primary damage is potential sensitive. From our study, it appears that some characteristics of the potentials, not always considered, can be correlated to the type of damage produced by displacement cascades. The repulsive part of the potential has a strong influence on the cascade morphology. Moreover, equilibrium properties such as the atoms mean square displacements, the vacancy migration and vacancy-vacancy binding energies also appear to have some influence and should be investigated carefully when simulating radiation damage. It is therefore very important to use extreme care when trying to obtain...
Helioseismology with long-range dark matter-baryon interactions
Energy Technology Data Exchange (ETDEWEB)
Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Panci, Paolo [CP3-Origins and DIAS, University of Southern Denmark, DK-5230 Odense (Denmark); Silk, Joseph, E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: panci@iap.fr, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, F-75014 Paris (France)
2014-11-10
Assuming the existence of a primordial asymmetry in the dark sector, we study how long-range dark matter (DM)-baryon interactions, induced by the kinetic mixing of a new U(1) gauge boson and a photon, affect the evolution of the Sun and, in turn, the sound speed the profile obtained from helioseismology. Thanks to the explicit dependence on the exchanged momenta in the differential cross section (Rutherford-like scattering), we find that DM particles with a mass of ∼10 GeV, kinetic mixing parameter of the order of 10{sup –9}, and a mediator with a mass smaller than a few MeV improve the agreement between the best solar model and the helioseismic data without being excluded by direct detection experiments. In particular, the LUX detector will soon be able to either constrain or confirm our best-fit solar model in the presence of a dark sector with long-range interactions that reconcile helioseismology with thermal neutrino results.
International Nuclear Information System (INIS)
Varandas, A.J.C.
1980-01-01
A suggestion is made for using the zeroth-order exchange term, at the one-exchange level, in the perturbation development of the interaction energy as a criterion for optmizing the atomic basis sets in interatomic force calculations. The approach is illustrated for the case of two helium atoms. (orig.)
Finite-range-scaling analysis of metastability in an Ising model with long-range interactions
International Nuclear Information System (INIS)
Gorman, B.M.; Rikvold, P.A.; Novotny, M.A.
1994-01-01
We apply both a scalar field theory and a recently developed transfer-matrix method to study the stationary properties of metastability in a two-state model with weak, long-range interactions: the Nx∞ quasi-one-dimensional Ising model. Using the field theory, we find the analytic continuation f of the free energy across the first-order transition, assuming that the system escapes the metastable state by the nucleation of noninteracting droplets. We find that corrections to the field dependence are substantial, and, by solving the Euler-Lagrange equation for the model numerically, we have verified the form of the free-energy cost of nucleation, including the first correction. In the transfer-matrix method, we associate with the subdominant eigenvectors of the transfer matrix a complex-valued ''constrained'' free-energy density f α computed directly from the matrix. For the eigenvector with an associated magnetization most strongly opposed to the applied magnetic field, f α exhibits finite-range scaling behavior in agreement with f over a wide range of temperatures and fields, extending nearly to the classical spinodal. Some implications of these results for numerical studies of metastability are discussed
Spherical harmonic expansion of short-range screened Coulomb interactions
Energy Technology Data Exchange (ETDEWEB)
Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)
2006-07-07
Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.
Long-range interactions in antiferromagnetic quantum spin chains
Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.
2017-08-01
We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.
A tungsten-rhenium interatomic potential for point defect studies
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
2018-05-01
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).
International Nuclear Information System (INIS)
Gilbert, M.R.; Dudarev, S.L.; Chiesa, S.; Derlet, P.M.
2009-01-01
to now, produced a double-hump energy barrier for the transition pathway. In this work we investigate the role of the strength and the range of effective inter-string interactions in terms of their effect on the shape of the Peierls energy barrier. (author)
Interacting steps with finite-range interactions: Analytical approximation and numerical results
Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.
2013-05-01
We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.
Epidemic spreading in networks with nonrandom long-range interactions
Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba
2011-09-01
An “infection,” understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both “close” contacts and “casual” encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called “conductance” controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.
Epidemic spreading in networks with nonrandom long-range interactions.
Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba
2011-09-01
An "infection," understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both "close" contacts and "casual" encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called "conductance" controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.
Coloured quarks and the short range nucleon nucleon interaction
International Nuclear Information System (INIS)
Ribeiro, J.E.F.T.
1978-02-01
The strong repulsive core that exists in the scattering of two nucleons is studied with the help of the Resonating Group Method (R.G.M.), where the Pauli Principle of fermion antisymmetry is taken explicitly into account. The quark-quark potential is described in terms of colour (long range confining potential) and hyperfine interactions alone. The mass differences N*(1688) - N(938) and Δ(1236) = N(938) are used to fit the two free constants of the assumed quark potential. It is shown that although the Pauli Principle does not exclude ab initio a S state of two nucleons, a strong repulsive potential is, nevertheless, found. Two cases are studied in detail: The Isosinglet case (neutron proton scattering) and the Isotriplet one (identical nucleons). Phase shifts for each case are presented and the obtained relative wave functions are found consistent with the observed experimental features for the repulsive potential. Some formal results concerning an important class of operators characteristic of the present R.G.M. calculations are also presented. (author)
Entanglement Entropy in Quantum Spin Chains with Finite Range Interaction
Its, A. R.; Mezzadri, F.; Mo, M. Y.
2008-11-01
We study the entropy of entanglement of the ground state in a wide family of one-dimensional quantum spin chains whose interaction is of finite range and translation invariant. Such systems can be thought of as generalizations of the XY model. The chain is divided in two parts: one containing the first consecutive L spins; the second the remaining ones. In this setting the entropy of entanglement is the von Neumann entropy of either part. At the core of our computation is the explicit evaluation of the leading order term as L → ∞ of the determinant of a block-Toeplitz matrix with symbol Φ(z) = left(begin{array}{cc} iλ & g(z) \\ g^{-1}(z) & i λ right), where g( z) is the square root of a rational function and g(1/ z) = g -1( z). The asymptotics of such determinant is computed in terms of multi-dimensional theta-functions associated to a hyperelliptic curve {mathcal{L}} of genus g ≥ 1, which enter into the solution of a Riemann-Hilbert problem. Phase transitions for these systems are characterized by the branch points of {mathcal{L}} approaching the unit circle. In these circumstances the entropy diverges logarithmically. We also recover, as particular cases, the formulae for the entropy discovered by Jin and Korepin [14] for the XX model and Its, Jin and Korepin [12, 13] for the XY model.
International Nuclear Information System (INIS)
Chezhina, N.V.; Bodritskaya, Eh.V.; Zhuk, N.A.
2008-01-01
Magnetic susceptibility of dilute solid solutions of lanthanum gallates doped with nickel and also with nickel and strontium was studied. Calculations showed that the main contribution into the exchange interactions in gallates doped with nickel is made by dimers formed by low-spin nickel(III) (J -20 cm -1 ), and in gallates doped with strontium and nickel the main contribution is due to dimers formed by high-and low-spin nickel (J 10 cm -1 ). Electrical conductivity measurements showed that the samples under study are electron and ion conductors [ru
International Nuclear Information System (INIS)
Chezhina, N.V.; Zolotukhina, N.V.; Bodritskaya, Eh.V.
2005-01-01
Solid solutions LaCr x Ga 1-x O 3 (0.01 ≤ x ≤ 0.10) were synthesized using the ceramic technique and characterized by X-ray powder diffraction and chemical analysis. Magnetic susceptibility of dilute solid solutions of lanthanum chromate in lanthanum gallate was studied in the temperature range 77-400 K. The calculated antiferromagnetic exchange parameter and distribution of chromium atoms over the diamagnetic matrix gave evidence for enhanced chromium aggregation and weakened magnetic exchange in lanthanum gallate compared to lanthanum aluminate [ru
[Non-empirical interatomic potentials for transition metals
International Nuclear Information System (INIS)
1993-01-01
The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials
Modified embedded-atom method interatomic potential for the Fe-Al system
International Nuclear Information System (INIS)
Lee, Eunkoo; Lee, Byeong-Joo
2010-01-01
An interatomic potential for the Fe-Al binary system has been developed based on the modified embedded-atom method (MEAM) potential formalism. The potential can describe various fundamental physical properties of Fe-Al binary alloys-structural, elastic and thermodynamic properties, defect formation behavior and interactions between defects-in reasonable agreement with experimental data or higher-level calculations. The applicability of the potential to atomistic investigations of various defect formation behaviors and their effects on the mechanical properties of high aluminum steels as well as Fe-Al binary alloys is demonstrated.
Long-range interactions between probes, particles and surfaces
International Nuclear Information System (INIS)
Ritchie, R.H.; Manson, J.R.
1987-01-01
A brief review is given of some applications of a novel form of self-energy theory. These include the image force experienced by an electron near a metal, the van der Waals interaction between two molecules and the polarization potential of atomic scattering theory
Long-range interactions and parallel scalability in molecular simulations
Patra, M.; Hyvönen, M.T.; Falck, E.; Sabouri-Ghomi, M.; Vattulainen, I.; Karttunen, M.E.J.
2007-01-01
Typical biomolecular systems such as cellular membranes, DNA, and protein complexes are highly charged. Thus, efficient and accurate treatment of electrostatic interactions is of great importance in computational modeling of such systems. We have employed the GROMACS simulation package to perform
Long-range magnetostatic interactions in arrays of nanowires
Raposo, V; González, J M; Vázquez, M
2000-01-01
Experimental measurements and micromagnetic simulations of the hysteresis loops of arrays of cobalt nanowires are compared here. Arrays of cobalt nanowires (200 nm in diameter) were electrodeposited into the pores of alumina membranes (thickness 60 mu m). Their hysteresis loops along the axial direction of nanowires were measured using vibrating sample magnetometry. Micromagnetic simulations were performed considering dipolar interaction between nanowires leading to similar hysteresis loops as those obtained experimentally.
Long range forces and limits on unparticle interactions
International Nuclear Information System (INIS)
Deshpande, N.G.; Hsu, Stephen D.H.; Jiang Jing
2008-01-01
Couplings between standard model particles and unparticles from a nontrivial scale invariant sector can lead to long range forces. If the forces couple to quantities such as baryon or lepton (electron) number, stringent limits result from tests of the gravitational inverse square law. These limits are much stronger than from collider phenomenology and astrophysics
Crystallographic studies of inter-atomic interactions and ion migration
DEFF Research Database (Denmark)
Filsø, Mette Østergaard
2016-01-01
anvendt på kendte Li ionledere til anvendelse som elektroder i Li-ion batterier. Metoden valideres ved sammenligning med eksperiment og en række andre teoretiske metoder, og trods det simple beregningsprincip foreslår the Procrysal Analysis mange korrekte migrationsstier og estimerer den relative...... struktur, hvilket fører til en reversibel formindskelse af båndgabet og et betydeligt farveskift. For både TiS2, ZnSb og Zn4Sb3 blev der fundet faseovergange ved højt tryk: TiS2 omdannedes til et trefasesystem, som stadig er bliver undersøgt, mens ZnSb og Zn4Sb3 begge omdannedes til den samme, simple...
A comparison of interatomic potentials for modeling tungsten nanocluster structures
Energy Technology Data Exchange (ETDEWEB)
Hao, Jiannan; Shu, Xiaolin, E-mail: shuxlin@buaa.edu.cn; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong
2017-02-15
Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.
A comparison of interatomic potentials for modeling tungsten nanocluster structures
International Nuclear Information System (INIS)
Hao, Jiannan; Shu, Xiaolin; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong
2017-01-01
Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.
Development of an interatomic EAM type potential for Zr
International Nuclear Information System (INIS)
Pasianot, R.C.; Monti, A.M.
1996-01-01
In the present work are developed interatomic potentials of the embedded atom type (EAM) adequate for computer simulation of microstructural defects in the Zr lattice. It is observed that the less repulsive potential agrees better with the experimental data of the self-interstitial relaxation volume and predicts the basal crowdion as the stable configuration, the basal dumbbell having a formation energy slightly higher (0.01 eV). (author). 9 refs., 1 fig., 3 tabs
Study of interatomic potential and thermal structural properties of β-Zn4Sb3
International Nuclear Information System (INIS)
Li, Guodong; Li, Yao; Liu, Lisheng; Zhang, Qingjie; Zhai, Pengcheng
2012-01-01
Highlights: ► The multi-body interatomic potentials of various models of β-Zn 4 Sb 3 have been developed to describe atomic interactions. ► The radial distribution function shows that the 10% vacancy of Zn site leads to the disorder of β-Zn 4 Sb 3 . ► The 10% vacancy of Zn site is the main cause of the exceptional low thermal conductivity. -- Abstract: Previous experimental research shows that the disordered Zn atoms in β-Zn 4 Sb 3 may have an important influence on its exceptionally low thermal conductivity and easily occurred phase transition. So the present work aims to study the influence of disordered Zn atoms on thermodynamics properties of β-Zn 4 Sb 3 by using molecular dynamics (MD) method. Firstly, based on first principles calculation and experimental results, the interatomic potentials of β-Zn 4 Sb 3 and MD analysis method are established, and the feasibility is verified. Then, the influence of disordered Zn atoms on thermal conductivity of β-Zn 4 Sb 3 is studied in detail. The simulation results indicate that the 10% vacant Zn atoms is the main reason for the exceptionally low thermal conductivity of β-Zn 4 Sb 3 , and it seems that the interstitial Zn atoms have little effect on its thermal conductivity.
Interatomic Potential to Simulate Radiation Damage in Fe-Cr Alloys
Energy Technology Data Exchange (ETDEWEB)
Bonny, G.; Pasianot, R.; Terentyev, D.; Malerba, L.
2011-03-15
The report presents an Fe-Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe-Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.
Interatomic Potential to Simulate Radiation Damage in Fe-Cr Alloys
International Nuclear Information System (INIS)
Bonny, G.; Pasianot, R.; Terentyev, D.; Malerba, L.
2011-01-01
The report presents an Fe-Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe-Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.
Bayesian ensemble approach to error estimation of interatomic potentials
DEFF Research Database (Denmark)
Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Brown, K.S.
2004-01-01
Using a Bayesian approach a general method is developed to assess error bars on predictions made by models fitted to data. The error bars are estimated from fluctuations in ensembles of models sampling the model-parameter space with a probability density set by the minimum cost. The method...... is applied to the development of interatomic potentials for molybdenum using various potential forms and databases based on atomic forces. The calculated error bars on elastic constants, gamma-surface energies, structural energies, and dislocation properties are shown to provide realistic estimates...
Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.
2017-10-01
We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.
Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain
Dutta, Anirban; Dutta, Amit
2017-09-01
We study the role of long-range interactions (more precisely, the long-range superconducting gap term) on the nonequilibrium dynamics considering a long-range p -wave superconducting chain in which the superconducting term decays with distance between two sites in a power-law fashion characterized by an exponent α . We show that the Kibble-Zurek scaling exponent, dictating the power-law decay of the defect density in the final state reached following a slow (in comparison to the time scale associated with the minimum gap in the spectrum of the Hamiltonian) quenching of the chemical potential μ across a quantum critical point, depends nontrivially on the exponent α as long as α 2 , we find that the exponent saturates to the corresponding well-known value of 1 /2 expected for the short-range model. Furthermore, studying the dynamical quantum phase transitions manifested in the nonanalyticities in the rate function of the return possibility I (t ) in subsequent temporal evolution following a sudden change in μ , we show the existence of a new region; in this region, we find three instants of cusp singularities in I (t ) associated with a single sector of Fisher zeros. Notably, the width of this region shrinks as α increases and vanishes in the limit α →2 , indicating that this special region is an artifact of the long-range nature of the Hamiltonian.
Long-range Coulomb interactions in low energy (e,2e) data
International Nuclear Information System (INIS)
Waterhouse, D.
2000-01-01
Full text: Proper treatment of long-range Coulomb interactions has confounded atomic collision theory since Schrodinger first presented a quantum-mechanical model for atomic interactions. The long-range Coulomb interactions are difficult to include in models in a way that treats the interaction sufficiently well but at the same time ensures the calculation remains tractable. An innovative application of an existing multi-parameter (e,2e) data acquisition system will be described. To clarify the effects of long-range Coulomb interactions, we will report the correlations and interactions that occur at low energy, observed by studying the energy sharing between outgoing electrons in the electron-impact ionisation of krypton
International Nuclear Information System (INIS)
Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou
2016-01-01
In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = −1 or −2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction. (paper)
Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.
Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe
2014-07-21
In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms.
Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator
Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko
2017-07-01
In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.
Alleaume-Benharira, M; Pen, IR; Ronce, O
We use individual-based stochastic simulations and analytical deterministic predictions to investigate the interaction between drift, natural selection and gene flow on the patterns of local adaptation across a fragmented species' range under clinally varying selection. Migration between populations
Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...
Interatomic forces and bonding mechanisms in MgO clusters
International Nuclear Information System (INIS)
Wright, N.F.; Painter, G.S.
1990-01-01
We report results from a first-principles local spin density quantum mechanical study of the energetics and elastic properties of a series of magnesium-oxygen clusters of various morphologies. The role of quantum effects, e.g. covalency, in the bonding character of diatomic MgO is determined by comparison of classical and quantum restoring force curves. The dependence of binding properties on geometry and metal to oxygen ratio is determined by comparison of binding energy curves for a series of clusters. Results show that while gross features of the binding curves may be represented by simple interatomic potentials, details require the many body corrections of a full quantum treatment. 6 refs., 5 figs
Extending the accuracy of the SNAP interatomic potential form
Wood, Mitchell A.; Thompson, Aidan P.
2018-06-01
The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functions in EAM. The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similar to artificial neural network potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting. The quality of this new potential form is measured through a robust cross-validation analysis.
Free cooling of hard-spheres with short and long range interactions
Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan
2015-01-01
We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range
UMER: An analog computer for dynamics of swarms interacting via long-range forces
International Nuclear Information System (INIS)
Kishek, R.A.; Bai, G.; Bernal, S.; Feldman, D.; Godlove, T.F.; Haber, I.; O'Shea, P.G.; Quinn, B.; Papadopoulos, C.; Reiser, M.; Stratakis, D.; Tian, K.; Tobin, C.J.; Walter, M.
2006-01-01
Some of the most challenging and interesting problems in nature involve large numbers of objects or particles mutually interacting through long-range forces. Examples range from galaxies and plasmas to flocks of birds and traffic flow on a highway. Even in cases where the form of the interacting force is precisely known, such as the 1/r 2 -dependent Coulomb and gravitational forces, such problems present a formidable theoretical and modeling challenge for large numbers of interacting bodies. This paper reports on a newly constructed, scaled particle accelerator that will serve as an experimental testbed for the dynamics of swarms interacting through long-range forces. Primarily designed for intense beam dynamics studies for advanced accelerators, the University of Maryland Electron Ring (UMER) design is described in detail and an update on commissioning is provided. An example application to a system other than a charged particle beam is discussed
Two-dimensional melting of colloids with long-range attractive interactions.
Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa
2017-02-22
The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.
Time delays of supernova neutrinos from new long-range interactions
International Nuclear Information System (INIS)
Malaney, R.A.; Starkman, G.D.; Tremaine, S.
1995-01-01
A new long-range interaction between heavy neutrinos may solve some current problems in large-scale structure, if the new interaction mimics gravity. Assuming that the dark matter is dominated by ∼100 eV τ neutrinos, we investigate whether time delay measurements on supernova neutrinos can test this possibility. We find that such experiments can rule out or detect specific forms of the new interaction potential. In addition, we find the exact dispersive nature of the interacting medium to be critical in determining the time delay: even small corrections to the potential can dramatically alter the magnitude of the effect
Energy Technology Data Exchange (ETDEWEB)
Keim, M.
2005-07-01
In the present thesis response effects in interatomic collisions with two active electrons are studied in the range of non-relativistic collision energies. The starting point is the mapping of the time-dependent interacting many-electron sytem on an effective one-particle picture on the base of the time-dependent density functional theory (TDDFT). By means of the basis generator method the one-particle equations aring in the framework of the TDDFT concept are solved in a finite-dimensional model space. In the study of ionization cross section in the collisional systeem anti p+He it is shown that by response effects an essential diminuishing of the cross sections in comparison to the no-response case is reached. Analoguously the ionization cross sections for the collisional systems p-He, He{sup 2+}-He, Li{sup 3+}-He and p-Li{sup +} behave.
International Nuclear Information System (INIS)
Richter, T.; Wolff, T.; Zimmermann, P.; Godehusen, K.; Martins, M.
2004-01-01
The 2p photoabsorption and photoelectron spectra of atomic Fe and molecular FeCl 2 were studied by photoion and photoelectron spectroscopy using monochromatized synchrotron radiation and atomic or molecular beam technique. The atomic spectra were analyzed with configuration interaction calculations yielding excellent agreement between experiment and theory. For the analysis of the molecular photoelectron spectrum which shows pronounced interatomic effects, a charge transfer model was used, introducing an additional 3d 7 configuration. The resulting good agreement between the experimental and theoretical spectrum and the remarkable similarity of the molecular with the corresponding spectrum in the solid phase opens a way to a better understanding of the interplay of the interatomic and intra-atomic interactions in the 2p core level spectra of the 3d metal compounds
The short range effective interaction and the spectra of calcium isotopes in (f-p) space
International Nuclear Information System (INIS)
Qing-ying, Z.; Shen-wu, L.; Jian-xin, W.
1986-01-01
In this work, the authors use a new type of extremely short range interaction, the double delta interaction (DDI) to calculate the low-lying spectra of calcium isotopes /sup 41/Ca through /sup 48/Ca. The configuration space (f-p) includes configurations ( f/sub 7/2//sup n/ ) and ( f/sub 7/2//sup n-1/2p/sub 3/2/). The calculated energies are compared with experimental data for 75 levels. For comparison, they also use usual modified surface delta interaction (MSDI) to calculate the same spectra aforementioned. It is clear that the results calculated with DDI are better than with MSDI. Therefore, in the short-range effective interaction the addition of body delta force to the modified surface delta force may improve the agreement with experiment. The authors believe that the conclusion will not be changed if one enlarges the shell model space
Long-range dispersion interactions. I. Formalism for two heteronuclear atoms
International Nuclear Information System (INIS)
Zhang, J.-Y.; Mitroy, J.
2007-01-01
A general procedure for systematically evaluating the long-range dispersion interaction between two heteronuclear atoms in arbitrary states is outlined. The C 6 dispersion parameter can always be written in terms of sum rules involving oscillator strengths only and formulas for a number of symmetry cases are given. The dispersion coefficients for excited alkali-metal atoms interacting with the ground-state H and He are tabulated
Latella, Ivan; Pérez-Madrid, Agustín
2013-10-01
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
A long-range attractive interaction of rotons in superfluid 4He
International Nuclear Information System (INIS)
Nishiyama, Toshiyuki; Sai, Shunkichi
1974-01-01
With the use of the method of the collective description developed by one of the authors (N) for superfluid 4 He, it is shown that a long-range interaction of rotons transmitted by phonons is attractive and yields a resonance state of a roton pair with the binding energy of the order of magnitude 0.12 K which is relevant to the recent experimental results of the Raman scattering. The effect of the short-range mutual interaction of rotons is also discussed. Some comments on the relationship to the other theories of the collective description are made in appendices. (author)
The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap
Directory of Open Access Journals (Sweden)
Metsch B. Ch.
2010-04-01
Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Eﬁmov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].
International Nuclear Information System (INIS)
Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien
2005-01-01
Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers
Real-space, mean-field algorithm to numerically calculate long-range interactions
Cadilhe, A.; Costa, B. V.
2016-02-01
Long-range interactions are known to be of difficult treatment in statistical mechanics models. There are some approaches that introduce a cutoff in the interactions or make use of reaction field approaches. However, those treatments suffer the illness of being of limited use, in particular close to phase transitions. The use of open boundary conditions allows the sum of the long-range interactions over the entire system to be done, however, this approach demands a sum over all degrees of freedom in the system, which makes a numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole expansion account for the exact interactions but are still limited to a few thousands of particles. In this paper we introduce a novel mean-field approach to treat long-range interactions. The method is based in the division of the system in cells. In the inner cell, that contains the particle in sight, the 'local' interactions are computed exactly, the 'far' contributions are then computed as the average over the particles inside a given cell with the particle in sight for each of the remaining cells. Using this approach, the large and small cells limits are exact. At a fixed cell size, the method also becomes exact in the limit of large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar Heisenberg model. A detailed comparison between our method, the exact calculation and the cutoff radius approximation were done. Our results show that the cutoff-cell approach outperforms any cutoff radius approach as it maintains the long-range memory present in these interactions, contrary to the cutoff radius approximation. Besides that, we calculated the critical temperature and the critical behavior of the specific heat of the anisotropic Heisenberg model using our method. The results are in excellent agreement with extensive Monte Carlo simulations using Ewald summation.
On macromolecular refinement at subatomic resolution with interatomic scatterers
Energy Technology Data Exchange (ETDEWEB)
Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Lunin, Vladimir Y. [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino 142290 (Russian Federation); Urzhumtsev, Alexandre [IGMBC, 1 Rue L. Fries, 67404 Illkirch and IBMC, 15 Rue R. Descartes, 67084 Strasbourg (France); Faculty of Sciences, Nancy University, 54506 Vandoeuvre-lès-Nancy (France); Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States)
2007-11-01
Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules. A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.
The phase transition in the anisotropic Heisenberg model with long range dipolar interactions
International Nuclear Information System (INIS)
Mól, L.A.S.; Costa, B.V.
2014-01-01
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order–disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results. - Highlights: • The anisotropic Heisenberg model with dipolar interactions is studied. • True long-range interactions were considered by means of Ewald summation. • We found an order–disorder phase transition with unusual critical exponents. • Previous results show a different behavior when a cut-off radius is introduced. • The use of a cut-off radius must be avoided when dealing with dipolar systems
Michels, M.A.J.; Suttorp, L.G.
1972-01-01
The multipole expansion of the retarded dispersion energy of two atoms in nondegenerate ground states is derived. The result shows that multipoles of different order may give rise to dispersion energies varying in the same way for large interatomic separations.
Long-range dispersion interactions. III: Method for two homonuclear atoms
International Nuclear Information System (INIS)
Mitroy, J.; Zhang, J.-Y.
2007-01-01
A procedure for systematically evaluating the long-range dispersion interaction between two homonuclear atoms in arbitrary LS coupled states is outlined. The method is then used to generate dispersion coefficients for a number of the low-lying states of the Na and Mg dimers
Long-range interactions of excited He atoms with ground-state noble-gas atoms
Zhang, J.-Y.; Qian, Ying; Schwingenschlö gl, Udo; Yan, Z.-C.
2013-01-01
The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition
Effects of short range ΔN interaction on observables of the πNN system
International Nuclear Information System (INIS)
Alexandrou, C.; Blankleider, B.
1990-01-01
The inadequacy of standard few-body approaches in describing the πNN system has motivated searches for the responsible missing mechanism. In the case of πd scattering, it has recently been asserted that an additional short range ΔN interaction can account for essentially all the discrepancies between a few-body calculation and experimental data. This conclusion, however, has been based on calculations where a phenomenological ΔN interaction is added only in Born term to background few-body amplitudes. In the present work we investigate the effect of including such a ΔN interaction to all orders within a unitary few-body calculation of the πNN system. Besides testing the validity of adding the ΔN interaction in Born term in πd scattering, our fully coupled approach also enables us to see the influence of the same ΔN interaction on the processes NN→πd and NN→NN. For πd elastic scattering, we find that the higher order ΔN interaction terms can have as much influence on πd observables as the lowest order contribution alone. Moreover, we find that the higher order contributions tend to cancel the effect obtained by adding the ΔN interaction in Born term only. The effect of the same ΔN interaction on NN→πd and NN→NN appears to be as significant as in πd→πd, suggesting that future investigations of the short range ΔN interaction should be done in the context of the fully coupled πNN system
Study of an Ising model with competing long- and short-range interactions
International Nuclear Information System (INIS)
Loew, U.; Emery, V.J.; Fabricius, K.; Kivelson, S.A.
1994-01-01
A classical spin-one lattice gas model is used to study the competition between short-range ferromagnetic coupling and long-range antiferromagnetic Coulomb interactions. The model is a coarse-grained representation of frustrated phase separation in high-temperature superconductors. The ground states are determined for the complete range of parameters by using a combination of numerical and analytical techniques. The crossover between ferromagnetic and antiferromagnetic states proceeds via a rich structure of highly symmetric striped and checkerboard phases. There is no devil's staircase behavior because mixtures of stripes with different period phase separate
Short versus long range interactions and the size of two-body weakly bound objects
International Nuclear Information System (INIS)
Lombard, R.J.; Volpe, C.
2003-01-01
Very weakly bound systems may manifest intriguing ''universal'' properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum l. These results enlarge the image of halo systems we are accustomed to. (orig.)
Fermi-edge singularity in one-dimensional electron systems with long-range Coulomb interactions
International Nuclear Information System (INIS)
Otani, H.; Ogawa, T.
1996-01-01
Effects of long-range Coulomb interactions on the Fermi-edge singularity in optical spectra are investigated theoretically for one-dimensional spin-1/2 fermion systems with the use of the Tomonaga-Luttinger bosonization technique. Low-energy excitation spectrum near the Fermi level shows that dispersion of the charge-density fluctuation remains gapless but is nonlinear when the electron-electron (e-e) Coulomb interaction is of the x -1 type (i.e., an infinite force range). Temporal behavior of the current-current correlation function is calculated analytically for arbitrary force ranges, λ e and λ h , of the e-e and the electron-hole (e-h) Coulomb interactions. (i) When both the e-e and the e-h interactions have large but finite force ranges (λ e h max[λ e ,λ h ]/v F . Corresponding optical spectrum near the Fermi edge (within an energy range of ℎv F /max[λ e ,λ h ]) exhibits the power-law divergence or the power-law convergence, which is an ordinary Fermi-edge singularity. (ii) When either the e-e or the e-h interaction is of the x -1 type (i.e., λ e →∞ and/or λ h →∞), an exponent of the correlation function is dependent on time to lead the faster decay than that of any power laws. Then the optical spectra show no power law dependence and always converge (become zero) at the Fermi edge, which is in striking contrast to the ordinary power-law singularity
Models with short- and long-range interactions: the phase diagram and the reentrant phase
International Nuclear Information System (INIS)
Dauxois, Thierry; Lori, Leonardo; Ruffo, Stefano; De Buyl, Pierre
2010-01-01
We study the phase diagram of two different Hamiltonians with competing local, nearest-neighbour, and mean-field couplings. The first example corresponds to the HMF Hamiltonian with an additional short-range interaction. The second example is a reduced Hamiltonian for dipolar layered spin structures, with a new feature with respect to the first example: the presence of anisotropies. The two examples are solved in both the canonical and the microcanonical ensemble using a combination of the min–max method with the transfer operator method. The phase diagrams present typical features of systems with long-range interactions: ensemble inequivalence, negative specific heat and temperature jumps. Moreover, for a given range of parameters, we report the signature of phase reentrance. This can also be interpreted as the presence of azeotropy with the creation of two first-order phase transitions with ensemble inequivalence, as one parameter is varied continuously
Short range part of the NN interaction: Equivalent local potentials from quark exchange kernels
International Nuclear Information System (INIS)
Suzuk, Y.; Hecht, K.T.
1983-01-01
To focus on the nature of the short range part of the NN interaction, the intrinsically nonlocal interaction among the quark constituents of colorless nucleons is converted to an equivalent local potential using resonating group kernels which can be evaluated in analytic form. The WKB approximation based on the Wigner transform of the nonlocal kernels has been used to construct the equivalent potentials without recourse to the long range part of the NN interaction. The relative importance of the various components of the exchange kernels can be examined: The results indicate the importance of the color magnetic part of the exchange kernel for the repulsive part in the (ST) = (10), (01) channels, in particular since the energy dependence of the effective local potentials seems to be set by this term. Large cancellations of color Coulombic and quark confining contributions, together with the kinetic energy and norm exchange terms, indicate that the exact nature of the equivalent local potential may be sensitive to the details of the parametrization of the underlying quark-quark interaction. The equivalent local potentials show some of the characteristics of the phenomenological short range terms of the Paris potential
Boundary Associated Long Noncoding RNA Mediates Long-Range Chromosomal Interactions.
Directory of Open Access Journals (Sweden)
Ifeoma Jane Nwigwe
Full Text Available CCCTC binding factor (CTCF is involved in organizing chromosomes into mega base-sized, topologically associated domains (TADs along with other factors that define sub-TAD organization. CTCF-Cohesin interactions have been shown to be critical for transcription insulation activity as it stabilizes long-range interactions to promote proper gene expression. Previous studies suggest that heterochromatin boundary activity of CTCF may be independent of Cohesin, and there may be additional mechanisms for defining topological domains. Here, we show that a boundary site we previously identified known as CTCF binding site 5 (CBS5 from the homeotic gene cluster A (HOXA locus exhibits robust promoter activity. This promoter activity from the CBS5 boundary element generates a long noncoding RNA that we designate as boundary associated long noncoding RNA-1 (blncRNA1. Functional characterization of this RNA suggests that the transcript stabilizes long-range interactions at the HOXA locus and promotes proper expression of HOXA genes. Additionally, our functional analysis also shows that this RNA is not needed in the stabilization of CTCF-Cohesin interactions however CTCF-Cohesin interactions are critical in the transcription of blncRNA1. Thus, the CTCF-associated boundary element, CBS5, employs both Cohesin and noncoding RNA to establish and maintain topologically associated domains at the HOXA locus.
Analysing the origin of long-range interactions in proteins using lattice models
Directory of Open Access Journals (Sweden)
Unger Ron
2009-01-01
Full Text Available Abstract Background Long-range communication is very common in proteins but the physical basis of this phenomenon remains unclear. In order to gain insight into this problem, we decided to explore whether long-range interactions exist in lattice models of proteins. Lattice models of proteins have proven to capture some of the basic properties of real proteins and, thus, can be used for elucidating general principles of protein stability and folding. Results Using a computational version of double-mutant cycle analysis, we show that long-range interactions emerge in lattice models even though they are not an input feature of them. The coupling energy of both short- and long-range pairwise interactions is found to become more positive (destabilizing in a linear fashion with increasing 'contact-frequency', an entropic term that corresponds to the fraction of states in the conformational ensemble of the sequence in which the pair of residues is in contact. A mathematical derivation of the linear dependence of the coupling energy on 'contact-frequency' is provided. Conclusion Our work shows how 'contact-frequency' should be taken into account in attempts to stabilize proteins by introducing (or stabilizing contacts in the native state and/or through 'negative design' of non-native contacts.
Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED
Directory of Open Access Journals (Sweden)
Varun D. Vaidya
2018-01-01
Full Text Available Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
Statistical mechanics and dynamics of solvable models with long-range interactions
International Nuclear Information System (INIS)
Campa, Alessandro; Dauxois, Thierry; Ruffo, Stefano
2009-01-01
For systems with long-range interactions, the two-body potential decays at large distances as V(r)∼1/r α , with α≤d, where d is the space dimension. Examples are: gravitational systems, two-dimensional hydrodynamics, two-dimensional elasticity, charged and dipolar systems. Although such systems can be made extensive, they are intrinsically non additive: the sum of the energies of macroscopic subsystems is not equal to the energy of the whole system. Moreover, the space of accessible macroscopic thermodynamic parameters might be non convex. The violation of these two basic properties of the thermodynamics of short-range systems is at the origin of ensemble inequivalence. In turn, this inequivalence implies that specific heat can be negative in the microcanonical ensemble, and temperature jumps can appear at microcanonical first order phase transitions. The lack of convexity allows us to easily spot regions of parameter space where ergodicity may be broken. Historically, negative specific heat had been found for gravitational systems and was thought to be a specific property of a system for which the existence of standard equilibrium statistical mechanics itself was doubted. Realizing that such properties may be present for a wider class of systems has renewed the interest in long-range interactions. Here, we present a comprehensive review of the recent advances on the statistical mechanics and out-of-equilibrium dynamics of solvable systems with long-range interactions. The core of the review consists in the detailed presentation of the concept of ensemble inequivalence, as exemplified by the exact solution, in the microcanonical and canonical ensembles, of mean-field type models. Remarkably, the entropy of all these models can be obtained using the method of large deviations. Long-range interacting systems display an extremely slow relaxation towards thermodynamic equilibrium and, what is more striking, the convergence towards quasi-stationary states. The
Energy Technology Data Exchange (ETDEWEB)
Ruestes, C.J., E-mail: cjruestes@hotmail.com [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina); Stukowski, A. [Technische Universität Darmstadt, Darmstadt 64287 (Germany); Tang, Y. [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China); Tramontina, D.R. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); Erhart, P. [Chalmers University of Technology, Department of Applied Physics, Gothenburg 41296 (Sweden); Remington, B.A. [Lawrence Livermore National Lab, Livermore, CA 94550 (United States); Urbassek, H.M. [Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663 (Germany); Meyers, M.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Bringa, E.M. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina)
2014-09-08
Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory.
International Nuclear Information System (INIS)
Ruestes, C.J.; Stukowski, A.; Tang, Y.; Tramontina, D.R.; Erhart, P.; Remington, B.A.; Urbassek, H.M.; Meyers, M.A.; Bringa, E.M.
2014-01-01
Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory
Chiral d -wave superconductivity in a triangular surface lattice mediated by long-range interaction
Cao, Xiaodong; Ayral, Thomas; Zhong, Zhicheng; Parcollet, Olivier; Manske, Dirk; Hansmann, Philipp
2018-04-01
Adatom systems on the Si(111) surface have recently attracted an increasing attention as strongly correlated systems with a rich phase diagram. We study these materials by a single band model on the triangular lattice, including 1 /r long-range interaction. Employing the recently proposed TRILEX method, we find an unconventional superconducting phase of chiral d -wave symmetry in hole-doped systems. Contrary to usual scenarios where charge and spin fluctuations are seen to compete, here the superconductivity is driven simultaneously by both charge and spin fluctuations and crucially relies on the presence of the long-range tail of the interaction. We provide an analysis of the relevant collective bosonic modes and predict how a cumulative charge and spin paring mechanism leads to superconductivity in doped silicon adatom materials.
International Nuclear Information System (INIS)
Massiera, Gladys; Ramos, Laurence; Ligoure, Christian; Pitard, Estelle
2003-01-01
We use the random phase approximation to compute the structure factor S(q) of a solution of chains interacting through a soft and short range repulsive potential V. Above a threshold polymer concentration, whose magnitude is essentially controlled by the range of the potential, S(q) exhibits a peak whose position depends on the concentration. We take advantage of the close analogy between polymers and wormlike micelles and apply our model, using a Gaussian function for V, to quantitatively analyze experimental small angle neutron scattering profiles of solutions of hairy wormlike micelles. These samples, which consist in surfactant self-assembled flexible cylinders decorated by amphiphilic copolymer, provide indeed an appropriate experimental model system to study the structure of sterically interacting polymer solutions
Emergence and frustration of magnetism with variable-range interactions in a quantum simulator.
Islam, R; Senko, C; Campbell, W C; Korenblit, S; Smith, J; Lee, A; Edwards, E E; Wang, C-C J; Freericks, J K; Monroe, C
2013-05-03
Frustration, or the competition between interacting components of a network, is often responsible for the emergent complexity of many-body systems. For instance, frustrated magnetism is a hallmark of poorly understood systems such as quantum spin liquids, spin glasses, and spin ices, whose ground states can be massively degenerate and carry high degrees of quantum entanglement. Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped (171)Yb(+) atoms. We control the amount of frustration by continuously tuning the range of interaction and directly measure spin correlation functions and their coherent dynamics. This prototypical quantum simulation points the way toward a new probe of frustrated quantum magnetism and perhaps the design of new quantum materials.
Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman
2015-09-03
Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.
Energy of N two-dimensional bosons with zero-range interactions
Bazak, B.; Petrov, D. S.
2018-02-01
We derive an integral equation describing N two-dimensional bosons with zero-range interactions and solve it for the ground state energy B N by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond the scaling B N ∝ 8.567 N predicted by Hammer and Son (2004 Phys. Rev. Lett. 93 250408) in the large-N limit.
Simulation of wire-compensation of long range beam beam interaction in high energy accelerators
International Nuclear Information System (INIS)
Dorda, U.; )
2006-01-01
Full text: We present weak-strong simulation results for the effect of long-range beam-beam (LRBB) interaction in LHC as well as for proposed wire compensation schemes or wire experiments, respectively. In particular, we discuss details of the simulation model, instability indicators, the effectiveness of compensation, the difference between nominal and PACMAN bunches for the LHC, beam experiments, and wire tolerances. The simulations are performed with the new code BBTrack. (author)
Use of a finite range nucleon-nucleon interaction in the continuum shell model
International Nuclear Information System (INIS)
Faes, Jean-Baptiste
2007-01-01
The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)
Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.
Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A
2016-02-14
The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.
Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals
Wang, Yuxuan; Nandkishore, Rahul M.
2017-09-01
In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.
Long-range interactions between excited helium and alkali-metal atoms
Zhang, J.-Y.
2012-12-03
The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.
Energy Technology Data Exchange (ETDEWEB)
Thompson, Aidan P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Multiscale Science Dept.; Swiler, Laura P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Optimization and Uncertainty Quantification Dept.; Trott, Christian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Scalable Algorithms Dept.; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Tucker, Garritt J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering
2015-03-15
Here, we present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.
Energy Technology Data Exchange (ETDEWEB)
Thompson, A.P., E-mail: athomps@sandia.gov [Multiscale Science Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Swiler, L.P., E-mail: lpswile@sandia.gov [Optimization and Uncertainty Quantification Department, Sandia National Laboratories, PO Box 5800, MS 1318, Albuquerque, NM 87185 (United States); Trott, C.R., E-mail: crtrott@sandia.gov [Scalable Algorithms Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Foiles, S.M., E-mail: foiles@sandia.gov [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Tucker, G.J., E-mail: gtucker@coe.drexel.edu [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104 (United States)
2015-03-15
We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.
International Nuclear Information System (INIS)
Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.
2015-01-01
We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum
Investigation of the neutron-proton-interaction in the energy range from 20 to 50 MEV
International Nuclear Information System (INIS)
Wilczynski, J.
1984-07-01
In the framework of the investigation of the isospin singlet part of the nucleon-nucleon-interaction in the energy range below 100 MeV two experiments were conducted, which were selected by sensitivity calculations. At the Karlsruhe polarized neutron facility POLKA the analyzing powers Asub(y) and Asub(yy) of the elastic n vector-p- and n vector-p vector-scattering were measured in the energy range from 20 to 50 MeV. The results of this epxeriment are compared to older data. In the energy range from 20 to 50 MeV the new data were analyzed together with other selected data of the nucleon-nucleon-system in phase shift analyses. The knowledge of the isospin singlet phase shifts 1 P 1 and 3 D 3 was improved by the new data. (orig./HSI) [de
An interatomic potential model for carbonates allowing for polarization effects
International Nuclear Information System (INIS)
Birse, S.E.A.; Archer, T.D.; Dove, Martin T.; Cygan, Randall Timothy; Gale, Julian D.; Redern, Simon A.T.
2003-01-01
An empirical model for investigating the behavior of CaCO 3 polymorphs incorporating a shell model for oxygen has been created. The model was constructed by fitting to: the structure of aragonite and calcite; their elastic, static and high-frequency dielectric constants; phonon frequencies at the wave vectors (1/2 0 2) and (0 0 0) of calcite; and vibrational frequencies of the carbonate deformation modes of calcite. The high-pressure phase transition between calcite I and II is observed. The potentials for the CO 3 group were transferred to other carbonates, by refitting the interaction between CO 3 and the cation to both the experimental structures and their bulk modulus, creating a set of potentials for calculating the properties of a wide range of carbonate materials. Defect energies of substitutional cation defects were analyzed for calcite and aragonite phases. The results were rationalized by studying the structure of calcite and aragonite in greater detail.
Arbuznikov, Alexei V; Kaupp, Martin
2012-01-07
Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.
On the doubly ionized states of Ar2 and their intra- and interatomic decay to Ar23+
International Nuclear Information System (INIS)
Stoychev, Spas D.; Kuleff, Alexander I.; Tarantelli, Francesco; Cederbaum, Lorenz S.
2008-01-01
Potential energy curves of the Auger state Ar + (2p -1 )-Ar, the different one- and two-site dicationic states Ar 2 ++ (with energies in the range of 32-77 eV), and the lowest two-site tricationic states Ar ++ -Ar + (with energies in the range of 64-76 eV) computed using elaborated ab initio methods are reported. The accessible relaxation channels of the electronic states of Ar ++ -Ar populated by Auger decay are studied. In particular, we study in detail the interatomic Coulombic decay following the population of one-site satellite states of Ar ++ (3s -1 3p -1 )-Ar recently observed experimentally. Other relaxation pathways of Ar ++ -Ar, including radiative charge transfer, nuclear dynamics through curve crossing, and intra-atomic decay processes are also investigated
Han, SangEun; Moon, Eun-Gook
2018-06-01
Topological states may be protected by a lattice symmetry in a class of topological semimetals. In three spatial dimensions, the Berry flux around gapless excitations in momentum space concretely defines a chirality, so a protecting symmetry may be referred to as a chiral symmetry. Prime examples include a Dirac semimetal (DSM) in a distorted spinel, BiZnSiO4, protected by a mirror symmetry, and a DSM in Na3Bi , protected by a rotational symmetry. In these states, topology and chiral symmetry are intrinsically tied. In this Rapid Communication, the characteristic interplay between a chiral symmetry order parameter and an instantaneous long-range Coulomb interaction is investigated with the standard renormalization group method. We show that a topological transition associated with chiral symmetry is stable under the presence of a Coulomb interaction and the electron velocity always becomes faster than the one of a chiral symmetry order parameter. Thus, the transition must not be relativistic, which implies that supersymmetry is intrinsically forbidden by the long-range Coulomb interaction. Asymptotically exact universal ratios of physical quantities such as the energy gap ratio are obtained, and connections with experiments and recent theoretical proposals are also discussed.
Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field
Hummel, Frederic; Fey, Christian; Schmelcher, Peter
2018-04-01
We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.
Cubic–quintic long-range interactions with double well potentials
International Nuclear Information System (INIS)
Tsilifis, Panagiotis A; Kevrekidis, Panayotis G; Rothos, Vassilis M
2014-01-01
In the present work, we examine the combined effects of cubic and quintic terms of the long-range type in the dynamics of a double well potential. Employing a two-mode approximation, we systematically develop two cubic–quintic ordinary differential equations and assess the contributions of the long-range interactions in each of the relevant prefactors, gauging how to simplify the ensuing dynamical system. Finally, we obtain a reduced canonical description for the conjugate variables of relative population imbalance and relative phase between the two wells and proceed to a dynamical systems analysis of the resulting pair of ordinary differential equations. While in the case of cubic and quintic interactions of the same kind (e.g. both attractive or both repulsive), only a symmetry-breaking bifurcation can be identified, a remarkable effect that emerges e.g. in the setting of repulsive cubic but attractive quintic interactions is a ‘symmetry-restoring’ bifurcation. Namely, in addition to the supercritical pitchfork that leads to a spontaneous symmetry breaking of the antisymmetric state, there is a subcritical pitchfork that eventually reunites the asymmetric daughter branch with the antisymmetric parent one. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. The model is argued to be of physical relevance, especially so in the context of optical thermal media. (paper)
Directory of Open Access Journals (Sweden)
Tristan L Guttridge
Full Text Available Group behaviours are widespread among fish but comparatively little is known about the interactions between free-ranging individuals and how these might change across different spatio-temporal scales. This is largely due to the difficulty of observing wild fish groups directly underwater over long enough time periods to quantify group structure and individual associations. Here we describe the use of a novel technology, an animal-borne acoustic proximity receiver that records close-spatial associations between free-ranging fish by detection of acoustic signals emitted from transmitters on other individuals. Validation trials, held within enclosures in the natural environment, on juvenile lemon sharks Negaprion brevirostris fitted with external receivers and transmitters, showed receivers logged interactions between individuals regularly when sharks were within 4 m ( approximately 4 body lengths of each other, but rarely when at 10 m distance. A field trial lasting 17 days with 5 juvenile lemon sharks implanted with proximity receivers showed one receiver successfully recorded association data, demonstrating this shark associated with 9 other juvenile lemon sharks on 128 occasions. This study describes the use of acoustic underwater proximity receivers to quantify interactions among wild sharks, setting the scene for new advances in understanding the social behaviours of marine animals.
Long-range Self-interacting Dark Matter in the Sun
International Nuclear Information System (INIS)
Chen, Jing; Liang, Zheng-Liang; Wu, Yue-Liang; Zhou, Yu-Feng
2015-01-01
We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in a non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided
An interactive system for creating object models from range data based on simulated annealing
International Nuclear Information System (INIS)
Hoff, W.A.; Hood, F.W.; King, R.H.
1997-01-01
In hazardous applications such as remediation of buried waste and dismantlement of radioactive facilities, robots are an attractive solution. Sensing to recognize and locate objects is a critical need for robotic operations in unstructured environments. An accurate 3-D model of objects in the scene is necessary for efficient high level control of robots. Drawing upon concepts from supervisory control, the authors have developed an interactive system for creating object models from range data, based on simulated annealing. Site modeling is a task that is typically performed using purely manual or autonomous techniques, each of which has inherent strengths and weaknesses. However, an interactive modeling system combines the advantages of both manual and autonomous methods, to create a system that has high operator productivity as well as high flexibility and robustness. The system is unique in that it can work with very sparse range data, tolerate occlusions, and tolerate cluttered scenes. The authors have performed an informal evaluation with four operators on 16 different scenes, and have shown that the interactive system is superior to either manual or automatic methods in terms of task time and accuracy
Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul
2017-07-01
When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.
Bond alternation in the infinite polyene: effect of long range Coulomb interactions
International Nuclear Information System (INIS)
Mazumdar, S.; Campbell, D.K.
1985-01-01
We investigate the effects of long-range Coulomb interactions on bond and site dimerizations in a one-dimensional half-filled band. It is shown that the ground state broken symmetry is determined by two sharp inequalities involving the Coulomb parameters. Broken symmetry with periodicity 2k/sub F/ is guaranteed only if the first inequality (downward convexity of the intersite potential) is obeyed, while the second inequality gives the phase boundary between the bond-dimerized and site-dimerized phases. Application of these inequalities to the Pariser-Parr-Pople model for linear polyenes shows that the infinite polyene has enhanced bond alternation for both Ohno and Mataga-Nishimoto parametrizations of the intersite Coulomb terms. The possible role of distant neighbor interactions in photogeneration experiments is discussed. 26 refs., 3 figs
Influence of long-range Coulomb interaction in velocity map imaging.
Barillot, T; Brédy, R; Celep, G; Cohen, S; Compagnon, I; Concina, B; Constant, E; Danakas, S; Kalaitzis, P; Karras, G; Lépine, F; Loriot, V; Marciniak, A; Predelus-Renois, G; Schindler, B; Bordas, C
2017-07-07
The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.
Metastability and avalanche dynamics in strongly correlated gases with long-range interactions
Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman
2018-03-01
We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.
Energy Technology Data Exchange (ETDEWEB)
Atdaev, A.; Danilyuk, A. L.; Labunov, V. A.; Prischepa, S. L., E-mail: prischepa@bsuir.by [Belarusian State University of Informatics and Radioelectronics (Belarus); Pavlov, A. A. [Russian Academy of Sciences, Institute of Microelectronics Nanotechnologies (Russian Federation); Basaev, A. S.; Shaman, Yu. P. [SMC Technological Center (Russian Federation)
2016-12-15
The interaction of electromagnetic radiation with a magnetically functionalized nanocomposite based on carbon nanotubes (CNTs) is considered using the model of random distribution of ferromagnetic nanoparticles in the carbon matrix characterized by the presence of resistive–inductive–capacitive coupling (contours). The model is based on the representation of the nanocomposite as a system consisting of the CNT matrix, ferromagnetic nanoparticles, and the interfaces between CNTs and nanoparticles. The wide range of possible resonant phenomena caused both by the presence of contours and the properties of the CNT nanocomposite is shown.
CGC/saturation approach for soft interactions at high energy: long range rapidity correlations
International Nuclear Information System (INIS)
Gotsman, E.; Maor, U.; Levin, E.
2015-01-01
In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y 1 , y 2 ) ≥ 1, which is independent of y 1 and y 2 . Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)
Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy
Energy Technology Data Exchange (ETDEWEB)
Simoni, F.; Lalli, S.; Lucchetti, L. [Dipartimento di Scienze e Ingegneria della Materia, dell' Ambiente ed Urbanistica and CNISM, Università Politecnica delle Marche, Ancona (Italy); Criante, L. [Center for Nano Science and Technology-PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Brasselet, E. [Univ. Bordeaux and CNRS, Laboratoire Ondes et Matière d' Aquitaine, UMR 5798, F-33400 Talence (France)
2014-01-06
We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.
Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions.
Vallejo, G A; Guhl, F; Schaub, G A
2009-01-01
Of the currently known 140 species in the family Reduviidae, subfamily Triatominae, those which are most important as vectors of the aetiologic agent of Chagas disease, Trypanosoma cruzi, belong to the tribes Triatomini and Rhodniini. The latter not only transmit T. cruzi but also Trypanosoma rangeli, which is considered apathogenic for the mammalian host but can be pathogenic for the vectors. Using different molecular methods, two main lineages of T. cruzi have been classified, T. cruzi I and T. cruzi II. Within T. cruzi II, five subdivisions are recognized, T. cruzi IIa-IIe, according to the variability of the ribosomal subunits 24Salpha rRNA and 18S rRNA. In T. rangeli, differences in the organization of the kinetoplast DNA separate two forms denoted T. rangeli KP1+ and KP1-, although differences in the intergenic mini-exon gene and of the small subunit rRNA (SSU rRNA) suggest four subpopulations denoted T. rangeli A, B, C and D. The interactions of these subpopulations of the trypanosomes with different species and populations of Triatominae determine the epidemiology of the human-infecting trypanosomes in Latin America. Often, specific subpopulations of the trypanosomes are transmitted by specific vectors in a particular geographic area. Studies centered on trypanosome-triatomine interaction may allow identification of co-evolutionary processes, which, in turn, could consolidate hypotheses of the evolution and the distribution of T. cruzi/T. rangeli-vectors in America, and they may help to identify the mechanisms that either facilitate or impede the transmission of the parasites in different vector species. Such mechanisms seem to involve intestinal bacteria, especially the symbionts which are needed by the triatomines to complete nymphal development and to produce eggs. Development of the symbionts is regulated by the vector. T. cruzi and T. rangeli interfere with this system and induce the production of antibacterial substances. Whereas T. cruzi is only
A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics
International Nuclear Information System (INIS)
Morante, S.; Rossi, G.C.
2017-01-01
We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.
A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics
Energy Technology Data Exchange (ETDEWEB)
Morante, S., E-mail: morante@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Rossi, G.C., E-mail: rossig@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome (Italy)
2017-02-15
We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.
Comment on "Many-body localization in Ising models with random long-range interactions"
Maksymov, Andrii O.; Rahman, Noah; Kapit, Eliot; Burin, Alexander L.
2017-11-01
This Comment is dedicated to the investigation of many-body localization in a quantum Ising model with long-range power-law interactions r-α, relevant for a variety of systems ranging from electrons in Anderson insulators to spin excitations in chains of cold atoms. It has earlier been argued [arXiv:cond-mat/0611387 (2005); Phys. Rev. B 91, 094202 (2015), 10.1103/PhysRevB.91.094202] that this model obeys the dimensional constraint suggesting the delocalization of all finite-temperature states in the thermodynamic limit for α ≤2 d in a d -dimensional system. This expectation conflicts with the recent numerical studies of the specific interacting spin model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625]. To resolve this controversy we reexamine the model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625] and demonstrate that the infinite-temperature states there obey the dimensional constraint. The earlier developed scaling theory for the critical system size required for delocalization is extended to small exponents 0 ≤α ≤d . The disagreements between the two works are explained by the nonstandard selection of investigated states in the ordered phase in the work of Li et al. [Phys. Rev. A 94, 063625 (2016)type="doi" specific-use="suppress-display">10.1103/PhysRevA.94.063625].
Proper construction of ab initio global potential surfaces with accurate long-range interactions
International Nuclear Information System (INIS)
Ho, Tak-San; Rabitz, Herschel
2000-01-01
An efficient procedure based on the reproducing kernel Hilbert space interpolation method is presented for constructing intermolecular potential energy surfaces (PES) using not only calculated ab initio data but also a priori information on long-range interactions. Explicitly, use of the reciprocal power reproducing kernel on the semiinfinite interval [0,∞) yields a set of exact linear relations between dispersion (multipolar) coefficients and PES data points at finite internuclear separations. Consequently, given a combined set of ab initio data and the values of dispersion (multipolar) coefficients, the potential interpolation problem subject to long-range interaction constraints can be solved to render globally smooth, asymptotically accurate ab initio potential energy surfaces. Very good results have been obtained for the one-dimensional He-He potential curve and the two-dimensional Ne-CO PES. The construction of the Ne-CO PES was facilitated by invoking a new reproducing kernel for the angular coordinate based on the optimally stable and shape-preserving Bernstein basis functions. (c) 2000 American Institute of Physics
Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure
Korenev, V. L.; Salewski, M.; Akimov, I. A.; Sapega, V. F.; Langer, L.; Kalitukha, I. V.; Debus, J.; Dzhioev, R. I.; Yakovlev, D. R.; Müller, D.; Schröder, C.; Hövel, H.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Kusrayev, Yu. G.; Bayer, M.
2016-01-01
Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such a control an interaction between the components needs to be established. For coupling the magnetic properties, an exchange interaction has to be implemented which typically depends on wavefunction overlap and is therefore short-ranged, so that it may be compromised across the hybrid interface. Here we study a hybrid structure consisting of a ferromagnetic Co layer and a semiconducting CdTe quantum well, separated by a thin (Cd, Mg)Te barrier. In contrast to the expected p-d exchange that decreases exponentially with the wavefunction overlap of quantum well holes and magnetic atoms, we find a long-ranged, robust coupling that does not vary with barrier width up to more than 30 nm. We suggest that the resulting spin polarization of acceptor-bound holes is induced by an effective p-d exchange that is mediated by elliptically polarized phonons.
Long-ranged interactions in thin TiN films at the superconductor-insulator transition?
Energy Technology Data Exchange (ETDEWEB)
Kronfeldner, Klaus; Strunk, Christoph [Institute for Experimental and Applied Physics, University of Regensburg (Germany); Baturina, Tatyana [A.V. Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk (Russian Federation)
2015-07-01
We measured IV-characteristics and magnetoresistance of square TiN-films in the vicinity of the disorder-tuned superconductor-insulator transition (SIT) for different sizes (5 μm to 240 μm). While the films are superconducting at zero magnetic field, at finite fields a SIT occurs. The resistance shows thermally activated behaviour on both sides of the SIT. Deep in the superconducting regime the activation energy grows linear with the sample size as expected for a size-independent critical current density. Closer to the SIT the activation energy becomes clearly size independent. On the insulating side the magnetoresistance maximum and the activation energy both grow logarithmically with sample size which is consistent with a size-limited charge BKT (Berezinskii-Kosterlitz-Thouless) scenario. In order to test for the presence of long-ranged interactions in our films, we investigate the influence of a topgate. It is expected to screen the possible long-ranged interactions as the distance of the film to the gate is much shorter than the electrostatic screening length deduced from the size-dependent activation energy.
Compensation of the Long-Range Beam-Beam Interaction in the LHC
AUTHOR|(CDS)2256057; De Conto, Jean-Marie
In the LHC, protons collide in four interaction points in order to deliver luminosity to detectors located there. In the next machine upgrade, the High Luminosity LHC, the objective is to increase this luminosity by a factor five. By sharing the same vacuum pipes, the two counter rotating beams are interacting with a longitudinal offset with respect to the IP: this effect is called Long-Range Beam-Beam interaction. In order to compensate this effect, a device is currently studying in the LHC: the Beam-Beam Compensator Wire. It consists in a DC wire carrying a current and imitating the strong beam, in the weak-strong approximation. This thesis reports a study of this device. First, we show under which hypothesis the strong beam can be equivalent to a wire. Then, we characterise the magnetic field of this wire and its effect on the weak beam before presenting results of experiments we led in order to demonstrate the beneficial effect of this device.
An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions
Energy Technology Data Exchange (ETDEWEB)
Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles; Rousselle, François; Renaud, Christophe [Laboratoire Informatique Signal et Image de la Côte d' Opale, 50 rue Ferdinand Buisson, 62100 Calais (France); Université du Littoral Côte d' Opale, 1 place de l' Yser, 59140, Dunkerque (France); Association INNOCOLD, MREI 1, 145 (France)
2014-10-06
Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan and Chen (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence to isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented. Multi-range interactions have been used for SC model, but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong and Cheng. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.
Wang, Guochao; Wang, Jun
2017-01-01
We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.
Contribution of long-range interactions to the secondary structure of an unfolded globin.
Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia
2010-09-08
This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Linear response theory for long-range interacting systems in quasistationary states.
Patelli, Aurelio; Gupta, Shamik; Nardini, Cesare; Ruffo, Stefano
2012-02-01
Long-range interacting systems, while relaxing to equilibrium, often get trapped in long-lived quasistationary states which have lifetimes that diverge with the system size. In this work, we address the question of how a long-range system in a quasistationary state (QSS) responds to an external perturbation. We consider a long-range system that evolves under deterministic Hamilton dynamics. The perturbation is taken to couple to the canonical coordinates of the individual constituents. Our study is based on analyzing the Vlasov equation for the single-particle phase-space distribution. The QSS represents a stable stationary solution of the Vlasov equation in the absence of the external perturbation. In the presence of small perturbation, we linearize the perturbed Vlasov equation about the QSS to obtain a formal expression for the response observed in a single-particle dynamical quantity. For a QSS that is homogeneous in the coordinate, we obtain an explicit formula for the response. We apply our analysis to a paradigmatic model, the Hamiltonian mean-field model, which involves particles moving on a circle under Hamiltonian dynamics. Our prediction for the response of three representative QSSs in this model (the water-bag QSS, the Fermi-Dirac QSS, and the Gaussian QSS) is found to be in good agreement with N-particle simulations for large N. We also show the long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium state. © 2012 American Physical Society
Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind
2018-04-01
The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.
Interactive Theory of Breastfeeding: creation and application of a middle-range theory
Directory of Open Access Journals (Sweden)
Cândida Caniçali Primo
Full Text Available ABSTRACT Objective: To describe a breastfeeding theory based on King's Conceptual System. Method: Theoretical study that used analysis of concept, assertion synthesis, and derivation of theory for the creation of a new theory. Results: King's system components were associated with elements of the breastfeeding process and a middle-range theory was created, which describes, explains, predicts, and prescribes breastfeeding by analyzing factors that precede and affect it, as well as their consequences on the breastfeeding process. Conclusion: The Breastfeeding Interactive Model is abstract enough to be applied in different social, cultural, political, and economic contexts, because it conceptualizes breastfeeding in systemic, dynamic, and procedural aspects. Based on a conceptual model of nursing, it contributes to the scientific construction of the subject; however it can also potentially be applied by other professionals involved in breastfeeding assistance.
CGC/saturation approach for soft interactions at high energy: long range rapidity correlations
Energy Technology Data Exchange (ETDEWEB)
Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico- Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)
2015-11-15
In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y{sub 1}, y{sub 2}) ≥ 1, which is independent of y{sub 1} and y{sub 2}. Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)
International Nuclear Information System (INIS)
Mourragui, Mustapha; Orlandi, Enza
2013-01-01
A particle system with a single locally-conserved field (density) in a bounded interval with different densities maintained at the two endpoints of the interval is under study here. The particles interact in the bulk through a long-range potential parametrized by β⩾0 and evolve according to an exclusion rule. It is shown that the empirical particle density under the diffusive scaling solves a quasilinear integro-differential evolution equation with Dirichlet boundary conditions. The associated dynamical large deviation principle is proved. Furthermore, when β is small enough, it is also demonstrated that the empirical particle density obeys a law of large numbers with respect to the stationary measures (hydrostatic). The macroscopic particle density solves a non-local, stationary, transport equation. (paper)
Long-range interactions of excited He atoms with ground-state noble-gas atoms
Zhang, J.-Y.
2013-10-09
The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition operators. The large-n expansions for the sums over the He oscillator strength divided by the corresponding transition energy are presented for these series. Using the expansions, the C6 coefficients for the systems involving He(131,3S) and He(131,3P) are calculated and found to be in good agreement with directly calculated values.
Effect of interaction range on phonon relaxation in Fermi-Pasta-Ulam beta chain.
Santhosh, G; Kumar, Deepak
2007-08-01
We study the effect of increasing the range of interactions on phonon relaxation in a chain of atoms with quartic anharmonicity. The study is motivated by recent numerical studies, showing that the value of the exponent alpha characterizing the divergence of conductivity with system size apparently depends on the presence of second neighbor couplings. We perform a quantum calculation of the wave-vector (q) dependent relaxation rate gamma(q) in the second order perturbation theory. The nonanalytic dependence of gamma(q) arises due to small-q singularity of the collision integral. We find that gamma(q) proportional to Aq(5/3) + Bq2. This gives rise to an asymptotic value alpha = 0.4, but the q2 terms lead to a higher apparent value of alpha at small sizes of the chain.
International Nuclear Information System (INIS)
Baranov, P.S.; Vol'nov, M.I.; Eliseev, A.N.
1983-01-01
The PION multifunctional time-of-flight measurement system operating on-line with the D-116 computer is described. The system is designed to study proton-hadron interaction processes using the PACHRA synchrotron beam. The following devices are involved into the basic permanent system equipment: two gamma telescope counters, neutron spectrometer, scintillation mass spectrometer, and also cryogenic liquid hydrogen and liquid deuterium targets, ionization chambers, and quantometer. The time-of-flight neutron spectrometer consists of 4 coordinate-sensitive scintillation counters, before which the logic detector operating in the anticoincidence regime is placed. Information acquisition and measurement system control are accomplished by the computer using the CAMAK modules. The above system allows one to observe at the same time different physical processes and to carry out simultaneous measurements in a wide energy range
Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions
Keleş, Ahmet; Zhao, Erhai
2018-05-01
The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.
Research on three-phase traffic flow modeling based on interaction range
Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting
2017-12-01
On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.
Earthquake simulations with time-dependent nucleation and long-range interactions
Directory of Open Access Journals (Sweden)
J. H. Dieterich
1995-01-01
Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.
Interactive drivers of activity in a free-ranging estuarine predator.
Directory of Open Access Journals (Sweden)
Matthew D Taylor
Full Text Available Animal activity patterns evolve as an optimal balance between energy use, energy acquisition, and predation risk, so understanding how animals partition activity relative to extrinsic environmental fluctuations is central to understanding their ecology, biology and physiology. Here we use accelerometry to examine the degree to which activity patterns of an estuarine teleost predator are driven by a series of rhythmic and arrhythmic environmental fluctuations. We implanted free-ranging bream Acanthopagrus australis with acoustic transmitters that measured bi-axial acceleration and pressure (depth, and simultaneously monitored a series of environmental variables (photosynthetically active radiation, tidal height, temperature, turbidity, and lunar phase for a period of approximately four months. Linear modeling showed an interaction between fish activity, light level and tidal height; with activity rates also negatively correlated with fish depth. These patterns highlight the relatively-complex trade-offs that are required to persist in highly variable environments. This study demonstrates how novel acoustic sensor tags can reveal interactive links between environmental cycles and animal behavior.
Long-Ranged Oppositely Charged Interactions for Designing New Types of Colloidal Clusters
Directory of Open Access Journals (Sweden)
Ahmet Faik Demirörs
2015-04-01
Full Text Available Getting control over the valency of colloids is not trivial and has been a long-desired goal for the colloidal domain. Typically, tuning the preferred number of neighbors for colloidal particles requires directional bonding, as in the case of patchy particles, which is difficult to realize experimentally. Here, we demonstrate a general method for creating the colloidal analogs of molecules and other new regular colloidal clusters without using patchiness or complex bonding schemes (e.g., DNA coating by using a combination of long-ranged attractive and repulsive interactions between oppositely charged particles that also enable regular clusters of particles not all in close contact. We show that, due to the interplay between their attractions and repulsions, oppositely charged particles dispersed in an intermediate dielectric constant (4<ϵ<10 provide a viable approach for the formation of binary colloidal clusters. Tuning the size ratio and interactions of the particles enables control of the type and shape of the resulting regular colloidal clusters. Finally, we present an example of clusters made up of negatively charged large and positively charged small satellite particles, for which the electrostatic properties and interactions can be changed with an electric field. It appears that for sufficiently strong fields the satellite particles can move over the surface of the host particles and polarize the clusters. For even stronger fields, the satellite particles can be completely pulled off, reversing the net charge on the cluster. With computer simulations, we investigate how charged particles distribute on an oppositely charged sphere to minimize their energy and compare the results with the solutions to the well-known Thomson problem. We also use the simulations to explore the dependence of such clusters on Debye screening length κ^{−1} and the ratio of charges on the particles, showing good agreement with experimental observations.
A gradient approximation for calculating Debye temperatures from pairwise interatomic potentials
International Nuclear Information System (INIS)
Jackson, D.P.
1975-09-01
A simple gradient approximation is given for calculating the effective Debye temperature of a cubic crystal from central pairwise interatomic potentials. For examples of the Morse potential applied to cubic metals the results are in generally good agreement with experiment. (author)
Fast methods for long-range interactions in complex systems. Lecture notes
International Nuclear Information System (INIS)
Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas
2011-01-01
Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)
Fast methods for long-range interactions in complex systems. Lecture notes
Energy Technology Data Exchange (ETDEWEB)
Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas (eds.)
2011-10-13
Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)
Haering, Diane; Raison, Maxime; Begon, Mickael
2014-08-01
The shoulder is the most mobile joint of the human body due to bony constraint scarcity and soft tissue function unlocking several degrees of freedom (DOF). Clinical evaluation of the shoulder range of motion (RoM) is often limited to a few monoplanar measurements where each DOF varies independently. The main objective of this study was to provide a method and its experimental approach to assess shoulder 3D RoM with DOF interactions. Sixteen participants performed four series of active arm movements with maximal amplitude consisting in (1) elevations with fixed arm axial rotations (elevation series), (2) axial rotations at different elevations (rotation series), both in five planes of elevation, (3) free arm movements with the instruction to fill the largest volume in space while varying hand orientation (random series), and (4) a combination of elevation and rotation series (overall series). A motion analysis system combined with an upper limb kinematic model was used to estimate the 3D joint kinematics. Thoracohumeral Euler angles with correction were chosen to represent rotations. The angle-time-histories were treated altogether to analyze their 3D interaction. Then, all 3D angular poses were included into a nonconvex hull representing the RoM space accounting for DOF interactions. The effect of series of movements (n = 4) on RoM volumes was tested with a one-way repeated-measures ANOVA followed by Bonferroni posthoc analysis. A normalized 3D RoM space was defined by including 3D poses common to a maximal number of participants into a hull of average volume. A significant effect of the series of movements (p measured the largest RoM with an average volume of 3.46 ± 0.89 million cubic degrees. The main difference between the series of movements was due to axial rotation. A normalized RoM hull with average volume was found by encompassing arm poses common to more than 50% of the participants. In general, the results confirmed and characterized the complex 3D
Energy Technology Data Exchange (ETDEWEB)
Zhang, Kai; Fan, Meng; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)
2015-11-14
When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approaching that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for
International Nuclear Information System (INIS)
Sun Qing; Hu Xinghua; Liu, W. M.; Xie, X. C.; Ji Anchun
2011-01-01
We investigate optomechanical coupling between one-dimensional interacting bosons and the electromagnetic field in a high-finesse optical cavity. We show that by tuning interatomic interactions, one can realize effective optomechanics with mechanical resonators ranging from side-mode excitations of a Bose-Einstein condensate (BEC) to particle-hole excitations of a Tonks-Girardeau (TG) gas. We propose that this unique feature can be formulated to detect the BEC-TG gas crossover and measure the sine-Gordon transition continuously and nondestructively.
Matsson, L
2001-12-01
A nonstationary interaction that controlsDNA replication and the cell cycle isderived from many-body physics in achemically open T cell. The model predictsa long range force F'(ξ) =- (κ/2) ξ(1 - ξ)(2 - ξ)between thepre-replication complexes (pre-RCs) boundby the origins in DNA, ξ = ϕ/N being the relativedisplacement of pre-RCs, ϕ the number of pre-RCs, N the number of replicons to be replicated,and κ the compressibilitymodulus in the lattice of pre-RCs whichbehaves dynamically like an elasticallybraced string. Initiation of DNAreplication is induced at the thresholdϕ = N by a switch ofsign of F''(ξ), fromattraction (-) and assembly in the G(1) phase (0force at ϕ = 2N, from repulsion inS phase back to attraction in G(2), when all primed replicons havebeen duplicated once. F'(0) = 0corresponds to a resting cell in theabsence of driving force at ϕ= 0. The model thus ensures that the DNAcontent in G(2) cells is exactlytwice that of G(1) cells. The switch of interaction at the R-point, at which N pre-RCs have been assembled, starts the release of Rb protein thus also explaining the shift in the Rb phosphorylation from mitogen-dependent cyclinD to mitogen-independent cyclin E.Shape,slope and scale of the response curvesderived agree well with experimental datafrom dividing T cells and polymerising MTs,the variable length of which is due to anonlinear dependence of the growthamplitude on the initial concentrations oftubulin dimers and guanosine-tri-phosphate(GTP). The model also explains the dynamic instabilityin growing MTs.
Free-ranging dogs prefer petting over food in repeated interactions with unfamiliar humans.
Bhattacharjee, Debottam; Sau, Shubhra; Das, Jayjit; Bhadra, Anindita
2017-12-15
Dogs ( Canis lupus familiaris ) are the first species to have been domesticated and, unlike other domesticated species, they have developed a special bond with their owners. The ability to respond to human gestures and language, and the hypersocial behaviours of dogs are considered key factors that have led them to become man's best friend. Free-ranging dogs provide an excellent model system for understanding the dog-human relationship in various social contexts. In India, free-ranging dogs occur in all possible human habitations. They scavenge among garbage, beg for food from humans, give birth in dens close to human habitations, and establish social bonds with people. However, there is ample dog-human conflict on the streets, leading to morbidity and mortality of dogs. Hence, the ability to assess an unfamiliar human before establishing physical contact could be adaptive for dogs, especially in the urban environment. We tested a total of 103 adult dogs to investigate their response to immediate social and long-term food and social rewards. The dogs were provided a choice of obtaining food either from an experimenter's hand or the ground. The dogs avoided making physical contact with the unfamiliar human. While immediate social reward was not effective in changing this response, the long-term test showed a strong effect of social contact. Our results revealed that these dogs tend to build trust based on affection, not food. This study provides significant insights into the dynamics of dog-human interactions on the streets and subsequent changes in behaviour of dogs through the process of learning. © 2017. Published by The Company of Biologists Ltd.
Martinez, Antonio; Barker, John R; Di Prieto, Riccardo
2018-06-13
A methodology describing Coulomb blockade in the Non-equilibrium Green Function formalism is presented. We carried out ballistic and dissipative simulations through a 1D quantum dot using an Einstein phonon model. Inelastic phonons with different energies have been considered. The methodology incorporates the short-range Coulomb interaction between two electrons through the use of a two-particle Green's function. Unlike previous work, the quantum dot has spatial resolution i.e. it is not just parameterized by the energy level and coupling constants of the dot. Our method intends to describe the effect of electron localization while maintaining an open boundary or extended wave function. The formalism conserves the current through the nanostructure. A simple 1D model is used to explain the increase of mobility in semi-crystalline polymers as a function of the electron concentration. The mechanism suggested is based on the lifting of energy levels into the transmission window as a result of the local electron-electron repulsion inside a crystalline domain. The results are aligned with recent experimental findings. Finally, as a proof of concept, we present a simulation of a low temperature resonant structure showing the stability diagram in the Coulomb blockade regime. . © 2018 IOP Publishing Ltd.
Scattering of neutral metal clusters: Long-range interactions and response properties
International Nuclear Information System (INIS)
Kresin, V.V.; Scheidemann, A.
1993-01-01
The absolute integral cross sections for low-energy collisions of neutral sodium clusters Na n (n=2--40) with atoms and molecules (Ar, N 2 , O 2 , and halogens) have been measured. The cross sections are found to be exceptionally large (up to thousands of square angstroms), showing the dominant role of long-range intermolecular interactions. Elastic scattering proceeding under the influence of the van der Waals force, and a reaction channel involving electron transfer can successfully describe the measurements. The strength of the van der Waals potential is defined by such cluster response properties as the electric polarizability and the frequency of the giant dipole resonance. The reactive electron-jump channel, in turn, is described by the ''harpooning'' mechanism which is sensitive to the cluster ionization potential. Employing parameters taken from spectroscopic studies of alkali clusters, we obtain good agreement with the observed cross sections. This provides a direct connection between beam scattering experiments and studies of cluster electromagnetic response properties
Zhao, Shi-Bo; Liu, Ming-Zhe; Yang, Lan-Ying
2015-04-01
In this paper we investigate the dynamics of an asymmetric exclusion process on a one-dimensional lattice with long-range hopping and random update via Monte Carlo simulations theoretically. Particles in the model will firstly try to hop over successive unoccupied sites with a probability q, which is different from previous exclusion process models. The probability q may represent the random access of particles. Numerical simulations for stationary particle currents, density profiles, and phase diagrams are obtained. There are three possible stationary phases: the low density (LD) phase, high density (HD) phase, and maximal current (MC) in the system, respectively. Interestingly, bulk density in the LD phase tends to zero, while the MC phase is governed by α, β, and q. The HD phase is nearly the same as the normal TASEP, determined by exit rate β. Theoretical analysis is in good agreement with simulation results. The proposed model may provide a better understanding of random interaction dynamics in complex systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 41274109 and 11104022), the Fund for Sichuan Youth Science and Technology Innovation Research Team (Grant No. 2011JTD0013), and the Creative Team Program of Chengdu University of Technology.
DEFF Research Database (Denmark)
Valiente, Manuel
2012-01-01
We prove the equivalence between the hard-sphere Bose gas and a system with momentum-dependent zero-range interactions in one spatial dimension, which we call extended hard-sphere Bose gas. The two-body interaction in the latter model has the advantage of being a regular pseudopotential. The most...
Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.
Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David
2015-07-14
In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark: Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http
Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results
GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.
2013-03-01
While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.
Synchrotron radiation based on laser-plasma interaction in the relativistic range
International Nuclear Information System (INIS)
Albert, F.
2007-12-01
This work illustrates the experimental characterization of a new compact X-ray source: the Betatron X-ray source. It is the first time that collimated hard X-ray source is produced by laser. Through the focusing of an ultra-intense laser radiation (30 TW, 30 fs) on a helium plasma, the ponderomotive force linked to the light intensity gradient expels the plasma electrons forming an accelerating cavity in the wake of the laser plasma. Some electrons trapped in the back of this structure, are accelerated and oscillate to produce X-radiation. This document is composed of 8 chapters. The first one is a presentation of the topic. The second chapter gives an account of the physics behind the laser-plasma interaction in the relativistic range and for ultra-short pulses. The third chapter presents the theoretical characteristics of the Betatron X-ray source. This chapter begins with an analogy with current synchrotron radiation and the radiation emitted by an electron undergoing Betatron oscillations is described in terms of power, spectral intensity and photon flux. The fourth chapter is dedicated to the numerical simulation of the Betatron radiation. The trajectories of the electrons are computed from the equation of motion, taking into account longitudinal and transverse forces. The radiation emission term is then computed from the radiation equation detailed in the previous chapter. The fifth chapter presents the experimental setting to produce Betatron X-rays. The sixth chapter gives the experimental characterization of the source (size, divergence and spectrum) on one hand, and on the other hand studies how source flux and spectra vary when laser and plasma parameters change. The seventh chapter presents experimental methods used to characterize the electrons trajectories in the plasma wiggler. The last chapter draws some perspectives on this source in terms of improvement and uses. (A.C.)
Blijdenstein, T.B.J.; Hendriks, W.P.G.; Linden, van der E.; Vliet, van T.; Aken, van G.A.
2003-01-01
This paper discusses the change in phase behavior and mechanical properties of oil-in-water emulsion gels brought about by variation of long- and short-range attractive interactions. The model system studied consisted of oil droplets stabilized by the protein -lactoglobulin (-lg). A long-range
Interatomic decay of inner-valence ionized states in ArXe clusters: Relativistic approach
International Nuclear Information System (INIS)
Fasshauer, Elke; Pernpointner, Markus; Gokhberg, Kirill
2013-01-01
In this work we investigate interatomic electronic decay processes taking place in mixed argon-xenon clusters upon the inner-valence ionization of an argon center. We demonstrate that both interatomic Coulombic decay and electron-transfer mediated decay (ETMD) are important in larger rare gas clusters as opposed to dimers. Calculated secondary electron spectra are shown to depend strongly on the spin-orbit coupling in the final states of the decay as well as the presence of polarizable environment. It follows from our calculations that ETMD is a pure interface process taking place between the argon-xenon layers. The interplay of all these effects is investigated in order to arrive at a suitable physical model for the decay of inner-valence vacancies taking place in mixed ArXe clusters.
Plant-soil interactions in the expansion and native range of a poleward shifting plant species
Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.
2010-01-01
Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its
Plant–soil interactions in the expansion and native range of a poleward shifting plant species
Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.
2010-01-01
Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its
Trautt, Zachary T.; Tavazza, Francesca; Becker, Chandler A.
2015-10-01
The Materials Genome Initiative seeks to significantly decrease the cost and time of development and integration of new materials. Within the domain of atomistic simulations, several roadblocks stand in the way of reaching this goal. While the NIST Interatomic Potentials Repository hosts numerous interatomic potentials (force fields), researchers cannot immediately determine the best choice(s) for their use case. Researchers developing new potentials, specifically those in restricted environments, lack a comprehensive portfolio of efficient tools capable of calculating and archiving the properties of their potentials. This paper elucidates one solution to these problems, which uses Python-based scripts that are suitable for rapid property evaluation and human knowledge transfer. Calculation results are visible on the repository website, which reduces the time required to select an interatomic potential for a specific use case. Furthermore, property evaluation scripts are being integrated with modern platforms to improve discoverability and access of materials property data. To demonstrate these scripts and features, we will discuss the automation of stacking fault energy calculations and their application to additional elements. While the calculation methodology was developed previously, we are using it here as a case study in simulation automation and property calculations. We demonstrate how the use of Python scripts allows for rapid calculation in a more easily managed way where the calculations can be modified, and the results presented in user-friendly and concise ways. Additionally, the methods can be incorporated into other efforts, such as openKIM.
International Nuclear Information System (INIS)
Liu, X-J; Saito, N; Fukuzawa, H; Morishita, Y; Stoychev, S; Kuleff, A; Suzuki, I H; Tamenori, Y; Richter, R; Pruemper, G; Ueda, K
2007-01-01
Sequential interatomic decay, where the first step is an Auger decay with interatomic character and the second step is a pure interatomic Coulombic decay (ICD), is identified in Ar trimers Ar 3 . The 2p hole state in Ar 3 decays via the L 2,3 M 1 M 2,3 Auger to the one-site two-hole states Ar ++ (3s -1 3p -1 )-Ar-Ar that couples to the two-site satellite states Ar + (3p -2 nl)-Ar + (3p -1 )-Ar. These states are subject to ICD to the states Ar + (3p -1 )-Ar + (3p -1 )-Ar + (3p -1 ), in which the nl electron fills the 3p hole in the same Ar site and one of the 3p electrons in the third Ar site is emitted as a slow ICD electron. This ICD process is identified unambiguously by electron-ion-ion-ion coincidence spectroscopy in which the kinetic energy of the slow ICD electron and the kinetic energy release among the three Ar + ions are measured in coincidence. (fast track communication)
Development of an inter-atomic potential for the Pd-H binary system.
Energy Technology Data Exchange (ETDEWEB)
Zimmerman, Jonathan A.; Hoyt, Jeffrey John (McMaster University, Hamilton, Ontario, Canada); Leonard, Francois Leonard; Griffin, Joshua D.; Zhou, Xiao Wang
2007-09-01
Ongoing research at Sandia National Laboratories has been in the area of developing models and simulation methods that can be used to uncover and illuminate the material defects created during He bubble growth in aging bulk metal tritides. Previous efforts have used molecular dynamics calculations to examine the physical mechanisms by which growing He bubbles in a Pd metal lattice create material defects. However, these efforts focused only on the growth of He bubbles in pure Pd and not on bubble growth in the material of interest, palladium tritide (PdT), or its non-radioactive isotope palladium hydride (PdH). The reason for this is that existing inter-atomic potentials do not adequately describe the thermodynamics of the Pd-H system, which includes a miscibility gap that leads to phase separation of the dilute (alpha) and concentrated (beta) alloys of H in Pd at room temperature. This document will report the results of research to either find or develop inter-atomic potentials for the Pd-H and Pd-T systems, including our efforts to use experimental data and density functional theory calculations to create an inter-atomic potential for this unique metal alloy system.
International Nuclear Information System (INIS)
Trautt, Zachary T; Tavazza, Francesca; Becker, Chandler A
2015-01-01
The Materials Genome Initiative seeks to significantly decrease the cost and time of development and integration of new materials. Within the domain of atomistic simulations, several roadblocks stand in the way of reaching this goal. While the NIST Interatomic Potentials Repository hosts numerous interatomic potentials (force fields), researchers cannot immediately determine the best choice(s) for their use case. Researchers developing new potentials, specifically those in restricted environments, lack a comprehensive portfolio of efficient tools capable of calculating and archiving the properties of their potentials. This paper elucidates one solution to these problems, which uses Python-based scripts that are suitable for rapid property evaluation and human knowledge transfer. Calculation results are visible on the repository website, which reduces the time required to select an interatomic potential for a specific use case. Furthermore, property evaluation scripts are being integrated with modern platforms to improve discoverability and access of materials property data. To demonstrate these scripts and features, we will discuss the automation of stacking fault energy calculations and their application to additional elements. While the calculation methodology was developed previously, we are using it here as a case study in simulation automation and property calculations. We demonstrate how the use of Python scripts allows for rapid calculation in a more easily managed way where the calculations can be modified, and the results presented in user-friendly and concise ways. Additionally, the methods can be incorporated into other efforts, such as openKIM. (paper)
Interatomic scattering in energy dependent photoelectron spectra of Ar clusters
Energy Technology Data Exchange (ETDEWEB)
Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Antonsson, E. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Physikalische und Theoretische Chemie Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin (Germany); Neville, J. J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 6E2 (Canada); Miron, C., E-mail: Catalin.Miron@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure - Nuclear Physics (ELI-NP), ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)
2015-09-28
Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.
Czech Academy of Sciences Publication Activity Database
Helama, S.; Sohar, Kristina; Läänelaid, A.; Mäkelä, H. M.; Raisio, J.
2016-01-01
Roč. 82, č. 1 (2016), s. 1-23 ISSN 0006-8101 Institutional support: RVO:67985939 Keywords : climate change * plant-climate interactions * mortality Subject RIV: EH - Ecology, Behaviour Impact factor: 2.769, year: 2016
Long-range interactions between excited helium and alkali-metal atoms
Zhang, J.-Y.; Schwingenschlö gl, Udo; Shi, T.-Y.; Tang, L.-Y.; Yan, Z.-C.
2012-01-01
–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first
General theory of the long-range interactions in protein folding
International Nuclear Information System (INIS)
Namiot, V.A.; Batyanovskii, A.V.; Filatov, I.V.; Tumanyan, V.G.; Esipova, N.G.
2011-01-01
The process of the globular structure formation from a long molecular chain is examined in a general sense. In the course of this process various regions of the chain interact with each other. The bonds formed during this process are classified as native and non-native ones. Native bonds are formed in native globular structure. All other bonds are 'incorrect' (non-native). It is demonstrated that the globule formation can occur actually without production and subsequent decay of non-native contacts. The proposed model allows to avoid a search of numerous non-native variants since long-distance interactions with a high selectivity take place between the chain regions that form native bonds. The presence of these interactions prompts the chain regions which yield native contacts start to draw together and to interact. The databank data analysis shows that the developed model can be applied not only to the abstract structures but also to real polypeptide chains which are able to form both globular structures and helical fibrils. -- Highlights: → The process of the globular structure formation from a long molecular chain is examined. → It is shown that the globule formation can occur without production of non-native contacts. → The proposed model allows to avoid a search of non-native variants since long-distance interactions with a high selectivity. → This interaction takes place between the chain regions that form native bonds. → The databank data analysis shows that the developed model can be applied to real polypeptide chains.
International Nuclear Information System (INIS)
Arunachalam, V.; Marlow, W.H.; Lu, J.X.
1998-01-01
The importance of the long-range Lifshitz-van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters are compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters' circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. copyright 1998 The American Physical Society
Jolles, Anna E.; Ezenwa, Vanessa O.; Etienne, Rampal S.; Turner, Wendy C.; Olff, Han; Antolin, M.F.
Epidemiological studies typically focus on single-parasite systems, although most hosts harbor multiple parasite species; thus, the potential impacts of co-infection on disease dynamics are only beginning to be recognized. Interactions between macroparasites, such as gastrointestinal nematodes, and
Dependence of four-body observables on the range of UPA-like effective interactions
International Nuclear Information System (INIS)
Perne, R.; Sandhas, W.
1977-07-01
A generalized unitary pole approximation (UPA) concerning the three-body amplitudes in the kernel of four-body integral equations is introduced. We furhtermore study the dependence of the 4 He binding energy and of four-body cross sections upon a position space cut-off parameter in the effective interactions. (orig.) [de
Anisotropic and long-range vortex interactions in two-dimensional dipolar bose gases
Mulkerin, B.C.; Bijnen, van R.M.W.; O'Dell, D.H.J.; Martin, A.M.; Parker, N.G.
2013-01-01
We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant antidipole, changing the density profile and generating an
Jolles, A.E.; Ezenwa, V.O.; Etienne, R.S.
2008-01-01
Epidemiological studies typically focus on single-parasite systems, although most hosts harbor multiple parasite species; thus, the potential impacts of co-infection on disease dynamics are only beginning to be recognized. Interactions between macroparasites, such as gastrointestinal nematodes, and
Paquay, S.; Both, G.-J.; Van Der Schoot, P.P.A.M.
2017-01-01
When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms
Functional plant types drive plant interactions in a Mediterranean mountain range
Czech Academy of Sciences Publication Activity Database
Macek, P.; Prieto, I.; Macková, Jana; Pistón, N.; Pugnaire, F.I.
2016-01-01
Roč. 7, May (2016), č. článku 662. ISSN 1664-462X R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : biomass allocation * competition * facilitation * functional traits * plant interaction balance Subject RIV: EH - Ecology, Behaviour Impact factor: 4.298, year: 2016
Energy Technology Data Exchange (ETDEWEB)
Van Hung, Nguyen, E-mail: hungnv@vnu.edu.vn [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Hue, Trinh Thi [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Khoa, Ha Dang [School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Vuong, Dinh Quoc [Quang Ninh Education & Training Department, Nguyen Van Cu, Ha Long, Quang Ninh (Viet Nam)
2016-12-15
High-order expanded interatomic effective potential and Debye-Waller factors (DWFs) for local vibrational amplitudes in X-ray absorption fine structure (XAFS) of bcc crystals have been studied based on the anharmonic correlated Debye model. DWFs are presented in terms of cumulant expansion up to the fourth order and the many-body effects are taken into account in the present one-dimensional model based on the first shell near neighbor contribution approach used in the derivations of the anharmonic effective potential and XAFS cumulants where Morse potential is assumed to describe the single-pair atomic interaction. Analytical expressions for the dispersion relation, correlated Debye frequency and temperature and four first temperature-dependent XAFS cumulants have been derived based on the many-body perturbation approach. Thermodynamic properties and anharmonic effects in XAFS of bcc crystals described by the obtained cumulants have been in detail discussed. The advantage and efficiency of the present theory are illustrated by good agreement of the numerical results for Mo, Fe and W with experiment.
Long-range interactions of excited He atoms with the alkaline earth atoms Mg, Ca, and Sr
Zhang, J.-Y.; Babb, J. F.; Mitroy, J.; Sadeghpour, H. R.; Schwingenschlö gl, Udo; Yan, Z.-C.
2013-01-01
Dispersion coefficients for the long-range interactions of the first four excited states of He, i.e., He(2 1, 3 S) and He(2 1, 3 P), with the low-lying states of the alkaline earth atoms Mg, Ca, and Sr are calculated by summing over the reduced matrix elements of multipole transition operators.
Yu Liang; Matthew J. Duveneck; Eric J. Gustafson; Josep M. Serra-Diaz; Jonathan R. Thompson
2018-01-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change,...
Long-range interactions of excited He atoms with the alkaline earth atoms Mg, Ca, and Sr
Zhang, J.-Y.
2013-04-05
Dispersion coefficients for the long-range interactions of the first four excited states of He, i.e., He(2 1, 3 S) and He(2 1, 3 P), with the low-lying states of the alkaline earth atoms Mg, Ca, and Sr are calculated by summing over the reduced matrix elements of multipole transition operators.
Searches for possible T-odd and P-odd short range interactions using polarized nuclei
Directory of Open Access Journals (Sweden)
Chu P. H.
2014-03-01
Full Text Available Various theories predict the possible existence of T-odd and P-odd shortrange forces between spin ½ fermions, proportional to S・r where S is the fermion spin and r is the separation between particles. We use ensembles of polarized nuclei and an un-polarized mass to search for such a force over sub-mm ranges. We established an improved upper bound on the product gsgpn of the scalar coupling to particles in the un-polarized mass and the pseudo-scalar coupling of polarized neutrons for force ranges from 10−4 to 10−2 m, corresponding to a mass range of 2・10−3 to 2・10−5 eV for the exchange boson [1].
Energy Technology Data Exchange (ETDEWEB)
Salimi, S; Radgohar, R, E-mail: shsalimi@uok.ac.i, E-mail: r.radgohar@uok.ac.i [Faculty of Science, Department of Physics, University of Kurdistan, Pasdaran Ave, Sanandaj (Iran, Islamic Republic of)
2010-01-28
In this paper, we consider decoherence in continuous-time quantum walks on long-range interacting cycles (LRICs), which are the extensions of the cycle graphs. For this purpose, we use Gurvitz's model and assume that every node is monitored by the corresponding point-contact induced by the decoherence process. Then, we focus on large rates of decoherence and calculate the probability distribution analytically and obtain the lower and upper bounds of the mixing time. Our results prove that the mixing time is proportional to the rate of decoherence and the inverse of the square of the distance parameter (m). This shows that the mixing time decreases with increasing range of interaction. Also, what we obtain for m = 0 is in agreement with Fedichkin, Solenov and Tamon's results [48] for cycle, and we see that the mixing time of CTQWs on cycle improves with adding interacting edges.
Slow-wave propagation and sheath interaction in the ion-cyclotron frequency range
International Nuclear Information System (INIS)
Myra, J R; D'Ippolito, D A
2010-01-01
In previous work (Myra J R and D'Ippolito D A 2008 Phys. Rev. Lett. 101 195004) we studied the propagation of slow-wave (SW) resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the treatment of SW propagation and sheath interaction to 'dense' scrape-off-layer plasmas where the usual cold-plasma SW is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the SW couples to a sheath-plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length. The conditions for avoiding potentially deleterious rf-wall interactions in tokamak rf heating experiments are summarized.
International Nuclear Information System (INIS)
Jung, J.; Alvarellos, J.E.; Garcia-Gonzalez, P.; Godby, R.W.
2004-01-01
The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles
Long-range rapidity correlations in soft interactions at high energies
International Nuclear Information System (INIS)
Gotsman, E.; Maor, U.; Levin, E.
2013-01-01
In this paper we take the next step (following the successful description of inclusive hadron production) in describing the structure of the bias events without the aid of Monte Carlo codes. Two new results are presented: (i) a method for calculating the two particle correlation functions in the BFKL pomeron calculus in zero transverse dimension; and (ii) an estimation of the values of these correlations in a model of soft interactions. Comparison with the multiplicity data at the LHC is given. (orig.)
Long-range dispersion interactions. II. Alkali-metal and rare-gas atoms
International Nuclear Information System (INIS)
Mitroy, J.; Zhang, J.-Y.
2007-01-01
The dispersion coefficients for the van der Waals interactions between the rare gases Ne, Ar, Kr, and Xe and the low-lying states of Li, Na, K, and Rb are estimated using a combination of ab initio and semiempirical methods. The rare-gas oscillator strength distributions for the quadrupole and octupole transitions were derived by using high-quality calculations of rare-gas polarizabilities and dispersion coefficients to tune Hartree-Fock single-particle energies and expectation values
Long-range interactions between alkali and alkaline-earth atoms
International Nuclear Information System (INIS)
Jiang Jun; Cheng Yongjun; Mitroy, J
2013-01-01
Dispersion coefficients between the alkali metal atoms (Li–Rb) and alkaline-earth metal atoms (Be–Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low-lying excited state. (paper)
Functional plant types drive plant interactions in a Mediterranean mountain range
Directory of Open Access Journals (Sweden)
Petr eMacek
2016-05-01
Full Text Available Shrubs have both positive (facilitation and negative (competition effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional groups on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat.Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions.There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions.
Renormalization of the three-boson system with short-range interactions revisited
International Nuclear Information System (INIS)
Epelbaum, E.; Gegelia, J.; Meissner, Ulf G.; Yao, De-Liang
2017-01-01
We consider renormalization of the three-body scattering problem in low-energy effective field theory of self-interacting scalar particles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation. The obtained leading-order equation is perturbatively renormalizable and non-perturbatively finite and does not require a three-body counter term in contrast to its non-relativistic approximation. (orig.)
Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
Robicheaux, F.; Booth, D. W.; Saffman, M.
2018-02-01
The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).
Long-range beam-beam interactions in the Tevatron: Comparing simulation to tune shift data
International Nuclear Information System (INIS)
Saritepe, S.; Michelotti, L.; Peggs, S.
1990-07-01
Fermilab upgrade plans for the collider operation include a separation scheme in the Tevatron, in which protons and antiprotons are placed on separate helical orbits. The average separation distance between the closed orbits will be 5σ (σ of the proton bunch) except at the interaction regions, B0 and D0, where they collide head-on. The maximum beam-beam total tune shift in the Tevatron is approximately 0.024 (the workable tune space between 5th and 7th order resonances), which was reached in the 1988--1989 collider tun. Helical separation scheme allows us to increase the luminosity by reducing the total beam-beam tune shift. The number of bunches per beam will be 6 in the 1991 collider tun, to be increased to 36 in the following collider runs. To test the viability of this scenario, helical orbit studies are being conducted. The most recent studies concentrated on the injection of 36 proton bunches, procedures related to opening and closing of the helix, the feed-down circuits and the beam-beam interaction. In this paper, we present the results of the beam-beam interaction studies only. Our emphasis is on the tune shift measurements and the comparison to simulation. 4 refs., 9 figs., 2 tabs
Saadatmand, S. N.; Bartlett, S. D.; McCulloch, I. P.
2018-04-01
Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can be efficiently obtained using state-of-the-art translation-invariant variants of matrix product states and density-matrix renormalization-group algorithms. We use these methods to calculate the fully-quantitative ground-state phase diagram of the long-range interacting triangular Ising model with a transverse field on six-leg infinite-length cylinders and scrutinize the properties of the detected phases. We compare these results with those of the corresponding nearest neighbor model. Our results suggest that, for such long-range Hamiltonians, the long-range quantum fluctuations always lead to long-range correlations, where correlators exhibit power-law decays instead of the conventional exponential drops observed for short-range correlated gapped phases. Our results are relevant for comparisons with recent ion-trap quantum simulator experiments that demonstrate highly-controllable long-range spin couplings for several hundred ions.
Energy Technology Data Exchange (ETDEWEB)
Kekenes-Huskey, P. M., E-mail: pkekeneshuskey@ucsd.edu [Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States); Gillette, A. K. [Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089 (United States); McCammon, J. A. [Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States); Department of Chemistry, Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0636 (United States)
2014-05-07
The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute “obstacles” and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as “buffers” that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events
Sikma, M.; Ouwersloot, H.G.; Pedruzo-Bagazgoitia, X.; Heerwaarden, van C.C.; Vilà-Guerau de Arellano, J.
2018-01-01
The effects of plant responses to cumulus (Cu) cloud shading are studied from free convective to shear-driven boundary-layer conditions. By using a large-eddy simulation (LES) coupled to a plant physiology embedded land-surface submodel, we study the vegetation-cloud feedbacks for a wide range (44)
Liang, Yu; Duveneck, Matthew J; Gustafson, Eric J; Serra-Diaz, Josep M; Thompson, Jonathan R
2018-01-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high-emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually change (usually more than 110 km over 100 years) under a high-emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range
International Nuclear Information System (INIS)
Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.
2012-01-01
Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.
International Nuclear Information System (INIS)
Nguyen Minh Khue; Solyom, J.
1980-03-01
The novel method proposed by one of the authors to calculate exactly the response functions of the one-dimensional Tomonaga-model is described in more detail. The method is generalized for the case of a system of coupled chains where both the interchain and interchain interactions have forward scattering components only. The model does not show real phase transition at any finite temperature indicating that the interchain backward scattering or hopping is needed to have an ordering of the chains at finite temperature. (author)
Neutrino-Nucleus Interactions and the Short-Range Structure of Nuclei
Energy Technology Data Exchange (ETDEWEB)
Cavanna, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palamara, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schiavilla, R. [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wiringa, R. B. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-01-08
Improvements in theoretical modeling of Short Range structures and phenomena, and comparisons with data, will require sustained collaboration between nuclear theorists and neutrino experimentalists. The extensive history of studying this area of nuclear physics in electron- and hadron-scattering experiments, coupled with the transformative capabilities of LArTPCs to identify neutrinos, will provide a ripe opportunity for new discoveries that will further our understanding of the nucleus.
Bertoncini, Carlos W.; Jung, Young-Sang; Fernandez, Claudio O.; Hoyer, Wolfgang; Griesinger, Christian; Jovin, Thomas M.; Zweckstetter, Markus
2005-01-01
In idiopathic Parkinson's disease, intracytoplasmic neuronal inclusions (Lewy bodies) containing aggregates of the protein α-synuclein (αS) are deposited in the pigmented nuclei of the brainstem. The mechanisms underlying the structural transition of innocuous, presumably natively unfolded, αS to neurotoxic forms are largely unknown. Using paramagnetic relaxation enhancement and NMR dipolar couplings, we show that monomeric αS assumes conformations that are stabilized by long-range interactio...
A W−Ne interatomic potential for simulation of neon implantation in tungsten
Energy Technology Data Exchange (ETDEWEB)
Backman, Marie; Juslin, Niklas; Huang, Guiyang [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); Wirth, Brian D., E-mail: bdwirth@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); P.O. Box 2008, MS-6003, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)
2016-08-15
An interatomic pair potential for W−Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.
Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.
CERN. Geneva; Roland, Gunther
2010-01-01
The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (η) and azimuthal angle (φ) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ∆η, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in η (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb−1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT’s of 1-3GeV/c, 2.0 EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142
International Nuclear Information System (INIS)
Chynoweth, Katie M.; Polisensky, Emil; Holley-Bockelmann, Kelly; Langston, Glen I.
2011-01-01
We combine high-resolution N-body simulations with deep observations of neutral hydrogen (H I) in nearby galaxy groups in order to explore two well-known theories of H I cloud formation: H I stripping by galaxy interactions and dark-matter minihalos with embedded H I gas. This paper presents new data from three galaxy groups-Canes Venatici I, NGC 672, and NGC 45-and assembles data from our previous galaxy group campaign to generate a rich H I cloud archive to compare to our simulated data. We find no H I clouds in the Canes Venatici I, NGC 672, or NGC 45 galaxy groups. We conclude that H I clouds in our detection space are most likely to be generated through recent, strong galaxy interactions. We find no evidence of H I clouds associated with dark-matter halos above M HI ∼ 10 6 M sun , within ±700 km s -1 of galaxies, and within 50 kpc projected distance of galaxies.
Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells
Wong, Ka-Chun; Li, Yue; Peng, Chengbin
2015-01-01
Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.
Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells
Wong, Ka-Chun
2015-09-27
Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.
Liang, Y.; Duveneck, M.; Gustafson, E. J.; Serra-Diaz, J. M.; Thompson, J. R.
2017-12-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically-based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually Disturbances may expedite species` recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.
Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R
2017-08-03
Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic properties of adsorbed fluids, the previously reported connection between adsorptive filling regimes and self-diffusivity regimes remains. Increasing the fluid-fluid interaction range leads to enhanced layering and decreased self-diffusivity in the multilayer-formation regime but has little effect on the properties within film-formation and pore-filling regimes. We also find that weakly attractive adsorbents, which do not display distinct multilayer formation, are hard-sphere-like at super- and subcritical temperatures. In this case, the self-diffusivity of the confined and bulk fluid has a nearly identical scaling-relationship with effective density.
Pattern Formation in Langmuir Monolayers Due to Long-Range Electrostatic Interactions
Fischer, Thomas M.; Lösche, Mathias
A distinctive characteristic of Langmuir monolayers that bears important consequences for the physics of structure formation within membranes is the uniaxial orientation of the constituent dipolar molecules, brought about by the symmetry break which is induced by the surface of the aqueous substrate. The association of oriented molecular dipoles with the interface leads to the formation of image dipoles within the polarizeable medium - the subphase - such that the effective dipole orientation of every of the individual molecules is strictly normal to the surface, even within molecularly disordered phases. As a result, dipole-dipole repulsions play an eminently important role for the molecular interactions within the system - independent of the state of phase (while the dipole area density does of course depend on the state of phase) - and control the morphogenesis of the phase boundaries in their interplay with the one-dimensional (1D) line tension between coexisting phases. The physics of these phenomena is only now being explored and is particularly exciting for systems within a three-phase coexistence region where complete or partial wetting, as well as dewetting between the coexisting phases may be experimentally observed by applying fluorescence microscopy to the monolayer films. It is revealed that the wetting behavior depends sensitively on the details of the electrostatic interactions, in that the apparent contact angles observed at three-phase contact points depends on the sizes of the coexisting phases. This is in sharp contrast to the physics of wetting in conventional 3D systems where the contact angle is a materials property, independent of the local details. In 3D systems, this leads to Youngs equation - which has been established more than two centuries ago. We report recent progress in the understanding of this unusual and rather unexpected behavior of a quasi-2D system by reviewing recent experimental results from optical microscopy on equilibrium
Density of states of two-dimensional systems with long-range logarithmic interactions
Energy Technology Data Exchange (ETDEWEB)
Somoza, Andrés M.; Ortuño, Miguel; Baturina, Tatyana I.; Vinokur, Valerii M.
2015-08-03
We investigate a single-particle density of states (DOS) in strongly disordered two- dimensional high dielectric permittivity systems with logarithmic Coulomb interaction between particles. We derive self-consistent DOS at zero temperature and show that it is appreciably suppressed as compared to the DOS expected from the Efros-Shklovskii approach.We carry out zero- and finite-temperature Monte Carlo numerical studies of the DOS and find the perfect agreement between the numerical and analytical results at zero temperature, observing, in particular, a hardening of the Coulomb gap with the increasing electrostatic screening length. At finite temperatures, we reveal a striking scaling of the DOS as a function of energy normalized to the temperature of the system.
Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models.
Mehta, Neil A; Levin, Deborah A
2018-03-01
Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF_{4}) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.
Directory of Open Access Journals (Sweden)
Rodney E. Will
2015-06-01
Full Text Available The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction and fertilization (complete suite of nutrients. Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.
Goltz, Dominique; Pleger, Burkhard; Thiel, Sabrina; Villringer, Arno; Müller, Matthias M.
2013-01-01
The present functional magnetic resonance imaging (fMRI) study was designed to get a better understanding of the brain regions involved in sustained spatial attention to tactile events and to ascertain to what extent their activation was correlated. We presented continuous 20 Hz vibrotactile stimuli (range of flutter) concurrently to the left and right index fingers of healthy human volunteers. An arrow cue instructed subjects in a trial-by-trial fashion to attend to the left or right index finger and to detect rare target events that were embedded in the vibrotactile stimulation streams. We found blood oxygen level-dependent (BOLD) attentional modulation in primary somatosensory cortex (SI), mainly covering Brodmann area 1, 2, and 3b, as well as in secondary somatosensory cortex (SII), contralateral to the to-be-attended hand. Furthermore, attention to the right (dominant) hand resulted in additional BOLD modulation in left posterior insula. All of the effects were caused by an increased activation when attention was paid to the contralateral hand, except for the effects in left SI and insula. In left SI, the effect was related to a mixture of both a slight increase in activation when attention was paid to the contralateral hand as well as a slight decrease in activation when attention was paid to the ipsilateral hand (i.e., the tactile distraction condition). In contrast, the effect in left posterior insula was exclusively driven by a relative decrease in activation in the tactile distraction condition, which points to an active inhibition when tactile information is irrelevant. Finally, correlation analyses indicate a linear relationship between attention effects in intrahemispheric somatosensory cortices, since attentional modulation in SI and SII were interrelated within one hemisphere but not across hemispheres. All in all, our results provide a basis for future research on sustained attention to continuous vibrotactile stimulation in the range of flutter
Jaguar interactions with pumas and prey at the northern edge of jaguars’ range
Directory of Open Access Journals (Sweden)
Carmina E. Gutiérrez-González
2017-01-01
Full Text Available We present the first study that evaluates jaguar-puma interactions in the arid lands of northern Mexico, where jaguars have their northernmost breeding population and both predators are persecuted for livestock depredation. We tested whether jaguars are the dominant species in this unique ecosystem, where: (1 pumas outnumber jaguars, (2 pumas are better adapted to arid environments, and (3 jaguars and pumas are of similar size. We analyzed four years of data with two approaches; a two species conditional occupancy model and an activity patterns analysis. We used camera location and prey presence as covariates for jaguar and puma detection and presence probabilities. We also explored overlap in activities of predators and prey. Where both species were detected, peccary presence was positively correlated with both jaguar and puma presence, whereas in areas where jaguars were detected but pumas were not, deer presence explained the probability of jaguar presence. We found that both predators were more likely to co-occur together than to be found independently, and so we rejected the hypothesis that jaguars were the dominant species in our study area. Predators were mainly nocturnal and their activity patterns overlapped by 60%. Jaguar, as compared with puma, overlapped more with deer and calves; puma overlapped with calves more than with other prey, suggesting a preference. We believe exploring predator relationships at different scales may help elucidate mechanisms that regulate their coexistence.
Development of an empirical interatomic potential for the Ag–Ti system
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ying, E-mail: y.zhou3@lboro.ac.uk [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Smith, Roger [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kenny, Steven D. [Department of Materials, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Lloyd, Adam L. [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom)
2017-02-15
Highlights: • A new modified embedded-atom method interatomic potential for Ag and Ti was developed. • Binding energies for various configurations were calculated using SIESTA and were used as the fitting target. • Two mixing rules for the embedded-atom method based on the same elemental potentials were also investigated. • The results showed that the MEAM with the optimised parameters gives the best agreement to the DFT results. - Abstract: Two interatomic potential mixing rules for the Ti–Ag system were investigated based on the embedded-atom method (EAM) elemental potentials. First principles calculations were performed using SIESTA for various configurations of the Ti–Ag system to see which model best fitted the ab initio results. The results showed that the surface energies, especially that of Ti, were not well fitted by either model and the surface binding energies differed from the ab initio calculations. As a result, the modified embedded-atom method (MEAM) was investigated. In contrast to the other models, surface energies for pure Ti calculated by MEAM were in good agreement with the experimental data and the ab initio results. The MEAM mixing rule was used to investigate Ag ad-atoms on Ti and Ti ad-atoms on Ag. The results showed good agreement with SIESTA after parameter optimisation.
Temperature dependence in interatomic potentials and an improved potential for Ti
International Nuclear Information System (INIS)
Ackland, G J
2012-01-01
The process of deriving an interatomic potentials represents an attempt to integrate out the electronic degrees of freedom from the full quantum description of a condensed matter system. In practice it is the derivatives of the interatomic potentials which are used in molecular dynamics, as a model for the forces on a system. These forces should be the derivative of the free energy of the electronic system, which includes contributions from the entropy of the electronic states. This free energy is weakly temperature dependent, and although this can be safely neglected in many cases there are some systems where the electronic entropy plays a significant role. Here a method is proposed to incorporate electronic entropy in the Sommerfeld approximation into empirical potentials. The method is applied as a correction to an existing potential for titanium. Thermal properties of the new model are calculated, and a simple method for fixing the melting point and solid-solid phase transition temperature for existing models fitted to zero temperature data is presented.
Effect of long-range interactions on the phase transition of Axelrod's model
Reia, Sandro M.; Fontanari, José F.
2016-11-01
Axelrod's model with F =2 cultural features, where each feature can assume k states drawn from a Poisson distribution of parameter q , exhibits a continuous nonequilibrium phase transition in the square lattice. Here we use extensive Monte Carlo simulations and finite-size scaling to study the critical behavior of the order parameter ρ , which is the fraction of sites that belong to the largest domain of an absorbing configuration averaged over many runs. We find that it vanishes as ρ ˜(qc0-q )β with β ≈0.25 at the critical point qc0≈3.10 and that the exponent that measures the width of the critical region is ν0≈2.1 . In addition, we find that introduction of long-range links by rewiring the nearest-neighbors links of the square lattice with probability p turns the transition discontinuous, with the critical point qcp increasing from 3.1 to 27.17, approximately, as p increases from 0 to 1. The sharpness of the threshold, as measured by the exponent νp≈1 for p >0 , increases with the square root of the number of nodes of the resulting small-world network.
Energy Technology Data Exchange (ETDEWEB)
Bond, Stephen D.
2014-01-01
The availability of efficient algorithms for long-range pairwise interactions is central to the success of numerous applications, ranging in scale from atomic-level modeling of materials to astrophysics. This report focuses on the implementation and analysis of the multilevel summation method for approximating long-range pairwise interactions. The computational cost of the multilevel summation method is proportional to the number of particles, N, which is an improvement over FFTbased methods whos cost is asymptotically proportional to N logN. In addition to approximating electrostatic forces, the multilevel summation method can be use to efficiently approximate convolutions with long-range kernels. As an application, we apply the multilevel summation method to a discretized integral equation formulation of the regularized generalized Poisson equation. Numerical results are presented using an implementation of the multilevel summation method in the LAMMPS software package. Preliminary results show that the computational cost of the method scales as expected, but there is still a need for further optimization.
Directory of Open Access Journals (Sweden)
Malick eMbengue
2016-03-01
Full Text Available Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum , the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi.
Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials
Thompson, Alexander
In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties
Alam, Md. Mehboob; Deur, Killian; Knecht, Stefan; Fromager, Emmanuel
2017-11-01
The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as μ-2 in the large range-separation-parameter μ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as μ-3) towards their pure wavefunction theory values (μ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) μ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.
Žunkovič, Bojan; Heyl, Markus; Knap, Michael; Silva, Alessandro
2018-03-01
We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α , which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α ≤2 . The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α ≤2 . We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.
Interactions of hadrons in nuclear emulsion in the energy range 60 GeV - 400 GeV
International Nuclear Information System (INIS)
Holynski, R.
1986-01-01
Interactions of pions and protons in the energy range 60 GeV in nuclear emulsion have been analysed. The fragmentation process of the struck nucleus as well as the multiple production of relativistic particles have been investigated as a function of the primary energy and the effective thickness of the target. It is shown that both, the fragmentation of the target nucleus and particle production, can be described by models in which the projectile (or its constituents) undergoes multiple collisions inside the target nucleus. In particular the particle production in the projectile fragmentation region in pion-nucleus interactions is well described by the additive quark model. 47 refs., 35 figs., 2 tabs. (author)
Short-range order in amorphous thin films of indium selenides
International Nuclear Information System (INIS)
Zakharov, V.P.; Poltavtsev, Yu.G.; Sheremet, G.P.
1982-01-01
A structure of the short-range order and a character of interatomic interactions in indium selenides Insub(1-x)Sesub(x) with 0.333 <= x <= 0.75, obtained in the form of amorphous films 0.05-0.80 μm thick are studied using electron diffraction method. It is found out that mostly tetrahedrical coordination of nearest neighbours in the vicinity of indium atoms is characteristic for studied amorphous films, and coordination of selenium atoms is different. Amorphous film with x=0.75 posesses a considereably microheterogeneous structure of the short-range order, which is characterized by the presence of microunclusions of amorphous selenium and atoms of indium, octohedrically coordinated by selenium atoms
Energy Technology Data Exchange (ETDEWEB)
Jiang, Jun, E-mail: phyjiang@yeah.net [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Cheng, Yongjun, E-mail: cyj83mail@gmail.com [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080 (China); Bromley, M.W.J., E-mail: brom@physics.uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4075 (Australia)
2015-01-15
Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C{sub 6}, C{sub 8} and C{sub 10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations.
International Nuclear Information System (INIS)
Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, M.W.J.
2015-01-01
Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C 6 , C 8 and C 10 atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations
Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction
Kuzmak, A. R.
2018-04-01
The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.
Cluster decay half-lives of trans-lead nuclei based on a finite-range nucleon–nucleon interaction
Energy Technology Data Exchange (ETDEWEB)
Adel, A., E-mail: aa.ahmed@mu.edu.sa [Physics Department, Faculty of Science, Cairo University, Giza (Egypt); Physics Department, College of Science, Majmaah University, Zulfi (Saudi Arabia); Alharbi, T. [Physics Department, College of Science, Majmaah University, Zulfi (Saudi Arabia)
2017-02-15
Nuclear cluster radioactivity is investigated using microscopic potentials in the framework of the Wentzel–Kramers–Brillouin approximation of quantum tunneling by considering the Bohr–Sommerfeld quantization condition. The microscopic cluster–daughter potential is numerically constructed in the well-established double-folding model. A realistic M3Y-Paris NN interaction with the finite-range exchange part as well as the ordinary zero-range exchange NN force is considered in the present work. The influence of nuclear deformations on the cluster decay half-lives is investigated. Based on the available experimental data, the cluster preformation factors are extracted from the calculated and the measured half lives of cluster radioactivity. Some useful predictions of cluster emission half-lives are made for emissions of known clusters from possible candidates, which may guide future experiments.
An interatomic potential for studying CuZr bulk metallic glasses
International Nuclear Information System (INIS)
Paduraru, A.; Kenoufi, A.; Bailey, N.P.; Schioetz, J.
2007-01-01
Glass forming ability has been found in only a small number of binary alloys, one being CuZr. In order to simulate this glass, we fitted an interatomic potential within Effective Medium Theory (EMT). For this purpose we use basic properties of the B2 crystal structure as calculated from Density Functional Theory (DFT) or obtained from experiments. We then performed Molecular Dynamics (MD) simulations of the cooling process and studied the thermodynamics and structure of CuZr glass. We find that the potential gives a good description of the CuZr glass, with a glass transition temperature and elastic constants close to the experimental values. The local atomic order, as witnessed by the radial distribution function, is also consistent with similar experimental data. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Evidence of interatomic Coulombic decay in ArKr after Ar 2p Auger decay
International Nuclear Information System (INIS)
Morishita, Y; Saito, N; Suzuki, I H; Fukuzawa, H; Liu, X-J; Sakai, K; Pruemper, G; Ueda, K; Iwayama, H; Nagaya, K; Yao, M; Kreidi, K; Schoeffler, M; Jahnke, T; Schoessler, S; Doerner, R; Weber, T; Harries, J; Tamenori, Y
2008-01-01
We have identified interatomic Coulombic decay (ICD) processes in the ArKr dimer following Ar 2p Auger decay, using momentum-resolved electron-ion-ion coincidence spectroscopy and simultaneously determining the kinetic energy of the ICD electron and the KER between Ar 2+ and Kr + . We find that the spin-conserved ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 1 D and 3 P, respectively, ionizing the Kr atom, are significantly stronger than the spin-flip ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 3 P and 1 D, respectively
Interatomic potentials from rainbow scattering of keV noble gas atoms under axial surface channeling
International Nuclear Information System (INIS)
Schueller, A.; Wethekam, S.; Mertens, A.; Maass, K.; Winter, H.; Gaertner, K.
2005-01-01
For grazing scattering of keV Ne and Ar atoms from a Ag(1 1 1) and a Cu(1 1 1) surface under axial surface channeling conditions we observe well defined peaks in the angular distributions for scattered projectiles. These peaks can be attributed to 'rainbow-scattering' and are closely related to the geometry of potential energy surfaces which can be approximated by the superposition of continuum potentials along strings of atoms in the surface plane. The dependence of rainbow angles on the scattering geometry provides stringent tests on the scattering potentials. From classical trajectory calculations based on universal (ZBL), adjusted Moliere (O'Connor and Biersack), and individual interatomic potentials we obtain corresponding rainbow angles for comparison with the experimental data. We find good overall agreement with the experiments for a description of trajectories based on adjusted Moliere and individual potentials, whereas the agreement is poorer for potentials with ZBL screening
Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra
International Nuclear Information System (INIS)
Le, Van-Hoang; Nguyen, Ngoc-Ty; Jin, C; Le, Anh-Thu; Lin, C D
2008-01-01
We illustrate an iterative method for retrieving the internuclear separations of N 2 , O 2 and CO 2 molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible
The role of tungsten in the change of interatomic bond in Nb-W alloy
International Nuclear Information System (INIS)
Arkharov, V.I.; Samojlenko, Z.A.; Darovskikh, E.G.
1982-01-01
To study the chemical inhomogeneity and the peculiarities in electronic structure of solid solutions in fracture region, the X-ray spectral studies of niobium-tungsten alloys with 0.5; 1.0; 12.0; 13.6; 23.g mass % W have been carried out. The W concentration changes on the fracture and the difference in the electron energy distribution in the 4d-band in comparison between the fracture and mocrosection are determined. The niobium doping with tungsten is shown to be accompanied by the increase in the fraction of locally bound electrons as compared to the collectivized one. Alloys with 12-13% W are the most homogeneous in composition and electrons energy state. This state is characterized by features the increased number of electrons with noncompensated spins in intercrystalline boundaries as compared to a crystallite thickness. These alloys have homogeneous properties in sample microvolumes and large interatomic binding force
Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra
Energy Technology Data Exchange (ETDEWEB)
Le, Van-Hoang; Nguyen, Ngoc-Ty [Department of Physics, University of Pedagogy, 280 An Duong Vuong, Ward 5, Ho Chi Minh City (Viet Nam); Jin, C; Le, Anh-Thu; Lin, C D [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)
2008-04-28
We illustrate an iterative method for retrieving the internuclear separations of N{sub 2}, O{sub 2} and CO{sub 2} molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible.
Directory of Open Access Journals (Sweden)
Aleksey I. Kochaev
2017-02-01
Full Text Available The possibility of metastable existence of planar and non-chiral nanotubular crystalline lattices in the form of Kepler nets of 34324, 3342, and 346 types (the notations are given in Schläfly symbols, using ab initio calculations, has researched. Atoms of P, As, Sb, Bi from 15th group and atoms of S, Se, Te from 16th group of the periodic table were taken into consideration. The lengths of interatomic bonds corresponding to the steadiest states for such were determined. We found that among these new composed structures crystals encountered strong elastic properties. Besides, some of them can possess pyroelectric and piezoelectric properties. Our results can be used for nanoelectronics and nanoelectromechanical devices designing.
Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals
Energy Technology Data Exchange (ETDEWEB)
Dharmawardhana, C.C. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Misra, A. [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States); Aryal, S.; Rulis, P. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Ching, W.Y., E-mail: ccdxz8@mail.umkc.edu [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States)
2013-10-15
Atomic scale properties of calcium silicate hydrate (CSH), the main binding phase of hardened Portland cement, are not well understood. Over a century of intense research has identified almost 50 different crystalline CSH minerals which are mainly categorized by their Ca/Si ratio. The electronic structure and interatomic bonding in four major CSH crystalline phases with structures close to those found in hardened cement are investigated via ab initio methods. Our result reveals the critical role of hydrogen bonding and importance of specifying precise locations for water molecules. Quantitative analysis of contributions from different bond types to the overall cohesion shows that while the Si-O covalent bonds dominate, the hydrogen bonding and Ca-O bonding are also very significant. Calculated results reveal the correlation between bond topology and interlayer cohesion. The overall bond order density (BOD) is found to be a more critical measure than the Ca/Si ratio in classifying different CSH crystals.
International Nuclear Information System (INIS)
Ruzic, D.N.; Cohen, S.A.
1985-04-01
Measurements of energy-dependent scattering cross sections for 30 to 1800 eV D incident on He, Ne, Ar, and Kr, and for 40 to 850 eV He incident on He, Ar, and Kr are presented. They are determined by using the charge-exchange efflux from the Princeton Large Torus tokamak as a source of D or He. These neutrals are passed through a gas-filled scattering cell and detected by a time-of-flight spectrometer. The cross section for scattering greater than the effective angle of the apparatus (approx. =20 mrad) is found by measuring the energy-dependent attenuation of D or He as a function of pressure in the scattering cell. The interatomic potential is extracted from the data
International Nuclear Information System (INIS)
Ghosh, Tarun Kanti
2002-01-01
We study the collective excitations of a neutral atomic Bose-Einstein condensate with gravitylike 1/r interatomic attraction induced by an electromagnetic wave. Using the time-dependent variational approach, we derive an analytical spectrum for monopole and quadrupole mode frequencies of a gravitylike self-bound Bose condensed state at zero temperature. We also analyze the excitation frequencies of the Thomas-Fermi-gravity (TF-G) and gravity (G) regimes. Our result agrees excellently with that of Giovanazzi et al. [Europhysics Lett., 56, 1 (2001)], which is obtained within the sum-rule approach. We also consider the vortex state. We estimate the superfluid coherence length and the critical angular frequencies to create a vortex around the z axis. We find that the TF-G regime can exhibit the superfluid properties more prominently than the G regime. We find that the monopole mode frequency of the condensate decreases due to the presence of a vortex
International Nuclear Information System (INIS)
Ohta, H.; Iwakawa, A.; Eriguchi, K.; Ono, K.
2008-01-01
An interatomic potential model for Si-Br systems has been developed for performing classical molecular dynamics (MD) simulations. This model enables us to simulate atomic-scale reaction dynamics during Si etching processes by Br + -containing plasmas such as HBr and Br 2 plasmas, which are frequently utilized in state-of-the-art techniques for the fabrication of semiconductor devices. Our potential form is based on the well-known Stillinger-Weber potential function, and the model parameters were systematically determined from a database of potential energies obtained from ab initio quantum-chemical calculations using GAUSSIAN03. For parameter fitting, we propose an improved linear scheme that does not require any complicated nonlinear fitting as that in previous studies [H. Ohta and S. Hamaguchi, J. Chem. Phys. 115, 6679 (2001)]. In this paper, we present the potential derivation and simulation results of bombardment of a Si(100) surface using a monoenergetic Br + beam
International Nuclear Information System (INIS)
Ho, T.; Rabitz, H.
1989-01-01
Elastic differential cross sections in atomic crossed beam experiments contain detailed information about the underlying interatomic potentials. The functional sensitivity density of the cross sections with respect to the potential δσ(θ)/δV(R) reveals such information and has been implemented in an iterative inversion procedure, analogous to that of the Newton--Raphson technique. The stability of the inversion is achieved with the use of the regularization method of Tikhonov and Miller. It is shown that given a set of well resolved and noise-free differential cross section data within a limited angular range and given a reasonable starting reference potential, the recovered potential accurately resembles the desired one in the important region, i.e., the region to which the scattering data are sensitive. The region of importance depends upon the collision energy relative to the well depth of the potential under study; usually a higher collision energy penetrates deeper into the repulsive part of the potential and thus accordingly yields a more accurate potential in that part. The inversion procedure produces also a quality function indicating the well determined radial region. Moreover, the extracted potential is quite independent of the functional form of the reference potential in contrast to curve fitting approaches. As illustrations, the model inert gas systems He--Ne and Ne--Ar have been considered. For collision energies within an order of magnitude of the associated potential well depth, the attractive part of the potential can be determined to high precision provided that scattering data at small enough angles are available
The MOLDY short-range molecular dynamics package
Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.
2011-12-01
We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as
Anguiano, M.; Lallena, A. M.; Co', G.; De Donno, V.
2014-02-01
In this work we test the validity of a Hartree-Fock plus Bardeen-Cooper-Schrieffer model in which a finite-range interaction is used in the two steps of the calculation by comparing the results obtained to those found in fully self-consistent Hartree-Fock-Bogoliubov calculations using the same interaction. Specifically, we consider the Gogny-type D1S and D1M forces. We study a wide range of spherical nuclei, far from the stability line, in various regions of the nuclear chart, from oxygen to tin isotopes. We calculate various quantities related to the ground state properties of these nuclei, such as binding energies, radii, charge and density distributions, and elastic electron scattering cross sections. The pairing effects are studied by direct comparison with the Hartree-Fock results. Despite its relative simplicity, in most cases, our model provides results very close to those of the Hartree-Fock-Bogoliubov calculations, and it reproduces the empirical evidence of pairing effects rather well in the nuclei investigated.
Zhang, Yali; Wang, Jun
2017-09-01
In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model - the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.
Samanta, Suman K; Bhattacharya, Santanu
2012-12-03
We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction.
Spagnolli, G; Semeghini, G; Masi, L; Ferioli, G; Trenkwalder, A; Coop, S; Landini, M; Pezzè, L; Modugno, G; Inguscio, M; Smerzi, A; Fattori, M
2017-06-09
We explore the interplay between tunneling and interatomic interactions in the dynamics of a bosonic Josephson junction. We tune the scattering length of an atomic ^{39}K Bose-Einstein condensate confined in a double-well trap to investigate regimes inaccessible to other superconducting or superfluid systems. In the limit of small-amplitude oscillations, we study the transition from Rabi to plasma oscillations by crossing over from attractive to repulsive interatomic interactions. We observe a critical slowing down in the oscillation frequency by increasing the strength of an attractive interaction up to the point of a quantum phase transition. With sufficiently large initial oscillation amplitude and repulsive interactions, the system enters the macroscopic quantum self-trapping regime, where we observe coherent undamped oscillations with a self-sustained average imbalance of the relative well population. The exquisite agreement between theory and experiments enables the observation of a broad range of many body coherent dynamical regimes driven by tunable tunneling energy, interactions and external forces, with applications spanning from atomtronics to quantum metrology.
Gao, G T; Mikulski, Paul T; Harrison, Judith A
2002-06-19
Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp(3)-to-sp(2) carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined. Above a critical load, a series of tribochemical reactions occur resulting in a significant restructuring of the film. This restructuring is analogous to the "run-in" observed in macroscopic friction experiments and reduces the friction. The contribution of adhesion between the probe (counterface) and the sample to friction was examined by varying the saturation of the counterface. Decreasing the degree of counterface saturation, by reducing the hydrogen termination, increases the friction. Finally, the contribution of long-range interactions to friction was examined by using two potential energy functions that differ only in their long-range forces to examine friction in the same system.
International Nuclear Information System (INIS)
Zelada-Lambri, G.I.; Lambri, O.A.; Bozzano, P.B.; Garcia, J.A.; Celauro, C.A.
2008-01-01
Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement
Energy Technology Data Exchange (ETDEWEB)
Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Lambri, O.A. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario, Member of the CONICET' s Research Staff (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Bozzano, P.B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avenida General Paz 1499, 1650 San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Pais Vasco (Spain); Celauro, C.A. [Reactor Nuclear RA-4, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Riobamba y Berruti, 2000 Rosario (Argentina)
2008-10-15
Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement.
Directory of Open Access Journals (Sweden)
J Matthew Mahoney
Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.
Foroutan, Mohammadreza; Zamanpour, Isa; Manafian, Jalil
2017-10-01
This paper presents a number of new solutions obtained for solving a complex nonlinear equation describing dynamics of nonlinear chains of atoms via the improved Bernoulli sub-ODE method (IBSOM) and the extended trial equation method (ETEM). The proposed solutions are kink solitons, anti-kink solitons, soliton solutions, hyperbolic solutions, trigonometric solutions, and bellshaped soliton solutions. Then our new results are compared with the well-known results. The methods used here are very simple and succinct and can be also applied to other nonlinear models. The balance number of these methods is not constant contrary to other methods. The proposed methods also allow us to establish many new types of exact solutions. By utilizing the Maple software package, we show that all obtained solutions satisfy the conditions of the studied model. More importantly, the solutions found in this work can have significant applications in Hamilton's equations and generalized momentum where solitons are used for long-range interactions.
Tian, Ying; Wang, Genjie; Hu, Qingzhu; Xiao, Xichun; Chen, Shuxia
2018-04-01
The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation. © 2017 Wiley Periodicals, Inc.
Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Yamamoto, Etsuji
2018-02-01
The critical behavior of dc magnetization in the uranium ferromagnet URhAl with the hexagonal ZrNiAl-type crystal structure has been studied around the ferromagnetic transition temperature TC. The critical exponent β for the temperature dependence of the spontaneous magnetization below TC,γ for the magnetic susceptibility, and δ for the magnetic isotherm at TC, have been obtained with a modified Arrott plot, a Kouvel-Fisher plot, the critical isotherm analysis, and the scaling analysis. We have determined the critical exponents as β =0.287 ±0.005 , γ =1.47 ±0.02 , and δ =6.08 ±0.04 by the scaling analysis and the critical isotherm analysis. These critical exponents satisfy the Widom scaling law δ =1 +γ /β . URhAl has strong uniaxial magnetic anisotropy, similar to its isostructural UCoAl that has been regarded as a three-dimensional (3D) Ising system in previous studies. However, the universality class of the critical phenomenon in URhAl does not belong to the 3D Ising model (β =0.325 , γ =1.241 , and δ =4.82 ) with short-range exchange interactions between magnetic moments. The determined exponents can be explained with the results of the renormalization group approach for a two-dimensional (2D) Ising system coupled with long-range interactions decaying as J (r ) ˜r-(d +σ ) with σ =1.44 . We suggest that the strong hybridization between the uranium 5 f and rhodium 4 d electrons in the U-RhI layer in the hexagonal crystal structure is a source of the low-dimensional magnetic property. The present result is contrary to current understandings of the physical properties in a series of isostructural UTX uranium ferromagnets (T: transition metals, X: p -block elements) based on the 3D Ising model.
Bhardwaj, Deepak; Lakhanpaul, Suman; Tuteja, Narendra
2012-09-01
Climate change is a major concern especially in view of the increasing global population and food security. Plant scientists need to look for genetic tools whose appropriate usage can contribute to sustainable food availability. G-proteins have been identified as some of the potential genetic tools that could be useful for protecting plants from various stresses. Heterotrimeric G-proteins consisting of three subunits Gα, Gβ and Gγ are important components of a number of signalling pathways. Their structure and functions are already well studied in animals but their potential in plants is now gaining attention for their role in stress tolerance. Earlier we have reported that over expressing pea Gβ conferred heat tolerance in tobacco plants. Here we report the interacting partners (proteins) of Gβ subunit of Pisum sativum and their putative role in stress and development. Out of 90 transformants isolated from the yeast-two-hybrid (Y2H) screening, seven were chosen for further investigation due to their recurrence in multiple experiments. These interacting partners were confirmed using β-galactosidase colony filter lift and ONPG (O-nitrophenyl-β-D-galactopyranoside) assays. These partners include thioredoxin H, histidine-containing phosphotransfer protein 5-like, pathogenesis-related protein, glucan endo-beta-1, 3-glucosidase (acidic isoform), glycine rich RNA binding protein, cold and drought-regulated protein (corA gene) and soluble inorganic pyrophosphatase 1. This study suggests the role of pea Gβ subunit in stress signal transduction and development pathways owing to its capability to interact with a wide range of proteins of multiple functions. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Cold quantum gases with resonant interactions
Marcelis, B.
2008-01-01
We study ultracold gases of alkali-metal atoms in the quantum degenerate regime. The interatomic interactions in these type of systems can be tuned using resonances induced by magnetic or electric fields. The tunability of the interactions, together with the possibility of confining the atoms with
Daume, Jonathan; Gruber, Thomas; Engel, Andreas K; Friese, Uwe
2017-01-11
It has been suggested that cross-frequency phase-amplitude coupling (PAC), particularly in temporal brain structures, serves as a neural mechanism for coordinated working memory storage. In this magnetoencephalography study, we show that during visual working memory maintenance, temporal cortex regions, which exhibit enhanced PAC, interact with prefrontal cortex via enhanced low-frequency phase synchronization. Healthy human participants were engaged in a visual delayed match-to-sample task with pictures of natural objects. During the delay period, we observed increased spectral power of beta (20-28 Hz) and gamma (40-94 Hz) bands as well as decreased power of theta/alpha band (7-9 Hz) oscillations in visual sensory areas. Enhanced PAC between the phases of theta/alpha and the amplitudes of beta oscillations was found in the left inferior temporal cortex (IT), an area known to be involved in visual object memory. Furthermore, the IT was functionally connected to the prefrontal cortex by increased low-frequency phase synchronization within the theta/alpha band. Together, these results point to a mechanism in which the combination of PAC and long-range phase synchronization subserves enhanced large-scale brain communication. They suggest that distant brain regions might coordinate their activity in the low-frequency range to engage local stimulus-related processing in higher frequencies via the combination of long-range, within-frequency phase synchronization and local cross-frequency PAC. Working memory maintenance, like other cognitive functions, requires the coordinated engagement of brain areas in local and large-scale networks. However, the mechanisms by which spatially distributed brain regions share and combine information remain primarily unknown. We show that the combination of long-range, low-frequency phase synchronization and local cross-frequency phase-amplitude coupling might serve as a mechanism to coordinate memory processes across distant brain areas
Reinhardt, K.; Castanha, C.; Germino, M. J.; Kueppers, L. M.
2011-12-01
The elevation limit of tree growth (alpine treeline) is considered to be constrained by environmental (i.e., thermal) and genetic (i.e., inability to adapt to climatic conditions) limitations to growth. Warming conditions due to climate change are predicted to cause upward shifts in the elevation of alpine treelines, through relief of cold-induced physiological limitations on seedling recruitment beyond current treeline boundaries. To determine how genetics and climate may interact to affect seedling establishment, we transplanted recently germinated seedlings from high- and low-elevation provenances (HI and LO, respectively) of Pinus flexilis in common gardens arrayed along an elevation and canopy gradient from subalpine forest into the alpine zone at Niwot Ridge, CO. We compared differences in microclimate and seedling ecophysiology among sites and between provenances. During the first summer of growth, frequently cloudy skies resulted in similar solar radiation incidence and air and soil temperatures among sites, despite nearly a 500 m-span in elevation across all sites. Preliminary findings suggest that survival of seedlings was similar between the lowest and highest elevations, with greater survival of LO (60%) compared to HI (40%) seedlings at each of these sites. Photosynthesis, carbon balance (photosynthesis/respiration), and conductance increased more than 2X with elevation for both provenances, and were 35-77% greater in LO seedlings compared to HI seedlings. There were no differences in dark-adapted chlorophyll fluorescence (Fv/Fm) among sites or between provenances. However, in a common-garden study at low elevation, we observed no differences in carbon or water relations between two naturally-germinated mitochondrial haplotypes of P. flexilis (of narrow and wide-ranging distributions). We did observe water-related thresholds on seedling carbon balance and survival that occurred when soil volumetric water content dropped below 10% and seedling water
International Nuclear Information System (INIS)
Lucchesi, D M; Peron, R; Visco, M; Anselmo, L; Pardini, C; Bassan, M; Pucacco, G
2015-01-01
In this work, the Laser Ranged Satellites Experiment (LARASE) is presented. This is a research program that aims to perform new refined tests and measurements of gravitation in the field of the Earth in the weak field and slow motion (WFSM) limit of general relativity (GR). For this objective we use the free available data relative to geodetic passive satellite lasers tracked from a network of ground stations by means of the satellite laser ranging (SLR) technique. After a brief introduction to GR and its WFSM limit, which aims to contextualize the physical background of the tests and measurements that LARASE will carry out, we focus on the current limits of validation of GR and on current constraints on the alternative theories of gravity that have been obtained with the precise SLR measurements of the two LAGEOS satellites performed so far. Afterward, we present the scientific goals of LARASE in terms of upcoming measurements and tests of relativistic physics. Finally, we introduce our activities and we give a number of new results regarding the improvements to the modelling of both gravitational and non-gravitational perturbations to the orbit of the satellites. These activities are a needed prerequisite to improve the forthcoming new measurements of gravitation. An innovation with respect to the past is the specialization of the models to the LARES satellite, especially for what concerns the modelling of its spin evolution, the neutral drag perturbation and the impact of Earth's solid tides on the satellite orbit. (paper)
Bruce, Ellen E.; van der Vegt, Nico F. A.
2018-06-01
Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.
Vattré, A.
2017-08-01
The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.
Low-order moment expansions to tight binding for interatomic potentials: Successes and failures
International Nuclear Information System (INIS)
Kress, J.D.; Voter, A.F.
1995-01-01
We discuss the use of moment-based approximations to tight binding. Using a maximum entropy form for the electronic density of states, we show that a general interatomic potential can be defined that is suitable for molecular-dynamics simulations and has several other desirable features. For covalent materials (C and Si), properties where the atoms are in equivalent environments are well converged at low-order moments. For defect environments, which offer a more critical (and relevant) test, the method is found to give less satisfactory results. For example, the vacancy formation energy for Si is too low by ∼2 eV at 10 moments relative to exact tight binding. Attempts to improve the accuracy were unsuccessful, leading to the conclusion that potentials based on this approach are inadequate for covalent materials. We speculate that this may be a deficiency of low-order moment methods in general. For metals, in contrast to the covalent systems, we find that the low-order moment approach is better behaved. This finding is consistent with the success of existing empirical fourth-moment potentials for metals
Interatomic Coulombic decay following the Auger decay: Experimental evidence in rare-gas dimers
International Nuclear Information System (INIS)
Ueda, K.; Fukuzawa, H.; Liu, X.-J.; Sakai, K.; Pruemper, G.; Morishita, Y.; Saito, N.; Suzuki, I.H.; Nagaya, K.; Iwayama, H.; Yao, M.; Kreidi, K.; Schoeffler, M.; Jahnke, T.; Schoessler, S.; Doerner, R.; Weber, Th.; Harries, J.; Tamenori, Y.
2008-01-01
Interatomic Coulombic decay (ICD) in Ar 2 , ArKr and Kr 2 following Ar 2p or Kr 3d Auger decay has been investigated by means of momentum-resolved electron-ion-ion coincidence spectroscopy. This sequential decay leads to Coulombic dissociation into dication and monocation. Simultaneously determining the kinetic energy of the ICD electron and the kinetic energy release between the two atomic ions, we have been able to unambiguously identify the ICD channels. We find that, in general, spin-conserved ICD, in which the singlet (triplet) dicationic state produced via the atomic Auger decay preferentially decays to the singlet (triplet) state, transferring the energy to the other atom, is faster than spin-flip ICD, in which the Auger final singlet (triplet) dicationic state decays to the triplet (singlet) state. However, spin-flip ICD may take place when spin-conserved ICD becomes energetically forbidden. Dipole-forbidden ICDs from Kr 2+ (4s -21 S)-B (B = Ar or Kr) to Kr 2+ (4p -21 D, 3 P)-B + are also observed
Probing the interatomic potential of solids with strong-field nonlinear phononics
von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.
2018-03-01
Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.
Interatomic Coulombic electron capture in atomic, molecular, and quantum dot systems
Directory of Open Access Journals (Sweden)
Bande Annika
2015-01-01
Full Text Available The interatomic Coulombic electron capture (ICEC process has recently been predicted theoretically for clusters of atoms and molecules. For an atom A capturing an electron e(ε it competes with the well known photorecombination, because in an environment of neutral or anionic neighboring atoms B, A can transfer its excess energy in the ultrafast ICEC process to B which is then ionized. The cross section for e(ε + A + B → A− + B+ + e(ε′ has been obtained in an asymptotic approximation based on scattering theory for several clusters [1,2]. It was found that ICEC starts dominating the PR for distances among participating species of nanometers and lower. Therefore, we believe that the ICEC process might be of importance in the atmosphere, in biological systems, plasmas, or in nanostructured materials. As an example for the latter, ICEC has been investigated by means of electron dynamics in a model potential for semiconductor double quantum dots (QDs [3]. In the simplest case one QD captures an electron while the outgoing electron is emitted from the other. The reaction probability for this process was found to be relatively large.
Energy Technology Data Exchange (ETDEWEB)
Pasianot, R C; Monti, A M [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Materiales
1997-12-31
In the present work are developed interatomic potentials of the embedded atom type (EAM) adequate for computer simulation of microstructural defects in the Zr lattice. It is observed that the less repulsive potential agrees better with the experimental data of the self-interstitial relaxation volume and predicts the basal crowdion as the stable configuration, the basal dumbbell having a formation energy slightly higher (0.01 eV). (author). 9 refs., 1 fig., 3 tabs.
Rizvi, Tahir A; Kenyon, Julia C; Ali, Jahabar; Aktar, Suriya J; Phillip, Pretty S; Ghazawi, Akela; Mustafa, Farah; Lever, Andrew M L
2010-10-15
The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV
Trigos, Anna S; Pearson, Richard B; Papenfuss, Anthony T; Goode, David L
2017-06-13
Tumors of distinct tissues of origin and genetic makeup display common hallmark cellular phenotypes, including sustained proliferation, suppression of cell death, and altered metabolism. These phenotypic commonalities have been proposed to stem from disruption of conserved regulatory mechanisms evolved during the transition to multicellularity to control fundamental cellular processes such as growth and replication. Dating the evolutionary emergence of human genes through phylostratigraphy uncovered close association between gene age and expression level in RNA sequencing data from The Cancer Genome Atlas for seven solid cancers. Genes conserved with unicellular organisms were strongly up-regulated, whereas genes of metazoan origin were primarily inactivated. These patterns were most consistent for processes known to be important in cancer, implicating both selection and active regulation during malignant transformation. The coordinated expression of strongly interacting multicellularity and unicellularity processes was lost in tumors. This separation of unicellular and multicellular functions appeared to be mediated by 12 highly connected genes, marking them as important general drivers of tumorigenesis. Our findings suggest common principles closely tied to the evolutionary history of genes underlie convergent changes at the cellular process level across a range of solid cancers. We propose altered activity of genes at the interfaces between multicellular and unicellular regions of human gene regulatory networks activate primitive transcriptional programs, driving common hallmark features of cancer. Manipulation of cross-talk between biological processes of different evolutionary origins may thus present powerful and broadly applicable treatment strategies for cancer.
Paneri, Sofia; Gregoriou, Georgia G.
2017-01-01
The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices. PMID:29033784
Romano, S.
1992-01-01
The present paper considers a classical system, consisting of n-component unit vectors (n=2 or 3), associated with a one-dimensional lattice \\{uk||k∈openZ\\}, and interacting via a translationally invariant pair potential of the long-range, ferromagnetic and anisotropic form W=Wjk=-ɛ||j-k||-2(auj,nuk,n +b tsumλuk,λ denotes the Cartesian components of the unit vectors. According to the available rigorous results, the system disorders at all finite temperatures when a=b, or n=3, a=0, and possesses an ordering transition at finite temperature when b=0. Approximate arguments and simulation results suggest that the isotropic models (a=b) produce a transition to a low-temperature phase with infinite susceptibility and power-law decay of the correlation function. If this is true, the available correlation inequalities entail that it also happens in the anisotropic but O(2)-invariant case n=3, b=0. We report here Monte Carlo calculations for this latter potential model; simulation results were found to be consistent with this conjecture, and to suggest that T*c=0.65+/-0.01.
Directory of Open Access Journals (Sweden)
Sofia Paneri
2017-09-01
Full Text Available The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices.
Energy Technology Data Exchange (ETDEWEB)
Karagiozis, A.N.
2007-05-15
This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.
Stamm, G; Eichbaum, G; Hagemann, G
1997-09-01
The following three screen-film combinations were compared: a) a combination of anticrossover film and UV-light emitting screens, b) a combination of blue-light emitting screens and film, and c) a conventional green fluorescing screen-film combination. Radiographs of a specially designed plexiglass phantom (0.2 x 0.2 x 0.12 m3) with bar patterns of lead and plaster and of air, respectively were obtained using the following parameters: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminum pre-filter, a grid with 40 lines/cm (12:1) and a focus-detector distance of 1.15 m. Image analysis was performed using an IBAS system and a Zeiss Kontron computer. Display conditions were the following: display distance 0.12 m, a vario film objective 35/70 (Zeiss), a video camera tube with a PbO photocathode, 625 lines (Siemens Heimann), an IBAS image matrix of 512 x 512 pixels with a resolution of 7 lines/mm, the projected matrix area was 5000 microns2. Grey scale ranges were measured on a line perpendicular to the grouped bar patterns. The difference between the maximum and minimum density value served as signal. The spatial resolution of the detector system was measured when the signal value was three times higher than the standard deviation of the means of multiple density measurements. The results showed considerable advantages of the two new screen-film combinations as compared to the conventional screen-film combination. The result was contradictory to the findings with pure visual assessment of thresholds (part I) that had found no differences. The authors concluded that (automatic) interactive image analysis algorithms serve as an objective measure and are specifically advantageous when small differences in image quality are to be evaluated.
Patra, M.; Karttunen, M.E.J.; Hyvönen, M.T.; Falck, E.; Vattulainen, I.
2004-01-01
We provide compelling evidence that different treatments of electrostatic interactions in molecular dynamics simulations may dramatically affect dynamic properties of lipid bilayers. To this end, we consider a fully hydrated pure dipalmitoylphosphatidylcholine bilayer through 50-ns molecular
Yan, Yangqian; Blume, D
2016-06-10
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.
Reinhart, K.O.; Packer, A.; Van der Putten, W.H.; Clay, K.A.
2003-01-01
One explanation for the higher abundance of invasive species in their non-native than native ranges is the escape from natural enemies. But there are few experimental studies comparing the parallel impact of enemies (or competitors and mutualists) on a plant species in its native and invaded ranges,
Directory of Open Access Journals (Sweden)
Rutger A. Wilschut
2017-10-01
Full Text Available An increasing number of studies report plant range expansions to higher latitudes and altitudes in response to global warming. However, consequences for interactions with other species in the novel ranges are poorly understood. Here, we examine how range-expanding plant species interact with root-feeding nematodes from the new range. Root-feeding nematodes are ubiquitous belowground herbivores that may impact the structure and composition of natural vegetation. Because of their ecological novelty, we hypothesized that range-expanding plant species will be less suitable hosts for root-feeding nematodes than native congeneric plant species. In greenhouse and lab trials we compared nematode preference and performance of two root-feeding nematode species between range-expanding plant species and their congeneric natives. In order to understand differences in nematode preferences, we compared root volatile profiles of all range-expanders and congeneric natives. Nematode preferences and performances differed substantially among the pairs of range-expanders and natives. The range-expander that had the most unique volatile profile compared to its related native was unattractive and a poor host for nematodes. Other range-expanding plant species that differed less in root chemistry from native congeners, also differed less in nematode attraction and performance. We conclude that the three climate-driven range-expanding plant species studied varied considerably in their chemical novelty compared to their congeneric natives, and therefore affected native root-feeding nematodes in species-specific ways. Our data suggest that through variation in chemical novelty, range-expanding plant species may vary in their impacts on belowground herbivores in the new range.
Miao, Jian-Jian; Jin, Hui-Ke; Zhang, Fu-Chun; Zhou, Yi
2018-01-11
We study Kitaev model in one-dimension with open boundary condition by using exact analytic methods for non-interacting system at zero chemical potential as well as in the symmetric case of Δ = t, and by using density-matrix-renormalization-group method for interacting system with nearest neighbor repulsion interaction. We suggest and examine an edge correlation function of Majorana fermions to characterize the long range order in the topological superconducting states and study the phase diagram of the interating Kitaev chain.
Directory of Open Access Journals (Sweden)
Oller J.A.
2010-04-01
Full Text Available We review on a novel chiral power counting scheme for in-medium chiral perturbation theory with nucleons and pions as degrees of freedom. It allows for a systematic expansion taking into account local as well as pion-mediated inter-nucleon interactions. Based on this power counting, one can identify classes of nonperturbative diagrams that require a resummation. As a method for performing those resummations we review on the techniques of Unitary Chiral Pertubation Theory for nucleon-nucleon interactions. We then apply both power counting and non-perturbative methods to the example of calculating the pion self-energy in asymmetric nuclear matter up-to-and-including next-to-leading order. It is shown that the leading corrections involving in-medium nucleon-nucleon interactions cancel between each other at given chiral orders.
International Nuclear Information System (INIS)
Anikeev, V.B.; Belikov, S.V.; Borisov, A.A.
1995-01-01
The results of total cross section measurements for the ν μ , ν-bar μ interactions with isoscalar target in the 3 - 30 GeV energy range have been presented. The data were obtained with the IHEP - JINR Neutrino Detector in the 'natural' neutrino beams of the U - 70 accelerator. The significant deviation from the linear dependence for σ tot versus neutrino energy is determined in the energy range less than 15 GeV. 46 refs., 10 figs., 5 tabs
Directory of Open Access Journals (Sweden)
Jan Gelhausen, Michael Buchhold, Achim Rosch, Philipp Strack
2016-10-01
Full Text Available The fields of quantum simulation with cold atoms [1] and quantum optics [2] are currently being merged. In a set of recent pathbreaking experiments with atoms in optical cavities [3,4] lattice quantum many-body systems with both, a short-range interaction and a strong interaction potential of infinite range -mediated by a quantized optical light field- were realized. A theoretical modelling of these systems faces considerable complexity at the interface of: (i spontaneous symmetry-breaking and emergent phases of interacting many-body systems with a large number of atoms $N\\rightarrow\\infty$, (ii quantum optics and the dynamics of fluctuating light fields, and (iii non-equilibrium physics of driven, open quantum systems. Here we propose what is possibly the simplest, quantum-optical magnet with competing short- and long-range interactions, in which all three elements can be analyzed comprehensively: a Rydberg-dressed spin lattice [5] coherently coupled to a single photon mode. Solving a set of coupled even-odd sublattice Master equations for atomic spin and photon mean-field amplitudes, we find three key results. (R1: Superradiance and a coherent photon field can coexist with spontaneously broken magnetic translation symmetry. The latter is induced by the short-range nearest-neighbor interaction from weakly admixed Rydberg levels. (R2: This broken even-odd sublattice symmetry leaves its imprint in the light via a novel peak in the cavity spectrum beyond the conventional polariton modes. (R3: The combined effect of atomic spontaneous emission, drive, and interactions can lead to phases with anomalous photon number oscillations. Extensions of our work include nano-photonic crystals coupled to interacting atoms and multi-mode photon dynamics in Rydberg systems.
Constantinescu, Adi; Golubović, Leonardo; Levandovsky, Artem
2013-09-01
Long range dewetting forces acting across thin films, such as the fundamental van der Waals interactions, may drive the formation of large clusters (tall multilayer islands) and pits, observed in thin films of diverse materials such as polymers, liquid crystals, and metals. In this study we further develop the methodology of the nonequilibrium statistical mechanics of thin films coarsening within continuum interface dynamics model incorporating long range dewetting interactions. The theoretical test bench model considered here is a generalization of the classical Mullins model for the dynamics of solid film surfaces. By analytic arguments and simulations of the model, we study the coarsening growth laws of clusters formed in thin films due to the dewetting interactions. The ultimate cluster growth scaling laws at long times are strongly universal: Short and long range dewetting interactions yield the same coarsening exponents. However, long range dewetting interactions, such as the van der Waals forces, introduce a distinct long lasting early time scaling behavior characterized by a slow growth of the cluster height/lateral size aspect ratio (i.e., a time-dependent Young angle) and by effective coarsening exponents that depend on cluster size. In this study, we develop a theory capable of analytically calculating these effective size-dependent coarsening exponents characterizing the cluster growth in the early time regime. Such a pronounced early time scaling behavior has been indeed seen in experiments; however, its physical origin has remained elusive to this date. Our theory attributes these observed phenomena to ubiquitous long range dewetting interactions acting across thin solid and liquid films. Our results are also applicable to cluster growth in initially very thin fluid films, formed by depositing a few monolayers or by a submonolayer deposition. Under this condition, the dominant coarsening mechanism is diffusive intercluster mass transport while the
Energy Technology Data Exchange (ETDEWEB)
Kanski, Michal; Maciazek, Dawid; Golunski, Mikolaj; Postawa, Zbigniew, E-mail: zbigniew.postawa@uj.edu.pl
2017-02-15
Highlights: • Probing the effect of interatomic potentials on sputtering of an octatetraene sample. • Problems with charge calculations are observed during cluster impact for ReaxFF. • COMB3 leads to a very low sputtering yield due to abrupt energy dissipation. • AIREBO is computationally the most efficient, while ReaxFF is more accurate. - Abstract: Molecular dynamics computer simulations have been used to probe the effect of the AIREBO, ReaxFF and COMB3 interatomic potentials on sputtering of an organic sample composed of octatetraene molecules. The system is bombarded by a 15 keV C{sub 60} projectile at normal incidence. The effect of the applied force fields on the total time of simulation, the calculated sputtering yield and the angular distribution of sputtered particles is investigated and discussed. It has been found that caution should be taken when simulating particles ejection from nonhomogeneous systems that undergo significant fragmentation described by the ReaxFF. In this case, the charge state of many particles is improper due to an inadequacy of a procedure used for calculating partial charges on atoms in molecules for conditions present during sputtering. A two-step simulation procedure is proposed to minimize the effect of this deficiency. There is also a possible problem with the COMB3 potential, at least at conditions present during cluster impact, as its results are very different from AIREBO or ReaxFF.
Beurden, van M.H.P.H.; IJsselsteijn, W.A.
2010-01-01
The current paper presents a study into the range and variability of natural gestures when interacting with medical images, using traditional non stereo and stereoscopic modes of presentation. The results have implications for the design of computer-vision algorithms developed to support natural
Faget, Marc; Nagel, Kerstin A; Walter, Achim; Herrera, Juan M; Jahnke, Siegfried; Schurr, Ulrich; Temperton, Vicky M
2013-07-01
There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root-root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root-root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization. Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species. The development of non-invasive methods to dynamically study root-root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root-root interactions. By following the dynamics of root-root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy.
Faget, Marc; Nagel, Kerstin A.; Walter, Achim; Herrera, Juan M.; Jahnke, Siegfried; Schurr, Ulrich; Temperton, Vicky M.
2013-01-01
Background There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root–root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root–root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization. Scope Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species. Conclusions The development of non-invasive methods to dynamically study root–root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root–root interactions. By following the dynamics of root–root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy. PMID:23378521
Agrawal, Piyush; Tkatchenko, Alexandre; Kronik, Leeor
2013-08-13
We propose a nonempirical, pair-wise or many-body dispersion-corrected, optimally tuned range-separated hybrid functional. This functional retains the advantages of the optimal-tuning approach in the prediction of the electronic structure. At the same time, it gains accuracy in the prediction of binding energies for dispersively bound systems, as demonstrated on the S22 and S66 benchmark sets of weakly bound dimers.
Nemati Aram, Tahereh; Ernzerhof, Matthias; Asgari, Asghar; Mayou, Didier
2017-01-01
We discuss the effects of charge carrier interaction and recombination on the operation of molecular photocells. Molecular photocells are devices where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes. Our investigation is based on the quantum scattering theory, in particular on the Lippmann-Schwinger equation; this minimizes the complexity of the problem while providing useful and non-trivial insight into the mechanism governing photocell operation. In this study, both exciton pair creation and dissociation are treated in the energy domain, and therefore there is access to detailed spectral information, which can be used as a framework to interpret the charge separation yield. We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron-hole interaction and the non-radiative recombination rate. Our analysis helps to optimize the charge separation process and the energy transfer in organic solar cells and in molecular photocells.
Aguirre, Luis A; Alonso, M Eva; Badía-Careaga, Claudio; Rollán, Isabel; Arias, Cristina; Fernández-Miñán, Ana; López-Jiménez, Elena; Aránega, Amelia; Gómez-Skarmeta, José Luis; Franco, Diego; Manzanares, Miguel
2015-04-17
Recent genome-wide association studies have uncovered genomic loci that underlie an increased risk for atrial fibrillation, the major cardiac arrhythmia in humans. The most significant locus is located in a gene desert at 4q25, approximately 170 kilobases upstream of PITX2, which codes for a transcription factor involved in embryonic left-right asymmetry and cardiac development. However, how this genomic region functionally and structurally relates to PITX2 and atrial fibrillation is unknown. To characterise its function, we tested genomic fragments from 4q25 for transcriptional activity in a mouse atrial cardiomyocyte cell line and in transgenic mouse embryos, identifying a non-tissue-specific potentiator regulatory element. Chromosome conformation capture revealed that this region physically interacts with the promoter of the cardiac specific isoform of Pitx2. Surprisingly, this regulatory region also interacts with the promoter of the next neighbouring gene, Enpep, which we show to be expressed in regions of the developing mouse heart essential for cardiac electrical activity. Our data suggest that de-regulation of both PITX2 and ENPEP could contribute to an increased risk of atrial fibrillation in carriers of disease-associated variants, and show the challenges that we face in the functional analysis of genome-wide disease associations.
Stabilization of cucurbituril/guest assemblies via long-range Coulombic and CH···O interactions.
Joseph, Roymon; Nkrumah, Anna; Clark, Ronald J; Masson, Eric
2014-05-07
Cucurbit[n]urils (CB[n], n = 6-8) interact strongly with metal-bound 4'-substituted terpyridine ligands (M = Fe(II) and Ir(III)) via CH···O hydrogen bonding, despite significant separation between the positive metallic cation and the carbonylated rim of CB[n], and the location of the latter in the second coordination sphere of the metal ion. While water has been shown to mediate interactions between cations and CB[n]s in some assemblies, mediation by organic ligands is unprecedented. The recognition process is driven by the contrasted combination of extremely favorable binding enthalpies (up to 20.2 kcal/mol) and very unfavorable entropic components (as low as -10.2 kcal/mol). Dynamic oligomers were prepared in the presence of CB[8], which acts as a "soft", noncovalent linker between metal/terpyridine complexes, and interconnects two 4'-substituents inside its cavity. Social self-sorting between CB[8] and metal/terpyridine complexes bearing 4'-(2-naphthyl) and 4'-(2,3,5,6-tetrafluorophenyl) substituents was also observed, and could afford well-organized oligomers with alternating Fe(II) and Ir(III) cations.
Search for anomalously interacting stable particles in the mass range from 1.0 to 1.8 GeV/c2
International Nuclear Information System (INIS)
Abramov, V.V.; Arbuzov, V.A.; Baldin, B.Yu.
1986-01-01
A search for stable (r > 10 -8 s) anomalously interacting particles with the charge Z=±1 has been performed in the mass range from 1.0 to 1.8 GeV/c 2 . Secondary positive and negative particles with mean transverse momentum of 3 GeV/c produced in the collision of 70 GeV protons with the lead target have been investigated. Upper limits for invariant differential production cross-sections of anomalously interacting particles (1.8x10 -33 -9.5x10 -32 cm 2 xGeV -2 ) per lead nucleus have been obtained at the 90 % considence level
International Nuclear Information System (INIS)
Ching, W. Y.; Rulis, Paul; Aryal, Sitaram; Ouyang, Lizhi; Misra, Anil
2010-01-01
Microstructures such as intergranular glassy films (IGFs) are ubiquitous in many structural ceramics. They control many of the important physical properties of polycrystalline ceramics and can be influenced during processing to modify the performance of devices that contain them. In recent years, there has been intense research, both experimentally and computationally, on the structure and properties of IGFs. Unlike grain boundaries or dislocations with well-defined crystalline planes, the atomic scale structure of IGFs, their fundamental electronic interactions, and their bonding characteristics are far more complicated and not well known. In this paper, we present the results of theoretical simulations using ab initio methods on an IGF model in β-Si 3 N 4 with prismatic crystalline planes. The 907-atom model has a dimension of 14.533 A x 15.225 A x 47.420 A . The IGF layer is perpendicular to the z axis, 16.4 A wide, and contains 72 Si, 32 N, and 124 O atoms. Based on this model, the mechanical and elastic properties, the electronic structure, the interatomic bonding, the localization of defective states, the distribution of electrostatic potential, and the optical dielectric function are evaluated and compared with crystalline β-Si 3 N 4 . We have also performed a theoretical tensile experiment on this model by incrementally extending the structure in the direction perpendicular to the IGF plane until the model fully separated. It is shown that fracture occurs at a strain of 9.42% with a maximum stress of 13.9 GPa. The fractured segments show plastic behavior and the formation of surfacial films on the β-Si 3 N 4 . These results are very different from those of a previously studied basal plane model [J. Chen et al., Phys. Rev. Lett. 95, 256103 (2005)] and add insights to the structure and behavior of IGFs in polycrystalline ceramics. The implications of these results and the need for further investigations are discussed.
Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.
2018-05-01
The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.
International Nuclear Information System (INIS)
Volkov, M. V.; Elander, N.; Yakovlev, S. L.; Yarevsky, E. A.
2013-01-01
The complex-rotation method adapted to solving the multichannel scattering problem in the two-body system where the interaction potential contains the long-range Coulomb components is described. The scattering problem is reformulated as the problem of solving a nonhomogeneous Schrödinger equation in which the nonhomogeneous term involves a Coulomb potential cut off at large distances. The incident wave appearing in the nonhomogeneous term is a solution of the Schrödinger equation with longrange Coulomb interaction. This formulation is free from approximations associated with a direct cutoff of Coulomb interaction at large distances. The efficiency of this formalism is demonstrated by considering the example of solving scattering problems in the α-α and p-p systems.
International Nuclear Information System (INIS)
Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.
1989-01-01
The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)
Directory of Open Access Journals (Sweden)
Juan M. García Casco
2014-04-01
Full Text Available Genotype by environment interaction (G×E is a potential source of reduced efficiency in genetic improvement programs in livestock. The objective of the current work consisted of checking the existence of G×E interaction in carcass traits and in intramuscular fat content (IMF in Iberian pigs fattened in two free-range systems. Genetic component and estimated breeding values (EBV of the percentage of hams, shoulders and loins and IMF in loin were obtained from records of 4,348 and 1,818 pigs fattened in campo (C and montanera (M systems, respectively. A multitrait model where the performances of each system are considered as different traits was implemented. Three selection indexes were built with different treatments about the quality trait, two of them based in the optimal trait theory. The Pearson correlation between EBV and indexes and the Spearman correlation between the rankings of progenies of 21 boars fattened in both systems were calculated. Heritability results were different in both systems (h2 range from 0.43 to 0.66 and from 0.24 to 0.33 in C and M system, respectively and genetic correlation of same traits expressed in the two systems also pointed out to a weak G×E interaction (0.64, 0.67 and 0.66 in hams, shoulders and IMF, respectively. Pearson and Spearman correlations were always significantly different to 1. The obtained results advised to consider this G×E interaction in the analysis model of a breeding program focused on free range production system and to include IMF in the index selection assuming an optimum range for this quality trait, in order to avoid negative effects of selection for carcass performances.
Motta, Mario; Zhang, Shiwei
2018-05-01
We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.
International Nuclear Information System (INIS)
Lengen, M.; Chaudhuri, P.
1994-01-01
The magnetic properties of [L-Fe(III)-dmg 3 Mn(II)-Fe(III)-L] (ClO 4 ) 2 have been characterized by magnetic susceptibility, EPR, and Moessbauer studies. L represents 1,4,7-trimethyl-,1,4,7-triazacyclononane and dmg represents dimethylglyoxime. X-ray diffraction measurements yield that the arrangement of the three metal centers is strictly linear with atomic distances d Fe-Mn 0.35 nm and d Fe-Fe = 0.7 nm. Magnetic susceptibility measurements (3-295 K) were analyzed in the framework of the spin-Hamiltonian formalism considering Heisenberg exchange and Zeeman interaction: H = J Fe-Mn (S Fe1 + S Fe2 )S Mn + J Fe-Fe S Fe1 S Fe2 + gμ B S total B. The spins S Fe1 = S Fe2 = S Mn = 5/2 of the complex are antiferromagnetically coupled, yielding a total spin of S total = 5/2 with exchange coupling constants F Fe-Mn = 13.4 cm -1 and J Fe-Fe = 4.5 cm -1 . Magnetically split Moessbauer spectra were recorded at 1.5 K under various applied fields (20 mT, 170 mT, 4 T). The spin-Hamiltonian analysis of these spectra yields isotropic magnetic hyperfine coupling with A total /(g N μ N ) = -18.5 T. The corresponding local component A Fe is related to A total via spin-projection: A total = (6/7)A Fe . The resulting A Fe /(g N μ N ) -21.6 T is in agreement with standard values of ferric high-spin complexes. Spin-Hamiltonian parameters as obtained from Moessbauer studies and exchange coupling constants as derived from susceptibility measurements are corroborated by temperature-dependent EPR studies. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kronfeldner, Klaus; Strunk, Christoph [Institute for Experimental and Applied Physics, University of Regensburg (Germany); Baturina, Tatyana [A.V. Rzhanov Institute of Semiconductor Physics, SB RAS (Russian Federation)
2016-07-01
We have measured the conductance of square shaped TiN films on the superconducting and the insulating side of the superconductor/insulator transition. The conductance shows thermally activated behaviour with an activation energy k{sub B}T{sub 0}(L) ∝ lnL, with L being the lateral size of the squares. Such behavior is consistent with 2D long-ranged Coulomb interactions with a large electrostatic screening length Λ ≅ 200 μm. To independently test whether long ranged Coulomb interactions can be responsible for the observed size dependence we compare R(T,B) of a large TiN film in the critical region with and without a screening Pd layer in a distance t ∼ 60 nm to the TiN film. The screening Pd-layer is expected to reduce the activation energy from ∝ ln [min(L,Λ)] to ∝ ln(t) and the thermally activated resistance in films with L >or similar Λ by the large number Λ/t ≅ 3000. In contrast, our experiment showed no significant reduction of R(T) and T{sub 0}. This suggests that the measured size dependent conductance of our TiN film is not related to long-ranged Coulomb interactions.
Quintieri, Lina; Pia, Maria Grazia; Augelli, Mauro; Saracco, Paolo; Capogni, Marco; Guarnieri, Guido
2017-09-01
Photo-nuclear interactions are relevant in many research fields of both fundamental and applied physics and, for this reason, accurate Monte Carlo simulations of photo-nuclear interactions can provide a valuable and indispensable support in a wide range of applications (i.e from the optimisation of photo-neutron source target to the dosimetric estimation in high energy accelerator, etc). Unfortunately, few experimental photo-nuclear data are available above 100 MeV, so that, in the high energy range (from hundreds of MeV up to GeV scale), the code predictions are based on physical models. The aim of this work is to compare the predictions of relevant observables involving photon-nuclear interaction modelling, obtained with GEANT4 and FLUKA, to experimental data (if available), in order to assess the code estimation reliability, over a wide energy range. In particular, the comparison of the estimated photo-neutron yields and energy spectra with the experimental results of the n@BTF experiment (carried out at the Beam Test Facility of DaΦne collider, in Frascati, Italy) is here reported and discussed. Moreover, the preliminary results of the comparison of the cross sections used in the codes with the"evaluated' data recommended by the IAEA are also presented for some selected cases (W, Pb, Zn).
Wang, Xujia; Zheng, Zhihai; Feng, Guolin
2018-04-01
The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.
Yang, H.; Chen, W. S.
2017-12-01
The late Cenozoic mountain belt of Taiwan, resulting from the collision between the Eurasian and Philippine Sea plates, is known for its rapid tectonic uplift. As postglacial sea level rose ca. 15,000 yr ago, the eastern coast of Taiwan, due to the rapid tectonic uplift rate, displayed a totally different scenario comparing with most of the coastal plains around the world. At the beginning of postglacial era, the sea level rising rate was greater than the tectonic uplift rate which induced the original piedmont alluvial fan or coastal plain to be overwhelmed by sea water rapidly. Around 13.5 ka, the tectonic uplift rate caught up with the sea level rising and broad wave-cut platform formed. The approximation of tectonic uplift and sea level rising rates was lasting from 13.5 to 5ka, but shoreline progradation may have been enhanced by increased slope erosion which resulted in the alluvial fan forming at the later time of this period. As soon as the eustasy stabilized, the landmass continued to uplift which might have enhanced the river incising and wave erosion rapidly. Therefore the topographic expression along the eastern fringing of Coastal Range forms extended alluvial-fan, stream, and marine terraces and are covered by late Holocene colluvium and marine deposits. 88 archaeological sites were chosen in this study based on surface survey where the archaeological chronology of cultural stage is established primarily through examining pottery series and associated manual excavation. It is interesting that most of the archaeological sites were located on the alluvial fan although the Holocene marine terraces have formed after 5ka. There are no clear evidences to support a shore-oriented settlement, but the abundant alluvial depositional structures observed from the overlaying formation reveals the stream depositional system was still active at this time. If the Neolithic people wanted to come to the "new born" coastal region for the abundant ocean resources, they
Kjellander, Roland
2018-05-01
A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.
International Nuclear Information System (INIS)
Kouzov, A. P.; Chrysos, M.; Rachet, F.; Egorova, N. I.
2006-01-01
Collision-induced properties of two interacting molecules a and b are derived by means of a general diagrammatic method involving M molecule-molecule and N photon-molecule couplings. The method is an extension of previous graphical treatments of nonlinear optics because it exhaustively determines interaction-induced polarization mechanisms in a trustworthy and handy fashion. Here we focus on long-range intermolecular interactions. Retardation effects are neglected. A fully quantum-mechanical treatment of the molecules is made whereas second quantization for the electromagnetic field, in the nonrelativistic approximation, is implicitly applied. The collision-induced absorption, Raman, and hyper-Raman processes are viewed and studied, through guiding examples, as specific cases N=1, 2, and 3, respectively. In Raman (N=2), the standard first-order (M=1) dipole-induced dipole term of the incremental polarizability, Δα, is the result of a coupling of the two photons with distinct molecules, a and b, which perturb each other via a dipole-dipole mechanism. Rather, when the two photons interact with the same molecule, a or b, the (N=2, M=1) graphs predict the occurrence of a nonlinear polarization mechanism. The latter is expected to contribute substantially to the collision-induced Raman bands by certain molecular gases
Energy Technology Data Exchange (ETDEWEB)
Xu, Ke [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Niu, Liang-Liang [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI 48109 (United States); Jin, Shuo, E-mail: jinshuo@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Shu, Xiaolin [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Xie, Hongxian [School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132 (China); Wang, Lifang; Lu, Guang-Hong [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China)
2017-02-15
Atomistic simulations have been used to investigate the core structures, static properties of isolated 1/2 <1 1 1> screw dislocations, and their interaction with vacancies in bcc tungsten (W) based on three empirical interatomic potentials. Differential displacement maps show that only one embedded atom method potential is able to reproduce the compact non-degenerate core as evidenced by ab initio calculations. The obtained strain energy and stress distribution from atomistic simulations are, in general, consistent with elasticity theory predictions. In particular, one component of the calculated shear stress, which is not present according to elasticity theory, is non-negligible in the core region of our dislocation model. The differences between the results calculated from three interatomic potentials are in details, such as the specific value and the symmetry, but the trend of spatial distributions of static properties in the long range are close to each other. By calculating the binding energies between the dislocations and vacancies, we demonstrate that the dislocations act as vacancy sinks, which may be important for the nucleation and growth of hydrogen bubbles in W under irradiation.
Manifestation of magnetoelastic interactions in Raman spectra of HoxNd1−xFe3(BO34 crystals
Directory of Open Access Journals (Sweden)
A. S. Krylov
2018-04-01
Full Text Available Raman spectra of Ho1−xNdxFe(BO34 (x=1, 0.75, 0.5, 0.25 have been studied in temperature range 10–400K. Two compositions (x=1, x=0.75 demonstrate structural phase transition with soft mode restoration. The addition of Nd atoms increases interatomic spacing and decreases the temperature of structural phase transition. The solid solutions (x=0.75, 0.5, 0.25 demonstrate the emergence of the peaks corresponding to magnetoelastic interaction below Néel temperature. The order parameter of the magnetic phase transition has been determined. The equal concentrations of holmium and neodymium atoms prevent magnon soft modes condensation caused by exchange interactions in Fe–O–Fe chains are observed. Calculations confirm the data obtained in the experiment.
International Nuclear Information System (INIS)
Morgan, G.L.
1975-11-01
The spectra of secondary neutrons and gamma rays produced by neutron interaction in a thin sample (approximately 1/6 mean free path) of aluminum have been measured as a function of the incident neutron energy over the range 1 to 20 MeV. Data were taken at an angle of 125 0 . A linac (ORELA) was used as a neutron source with a 47-m flight path. Incident energy was determined by time-of-flight, while secondary spectra were determined by pulse-height unfolding techniques. The results of the measurements are presented in forms suitable for comparison to calculations based on the evaluated data files. (6 tables, 4 figures)
Comparison of short-range rapidity correlations in anti pp and pp interactions at √S = 53 GeV
International Nuclear Information System (INIS)
Breakstone, A.; Crawley, H.B.; Firestone, A.; Gorbics, M.; Lamsa, J.W.; Meyer, W.T.
1982-01-01
Measurements are presented of two-particle rapidity correlations in anti pp and pp at √S = 53 GeV. The data were recorded at the CERN-ISR using the Split Field Magnet spectrometer with a minimum bias trigger. Short range correlations in normal inelastic events with measured charged multiplicities nsub(ch) >= 4 are observed for pairs of charged particles in all charge combinations. Within the experimental errors no differences are observed between the analogous correlations in pp and anti pp interactions. (orig.)
Stefan, V. Alexander; IAPS-team Team
2017-10-01
The novel study of the laser excitation-suppression of the brain waves is proposed. It is based on the pulsed-operated multi-photon fiber-laser interaction with the brain parvalbumin (PV) neurons. The repetition frequency matches the low frequency brain waves (5-100 Hz); enabling the resonance-scanning of the wide range of the PV neurons (the generators of the brain wave activity). The tunable fiber laser frequencies are in the ultraviolet frequency range, thus enabling the monitoring of the PV neuron-DNA, within the 10s of milliseconds. In medicine, the method can be used as an ``instantaneous-on-off anesthetic.'' Supported by Nikola Tesla Labs, Stefan University.
Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide
2013-09-01
The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.
2012-01-01
Background In the frame of an eradication program for bovine viral diarrhea (BVD) in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV) infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex) from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey. Results Thirty-two sera out of 1’877 (1.7%, 95% confidence interval [CI] 1.2-2.4) were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3). The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime. Conclusions To our knowledge, this is the first report of BVDV RNA isolated from an Alpine chamois
Interatomic potentials for PuC by Chen–Möbius multiple lattice inversion
International Nuclear Information System (INIS)
Huang, H.; Meng, D.Q.; Lai, X.C.; Li, G.; Long, Y.
2013-01-01
The atomic interactions of PuC with B1 structure were described by Chen–Möbius lattice inversion combined with first-principle calculations. In order to obtain the inversion potential parameters of PuC, three different structures including two virtual crystals were built and the Morse function plus a modified term was adopted to fit the pair-potential curves. The reliability of the inversion potential was tested by checking the stability of the transition of PuC from disordered to ordered state and comparing the calculated and experimental physical and thermal properties of PuC. All the results show that the inversion potential could give a stable and accurate description of the atomic interactions in PuC and the physical and thermal properties of PuC are well reproduced by the potential
International Nuclear Information System (INIS)
Kartavtsev, O.I.; Malykh, A.V.; Sofianos, S.A.
2008-01-01
The universal three-body dynamics in ultracold binary gases confined to one-dimensional motion is studied. The three-body binding energies and the (2+1)-scattering lengths are calculated for two identical particles of mass m and a different one of mass m 1 , between which interactions are described in the low-energy limit by zero-range potentials. The critical values of the mass ratio m/m 1 , at which the three-body states arise and the (2+1)-scattering length equals zero, are determined both for zero and infinite interaction strength λ 1 of the identical particles. A number of exact results are enlisted and asymptotic dependences both for m/m 1 → infinity and λ 1 → -infinity are derived. Combining the numerical and analytical results, a schematic diagram showing the number of the three-body bound states and the sign of the (2+1)-scattering length in the plane of the mass ratio and interaction-strength ratio is deduced. The results provide a description of the homogeneous and mixed phases of atoms and molecules in dilute binary quantum gases
Sherkunov, Yury
2018-03-01
We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.
Directory of Open Access Journals (Sweden)
Stéphane Fartoukh
2015-12-01
Full Text Available Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β^{*} and type of optics (flat or round, and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J. P. Koutchouk, CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project, and compare it to alternative scenarios, or so-called “configurations,” where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. For all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.
International Nuclear Information System (INIS)
Hartouni, E.P.; Atiya, M.S.; Holmes, S.D.
1985-01-01
We have measured the total cross sections of Ω - and Omega-bar + forward (x/sub F/> or =0) inclusive production in K/sub L/ 0 -carbon interactions in the range E/sub K/ 0 = 80 to 280 GeV to be 3.5 +- 1.4 and 2.4 +- 1.0 μb, respectively. We observe that the x/sub F/ distributions for both of these states are increasing from x/sub F/ = 0 to x/sub F/roughly-equal0.6. The p/sub perpendicular/ 2 distributions are described as an exponential function in p/sub perpendicular/ with an avearage p/sub perpendicular/ 2 of 0.540 GeV 2 /c 2
International Nuclear Information System (INIS)
Meyer, J.
1976-01-01
Some simplifications given by the nonlocal separable interactions (NLSI) allowed an exhaustive study of the three body problem to be performed. This work is intended to show that NLSI are also useful in studying the properties of nuclei. Some satisfactory results obtained in the infinite nuclear matter and also in the Hartree-Fock study of some 3s-1d nuclei are then given. A coupled reaction formalism has been developed for the analysis of heavy ion induced reactions. The recoil and finite range effects, which are necessary tools in heavy-ion induced reactions, have been introduced from the work of Coker et al. for the ( 3 He,t) reaction [fr
Smernik, Ronald J; Kookana, Rai S
2015-01-01
Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. Copyright © 2014 Elsevier Ltd. All rights reserved.
AUTHOR|(SzGeCERN)390904; Papaphilippou, Yannis; Shatilov, Dmitry
2015-01-01
Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the longrange beam-beam effects, therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the fi...
Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.
2018-03-01
We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.
Interatomic potentials and lattice distortions in PdDsub(0.8)
International Nuclear Information System (INIS)
McKergow, M.W.; Gilberd, P.W.; Picton, D.J.; Ross, D.K.
1985-01-01
Dispersion curve measurements on β-phase PdDsub(0.82) have been carried out by neutron scattering, for both the deuteron random structure and the low-temperature ''Ni 4 Mo'' ordered structure. Fits to the data have been obtained using a 10-parameter Born-Von Karman model constrained to yield spherically symmetric potentials for stoichiometric PdD, and corrected for non-stoichiometry by a Mean Field approximation. The Pd-D interaction is found to be attractive, consistent with a stable octahedral site. These potentials have been used to calculate lattice distortion effects in ordered PdDsub(x) using the program DEVIL. This code allows the atoms in a model crystallite to relax so as to minimise potential energy. The Ni 4 Mo structure is found to permit deuteron relaxation, leading to a comparatively large relaxation energy, whilst the competing DO 22 structure does not. Residual stresses due to the ordering process are also calculated. (orig.) [de
Slepoy, A; Peters, M D; Thompson, A P
2007-11-30
Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms. Copyright (c) 2007 Wiley Periodicals, Inc.
Ledoux, Jean-Baptiste; Aurelle, Didier; Bensoussan, Nathaniel; Marschal, Christian; Féral, Jean-Pierre; Garrabou, Joaquim
2015-03-01
Studying population-by-environment interactions (PEIs) at species range margins offers the opportunity to characterize the responses of populations facing an extreme regime of selection, as expected due to global change. Nevertheless, the importance of these marginal populations as putative reservoirs of adaptive genetic variation has scarcely been considered in conservation biology. This is particularly true in marine ecosystems for which the deep refugia hypothesis proposes that disturbed shallow and marginal populations of a given species can be replenished by mesophotic ones. This hypothesis therefore assumes that identical PEIs exist between populations, neglecting the potential for adaptation at species range margins. Here, we combine reciprocal transplant and common garden experiments with population genetics analyses to decipher the PEIs in the red coral, Corallium rubrum. Our analyses reveal partially contrasting PEIs between shallow and mesophotic populations separated by approximately one hundred meters, suggesting that red coral populations may potentially be locally adapted to their environment. Based on the effective population size and connectivity analyses, we posit that genetic drift may be more important than gene flow in the adaptation of the red coral. We further investigate how adaptive divergence could impact population viability in the context of warming and demonstrate differential phenotypic buffering capacities against thermal stress. Our study questions the relevance of the deep refugia hypothesis and highlights the conservation value of marginal populations as a putative reservoir of adaptive genetic polymorphism.
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions ...
Schulz, Peter J; Rubinelli, Sara; Mariotti, Guido; Keller, Nicola
2009-01-01
Information plays an important role in the management and treatment of chronic pain conditions. Often, however, delivered information does not address specific difficulties of consumers. The present study illustrates the design and implementation of the website ONESELF - run by the Institute of Communication and Health of the University of Lugano - which has been created to meet the ranging of informational needs of chronic low back pain sufferers. ONESELF rests on an integrated idea of health literacy that highlights the kind of information consumers need to inform their decisions about back pain. This idea has been tested through a qualitative analysis of requests posted by users in the forum of ONESELF between July 2006 and December 2007. Users seek information to build their declarative (factual) and procedural knowledge, as well as to evaluate that knowledge and apply it to the context of their own life. Online interactional tools such as ONESELF are a promising source of health communication, provided that the content manager of the website and the health professionals collaborate in a rigorously structured manner. ONESELF can benefit traditional medical consultations in helping screen requests from patients that do not need to see a doctor, and in acting as a repository of background information that saves consultation time for more urgent matters.
Kalloush, Rawan M; Vivet-Boudou, Valérie; Ali, Lizna M; Mustafa, Farah; Marquet, Roland; Rizvi, Tahir A
2016-06-01
MPMV has great potential for development as a vector for gene therapy. In this respect, precisely defining the sequences and structural motifs that are important for dimerization and packaging of its genomic RNA (gRNA) are of utmost importance. A distinguishing feature of the MPMV gRNA packaging signal is two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences, LRI-I and LRI-II. To test their biological significance in the MPMV life cycle, we introduced mutations into these structural motifs and tested their effects on MPMV gRNA packaging and propagation. Furthermore, we probed the structure of key mutants using SHAPE (selective 2'hydroxyl acylation analyzed by primer extension). Disrupting base-pairing of the LRIs affected gRNA packaging and propagation, demonstrating their significance to the MPMV life cycle. A double mutant restoring a heterologous LRI-I was fully functional, whereas a similar LRI-II mutant failed to restore gRNA packaging and propagation. These results demonstrate that while LRI-I acts at the structural level, maintaining base-pairing is not sufficient for LRI-II function. In addition, in vitro RNA dimerization assays indicated that the loss of RNA packaging in LRI mutants could not be attributed to the defects in dimerization. Our findings suggest that U5-gag LRIs play an important architectural role in maintaining the structure of the 5' region of the MPMV gRNA, expanding the crucial role of LRIs to the nonlentiviral group of retroviruses. © 2016 Kalloush et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Ismail, M.; Adel, A.
2018-04-01
The α -decay half-lives of the recently synthesized superheavy nuclei (SHN) are investigated by employing the density dependent cluster model. A realistic nucleon-nucleon (NN ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the Bohr-Sommerfeld quantization condition. The calculated values of α -decay half-lives of the recently synthesized Og isotopes and its decay products are in good agreement with the experimental data. Moreover, the calculated values of α -decay half-lives have been compared with those values evaluated using other theoretical models, and it was found that our theoretical values match well with their counterparts. The competition between α decay and spontaneous fission is investigated and predictions for possible decay modes for the unknown nuclei 118 290 -298Og are presented. We studied the behavior of the α -decay half-lives of Og isotopes and their decay products as a function of the mass number of the parent nuclei. We found that the behavior of the curves is governed by proton and neutron magic numbers found from previous studies. The proton numbers Z =114 , 116, 108, 106 and the neutron numbers N =172 , 164, 162, 158 show some magic character. We hope that the theoretical prediction of α -decay chains provides a new perspective to experimentalists.
International Nuclear Information System (INIS)
Chamati, H.; Dantchev, D.M.
2004-06-01
We present exact results on the behavior of the thermodynamic Casimir force and the excess free energy and the C-function in the framework of the d-dimensional spherical model with a power law long-range interaction decaying at large distances r as r -d- σ, where σ c , as well as for T > Tc and T c . The universal finite-size scaling function governing the behavior of the force in the critical region is derived and its asymptotics are investigated. While in the critical and under -d -d-, critical region the force is of the order of L -d , for T > T c it decays as L -dσ , where L is the thickness of the film. We consider both the case of a finite system that has no phase transition of its own, when d - σ when one observes a dimensional crossover from d to a d - 1 dimensional critical behavior. The behavior of the force along the phase coexistence line for a magnetic field H = 0 and T c . is also derived. We have proven analytically that the excess free energy is always negative ad monotonically increasing function of T and H, while the C-function is always non-negative and monotonically decreasing function of T and H. For the Casimir force we have demonstrated that for any σ > it is everywhere negative, i.e. an attraction between the surfaces bounding the system is to be observed. At T = T c the force is an increasing function of T for σ > 1 and a decreasing one for σ c is always achieved at some H ≠ 0 . (author)
International Nuclear Information System (INIS)
Lu, LingFeng
2016-01-01
Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Takeuchi, Wataru, E-mail: take@sp.ous.ac.jp
2017-05-01
The rainbow angles corresponding to prominent peaks in the angular distributions of scattered projectiles with small angle, attributed to rainbow scattering (RS), under axial surface channeling conditions are strongly influenced by the interatomic potentials between projectiles and target atoms. The dependence of rainbow angles on normal energy of projectile energy to the target surface, being experimentally obtained by Specht et al. for RS of He, N, Ne and Ar atoms under 〈1 0 0〉 and 〈1 1 0〉 axial channeling conditions at a KCl(0 0 1) surface with projectile energies of 1–60 keV, was evaluated by the three-dimensional computer simulations using the ACOCT code based on the binary collision approximation with interatomic pair potentials. Good agreement between the ACOCT results using the ZBL pair potential and the individual pair potentials calculated from Hartree-Fock (HF) wave functions and the experimental ones was found for RS of He, N and Ne atoms from the atomic rows along 〈1 0 0〉 direction. For 〈1 1 0〉 direction, the ACOCT results employing the Moliere pair potential with adjustable screening length of O’Connor-Biersack (OB) formula, the ZBL pair potential and the individual HF pair potentials except for Ar → KCl using the OB pair potential are nearly in agreement with the experimental ones.
Energy Technology Data Exchange (ETDEWEB)
Taller, Stephen A. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Bai, Xian-Ming, E-mail: xianming.bai@inl.gov [Fuels Modeling and Simulation Department, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)
2013-11-15
The irradiation in nuclear reactors creates many point defects and defect clusters in uranium dioxide (UO{sub 2}) and their evolution severely degrades the thermal and mechanical properties of the nuclear fuels. Previously many empirical interatomic potentials have been developed for modeling defect production and evolution in UO{sub 2}. However, the properties of defect clusters and extended defects are usually not fitted into these potentials. In this work nine interatomic potentials for UO{sub 2} are examined by using molecular statics and molecular dynamics to assess their applicability in predicting the properties of various types of defect clusters in UO{sub 2}. The binding energies and structures for these defect clusters have been evaluated for each potential. In addition, the surface energies of voids of different radii and (1 1 0) flat surfaces predicted by these potentials are also evaluated. It is found that both good agreement and significant discrepancies exist for these potentials in predicting these properties. For oxygen interstitial clusters, these potentials predict significantly different defect cluster structures and stabilities; For defect clusters consisting of both uranium and oxygen defects, the prediction is in better agreement; The surface energies predicted by these potentials have significant discrepancies, and some of them are much higher than the experimentally measured values. The results from this work can provide insight on interpreting the outcome of atomistic modeling of defect production using these potentials and may provide guidelines for choosing appropriate potential models to study problems of interest in UO{sub 2}.
Anbalagan, Kousika; Thomas, Tiju
2018-05-01
Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.
Energy Technology Data Exchange (ETDEWEB)
Takeuchi, Wataru, E-mail: take@sp.ous.ac.jp
2016-01-01
The rainbow angles corresponding to pronounced peaks in the angular distributions of scattered projectiles with small angle, attributed to rainbow scattering (RS), under axial surface channeling conditions are strongly dependent on the interatomic potentials between projectiles and target atoms. The dependence of rainbow angles on normal energy of projectile energy to the target surface that has been experimentally obtained by Schüller and Winter (SW) (2007) for RS of He, Ne and Ar atoms from a Ag(1 1 1) surface with projectile energies of 3–60 keV was evaluated by the three-dimensional computer simulations using the ACOCT code based on the binary collision approximation with interatomic pair potentials. Consequently, the ACOCT results employing the Moliere pair potential with screening length correction close to adjustable one of O’Connor and Biersack (OB) formula are almost in agreement with the experimental ones, being self-consistent with the SW’s ones analyzed by computer simulations of classical trajectory calculations as RS from corrugated equipotential planes based on continuum potentials including the Moliere pair potential with screening length correction of the OB formula.
Wilson, James D; Khan-Perez, Jennifer; Marley, Dominic; Buttress, Susan; Walton, Michael; Li, Baihua; Roy, Bibhas
2017-12-01
This study compared the accuracy of measuring shoulder range of movement (ROM) with a simple laptop-sensor combination vs. trained observers (shoulder physiotherapists and shoulder surgeons) using motion capture (MoCap) laboratory equipment as the gold standard. The Microsoft Kinect sensor (Microsoft Corp., Redmond, WA, USA) tracks 3-dimensional human motion. Ordinarily used with an Xbox (Microsoft Corp.) video game console, Medical Interactive Recovery Assistant (MIRA) software (MIRA Rehab Ltd., London, UK) allows this small sensor to measure shoulder movement with a standard computer. Shoulder movements of 49 healthy volunteers were simultaneously measured by trained observers, MoCap, and the MIRA device. Internal rotation was assessed with the shoulder abducted 90° and external rotation with the shoulder adducted. Visual estimation and MIRA measurements were compared with gold standard MoCap measurements for agreement using Bland-Altman methods. There were 1670 measurements analyzed. The MIRA evaluations of all 4 cardinal shoulder movements were significantly more precise, with narrower limits of agreement, than the measurements of trained observers. MIRA achieved ±11° (95% confidence interval [CI], 8.7°-12.6°) for forward flexion vs. ±16° (95% CI, 14.6°-17.6°) by trained observers. For abduction, MIRA showed ±11° (95% CI, 8.7°-12.8°) against ±15° (95% CI, 13.4°-16.2°) for trained observers. MIRA attained ±10° (95% CI, 8.1°-11.9°) during external rotation measurement, whereas trained observers only reached ±21° (95% CI, 18.7°-22.6°). For internal rotation, MIRA achieved ±9° (95% CI, 7.2°-10.4°), which was again better than TOs at ±18° (95% CI, 16.0°-19.3°). A laptop combined with a Microsoft Kinect sensor and the MIRA software can measure shoulder movements with acceptable levels of accuracy. This technology, which can be easily set up, may also allow precise shoulder ROM measurement outside the clinic setting. Copyright © 2017
Petropoulos, G. P.; North, M. R.; Ireland, G.; Srivastava, P. K.; Rendall, D. V.
2015-03-01
This paper describes the validation of the SimSphere SVAT model conducted at different ecosystem types in the USA and Australia. Specific focus was given to examining the models' ability in predicting Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3 m (Tair 1.3 m) and Air Temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from 8 sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. The application of the model confirmed its high capability in representing the multifarious and complex interactions of the Earth system. Comparisons showed a good agreement between modelled and measured fluxes, especially for the days with smoothed daily flux trends. A good to excellent agreement between the model predictions and the in situ measurements was reported, particularly so for the LE, H, T1.3 m and T 50 m parameters (RMSD = 39.47, 55.06 W m-2, 3.23, 3.77 °C respectively). A systematic underestimation of Rg and Rnet (RMSD = 67.83, 58.69 W m-2, MBE = 67.83, 58.69 W m-2 respectively) was also found. Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. Very high values of the Nash-Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the first comprehensive validation of SimSphere, particularly so in USA and Australian ecosystem types. Findings are important and timely, given the rapidly expanding use of this model worldwide both as an educational and research
International Nuclear Information System (INIS)
Peres, J.C.
1982-11-01
This study settles a contribution to the proton-nucleus inelastic interaction simulation. Experimental display of deuton, triton, ion 3 He and alpha clusters in nucleus led us to include them in intranuclear cascade. We use a FERMI type distribution of nucleons; knowledge of each fundamental phenomenon allowed us to follow every particle moving in the medium. Inelastic interaction simulation was performed by the use of a MONTE CARLO method [fr
S. P. Gaba
1984-01-01
The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.
Song, Jiayin; Liu, Liping; Li, Peng; Xiong, Guang
2012-11-01
The effects of surfactants, counterions and additive salts on the formation of siliceous mesoporous molecular sieves during self-assembly process were investigated by UV Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The surfactant molecules experience the rearrangement after adding the silica species and adjusting the pH value. The obvious change of the Raman bands related to the surfactants supports a cooperative interaction between surfactant and inorganic species during self-assembly process. The addition of EDTANa(4) to the system induces the interaction between the COO(-) groups of EDTA(4-) and silanol groups of silica and a strong interaction between the EDTA(4-) and the N(+)(CH(3))(3) groups of the surfactant. The above interactions may be the main reason for the salt effect. The new information from the change of the chemical bonds allows for a further analysis to the interactions of different salts between surfactants and silica species at molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Stamm, G.; Eichbaum, G.; Hagemann, G.
1997-01-01
The following three screen-film combinations were compared: (a) A combination of anticross-over film and UV-light emitting screens, (b) a combination of blue-light emitting screens and film, and (c) a conventional green fluorescing screen-film combination. Radiographs of a specially designed plexiglass phantom (0.2x0.2x0.12 m 3 ) with bar patterns of lead and plaster and of air, respectively were obtained using the following parameters: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminium prefilter, a grid with 40 lines/cm (12:1) and a focus-detector distance of 1.15 m. Image analysis was performed using an IBAS system and a Zeiss Kontron computer. Display conditions were the following: Display distance 0.12 m, a vario film objective 35/70 (Zeiss), a video camera tube with a Pb0 photocathode, 625 lines (Siemens Heimann), an IBAS image matrix of 512x512 pixels with a resolution of 7 lines/mm, the projected matrix area was 5000 μm 2 . Grey scale ranges were measured on a line perpendicular to the grouped bar patterns. The difference between the maximum and minimum density value served as signal. The spatial resolution of the detector system was measured when the signal value was three times higher than the standard deviation of the means of multiple density measurements. The results showed considerable advantages of the two new screen-film combinations as compared to the conventional screen-film combination. The result was contradictory to the findings with pure visual assessment of thresholds (part I) that had found no differences. The authors concluded that (automatic) interactive image analysis algorithms serve as an objective measure and are specifically advantageous when small differences in image quality are to be evaluated. (orig.) [de
Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.
2017-05-01
We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.
Directory of Open Access Journals (Sweden)
Saied M. Soliman
2016-12-01
Full Text Available Intermolecular interactions play a vital role in crystal structures. Therefore, we conducted a topological study, using Hirshfeld surfaces and atom in molecules (AIM analysis, to decompose and analyze, respectively, the different intermolecular interactions in six hydrazone-diacetyl platinum(II complexes. Using AIM and natural bond orbital (NBO analyses, we determined the type, nature, and strength of the interactions. All the studied complexes contain C-H⋯O interactions, and the presence of bond critical points along the intermolecular paths underlines their significance. The electron densities (ρ(r at the bond critical points (0.0031–0.0156 e/a03 fall within the typical range for H-bonding interactions. Also, the positive values of the Laplacian of the electron density (∇2ρ(r revealed the depletion of electronic charge on the interatomic path, another characteristic feature of closed-shell interactions. The ratios of the absolute potential energy density to the kinetic energy density (|V(r|/G(r and ρ(r are highest for the O2⋯H15-N3 interaction in [Pt(COMe2(2-pyCMe=NNH2] (1; hence, this interaction has the highest covalent character of all the O⋯H intermolecular interactions. Interestingly, in [Pt(COMe2(H2NN=CMe-CMe=NNH2] (3, there are significant N-H⋯Pt interactions. Using the NBO method, the second-order interaction energies, E(2, of these interactions range from 3.894 to 4.061 kJ/mol. Furthermore, the hybrid Pt orbitals involved in these interactions are comprised of dxy, dxz, and s atomic orbitals.
International Nuclear Information System (INIS)
Klotsman, S.M.; Timofeev, A.N.
2008-01-01
Measured changes (ε vac ) i,j of vibrational energy on vacancies formation in i-fields (in volumes and nuclei of crystallite conjugation regions of polycrystalline metals (CCR-PM)): Cr, Mo, Ta, W, Cu, Ir are presented. Changes ε vol of vibrational energy of vacancy nearest environment formed in the metal volume, changes ε FCC of vibrational energy when vacancies formation in CCR nuclei of BCC- and FCC lattices transition metals are discussed. Measured changes ε FCC of vibrational energy, u FCC potential energy and determined sign of interatomic distances changes Δa FCC when formation of split vacancy in the FCC-lattice CCR-PM, changes ε BCC of vibrational energy, u BCC potential energy and determined sign of Δa BCC changes of interatomic distances when vacancies formation in the BCC-lattice CCR-PM are demonstrated. It is noted that the increase of interatomic distances when vacancies formation in the BCC-lattice CCR nucleus of transition metals is conditioned by the the appearance of vacancies alternative structure. Properties of CCR-PM nuclei are more sensitive to interatomic distances changes in the vacancies environment, than to changes of its nearest neighbours numbers [ru
Jennifer Klutsch; Nadir Erbilgin
2012-01-01
In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...
van den Aarssen, Laura G; Bringmann, Torsten; Pfrommer, Christoph
2012-12-07
The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case.
International Nuclear Information System (INIS)
Cayllahua Q, L. F.; Apaza V, G.; Vega R, J. L.
2015-10-01
Full text: This paper is an approach to an increasingly complete knowledge about the nature of the processes that occur during a simple examination of radiological diagnosis; know as X-rays are produced and how they will put their energy into the tissue of patients when they are subjected to an examination of radiological diagnosis. First, using the MCNP code an X-rays tube was simulated, where electrons are emitted from a filament (cathode) which travel a certain distance with a certain kinetic energy and then be stopped suddenly in the tungsten target. The X-rays emitted as a result of this interaction, are previously filtered through the inherent filter of Pyrex glass and then by a thin aluminum foil before quantification as an X-rays spectrum. 6 spectra (for 60, 80, 100, 120 and 140 KeV) were obtained. Second, using the Penelope code was simulated the interaction of the X-rays spectrum, obtained in the first part with human tissue, putting as simile of human tissue water phantoms of different thicknesses. As final result: dose of energy deposited (in 2 and 3-dimensional) and reflected, absorbed and transmitted photons spectra. (Author)
Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco
2018-06-01
The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
International Nuclear Information System (INIS)
Sihver, L.; Kanai, T.
1992-07-01
We have developed a computer code for calculations of energy loss (dE/dx) and range distributions for heavy ions in any media. The results from our calculations are in very good agreement with previous calculations. We have developed semiempirical total reaction cross section formulae for proton-nucleus (with Z p ≤26) and nucleus-nucleus (with Z p and Z t ≤26) reactions. These formulae apply for incident energies above 15 MeV and 100 MeV/nucleon respectively. From the total reaction cross sections, we can calculate the mean free paths and the fluence distributions of protons and heavy ions in any media. We have compared all the calculated reaction cross sections and the mean free paths with experimental data, and the agreement is good. We have also constructed a procedure for calculating projectile fragment production cross sections, by scaling semiempirical proton-nucleus partial cross section systematics. The scaling is performed using a scaling parameter deduced from our reaction cross sections formulae, and additional enhancements factors. All products with atomic number ranging from that of the projectile (Z p ) down to Z=2 can be calculated. The agreement between the calculated cross sections and the experimental data is better than earlier published results. (author)
International Nuclear Information System (INIS)
Pokrovsky, O.S.; Probst, A.; Leviel, E.; Liao, B.
2012-01-01
Highlights: ► Adsorption experiments of Cd and Pb in acid soils (China, France). ► Large pH conditions and large range of metal concentrations were considered. ► Similar dependencies between metals concentration in solution and metal adsorbed on the surface were predicted using Langmuir and Freundlich equations and surface complexation model (SCM). ► No competition between Cd and Pb detected at pH 5. ► Metal adsorption capacity is two orders of magnitude higher than limit value for soil protection. - Abstract: The importance of high- and low-affinity surface sites for cadmium and lead adsorption in typical European and Asian soils was investigated. Adsorption experiments on surface and deep horizons of acidic brown (Vosges, France) and red loess soils (Hunan, China) were performed at 25 °C as a function of the pH (3.5–8) and a large range of metal concentrations in solution (10 −9 –10 −4 mol l −1 ). We studied the adsorption kinetics using a Cd 2+ -selective electrode and desorption experiments as a function of the solid/solution ratio and pH. At a constant solution pH, all samples exhibited similar maximal adsorption capacities (4.0 ± 0.5 μmol/g Cd and 20 ± 2 μmol/g Pb). A constant slope of adsorbed–dissolved concentration dependence was valid over 5 orders of magnitude of metal concentrations. Universal Langmuir and Freundlich equations and the SCM formalism described the adsorption isotherms and the pH-dependent adsorption edge over very broad ranges of metal concentrations, indicating no high- or low-affinity sites for metal binding at the soil surface under these experimental conditions. At pH 5, Cd and Pb did not compete, in accordance with the SCM. The metal adsorption ability exceeded the value for soil protection by two orders of magnitude, but only critical load guarantees soil protection since metal toxicity depends on metal availability.
Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.
2018-03-01
Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.
International Nuclear Information System (INIS)
LaBrecque, J.J.; Rosales, P.A.
1989-01-01
The relative sensitivities of low-medium and high-Z elements from manganese to lead were investigated via their K α employing 75 μCi of 32 P. This was accomplished by preparing various synthetic mixtures of elements in the range 25 ≤Z≤82, then simply introducing 32 P solution to form source-samples. The advantages of excitation with 32 P, a pure β-emitter with a β max. energy at 1709 keV, include the following: excitation of all the K α x-rays from manganese to lead; the relative sensitivities of the K x-rays are all within one order of magnitude; the source itself does not produce any spectral lines; and the background can be greatly reduced by filtering. Excitation with 32 P is compared with that of a conventional 109 Cd source and some possible applications are discussed. (author)
Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas
2015-11-15
Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency). Copyright © 2015 Elsevier B.V. All rights reserved.
Study of the Deformation/Interaction Model: How Interactions Increase the Reaction Barrier
Directory of Open Access Journals (Sweden)
Zhiling Liang
2018-01-01
Full Text Available The interactions (including weak interactions between dienophiles and dienes play an important role in the Diels-Alder reaction. To elucidate the influence of these interactions on the reactivity, a popular DFT functional and a variational DFT functional corrected with dispersion terms are used to investigate different substituent groups incorporated on the dienophiles and dienes. The bond order is used to track the trajectory of the cycloaddition reaction. The deformation/interaction model is used to obtain the interaction energy from the reactant complex to the inflection point until reaching the saddle point. The interaction energy initially increases with a decrease in the interatomic distance, reaching a maximum value, but then decreases when the dienophiles and dienes come closer. Reduced density gradient and chemical energy component analysis are used to analyse the interaction. Traditional transition state theory and variational transition state theory are used to obtain the reaction rates. The influence of tunneling on the reaction rate is also discussed.
EXAFS study of short range order in Fe-Zr amorphous alloys
International Nuclear Information System (INIS)
Fernandez-Gubieda, M.L.; Gorria, P.; Barandiaran, J.M.; Barquin, L.F.
1995-01-01
Room temperature X-ray absorption spectra on Fe K-edge have been performed in Fe 100-x-y Zr x B y and Fe 86 Zr 7 Cu 1 B 6 alloys (x=7, 7.7, 9; y=0, 2, 4, 6). Fe-Fe coordination number and interatomic distances do not change in any sample. However, small changes in the Fe-Zr short range order, which could explain the evolution of the magnetic properties, have been observed. (orig.)
International Nuclear Information System (INIS)
Chezhina, N.V.; Zolotukhina, N.V.; Pijr, I.V.
2006-01-01
Magnetic susceptibilities and electric conductivities of solid solutions based on lanthanum gallate containing chromium and strontium atoms in the ratio of 10 : 2 were studied. It was shown that no partial oxidation of chromium to Cr(IV) occurs when lanthanum gallate is doped with chromium and strontium simultaneously, whereas the ionic conductivity is associated with the appearance of vacancies stabilized by chromium atoms in the oxygen sublattice [ru
Czech Academy of Sciences Publication Activity Database
Bludský, Ota; Šilhan, Martin; Nachtigall, Petr; Bucko, T.; Benco, L.; Hafner, J.
2005-01-01
Roč. 109, - (2005), s. 9631-9638 ISSN 1089-5647 R&D Projects: GA MŠk(CZ) LC512 Grant - others:Austrian Science Funds(AT) Pl 7020 Institutional research plan: CEZ:AV0Z4055905 Keywords : Cu-exchanged zeolites * carbon-monoxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003
Energy Technology Data Exchange (ETDEWEB)
Lara, Manuel, E-mail: manuel.lara@uam.es [Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Jambrina, P. G.; Aoiz, F. J. [Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid (Spain); Launay, J.-M. [Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes I, F-35042 Rennes (France)
2015-11-28
Quantum reactive and elastic cross sections and rate coefficients have been calculated for D{sup +} + H{sub 2} (v = 0, j = 0) collisions in the energy range from 10{sup −8} K (deep ultracold regime), where only one partial wave is open, to 150 K (Langevin regime) where many of them contribute. In systems involving ions, the ∼R{sup −4} behavior extends the interaction up to extremely long distances, requiring a special treatment. To this purpose, we have used a modified version of the hyperspherical quantum reactive scattering method, which allows the propagations up to distances of 10{sup 5} a{sub 0} needed to converge the elastic cross sections. Interpolation procedures are also proposed which may reduce the cost of exact dynamical calculations at such low energies. Calculations have been carried out on the PES by Velilla et al. [J. Chem. Phys. 129, 084307 (2008)] which accurately reproduces the long range interactions. Results on its prequel, the PES by Aguado et al. [J. Chem. Phys. 112, 1240 (2000)], are also shown in order to emphasize the significance of the inclusion of the long range interactions. The calculated reaction rate coefficient changes less than one order of magnitude in a collision energy range of ten orders of magnitude, and it is found in very good agreement with the available experimental data in the region where they exist (10-100 K). State-to-state reaction probabilities are also provided which show that for each partial wave, the distribution of HD final states remains essentially constant below 1 K.
International Nuclear Information System (INIS)
Patzer, G.; Geier, F.
1988-01-01
The fuel assembly NY-205 has been irradiated during the first and the second core of KNK II with a total residence time of 832 equivalent full-power days. A maximum burnup of 175.000 MWd/tHM or 18.6 % was reached with a maximum steel damage of 66 dpa-NRT. For the cladding the materials 1.4970 and 1.4981 have been used in different metallurgical conditions, and for the Uranium/Plutonium mixed- oxide fuel the most important variants of the major fabrication parameters had been realized. The assembly will be brought to the Hot Cells of the KfK Karlsruhe for post-irradiation examination in February 1988, so that the knowledge of the fabrication data is of interest for the selection of fuel pins and for the evaluation of the examination results. Therefore this report compiles the fuel and fuel pin fabrication data from the INTERATOM data bank system BESEX and additionally, an overview of the irradiation history of the assembly is given [de
International Nuclear Information System (INIS)
Xiong, Kai; Liu, Xiaohui; Gu, Jianfeng
2014-01-01
The anisotropic mechanical behavior of γ-TiAl alloys has been observed and repeatedly reported, but the effect of crystallographic orientations on the crystal instability of γ-TiAl is still unclear. In this paper, the orientation-dependent crystal instability of γ-TiAl single crystals was investigated by performing nanoindentation on different crystal surfaces. All the nanoindentations are simulated using an interatomic potential finite-element model (IPFEM). Simulation results show that the load–displacement curves, critical indentation depth and critical load for crystal instability as well as indentation modulus, are all associated with surface orientations. The active slip systems and the location of crystal instability in five typical nanoindentations are analyzed in detail, i.e. the (0 0 1), (1 0 0), (1 0 1), (1 1 0) and (1 1 1) crystal surfaces. The predicted crystal instability sites and the activated slipping systems in the IPFEM simulations are in good agreement with the dislocation nucleation in molecular dynamics simulations. (paper)
Dzyaloshinskii-Moriya interaction and magnetic anisotropies in Uranium compounds
Sandratskii, L. M.
2018-05-01
We report on the first-principles study of complex noncollinear magnetic structures in Uranium compounds. We contrast two cases. The first is the periodic magnetic structure of U2Pd2In with exactly orthogonal atomic moments, the second is an incommensurate plane spiral structure of UPtGe where the angle between atomic moments of nearest neighbors is also close to 90°. We demonstrate that the hierarchy of magnetic interactions leading to the formation of the magnetic structure is opposite in the two cases. In U2Pd2In, the magnetic anisotropy plays the leading role, followed by the Dzyaloshinskii-Moriya interaction (DMI) interaction specifying the chirality of the structure. Here, the interatomic exchange interaction does not play important role. In UPtGe the hierarchy of the interactions is opposite. The leading interaction is the interatomic exchange interaction responsible for the formation of the incommensurate spiral structure followed by the DMI responsible for the selected chirality of the helix. The magnetic anisotropy is very weak that is a prerequisite for keeping the distortion of the helical structure weak.
Energy Technology Data Exchange (ETDEWEB)
Davydov, D.A. [State Scientific Center of Russian Federation, Moscow (Russian Federation); Konovalov, Y.V.; Gorokhov, V.A.; Levin, V.B.; Chekhlatov, G.M.; Khomutov, A.M.
1998-01-01
Under an effect of some factors characteristic for the ITER- operating condition a dense beryllium facing plasma can transit into various forms, changing its structural states. As a result of the bombardment of beryllium plasma facing components by ion fluxes, the production of a dust including the particles from a few micrometers to a few millimeters in size is possible. The specific features in the behaviour of various beryllium forms under emergency conditions are of an essential interest from the viewpoint of ITER safety. Some grades of powders of different average particles size (14-31 micron) have been produced in a given study, and their chemical interaction at high temperatures with air (500-1100degC), test duration effects simulating the emergency situation at ITER in the first approximation have been studied. The temperature dependence of beryllium powders (different particles size after disc abrased) interaction with air in the temperature range 500-1000degC at the exposure of 5 hours long for each temperature and kinetic dependence of interaction of these powders with air at 800degC for the exposure from half an hour to 7 hours long were studied. An analysis of granulometric weight fraction in the metallic and oxidized beryllium powders with different particles size has been done by the photosedimentational technique with the instrument `Analysette-20`. Construction of a mathematical model for the chemical interaction of beryllium powders with air at high temperatures have been carried out. (author)
Analytical W–He and H–He interatomic potentials for a W–H–He system
International Nuclear Information System (INIS)
Li Xiaochun; Shu Xiaolin; Liu Yinan; Yu Yi; Gao, F.; Lu Guanghong
2012-01-01
We have constructed W–He and H–He analytical bond-order potentials for a W–H–He system. In combination with the previously self-developed W–H potential [X.-C. Li, X. Shu, Y.-N. Liu, F. Gao, G.-H. Lu, J. Nucl. Mater. 408 (2011) 12] and the Hartree–Fock-dispersion pair potential (Aziz-potential) for He−He interactions, we demonstrate that such potentials behave well for reproducing various properties of the W–H–He system such as defect formation energies, structural properties, and diffusion barriers. Such potentials can be employed to model both the He behaviours and the H–He synergetic effects in the W–H–He system.
Super-ranging. A new ranging strategy in European badgers.
Directory of Open Access Journals (Sweden)
Aoibheann Gaughran
Full Text Available We monitored the ranging of a wild European badger (Meles meles population over 7 years using GPS tracking collars. Badger range sizes varied seasonally and reached their maximum in June, July and August. We analysed the summer ranging behaviour, using 83 home range estimates from 48 individuals over 6974 collar-nights. We found that while most adult badgers (males and females remained within their own traditional social group boundaries, several male badgers (on average 22% regularly ranged beyond these traditional boundaries. These adult males frequently ranged throughout two (or more social group's traditional territories and had extremely large home ranges. We therefore refer to them as super-rangers. While ranging across traditional boundaries has been recorded over short periods of time for extraterritorial mating and foraging forays, or for pre-dispersal exploration, the animals in this study maintained their super-ranges from 2 to 36 months. This study represents the first time such long-term extra-territorial ranging has been described for European badgers. Holding a super-range may confer an advantage in access to breeding females, but could also affect local interaction networks. In Ireland & the UK, badgers act as a wildlife reservoir for bovine tuberculosis (TB. Super-ranging may facilitate the spread of disease by increasing both direct interactions between conspecifics, particularly across social groups, and indirect interactions with cattle in their shared environment. Understanding super-ranging behaviour may both improve our understanding of tuberculosis epidemiology and inform future control strategies.
Calculations of long-range three-body interactions for He(n0λS )-He(n0λS )-He(n0'λL )
Yan, Pei-Gen; Tang, Li-Yan; Yan, Zong-Chao; Babb, James F.
2018-04-01
We theoretically investigate long-range interactions between an excited L -state He atom and two identical S -state He atoms for the cases of the three atoms all in spin-singlet states or all in spin-triplet states, denoted by He(n0λS )-He(n0λS )-He(n0'λL ), with n0 and n0' principal quantum numbers, λ =1 or 3 the spin multiplicity, and L the orbital angular momentum of a He atom. Using degenerate perturbation theory for the energies up to second-order, we evaluate the coefficients C3 of the first-order dipolar interactions and the coefficients C6 and C8 of the second-order additive and nonadditive interactions. Both the dipolar and dispersion interaction coefficients, for these three-body degenerate systems, show dependences on the geometrical configurations of the three atoms. The nonadditive interactions start to appear in second-order. To demonstrate the results and for applications, the obtained coefficients Cn are evaluated with highly accurate variationally generated nonrelativistic wave functions in Hylleraas coordinates for He(1 1S ) -He(1 1S ) -He(2 1S ) , He(1 1S ) -He(1 1S ) -He(2 1P ) , He(2 1S ) -He(2 1S ) -He(2 1P ) , and He(2 3S ) -He(2 3S ) -He(2 3P ) . The calculations are given for three like nuclei for the cases of hypothetical infinite mass He nuclei, and of real finite mass 4He or 3He nuclei. The special cases of the three atoms in equilateral triangle configurations are explored in detail, and for the cases in which one of the atoms is in a P state, we also present results for the atoms in an isosceles right triangle configuration or in an equally spaced collinear configuration. The results can be applied to construct potential energy surfaces for three helium atom systems.
International Nuclear Information System (INIS)
Ghrayeb, R.; Purushotham, M.; Hou, M.; Bauer, E.
1987-01-01
Low-energy ion scattering is used in combination with computer simulation to study the interaction potential between 600-eV potassium ions and atoms in metallic surfaces. A special algorithm is described which is used with the computer simulation code marlowes. This algorithm builds up impact areas on the simulated solid surface from which scattering cross sections can be estimated with an accuracy better than 1%. This can be done by calculating no more than a couple of thousand trajectories. The screening length in the Moliere approximation to the Thomas-Fermi potential is fitted in such a way that the ratio between the calculated cross sections for double and single scattering matches the scattering intensity ratio measured experimentally and associated with the same mechanisms. The consistency of the method is checked by repeating the procedure for different incidence conditions and also by predicting the intensities associated with other surface scattering mechanisms. The screening length estimates are found to be insensitive to thermal vibrations. The calculated ratios between scattering cross sections by different processes are suggested to be sensitive enough to the relative atomic positions in order to be useful in surface-structure characterization
Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola
2018-01-01
We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.
Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo
2018-01-01
Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Shinta, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp; Sawada, Yuki; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Onoe, Jun, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Kameyama, Tatsuya; Torimoto, Tsukasa [Department of Crystalline Materials Science, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Inaba, Yusuke; Takahashi, Hideharu; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-16 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)
2016-06-21
We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe{sup 2+} to Fe{sup 3+} but also the 3d-3d intra-transitions of Fe{sup 3+} ions. In addition, the spin crossover transition of Fe{sup 3+} predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe{sup 2+} ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni{sup 3+} ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe{sup 2+} ions and the charge-transfer transitions from Fe{sup 2+} to Ni{sup 3+} in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.
Atomic interaction of the MEAM type for the study of intermetallics in the Al–U alloy
Energy Technology Data Exchange (ETDEWEB)
Pascuet, M.I. [CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Fernández, J.R., E-mail: julrfern@cnea.gov.ar [CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); CAC-CNEA, Avda. Gral Paz 1499, 1650 Buenos Aires (Argentina); UNSAM, Avda. Gral Paz 1499, 1650 Buenos Aires (Argentina)
2015-12-15
Interaction for both pure Al and Al–U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al–U interaction fits various properties of the Al{sub 2}U, Al{sub 3}U and Al{sub 4}U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al{sub 3}U intermetallic in the Al/U interface in agreement with experimental evidence. - Highlights: • Potential parameters for Al and Al–U systems are obtained. • Intermetallics are characterized by calculating elastic and thermal properties. • Point defect diffusivities are calculated for the three intermetallics. • Growth of the Al{sub 3}U intermetallic is shown to occur in the Al/U interface as in the real alloy.
Atomic interaction of the MEAM type for the study of intermetallics in the Al–U alloy
International Nuclear Information System (INIS)
Pascuet, M.I.; Fernández, J.R.
2015-01-01
Interaction for both pure Al and Al–U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al–U interaction fits various properties of the Al_2U, Al_3U and Al_4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al_3U intermetallic in the Al/U interface in agreement with experimental evidence. - Highlights: • Potential parameters for Al and Al–U systems are obtained. • Intermetallics are characterized by calculating elastic and thermal properties. • Point defect diffusivities are calculated for the three intermetallics. • Growth of the Al_3U intermetallic is shown to occur in the Al/U interface as in the real alloy.
X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation
International Nuclear Information System (INIS)
Seres, Enikoe; Seres, Jozsef; Spielmann, Christian
2006-01-01
By irradiating He and Ne atoms with 3 mJ, 12 fs, near infrared laser pulses from a tabletop laser system, the authors generated spatially and temporally coherent x rays up to a photon energy of 3.5 keV. With this source it is possible to use high-harmonic radiation for x-ray absorption spectroscopy in the keV range. They were able to clearly resolve the L absorption edges of titanium and copper and the K edges of aluminum and silicon. From the fine structure of the x-ray absorption they estimated the interatomic distances
Energy Technology Data Exchange (ETDEWEB)
Macrae, K.I.; Riegert, R.J. (Maryland Univ., College Park (USA). Center for Theoretical Physics)
1984-10-01
We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession.
International Nuclear Information System (INIS)
Macrae, K.I.; Riegert, R.J.
1984-01-01
We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession. (orig.)
Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas
Energy Technology Data Exchange (ETDEWEB)
Bhaduri, R K [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Dijk, W van [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Srivastava, M K [Institute Instrumentation Center, IIT, Roorkee 247 667 (India)
2006-11-01
Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system.
Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas
International Nuclear Information System (INIS)
Bhaduri, R K; Dijk, W van; Srivastava, M K
2006-01-01
Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system
International Nuclear Information System (INIS)
Glushkov, A.V.
1994-01-01
Based on the method of effective potential involving the new polarization interaction potential calculated from polarization diagrams of the perturbation theory in the Thomas-Fermi approximation, the main parameters of the interatomic potentials (equilibrium distances, potential well depth) are evaluated for a system consisting of an alkali atom in the ground and excited states and of a mercury atom. The results of calculations of quasi-molecular terms for the A-Hg system, where A = Na, Cs, Fr, are reported, some of which are obtained for the first time. A comparison is made with available experimental and theoretical data. 29 refs., 2 figs., 1 tab
International Nuclear Information System (INIS)
Kleykamp, H.; Muehling, G.
2005-09-01
The fabrication of uranium-plutonium oxide fuel started in Forschungszentrum Karlsruhe and at ALKEM company to begin for the criticality experiments in the SNEAK reactor and subsequently for stationary fuel pin irradiations in the FR2, BR2, DFR, Rapsodie, Phenix and KNK II reactors. The production methods comprised first the mechanical blending of UO2 and PuO2 followed by direct pressing and sintering of the pellets, later the advanced methods such as optimized comilling and ammonium uranyl plutonyl coprecititation. The fabrication of pellets was described in the main, further the alternative fuel pin manufacturing processes by vibrational compaction and hot-impact densification were discussed. The first capsule and pin irradiations in the FR2 and BR2 reactors contributed to the assessment of the maximum operation parameters within the fuel pin development such as linear heat rating, cladding temperature and burnup. Subsequently, small-bundle and largebundle irradiations were made in fast reactors in cooperation with Interatom company in order to verify the specifications for the commercial fast reactor SNR 300. Milestones were the maximum burnup of 175 GWd/t metal, corresponding 18.6 % of the heavy atoms, obtained in one of the KNK II fuel pin assemblies, and the displacement rates in the cladding materials of 140 dpa NRT attained in the Phenix reactor. Higher implications gained later the stationary irradiations of defected mixed-oxide pins, the mild fuel pin transient operations, the local blockage experiments and the severe hypothetic accidents in the respective Siloe, HFR, BR2 and CABRI reactors. These experiments were made solely in international partnership. Further activities were the chemical analyses of solid residues and coprecipitations of irradiated mixed-oxide fuels in the head-end of the reprocessing. All these actions were coordinated in the then fast breeder project. Furthermore, irradiated fuels and fuel pins of other reactor types were
Energy Technology Data Exchange (ETDEWEB)
Qin, Xiao-Di [Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Environmental and Occupational Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080 (China); Qian, Zhengmin [Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104 (United States); Vaughn, Michael G. [School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104 (United States); Trevathan, Edwin [Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104 (United States); Emo, Brett [Department of Environmental and Occupational Health, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104 (United States); Paul, Gunther [Facuty of Health, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD 4059 (Australia); Ren, Wan-Hui [Department of Ambient Air Pollution Monitor, Shenyang Environmental Monitoring Center, Shenyang 110004 (China); Hao, Yuan-Tao [Department of Epidemiology and Biostatistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080 (China); Dong, Guang-Hui, E-mail: donggh5@mail.sysu.edu.cn [Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Environmental and Occupational Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080 (China)
2015-10-01
Background: Little information exists regarding the interaction effects of obesity with long-term air pollution exposure on cardiovascular diseases (CVDs) and stroke in areas of high pollution. The aim of the present study is to examine whether obesity modifies CVD-related associations among people living in an industrial province of northeast China. Methods: We studied 24,845 Chinese adults, aged 18 to 74 years old, from three Northeastern Chinese cities in 2009 utilizing a cross-sectional study design. Body weight and height were measured by trained observers. Overweight and obesity were defined as a body mass index (BMI) between 25–29.9 and ≥ 30 kg/m{sup 2}, respectively. Prevalence rate and related risk factors of cardiovascular and cerebrovascular diseases were investigated by a questionnaire. Three-year (2006–2008) average concentrations of particulate matter (PM{sub 10}), sulfur dioxide (SO{sub 2}), nitrogen dioxides (NO{sub 2}), and ozone (O{sub 3}) were measured by fixed monitoring stations. All the participants lived within 1 km of air monitoring sites. Two-level logistic regression (personal level and district-specific pollutant level) was used to examine these effects, controlling for covariates. Results: We observed significant interactions between exposure and obesity on CVDs and stroke. The associations between annual pollutant concentrations and CVDs and stroke were strongest in obese subjects (OR 1.15–1.47 for stroke, 1.33–1.59 for CVDs), less strong in overweight subjects (OR 1.22–1.35 for stroke, 1.07–1.13 for CVDs), and weakest in normal weight subjects (OR ranged from 0.98–1.01 for stroke, 0.93–1.15 for CVDs). When stratified by gender, these interactions were significant only in women. Conclusions: Study findings indicate that being overweight and obese may enhance the effects of air pollution on the prevalence of CVDs and stroke in Northeastern metropolitan China. Further studies will be needed to investigate the temporality
International Nuclear Information System (INIS)
Qin, Xiao-Di; Qian, Zhengmin; Vaughn, Michael G.; Trevathan, Edwin; Emo, Brett; Paul, Gunther; Ren, Wan-Hui; Hao, Yuan-Tao; Dong, Guang-Hui
2015-01-01
Background: Little information exists regarding the interaction effects of obesity with long-term air pollution exposure on cardiovascular diseases (CVDs) and stroke in areas of high pollution. The aim of the present study is to examine whether obesity modifies CVD-related associations among people living in an industrial province of northeast China. Methods: We studied 24,845 Chinese adults, aged 18 to 74 years old, from three Northeastern Chinese cities in 2009 utilizing a cross-sectional study design. Body weight and height were measured by trained observers. Overweight and obesity were defined as a body mass index (BMI) between 25–29.9 and ≥ 30 kg/m 2 , respectively. Prevalence rate and related risk factors of cardiovascular and cerebrovascular diseases were investigated by a questionnaire. Three-year (2006–2008) average concentrations of particulate matter (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxides (NO 2 ), and ozone (O 3 ) were measured by fixed monitoring stations. All the participants lived within 1 km of air monitoring sites. Two-level logistic regression (personal level and district-specific pollutant level) was used to examine these effects, controlling for covariates. Results: We observed significant interactions between exposure and obesity on CVDs and stroke. The associations between annual pollutant concentrations and CVDs and stroke were strongest in obese subjects (OR 1.15–1.47 for stroke, 1.33–1.59 for CVDs), less strong in overweight subjects (OR 1.22–1.35 for stroke, 1.07–1.13 for CVDs), and weakest in normal weight subjects (OR ranged from 0.98–1.01 for stroke, 0.93–1.15 for CVDs). When stratified by gender, these interactions were significant only in women. Conclusions: Study findings indicate that being overweight and obese may enhance the effects of air pollution on the prevalence of CVDs and stroke in Northeastern metropolitan China. Further studies will be needed to investigate the temporality of BMI relative to
International Nuclear Information System (INIS)
Kaplan, I.G.; Rodimova, O.B.; AN SSSR, Tomsk. Inst. Optiki Atmosfery)
1978-01-01
The present state of the intermolecular interaction theory is described. The general physical picture of the molecular interactions is given, the relative contributions of interactions of different types are analyzed (electrostatic, resonance, induction, dispersion, relativistic, magnetostatic and exchange), and the main ones in each range of separations are picked out. The methods of the potential curve calculations are considered, specific for definite separations between the interacting systems. The special attention is paid to the analysis of approximations used in different theoretical calculation methods
Medium-range dielectric order in systems with collectivized electrons
International Nuclear Information System (INIS)
Ismagilov, A.M.; Kopaev, Yu.V.
1993-01-01
The problem of formation of a medium-range dielectric order (on a scale much larger than the interatomic one) due to electron-electron correlations and to scattering by an impurity in a system near a phase transition into a long-range order state is solved by a microscopic approach. It is shown that for a weak impurity potential the effect of medium-range order formation is stronger than the effect of long-range order suppression related to scattering by an impurity. The influence of medium-range order on the one-particle excitation spectrum and on the density of states is considered. It is found that since the medium-range order in a system is due to correlations of electron and hole states open-quotes coupledclose quotes by a continuous set of inhomogeneity vectors (in contrast to the long-range order formed on a discrete set of such vectors), the density of states varies on an energy scale determined by the mean absolute value of these vectors. Therefore in a system undergoing phase transition into an inhomogeneous state with the modulus q 0 of inhomogeneity vectors the medium-range order forms in the density of states a pseudogap of scale length v F q 0 (v F is the Fermi velocity). This distinguishes such a system substantially from one, which tends to a phase transition into a homogeneous state (q 0 ≡0), where the medium-range order forms a pseudogap of scale length v F /ξ much-lt v F q 0 (ξ is the correlation length). The possible role of medium dielectric order effects in high-T c superconductors is discussed. 30 refs., 6 figs
Short-range fundamental forces
International Nuclear Information System (INIS)
Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.
2010-01-01
We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments
Petković, Milena; Nakarada, Đura; Etinski, Mihajlo
2018-05-25
Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Formation and transformation of a short range ordered iron carbonate precursor
DEFF Research Database (Denmark)
Dideriksen, Knud; Frandsen, Cathrine; Bovet, Nicolas
2015-01-01
(II) with varying pH produced broad peaks in X-ray diffraction and contained dominantly Fe and CO3 when probed with X-ray photoelectron spectroscopy. Reduced pair distribution function (PDF) analysis shows only peaks corresponding to interatomic distances below 15Å, reflecting a material with no long range...... structural order. Moreover, PDF peak positions differ from those for known iron carbonates and hydroxides. Mössbauer spectra also deviate from those expected for known iron carbonates and suggest a less crystalline structure. These data show that a previously unidentified iron carbonate precursor phase...... formed. Its coherent scattering domains determined from PDF analysis are slightly larger than for amorphous calcium carbonate, suggesting that the precursor could be nanocrystalline. Replica exchange molecular dynamics simulations of Fe-carbonate polynuclear complexes yield PDF peak positions that agree...
International Nuclear Information System (INIS)
Elliott, J.P.
1981-01-01
This chapter attempts to describe and compare some of the more important nucleon-nucleon interactions that have been used in nuclear structure calculations, and to relate them where possible to the real nucleon-nucleon interaction. Explains that different interactions have been used depending on whether one is fitting to total binding energies and densities with a Hartree Fock (HF) calculation or fitting to spectra and spectroscopic data in a shell model calculation. Examines both types of calculation after two preliminary sections concerned with notation and with the philosophy underlying the use of model spaces and effective interactions. Discusses Skyrme interactions, finite range interactions, small model space, large model space, and the Sussex potential matrix elements. Focuses on the more empirical approaches in which a simple form is chosen for the effective interaction in a given model space and the parameters are deduced from fitting many-body data
Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Photos Header Facebook Twitter YouTube Flickr RSS Tonopah Test Range Top TTR_TOC Tonopah is the testing range of choice for all national security missions. Tonopah Test Range (TTR) provides research and
Constitutive modelling in the range of inelastic deformations
International Nuclear Information System (INIS)
Bruhns, O.T.; White, P.S.; Chaboche, J.L.; Eikhoff, J.V.D.
1988-01-01
The main objective of this report is to describe the state of the art in constitutive modelling in the range of inelastic deformations, with particular consideration of the practical use of these models in the field of fast reactors, rather than to formulate new models. An outline is given of the constitutive equations for high-temperature reactor materials developed at the Oak Ridge National Laboratory. Two forms of equations are considered, a semi-classical treatment in terms of separate plasticity and creep and unified equations in which the classical plasticity does not explicitly occur. The fraction model originally proposed by Besseling is described. The basic concept of this model is that the material is thought to be subdivided into a number of parallel fractions, each with simple conventional properties. The more complicated behaviour of real material is thus approximated by choosing a number of parallel fractions with suitable models and model parameters. Three time-independent formulations of plasticity are considered and compared. Attention is focused on the kinematic hardening in the multi-yield surface theory of Mroz and the non-linear kinematic rule intensively used at Enset and Onera. Some connections are pointed out with the two-surface model of Dafalias and Popov, and the range of applicability of the different models is studied in detail. Finally, the constitutive equations of the Interatom model are presented. They are mainly based on the concept of overstresses, expressing the rate-dependence of the material by the magnitude of these overstresses. This model furthermore comprises a combination of general non-linear isotropic and kinematic hardening, with a smooth transition from isotropic to kinematic hardening as a function of process time
Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer
2011-12-15
Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.
Dryden Aeronautical Test Range
Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...
Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...
Logan, J. R.; Pulvermacher, M. K.
1991-01-01
Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.
DEFF Research Database (Denmark)
Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre
2008-01-01
size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...
DEFF Research Database (Denmark)
Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif
2008-01-01
Effective atomic numbers for photon energy absorption, Z(PEA,eff), and for photon interaction, Z(PI,eff), have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for biological molecules, such as fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic......, linolenic, arachidonic, and arachidic acids), nucleotide bases (adenine, guanine, cytosine, uracil, and thymine), and carbohydrates (glucose, sucrose, raffinose, and starch). The Z(PEA, eff) and Z(PI, eff) values have been found to change with energy and composition of the biological molecules. The energy...
Stickel, L.F.; King, John A.
1968-01-01
The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels
Autonomous Target Ranging Techniques
DEFF Research Database (Denmark)
Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz
2003-01-01
of this telescope, a fast determination of the range to and the motion of the detected targets are important. This is needed in order to prepare the future observation strategy for each target, i.e. when is the closest approach where imaging will be optimal. In order to quickly obtain such a determination two...... ranging strategies are presented. One is an improved laser ranger with an effective range with non-cooperative targets of at least 10,000 km, demonstrated in ground tests. The accuracy of the laser ranging will be approximately 1 m. The laser ranger may furthermore be used for trajectory determination...... of nano-gravity probes, which will perform direct mass measurements of selected targets. The other is triangulation from two spacecraft. For this method it is important to distinguish between detection and tracking range, which will be different for Bering since different instruments are used...
Soliton microcomb range measurement
Suh, Myoung-Gyun; Vahala, Kerry J.
2018-02-01
Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.
Prediction ranges. Annual review
Energy Technology Data Exchange (ETDEWEB)
Parker, J.C.; Tharp, W.H.; Spiro, P.S.; Keng, K.; Angastiniotis, M.; Hachey, L.T.
1988-01-01
Prediction ranges equip the planner with one more tool for improved assessment of the outcome of a course of action. One of their major uses is in financial evaluations, where corporate policy requires the performance of uncertainty analysis for large projects. This report gives an overview of the uses of prediction ranges, with examples; and risks and uncertainties in growth, inflation, and interest and exchange rates. Prediction ranges and standard deviations of 80% and 50% probability are given for various economic indicators in Ontario, Canada, and the USA, as well as for foreign exchange rates and Ontario Hydro interest rates. An explanatory note on probability is also included. 23 tabs.
Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...
Federal Laboratory Consortium — ATR controls fully-instrumented and integrated test ranges that provide full-service support for cradle-to-grave testing. Airspace and surface target areas are used...
Energy Technology Data Exchange (ETDEWEB)
Ostafew, C. [Azure Dynamics Corp., Toronto, ON (Canada)
2010-07-01
This presentation included a sensitivity analysis of electric vehicle components on overall efficiency. The presentation provided an overview of drive cycles and discussed the major contributors to range in terms of rolling resistance; aerodynamic drag; motor efficiency; and vehicle mass. Drive cycles that were presented included: New York City Cycle (NYCC); urban dynamometer drive cycle; and US06. A summary of the findings were presented for each of the major contributors. Rolling resistance was found to have a balanced effect on each drive cycle and proportional to range. In terms of aerodynamic drive, there was a large effect on US06 range. A large effect was also found on NYCC range in terms of motor efficiency and vehicle mass. figs.
International Nuclear Information System (INIS)
Jing Yuhang; Meng Qingyuan; Zhao Wei
2009-01-01
Molecular dynamics simulations are performed to investigate the interaction between 60 deg. shuffle dislocation and tetrainterstitial (I 4 ) cluster in silicon, using Stillinger-Weber (SW) potential to calculate the interatomic forces. Based on Parrinello-Rahman method, shear stress is exerted on the model to move the dislocation. Simulation results show that the I 4 cluster can bend the dislocation line and delay the dislocation movement. During the course of intersection the dislocation line sections relatively far away from the I 4 cluster accelerate first, and then decelerate. The critical shear stress unpinning the 60 deg. dislocation from the I 4 cluster decreases as the temperature increases in the models.
U.S. Department of Health & Human Services — Health Data Interactive (HDI) presents a broad range of important public health indicators through an interactive web-based application that provides access to...
DEFF Research Database (Denmark)
Jørgensen, Allan Grønlund; Larsen, Kasper Green
2011-01-01
and several natural special cases thereof. The rst special case is known as range median, which arises when k is xed to b(j i + 1)=2c. The second case, denoted prex selection, arises when i is xed to 0. Finally, we also consider the bounded rank prex selection problem and the xed rank range......Range selection is the problem of preprocessing an input array A of n unique integers, such that given a query (i; j; k), one can report the k'th smallest integer in the subarray A[i];A[i+1]; : : : ;A[j]. In this paper we consider static data structures in the word-RAM for range selection...... selection problem. In the former, data structures must support prex selection queries under the assumption that k for some value n given at construction time, while in the latter, data structures must support range selection queries where k is xed beforehand for all queries. We prove cell probe lower bounds...
International Nuclear Information System (INIS)
Dionissopoulou, S.; Mercouris, Th.; Nicolaides, C.A.
1996-01-01
We applied the state-specific expansion approach (SSEA) to the solution of the time-dependent Schroedinger equation describing the interaction of H with laser pulses of λ = 1064 nm and peak intensities I 0 = 2 x 10 13 , 6 x 10 13 , 1 x 10 14 and 2 x 10 14 W cm -2 , and computed ionization rates and high-order harmonic spectra. For the first three cases, our results are compared with those of Krause and co-workers (Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. A45 3998) who employed the grid method. Whereas for I 0 = 1 x 10 14 W cm -2 convergence difficulties were reported for the grid method, no such difficulties were found for the SSEA. Given this fact, we tackled the problem of computing the harmonic spectrum for I 0 = 2 x 10 14 W cm -2 . This spectrum shows a cut-off at the 65th harmonic (3.17 U p + I p ) and an extended plateau containing low-intensity harmonics up to the 181st. The ionization rate is 1.7 x 10 13 s -1 while at the end of the pulse 19.5% of the system is in the 1s ground state and 2.6% in the bound states up to n = 20, l 19. (author)
Freeman, M. P.; Farrugia, C. J.; Burlaga, L. F.; Hairston, M. R.; Greenspan, M. E.; Ruohoniemi, J. M.; Lepping, R. P.
1993-01-01
Observations are presented of the ionospheric convection in cross sections of the polar cap and auroral zone as part of the study of the interaction of the Earth's magnetosphere with the magnetic cloud of January 13-15, 1988. For strongly northward IMF, the convection in the Southern Hemisphere is characterized by a two-cell convection pattern comfined to high latitudes with sunward flow over the pole. The strength of the flows is comparable to that later seen under southward IMF. Superimposed on this convection pattern there are clear dawn-dusk asymmetries associated with a one-cell convection component whose sense depends on the polarity of the magnetic cloud's large east-west magnetic field component. When the cloud's magnetic field turns southward, the convection is characterized by a two-cell pattern extending to lower latitude with antisunward flow over the pole. There is no evident interhemispheric difference in the structure and strength of the convection. Superimposed dawn-dusk asymmetries in the flow patterns are observed which are only in part attributable to the east-west component of the magnetic field.
Petropoulos, G. P.; North, M. R.; Ireland, G.; Srivastava, P. K.; Rendall, D. V.
2015-10-01
This paper describes the validation of the SimSphere SVAT (Soil-Vegetation-Atmosphere Transfer) model conducted at a range of US and Australian ecosystem types. Specific focus was given to examining the models' ability in predicting shortwave incoming solar radiation (Rg), net radiation (Rnet), latent heat (LE), sensible heat (H), air temperature at 1.3 m (Tair 1.3 m) and air temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from eight sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. Overall, results showed a good agreement between the model predictions and the in situ measurements, particularly so for the Rg, Rnet, Tair 1.3 m and Tair 50 m parameters. The simulated Rg parameter exhibited a root mean square deviation (RMSD) within 25 % of the observed fluxes for 58 of the 72 selected days, whereas an RMSD within ~ 24 % of the observed fluxes was reported for the Rnet parameter for all days of study (RMSD = 58.69 W m-2). A systematic underestimation of Rg and Rnet (mean bias error (MBE) = -19.48 and -16.46 W m-2) was also found. Simulations for the Tair 1.3 m and Tair 50 m showed good agreement with the in situ observations, exhibiting RMSDs of 3.23 and 3.77 °C (within ~ 15 and ~ 18 % of the observed) for all days of analysis, respectively. Comparable, yet slightly less satisfactory simulation accuracies were exhibited for the H and LE parameters (RMSDs = 38.47 and 55.06 W m-2, ~ 34 and ~ 28 % of the observed). Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. The Nash-Sutcliffe efficiency index for all parameters ranges from 0.720 to 0.998, suggesting
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf; Greve, Mark
2009-01-01
is motivated by (and is a generalization of) a problem with applications in search engines: On a tree where leaves have associated rank values, report the highest ranked leaves in a given subtree. Finally, the problem studied generalizes the classic range minimum query (RMQ) problem on arrays....
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li
2014-01-01
We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li
2011-01-01
We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. – We give efficient reductions for each of the above problems...
Abrahamsen, M.; de Berg, M.T.; Buchin, K.A.; Mehr, M.; Mehrabi, A.D.
2017-01-01
In a geometric k -clustering problem the goal is to partition a set of points in R d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S : given a query box Q and an integer k>2 , compute
Extended Range Intercept Technology
1991-09-01
1988). Desert bighorn ewes with lambs show a stronger response than do groups of only rams, only ewes, or mixed groups of adults (Miller and Smith...1985). While all startle events may affect desert bighorns, those occurring during the lambing period (February-April) would represent the highest...35807 U.S. Army Pueblo Depot Activity SDSTE-PU-EE Pueblo, CO 81001-5000 U.S. Army White Sands Missile Range STEWS -EL-N White Sands, NM 88002-5076
Parle Milind; Chaturvedi Dev
2012-01-01
No wonder that oranges are one of the most popular fruits in the world. Orange (citrus sinensis) is well known for its nutritional and medicinal properties throughout the world. From times immemorial, whole Orange plant including ripe and unripe fruits, juice, orange peels, leaves and flowers are used as a traditional medicine. Citrus sinensis belongs to the family Rutaceae. The fruit is a fleshy, indehiscent, berry that ranges widely in size from 4 cm to 12 cm. The major medicinal proper...
Range Flight Safety Requirements
Loftin, Charles E.; Hudson, Sandra M.
2018-01-01
The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.
Energetic Analysis of Conjugated Hydrocarbons Using the Interacting Quantum Atoms Method.
Jara-Cortés, Jesús; Hernández-Trujillo, Jesús
2018-07-05
A number of aromatic, antiaromatic, and nonaromatic organic molecules was analyzed in terms of the contributions to the electronic energy defined in the quantum theory of atoms in molecules and the interacting quantum atoms method. Regularities were found in the exchange and electrostatic interatomic energies showing trends that are closely related to those of the delocalization indices defined in the theory. In particular, the CC interaction energies between bonded atoms allow to rationalize the energetic stabilization associated with the bond length alternation in conjugated polyenes. This approach also provides support to Clar's sextet rules devised for aromatic systems. In addition, the H⋯H bonding found in some of the aromatic molecules studied was of an attractive nature, according to the stabilizing exchange interaction between the bonded H atoms. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Van-der-Waals interaction of atoms in dipolar Rydberg states
Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.
2018-02-01
An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power
Quantity Estimation Of The Interactions
International Nuclear Information System (INIS)
Gorana, Agim; Malkaj, Partizan; Muda, Valbona
2007-01-01
In this paper we present some considerations about quantity estimations, regarding the range of interaction and the conservations laws in various types of interactions. Our estimations are done under classical and quantum point of view and have to do with the interaction's carriers, the radius, the influence range and the intensity of interactions
Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga
2005-01-01
Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.
Calculation of projected ranges
International Nuclear Information System (INIS)
Biersack, J.P.
1980-09-01
The concept of multiple scattering is reconsidered for obtaining the directional spreading of ion motion as a function of energy loss. From this the mean projection of each pathlength element of the ion trajectory is derived which - upon summation or integration - leads to the desired mean projected range. In special cases, the calculation can be carried out analytically, otherwise a simple general algorithm is derived which is suitable even for the smallest programmable calculators. Necessary input for the present treatment consists only of generally accessable stopping power and straggling formulas. The procedure does not rely on scattering cross sections, e.g. power potential or f(t 1 sup(/) 2 ) approximations. The present approach lends itself easily to include electronic straggling or to treat composed target materials, or even to account for the so-called time integral. (orig.)
International Nuclear Information System (INIS)
MacArthur, D.W.; McAtee, J.L.
1991-01-01
Historically, alpha-particle and alpha-contamination detectors have been limited by the very short range of alpha particles in air and by relatively poor sensitivity even if the particles are intercepted. Alpha detectors have had to be operated in a vacuum or in close proximity to the source if reasonable efficiency is desired. Alpha particles interact with the ambient air, producing ionization in the air at the rate of ∼30,000 ion pairs per mega-electron-volt of alpha energy. These charges can be transported over significant distances (several meters) in a moving current of air generated by a small fan. An ion chamber located in front of the fan measures the current carried by the moving ions. The long-range alpha detector (LRAD) offers several advantages over more traditional alpha detectors. First and foremost, it can operate efficiently even if the contamination is not easily accessible. Second, ions generated by contamination in crevices and other unmonitorable locations can be detected if the airflow penetrates those areas. Third, all of the contamination on a large surface will generate ions that can be detected in a single detector; hence, the detector's sensitivity to distributed sources is not limited by the size of the probe. Finally, a simple ion chamber can detect very small electric currents, making this technique potentially quite sensitive
Computational study of short-range interactions in bacteriochlorophyll aggregates
Czech Academy of Sciences Publication Activity Database
Alster, J.; Kabeláč, Martin; Tůma, R.; Pšenčík, J.; Burda, J. V.
2012-01-01
Roč. 998, SI (2012), s. 87-97 ISSN 2210-271X R&D Projects: GA AV ČR IAA400550808 Grant - others:GA ČR(CZ) GA206/09/0375; GA MŠk(CZ) ME10149 Program:GA Institutional support: RVO:61388963 Keywords : chlorosome * bacteriochlorophyll * molecular simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.139, year: 2012
Interatomic bonding in solids fundamentals, simulation, applications
Levitin , Valim
2013-01-01
The connection between the quantum behavior of the structure elements of a substance and the parameters that determine the macroscopic behavior of materials has a major influence on the properties exhibited by different solids. Although quantum engineering and theory should complement each other, this is not always the case. This book aims to demonstrate how the properties of materials can be derived and predicted from the features of their structural elements, generally electrons. In a sense, electronic structure forms the glue holding solids together and it is central to determining struct
Capacitance high temperature strain transducer by Interatom
International Nuclear Information System (INIS)
Fortmann, M.
1987-01-01
Special strain transducers are necessary to perform structure mechanical experiments on real components under creep-fatigue load. The new development of the transducer was able to solve the problem. In the meantime, different characteristics of the transducer have been examined and many successful applications have been effected. Some important aspects are given in this report. Up to now the longest operation period has been 24000 h on a pipe at 630 0 C service temperature in a conventional power station. (orig./DG) [de
Interatomic Coulombic decay in helium nanodroplets
DEFF Research Database (Denmark)
Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana
2017-01-01
, or in the droplet interior. ICD at the surface gives rise to energetic He+ ions as previously observed for free He dimers. ICD deeper inside leads to the ejection of slow He+ ions due to Coulomb explosion delayed by elastic collisions with neighboring He atoms, and to the formation of Hek+ complexes....
Energy Technology Data Exchange (ETDEWEB)
Allen, P. W.; Jessup, E. A.; White, R. E. [Air Resources Field Research Office, Las Vegas, Nevada (United States)
1967-07-01
A single air molecule can have a trajectory that can be described with a line, but most meteorologists use single lines to represent the trajectories of air parcels. A single line trajectory has the disadvantage that it is a categorical description of position. Like categorized forecasts it provides no qualification, and no provision for dispersion in case the parcel contains two or more molecules which may take vastly different paths. Diffusion technology has amply demonstrated that an initial aerosol cloud or volume of gas in the atmosphere not only grows larger, but sometimes divides into puffs, each having a different path or swath. Yet, the average meteorologist, faced with the problem of predicting the future motion of a cloud, usually falls back on the line trajectory approach with the explanation that he had no better tool for long range application. In his more rational moments, he may use some arbitrary device to spread his cloud with distance. One such technique has been to separate the trajectory into two or more trajectories, spaced about the endpoint of the original trajectory after a short period of travel, repeating this every so often like a chain reaction. This has the obvious disadvantage of involving a large amount of labor without much assurance of improved accuracy. Another approach is to draw a circle about the trajectory endpoint, to represent either diffusion or error. The problem then is to know what radius to give the circle and also whether to call it diffusion or error. Meteorologists at the Nevada Test Site (NTS) are asked frequently to provide advice which involves trajectory technology, such as prediction of an aerosol cloud path, reconstruction of the motion of a volume of air, indication of the dilution, and the possible trajectory prediction error over great distances. Therefore, we set out, nearly three years ago, to provide some statistical knowledge about the status of our trajectory technology. This report contains some of the
International Nuclear Information System (INIS)
Paglia, Gianluca; Rohl, Andrew L.; Gale, Julian D.; Buckley, Craig E.
2005-01-01
diffraction pattern. This study has provided further insight of the defect structure of γ-Al 2 O 3 which is necessary for the understanding and optimization of properties. This work also demonstrates the advantages of prior use of geometric analysis and interatomic potentials to assess a large number of structural possibilities, before striving to achieve high accuracy with DFT on promising cases
International Nuclear Information System (INIS)
Bjorken, J.D.
1978-01-01
Weak interactions are studied from a phenomenological point of view, by using a minimal number of theoretical hypotheses. Charged-current phenomenology, and then neutral-current phenomenology are discussed. This all is described in terms of a global SU(2) symmetry plus an electromagnetic correction. The intermediate-boson hypothesis is introduced and lower bounds on the range of the weak force are inferred. This phenomenology does not yet reconstruct all the predictions of the conventional SU(2)xU(1) gauge theory. To do that requires an additional assumption of restoration of SU(2) symmetry at asymptotic energies
Short-range order analysis and some physical properties of InxSe1-x glasses
International Nuclear Information System (INIS)
El-Kabany, N.
2012-01-01
Bulk In x Se 1-x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(k α ) radiation in the wave vector interval 0.28≤k≤6.5 A 0-1 .The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r 1 =0.263 and r 2 =0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In 2 Se 3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of In x Se 1-x chalcogenide glass has been studied. The glass transition activation energy (E g ) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating T g theoretically.
Characterizing short-range vs. long-range spatial correlations in dislocation distributions
Energy Technology Data Exchange (ETDEWEB)
Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)
2010-03-15
Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.
Characterizing short-range vs. long-range spatial correlations in dislocation distributions
International Nuclear Information System (INIS)
Chevy, Juliette; Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent; Bastie, Pierre; Duval, Paul
2010-01-01
Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.
Short-range correlations with pseudopotentials
International Nuclear Information System (INIS)
Osman, A.
1976-01-01
Short-range correlations in nuclei are considered on an unitary-model operator approach. Short-range pseudopotentials have been added to achieve healing in the correlated wave functions. With the introduction of the pseudopotentials, correlated basis wave functions are constructed. The matrix element for effective interaction in nuclei is developed. The required pseudopotentials have been calculated for the Hamda-Johnston, Yale and Reid potentials and for the nuclear nucleon-nucleon potential A calculated by us according to meson exchange between nucleons. (Osman, A.)
Rock glaciers, Zailiysiky Range, Kungei Ranges, Tienshan, Kazakhstan, Version 1
National Aeronautics and Space Administration — The Zailiyskiy Alatau is the northernmost parallel latitudinal ranges of the Northern Tien Shan. The highest point of this range is the Talgar peak (4973 m a.s.l.)....
Smits, M.A.; Schokker, D.J.
2011-01-01
The outcome of an infection is determined by numerous interactions between hosts and pathogens occurring at many different biological levels, ranging from molecule to population. To develop new control strategies for infectious diseases in livestock species, appropriate methodologies are needed
Report to Congress on Sustainable Ranges, 2009
2009-05-01
interactive distance-learning as well as resident learning. Marine Corps Marine Corps has taken steps to include standardizing manning and training towards...time-sensitive land-based targets using air-to- ground (A-G) weapons. The STW range also supports tactics and operations associated with manned and...procedures. New larger exclusion zone for Somerton Airport (uncontrolled). If traffic increase impacts to MCAS flight ops and cuts into MCAS airspace
Long range coherence in free electron lasers
Colson, W. B.
1984-01-01
The simple free electron laser (FEL) design uses a static, periodic, transverse magnetic field to undulate relativistic electrons traveling along its axis. This allows coupling to a co-propagating optical wave and results in bunching to produce coherent radiation. The advantages of the FEL are continuous tunability, operation at wavelengths ranging from centimeters to angstroms, and high efficiency resulting from the fact that the interaction region only contains light, relativistic electrons, and a magnetic field. Theoretical concepts and operational principles are discussed.
International Nuclear Information System (INIS)
Roberts, M.L.; Felsher, P.D.; Weisel, G.J.; Chen, Z.; Howell, C.R.; Tornow, W.; Walter, R.L.; Horen, D.J.
1991-01-01
High-accuracy measurements of A y (θ) data for elastic scattering and inelastic scattering to the first excited state for n+ 208 Pb have been performed at 6, 7, 8, 9, and 10 MeV. In addition, σ(θ) was measured at 8 MeV. These data provide an important subset for the growing database for the n+ 208 Pb system from bound-state energies to energies above 40 MeV, the limit of the range of interest here. This database has been interpreted via several approaches. First, a conventional Woods-Saxon spherical optical was used to obtain three potential representations for the energy range from 4 to 40 MeV: ''best fits'' at each energy, constant-geometry global fit with linear energy dependences for the potential strengths for the range 4.0--40 MeV, and an extension of the latter model to allow a linear energy dependence on the radii and diffuseness. A preference for a complex spin-orbit interaction was observed in all cases. Second, the dispersion relation was introduced into the spherical optical model to obtain a more ''realistic'' representation. In our approach, the strength and shape of the real potential was modified by calculating the dispersion-relation contributions that originate from the presence of the surface and volume imaginary terms. Two potentials were developed, one based only on the scattering data (from 4.0 to 40 MeV) and another based additionally on single-particle and single-hole information down to a binding energy of 17 MeV. In addition, the σ(θ) and A y (θ) measurements were compared to earlier conventional and dispersion-relation models. One of the latter of these included an l dependence in the absorptive surface term, and we applied this model in the 6- to 10-MeV region to describe all the σ(θ) and the new A y (θ)
Collision kernels in the eikonal approximation for Lennard-Jones interaction potential
International Nuclear Information System (INIS)
Zielinska, S.
1985-03-01
The velocity changing collisions are conveniently described by collisional kernels. These kernels depend on an interaction potential and there is a necessity for evaluating them for realistic interatomic potentials. Using the collision kernels, we are able to investigate the redistribution of atomic population's caused by the laser light and velocity changing collisions. In this paper we present the method of evaluating the collision kernels in the eikonal approximation. We discuss the influence of the potential parameters Rsub(o)sup(i), epsilonsub(o)sup(i) on kernel width for a given atomic state. It turns out that unlike the collision kernel for the hard sphere model of scattering the Lennard-Jones kernel is not so sensitive to changes of Rsub(o)sup(i) as the previous one. Contrary to the general tendency of approximating collisional kernels by the Gaussian curve, kernels for the Lennard-Jones potential do not exhibit such a behaviour. (author)
DEFF Research Database (Denmark)
Mogensen, Preben Holst
augmented reality, interactive building elements, and mobile devices to support new ways of working in a diversity of application domains with work situations ranging from individual work, through local collaboration, to distributed collaboration. The work situations may take place in offices/project rooms......Many application domains such as architecture, engineering, industrial design, city planning, environmental supervision, health care etc. share the properties of users working collaboratively with complex mixtures of physical and digital materials. Studies in such domains show that it is hard...... to maintain and integrate these heterogeneous materials in traditional desktop computing environments. Our thesis is that pervasive computing technologies can be developed to support a more natural user collaboration in a rich variety of application. This may be achieved by going beyond the traditional...
International Nuclear Information System (INIS)
Gori-Giorgi, Paola; Savin, Andreas
2006-01-01
The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals
Ranging Behaviour of Commercial Free-Range Laying Hens.
Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan
2016-04-26
In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be
Ranging Behaviour of Commercial Free-Range Laying Hens
Directory of Open Access Journals (Sweden)
Leonard Ikenna Chielo
2016-04-01
Full Text Available In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources. These were: apron (0–10 m from shed normally without cover or other enrichments; enriched belt (10–50 m from shed where resources such as manmade cover, saplings and dust baths were provided; and outer range (beyond 50 m from shed with no cover and mainly grass pasture. Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range
Improved Range Searching Lower Bounds
DEFF Research Database (Denmark)
Larsen, Kasper Green; Nguyen, Huy L.
2012-01-01
by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...... and Rosenberg's theorem), are also hard for dynamic range searching in the group model. This theorem allows us to reuse decades of research on range reporting lower bounds to immediately obtain a range of new group model lower bounds. Amongst others, this includes an improved lower bound for the fundamental...
Examining fluvial fish range loss with SDMs
Taylor, Andrew T.; Papeş, Monica; Long, James M.
2018-01-01
Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the range of the fluvial‐specialist shoal bass (Micropterus cataractae) continues to decrease, yet how perceived threats have contributed to range loss is largely unknown. We used species distribution models to determine which factors contributed most to shoal bass range loss. We estimated a potential distribution based on natural abiotic factors and a series of currently occupied distributions that incorporated variables characterizing land cover, non‐native species, and river fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). We allowed interspecific relationships between non‐native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of currently occupied distribution showed that range loss increased as fragmentation intensified. Response curves from models of currently occupied distribution indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non‐native congeners, wherein non‐natives may be favored at the highest fragmentation intensity. Response curves also suggested that >100 km of interconnected, free‐flowing stream fragments were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested that models had favorable predictive and discriminative abilities. Similar approaches that use readily available, diverse, geospatial data sets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats.
Dynamic range majority data structures
DEFF Research Database (Denmark)
Elmasry, Amr Ahmed Abd Elmoneim; He, Meng; Munro, J. Ian
2011-01-01
Given a set P of n coloured points on the real line, we study the problem of answering range α-majority (or "heavy hitter") queries on P. More specifically, for a query range Q, we want to return each colour that is assigned to more than an α-fraction of the points contained in Q. We present a ne...
Range Compressed Holographic Aperture Ladar
2017-06-01
entropy saturation behavior of the estimator is analytically described. Simultaneous range-compression and aperture synthesis is experimentally...4 2.1 Circular and Inverse -Circular HAL...2.3 Single Aperture, Multi-λ Imaging ...................................................................................... 14 2.4 Simultaneous Range
Precise Range Determination Using Laser Ranging Data of LAGEOS
Directory of Open Access Journals (Sweden)
Kwang-Ryul Kim
1993-12-01
Full Text Available Satellite laser ranging observation of LAGEOS ¥± has been performed using the SLR System at Sheshan Laser Ranging Station, Shanghai Observatory. And we obtained 1,838 observational points The observed range data is corrected by means of system delay correction using ground target observation, atmospheric refraction delay correction, offset correction, general relativistic correction and tide correction including solid tide, polar tide and ocean tide. As a result, the determined range delay mean value is 19.12m and the mean internal accuracy by means of polynomial fitting and least square method is ¡¾7cm. Corrected observational points are 1,340 and noise ratio to total observational points is 27.1%
Fundamentals of ion-solid interaction. A compact introduction
International Nuclear Information System (INIS)
Moeller, Wolfhard
2017-01-01
interatomic potentials as of 1972. An early lecture series by Sigmund gives an overview of transport theory for ion ranges, radiation damage and sputtering. More recent books by the same author review energy loss theory. Sputtering and related phenomena are extensively covered in a series of books edited by Behrisch et al. A textbook by Eckstein focuses on the computer simulation of particle irradiation phenomena. This issue is also particularly addressed in a book edited by Smith. A compact and comprehensive overview of most aspects of ion-solid interaction and their applications has been written by Nastasi et al. A recent collection of expert contributions edited by Sigmund addresses in particular modern aspects of ion-surface interaction, such as involving very high ion energies with applications in biomedicine, and the ion-induced formation and control of nanostructures. For new topics of recent interest, a volume edited by Bernas is also recommended. In view of this broad and well-collected information, it cannot be the purpose of the present report to re-formulate the general fundamentals of ion-solid interactions or any special aspects in detail. In the context of the present short introduction, it is rather intended to provide a compact display of the essential knowledge which is valuable for any user of fast ion methods and technologies, for a convenient application of the most suitable formalisms and/or computer assistance. The present report has been derived from a lecture given at Technische Universitat Dresden and is based on textbook knowledge, individual publications and own work by the author before the year 2012. It concentrates on collisional fundamentals, addressing only short-time phenomena during the slowing down of the incident ions and the generated fast atoms of the target material, whereas thermal and chemical effects acting on longer time scales, such as postirradiation diffusion and phase formation, are not included. Further, the manifold materials
Fundamentals of ion-solid interaction. A compact introduction
Energy Technology Data Exchange (ETDEWEB)
Moeller, Wolfhard [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Ion Beam Physics and Materials Research
2017-09-01
about interatomic potentials as of 1972. An early lecture series by Sigmund gives an overview of transport theory for ion ranges, radiation damage and sputtering. More recent books by the same author review energy loss theory. Sputtering and related phenomena are extensively covered in a series of books edited by Behrisch et al. A textbook by Eckstein focuses on the computer simulation of particle irradiation phenomena. This issue is also particularly addressed in a book edited by Smith. A compact and comprehensive overview of most aspects of ion-solid interaction and their applications has been written by Nastasi et al. A recent collection of expert contributions edited by Sigmund addresses in particular modern aspects of ion-surface interaction, such as involving very high ion energies with applications in biomedicine, and the ion-induced formation and control of nanostructures. For new topics of recent interest, a volume edited by Bernas is also recommended. In view of this broad and well-collected information, it cannot be the purpose of the present report to re-formulate the general fundamentals of ion-solid interactions or any special aspects in detail. In the context of the present short introduction, it is rather intended to provide a compact display of the essential knowledge which is valuable for any user of fast ion methods and technologies, for a convenient application of the most suitable formalisms and/or computer assistance. The present report has been derived from a lecture given at Technische Universitat Dresden and is based on textbook knowledge, individual publications and own work by the author before the year 2012. It concentrates on collisional fundamentals, addressing only short-time phenomena during the slowing down of the incident ions and the generated fast atoms of the target material, whereas thermal and chemical effects acting on longer time scales, such as postirradiation diffusion and phase formation, are not included. Further, the
Foraging optimally for home ranges
Mitchell, Michael S.; Powell, Roger A.
2012-01-01
Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.
Luciani , Annie
2007-01-01
International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...
On inertial range scaling laws
International Nuclear Information System (INIS)
Bowman, J.C.
1994-12-01
Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined within a unified framework. A new correction to Kolmogorov's k -5/3 scaling is derived for the energy inertial range. A related modification is found to Kraichnan's logarithmically corrected two-dimensional enstrophy cascade law that removes its unexpected divergence at the injection wavenumber. The significance of these corrections is illustrated with steady-state energy spectra from recent high-resolution closure computations. The results also underscore the asymptotic nature of inertial-range scaling laws. Implications for conventional numerical simulations are discussed