WorldWideScience

Sample records for range front fault

  1. Long Valley caldera and the UCERF depiction of Sierra Nevada range-front faults

    Science.gov (United States)

    Hill, David P.; Montgomery-Brown, Emily K.

    2015-01-01

    Long Valley caldera lies within a left-stepping offset in the north-northwest-striking Sierra Nevada range-front normal faults with the Hilton Creek fault to the south and Hartley Springs fault to the north. Both Uniform California Earthquake Rupture Forecast (UCERF) 2 and its update, UCERF3, depict slip on these major range-front normal faults as extending well into the caldera, with significant normal slip on overlapping, subparallel segments separated by ∼10  km. This depiction is countered by (1) geologic evidence that normal faulting within the caldera consists of a series of graben structures associated with postcaldera magmatism (intrusion and tumescence) and not systematic down-to-the-east displacements consistent with distributed range-front faulting and (2) the lack of kinematic evidence for an evolving, postcaldera relay ramp structure between overlapping strands of the two range-front normal faults. The modifications to the UCERF depiction described here reduce the predicted shaking intensity within the caldera, and they are in accord with the tectonic influence that underlapped offset range-front faults have on seismicity patterns within the caldera associated with ongoing volcanic unrest.

  2. Rock Geochemistry and Mineralogy from Fault Zones and Polymetallic Fault Veins of the Central Front Range, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Bove, Dana J.

    2010-01-01

    During the 2004 to 2008 field seasons, approximately 200 hand samples of fault and polymetallic vein-related rocks were collected for geochemical and mineralogical analyses. The samples were collected by the U.S. Geological Survey as part of the Evolution of Brittle Structures Task under the Central Colorado Assessment Project (CCAP) of the Mineral Resources Program (http://minerals.cr.usgs.gov/projects/colorado_assessment/index.html). The purpose of this work has been to characterize the relation between epithermal, polymetallic mineral deposits, paleostress, and the geological structures that hosted fluid flow and localization of the deposits. The data in this report will be used to document and better understand the processes that control epithermal mineral-deposit formation by attempting to relate the geochemistry of the primary structures that hosted hydrothermal fluid flow to their heat and fluid sources. This includes processes from the scale of the structures themselves to the far field scale, inclusive of the intrusive bodies that have been thought to be the sources for the hydrothermal fluid flow. The data presented in this report are part of a larger assessment effort on public lands. The larger study area spans the region of the southern Rocky Mountains in Colorado from the Wyoming to New Mexico borders and from the eastern boundary of the Front Range to approximately the longitude of Vail and Leadville, Colorado. Although the study area has had an extensive history of geological mapping, the mapping has resulted in a number of hypotheses that are still in their infancy of being tested. For example, the proximity of polymetallic veins to intrusive bodies has been thought to reflect a genetic relation between the two features; however, this idea has not been well tested with geochemical indicators. Recent knowledge regarding the coupled nature of stress, strain, fluid flow, and geochemistry warrant new investigations and approaches to test a variety of

  3. Geologic map of the greater Denver area, Front Range urban corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.

    1979-01-01

    This digital map shows the areal extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette from 1973 to 1977 and published in 1979 under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999) was digitized under the USGS Front Range Infrastructure Resources Project. In general, the mountainous areas in the western part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle comprises eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and a few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  4. Paleoseismic observations along the Langshan range-front fault, Hetao Basin, China: Tectonic and seismic implications

    Science.gov (United States)

    Dong, Shaopeng; Zhang, Peizhen; Zheng, Wenjun; Yu, Zhongyuan; Lei, Qiyun; Yang, Huili; Liu, Jinfeng; Gong, Huilin

    2018-04-01

    The Langshan range-front fault (LRF) is an active Holocene normal fault that borders Langshan Mountain and the Hetao Basin, northwest of the Ordos Plateau, China. In this study, paleoseismic trenching was undertaken at three sites (North-South): Dongshen village (TC1), Qingshan (TC2), and Wulanhashao (TC3). The paleoevents ED1, ED2, ED3 from TC1 were constrained to 6.0 ± 1.3, 9.6 ± 2.0, and 19.7 ± 4.2 ka, respectively. The single paleoevent (EQ1) from TC2 was constrained to about 6.7 ± 0.1 ka, and the paleoevents EW1, EW2, and EW3 from TC3 were constrained to 2.3 ± 0.4, 6.0 ± 1.0, and before 7.0 ka, respectively. With reference to previous research, the Holocene earthquake sequence of the LRF can be established as 2.30-2.43 (E1), 3.06-4.41 (E2), 6.71-6.80 (E3), 7.60-9.81 (E4), and 19.70 ± 4.20 (E5) ka BP. Events E1, E3, and E4 might have been caused by events with magnitudes of Mw 7.6-7.8 that ruptured the entire LRF. Event E2 might have been smaller magnitude, about M7.0, and ruptured only a portion of the fault. The vertical slip rate of the LRF at the Qingshan site is inferred as 0.9 or 1.4-1.6 mm/year in the last 6.8 ka. The slip rate at Wulanhashao is considered to have been close to, but not recurrence interval of 2500 years.

  5. Modes of uranium occurrences in Colorado Front Range

    International Nuclear Information System (INIS)

    Carpenter, R.H.; Gallagher, J.R.L.; Huber, G.C.

    1978-01-01

    This report is an analysis of the various types of uranium occurrences in the Colorado Front Range and the environments in which they developed. The early Proterozoic crust of this region is believed to have been a platform on which intermediate to felsic volcanic centers formed. Some units in the volcanic stratigraphy as well as in the sediments which were deposited in the shallow, intervening seaways are thought to have been uraniferous. Tectonism, occurring about 1.7 By ago, was accompanied and followed by three periods of Precambrian igneous activity. The volcanics and sediments were converted to a metavolcanic-metasedimentary sequence known as the Idaho Springs Formation. Some of the syngenetic uranium remaining in the volcanics and sediments after metamorphism may have been mobilized and incorporated within the Silver Plume plutons and the Pikes Peak batholith and concentrated in pegmatite dikes, pegmatites and fractured areas in the hood zones in the apophyses, or along the flanks of these intrusives. Some or most of the uranium found in these sites may have been generated deeper in the continental plate. Uplift of the Front Range in the Late Mississippian and arching during the Laramide with accompanying faulting set the stage for early and mid-Tertiary igneous activity and associated uranium mineralization. The source of the early and mid-Tertiary uranium mineralization is a point of current debate. Exploration for uranium in the igneous and metamorphic terrain of the Front Range is summarized, and models of each major uranium occurrence are described. Finally, the Front Range exploration potential for uranium is outlined

  6. Geophysical characterization of Range-Front Faults, Snake Valley, Nevada

    Science.gov (United States)

    Asch, Theodore H.; Sweetkind, Donald S.

    2010-01-01

    In September 2009, the U.S. Geological Survey, in cooperation with the National Park Service, collected audiomagnetotelluric (AMT) data along two profiles on the eastern flank of the Snake Range near Great Basin National Park to refine understanding of the subsurface geology. Line 1 was collected along Baker Creek, was approximately 6.7-km long, and recorded subsurface geologic conditions to approximately 800-m deep. Line 2, collected farther to the southeast in the vicinity of Kious Spring, was 2.8-km long, and imaged to depths of approximately 600 m. The two AMT lines are similar in their electrical response and are interpreted to show generally similar subsurface geologic conditions. The geophysical response seen on both lines may be described by three general domains of electrical response: (1) a shallow (mostly less than 100-200-m deep) domain of highly variable resistivity, (2) a deep domain characterized by generally high resistivity that gradually declines eastward to lower resistivity with a steeply dipping grain or fabric, and (3) an eastern domain in which the resistivity character changes abruptly at all depths from that in the western domain. The shallow, highly variable domain is interpreted to be the result of a heterogeneous assemblage of Miocene conglomerate and incorporated megabreccia blocks overlying a shallowly eastward-dipping southern Snake Range detachment fault. The deep domain of generally higher resistivity is interpreted as Paleozoic sedimentary rocks (Pole Canyon limestone and Prospect Mountain Quartzite) and Mesozoic and Cenozoic plutonic rocks occurring beneath the detachment surface. The range of resistivity values within this deep domain may result from fracturing adjacent to the detachment, the presence of Paleozoic rock units of variable resistivities that do not crop out in the vicinity of the lines, or both. The eastern geophysical domain is interpreted to be a section of Miocene strata at depth, overlain by Quaternary alluvial

  7. The Study of Fault Location for Front-End Electronics System

    International Nuclear Information System (INIS)

    Zhang Fan; Wang Dong; Huang Guangming; Zhou Daicui

    2009-01-01

    Since some devices on the latest developed 250 ALICE/PHOS Front-end electronics (FEE) system cards had been partly or completely damaged during lead-free soldering. To alleviate the influence on the performance of FEE system and to locate fault related FPGA accurately, we should find a method for locating fault of FEE system based on the deep study of FPGA configuration scheme. It emphasized on the problems such as JTAG configuration of multi-devices, PS configuration based on EPC series configuration devices and auto re-configuration of FPGA. The result of the massive FEE system cards testing and repairing show that that location method can accurately and quickly target the fault point related FPGA on FEE system cards. (authors)

  8. A spatial database of bedding attitudes to accompany Geologic map of the greater Denver area, Front Range Urban Corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  9. Vehicle Lateral Control Under Fault in Front and/or Rear Sensors: Final Report

    OpenAIRE

    Lu, Guang; Huang, Jihua; Tomizuka, Masayoshi

    2004-01-01

    This report presents the research results of Task Order 4204(TO4204), "Vehicle Lateral Control under Fault in Front and/or Rear Sensors". This project is a continuing effort of the Partners for Advanced Transit and Highways (PATH) on the research of passenger vehicles for Automated Highway Systems (AHS).

  10. Desirable forest structures for a restored Front Range

    Science.gov (United States)

    Yvette L. Dickinson; Rob Addington; Greg Aplet; Mike Babler; Mike Battaglia; Peter Brown; Tony Cheng; Casey Cooley; Dick Edwards; Jonas Feinstein; Paula Fornwalt; Hal Gibbs; Megan Matonis; Kristen Pelz; Claudia Regan

    2014-01-01

    As part of the federal Collaborative Forest Landscape Restoration Program administered by the US Forest Service, the Colorado Front Range Collaborative Forest Landscape Restoration Project (FR-CFLRP, a collaborative effort of the Front Range Roundtable1 and the US Forest Service) is required to define desired conditions for lower montane ponderosa pine (Pinus ponderosa...

  11. Beyond Colorado's Front Range - A new look at Laramide basin subsidence, sedimentation, and deformation in north-central Colorado

    Science.gov (United States)

    Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.

    2010-01-01

    This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment

  12. Vehicle Lateral Control under Fault in Front and/or Rear Sensors

    OpenAIRE

    Huang, Jihua; Lu, Guang; Tomizuka, Masayoshi

    2000-01-01

    This report documents the findings of research performed under TO4204, "Vehicle Lateral Control under Fault in Front and/or Rear Sensors" during the year 2000- 2001. The research goal of TO4204 is to develop vehicle lateral control strategies under faulty operation of the magnetometers. The main objectives of the project are: (1) to design controllers that use the output from only one set of magnetometers, and (2) to develop an autonomous lateral control scheme that uses no magnetometers. New...

  13. Study on seismic hazard assessment of large active fault systems. Evolution of fault systems and associated geomorphic structures: fault model test and field survey

    International Nuclear Information System (INIS)

    Ueta, Keichi; Inoue, Daiei; Miyakoshi, Katsuyoshi; Miyagawa, Kimio; Miura, Daisuke

    2003-01-01

    Sandbox experiments and field surveys were performed to investigate fault system evolution and fault-related deformation of ground surface, the Quaternary deposits and rocks. The summary of the results is shown below. 1) In the case of strike-slip faulting, the basic fault sequence runs from early en echelon faults and pressure ridges through linear trough. The fault systems associated with the 2000 western Tottori earthquake are shown as en echelon pattern that characterize the early stage of wrench tectonics, therefore no thoroughgoing surface faulting was found above the rupture as defined by the main shock and aftershocks. 2) Low-angle and high-angle reverse faults commonly migrate basinward with time, respectively. With increasing normal fault displacement in bedrock, normal fault develops within range after reverse fault has formed along range front. 3) Horizontal distance of surface rupture from the bedrock fault normalized by the height of the Quaternary deposits agrees well with those of model tests. 4) Upward-widening damage zone, where secondary fractures develop, forms in the handing wall side of high-angle reverse fault at the Kamioka mine. (author)

  14. The timing of fault motion in Death Valley from Illite Age Analysis of fault gouge

    Science.gov (United States)

    Lynch, E. A.; Haines, S. H.; Van der Pluijm, B.

    2014-12-01

    We constrained the timing of fluid circulation and associated fault motion in the Death Valley region of the US Basin and Range Province from Illite Age Analysis (IAA) of fault gouge at seven Low-Angle Normal Fault (LANF) exposures in the Black Mountains and Panamint Mountains, and in two nearby areas. 40Ar/39Ar ages of neoformed, illitic clay minerals in these fault zones range from 2.8 Ma to 18.6 Ma, preserving asynchronous fault motion across the region that corresponds to an evolving history of crustal block movements during Neogene extensional deformation. From north to south, along the western side of the Panamint Range, the Mosaic Canyon fault yields an authigenic illite age of 16.9±2.9 Ma, the Emigrant fault has ages of less than 10-12 Ma at Tucki Mountain and Wildrose Canyon, and an age of 3.6±0.17 Ma was obtained for the Panamint Front Range LANF at South Park Canyon. Across Death Valley, along the western side of the Black Mountains, Ar ages of clay minerals are 3.2±3.9 Ma, 12.2±0.13 Ma and 2.8±0.45 Ma for the Amargosa Detachment, the Gregory Peak Fault and the Mormon Point Turtleback detachment, respectively. Complementary analysis of the δH composition of neoformed clays shows a primarily meteoric source for the mineralizing fluids in these LANF zones. The ages fall into two geologic timespans, reflecting activity pulses in the Middle Miocene and in the Upper Pliocene. Activity on both of the range front LANFs does not appear to be localized on any single portion of these fault systems. Middle Miocene fault rock ages of neoformed clays were also obtained in the Ruby Mountains (10.5±1.2 Ma) to the north of the Death Valley region and to the south in the Whipple Mountains (14.3±0.19 Ma). The presence of similar, bracketed times of activity indicate that LANFs in the Death Valley region were tectonically linked, while isotopic signatures indicate that faulting pulses involved surface fluid penetration.

  15. Front Range Forest Health Partnership Phase 1 feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Volkin, P

    1998-09-01

    The Front Range Forest Health Partnership is an alliance of individuals, citizen groups, federal, state, private, and nonprofit organizations that formed to promote forest health restoration and reduce fire risks on Colorado's Front Range. The partnership promotes selective thinning to restore forest health and supports economically feasible end uses for wood waste materials. The Phase I study was initiated to determine the environmental and economic feasibility of using wood wastes from forested and urban areas for the production of fuel-grade ethanol.

  16. The Colorado Front Range Ecosystem Management Research Project: Accomplishments to date

    Science.gov (United States)

    Brian Kent; Wayne D. Shepperd; Deborah J. Shields

    2000-01-01

    This article briefly describes the goals and objectives for the Colorado Front Range Ecosystem Management Project (FREM). Research under this project has addressed both biophysical and human dimensions problems relating to ecosystem management in the Colorado Front Range. Results of completed work are described, and the status of the ongoing demonstration project at...

  17. Logs of Paleoseismic Excavations Across the Central Range Fault, Trinidad

    Science.gov (United States)

    Crosby, Christopher J.; Prentice, Carol S.; Weber, John; Ragona, Daniel

    2009-01-01

    This publication makes available maps and trench logs associated with studies of the Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. Our studies were conducted in 2001 and 2002. We mapped geomorphic features indicative of active faulting along the right-lateral, Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. We excavated trenches at two sites, the Samlalsingh and Tabaquite sites. At the Samlalsingh site, sediments deposited after the most recent fault movement bury the fault, and the exact location of the fault was unknown until we exposed it in our excavations. At this site, we excavated a total of eleven trenches, six of which exposed the fault. The trenches exposed fluvial sediments deposited over a strath terrace developed on Miocene bedrock units. We cleaned the walls of the excavations, gridded the walls with either 1 m X 1 m or 1 m X 0.5 m nail and string grid, and logged the walls in detail at a scale of 1:20. Additionally, we described the different sedimentary units in the field, incorporating these descriptions into our trench logs. We mapped the locations of the trenches using a tape and compass. Our field logs were scanned, and unit contacts were traced in Adobe Illustrator. The final drafted logs of all the trenches are presented here, along with photographs showing important relations among faults and Holocene sedimentary deposits. Logs of south walls were reversed in Illustrator, so that all logs are drafted with the view direction to the north. We collected samples of various materials exposed in the trench walls, including charcoal samples for radiocarbon dating from both faulted and unfaulted deposits. The locations of all samples collected are shown on the logs. The ages of seventeen of the charcoal samples submitted for radiocarbon analysis at the University of Arizona Accelerator Mass Spectrometry Laboratory in Tucson, Ariz., are given in Table 1. Samples found in

  18. Geology of uranium vein deposits (including Schwartzwalder Mine) in Proterozoic metamorphic rocks, Front Range, Colorado

    International Nuclear Information System (INIS)

    Voto, R.H. de; Paschis, J.A.

    1980-01-01

    The Schwartzwalder uranium deposit is one of many uranium vein occurrences in the Lower Proterozoic metamorphic rocks of the Front Range, Colorado. The principal veins of significant uranium content occur marginal to the Colorado Mineral Belt; are localized by structural dilation zones, vein junctions, fault deflections or branching; and occur dominantly within or at the contact of certain preferred metamorphic-stratigraphic units, particularly the siliceous, garnetiferous gneisses, where these rock units are broken by faults and fractures associated with the north-northwest-trending throughgoing faults. Uranium at the Schwartzwalder mine occurs primarily as open-space brecciated vein filling along the steeply west-dipping Illinois vein and numerous east-dipping subsidiary veins where they cut preferred metamorphic host rocks that are tightly folded. Uraninite occurs with molybdenite, adularia, jordisite, ankerite, pyrite, base-metal sulphides, and calcite in vein-filling paragenetic sequence. Minor wall-rock alteration is mainly hematite alteration and bleaching. Vertical relief on the developed ore deposit is 900 metres and still open-ended at depth. No vertical zonation of alteration, vein mineralogy, density of the subsidiary veins, or ore grade has been detected. The Schwartzwalder uranium deposit is of substantial tonnage (greater than 10,000 metric tons of U 3 O 8 ) and grade (averaging 0.57% U 3 O 8 ). Structural mapping shows that the Illinois vein-fault is a Proterozoic structure. Discordant Proterozoic (suggested) and Laramide dates have been obtained from Schwartzwalder ore. The data suggest, therefore, a Proterozoic ancestry of this heretofore presumed Laramide (Late Cretaceous-Early Tertiary) hydrothermal uranium deposit. The authors suggest a polygenetic model for the origin of the Schwartzwalder uranium deposit

  19. Fault Wear by Damage Evolution During Steady-State Slip

    Science.gov (United States)

    Lyakhovsky, Vladimir; Sagy, Amir; Boneh, Yuval; Reches, Ze'ev

    2014-11-01

    Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a "propagating damage front" and the evolution of a third-body layer.

  20. Holocene and latest Pleistocene oblique dextral faulting on the southern Inyo Mountains fault, Owens Lake basin, California

    Science.gov (United States)

    Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.

    2005-01-01

    The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.

  1. Prospecting for a Blind Geothermal System Utilizing Geologic and Geophysical Data, Seven Troughs Range, Northwestern Nevada

    Science.gov (United States)

    Forson, Corina

    To aid in the discovery and evaluation of blind resources, it is important to utilize geologic, geophysical, and geochemical techniques to find the required elements (e.g., heat source, fluid to transport the heat, and permeability in a reservoir) for geothermal energy production. Based on a regional low resistivity anomaly discovered through a reconnaissance magnetotelluric (MT) survey, detailed geologic mapping, structural analysis, and a 2 m temperature survey were conducted to delineate the most likely areas for blind geothermal activity in the Seven Troughs Range, Nevada. The Seven Troughs Range resides in the northwestern Basin and Range province 190 km northeast of Reno and 50 km northwest of Lovelock in western Nevada. There is no known geothermal system in the area. Mesozoic metasedimentary strata and intrusions dominate the northern and southern parts of the range but are nonconformably overlain by a thick sequence (~ 1.5 km) of Oligocene to Miocene volcanic and volcaniclastic rocks and Quaternary sediments in the central part of the range. The southern part of the range consists of a basement horst block bounded by two major range-front faults, with Holocene fault scarps marking the more prominent fault on the east side of the range. In contrast, several gently to moderately west-tilted fault blocks, with good exposures of the Tertiary volcanic strata and bounded by a series of steeply east-dipping normal faults, characterize the central part of the range. Kinematic analysis of faults in the range and regional relations indicate a west-northwest-trending extension direction. Accordingly, slip and dilation tendency analyses suggest that north-northeast striking faults are the most favorably oriented for reactivation and fluid flow under the current stress field. Two areas in the Seven Troughs Range have a favorable structural setting for generating permeability and channeling geothermal fluids to the near surface: 1) A major right step in the range-front

  2. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  3. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor

    International Nuclear Information System (INIS)

    Lee, Junwon; Shack, Roland V.; Descour, Michael R.

    2005-01-01

    We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics

  4. Neotectonics and structure of the Himalayan deformation front in the Kashmir Himalaya, India: Implication in defining what controls a blind thrust front in an active fold-thrust belt

    Science.gov (United States)

    Gavillot, Y. G.; Meigs, A.; Yule, J. D.; Rittenour, T. M.; Malik, M. O. A.

    2014-12-01

    Active tectonics of a deformation front constrains the kinematic evolution and structural interaction between the fold-thrust belt and most-recently accreted foreland basin. In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline (SMA), and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the SMA hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and three yield OSL ages of 53 ka, 33 ka, and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Muree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggest that rock uplift rates across the SMA range between 2.0-1.8 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rate across the SMA ranges between 4.4-3.8 mm/yr since ~53 ka. Of that rate, ~1 mm/yr is likely absorbed by minor faulting in the near field of the fold axis. Given that Himalaya-India convergence is ~18.8-11 mm/yr, internal faults north of the deformation front, such as the Riasi thrust absorbs more of the Himalayan shortening than does the HFT in Kashmir. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled by pre-existing basin architecture in Kashmir, in which the thick succession

  5. Stress diffusion along the san andreas fault at parkfield, california.

    Science.gov (United States)

    Malin, P E; Alvarez, M G

    1992-05-15

    Beginning in January 1990, the epicenters of microearthquakes associated with a 12-month increase in seismicity near Parkfield, California, moved northwest to southeast along the San Andreas fault. During this sequence of events, the locally variable rate of cumulative seismic moment increased. This increase implies a local increase in fault slip. These data suggest that a southeastwardly diffusing stress front propagated along the San Andreas fault at a speed of 30 to 50 kilometers per year. Evidently, this front did not load the Parkfield asperities fast enough to produce a moderate earthquake; however, a future front might do so.

  6. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    Science.gov (United States)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  7. Data Structures: Sequence Problems, Range Queries, and Fault Tolerance

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund

    performance and money in the design of todays high speed memory technologies. Hardware, power failures, and environmental conditions such as cosmic rays and alpha particles can all alter the memory in unpredictable ways. In applications where large memory capacities are needed at low cost, it makes sense......The focus of this dissertation is on algorithms, in particular data structures that give provably ecient solutions for sequence analysis problems, range queries, and fault tolerant computing. The work presented in this dissertation is divided into three parts. In Part I we consider algorithms...... to assume that the algorithms themselves are in charge for dealing with memory faults. We investigate searching, sorting and counting algorithms and data structures that provably returns sensible information in spite of memory corruptions....

  8. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    Science.gov (United States)

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  9. Field guide to old ponderosa pines in the Colorado Front Range

    Science.gov (United States)

    Laurie Stroh Huckaby; Merrill R. Kaufmann; Paula J. Fornwalt; Jason M. Stoker; Chuck Dennis

    2003-01-01

    We describe the distinguishing physical characteristics of old ponderosa pine trees in the Front Range of Colorado and the ecological processes that tend to preserve them. Photographs illustrate identifying features of old ponderosa pines and show how to differentiate them from mature and young trees. The publication includes a photographic gallery of old ponderosa...

  10. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    Science.gov (United States)

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010

  11. Geomorphic evidence for enhanced Pliocene-Quaternary faulting in the northwestern Basin and Range

    Science.gov (United States)

    Ellis, Magdalena A; Barnes Jason B,; Colgan, Joseph P.

    2014-01-01

    Mountains in the U.S. Basin and Range Province are similar in form, yet they have different histories of deformation and uplift. Unfortunately, chronicling fault slip with techniques like thermochronology and geodetics can still leave sizable, yet potentially important gaps at Pliocene–Quaternary (∼105–106 yr) time scales. Here, we combine existing geochronology with new geomorphic observations and approaches to investigate the Miocene to Quaternary slip history of active normal faults that are exhuming three footwall ranges in northwestern Nevada: the Pine Forest Range, the Jackson Mountains, and the Santa Rosa Range. We use the National Elevation Dataset (10 m) digital elevation model (DEM) to measure bedrock river profiles and hillslope gradients from these ranges. We observe a prominent suite of channel convexities (knickpoints) that segment the channels into upper reaches with low steepness (mean ksn = ∼182; θref = 0.51) and lower, fault-proximal reaches with high steepness (mean ksn = ∼361), with a concomitant increase in hillslope angles of ∼6°–9°. Geologic maps and field-based proxies for rock strength allow us to rule out static causes for the knickpoints and interpret them as transient features triggered by a drop in base level that created ∼20% of the existing relief (∼220 m of ∼1050 m total). We then constrain the timing of base-level change using paleochannel profile reconstructions, catchment-scale volumetric erosion fluxes, and a stream-power–based knickpoint celerity (migration) model. Low-temperature thermochronology data show that faulting began at ca. 11–12 Ma, yet our results estimate knickpoint initiation began in the last 5 Ma and possibly as recently as 0.1 Ma with reasonable migration rates of 0.5–2 mm/yr. We interpret the collective results to be evidence for enhanced Pliocene–Quaternary fault slip that may be related to tectonic reorganization in the American West, although we cannot rule out climate as a

  12. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Daniel [Univ. of Texas, Austin, TX (United States)

    2017-02-17

    Geothermal plays in extensional and transtensional tectonic environments have long been a major target in the exploration of geothermal resources and the Dixie Valley area has served as a classic natural laboratory for this type of geothermal plays. In recent years, the interactions between normal faults and strike-slip faults, acting either as strain relay zones have attracted significant interest in geothermal exploration as they commonly result in fault-controlled dilational corners with enhanced fracture permeability and thus have the potential to host blind geothermal prospects. Structural ambiguity, complications in fault linkage, etc. often make the selection for geothermal exploration drilling targets complicated and risky. Though simplistic, the three main ingredients of a viable utility-grade geothermal resource are heat, fluids, and permeability. Our new geological mapping and fault kinematic analysis derived a structural model suggest a two-stage structural evolution with (a) middle Miocene N -S trending normal faults (faults cutting across the modern range), - and tiling Olio-Miocene volcanic and sedimentary sequences (similar in style to East Range and S Stillwater Range). NE-trending range-front normal faulting initiated during the Pliocene and are both truncating N-S trending normal faults and reactivating some former normal faults in a right-lateral fashion. Thus the two main fundamental differences to previous structural models are (1) N-S trending faults are pre-existing middle Miocene normal faults and (2) these faults are reactivated in a right-later fashion (NOT left-lateral) and kinematically linked to the younger NE-trending range-bounding normal faults (Pliocene in age). More importantly, this study provides the first constraints on transient fluid flow through the novel application of apatite (U-Th)/He (AHe) and 4He/3He thermochronometry in the geothermally active Dixie Valley area in Nevada.

  13. Kinematic Analysis of Fault-Slip Data in the Central Range of Papua, Indonesia

    Directory of Open Access Journals (Sweden)

    Benyamin Sapiie

    2016-01-01

    Full Text Available DOI:10.17014/ijog.3.1.1-16Most of the Cenozoic tectonic evolution in New Guinea is a result of obliquely convergent motion that ledto an arc-continent collision between the Australian and Pacific Plates. The Gunung Bijih (Ertsberg Mining District(GBMD is located in the Central Range of Papua, in the western half of the island of New Guinea. This study presentsthe results of detailed structural mapping concentrated on analyzing fault-slip data along a 15-km traverse of theHeavy Equipment Access Trail (HEAT and the Grasberg mine access road, providing new information concerning thedeformation in the GBMD and the Cenozoic structural evolution of the Central Range. Structural analysis indicatesthat two distinct stages of deformation have occurred since ~12 Ma. The first stage generated a series of en-echelonNW-trending (π-fold axis = 300° folds and a few reverse faults. The second stage resulted in a significant left-lateralstrike-slip faulting sub-parallel to the regional strike of upturned bedding. Kinematic analysis reveals that the areasbetween the major strike-slip faults form structural domains that are remarkably uniform in character. The changein deformation styles from contractional to a strike-slip offset is explained as a result from a change in the relativeplate motion between the Pacific and Australian Plates at ~4 Ma. From ~4 - 2 Ma, transform motion along an ~ 270°trend caused a left-lateral strike-slip offset, and reactivated portions of pre-existing reverse faults. This action had aprofound effect on magma emplacement and hydrothermal activity.

  14. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range

    Science.gov (United States)

    Robert N. Addington; Gregory H. Aplet; Mike A. Battaglia; Jennifer S. Briggs; Peter M. Brown; Antony S. Cheng; Yvette Dickinson; Jonas A. Feinstein; Kristen A. Pelz; Claudia M. Regan; Jim Thinnes; Rick Truex; Paula J. Fornwalt; Benjamin Gannon; Chad W. Julian; Jeffrey L. Underhill; Brett Wolk

    2018-01-01

    Wildfires have become larger and more severe over the past several decades on Colorado’s Front Range, catalyzing greater investments in forest management intended to mitigate wildfire risks. The complex ecological, social, and political context of the Front Range, however, makes forest management challenging, especially where multiple management goals including forest...

  15. Neotectonics of the San Andreas Fault system, basin and range province juncture

    Science.gov (United States)

    Estes, J. E.; Crowell, J. C.

    1982-01-01

    The development, active processes, and tectonic interplay of the southern San Andreas fault system and the basin and range province were studied. The study consist of data acquisition and evaluation, technique development, and image interpretation and mapping. Potentially significant geologic findings are discussed.

  16. Radiometric age determination on some granitic rocks in the Hida Range, central Japan. Remarkable age difference across a fault

    International Nuclear Information System (INIS)

    Ito, Hisatoshi; Tanaka, Kazuhiro

    1999-01-01

    K-Ar and zircon fission-track dating was carried out on some granitic rocks in the Hida Range, central Japan. The samples analyzed were collected on both sides of one of the major faults in the Hida Range: the Kurobe-Takase fracture zone. Ages obtained west of the fault are ∼60 Ma, while those obtained to the east of the fault are less than ∼5 Ma. These results indicate a remarkable age difference across the fault. The Okukurobe granite, located west of the fault, cooled rapidly from ∼600degC to ∼240degC between 60-55 Ma, and the Kanazawa granodiorite, located east of the fault, cooled rapidly from ∼600degC to ∼240degC between 5-1 Ma. The Okukurobe granite has remained cooler than ∼240degC since ∼55 Ma. Thus, it was found that the granitic rocks across the fault have experienced a remarkable different cooling history. (author)

  17. Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA

    Science.gov (United States)

    Howle, James F.; Bawden, Gerald W.; Schweickert, Richard A.; Finkel, Robert C.; Hunter, Lewis E.; Rose, Ronn S.; von Twistern, Brent

    2012-01-01

    We integrated high-resolution bare-earth airborne light detection and ranging (LiDAR) imagery with field observations and modern geochronology to characterize the Tahoe-Sierra frontal fault zone, which forms the neotectonic boundary between the Sierra Nevada and the Basin and Range Province west of Lake Tahoe. The LiDAR imagery clearly delineates active normal faults that have displaced late Pleistocene glacial moraines and Holocene alluvium along 30 km of linear, right-stepping range front of the Tahoe-Sierra frontal fault zone. Herein, we illustrate and describe the tectonic geomorphology of faulted lateral moraines. We have developed new, three-dimensional modeling techniques that utilize the high-resolution LiDAR data to determine tectonic displacements of moraine crests and alluvium. The statistically robust displacement models combined with new ages of the displaced Tioga (20.8 ± 1.4 ka) and Tahoe (69.2 ± 4.8 ka; 73.2 ± 8.7 ka) moraines are used to estimate the minimum vertical separation rate at 17 sites along the Tahoe-Sierra frontal fault zone. Near the northern end of the study area, the minimum vertical separation rate is 1.5 ± 0.4 mm/yr, which represents a two- to threefold increase in estimates of seismic moment for the Lake Tahoe basin. From this study, we conclude that potential earthquake moment magnitudes (Mw) range from 6.3 ± 0.25 to 6.9 ± 0.25. A close spatial association of landslides and active faults suggests that landslides have been seismically triggered. Our study underscores that the Tahoe-Sierra frontal fault zone poses substantial seismic and landslide hazards.

  18. Paleoseismological data from a new trench across the El Camp Fault(Catalan Coastal Ranges, NE Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    K. Boydell

    2003-06-01

    Full Text Available The El Camp Fault (Catalan Coastal Ranges, NE Iberian Peninsula is a slow slipping normal fault whose seismic potential has only recently been recognised. New geomorphic and trench investigations were carried out during a training course across the El Camp Fault at the La Porquerola alluvial fan site. A new trench (trench 8 was dug close to a trench made previously at this site (trench 4. With the aid of two long topographic profiles across the fault scarp we obtained a vertical slip rate ranging between 0.05 and 0.08 mm/yr. At the trench site, two main faults, which can be correlated between trenches 8 and 4, make up the fault zone. Using trench analysis three paleoseismic events were identified, two between 34.000 and 125.000 years BP (events 3 and 2 and another event younger than 13 500 years BP (event 1, which can be correlated, respectively, with events X (50.000- 125.000 years BP, Y (35.000-50.000 years BP and Z (3000-25.000 years BP. The last seismic event at the La Porquerola alluvial fan site is described for the first time, but with some uncertainties.

  19. Rupture of the Pitáycachi Fault in the 1887 Mw 7.5 Sonora, Mexico earthquake (southern Basin-and-Range Province): Rupture kinematics and epicenter inferred from rupture branching patterns

    Science.gov (United States)

    Suter, Max

    2015-01-01

    During the 3 May 1887 Mw 7.5 Sonora earthquake (surface rupture end-to-end length: 101.8 km), an array of three north-south striking Basin-and-Range Province faults (from north to south Pitáycachi, Teras, and Otates) slipped sequentially along the western margin of the Sierra Madre Occidental Plateau. This detailed field survey of the 1887 earthquake rupture zone along the Pitáycachi fault includes mapping the rupture scarp and measurements of surface deformation. The surface rupture has an endpoint-to-endpoint length of ≥41.0 km, dips 70°W, and is characterized by normal left-lateral extension. The maximum surface offset is 487 cm and the mean offset 260 cm. The rupture trace shows a complex pattern of second-order segmentation. However, this segmentation is not expressed in the 1887 along-rupture surface offset profile, which indicates that the secondary segments are linked at depth into a single coherent fault surface. The Pitáycachi surface rupture shows a well-developed bipolar branching pattern suggesting that the rupture originated in its central part, where the polarity of the rupture bifurcations changes. Most likely the rupture first propagated bilaterally along the Pitáycachi fault. The southern rupture front likely jumped across a step over to the Teras fault and from there across a major relay zone to the Otates fault. Branching probably resulted from the lateral propagation of the rupture after breaching the seismogenic part of the crust, given that the much shorter ruptures of the Otates and Teras segments did not develop branches.

  20. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun Sub-Himalaya, India

    Science.gov (United States)

    Luirei, Khayingshing; Bhakuni, S. S.; Negi, Sanjay S.

    2017-02-01

    The shape of the frontal part of the Himalaya around the north-eastern corner of the Kumaun Sub-Himalaya, along the Kali River valley, is defined by folded hanging wall rocks of the Himalayan Frontal Thrust (HFT). Two parallel faults (Kalaunia and Tanakpur faults) trace along the axial zone of the folded HFT. Between these faults, the hinge zone of this transverse fold is relatively straight and along these faults, the beds abruptly change their attitudes and their widths are tectonically attenuated across two hinge lines of fold. The area is constituted of various surfaces of coalescing fans and terraces. Fans comprise predominantly of sandstone clasts laid down by the steep-gradient streams originating from the Siwalik range. The alluvial fans are characterised by compound and superimposed fans with high relief, which are generated by the tectonic activities associated with the thrusting along the HFT. The truncated fan along the HFT has formed a 100 m high-escarpment running E-W for ˜5 km. Quaternary terrace deposits suggest two phases of tectonic uplift in the basal part of the hanging wall block of the HFT dipping towards the north. The first phase is represented by tilting of the terrace sediments by ˜30 ∘ towards the NW; while the second phase is evident from deformed structures in the terrace deposit comprising mainly of reverse faults, fault propagation folds, convolute laminations, flower structures and back thrust faults. The second phase produced ˜1.0 m offset of stratification of the terrace along a thrust fault. Tectonic escarpments are recognised across the splay thrust near south of the HFT trace. The south facing hill slopes exhibit numerous landslides along active channels incising the hanging wall rocks of the HFT. The study area shows weak seismicity. The major Moradabad Fault crosses near the study area. This transverse fault may have suppressed the seismicity in the Tanakpur area, and the movement along the Moradabad and Kasganj

  1. Transverse tectonic structural elements across Himalayan mountain front, eastern Arunachal Himalaya, India: Implication of superposed landform development on analysis of neotectonics

    Science.gov (United States)

    Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro

    2017-04-01

    Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the

  2. CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications

    CERN Document Server

    Aznar, Francisco; Calvo Lopez, Belén

    2013-01-01

    This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints.  These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip.  The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length.  This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...

  3. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone

    Science.gov (United States)

    Rood, Dylan H.; Burbank, Douglas W.; Finkel, Robert C.

    2011-01-01

    Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 10 4-10 5 year timescales. At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year - 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/-0.1 mm year - 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/-0.3 mm year - 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year - 1 ). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection

  4. Changes of the fluid regime behaviour through time in fault zones (Catalan Coastal Ranges, NE Spain)

    Science.gov (United States)

    Cantarero, Irene; Lanari, Pierre; Alías, Gemma; Travé, Anna; Vidal, Olivier; Baqués, Vinyet

    2013-04-01

    Most Neogene normal faults of the central Catalan Coastal Ranges are the reactivation of previous normal Mesozoic faults and Paleogene thrust faults. These faults, such as the Vallès and the Hospital faults, are characterised by developing polyphasic fault-fluid systems. These systems have been inferred from regional to thin section scale observations combined with geochemical analyses. Moreover, the neoformation of chlorite and K-white mica in fault rocks has allowed us to constrain the P-T conditions during fault evolution using thermodynamic modelling. In these two faults, deformation is mainly localized in the basement granodiorite from the footwall. As a whole, four tectonic events have been distinguished. The first event corresponds to the Hercynian compression, which is characterised by mylonite bands in the Hospital fault. After this first compressional event and during the exhumation of the pluton, crystallization of M1 and M2 muscovite and microcline occurred in the Vallès fault as result of deuteric alteration, at temperatures between 330°C and 370°C. The second event, attributed to the Mesozoic rifting, is characterized by precipitation of M3 and M4 phengite together with chlorite and calcite C1 at temperatures between 190 and 310°C. These minerals precipitated from a fluid resulting from the mixing between marine waters and meteoric waters, which had been warmed at depth, upflowing along the faults. The third event, corresponding to the Paleogene compression, is characterised by low-temperature meteoric fluids, responsible of precipitation of calcite C2, in the Hospital fault. In the Vallès fault, the Paleogene compression generated a shortcut that produced a blue gouge and the uplift of the Mesozoic structures, avoiding the formation of new minerals within them. Finally, the fourth event, related to the Neogene extension, was responsible of syn-rift cements such as chlorite, calcite C4 and laumontite in the Vallès fault and calcite C3 in the

  5. Forest biomass and tree planting for fossil fuel offsets in the Colorado Front Range

    Science.gov (United States)

    Mike A. Battaglia; Kellen Nelson; Dan Kashian; Michael G. Ryan

    2010-01-01

    This study estimates the amount of carbon available for removal in fuel reduction and reforestation treatments in montane forests of the Colorado Front Range based on site productivity, pre-treatment basal area, and planting density. Thinning dense stands will yield the greatest offsets for biomass fuel. However, this will also yield the greatest carbon losses, if the...

  6. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  7. High stresses stored in fault zones: example of the Nojima fault (Japan)

    Science.gov (United States)

    Boullier, Anne-Marie; Robach, Odile; Ildefonse, Benoît; Barou, Fabrice; Mainprice, David; Ohtani, Tomoyuki; Fujimoto, Koichiro

    2018-04-01

    During the last decade pulverized rocks have been described on outcrops along large active faults and attributed to damage related to a propagating seismic rupture front. Questions remain concerning the maximal lateral distance from the fault plane and maximal depth for dynamic damage to be imprinted in rocks. In order to document these questions, a representative core sample of granodiorite located 51.3 m from the Nojima fault (Japan) that was drilled after the Hyogo-ken Nanbu (Kobe) earthquake is studied by using electron backscattered diffraction (EBSD) and high-resolution X-ray Laue microdiffraction. Although located outside of the Nojima damage fault zone and macroscopically undeformed, the sample shows pervasive microfractures and local fragmentation. These features are attributed to the first stage of seismic activity along the Nojima fault characterized by laumontite as the main sealing mineral. EBSD mapping was used in order to characterize the crystallographic orientation and deformation microstructures in the sample, and X-ray microdiffraction was used to measure elastic strain and residual stresses on each point of the mapped quartz grain. Both methods give consistent results on the crystallographic orientation and show small and short wavelength misorientations associated with laumontite-sealed microfractures and alignments of tiny fluid inclusions. Deformation microstructures in quartz are symptomatic of the semi-brittle faulting regime, in which low-temperature brittle plastic deformation and stress-driven dissolution-deposition processes occur conjointly. This deformation occurred at a 3.7-11.1 km depth interval as indicated by the laumontite stability domain. Residual stresses are calculated from deviatoric elastic strain tensor measured using X-ray Laue microdiffraction using the Hooke's law. The modal value of the von Mises stress distribution is at 100 MPa and the mean at 141 MPa. Such stress values are comparable to the peak strength of a

  8. High stresses stored in fault zones: example of the Nojima fault (Japan

    Directory of Open Access Journals (Sweden)

    A.-M. Boullier

    2018-04-01

    Full Text Available During the last decade pulverized rocks have been described on outcrops along large active faults and attributed to damage related to a propagating seismic rupture front. Questions remain concerning the maximal lateral distance from the fault plane and maximal depth for dynamic damage to be imprinted in rocks. In order to document these questions, a representative core sample of granodiorite located 51.3 m from the Nojima fault (Japan that was drilled after the Hyogo-ken Nanbu (Kobe earthquake is studied by using electron backscattered diffraction (EBSD and high-resolution X-ray Laue microdiffraction. Although located outside of the Nojima damage fault zone and macroscopically undeformed, the sample shows pervasive microfractures and local fragmentation. These features are attributed to the first stage of seismic activity along the Nojima fault characterized by laumontite as the main sealing mineral. EBSD mapping was used in order to characterize the crystallographic orientation and deformation microstructures in the sample, and X-ray microdiffraction was used to measure elastic strain and residual stresses on each point of the mapped quartz grain. Both methods give consistent results on the crystallographic orientation and show small and short wavelength misorientations associated with laumontite-sealed microfractures and alignments of tiny fluid inclusions. Deformation microstructures in quartz are symptomatic of the semi-brittle faulting regime, in which low-temperature brittle plastic deformation and stress-driven dissolution-deposition processes occur conjointly. This deformation occurred at a 3.7–11.1 km depth interval as indicated by the laumontite stability domain. Residual stresses are calculated from deviatoric elastic strain tensor measured using X-ray Laue microdiffraction using the Hooke's law. The modal value of the von Mises stress distribution is at 100 MPa and the mean at 141 MPa. Such stress values are comparable to

  9. The potential for retreating alpine glaciers to alter alpine ecosystems in the Colorado Front Range

    Science.gov (United States)

    Hall, E.; Baron, J.

    2013-12-01

    Glaciers are retreating at an unprecedented rate. In mid-latitude alpine ecosystems the presence of glaciers and rock glaciers govern rates and ecology of alpine and sub-alpine ecosystems. Changes in the thermal environment due to the loss of isothermal habitat and inputs from glacier melt chemistry are altering alpine ecosystems in unpredictable ways. In particular, glacier may be a source of nitrogen that is altering alpine ecosystem dynamics. Loch Vale Watershed (LVWS) located within Rocky Mountain National Park. LVWS contains a surface glacier (Andrew's glacier) and a rock glacier (Taylor's glacier) at the headwater of each of the two drainages within the watershed. We collected precipitation from a National Atmospheric Deposition Site and surface water from multiple alpine lakes and streams during a particularly high and low snow year in the Colorado Front Range. We also sampled stream and lake sediments at each site to analyze the associated microbial community. Concentrations of nitrate and ammonium, relative abundance of amoA (the gene responsible for a key step in the microbial nitrification pathway), and the dual isotope signal to nitrate all point to snow melt as a key deliverer of nitrogen to ecosystems along the Colorado Front Range. However, late summer surface water chemistry is isotopically similar to the chemistry of glacial ice. This suggests that retreating glacier may be an additional source of N to alpine ecosystems and have the potential to alter microbial community composition, biogeochemical rate processes, and ecosystem function. These dynamics are most likely not unique to the Colorado Front Range and should be globally distributed as glaciers continue to retreat in high altitude ecosystems around the world.

  10. Mantle hydration along outer-rise faults inferred from serpentinite permeability.

    Science.gov (United States)

    Hatakeyama, Kohei; Katayama, Ikuo; Hirauchi, Ken-Ichi; Michibayashi, Katsuyoshi

    2017-10-24

    Recent geophysical surveys indicate that hydration (serpentinization) of oceanic mantle is related to outer-rise faulting prior to subduction. The serpentinization of oceanic mantle influences the generation of intermediate-depth earthquakes and subduction water flux, thereby promoting arc volcanism. Since the chemical reactions that produce serpentinite are geologically rapid at low temperatures, the flux of water delivery to the reaction front appears to control the lateral extent of serpentinization. In this study, we measured the permeability of low-temperature serpentinites composed of lizardite and chrysotile, and calculated the lateral extent of serpentinization along an outer-rise fault based on Darcy's law. The experimental results indicate that serpentinization extends to a region several hundred meters wide in the direction normal to the outer-rise fault in the uppermost oceanic mantle. We calculated the global water flux carried by serpentinized oceanic mantle ranging from 1.7 × 10 11 to 2.4 × 10 12  kg/year, which is comparable or even higher than the water flux of hydrated oceanic crust.

  11. A wideband large dynamic range and high linearity RF front-end for U-band mobile DTV

    International Nuclear Information System (INIS)

    Liu Rongjiang; Liu Shengyou; Guo Guiliang; Cheng Xu; Yan Yuepeng

    2013-01-01

    A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced, and includes a noise-cancelling low-noise amplifier (LNA), an RF programmable gain amplifier (RFPGA) and a current communicating passive mixer. The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA. An RFPGA with five stages provides large dynamic range and fine gain resolution. A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor, and optimum linearity and symmetrical mixing is obtained at the same time. The RF front-end is implemented in a 0.25 μm CMOS process. Tests show that it achieves an IIP3 (third-order intercept point) of −17 dBm, a conversion gain of 39 dB, and a noise figure of 5.8 dB. The RFPGA achieves a dynamic range of −36.2 to 23.5 dB with a resolution of 0.32 dB. (semiconductor integrated circuits)

  12. Landslides in the northern Colorado Front Range caused by rainfall, September 11-13, 2013

    Science.gov (United States)

    Godt, Jonathan W.; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Jones, Eric S.; Harp, Edwin L.; Staley, Dennis M.; Barnhart, William D.

    2014-01-01

    During the second week of September 2013, nearly continuous rainfall caused widespread landslides and flooding in the northern Colorado Front Range. The combination of landslides and flooding was responsible for eight fatalities and caused extensive damage to buildings, highways, and infrastructure. Three fatalities were attributed to a fast moving type of landslide called debris flow. One fatality occurred in Jamestown, and two occurred in the community of Pinebrook Hills immediately west of the City of Boulder. All major canyon roads in the northern Front Range were periodically closed between September 11 and 13, 2013. Some canyon closures were caused by undercutting of roads by landslides and flooding, and some were caused by debris flows and rock slides that deposited material on road surfaces. Most of the canyon roads, with the exceptions of U.S. Highway 6 (Clear Creek Canyon), State Highway 46/Jefferson Co. Rd. 70 (Golden Gate Canyon), and Sunshine Canyon in Boulder County, remained closed at the end of September 2013. A review of historical records in Colorado indicates that this type of event, with widespread landslides and flooding occurring over a very large region, in such a short period of time, is rare.

  13. Rabbit System. Low cost, high reliability front end electronics featuring 16 bit dynamic range

    International Nuclear Information System (INIS)

    Drake, G.; Droege, T.F.; Nelson, C.A. Jr.; Turner, K.J.; Ohska, T.K.

    1985-10-01

    A new crate-based front end system has been built which features low cost, compact packaging, command capability, 16 bit dynamic range digitization, and a high degree of redundancy. The crate can contain a variety of instrumentation modules, and is designed to be situated close to the detector. The system is suitable for readout of a large number of channels via parallel multiprocessor data acquisition

  14. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  15. Wood wastes and residues generated along the Colorado Front Range as a potential fuel source

    Science.gov (United States)

    Julie E. Ward; Kurt H. Mackes; Dennis L. Lynch

    2004-01-01

    Throughout the United States there is interest in utilizing renewable fuel sources as an alternative to coal and nat-ural gas. This project was initiated to determine the availability of wood wastes and residues for use as fuel in ce-ment kilns and power plants located along the Colorado Front Range. Research was conducted through literature searches, phone surveys,...

  16. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite

    Science.gov (United States)

    Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.

    2014-01-01

    While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.

  17. Linking bedrock exhumation, fluvial terraces, and geomorphic indices to constrain deformation rates at multiple timescales across the Himalayan deformation front in the Kashmir Himalaya, northwest India.

    Science.gov (United States)

    Gavillot, Y. G.

    2017-12-01

    In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline, and displays no major emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the Suruin-Mastargh anticline hampers quantifying the earthquake potential for the deformation front. Our study combines bedrock exhumation, folded fluvial terraces, long-river profiles and river incision (specific stream power) analyses across the deformation front. At the core of the frontal fold, Apatite (U-Th)/He (AHe) cooling ages of detrital grains from the Siwalik foreland sediments indicate significant resetting. AHe data and thermal modeling reveal rapid cooling and exhumation initiated ca. 4 Ma for the deformation front, at least 3 Ma earlier than is indicated from previously available data. Exhumation rates over the last 1 m.y. and 4 m.y. range from 0.5 - 2.4 mm/yr, and 0.5 - 1 mm/yr, respectively. Four fluvial terraces yield multiple OSL and depth profiles Be10 TCN ages between 53 ka and 0.4 ka. Vector fold restoration of long terrace profiles, calculated specific stream power values, bedrock dip data, and stratigraphic thickness indicate a deformation pattern controlled by a duplex structure emplaced at depth along the basal décollement, folding the overlying roof thrust and foreland strata into a detachment-like fold. Dated terraces across the frontal fold yield rock uplift and shortening rates that range between 1.8-2.5 mm/yr, and 3.8-5.4 mm/yr, respectively, since 53 ka. Similarly, a balanced cross section yields a long-term shortening rate of 5mm mm/yr since 4 Ma. Geodetic data indicate that an 11-12 mm/yr arc-normal shortening rate characterizes the interseismic strain accumulation across the plate boundary due to India-Tibet convergence. These data combined with rates of other active internal faults in the Kashmir Himalaya indicate that shortening occurs roughly at an equal rate between folding at

  18. Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations

    Science.gov (United States)

    Bizzarri, A.; Dunham, Eric M.; Spudich, P.

    2010-01-01

    We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation

  19. Front Range Infrastructure Resources Project: water-resources activities

    Science.gov (United States)

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  20. Meteoric water in normal fault systems: Oxygen and hydrogen isotopic measurements on authigenic phases in brittle fault rocks

    Science.gov (United States)

    Haines, S. H.; Anderson, R.; Mulch, A.; Solum, J. G.; Valley, J. W.; van der Pluijm, B. A.

    2009-12-01

    The nature of fluid circulation systems in normal fault systems is fundamental to understanding the nature of fluid movement within the upper crust, and has important implications for the on-going controversy about the strength of faults. Authigenic phases in clay gouges and fault breccias record the isotopic signature of the fluids they formed in equilibrium with, and can be used to understand the ‘plumbing system’ of brittle fault environments. We obtained paired oxygen and hydrogen isotopic measurements on authigenic illite and/or smectite in clay gouge from normal faults in two geologic environments, 1.) low-angle normal faults (Ruby Mountains detachment, NV; Badwater Turtleback, CA; Panamint range-front detachment; CA; Amargosa detachment; CA; Waterman Hills detachment, CA), and 2.) An intracratonic high-angle normal fault (Moab Fault, UT). All authigenic phases in these clay gouges are moderately light isotopically with respect to oxygen (illite δ18O -2.0 - + 11.5 ‰ SMOW, smectite δ18O +3.6 and 17.9 ‰) and very light isotopically with respect to hydrogen (illite δD -148 to -98 ‰ SMOW, smectite δD -147 to -92 ‰). Fluid compositions calculated from the authigenic clays at temperatures of 50 - 130 ○C (as indicated by clay mineralogy) indicate that both illite and smectite in normal fault clay gouge formed in the presence of near-pristine to moderately-evolved meteoric fluids and that igneous or metamorphic fluids are not involved in clay gouge formation in these normal fault settings. We also obtained paired oxygen and hydrogen isotopic measurements on chlorites derived from footwall chlorite breccias in 4 low-angle normal fault detachment systems (Badwater and Mormon Point Turtlebacks, CA, the Chemehuevi detachment, CA, and the Buckskin-Rawhide detachment, AZ). All chlorites are isotopically light to moderately light with respect to oxygen (δ18O +0.29 to +8.1 ‰ SMOW) and very light with respect to hydrogen (δD -97 to -113 ‰) and indicate

  1. Determining on-fault magnitude distributions for a connected, multi-fault system

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2017-12-01

    A new method is developed to determine on-fault magnitude distributions within a complex and connected multi-fault system. A binary integer programming (BIP) method is used to distribute earthquakes from a 10 kyr synthetic regional catalog, with a minimum magnitude threshold of 6.0 and Gutenberg-Richter (G-R) parameters (a- and b-values) estimated from historical data. Each earthquake in the synthetic catalog can occur on any fault and at any location. In the multi-fault system, earthquake ruptures are allowed to branch or jump from one fault to another. The objective is to minimize the slip-rate misfit relative to target slip rates for each of the faults in the system. Maximum and minimum slip-rate estimates around the target slip rate are used as explicit constraints. An implicit constraint is that an earthquake can only be located on a fault (or series of connected faults) if it is long enough to contain that earthquake. The method is demonstrated in the San Francisco Bay area, using UCERF3 faults and slip-rates. We also invoke the same assumptions regarding background seismicity, coupling, and fault connectivity as in UCERF3. Using the preferred regional G-R a-value, which may be suppressed by the 1906 earthquake, the BIP problem is deemed infeasible when faults are not connected. Using connected faults, however, a solution is found in which there is a surprising diversity of magnitude distributions among faults. In particular, the optimal magnitude distribution for earthquakes that participate along the Peninsula section of the San Andreas fault indicates a deficit of magnitudes in the M6.0- 7.0 range. For the Rodgers Creek-Hayward fault combination, there is a deficit in the M6.0- 6.6 range. Rather than solving this as an optimization problem, we can set the objective function to zero and solve this as a constraint problem. Among the solutions to the constraint problem is one that admits many more earthquakes in the deficit magnitude ranges for both faults

  2. Cervical range of motion, cervical and shoulder strength in senior versus age-grade Rugby Union International front-row forwards.

    Science.gov (United States)

    Davies, Mark; Moore, Isabel S; Moran, Patrick; Mathema, Prabhat; Ranson, Craig A

    2016-05-01

    To provide normative values for cervical range of motion (CROM), isometric cervical and shoulder strength for; International Senior professional, and International Age-grade Rugby Union front-row forwards. Cross-sectional population study. All international level front-row players within a Rugby Union Tier 1 Nation. Nineteen Senior and 21 Age-grade front-row forwards underwent CROM, cervical and shoulder strength testing. CROM was measured using the CROM device and the Gatherer System was used to measure multi-directional isometric cervical and shoulder strength. The Age-grade players had significantly lower; cervical strength (26-57% deficits), cervical flexion to extension strength ratios (0.5 vs. 0.6), and shoulder strength (2-36% deficits) than the Senior players. However, there were no differences between front-row positions within each age group. Additionally, there were no differences between age groups or front-row positions in the CROM measurements. Senior Rugby Union front-row forwards have greater cervical and shoulder strength than Age-grade players, with the biggest differences being in cervical strength, highlighting the need for age specific normative values. Importantly, Age-grade players should be evaluated to ensure they have developed sufficient cervical strength prior to entering professional level Rugby Union. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Paleomagnetic and structural evidence for oblique slip in a fault-related fold, Grayback monocline, Colorado

    Science.gov (United States)

    Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.

    2008-01-01

    Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.

  4. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy.

    Science.gov (United States)

    Brooks, Benjamin A; Minson, Sarah E; Glennie, Craig L; Nevitt, Johanna M; Dawson, Tim; Rubin, Ron; Ericksen, Todd L; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-07-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth's surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  5. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy

    Science.gov (United States)

    Brooks, Benjamin A.; Minson, Sarah E.; Glennie, Craig L.; Nevitt, Johanna M.; Dawson, Tim; Rubin, Ron; Ericksen, Todd L.; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-01-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests. PMID:28782026

  6. Estimation of vertical slip rate in an active fault-propagation fold from the analysis of a progressive unconformity at the NE segment of the Carrascoy Fault (SE Iberia)

    Science.gov (United States)

    Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Garcia-Mayordomo, Julian

    2017-04-01

    Many studies have dealt with the calculation of fault-propagation fold growth rates considering a variety of kinematics models, from limb rotation to hinge migration models. In most cases, the different geometrical and numeric growth models are based on horizontal pre-growth strata architecture and a constant known slip rate. Here, we present the estimation of the vertical slip rate of the NE Segment of the Carrascoy Fault (SE Iberian Peninsula) from the geometrical modeling of a progressive unconformity developed on alluvial fan sediments with a high depositional slope. The NE Segment of the Carrascoy Fault is a left-lateral strike slip fault with reverse component belonging to the Eastern Betic Shear Zone, a major structure that accommodates most of the convergence between Iberian and Nubian tectonics plates in Southern Spain. The proximity of this major fault to the city of Murcia encourages the importance of carrying out paleosismological studies in order to determinate the Quaternary slip rate of the fault, a key geological parameter for seismic hazard calculations. This segment is formed by a narrow fault zone that articulates abruptly the northern edge of the Carrascoy Range with the Guadalentin Depression through high slope, short alluvial fans Upper-Middle Pleistocene in age. An outcrop in a quarry at the foot of this front reveals a progressive unconformity developed on these alluvial fan deposits, showing the important reverse component of the fault. The architecture of this unconformity is marked by well-developed calcretes on the top some of the alluvial deposits. We have determined the age of several of these calcretes by the Uranium-series disequilibrium dating method. The results obtained are consistent with recent published studies on the SW segment of the Carrascoy Fault that together with offset canals observed at a few locations suggest a net slip rate close to 1 m/ka.

  7. Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces

    Science.gov (United States)

    Li, Shilong; Xu, Jiawen; Tang, J.

    2018-01-01

    This letter reports designs of adaptive metasurfaces capable of modulating incoming wave fronts of elastic waves through electromechanical-tuning of their cells. The proposed elastic metasurfaces are composed of arrayed piezoelectric units with individually connected negative capacitance elements that are online tunable. By adjusting the negative capacitances properly, accurately formed, discontinuous phase profiles along the elastic metasurfaces can be achieved. Subsequently, anomalous refraction with various angles can be realized on the transmitted lowest asymmetric mode Lamb wave. Moreover, designs to facilitate planar focal lenses and source illusion devices can also be accomplished. The proposed flexible and versatile strategy to manipulate elastic waves has potential applications ranging from structural fault detection to vibration/noise control.

  8. Implications of fault constitutive properties for earthquake prediction.

    Science.gov (United States)

    Dieterich, J H; Kilgore, B

    1996-04-30

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  9. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    Science.gov (United States)

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  10. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    International Nuclear Information System (INIS)

    Reheis, M.C.

    1991-01-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs

  11. Complex faulting associated with the 22 December 2003 Mw 6.5 San Simeon California, earthquake, aftershocks and postseismic surface deformation

    Science.gov (United States)

    McLaren, Marcia K.; Hardebeck, Jeanne L.; Van Der Elst, Nicholas; Unruh, Jeffrey R.; Bawden, Gerald W.; Blair, James Luke

    2008-01-01

    We use data from two seismic networks and satellite interferometric synthetic aperture radar (InSAR) imagery to characterize the 22 December 2003 Mw 6.5 San Simeon earthquake sequence. Absolute locations for the mainshock and nearly 10,000 aftershocks were determined using a new three-dimensional (3D) seismic velocity model; relative locations were obtained using double difference. The mainshock location found using the 3D velocity model is 35.704° N, 121.096° W at a depth of 9.7±0.7 km. The aftershocks concentrate at the northwest and southeast parts of the aftershock zone, between the mapped traces of the Oceanic and Nacimiento fault zones. The northwest end of the mainshock rupture, as defined by the aftershocks, projects from the mainshock hypocenter to the surface a few kilometers west of the mapped trace of the Oceanic fault, near the Santa Lucia Range front and the >5 mm postseismic InSAR imagery contour. The Oceanic fault in this area, as mapped by Hall (1991), is therefore probably a second-order synthetic thrust or reverse fault that splays upward from the main seismogenic fault at depth. The southeast end of the rupture projects closer to the mapped Oceanic fault trace, suggesting much of the slip was along this fault, or at a minimum is accommodating much of the postseismic deformation. InSAR imagery shows ∼72 mm of postseismic uplift in the vicinity of maximum coseismic slip in the central section of the rupture, and ∼48 and ∼45 mm at the northwest and southeast end of the aftershock zone, respectively. From these observations, we model a ∼30-km-long northwest-trending northeast-dipping mainshock rupture surface—called the mainthrust—which is likely the Oceanic fault at depth, a ∼10-km-long southwest-dipping backthrust parallel to the mainthrust near the hypocenter, several smaller southwest-dipping structures in the southeast, and perhaps additional northeast-dipping or subvertical structures southeast of the mainshock plane

  12. Seismic hazard study for the TREAT Reactor facility at the INEL, Idaho

    International Nuclear Information System (INIS)

    1979-01-01

    The TREAT Reactor is founded on a thick unfaulted sequence of Plio-Pleistocene basalt on the Snake River Plain. The plain is presently aseismic; however, seismic activity occurs in the mountains around the plain. The Howe Scarp is located 19 miles from TREAT and contains a known capable fault. Evaluation of this and other faults in the region indicate the Howe Scarp is the most significant earthquake fault for TREAT. A maximum credible earthquake on this fault could produce a maximum ground motion of about .22 g at TREAT. A study of three range front fault systems north of the Snake River Plain indicates the fault systems have not ruptured as a unit in the past; and, cross range faults, mountain spurs and reentrants generally bound the definable fault sets in the range front systems. This study indicates future surface fault rupture and earthquake events will follow a similar pattern of contiguous faulting; each individual surface rupture event should only involve a single fault set of the range front fault system. Surface faulting on contiguous fault sets should be separated by significant intervals of geologic time. Certain volcanic hazards have been examined and discussed

  13. Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip

    Science.gov (United States)

    Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.

    2008-12-01

    Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute

  14. On Road Study of Colorado Front Range Greenhouse Gases Distribution and Sources

    Science.gov (United States)

    Petron, G.; Hirsch, A.; Trainer, M. K.; Karion, A.; Kofler, J.; Sweeney, C.; Andrews, A.; Kolodzey, W.; Miller, B. R.; Miller, L.; Montzka, S. A.; Kitzis, D. R.; Patrick, L.; Frost, G. J.; Ryerson, T. B.; Robers, J. M.; Tans, P.

    2008-12-01

    The Global Monitoring Division and Chemical Sciences Division of the NOAA Earth System Research Laboratory have teamed up over the summer 2008 to experiment with a new measurement strategy to characterize greenhouse gases distribution and sources in the Colorado Front Range. Combining expertise in greenhouse gases measurements and in local to regional scales air quality study intensive campaigns, we have built the 'Hybrid Lab'. A continuous CO2 and CH4 cavity ring down spectroscopic analyzer (Picarro, Inc.), a CO gas-filter correlation instrument (Thermo Environmental, Inc.) and a continuous UV absorption ozone monitor (2B Technologies, Inc., model 202SC) have been installed securely onboard a 2006 Toyota Prius Hybrid vehicle with an inlet bringing in outside air from a few meters above the ground. To better characterize point and distributed sources, air samples were taken with a Portable Flask Package (PFP) for later multiple species analysis in the lab. A GPS unit hooked up to the ozone analyzer and another one installed on the PFP kept track of our location allowing us to map measured concentrations on the driving route using Google Earth. The Hybrid Lab went out for several drives in the vicinity of the NOAA Boulder Atmospheric Observatory (BAO) tall tower located in Erie, CO and covering areas from Boulder, Denver, Longmont, Fort Collins and Greeley. Enhancements in CO2, CO and destruction of ozone mainly reflect emissions from traffic. Methane enhancements however are clearly correlated with nearby point sources (landfill, feedlot, natural gas compressor ...) or with larger scale air masses advected from the NE Colorado, where oil and gas drilling operations are widespread. The multiple species analysis (hydrocarbons, CFCs, HFCs) of the air samples collected along the way bring insightful information about the methane sources at play. We will present results of the analysis and interpretation of the Hybrid Lab Front Range Study and conclude with perspectives

  15. Front panel human interface for FASTBUS

    International Nuclear Information System (INIS)

    Gustavson, D.B.; Holmes, T.L.; Paffrath, L.; Steffani, J.P.

    1980-01-01

    A human interface based on the Snoop diagnostic module has been designed to facilitate checkout of FASTBUS devices, diagnosis of system faults, and monitoring of system performance. This system, which is a generalization of the usual computer front panel or control console, includes logic analyzer functions, display and manual-control access to other modules, a microprocessor which allows the user to create and execute diagnostic programs and store them on a minifloppy disk, and a diagnostic network which allows remote console operation and coordination of information from multiple segments' Snoops

  16. Active folding of fluvial terraces across a `blind' Himalayan deformation front in the Kashmir Himalaya, northwest India.

    Science.gov (United States)

    Gavillot, Y. G.; Meigs, A.; Rittenour, T. M.; Malik, M. O. A.

    2016-12-01

    In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline, and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the Suruin-Mastargh anticline hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and four yield multiple optically stimulated luminescence (OSL) and depth profiles terrigenous cosmogenic nuclides (TCN) ages between 53 ka and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Murree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggests rock uplift rates across the Suruin-Mastargh anticline range between 1.8-2.5 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rates across the Suruin-Mastargh anticline range between 3.8-5.4 mm/yr since 53 ka. Geodetic data indicate that an 11-12 mm/yr arc-normal shortening rate characterizes the interseismic strain accumulation across the plate boundary due to India-Tibet convergence. These data combined with rates of other active internal faults in the Kashmir Himalaya indicate that the Riasi fault accounts for the remainder 60% of the convergence not taken up by the Suruin-Mastargh anticline. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled

  17. Photoionization effects in ionization fronts

    International Nuclear Information System (INIS)

    Arrayas, Manuel; Fontelos, Marco A; Trueba, Jose L

    2006-01-01

    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work

  18. Photoionization effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fontelos, Marco A [Departamento de Matematicas, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain); Trueba, Jose L [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2006-12-21

    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work.

  19. Simulating the Evolving Behavior of Secondary Slow Slip Fronts

    Science.gov (United States)

    Peng, Y.; Rubin, A. M.

    2017-12-01

    High-resolution tremor catalogs of slow slip events reveal secondary slow slip fronts behind the main front that repetitively occupy the same source area during a single episode. These repetitive fronts are most often observed in regions with high tremor density. Their recurrence intervals gradually increase from being too short to be tidally modulated (tens of minutes) to being close to tidal periods (about 12 or 24 hours). This could be explained by a decreasing loading rate from creep in the surrounding regions (with few or no observable tremor events) as the main front passes by. As the recurrence intervals of the fronts increase, eventually they lock in on the tidal periods. We attempt to simulate this numerically using a rate-and-state friction law that transitions from velocity-weakening at low slip speeds to velocity strengthening at high slip speeds. Many small circular patches with a cutoff velocity an order of magnitude higher than that of the background are randomly placed on the fault, in order to simulate the average properties of the high-density tremor zone. Preliminary results show that given reasonable parameters, this model produces similar propagation speeds of the forward-migrating main front inside and outside the high-density tremor zone, consistent with observations. We will explore the behavior of the secondary fronts that arise in this model, in relation to the local density of the small tremor-analog patches, the overall geometry of the tremor zone and the tides.

  20. Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: Insights from an extreme rainfall event in the Colorado Front Range

    Science.gov (United States)

    McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Coe, Jeffrey A.; Mirus, Benjamin B.; Baum, Rex L.; Godt, Jonathan W.

    2016-01-01

    More than 1100 debris flows were mobilized from shallow landslides during a rainstorm from 9 to 13 September 2013 in the Colorado Front Range, with the vast majority initiating on sparsely vegetated, south facing terrain. To investigate the physical processes responsible for the observed aspect control, we made measurements of soil properties on a densely forested north facing hillslope and a grassland-dominated south facing hillslope in the Colorado Front Range and performed numerical modeling of transient changes in soil pore water pressure throughout the rainstorm. Using the numerical model, we quantitatively assessed interactions among vegetation, rainfall interception, subsurface hydrology, and slope stability. Results suggest that apparent cohesion supplied by roots was responsible for the observed connection between debris flow initiation and slope aspect. Results suggest that future climate-driven modifications to forest structure could substantially influence landslide hazards throughout the Front Range and similar water-limited environments where vegetation communities may be more susceptible to small variations in climate.

  1. How do normal faults grow?

    OpenAIRE

    Blækkan, Ingvild; Bell, Rebecca; Rotevatn, Atle; Jackson, Christopher; Tvedt, Anette

    2018-01-01

    Faults grow via a sympathetic increase in their displacement and length (isolated fault model), or by rapid length establishment and subsequent displacement accrual (constant-length fault model). To test the significance and applicability of these two models, we use time-series displacement (D) and length (L) data extracted for faults from nature and experiments. We document a range of fault behaviours, from sympathetic D-L fault growth (isolated growth) to sub-vertical D-L growth trajectorie...

  2. Non-tectonic exposure Rates along Bedrock Fault Scarps in an active Mountain Belt of the central Apennines

    Science.gov (United States)

    Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto

    2017-04-01

    The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface

  3. Architecture of a low-angle normal fault zone, southern Basin and Range (SE California)

    Science.gov (United States)

    Goyette, J. A.; John, B. E.; Campbell-Stone, E.; Stunitz, H.; Heilbronner, R.; Pec, M.

    2009-12-01

    Exposures of the denuded Cenozoic detachment fault system in the southern Sacramento Mountains (SE California) delimit the architecture of a regional low-angle normal fault, and highlight the evolution of these enigmatic faults. The fault was initiated ~23 Ma in quartzo-feldspathic basement gneiss and granitoids at a low-angle (2km, and amplitudes up to 100m. These corrugations are continuous along their hinges for up to 3.6 km. Damage zone fracture intensity varies both laterally, and perpendicular to the fault plane (over an area of 25km2), decreasing with depth in the footwall, and varies as a function of lithology and proximity to corrugation walls. Deformation is concentrated into narrow damage zones (100m) are found in areas where low-fracture intensity horses are corralled by sub-horizontal zones of cataclasite (up to 8m) and thick zones of epidote (up to 20cm) and silica-rich alteration (up to 1m). Sub-vertical shear and extension fractures, and sub-horizontal shear fractures/zones dominate the NE side of the core complex. In all cases, sub-vertical fractures verge into or are truncated by low-angle fractures that dominate the top of the damage zone. These low-angle fractures have an antithetic dip to the detachment fault plane. Some sub-vertical fractures become curviplanar close to the fault, where they are folded into parallelism with the sub-horizontal fault surface in the direction of transport. These field data, corroborated by ongoing microstructural analyses, indicate fault activity at a low angle accommodated by a variety of deformation mechanisms dependent on lithology, timing, fluid flow, and fault morphology.

  4. Silvicultural systems and cutting methods for ponderosa pine forests in the Front Range of the central Rocky Mountains

    Science.gov (United States)

    Robert R. Alexander

    1986-01-01

    Guidelines are provided to help forest managers and silviculturists develop even- and/or uneven-aged cutting practices needed to convert old-growth and mixed ponderosa pine forests in the Front Range into managed stands for a variety of resource needs. Guidelines consider stand conditions, and insect and disease susceptibility. Cutting practices are designed to...

  5. Meteoric water circulation and rolling-hinge detachment faulting: Example of the Northern Snake Range core complex, Nevada

    Science.gov (United States)

    Gébelin, Aude; Teyssier, Christian; Heizler, Matthew T.; Andreas, Mulch

    2014-05-01

    The Northern Snake Range metamorphic core complex developed as a consequence of Oligo-Miocene extension of the Basin and Range Province and is bounded by an arched detachment that separates the cold, brittle upper crust from the ductile middle crust. On the western and eastern limbs of the arch, the detachment footwall displays continuous sections of muscovite-bearing quartzite and schist from which we report new microfabrics, δD values, and 40Ar/39Ar ages. Results indicate that the two limbs record distinct stages of the metamorphic and kinematic Cenozoic events, including Eocene collapse of previously overthickned crust in the west, and one main Oligo-Miocene extensional event in the east. Quartzite from the western part of the range preserves Eocene fabrics (~49-45 Ma) that developed during coaxial deformation in the presence of metamorphic fluids. In contrast, those from the east reveal a large component of non coaxial strain, Oligo-Miocene ages (27-21 Ma) and contain recrystallized muscovite grains indicating that meteoric fluids sourced at high elevation (low-δD) infiltrated the brittle-ductile transition zone during deformation. Percolation of meteoric fluids down to the mylonitic detachment footwall was made possible by the development of an east-dipping rolling-hinge detachment system that controlled the timing and location of active faulting in the brittle upper crust and therefore the pathway of fluids from the surface to the brittle-ductile transition. Oligo-Miocene upper crustal extension was accommodated by a fan-shaped fault pattern that generated shear and tension fractures and channelized surface fluids, while top-to-the-east ductile shearing and advection of hot material in the lower plate allowed the system to be progressively exhumed. As extension proceeded, brittle normal faults active in the wedge of the hanging wall gradually rotated and translated above the detachment fault where, became inactive and precluded the circulation of fluids

  6. High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation

    Science.gov (United States)

    Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan

    2016-07-01

    Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).

  7. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    Science.gov (United States)

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  8. A wide dynamic range BF3 neutron monitor with front-end electronics based on a logarithmic amplifier

    International Nuclear Information System (INIS)

    Ferrarini, M.; Varoli, V.; Favalli, A.; Caresana, M.; Pedersen, B.

    2010-01-01

    This paper describes a wide dynamic range neutron monitor based on a BF 3 neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10 6 s -1 . It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  9. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.

    Science.gov (United States)

    Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.

  10. 2.5 Gbit/s Optical Receiver Front-End Circuit with High Sensitivity and Wide Dynamic Range

    Science.gov (United States)

    Zhu, Tiezhu; Mo, Taishan; Ye, Tianchun

    2017-12-01

    An optical receiver front-end circuit is designed for passive optical network and fabricated in a 0.18 um CMOS technology. The whole circuit consists of a transimpedance amplifier (TIA), a single-ended to differential amplifier and an output driver. The TIA employs a cascode stage as the input stage and auxiliary amplifier to reduce the miller effect. Current injecting technique is employed to enlarge the input transistor's transconductance, optimize the noise performance and overcome the lack of voltage headroom. To achieve a wide dynamic range, an automatic gain control circuit with self-adaptive function is proposed. Experiment results show an optical sensitivity of -28 dBm for a bit error rate of 10-10 at 2.5 Gbit/s and a maxim input optical power of 2 dBm using an external photodiode. The chip occupies an area of 1×0.9 mm2 and consumes around 30 mW from single 1.8 V supply. The front-end circuit can be used in various optical receivers.

  11. Factors controlling streambed coverage of Didymosphenia geminata in two regulated streams in the Colorado Front Range

    OpenAIRE

    Miller, Matthew P.; McKnight, Diane M.; Cullis, James D.; Greene, Alicia; Vietti, Kristin; Liptzin, Daniel

    2009-01-01

    Didymosphenia geminata is a stalk-forming freshwater diatom which was historically found primarily in oligotrophic lakes and streams, but has recently become a nuisance species in many lotic systems worldwide. In the last 5–8 years, D. geminata has become established in Boulder Creek and South Boulder Creek, two regulated montane streams in the Front Range of the Colorado Rocky Mountains. Factors that may influence the growth of D. geminata were monitored during the summer of 2006. D. geminat...

  12. Regional Tectonic Control of Tertiary Mineralization and Recent Faulting in the Southern Basin-Range Province, an Application of ERTS-1 Data

    Science.gov (United States)

    Bechtold, I. C.; Liggett, M. A.; Childs, J. F.

    1973-01-01

    Research based on ERTS-1 MSS imagery and field work in the southern Basin-Range Province of California, Nevada and Arizona has shown regional tectonic control of volcanism, plutonism, mineralization and faulting. This paper covers an area centered on the Colorado River between 34 15' N and 36 45' N. During the mid-Tertiary, the area was the site of plutonism and genetically related volcanism fed by fissure systems now exposed as dike swarms. Dikes, elongate plutons, and coeval normal faults trend generally northward and are believed to have resulted from east-west crustal extension. In the extensional province, gold silver mineralization is closely related to Tertiary igneous activity. Similarities in ore, structural setting, and rock types define a metallogenic district of high potential for exploration. The ERTS imagery also provides a basis for regional inventory of small faults which cut alluvium. This capability for efficient regional surveys of Recent faulting should be considered in land use planning, geologic hazards study, civil engineering and hydrology.

  13. Fault estimation - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...... problems can be solved by standard optimization techniques. The proposed methods include (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; FE for systems with parametric faults, and FE for a class of nonlinear systems. Copyright...

  14. Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy)

    Science.gov (United States)

    Tavani, Stefano; Storti, Fabrizio; Bausã, Jordi; MuñOz, Josep A.

    2012-08-01

    Thrust-related anticlines exposed at the mountain front of the Cenozoic Appenninic thrust-and-fold belt share the presence of hinterlandward dipping extensional fault zones running parallel to the hosting anticlines. These fault zones downthrow the crests and the backlimbs with displacements lower than, but comparable to, the uplift of the hosting anticline. Contrasting information feeds a debate about the relative timing between thrust-related folding and beginning of extensional faulting, since several extensional episodes, spanning from early Jurassic to Quaternary, are documented in the central and northern Apennines. Mesostructural data were collected in the frontal anticline of the Sibillini thrust sheet, the mountain front in the Umbria-Marche sector of the northern Apennines, with the aim of fully constraining the stress history recorded in the deformed multilayer. Compressional structures developed during thrust propagation and fold growth, mostly locating in the fold limbs. Extensional elements striking about perpendicular to the shortening direction developed during two distinct episodes: before fold growth, when the area deformed by outer-arc extension in the peripheral bulge, and during a late to post thrusting stage. Most of the the extensional deformation occurred during the second stage, when the syn-thrusting erosional exhumation of the structures caused the development of pervasive longitudinal extensional fracturing in the crestal sector of the growing anticline, which anticipated the subsequent widespread Quaternary extensional tectonics.

  15. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models

    Science.gov (United States)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-04-01

    The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared

  16. Aggregate supply and demand modeling using GIS methods for the front range urban corridor, Colorado

    Science.gov (United States)

    Karakas, Ahmet; Turner, Keith

    2004-07-01

    The combined use of allocation modeling and geographical information system (GIS) technologies for providing quantitative assessments of aggregate supply and demand is evaluated using representative data for the Front Range Urban Corridor (FRUC) in Colorado. The FRUC extends from the Colorado-Wyoming border to south of Colorado Springs, and includes Denver and the major urban growth regions of Colorado. In this area, aggregate demand is high and is increasing in response to population growth. Neighborhood opposition to the establishment of new pits and quarries and the depletion of many deposits are limiting aggregate supplies. Many sources are already covered by urban development or eliminated from production by zoning. Transport of aggregate by rail from distant resources may be required in the future. Two allocation-modeling procedures are tested in this study. Network analysis procedures provided within the ARC/INFO software, are unsatisfactory. Further aggregate allocation modeling used a model specifically designed for this task; a modified version of an existing Colorado School of Mines allocation model allows for more realistic market analyses. This study evaluated four scenarios. The entire region was evaluated with a scenario reflecting the current market and by a second scenario in which some existing suppliers were closed down and new potential suppliers were activated. The conditions within the Denver metropolitan area were studied before and after the introduction of three possible rail-to-truck aggregate distribution centers. GIS techniques are helpful in developing the required database to describe the Front Range Urban Corridor aggregate market conditions. GIS methods allow the digital representation of the regional road network, and the development of a distance matrix relating all suppliers and purchasers.

  17. RPC performance vs. front-end electronics

    International Nuclear Information System (INIS)

    Cardarelli, R.; Aielli, G.; Camarri, P.; Di Ciaccio, A.; Di Stante, L.; Liberti, B.; Pastori, E.; Santonico, R.; Zerbini, A.

    2012-01-01

    Moving the amplification from the gas to the front-end electronics was a milestone in the development of Resistive Plate Chambers. Here we discuss the historical evolution of RPCs and we show the results obtained with newly developed front-end electronics with threshold in the fC range.

  18. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes

    NARCIS (Netherlands)

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio

    2015-01-01

    Rupture fronts can cause fault displacement, reaching speeds up to several ms-1 within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in

  19. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    Science.gov (United States)

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Long-term fluid circulation in extensional faults in the central Catalan Coastal Ranges: P-T constraints from neoformed chlorite and K-white mica

    Science.gov (United States)

    Cantarero, Irene; Lanari, Pierre; Vidal, Olivier; Alías, Gemma; Travé, Anna; Baqués, Vinyet

    2014-01-01

    The neoformation of chlorite and K-white mica in fault rocks from two main faults of the central Catalan Coastal Ranges, the Vallès and the Hospital faults, has allowed us to constrain the P-T conditions during fault evolution using thermodynamic modeling. Crystallization of M1 and M2 muscovite and microcline occured as result of deuteric alteration during the exhumation of the pluton (290 °C > T > 370 °C) in the Permian. After that, three tectonic events have been distinguished. The first tectonic event, attributed to the Mesozoic rifting, is characterized by precipitation of M3 and M4 phengite together with chlorite and calcite C1 at temperatures between 190 and 310 °C. The second tectonic event attributed to the Paleogene compression has only been identified in the Hospital fault with precipitation of low-temperature calcite C2. The shortcut produced during inversion of the Vallès fault was probably the responsible for the lack of neoformed minerals within this fault. Finally, the third tectonic event, which is related to the Neogene extension, is characterized in the Vallès fault by a new generation of chlorite, associated with calcite C4 and laumontite, formed at temperatures between 125 and 190 °C in the absence of K-white mica. Differently, the Hospital fault is characterized by the precipitation of calcite C3 during the syn-rift stage at temperatures around 150 °C and by low-temperature fluids precipitating calcites C5, C6 and PC1 during the post-rift stage. During the two extensional events (Mesozoic and Neogene), faults acted as conduits for hot fluids producing anomalous high geothermal gradients (50 °C/km minimum).

  1. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2002-03-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene

  2. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  3. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  4. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman

    2011-01-01

    In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... of development and research efforts on improving the reliability of driver code. Today Linux is used in a much wider range of environments, provides a much wider range of services, and has adopted a new development and release model. What has been the impact of these changes on code quality? Are drivers still...... a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been...

  5. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  6. Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range: Implications for large terrestrial and Martian volcanic edifices

    International Nuclear Information System (INIS)

    Borgia, A.; Burr, J.; Montero, W.; Morales, L.D.; Alvarado, G.E.

    1990-01-01

    Long sublinear ridges and related scarps located at the base of large volcanic structures are frequently interpreted as normal faults associated with extensional regional stress. In contrast, the ridges bordering the Central Costa Rica volcanic range (CCRVR) are the topographic expression of hanging wall asymmetric angular anticlines overlying low-angle thrust faults at the base of the range. These faults formed by gravitational failure and slumping of the flanks of the range due to the weight of the volcanic edifices and were perhaps triggered by the intrusion of magma over the past 20,000 years. These anticlines are hypothesized to occur along the base of the volcano, where the thrust faults ramp up toward the sea bottom. Ridges and scarps between 2,000 and 5,000 m below sea level are interpreted as the topographic expression of these folds. The authors further suggest that the scarps of the CCRVR and valid scaled terrestrial analogs of the perimeter scarp of the Martian volcano Olympus Mons. They suggest that the crust below Olympus Mons has failed under the load of the volcano, triggering the radial slumping of the flanks of the volcano on basal thrusts. The thrusting would have, in turn, formed the anticlinal ridges and scarps that surround the edifice. The thrust faults may extend all the way to the base of the Martian crust (about 40 km), and they may have been active until almost the end of the volcanic activity. They suggest that gravitational failure and slumping of the flanks of volcanoes is a process common to most large volcanic edifices. In the CCRVR this slumping of the flanks is a slow intermittent process, but it could evolve to rapid massive avalanching leading to catastrophic eruptions. Thus monitoring of uplift and displacement of the folds related to the slump tectonics could become an additional effective method for mitigating volcanic hazards

  7. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    Science.gov (United States)

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  8. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake

    KAUST Repository

    Calais, Éric

    2010-10-24

    On 12 January 2010, a Mw7.0 earthquake struck the Port-au-Prince region of Haiti. The disaster killed more than 200,000 people and caused an estimated $8 billion in damages, about 100% of the country?s gross domestic product. The earthquake was initially thought to have ruptured the Enriquillog-Plantain Garden fault of the southern peninsula of Haiti, which is one of two main strike-slip faults inferred to accommodate the 2cmyr -1 relative motion between the Caribbean and North American plates. Here we use global positioning system and radar interferometry measurements of ground motion to show that the earthquake involved a combination of horizontal and contractional slip, causing transpressional motion. This result is consistent with the long-term pattern of strain accumulation in Hispaniola. The unexpected contractional deformation caused by the earthquake and by the pattern of strain accumulation indicates present activity on faults other than the Enriquillog-Plantain Garden fault. We show that the earthquake instead ruptured an unmapped north-dipping fault, called the Léogâne fault. The Léogâne fault lies subparallel tog-but is different fromg-the Enriquillog-Plantain Garden fault. We suggest that the 2010 earthquake may have activated the southernmost front of the Haitian fold-and-thrust belt as it abuts against the Enriquillog-Plantain Garden fault. As the Enriquillog-Plantain Garden fault did not release any significant accumulated elastic strain, it remains a significant seismic threat for Haiti and for Port-au-Prince in particular. © 2010 Macmillan Publishers Limited. All rights reserved.

  9. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake

    KAUST Repository

    Calais, É ric; Freed, Andrew M.; Mattioli, Glen S.; Amelung, Falk; Jonsson, Sigurjon; Jansma, Pamela E.; Hong, Sanghoon; Dixon, Timothy H.; Pré petit, Claude; Momplaisir, Roberte

    2010-01-01

    On 12 January 2010, a Mw7.0 earthquake struck the Port-au-Prince region of Haiti. The disaster killed more than 200,000 people and caused an estimated $8 billion in damages, about 100% of the country?s gross domestic product. The earthquake was initially thought to have ruptured the Enriquillog-Plantain Garden fault of the southern peninsula of Haiti, which is one of two main strike-slip faults inferred to accommodate the 2cmyr -1 relative motion between the Caribbean and North American plates. Here we use global positioning system and radar interferometry measurements of ground motion to show that the earthquake involved a combination of horizontal and contractional slip, causing transpressional motion. This result is consistent with the long-term pattern of strain accumulation in Hispaniola. The unexpected contractional deformation caused by the earthquake and by the pattern of strain accumulation indicates present activity on faults other than the Enriquillog-Plantain Garden fault. We show that the earthquake instead ruptured an unmapped north-dipping fault, called the Léogâne fault. The Léogâne fault lies subparallel tog-but is different fromg-the Enriquillog-Plantain Garden fault. We suggest that the 2010 earthquake may have activated the southernmost front of the Haitian fold-and-thrust belt as it abuts against the Enriquillog-Plantain Garden fault. As the Enriquillog-Plantain Garden fault did not release any significant accumulated elastic strain, it remains a significant seismic threat for Haiti and for Port-au-Prince in particular. © 2010 Macmillan Publishers Limited. All rights reserved.

  10. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2003-02-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene

  11. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  12. Heterogeneity in the Fault Damage Zone: a Field Study on the Borrego Fault, B.C., Mexico

    Science.gov (United States)

    Ostermeijer, G.; Mitchell, T. M.; Dorsey, M. T.; Browning, J.; Rockwell, T. K.; Aben, F. M.; Fletcher, J. M.; Brantut, N.

    2017-12-01

    The nature and distribution of damage around faults, and its impacts on fault zone properties has been a hot topic of research over the past decade. Understanding the mechanisms that control the formation of off fault damage can shed light on the processes during the seismic cycle, and the nature of fault zone development. Recent published work has identified three broad zones of damage around most faults based on the type, intensity, and extent of fracturing; Tip, Wall, and Linking damage. Although these zones are able to adequately characterise the general distribution of damage, little has been done to identify the nature of damage heterogeneity within those zones, often simplifying the distribution to fit log-normal linear decay trends. Here, we attempt to characterise the distribution of fractures that make up the wall damage around seismogenic faults. To do so, we investigate an extensive two dimensional fracture network exposed on a river cut platform along the Borrego Fault, BC, Mexico, 5m wide, and extending 20m from the fault core into the damage zone. High resolution fracture mapping of the outcrop, covering scales ranging three orders of magnitude (cm to m), has allowed for detailed observations of the 2D damage distribution within the fault damage zone. Damage profiles were obtained along several 1D transects perpendicular to the fault and micro-damage was examined from thin-sections at various locations around the outcrop for comparison. Analysis of the resulting fracture network indicates heterogeneities in damage intensity at decimetre scales resulting from a patchy distribution of high and low intensity corridors and clusters. Such patchiness may contribute to inconsistencies in damage zone widths defined along 1D transects and the observed variability of fracture densities around decay trends. How this distribution develops with fault maturity and the scaling of heterogeneities above and below the observed range will likely play a key role in

  13. ESR dating of the fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2005-01-01

    We carried out ESR dating of fault rocks collected near the nuclear reactor. The Upcheon fault zone is exposed close to the Ulzin nuclear reactor. The space-time pattern of fault activity on the Upcheon fault deduced from ESR dating of fault gouge can be summarised as follows : this fault zone was reactivated between fault breccia derived from Cretaceous sandstone and tertiary volcanic sedimentary rocks about 2 Ma, 1.5 Ma and 1 Ma ago. After those movements, the Upcheon fault was reactivated between Cretaceous sandstone and fault breccia zone about 800 ka ago. This fault zone was reactivated again between fault breccia derived form Cretaceous sandstone and Tertiary volcanic sedimentary rocks about 650 ka and after 125 ka ago. These data suggest that the long-term(200-500 k.y.) cyclic fault activity of the Upcheon fault zone continued into the Pleistocene. In the Ulzin area, ESR dates from the NW and EW trend faults range from 800 ka to 600 ka NE and EW trend faults were reactivated about between 200 ka and 300 ka ago. On the other hand, ESR date of the NS trend fault is about 400 ka and 50 ka. Results of this research suggest the fault activity near the Ulzin nuclear reactor fault activity continued into the Pleistocene. One ESR date near the Youngkwang nuclear reactor is 200 ka

  14. Normal Faulting in the 1923 Berdún Earthquake and Postorogenic Extension in the Pyrenees

    Science.gov (United States)

    Stich, Daniel; Martín, Rosa; Batlló, Josep; Macià, Ramón; Mancilla, Flor de Lis; Morales, Jose

    2018-04-01

    The 10 July 1923 earthquake near Berdún (Spain) is the largest instrumentally recorded event in the Pyrenees. We recover old analog seismograms and use 20 hand-digitized waveforms for regional moment tensor inversion. We estimate moment magnitude Mw 5.4, centroid depth of 8 km, and a pure normal faulting source with strike parallel to the mountain chain (N292°E), dip of 66° and rake of -88°. The new mechanism fits into the general predominance of normal faulting in the Pyrenees and extension inferred from Global Positioning System data. The unique location of the 1923 earthquake, near the south Pyrenean thrust front, shows that the extensional regime is not confined to the axial zone where high topography and the crustal root are located. Together with seismicity near the northern mountain front, this indicates that gravitational potential energy in the western Pyrenees is not extracted locally but induces a wide distribution of postorogenic deformation.

  15. Preliminary Results on Earthquake Recurrence Intervals, Rupture Segmentation, and Potential Earthquake Moment Magnitudes along the Tahoe-Sierra Frontal Fault Zone, Lake Tahoe, California

    Science.gov (United States)

    Howle, J.; Bawden, G. W.; Schweickert, R. A.; Hunter, L. E.; Rose, R.

    2012-12-01

    Utilizing high-resolution bare-earth LiDAR topography, field observations, and earlier results of Howle et al. (2012), we estimate latest Pleistocene/Holocene earthquake-recurrence intervals, propose scenarios for earthquake-rupture segmentation, and estimate potential earthquake moment magnitudes for the Tahoe-Sierra frontal fault zone (TSFFZ), west of Lake Tahoe, California. We have developed a new technique to estimate the vertical separation for the most recent and the previous ground-rupturing earthquakes at five sites along the Echo Peak and Mt. Tallac segments of the TSFFZ. At these sites are fault scarps with two bevels separated by an inflection point (compound fault scarps), indicating that the cumulative vertical separation (VS) across the scarp resulted from two events. This technique, modified from the modeling methods of Howle et al. (2012), uses the far-field plunge of the best-fit footwall vector and the fault-scarp morphology from high-resolution LiDAR profiles to estimate the per-event VS. From this data, we conclude that the adjacent and overlapping Echo Peak and Mt. Tallac segments have ruptured coseismically twice during the Holocene. The right-stepping, en echelon range-front segments of the TSFFZ show progressively greater VS rates and shorter earthquake-recurrence intervals from southeast to northwest. Our preliminary estimates suggest latest Pleistocene/ Holocene earthquake-recurrence intervals of 4.8±0.9x103 years for a coseismic rupture of the Echo Peak and Mt. Tallac segments, located at the southeastern end of the TSFFZ. For the Rubicon Peak segment, northwest of the Echo Peak and Mt. Tallac segments, our preliminary estimate of the maximum earthquake-recurrence interval is 2.8±1.0x103 years, based on data from two sites. The correspondence between high VS rates and short recurrence intervals suggests that earthquake sequences along the TSFFZ may initiate in the northwest part of the zone and then occur to the southeast with a lower

  16. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    Science.gov (United States)

    Godt, J.W.; Coe, J.A.

    2007-01-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43??mm of rain in 4??h, 35??mm of which fell in the first 2??h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30??) in catchments with small contributing areas (runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths. ?? 2006 Elsevier B.V. All rights reserved.

  17. Sources and characteristics of summertime organic aerosol in the Colorado Front Range: perspective from measurements and WRF-Chem modeling

    Directory of Open Access Journals (Sweden)

    R. Bahreini

    2018-06-01

    Full Text Available The evolution of organic aerosols (OAs and their precursors in the boundary layer (BL of the Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ, July–August 2014 was analyzed by in situ measurements and chemical transport modeling. Measurements indicated significant production of secondary OA (SOA, with enhancement ratio of OA with respect to carbon monoxide (CO reaching 0.085±0.003 µg m−3 ppbv−1. At background mixing ratios of CO, up to  ∼  1.8 µg m−3 background OA was observed, suggesting significant non-combustion contribution to OA in the Front Range. The mean concentration of OA in plumes with a high influence of oil and natural gas (O&G emissions was  ∼  40 % higher than in urban-influenced plumes. Positive matrix factorization (PMF confirmed a dominant contribution of secondary, oxygenated OA (OOA in the boundary layer instead of fresh, hydrocarbon-like OA (HOA. Combinations of primary OA (POA volatility assumptions, aging of semi-volatile species, and different emission estimates from the O&G sector were used in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem simulation scenarios. The assumption of semi-volatile POA resulted in greater than a factor of 10 lower POA concentrations compared to PMF-resolved HOA. Including top-down modified O&G emissions resulted in substantially better agreements in modeled ethane, toluene, hydroxyl radical, and ozone compared to measurements in the high-O&G-influenced plumes. By including emissions from the O&G sector using the top-down approach, it was estimated that the O&G sector contributed to  <  5 % of total OA, but up to 38 % of anthropogenic SOA (aSOA in the region. The best agreement between the measured and simulated median OA was achieved by limiting the extent of biogenic hydrocarbon aging and consequently biogenic SOA (bSOA production. Despite a lower production of bSOA in

  18. Support vector machine based fault classification and location of a long transmission line

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2016-09-01

    Full Text Available This paper investigates support vector machine based fault type and distance estimation scheme in a long transmission line. The planned technique uses post fault single cycle current waveform and pre-processing of the samples is done by wavelet packet transform. Energy and entropy are obtained from the decomposed coefficients and feature matrix is prepared. Then the redundant features from the matrix are taken out by the forward feature selection method and normalized. Test and train data are developed by taking into consideration variables of a simulation situation like fault type, resistance path, inception angle, and distance. In this paper 10 different types of short circuit fault are analyzed. The test data are examined by support vector machine whose parameters are optimized by particle swarm optimization method. The anticipated method is checked on a 400 kV, 300 km long transmission line with voltage source at both the ends. Two cases were examined with the proposed method. The first one is fault very near to both the source end (front and rear and the second one is support vector machine with and without optimized parameter. Simulation result indicates that the anticipated method for fault classification gives high accuracy (99.21% and least fault distance estimation error (0.29%.

  19. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  20. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    Science.gov (United States)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  1. Soft sediment deformation associated with the East Patna Fault south of the Ganga River, northern India: Influence of the Himalayan tectonics on the southern Ganga plain

    Science.gov (United States)

    Verma, Aditya K.; Pati, Pitambar; Sharma, Vijay

    2017-08-01

    The geomorphic, tectonic and seismic aspects of the Ganga plain have been studied by several workers in the recent decades. However, the northern part of this tectonically active plain has been the prime focus in most of the studies. The region to the south of the Ganga River requires necessary attention, especially, regarding the seismic activities. The region lying immediately south of the Outer Himalayas (i.e. the Ganga plain) responds to the stress regime of the Himalayan Frontal Thrust Zone by movement along the existing basement faults (extending from the Indian Peninsula) and creating new surface faults within the sediment cover as well. As a result, several earthquakes have been recorded along these basement faults, such as the great earthquakes of 1934 and 1988 associated with the East Patna Fault. Large zones of ground failure and liquefaction in north Bihar (close to the Himalayan front), have been recorded associated with these earthquakes. The present study reports the soft sediment deformation structures from the south Bihar associated with the prehistoric earthquakes near the East Patna Fault for the first time. The seismites have been observed in the riverine sand bed of the Dardha River close to the East Patna Fault. Several types of liquefaction-induced deformation structures such as pillar and pocket structure, thixotropic wedge, liquefaction cusps and other water escape structures have been identified. The location of the observed seismites within the deformed zone of the East Patna Fault clearly indicates their formation due to activities along this fault. However, the distance of the liquefaction site from the recorded epicenters suggests its dissociation with the recorded earthquakes so far and hence possibly relates to any prehistoric seismic event. The occurrence of the earthquakes of a magnitude capable of forming liquefaction structure in the southern Ganga plain indicates the transfer of stress regime far from the Himalayan front into

  2. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf

    2015-01-01

    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault\\'s rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault\\'s offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of

  3. Characterizing the recent behavior and earthquake potential of the blind western San Cayetano and Ventura fault systems

    Science.gov (United States)

    McAuliffe, L. J.; Dolan, J. F.; Hubbard, J.; Shaw, J. H.

    2011-12-01

    The recent occurrence of several destructive thrust fault earthquakes highlights the risks posed by such events to major urban centers around the world. In order to determine the earthquake potential of such faults in the western Transverse Ranges of southern California, we are studying the activity and paleoearthquake history of the blind Ventura and western San Cayetano faults through a multidisciplinary analysis of strata that have been folded above the fault tiplines. These two thrust faults form the middle section of a >200-km-long, east-west belt of large, interconnected reverse faults that extends across southern California. Although each of these faults represents a major seismic source in its own right, we are exploring the possibility of even larger-magnitude, multi-segment ruptures that may link these faults to other major faults to the east and west in the Transverse Ranges system. The proximity of this large reverse-fault system to several major population centers, including the metropolitan Los Angeles region, and the potential for tsunami generation during offshore ruptures of the western parts of the system, emphasizes the importance of understanding the behavior of these faults for seismic hazard assessment. During the summer of 2010 we used a mini-vibrator source to acquire four, one- to three-km-long, high-resolution seismic reflection profiles. The profiles were collected along the locus of active folding above the blind, western San Cayetano and Ventura faults - specifically, across prominent fold scarps that have developed in response to recent slip on the underlying thrust ramps. These high-resolution data overlap with the uppermost parts of petroleum-industry seismic reflection data, and provide a near-continuous image of recent folding from several km depth to within 50-100 m of the surface. Our initial efforts to document the earthquake history and slip-rate of this large, multi-fault reverse fault system focus on a site above the blind

  4. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    International Nuclear Information System (INIS)

    Yin, A; Taylor, M H

    2008-01-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of ∼30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  5. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    Energy Technology Data Exchange (ETDEWEB)

    Yin, A [Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA 90025-1567 (United States); Taylor, M H [Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, KS 66044 (United States)], E-mail: yin@ess.ucla.edu

    2008-07-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of {approx}30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  6. Multi-link faults localization and restoration based on fuzzy fault set for dynamic optical networks.

    Science.gov (United States)

    Zhao, Yongli; Li, Xin; Li, Huadong; Wang, Xinbo; Zhang, Jie; Huang, Shanguo

    2013-01-28

    Based on a distributed method of bit-error-rate (BER) monitoring, a novel multi-link faults restoration algorithm is proposed for dynamic optical networks. The concept of fuzzy fault set (FFS) is first introduced for multi-link faults localization, which includes all possible optical equipment or fiber links with a membership describing the possibility of faults. Such a set is characterized by a membership function which assigns each object a grade of membership ranging from zero to one. OSPF protocol extension is designed for the BER information flooding in the network. The BER information can be correlated to link faults through FFS. Based on the BER information and FFS, multi-link faults localization mechanism and restoration algorithm are implemented and experimentally demonstrated on a GMPLS enabled optical network testbed with 40 wavelengths in each fiber link. Experimental results show that the novel localization mechanism has better performance compared with the extended limited perimeter vector matching (LVM) protocol and the restoration algorithm can improve the restoration success rate under multi-link faults scenario.

  7. Aftershocks illuminate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    Science.gov (United States)

    Horton, J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  8. Identifying Network Motifs that Buffer Front-to-Back Signaling in Polarized Neutrophils

    Directory of Open Access Journals (Sweden)

    Yanqin Wang

    2013-05-01

    Full Text Available Neutrophil polarity relies on local, mutual inhibition to segregate incompatible signaling circuits to the leading and trailing edges. Mutual inhibition alone should lead to cells having strong fronts and weak backs or vice versa. However, analysis of cell-to-cell variation in human neutrophils revealed that back polarity remains consistent despite changes in front strength. How is this buffering achieved? Pharmacological perturbations and mathematical modeling revealed a functional role for microtubules in buffering back polarity by mediating positive, long-range crosstalk from front to back; loss of microtubules inhibits buffering and results in anticorrelation between front and back signaling. Furthermore, a systematic, computational search of network topologies found that a long-range, positive front-to-back link is necessary for back buffering. Our studies suggest a design principle that can be employed by polarity networks: short-range mutual inhibition establishes distinct signaling regions, after which directed long-range activation insulates one region from variations in the other.

  9. ESR dating of the fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2004-01-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs, grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Ulzin nuclear reactor. ESR signals of quartz grains separated from fault rocks collected from the E-W trend fault are saturated. This indicates that the last movement of these faults had occurred before the quaternary period. ESR dates from the NW trend faults range from 300ka to 700ka. On the other hand, ESR date of the NS trend fault is about 50ka. Results of this research suggest that long-term cyclic fault activity near the Ulzin nuclear reactor continued into the pleistocene.

  10. Off-fault tip splay networks: a genetic and generic property of faults indicative of their long-term propagation, and a major component of off-fault damage

    Science.gov (United States)

    Perrin, C.; Manighetti, I.; Gaudemer, Y.

    2015-12-01

    Faults grow over the long-term by accumulating displacement and lengthening, i.e., propagating laterally. We use fault maps and fault propagation evidences available in literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimeters to thousands of kilometers and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of parent fault length, slip mode, context, etc, tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (~30 and ~10 % of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). Tip splays more commonly develop on one side only of the parent fault. We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. We suggest that they represent the most recent damage off-the parent fault, formed during the most recent phase of fault lengthening. The scaling relation between parent fault length and width of tip splay network implies that damage zones enlarge as parent fault length increases. Elastic properties of host rocks might thus be modified at large distances away from a fault, up to 10% of its length. During an earthquake, a significant fraction of coseismic slip and stress is dissipated into the permanent damage zone that surrounds the causative fault. We infer that coseismic dissipation might occur away from a rupture zone as far as a distance of 10% of the length of its causative fault. Coseismic deformations and stress transfers might thus be significant in broad regions about principal rupture traces. This work has been published in Comptes Rendus Geoscience under doi:10.1016/j.crte.2015.05.002 (http://www.sciencedirect.com/science/article/pii/S1631071315000528).

  11. The San Andreas Fault and a Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    be filled in mostly by sedimentary and erosional material deposited from above. Comparisons between faults on Europa and Earth may generate ideas useful in the study of terrestrial faulting. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. The tidal tension opens the fault; subsequent tidal stress causes it to move lengthwise in one direction. Then the tidal forces close the fault up again. This prevents the area from moving back to its original position. If it moves forward with the next daily tidal cycle, the result is a steady accumulation of these lengthwise offset motions. Unlike Europa, here on Earth, large strike-slip faults such as the San Andreas are set in motion not by tidal pull, but by plate tectonic forces from the planet's mantle. North is to the top of the picture. The Earth picture (left) shows a LandSat Thematic Mapper image acquired in the infrared (1.55 to 1.75 micrometers) by LandSat5 on Friday, October 20th 1989 at 10:21 am. The original resolution was 28.5 meters per picture element. The Europa picture (right)is centered at 66 degrees south latitude and 195 degrees west longitude. The highest resolution frames, obtained at 40 meters per picture element with a spacecraft range of less than 4200 kilometers (2600 miles), are set in the context of lower resolution regional frames obtained at 200 meters per picture element and a range of 22,000 kilometers (13,600 miles). The images were taken on September 26, 1998 by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL HTTP://www.jpl.nasa.gov/galileo/sepo

  12. Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.

    Science.gov (United States)

    Malatesta, L. C.; Lamb, M. P.

    2014-12-01

    Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.

  13. Integrating soils and geomorphology in mountains - An example from the Front Range of Colorado

    Science.gov (United States)

    Birkeland, P.W.; Shroba, R.R.; Burns, S.F.; Price, A.B.; Tonkin, P.J.

    2003-01-01

    Soil distribution in high mountains reflects the impact of several soil-forming factors. Soil geomorphologists use key pedological properties to estimate ages of Quaternary deposits of various depositional environments, estimate long-term stability and instability of landscapes, and make inferences on past climatic change. Once the influence of the soil-forming factors is known, soils can be used to help interpret some aspects of landscape evolution that otherwise might go undetected. The Front Range of Colorado rises from the plains of the Colorado Piedmont at about 1700 m past a widespread, dissected Tertiary erosion surface between 2300 and 2800 m up to an alpine Continental Divide at 3600 to over 4000 m. Pleistocene valley glaciers reached the western edge of the erosion surface. Parent rocks are broadly uniform (granitic and gneissic). Climate varies from 46 cm mean annual precipitation (MAP) and 11 ??C mean annual temperature (MAT) in the plains to 102 cm and -4 ??C, respectively, near the range crest. Vegetation follows climate with grassland in the plains, forest in the mountains, and tundra above 3450 m. Soils reflect the bioclimatic transect from plains to divide: A/Bw or Bt/Bk or K (grassland) to A/E/Bw or Bt/C (forest) to A/Bw/C (tundra). Corresponding soil pH values decrease from 8 to less than 5 with increasing elevation. The pedogenic clay minerals dominant in each major vegetation zone are: smectite (grassland), vermiculite (forest), and 1.0-1.8 nm mixed-layer clays (tundra). Within the lower forested zone, the topographic factor (aspect) results in more leached, colder soils, with relatively thin O horizons, well-expressed E horizons and Bt horizons (Alfisols) on N-facing slopes, whereas soils with thicker A horizons, less developed or no E horizons, and Bw or Bt horizons (Mollisols) are more common on S-facing slopes. The topographic factor in the tundra results in soil patterns as a consequence of wind-redistributed snow and the amount of time it

  14. A high dynamic range programmable CMOS front-end filter with a tuning range from 1850 to 2400 MHz

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais; Lee, Thomas H.; Bruun, Erik

    2005-01-01

    This paper presents a highly programmable front-end filter and amplifier intended to replace SAW filters and low noise amplifiers (LNA) in multi-mode direct conversion radio receivers. The filter has a 42 MHz bandwidth, is tunable from 1850 to 2400 MHz, achieves a 5.8 dB NF, -25 dBm in-band 1-d...

  15. Monitoring of crustal movements in the San Andreas fault zone by a satellite-borne ranging system. Ph.D. Thesis

    Science.gov (United States)

    Kumar, M.

    1976-01-01

    The Close Grid Geodynamic Measurement System is conceived as an orbiting ranging device with a ground base grid of reflectors or transponders (spacing 1.0 to 30 km), which are projected to be of low cost (maintenance free and unattended), and which will permit the saturation of a local area to obtain data useful to monitor crustal movements in the San Andreas fault zone. The system includes a station network of 75 stations covering an area between 36 deg N and 38 deg N latitudes, and 237 deg E and 239 deg E longitudes, with roughly half of the stations on either side of the faults. In addition, the simulation of crustal movements through the introduction of changes in the relative positions between grid stations, weather effect for intervisibility between satellite and station and loss of observations thereof, and comparative evaluation of various observational scheme-patterns have been critically studied.

  16. Self-similar slip distributions on irregular shaped faults

    Science.gov (United States)

    Herrero, A.; Murphy, S.

    2018-06-01

    We propose a strategy to place a self-similar slip distribution on a complex fault surface that is represented by an unstructured mesh. This is possible by applying a strategy based on the composite source model where a hierarchical set of asperities, each with its own slip function which is dependent on the distance from the asperity centre. Central to this technique is the efficient, accurate computation of distance between two points on the fault surface. This is known as the geodetic distance problem. We propose a method to compute the distance across complex non-planar surfaces based on a corollary of the Huygens' principle. The difference between this method compared to others sample-based algorithms which precede it is the use of a curved front at a local level to calculate the distance. This technique produces a highly accurate computation of the distance as the curvature of the front is linked to the distance from the source. Our local scheme is based on a sequence of two trilaterations, producing a robust algorithm which is highly precise. We test the strategy on a planar surface in order to assess its ability to keep the self-similarity properties of a slip distribution. We also present a synthetic self-similar slip distribution on a real slab topography for a M8.5 event. This method for computing distance may be extended to the estimation of first arrival times in both complex 3D surfaces or 3D volumes.

  17. Carbon monoxide degassing from seismic fault zones in the Basin and Range province, west of Beijing, China

    Science.gov (United States)

    Sun, Yutao; Zhou, Xiaocheng; Zheng, Guodong; Li, Jing; Shi, Hongyu; Guo, Zhengfu; Du, Jianguo

    2017-11-01

    Degassing of carbon monoxide (CO), which plays a significant role in the contribution of deep carbon to the atmosphere, commonly occurs within active fault zones. CO degassing from soil to the atmosphere in the Basin and Range province, west of Beijing (BRPB), China, was investigated by in-situ field measurements in the active fault zones. The measured concentrations of CO in soil gas in the BRPB ranged from 0.29 × 10-6 to 1.1 × 10-6 with a mean value of 0.6 × 10-6, which is approximately twice as large as that in the atmosphere. Net fluxes of CO degassing ranged from -48.6 mg m-2 d-1 to 12.03 mg m-2 d-1. The diffusion of CO from soil to the atmosphere in the BRPB was estimated to be at least 7.6 × 103 ton/a, which is comparable to the corresponding result of about 1.2 × 104 ton/a for CO2. CO concentrations were spatially heterogeneous with clearly higher concentrations along the NE-SW trending in the BRPB. These elevated values of CO concentrations were also coincident with the region with low-velocity and high conductivity in deep mantle, and high Poisson's ratio in the crust, thereby suggesting that CO degassing from the soil might be linked to upwelling of the asthenospheric mantle. Other sources of CO in the soil gas are suggested to be dominated by chemical reactions between deep fluids and carbonate minerals (e.g., dolomite, limestone, and siderite) in country rocks. Biogenic processes may also contribute to the CO in soil gas. The spatial distribution patterns of CO concentrations are coincident with the stress field, suggesting that the concentrations of CO could be a potential indicator for crustal stress field and, hence is potential useful for earthquake monitoring in the BRPB.

  18. Fault structure, frictional properties and mixed-mode fault slip behavior

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Smith, S.A.F.; Marone, C.

    2011-01-01

    Recent high-resolution GPS and seismological data reveal that tectonic faults exhibit complex, multi-modeslipbehavior including earthquakes, creep events, slow and silent earthquakes, low-frequency events and earthquake afterslip. The physical processes responsible for this range of behavior and the

  19. Development of Hydrologic Characterization Technology of Fault Zones

    International Nuclear Information System (INIS)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-01-01

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone is the one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  20. Development of Hydrologic Characterization Technology of Fault Zones

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  1. Douglas-fir tussock moth- and Douglas-fir beetle-caused mortality in a ponderosa pine/Douglas-fir forest in the Colorado Front Range, USA

    Science.gov (United States)

    Jose F. Negron; Ann M. Lynch; Willis C. Schaupp; Vladimir Bocharnikov

    2014-01-01

    An outbreak of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough, occurred in the South Platte River drainage on the Pike-San Isabel National Forest in the Colorado Front Range attacking Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco. Stocking levels, species composition, and tree size in heavily and lightly defoliated stands were similar. Douglas-fir...

  2. Light-Front Holography and the Light-Front Schrodinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2012-08-15

    One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

  3. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

    Science.gov (United States)

    Fry, C.; Dix, J.

    2017-12-01

    Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

  4. Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc

    Science.gov (United States)

    Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki

    2018-04-01

    Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.

  5. Merging long range transportation planning with public health: a case study from Utah's Wasatch Front.

    Science.gov (United States)

    Burbidge, Shaunna K

    2010-01-01

    US transportation systems have been identified as a problem for public health, as they often encourage automobile transportation and discourage physical activity. This paper provides a case study examination of the Public Health Component of the Wasatch Front Regional Council's Regional Transportation Plan. This plan provides an example of what transportation planners at Utah's largest metropolitan planning organization (MPO) are doing to encourage physical activity through transportation. Existing active living research was used to guide recommendations using a process that included a comprehensive literature review and a review of existing state programs, advisory group and stakeholder meetings, and policy recommendations based on existing local conditions. Stakeholders from a diversity of background and interests came together with one common goal: to improve public health. Based on this collaborative process, nine policy approaches were specifically recommended for approval and integration in the Wasatch Front Regional Transportation Plan. By using current research as a guide and integrating a variety of interests, the Wasatch Front Regional Council is setting a new standard for a collaborative multi-modal focus in transportation planning, which can be replicated nationwide.

  6. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    Science.gov (United States)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  7. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System

    OpenAIRE

    後藤, 秀昭

    1996-01-01

    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  8. Deformation around basin scale normal faults

    International Nuclear Information System (INIS)

    Spahic, D.

    2010-01-01

    Faults in the earth crust occur within large range of scales from microscale over mesoscopic to large basin scale faults. Frequently deformation associated with faulting is not only limited to the fault plane alone, but rather forms a combination with continuous near field deformation in the wall rock, a phenomenon that is generally called fault drag. The correct interpretation and recognition of fault drag is fundamental for the reconstruction of the fault history and determination of fault kinematics, as well as prediction in areas of limited exposure or beyond comprehensive seismic resolution. Based on fault analyses derived from 3D visualization of natural examples of fault drag, the importance of fault geometry for the deformation of marker horizons around faults is investigated. The complex 3D structural models presented here are based on a combination of geophysical datasets and geological fieldwork. On an outcrop scale example of fault drag in the hanging wall of a normal fault, located at St. Margarethen, Burgenland, Austria, data from Ground Penetrating Radar (GPR) measurements, detailed mapping and terrestrial laser scanning were used to construct a high-resolution structural model of the fault plane, the deformed marker horizons and associated secondary faults. In order to obtain geometrical information about the largely unexposed master fault surface, a standard listric balancing dip domain technique was employed. The results indicate that for this normal fault a listric shape can be excluded, as the constructed fault has a geologically meaningless shape cutting upsection into the sedimentary strata. This kinematic modeling result is additionally supported by the observation of deformed horizons in the footwall of the structure. Alternatively, a planar fault model with reverse drag of markers in the hanging wall and footwall is proposed. Deformation around basin scale normal faults. A second part of this thesis investigates a large scale normal fault

  9. Absolute age determination of quaternary fault and formation

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Kwang Sik; Choi, Man Sik [Korea Basic Science Institute, Taejon (Korea, Republic of)] (and others)

    2003-03-15

    Rb-Sr and K-Ar dating results for the fault rocks suggest the occurrence of recurrent fault activity around 80-95 Ma, 70 Ma, 50 Ma, 30 Ma and 23 Ma along the Yangsan fault zone. The apparent K-Ar ages tend to be older than Rb-Sr ages, probably indicating the effect of excess radiogenic Ar, which will be furthur investigated by Ar-Ar method. The OSL SAR protocol using 220 .deg. C cut-heat yields reproducible and stratigraphically consistent OSL ages ranging from 71 ka to 48 ka for beach deposits of the marine terrace No 2. The apparent OSL ages for the marine terrace No 3 range from 92 ka to 61 ka. These ages constrain the minimum age of the platform considering the underestimation effect resulted from deposition underwater. Therefore we regard the formation age of the terrace No 3 as MIS(Marine Isotopic Stage) 5c or 5e. Rb-Sr and K-Ar dating results for the fault rocks suggest the occurrence of recurrent fault activity around 40 Ma, 30 Ma and 23 Ma along the Ulsan fault zone. Relatively young (< 10 Ma) fault activities are recognized in the Oesa, Janghangri and Wonwonsa sites.

  10. Investigating Strain Transfer Along the Southern San Andreas Fault: A Geomorphic and Geodetic Study of Block Rotation in the Eastern Transverse Ranges, Joshua Tree National Park, CA

    Science.gov (United States)

    Guns, K. A.; Bennett, R. A.; Blisniuk, K.

    2017-12-01

    To better evaluate the distribution and transfer of strain and slip along the Southern San Andreas Fault (SSAF) zone in the northern Coachella valley in southern California, we integrate geological and geodetic observations to test whether strain is being transferred away from the SSAF system towards the Eastern California Shear Zone through microblock rotation of the Eastern Transverse Ranges (ETR). The faults of the ETR consist of five east-west trending left lateral strike slip faults that have measured cumulative offsets of up to 20 km and as low as 1 km. Present kinematic and block models present a variety of slip rate estimates, from as low as zero to as high as 7 mm/yr, suggesting a gap in our understanding of what role these faults play in the larger system. To determine whether present-day block rotation along these faults is contributing to strain transfer in the region, we are applying 10Be surface exposure dating methods to observed offset channel and alluvial fan deposits in order to estimate fault slip rates along two faults in the ETR. We present observations of offset geomorphic landforms using field mapping and LiDAR data at three sites along the Blue Cut Fault and one site along the Smoke Tree Wash Fault in Joshua Tree National Park which indicate recent Quaternary fault activity. Initial results of site mapping and clast count analyses reveal at least three stages of offset, including potential Holocene offsets, for one site along the Blue Cut Fault, while preliminary 10Be geochronology is in progress. This geologic slip rate data, combined with our new geodetic surface velocity field derived from updated campaign-based GPS measurements within Joshua Tree National Park will allow us to construct a suite of elastic fault block models to elucidate rates of strain transfer away from the SSAF and how that strain transfer may be affecting the length of the interseismic period along the SSAF.

  11. A nonlinear least-squares inverse analysis of strike-slip faulting with application to the San Andreas fault

    Science.gov (United States)

    Williams, Charles A.; Richardson, Randall M.

    1988-01-01

    A nonlinear weighted least-squares analysis was performed for a synthetic elastic layer over a viscoelastic half-space model of strike-slip faulting. Also, an inversion of strain rate data was attempted for the locked portions of the San Andreas fault in California. Based on an eigenvector analysis of synthetic data, it is found that the only parameter which can be resolved is the average shear modulus of the elastic layer and viscoelastic half-space. The other parameters were obtained by performing a suite of inversions for the fault. The inversions on data from the northern San Andreas resulted in predicted parameter ranges similar to those produced by inversions on data from the whole fault.

  12. The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic

    Science.gov (United States)

    Armstrong, Curtis D.; Humphreys, William M.

    2003-01-01

    We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.

  13. The mechanics of fault-bend folding and tear-fault systems in the Niger Delta

    Science.gov (United States)

    Benesh, Nathan Philip

    This dissertation investigates the mechanics of fault-bend folding using the discrete element method (DEM) and explores the nature of tear-fault systems in the deep-water Niger Delta fold-and-thrust belt. In Chapter 1, we employ the DEM to investigate the development of growth structures in anticlinal fault-bend folds. This work was inspired by observations that growth strata in active folds show a pronounced upward decrease in bed dip, in contrast to traditional kinematic fault-bend fold models. Our analysis shows that the modeled folds grow largely by parallel folding as specified by the kinematic theory; however, the process of folding over a broad axial surface zone yields a component of fold growth by limb rotation that is consistent with the patterns observed in natural folds. This result has important implications for how growth structures can he used to constrain slip and paleo-earthquake ages on active blind-thrust faults. In Chapter 2, we expand our DEM study to investigate the development of a wider range of fault-bend folds. We examine the influence of mechanical stratigraphy and quantitatively compare our models with the relationships between fold and fault shape prescribed by the kinematic theory. While the synclinal fault-bend models closely match the kinematic theory, the modeled anticlinal fault-bend folds show robust behavior that is distinct from the kinematic theory. Specifically, we observe that modeled structures maintain a linear relationship between fold shape (gamma) and fault-horizon cutoff angle (theta), rather than expressing the non-linear relationship with two distinct modes of anticlinal folding that is prescribed by the kinematic theory. These observations lead to a revised quantitative relationship for fault-bend folds that can serve as a useful interpretation tool. Finally, in Chapter 3, we examine the 3D relationships of tear- and thrust-fault systems in the western, deep-water Niger Delta. Using 3D seismic reflection data and new

  14. Active faults, paleoseismology, and historical fault rupture in northern Wairarapa, North Island, New Zealand

    International Nuclear Information System (INIS)

    Schermer, E.R.; Van Dissen, R.; Berryman, K.R.; Kelsey, H.M.; Cashman, S.M.

    2004-01-01

    Active faulting in the upper plate of the Hikurangi subduction zone, North Island, New Zealand, represents a significant seismic hazard that is not yet well understood. In northern Wairarapa, the geometry and kinematics of active faults, and the Quaternary and historical surface-rupture record, have not previously been studied in detail. We present the results of mapping and paleoseismicity studies on faults in the northern Wairarapa region to document the characteristics of active faults and the timing of earthquakes. We focus on evidence for surface rupture in the 1855 Wairarapa (M w 8.2) and 1934 Pahiatua (M w 7.4) earthquakes, two of New Zealand's largest historical earthquakes. The Dreyers Rock, Alfredton, Saunders Road, Waitawhiti, and Waipukaka faults form a northeast-trending, east-stepping array of faults. Detailed mapping of offset geomorphic features shows the rupture lengths vary from c. 7 to 20 km and single-event displacements range from 3 to 7 m, suggesting the faults are capable of generating M >7 earthquakes. Trenching results show that two earthquakes have occurred on the Alfredton Fault since c. 2900 cal. BP. The most recent event probably occurred during the 1855 Wairarapa earthquake as slip propagated northward from the Wairarapa Fault and across a 6 km wide step. Waipukaka Fault trenches show that at least three surface-rupturing earthquakes have occurred since 8290-7880 cal. BP. Analysis of stratigraphic and historical evidence suggests the most recent rupture occurred during the 1934 Pahiatua earthquake. Estimates of slip rates provided by these data suggest that a larger component of strike slip than previously suspected is occurring within the upper plate and that the faults accommodate a significant proportion of the dextral component of oblique subduction. Assessment of seismic hazard is difficult because the known fault scarp lengths appear too short to have accommodated the estimated single-event displacements. Faults in the region are

  15. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska

    Science.gov (United States)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.

    2011-12-01

    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low

  16. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  17. Pulse-Like Rupture Induced by Three-Dimensional Fault Zone Flower Structures

    KAUST Repository

    Pelties, Christian; Huang, Yihe; Ampuero, Jean-Paul

    2014-01-01

    interface. This effect is robust against a wide range of fault zone widths, absence of frictional healing, variation of initial stress conditions, attenuation, and off-fault plasticity. These numerical studies covered two-dimensional problems with fault

  18. New Constraints on Late Pleistocene - Holocene Slip Rates and Seismic Behavior Along the Panamint Valley Fault Zone, Eastern California

    Science.gov (United States)

    Hoffman, W.; Kirby, E.; McDonald, E.; Walker, J.; Gosse, J.

    2008-12-01

    Space-time patterns of seismic strain release along active fault systems can provide insight into the geodynamics of deforming lithosphere. Along the eastern California shear zone, fault systems south of the Garlock fault appear to have experienced an ongoing pulse of seismic activity over the past ca. 1 kyr (Rockwell et al., 2000). Recently, this cluster of seismicity has been implicated as both cause and consequence of the oft-cited discrepancy between geodetic velocities and geologic slip rates in this region (Dolan et al., 2007; Oskin et al., 2008). Whether other faults within the shear zone exhibit similar behavior remains uncertain. Here we report the preliminary results of new investigations of slip rates and seismic history along the Panamint Valley fault zone (PVFZ). The PVFZ is characterized by dextral, oblique-normal displacement along a moderately to shallowly-dipping range front fault. Previous workers (Zhang et al., 1990) identified a relatively recent surface rupture confined to a ~25 km segment of the southern fault zone and associated with dextral displacements of ~3 m. Our mapping reveals that youthful scarps ranging from 2-4 m in height are distributed along the central portion of the fault zone for at least 50 km. North of Ballarat, a releasing jog in the fault zone forms a 2-3 km long embayment. Displacement of debris-flow levees and channels along NE-striking faults that confirm that displacement is nearly dip-slip, consistent with an overall transport direction toward ~340°, and affording an opportunity to constrain fault displacement directly from the vertical offset of alluvial surfaces of varying age. At the mouth of Happy Canyon, the frontal fault strand displaces a fresh debris-flow by ~3-4 m; soil development atop the debris-flow surface is incipient to negligible. Radiocarbon ages from logs embedded in the flow matrix constrain the timing of the most recent event to younger than ~ 600 cal yr BP. Older alluvial surfaces, such as that

  19. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR......) part. The FTC architecture can be applied for additive faults, parametric faults, and for system structural changes. Only parametric faults will be considered in this paper. The main focus in this paper is on the use of the new approach of active fault diagnosis in connection with FTC. The active fault...... diagnosis approach is based on including an auxiliary input in the system. A fault signature matrix is introduced in connection with AFD, given as the transfer function from the auxiliary input to the residual output. This can be considered as a generalization of the passive fault diagnosis case, where...

  20. A Detailed Study of Debris Flow Source Areas in the Northern Colorado Front Range.

    Science.gov (United States)

    Arana-Morales, A.; Baum, R. L.; Godt, J.

    2014-12-01

    Nearly continuous, heavy rainfall occurred during 9-13 September 2013 causing flooding and widespread landslides and debris flows in the northern Colorado Front Range. Whereas many recent studies have identified erosion as the most common process leading to debris flows in the mountains of Colorado, nearly all of the debris flows mapped in this event began as small, shallow landslides. We mapped the boundaries of 415 September 2013 debris flows in the Eldorado Springs and Boulder 7.5-minute quadrangles using 0.5-m-resolution satellite imagery. We characterized the landslide source areas of six debris flows in the field as part of an effort to identify what factors controlled their locations. Four were on a dip slope in sedimentary rocks in the Pinebrook Hills area, near Boulder, and the other two were in granitic rocks near Gross Reservoir. Although we observed no obvious geomorphic differences between the source areas and surrounding non-landslide areas, we noted several characteristics that the source areas all had in common. Slopes of the source areas ranged from 28° to 35° and most occurred on planar or slightly concave slopes that were vegetated with grass, small shrubs, and sparse trees. The source areas were shallow, irregularly shaped, and elongated downslope: widths ranged from 4 to 9 m, lengths from 6 to 40 m and depths ranged from 0.7 to 1.2 m. Colluvium was the source material for all of the debris flows and bedrock was exposed in the basal surface of all of the source areas. We observed no evidence for concentrated surface runoff upslope from the sources. Local curvature and roughness of bedrock and surface topography, and depth distribution and heterogeneity of the colluvium appear to have controlled the specific locations of these shallow debris-flow source areas. The observed distribution and characteristics of the source areas help guide ongoing efforts to model initiation of the debris flows.

  1. Tilted lake shorelines record the onset of motion along the Hilton Creek fault adjacent to Long Valley caldera, CA, USA

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.; Cervelli, P. F.; Langbein, J. O.

    2010-12-01

    Prominent normal faults occur within and around Long Valley caldera, in the eastern Sierra Nevada of California. However, their relationship to both the magmatic and tectonic evolution of the caldera since the 760 ka eruption of the Bishop Tuff remains poorly understood. In particular, in the Mono-Inyo Craters north of Long Valley, extensional faulting appears to be replaced by dike intrusion where magma is available in the crust. However, it is unclear whether extensional faults in Long Valley caldera have been active since the eruption of the Bishop Tuff (when the current topography was established) or are a relatively young phenomenon owing to the cooling and crystallization of the Long Valley magma reservoir. Here we use GPS geodesy and geomorphology to investigate the evolution of the Hilton Creek fault, the primary range-front fault bounding Long Valley caldera to the southwest. Our primary goals are to determine how long the Hilton Creek fault has been active and whether slip rates have been constant over that time interval. To characterize the modern deformation field, we capitalize on recently (July, 2010) reoccupied GPS benchmarks first established in 1999-2000. These fixed-array GPS data show no discernible evidence for recent slip on the Hilton Creek fault, which further highlights the need for longer-term constraints on fault motion. To establish a fault slip history, we rely on a suite of five prominent shorelines from Pleistocene Long Valley Lake whose ages are well constrained based on field relationships to dated lavas, and that are tilted southward toward the Hilton Creek fault. A preliminary analysis of shoreline orientations using GPS surveys and a 5-m-resolution Topographic Synthetic Aperture Radar (TOPSAR) digital elevation model shows that lake shorelines tilt towards the Hilton Creek fault at roughly parallel gradients (~ 0.6%). The measured shorelines range in inferred age from 100 ka to 500 ka, which constrain recent slip on the Hilton

  2. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation - An experimental study

    Science.gov (United States)

    Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John

    2016-10-01

    We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional

  3. Slip Potential of Faults in the Fort Worth Basin

    Science.gov (United States)

    Hennings, P.; Osmond, J.; Lund Snee, J. E.; Zoback, M. D.

    2017-12-01

    Similar to other areas of the southcentral United States, the Fort Worth Basin of NE Texas has experienced an increase in the rate of seismicity which has been attributed to injection of waste water in deep saline aquifers. To assess the hazard of induced seismicity in the basin we have integrated new data on location and character of previously known and unknown faults, stress state, and pore pressure to produce an assessment of fault slip potential which can be used to investigate prior and ongoing earthquake sequences and for development of mitigation strategies. We have assembled data on faults in the basin from published sources, 2D and 3D seismic data, and interpretations provided from petroleum operators to yield a 3D fault model with 292 faults ranging in strike-length from 116 to 0.4 km. The faults have mostly normal geometries, all cut the disposal intervals, and most are presumed to cut into the underlying crystalline and metamorphic basement. Analysis of outcrops along the SW flank of the basin assist with geometric characterization of the fault systems. The interpretation of stress state comes from integration of wellbore image and sonic data, reservoir stimulation data, and earthquake focal mechanisms. The orientation of SHmax is generally uniform across the basin but stress style changes from being more strike-slip in the NE part of the basin to normal faulting in the SW part. Estimates of pore pressure come from a basin-scale hydrogeologic model as history-matched to injection test data. With these deterministic inputs and appropriate ranges of uncertainty we assess the conditional probability that faults in our 3D model might slip via Mohr-Coulomb reactivation in response to increases in injected-related pore pressure. A key component of the analysis is constraining the uncertainties associated with each of the principal parameters. Many of the faults in the model are interpreted to be critically-stressed within reasonable ranges of uncertainty.

  4. Naive Fault Tree : formulation of the approach

    NARCIS (Netherlands)

    Rajabalinejad, M

    2017-01-01

    Naive Fault Tree (NFT) accepts a single value or a range of values for each basic event and returns values for the top event. This accommodates the need of commonly used Fault Trees (FT) for precise data making them prone to data concerns and limiting their area of application. This paper extends

  5. Editorial: Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, Stephen E.; Lamarche, Juliette; Gauthier, Bertand D. M.; Dunne, William M.

    2018-03-01

    This issue of the Journal of Structural Geology titled Spatial arrangement of faults and opening-mode fractures explores a fundamental characteristic of fault and fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings.

  6. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  7. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    International Nuclear Information System (INIS)

    Cumbest, R.J.

    2000-01-01

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion

  8. Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains

    Science.gov (United States)

    Mattern, Frank; Scharf, Andreas

    2018-04-01

    The Oman Mountains formed by late Cretaceous obduction of the Tethys-derived Semail Ophiolite. This study concerns the postobductional extension on the northern flank of the mountain belt. Nine sites at the northern margins of the Jabal Akhdar/Nakhl and Saih Hatat domes of the Eastern Oman ("Hajar") Mountains were investigated. The northern margins are marked by a system of major interconnected extensional faults, the "Frontal Range Fault". While the vertical displacements along the Saih Hatat and westerly located Jabal Nakhl domes measure 2.25-6.25 km, 0.5-4.5 km and 4-7 km, respectively, it amounts to 1-5 km along the Jabal Akhdar Dome. Extension had started during the late Cretaceous, towards the end of ophiolite emplacement. Two stages of extension can be ascertained (late Cretaceous to early Eocene and probably Oligocene) at the eastern part of the Frontal Range Fault System (Wadi Kabir and Fanja Graben faults of similar strike). Along the intervening and differently striking fault segments at Sad and Sunub the same two stages of deformation are deduced. The first stage is characterized again by extension. The second stage is marked by dextral motion, including local transtension. Probable Oligocene extension affected the Batinah Coast Fault while it also affected the Wadi Kabir Fault and the Fanja Graben. It is unclear whether the western portion of the Frontal Range Fault also went through two stages of deformation. Bedding-parallel ductile and brittle deformation is a common phenomenon. Hot springs and listwaenite are associated with dextral releasing bends within the fault system, as well as a basalt intrusion of probable Oligocene age. A structural transect through the Frontal Range along the superbly exposed Wadi Bani Kharous (Jabal Akhdar Dome) revealed that extension affected the Frontal Range at least 2.5 km south of the Frontal Range Fault. Also here, bedding-parallel shearing is important, but not exclusive. A late Cretaceous thrust was

  9. Crustal Density Variation Along the San Andreas Fault Controls Its Secondary Faults Distribution and Dip Direction

    Science.gov (United States)

    Yang, H.; Moresi, L. N.

    2017-12-01

    The San Andreas fault forms a dominant component of the transform boundary between the Pacific and the North American plate. The density and strength of the complex accretionary margin is very heterogeneous. Based on the density structure of the lithosphere in the SW United States, we utilize the 3D finite element thermomechanical, viscoplastic model (Underworld2) to simulate deformation in the San Andreas Fault system. The purpose of the model is to examine the role of a big bend in the existing geometry. In particular, the big bend of the fault is an initial condition of in our model. We first test the strength of the fault by comparing the surface principle stresses from our numerical model with the in situ tectonic stress. The best fit model indicates the model with extremely weak fault (friction coefficient 200 kg/m3) than surrounding blocks. In contrast, the Mojave block is detected to find that it has lost its mafic lower crust by other geophysical surveys. Our model indicates strong strain localization at the jointer boundary between two blocks, which is an analogue for the Garlock fault. High density lower crust material of the Great Valley tends to under-thrust beneath the Transverse Range near the big bend. This motion is likely to rotate the fault plane from the initial vertical direction to dip to the southwest. For the straight section, north to the big bend, the fault is nearly vertical. The geometry of the fault plane is consistent with field observations.

  10. Front-end electronics for the upgraded GMRT

    International Nuclear Information System (INIS)

    Raut, Anil N; Bhalerao, Vilas; Kumar, A Praveen

    2013-01-01

    This paper first describes briefly the existing front-end receiver in use at the GMRT observatory and then details the ongoing development of next generation receiver systems for the upgraded GMRT. It covers the design of the new, two stage, room temperature, low noise amplifiers with better noise performance and matching, and improved dynamic range that are being implemented for the 130–260 MHz, 250–500 MHz and 550–900 MHz bands of the upgraded GMRT front-end systems.

  11. Direct quantification of PM2.5 fossil and biomass carbon within the Northern Front Range Air Quality Study's domain

    International Nuclear Information System (INIS)

    Klinedinst, D.B.; Currie, L.A.

    1999-01-01

    Radiocarbon ( 14 C) analyses of PM 2.5 (particulate matter with an aerodynamic diameter of 2.5 microm or less) of both ambient and source samples from the Northern Front Range Air Quality Study (NFRAQS) in Colorado were performed. The 14 C analyses were undertaken to provide direct fossil vs modern (biomass) carbon source discrimination data for a subset of summer and winter 1996--1997 samples collected within the Denver metropolitan area. Samples were prepared for 14 C accelerator mass spectrometry measurements using techniques specially developed for small samples, i.e., lt100 μg C. For the days and sampling periods analyzed the median and interquartile range of the winter blank corrected fraction of modern carbon was 23% (16--34%) at Welby and 27% (25--37%) at Brighton. The summer samples exhibited a more mixed signature with a median and interquartile range of 47% (9--70%). Source samples yielded 14 C signatures consistent with expectation. The authors conclude fossil-derived sources contribute substantially in both seasons and at both locations; however, the biomass carbon component dominates episodically in the summer

  12. Redox fronts

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.

    1993-01-01

    This article describes the investigations of redox fronts performed at the Osamu Utsumi mine. Results obtained by modelling groups on the rate of movement of the redox fronts and on the chemical reactions involved are discussed. Some of the most important rockwater interactions which occur at redox fronts can be modelled reasonably well but the complex redox chemistry of elements like sulphur is poorly simulated. The observed enrichment of many trace elements close to the redox fronts could be of significance for high-level waste repositories, but cannot be quantified by existing models. (author) 6 figs., 1 tab

  13. The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

    Science.gov (United States)

    Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.

    2017-06-01

    Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

  14. Numerical seismic modelling of fault-fold structures in a mountainous setting

    Energy Technology Data Exchange (ETDEWEB)

    Kirtland Grech, M.G.; Lawton, D.C.; Spratt, D.A. (Calgary Univ., AB (Canada))

    1999-01-01

    Experiments were conducted to determine the performance of different prestack migration algorithms in complex structural areas, particularly in the presence of rugged topography and thrust faults that result in severe lateral and vertical velocity changes, using a series of numerical seismic models. The numerical model used was based on a cross section through the Rocky Mountains Front Ranges of Western Canada and is 33 km wide and 11 km deep. The best migrated section was obtained with FD shot migration in depth and from topography, using the known velocity model. This result was superior to Kirchhoff depth migration from topography and from a flat datum. As the velocities departed from their true value, the deeper events were most affected, because of the accumulation of velocity errors with depth. The small-scale features of Target A, in the shallower part of the section, could still be interpreted even when the velocities were inaccurate. In the presence of velocity errors, the different structures could still be interpreted, but were at the wrong depth and had the wrong structural shape and size. Layers that were of the order of 1 km in width and 500 km in thickness, such as Layer 4, were the most poorly imaged and focussed, both with time migration and with depth migration. Fault planes were not imaged in the absence of a velocity contrast across them, making some FW cutoffs difficult to interpret. 2 refs.

  15. Numerical seismic modelling of fault-fold structures in a mountainous setting

    Energy Technology Data Exchange (ETDEWEB)

    Kirtland Grech, M.G.; Lawton, D.C.; Spratt, D.A. [Calgary Univ., AB (Canada)

    1999-11-01

    Experiments were conducted to determine the performance of different prestack migration algorithms in complex structural areas, particularly in the presence of rugged topography and thrust faults that result in severe lateral and vertical velocity changes, using a series of numerical seismic models. The numerical model used was based on a cross section through the Rocky Mountains Front Ranges of Western Canada and is 33 km wide and 11 km deep. The best migrated section was obtained with FD shot migration in depth and from topography, using the known velocity model. This result was superior to Kirchhoff depth migration from topography and from a flat datum. As the velocities departed from their true value, the deeper events were most affected, because of the accumulation of velocity errors with depth. The small-scale features of Target A, in the shallower part of the section, could still be interpreted even when the velocities were inaccurate. In the presence of velocity errors, the different structures could still be interpreted, but were at the wrong depth and had the wrong structural shape and size. Layers that were of the order of 1 km in width and 500 km in thickness, such as Layer 4, were the most poorly imaged and focussed, both with time migration and with depth migration. Fault planes were not imaged in the absence of a velocity contrast across them, making some FW cutoffs difficult to interpret. 2 refs.

  16. Tomography of the Chukou Fault Zone, Southwest Taiwan: Insights from Microearthquake Data

    Directory of Open Access Journals (Sweden)

    Yu-Lien Yeh

    2016-06-01

    Full Text Available The vigorous collision between the Eurasian plate and Philippine Sea plate in Taiwan causes a series of imbricate fold and thrust belts to develop at the deformation front. The Chukou Fault (CKF, characterized by a thrust type fault, located in Chiayi County, southwest (SW Taiwan, is a prominent boundary between the fold-thrust belts and the Western Coastal Plain. Most of the seismicity in SW Taiwan is associated with this fault and its neighboring fault systems. The seismotectonic structures in the CKF zone, especially in the east, are complex due to the interactions among fault systems with distinct slip motions. To gain better insights into the seismogenic characteristics in the CKF zone, we used 1661 microearthquakes recorded by a temporary dense broadband seismic network and the Central Weather Bureau Seismic Network (CWBSN between 2003 and 2004 to investigate the physical properties of the crust in the CKF zone. A waveform cross-correlation technique was applied to 143086 pairs of waveform data to determine the relative differential travel time between the P- and S-waves. By combining both the absolute and relative differential travel time data, we were able to obtain a new 3-D crustal P-wave velocity structure and Vp/Vs ratios. This study suggests that by using both absolute and relative differential travel time data in tomographic inversion can obtain precise 3-D velocity images and also gain better correlation between seismic events and fault structures, which is crucial for understanding the seismogenic process in our study area.

  17. Evidence and theory for the prediction of tectonic activity in the Basin and Range Province of Nevada and Utah for the next one million years

    International Nuclear Information System (INIS)

    Lovejoy, E.M.P.

    1979-01-01

    Major conclusions of the report are: Important seismic activity in the next one million years will be restricted to the Intermountain Seismic Belt. Minor seismic activity in the same period will be restricted to the Nevada Seismic Belt, Sierra Nevada front, and Reno-Yellowstone lineament. There will be seismic inactivity in the same period in the rest of the Basin and Range Province except locally along high mountain frontal fault zones. In these zones, isostatic unloading will produce slow, secular, mild seismic activity for many millions of years to come

  18. Earthquake behavior of the Enriquillo fault zone, Haiti revealed by interactive terrain visualization

    Science.gov (United States)

    Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.

    2010-12-01

    The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and

  19. An integrated model for the assessment of unmitigated fault events in ITER's superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, S., E-mail: simon.mcintosh@ccfe.ac.uk [Culham Centre for Fusion Energy, Culham Science Center, Abingdon OX14 3DB, Oxfordshire (United Kingdom); Holmes, A. [Marcham Scientific Ltd., Sarum House, 10 Salisbury Rd., Hungerford RG17 0LH, Berkshire (United Kingdom); Cave-Ayland, K.; Ash, A.; Domptail, F.; Zheng, S.; Surrey, E.; Taylor, N. [Culham Centre for Fusion Energy, Culham Science Center, Abingdon OX14 3DB, Oxfordshire (United Kingdom); Hamada, K.; Mitchell, N. [ITER Organization, Magnet Division, St Paul Lez Durance Cedex (France)

    2016-11-01

    A large amount of energy is stored in ITER superconducting magnet system. Faults which initiate a discharge are typically mitigated to quickly transfer away the stored magnetic energy for dissipation through a bank of resistors. In an extreme unlikely occurrence, an unmitigated fault event represents a potentially severe discharge of energy into the coils and the surrounding structure. A new simulation tool has been developed for the detailed study of these unmitigated fault events. The tool integrates: the propagation of multiple quench fronts initiated by an initial fault or by subsequent coil heating; the 3D convection and conduction of heat through the magnet structure; the 3D conduction of current and Ohmic heating both along the conductor and via alternate pathways generated by arcing or material melt. Arcs linking broken sections of conductor or separate turns are simulated with a new unconstrained arc model to balance electrical current paths and heat generation within the arc column in the multi-physics model. The influence under the high Lorenz forces present is taken into account. Simulation results for an unmitigated fault in a poloidal field coil are presented.

  20. Evidence for chaotic fault interactions in the seismicity of the San Andreas fault and Nankai trough

    Science.gov (United States)

    Huang, Jie; Turcotte, D. L.

    1990-01-01

    The dynamical behavior introduced by fault interactions is examined here using a simple spring-loaded, slider-block model with velocity-weakening friction. The model consists of two slider blocks coupled to each other and to a constant-velocity driver by elastic springs. For an asymmetric system in which the frictional forces on the two blocks are not equal, the solutions exhibit chaotic behavior. The system's behavior over a range of parameter values seems to be generally analogous to that of weakly coupled segments of an active fault. Similarities between the model simulations and observed patterns of seismicity on the south central San Andreas fault in California and in the Nankai trough along the coast of southwestern Japan.

  1. Subsidence and Fault Displacement Along the Long Point Fault Derived from Continuous GPS Observations (2012-2017)

    Science.gov (United States)

    Tsibanos, V.; Wang, G.

    2017-12-01

    The Long Point Fault located in Houston Texas is a complex system of normal faults which causes significant damage to urban infrastructure on both private and public property. This case study focuses on the 20-km long fault using high accuracy continuously operating global positioning satellite (GPS) stations to delineate fault movement over five years (2012 - 2017). The Long Point Fault is the longest active fault in the greater Houston area that damages roads, buried pipes, concrete structures and buildings and creates a financial burden for the city of Houston and the residents who live in close vicinity to the fault trace. In order to monitor fault displacement along the surface 11 permanent and continuously operating GPS stations were installed 6 on the hanging wall and 5 on the footwall. This study is an overview of the GPS observations from 2013 to 2017. GPS positions were processed with both relative (double differencing) and absolute Precise Point Positioning (PPP) techniques. The PPP solutions that are referred to IGS08 reference frame were transformed to the Stable Houston Reference Frame (SHRF16). Our results show no considerable horizontal displacements across the fault, but do show uneven vertical displacement attributed to regional subsidence in the range of (5 - 10 mm/yr). This subsidence can be associated to compaction of silty clays in the Chicot and Evangeline aquifers whose water depths are approximately 50m and 80m below the land surface (bls). These levels are below the regional pre-consolidation head that is about 30 to 40m bls. Recent research indicates subsidence will continue to occur until the aquifer levels reach the pre-consolidation head. With further GPS observations both the Long Point Fault and regional land subsidence can be monitored providing important geological data to the Houston community.

  2. Algorithmic fault tree construction by component-based system modeling

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2008-01-01

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  3. From fault classification to fault tolerance for multi-agent systems

    CERN Document Server

    Potiron, Katia; Taillibert, Patrick

    2013-01-01

    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  4. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  5. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    Science.gov (United States)

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  6. Summary: beyond fault trees to fault graphs

    International Nuclear Information System (INIS)

    Alesso, H.P.; Prassinos, P.; Smith, C.F.

    1984-09-01

    Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability

  7. Ultra-wideband wireless receiver front-end for high-speed indoor applications

    Directory of Open Access Journals (Sweden)

    Zhe-Yang Huang

    2014-12-01

    Full Text Available Low-noise, ultra-wideband (UWB wireless receiver front-end circuits were presented in this study. A two-stage common-source low-noise amplifier with wideband input impedance matching network, an active-balun and a double-balanced down-conversion mixer were adopted in the UWB wireless receiver front-end. The proposed wireless receiver front-end circuits were implemented in 0.18 μm radio-frequency-CMOS process. The maximum down-conversion power gain of the front-end is 25.8 dB; minimum single-sideband noise figure of the front-end is 4.9 dB over complete UWB band ranging from 3.1 to 10.6 GHz. Power consumption including buffers is 39.2 mW.

  8. Physical and Transport Property Variations Within Carbonate-Bearing Fault Zones: Insights From the Monte Maggio Fault (Central Italy)

    Science.gov (United States)

    Trippetta, F.; Carpenter, B. M.; Mollo, S.; Scuderi, M. M.; Scarlato, P.; Collettini, C.

    2017-11-01

    The physical characterization of carbonate-bearing normal faults is fundamental for resource development and seismic hazard. Here we report laboratory measurements of density, porosity, Vp, Vs, elastic moduli, and permeability for a range of effective confining pressures (0.1-100 MPa), conducted on samples representing different structural domains of a carbonate-bearing fault. We find a reduction in porosity from the fault breccia (11.7% total and 6.2% connected) to the main fault plane (9% total and 3.5% connected), with both domains showing higher porosity compared to the protolith (6.8% total and 1.1% connected). With increasing confining pressure, P wave velocity evolves from 4.5 to 5.9 km/s in the fault breccia, is constant at 5.9 km/s approaching the fault plane and is low (4.9 km/s) in clay-rich fault domains. We find that while the fault breccia shows pressure sensitive behavior (a reduction in permeability from 2 × 10-16 to 2 × 10-17 m2), the cemented cataclasite close to the fault plane is characterized by pressure-independent behavior (permeability 4 × 10-17 m2). Our results indicate that the deformation processes occurring within the different fault structural domains influence the physical and transport properties of the fault zone. In situ Vp profiles match well the laboratory measurements demonstrating that laboratory data are valuable for implications at larger scale. Combining the experimental values of elastic moduli and frictional properties it results that at shallow crustal levels, M ≤ 1 earthquakes are less favored, in agreement with earthquake-depth distribution during the L'Aquila 2009 seismic sequence that occurred on carbonates.

  9. Lithosphere, crust and basement ridges across Ganga and Indus basins and seismicity along the Himalayan front, India and Western Fold Belt, Pakistan

    Science.gov (United States)

    Ravi Kumar, M.; Mishra, D. C.; Singh, B.

    2013-10-01

    Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi-Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada-Son lineament. (v) The Munghyr-Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar-Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW-SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.

  10. Influence of fault asymmetric dislocation on the gravity changes

    Directory of Open Access Journals (Sweden)

    Duan Hurong

    2014-08-01

    Full Text Available A fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth’s crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, energy release associated with rapid movement on active faults is the cause of most earthquakes. The relationship between unevenness dislocation and gravity changes was studied on the theoretical thought of differential fault. Simulated observation values were adopted to deduce the gravity changes with the model of asymmetric fault and the model of Okada, respectively. The characteristic of unevennes fault momentum distribution is from two end points to middle by 0 according to a certain continuous functional increase. However, the fault momentum distribution in the fault length range is a constant when the Okada model is adopted. Numerical simulation experiments for the activities of the strike-slip fault, dip-slip fault and extension fault were carried out, respectively, to find that both the gravity contours and the gravity variation values are consistent when either of the two models is adopted. The apparent difference lies in that the values at the end points are 17. 97% for the strike-slip fault, 25. 58% for the dip-slip fault, and 24. 73% for the extension fault.

  11. Nickel-Hydrogen Battery Fault Clearing at Low State of Charge

    Science.gov (United States)

    Lurie, C.

    1997-01-01

    Fault clearing currents were achieved and maintained at discharge rates from C/2 to C/3 at high and low states of charge. The fault clearing plateau voltage is strong function of: discharge current, and voltage-prior-to-the-fault-clearing-event and a weak function of state of charge. Voltage performance, for the range of conditions reported, is summarized.

  12. Dislocation Motion and the Microphysics of Flash Heating and Weakening of Faults during Earthquakes

    Directory of Open Access Journals (Sweden)

    Elena Spagnuolo

    2016-07-01

    Full Text Available Earthquakes are the result of slip along faults and are due to the decrease of rock frictional strength (dynamic weakening with increasing slip and slip rate. Friction experiments simulating the abrupt accelerations (>>10 m/s2, slip rates (~1 m/s, and normal stresses (>>10 MPa expected at the passage of the earthquake rupture along the front of fault patches, measured large fault dynamic weakening for slip rates larger than a critical velocity of 0.01–0.1 m/s. The dynamic weakening corresponds to a decrease of the friction coefficient (defined as the ratio of shear stress vs. normal stress up to 40%–50% after few millimetres of slip (flash weakening, almost independently of rock type. The microstructural evolution of the sliding interfaces with slip may yield hints on the microphysical processes responsible for flash weakening. At the microscopic scale, the frictional strength results from the interaction of micro- to nano-scale surface irregularities (asperities which deform during fault sliding. During flash weakening, the visco-plastic and brittle work on the asperities results in abrupt frictional heating (flash heating and grain size reduction associated with mechano-chemical reactions (e.g., decarbonation in CO2-bearing minerals such as calcite and dolomite; dehydration in water-bearing minerals such as clays, serpentine, etc. and phase transitions (e.g., flash melting in silicate-bearing rocks. However, flash weakening is also associated with grain size reduction down to the nanoscale. Using focused ion beam scanning and transmission electron microscopy, we studied the micro-physical mechanisms associated with flash heating and nanograin formation in carbonate-bearing fault rocks. Experiments were conducted on pre-cut Carrara marble (99.9% calcite cylinders using a rotary shear apparatus at conditions relevant to seismic rupture propagation. Flash heating and weakening in calcite-bearing rocks is associated with a shock-like stress

  13. Update: San Andreas Fault experiment

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.

    1984-01-01

    Satellite laser ranging techniques are used to monitor the broad motion of the tectonic plates comprising the San Andreas Fault System. The San Andreas Fault Experiment, (SAFE), has progressed through the upgrades made to laser system hardware and an improvement in the modeling capabilities of the spaceborne laser targets. Of special note is the launch of the Laser Geodynamic Satellite, LAGEOS spacecraft, NASA's only completely dedicated laser satellite in 1976. The results of plate motion projected into this 896 km measured line over the past eleven years are summarized and intercompared.

  14. A digital Front-End and Readout MIcrosystem for calorimetry at LHC

    CERN Multimedia

    2002-01-01

    % RD-16 A Digital Front-End and Readout Microsystem for Calorimetry at LHC \\\\ \\\\Front-end signal processing for calorimetric detectors is essential in order to achieve adequate selectivity in the trigger function of an LHC experiment, with data identification and compaction before readout being required in the harsh, high rate environment of a high luminosity hadron machine. Other crucial considerations are the extremely wide dynamic range and bandwidth requirements, as well as the volume of data to be transferred to following stages of the trigger and readout system. These requirements are best met by an early digitalization of the detector information, followed by integrated digital signal processing and buffering functions covering the trigger latencies.\\\\ \\\\The FERMI (Front-End Readout MIcrosystem) is a digital implementation of the front-end and readout electronic chain for calorimeters. It is based on dynamic range compression, high speed A to D converters, a fully programmable pipeline/digital filter c...

  15. Deep permeability of the San Andreas Fault from San Andreas Fault Observatory at Depth (SAFOD) core samples

    Science.gov (United States)

    Morrow, Carolyn A.; Lockner, David A.; Moore, Diane E.; Hickman, Stephen H.

    2014-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific borehole near Parkfield, California crosses two actively creeping shear zones at a depth of 2.7 km. Core samples retrieved from these active strands consist of a foliated, Mg-clay-rich gouge containing porphyroclasts of serpentinite and sedimentary rock. The adjacent damage zone and country rocks are comprised of variably deformed, fine-grained sandstones, siltstones, and mudstones. We conducted laboratory tests to measure the permeability of representative samples from each structural unit at effective confining pressures, Pe up to the maximum estimated in situ Pe of 120 MPa. Permeability values of intact samples adjacent to the creeping strands ranged from 10−18 to 10−21 m2 at Pe = 10 MPa and decreased with applied confining pressure to 10−20–10−22 m2 at 120 MPa. Values for intact foliated gouge samples (10−21–6 × 10−23 m2 over the same pressure range) were distinctly lower than those for the surrounding rocks due to their fine-grained, clay-rich character. Permeability of both intact and crushed-and-sieved foliated gouge measured during shearing at Pe ≥ 70 MPa ranged from 2 to 4 × 10−22 m2 in the direction perpendicular to shearing and was largely insensitive to shear displacement out to a maximum displacement of 10 mm. The weak, actively-deforming foliated gouge zones have ultra-low permeability, making the active strands of the San Andreas Fault effective barriers to cross-fault fluid flow. The low matrix permeability of the San Andreas Fault creeping zones and adjacent rock combined with observations of abundant fractures in the core over a range of scales suggests that fluid flow outside of the actively-deforming gouge zones is probably fracture dominated.

  16. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  17. Refining fault slip rates using multiple displaced terrace risers-An example from the Honey Lake fault, NE California, USA

    Science.gov (United States)

    Gold, Ryan D.; Briggs, Richard W.; Crone, Anthony J.; DuRoss, Christopher B.

    2017-11-01

    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4-1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced

  18. Refining fault slip rates using multiple displaced terrace risers—An example from the Honey Lake fault, NE California, USA

    Science.gov (United States)

    Gold, Ryan D.; Briggs, Richard; Crone, Anthony J.; Duross, Christopher

    2017-01-01

    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4–1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced

  19. LAMPF first-fault identifier for fast transient faults

    International Nuclear Information System (INIS)

    Swanson, A.R.; Hill, R.E.

    1979-01-01

    The LAMPF accelerator is presently producing 800-MeV proton beams at 0.5 mA average current. Machine protection for such a high-intensity accelerator requires a fast shutdown mechanism, which can turn off the beam within a few microseconds of the occurrence of a machine fault. The resulting beam unloading transients cause the rf systems to exceed control loop tolerances and consequently generate multiple fault indications for identification by the control computer. The problem is to isolate the primary fault or cause of beam shutdown while disregarding as many as 50 secondary fault indications that occur as a result of beam shutdown. The LAMPF First-Fault Identifier (FFI) for fast transient faults is operational and has proven capable of first-fault identification. The FFI design utilized features of the Fast Protection System that were previously implemented for beam chopping and rf power conservation. No software changes were required

  20. TREDRA, Minimal Cut Sets Fault Tree Plot Program

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1983-01-01

    1 - Description of problem or function: TREDRA is a computer program for drafting report-quality fault trees. The input to TREDRA is similar to input for standard computer programs that find minimal cut sets from fault trees. Output includes fault tree plots containing all standard fault tree logic and event symbols, gate and event labels, and an output description for each event in the fault tree. TREDRA contains the following features: a variety of program options that allow flexibility in the program output; capability for automatic pagination of the output fault tree, when necessary; input groups which allow labeling of gates, events, and their output descriptions; a symbol library which includes standard fault tree symbols plus several less frequently used symbols; user control of character size and overall plot size; and extensive input error checking and diagnostic oriented output. 2 - Method of solution: Fault trees are generated by user-supplied control parameters and a coded description of the fault tree structure consisting of the name of each gate, the gate type, the number of inputs to the gate, and the names of these inputs. 3 - Restrictions on the complexity of the problem: TREDRA can produce fault trees with a minimum of 3 and a maximum of 56 levels. The width of each level may range from 3 to 37. A total of 50 transfers is allowed during pagination

  1. Spatial arrangement and size distribution of normal faults, Buckskin detachment upper plate, Western Arizona

    Science.gov (United States)

    Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.

    2018-03-01

    Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.

  2. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    Science.gov (United States)

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  3. Source properties of dynamic rupture pulses with off-fault plasticity

    KAUST Repository

    Gabriel, A.-A.

    2013-08-01

    Large dynamic stresses near earthquake rupture fronts may induce an inelastic response of the surrounding materials, leading to increased energy absorption that may affect dynamic rupture. We systematically investigate the effects of off-fault plastic energy dissipation in 2-D in-plane dynamic rupture simulations under velocity-and-state-dependent friction with severe weakening at high slip velocity. We find that plasticity does not alter the nature of the transitions between different rupture styles (decaying versus growing, pulse-like versus crack-like, and subshear versus supershear ruptures) but increases their required background stress and nucleation size. We systematically quantify the effect of amplitude and orientation of background shear stresses on the asymptotic properties of self-similar pulse-like ruptures: peak slip rate, rupture speed, healing front speed, slip gradient, and the relative contribution of plastic strain to seismic moment. Peak slip velocity and rupture speed remain bounded. From fracture mechanics arguments, we derive a nonlinear relation between their limiting values, appropriate also for crack-like and supershear ruptures. At low background stress, plasticity turns self-similar pulses into steady state pulses, for which plastic strain contributes significantly to the seismic moment. We find that the closeness to failure of the background stress state is an adequate predictor of rupture speed for relatively slow events. Our proposed relations between state of stress and earthquake source properties in the presence of off-fault plasticity may contribute to the improved interpretation of earthquake observations and to pseudodynamic source modeling for ground motion prediction.

  4. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    International Nuclear Information System (INIS)

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses' ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain

  5. FERMI: a digital Front End and Readout MIcrosystem for high resolution calorimetry

    International Nuclear Information System (INIS)

    Alexanian, H.; Appelquist, G.; Bailly, P.

    1995-01-01

    We present a digital solution for the front-end electronics of high resolution calorimeters at future colliders. It is based on analogue signal compression, high speed A/D converters, a fully programmable pipeline and a digital signal processing (DSP) chain with local intelligence and system supervision. This digital solution is aimed at providing maximal front-end processing power by performing waveform analysis using DSP methods. For the system integration of the multichannel device a multi-chip, silicon-on-silicon multi-chip module (MCM) has been adopted. This solution allows a high level of integration of complex analogue and digital functions, with excellent flexibility in mixing technologies for the different functional blocks. This type of multichip integration provides a high degree of reliability and programmability at both the function and the system level, with the additional possibility of customising the microsystem to detector-specific requirements. For enhanced reliability in high radiation environments, fault tolerance strategies, i.e. redundancy, reconfigurability, majority voting and coding for error detection and correction, are integrated into the design. ((orig.))

  6. Kinetic roughening and pinning of coupled precursor and impregnation fronts in porous media

    International Nuclear Information System (INIS)

    Balankin, Alexander S.; Garcia Paredes, Rafael; Marquez Gonsalez, Jesus; Susarrey Huerta, Orlando; Morales Matamoros, Daniel; Castrejon Vacio, Fernando

    2006-01-01

    In the paper wetting experiments at low evaporation rate, after a short Washburn regime the film flow of filtered water overtakes the main impregnation front. Accordingly, we study the kinetic roughening dynamics and pinning of two strongly coupled fronts moving in different papers. We find that the kinetic roughening dynamics of precursor and main fronts belongs to different universality classes, nevertheless, at the final stage the distance between the fronts decrease until both fronts are pinned in the same configuration z P (x,y), the scaling properties of which are determined by the long-range correlations in the pore network

  7. Novel neural networks-based fault tolerant control scheme with fault alarm.

    Science.gov (United States)

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  8. Analysis of Fault Spacing in Thrust-Belt Wedges Using Numerical Modeling

    Science.gov (United States)

    Regensburger, P. V.; Ito, G.

    2017-12-01

    Numerical modeling is invaluable in studying the mechanical processes governing the evolution of geologic features such as thrust-belt wedges. The mechanisms controlling thrust fault spacing in wedges is not well understood. Our numerical model treats the thrust belt as a visco-elastic-plastic continuum and uses a finite-difference, marker-in-cell method to solve for conservation of mass and momentum. From these conservation laws, stress is calculated and Byerlee's law is used to determine the shear stress required for a fault to form. Each model consists of a layer of crust, initially 3-km-thick, carried on top of a basal décollement, which moves at a constant speed towards a rigid backstop. A series of models were run with varied material properties, focusing on the angle of basal friction at the décollement, the angle of friction within the crust, and the cohesion of the crust. We investigate how these properties affected the spacing between thrusts that have the most time-integrated history of slip and therefore have the greatest effect on the large-scale undulations in surface topography. The surface position of these faults, which extend through most of the crustal layer, are identifiable as local maxima in positive curvature of surface topography. Tracking the temporal evolution of faults, we find that thrust blocks are widest when they first form at the front of the wedge and then they tend to contract over time as more crustal material is carried to the wedge. Within each model, thrust blocks form with similar initial widths, but individual thrust blocks develop differently and may approach an asymptotic width over time. The median of thrust block widths across the whole wedge tends to decrease with time. Median fault spacing shows a positive correlation with both wedge cohesion and internal friction. In contrast, median fault spacing exhibits a negative correlation at small angles of basal friction (laws that can be used to predict fault spacing in

  9. Criteria for Seismic Splay Fault Activation During Subduction Earthquakes

    Science.gov (United States)

    Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.

    2008-12-01

    As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying

  10. Automated Fault Interpretation and Extraction using Improved Supplementary Seismic Datasets

    Science.gov (United States)

    Bollmann, T. A.; Shank, R.

    2017-12-01

    During the interpretation of seismic volumes, it is necessary to interpret faults along with horizons of interest. With the improvement of technology, the interpretation of faults can be expedited with the aid of different algorithms that create supplementary seismic attributes, such as semblance and coherency. These products highlight discontinuities, but still need a large amount of human interaction to interpret faults and are plagued by noise and stratigraphic discontinuities. Hale (2013) presents a method to improve on these datasets by creating what is referred to as a Fault Likelihood volume. In general, these volumes contain less noise and do not emphasize stratigraphic features. Instead, planar features within a specified strike and dip range are highlighted. Once a satisfactory Fault Likelihood Volume is created, extraction of fault surfaces is much easier. The extracted fault surfaces are then exported to interpretation software for QC. Numerous software packages have implemented this methodology with varying results. After investigating these platforms, we developed a preferred Automated Fault Interpretation workflow.

  11. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  12. Interseismic Strain Accumulation of the Gazikoy-Saros segment (Ganos fault) of the North Anatolian Fault Zone

    Science.gov (United States)

    Havazli, E.; Wdowinski, S.; Amelung, F.

    2017-12-01

    The North Anatolian Fault Zone (NAFZ) is one of the most active continental transform faults in the world. A westward migrating earthquake sequence has started in 1939 in Erzincan and the last two events of this sequence occurred in 1999 in Izmit and Duzce manifesting the importance of NAFZ on the seismic hazard potential of the region. NAFZ exhibits slip rates ranging from 14-30 mm/yr along its 1500 km length with a right lateral strike slip characteristic. In the East of the Marmara Sea, the NAFZ splits into two branches. The Gazikoy-Saros segment (Ganos Fault) is the westernmost and onshore segment of the northern branch. The ENE-WSW oriented Ganos Fault is seismically active. It produced a Ms 7.2 earthquake in 1912, which was followed by several large aftershocks, including Ms 6.3 and Ms 6.9 events. Since 1912, the Ganos Fault did not produce any significant earthquakes (> M 5), in contrast to its adjacent segments, which produced 20 M>5 earthquakes, including a M 6.7 event, offshore in Gulf of Saros. Interseismic strain accumulation along the Ganos Fault was assessed from sparse GPS measurements along a single transect located perpendicular to the fault zone, suggesting strain accumulation rate of 20-25 mm/yr. Insofar, InSAR studies, based on C-band data, didn't produce conclusive results due to low coherence over the fault zone area, which is highly vegetated. In this study, we present a detailed interseismic velocity map of the Ganos Fault zone derived from L-band InSAR observations. We use 21 ALOS PALSAR scenes acquired over a 5-year period, from 2007 to 2011. We processed the ALOS data using the PySAR software, which is the University of Miami version of the Small Baseline (SB) method. The L-band observations enabled us to overcome the coherence issue in the study area. Our initial results indicate a maximum velocity of 15 mm/yr across the fault zone. The high spatial resolution of the InSAR-based interseismic velocity map will enable us to better to

  13. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  14. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  15. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  16. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan

    Science.gov (United States)

    Abe, S.

    2010-12-01

    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  17. Fault finder

    Science.gov (United States)

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  18. Long-term changes to river regimes prior to late Holocene coseismic faulting, Canterbury, New Zealand

    Science.gov (United States)

    Campbell, Jocelyn K.; Nicol, Andrew; Howard, Matthew E.

    2003-09-01

    Two sites are described from range front faults along the foothills of the Southern Alps of New Zealand, where apparently a period of 200-300 years of accelerated river incision preceded late Holocene coseismic ruptures, each probably in excess of M w 7.5. They relate to separate fault segments and seismic events on a transpressive system associated with fault-driven folding, but both show similar evidence of off-plane aseismic deformation during the downcutting phase. The incision history is documented by the ages, relative elevations and profiles of degradation terraces. The surface dating is largely based on the weathering rind technique of McSaveney (McSaveney, M.J., 1992. A Manual for Weathering-rind Dating of Grey Sandstones of the Torlesse Supergroup, New Zealand. 92/4, Institute of Geological and Nuclear Sciences), supported by some consistent radiocarbon ages. On the Porters Pass Fault, drainage from Red Lakes has incised up to 12 m into late Pleistocene recessional outwash, but the oldest degradation terrace surface T I is dated at only 690±50 years BP. The upper terraces T I and T II converge uniformly downstream right across the fault trace, but by T III the terrace has a reversed gradient upstream. T II and T III break into multiple small terraces on the hanging wall only, close to the fault trace. Continued backtilting during incision caused T IV to diverge downstream relative to the older surfaces. Coseismic faulting displaced T V and all the older terraces by a metre high reverse scarp and an uncertain right lateral component. This event cannot be younger than a nearby ca. 500 year old rock avalanche covering the trace. The second site in the middle reaches of the Waipara River valley involves the interaction of four faults associated with the Doctors Anticline. The main river and tributaries have incised steeply into a 2000 year old mid-Holocene, broad, degradation surface downcutting as much as 55 m. Beginning approximately 600 years ago

  19. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    Science.gov (United States)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  20. Hardwired interlock system with fault latchability and annunciation panel for electron accelerators

    International Nuclear Information System (INIS)

    Mukesh Kumar; Roychoudhury, P.; Nimje, V.T.

    2011-01-01

    that, if any digital input changes its status from healthy (logic 'TRUE') to unhealthy (logic 'FALSE'), this hard-wired interlock system trips beam generation power supply and high voltage generation system of electron accelerator. On the front panel of the system, LEDs are provided to show the signal status and its Interlock enable status. This paper describes about the hard-wired interlock system with fault latchablity and annunciation panel for electron accelerators. (author)

  1. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...

  2. Characterization of Quaternary and suspected Quaternary faults, regional studies, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.E.; Bucknam, R.C.; Crone, A.J.; Haller, K.M.; Machette, M.N.; Personius, S.F.; Barnhard, T.P.; Cecil, M.J.; Dart, R.L.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies that resulted in the identification of 51 relevant and potentially relevant individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. Geologic data used to characterize the regional faults and fault zones as relevant or potentially relevant seismic sources includes age and displacement information, maximum fault lengths, and minimum distances between the fault and the Yucca Mountain site. For many of the regional faults, no paleoseismic field studies have previously been conducted, and age and displacement data are sparse to nonexistent. In November 1994, the Branch of Earthquake and Landslide Hazards entered into two Memoranda of Agreement with the Yucca Mountain Project Branch to conduct field reconnaissance, analysis, and interpretation of six relevant and six potentially relevant regional faults. This report describes the results of study of those faults exclusive of those in the Pahrump-Stewart Valley-Ash Meadows-Amargosa Valley areas. We also include results of a cursory study of faults on the west flank of the Specter Range and in the northern part of the Last Chance Range. A four-phase strategy was implemented for the field study.

  3. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    Science.gov (United States)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The

  4. Front propagation and clustering in the stochastic nonlocal Fisher equation

    Science.gov (United States)

    Ganan, Yehuda A.; Kessler, David A.

    2018-04-01

    In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

  5. Fault-weighted quantification method of fault detection coverage through fault mode and effect analysis in digital I&C systems

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun; Lee, Seung Jun, E-mail: sjlee420@unist.ac.kr; Jung, Wondea

    2017-05-15

    Highlights: • We developed the fault-weighted quantification method of fault detection coverage. • The method has been applied to specific digital reactor protection system. • The unavailability of the module had 20-times difference with the traditional method. • Several experimental tests will be effectively prioritized using this method. - Abstract: The one of the most outstanding features of a digital I&C system is the use of a fault-tolerant technique. With an awareness regarding the importance of thequantification of fault detection coverage of fault-tolerant techniques, several researches related to the fault injection method were developed and employed to quantify a fault detection coverage. In the fault injection method, each injected fault has a different importance because the frequency of realization of every injected fault is different. However, there have been no previous studies addressing the importance and weighting factor of each injected fault. In this work, a new method for allocating the weighting to each injected fault using the failure mode and effect analysis data was proposed. For application, the fault-weighted quantification method has also been applied to specific digital reactor protection system to quantify the fault detection coverage. One of the major findings in an application was that we may estimate the unavailability of the specific module in digital I&C systems about 20-times smaller than real value when we use a traditional method. The other finding was that we can also classify the importance of the experimental case. Therefore, this method is expected to not only suggest an accurate quantification procedure of fault-detection coverage by weighting the injected faults, but to also contribute to an effective fault injection experiment by sorting the importance of the failure categories.

  6. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  7. Effects of cold fronts on ozone in the Houston-Galveston-Brazoria Area

    Science.gov (United States)

    Lei, R.; Talbot, R. W.; Wang, Y.; Wang, S. C.; Estes, M. J.

    2017-12-01

    A cold front may have confounding effects on ozone by bringing in contaminated air masses to an area and causing lower temperatures which likely lead to low ozone production rates. Literature reports on individual cold front events showing increasing and decreasing effects on ozone. The Houston-Galveston-Brazoria (HGB) area as the energy capital of USA suffers relatively high ozone levels. The effect of cold fronts on HGB ozone in the long-term range remains unknown. Weather Prediction Center (WPC) Surface Analysis Archive from National Oceanic and Atmospheric Administration (NOAA) which records cold fronts' positions since 2003 has been employed in this study. The results show the count of cold fronts passing the HGB area shows no clear trend but great interannual variation. Cold front appearance in summer is much less than in other seasons. In general, both mean MDA8 and background ozone during cold front days increased compared non-cold front days. This increasing effect has been enhanced during post-front days and summer season. Cluster analysis on meteorological parameters shows cold front days with high precipitation or wind speed could lower the MDA8 and background ozone but the proportion of those days are low in all cold front days. It may explain why cold fronts show increasing effects on ozone in the HGB area.

  8. Using Magnetics and Topography to Model Fault Splays of the Hilton Creek Fault System within the Long Valley Caldera

    Science.gov (United States)

    De Cristofaro, J. L.; Polet, J.

    2017-12-01

    The Hilton Creek Fault (HCF) is a range-bounding extensional fault that forms the eastern escarpment of California's Sierra Nevada mountain range, near the town of Mammoth Lakes. The fault is well mapped along its main trace to the south of the Long Valley Caldera (LVC), but the location and nature of its northern terminus is poorly constrained. The fault terminates as a series of left-stepping splays within the LVC, an area of active volcanism that most notably erupted 760 ka, and currently experiences continuous geothermal activity and sporadic earthquake swarms. The timing of the most recent motion on these fault splays is debated, as is the threat posed by this section of the Hilton Creek Fault. The Third Uniform California Earthquake Rupture Forecast (UCERF3) model depicts the HCF as a single strand projecting up to 12km into the LVC. However, Bailey (1989) and Hill and Montgomery-Brown (2015) have argued against this model, suggesting that extensional faulting within the Caldera has been accommodated by the ongoing volcanic uplift and thus the intracaldera section of the HCF has not experienced motion since 760ka.We intend to map the intracaldera fault splays and model their subsurface characteristics to better assess their rupture history and potential. This will be accomplished using high-resolution topography and subsurface geophysical methods, including ground-based magnetics. Preliminary work was performed using high-precision Nikon Nivo 5.C total stations to generate elevation profiles and a backpack mounted GEM GS-19 proton precession magnetometer. The initial results reveal a correlation between magnetic anomalies and topography. East-West topographic profiles show terrace-like steps, sub-meter in height, which correlate to changes in the magnetic data. Continued study of the magnetic data using Oasis Montaj 3D modeling software is planned. Additionally, we intend to prepare a high-resolution terrain model using structure-from-motion techniques

  9. Active, capable, and potentially active faults - a paleoseismic perspective

    Science.gov (United States)

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  10. Kinetics of a plasma streamer ionization front

    Science.gov (United States)

    Taccogna, Francesco; Pellegrini, Fabrizio

    2018-02-01

    A streamer is a non-linear and non-local gas breakdown mode. Its large-scale coherent structures, such as the ionization front, are the final results of a hierarchical cascade starting from the single particle dynamics. Therefore, this phenomenon covers, by definition, different space and time scales. In this study, we have reproduced the ionization front formation and development by means of a particle-based numerical methodology. The physical system investigated concerns of a high-voltage ns-pulsed surface dielectric barrier discharge. Different reduced electric field regimes ranging from 50 to 500 Td have been considered for two gases: pure atomic Ar and molecular N2. Results have shown the detailed structure of the negative streamer: the leading edge, the head, the interior and the tail. Its dynamical evolution and the front propagation velocity have been calculated for the different cases. Finally, the deviation of the electron energy distribution function from equilibrium behavior has been pointed out as a result of a fast and very localized phenomenon.

  11. The origin of high frequency radiation in earthquakes and the geometry of faulting

    Science.gov (United States)

    Madariaga, R.

    2004-12-01

    In a seminal paper of 1967 Kei Aki discovered the scaling law of earthquake spectra and showed that, among other things, the high frequency decay was of type omega-squared. This implies that high frequency displacement amplitudes are proportional to a characteristic length of the fault, and radiated energy scales with the cube of the fault dimension, just like seismic moment. Later in the seventies, it was found out that a simple explanation for this frequency dependence of spectra was that high frequencies were generated by stopping phases, waves emitted by changes in speed of the rupture front as it propagates along the fault, but this did not explain the scaling of high frequency waves with fault length. Earthquake energy balance is such that, ignoring attenuation, radiated energy is the change in strain energy minus energy released for overcoming friction. Until recently the latter was considered to be a material property that did not scale with fault size. Yet, in another classical paper Aki and Das estimated in the late 70s that energy release rate also scaled with earthquake size, because earthquakes were often stopped by barriers or changed rupture speed at them. This observation was independently confirmed in the late 90s by Ide and Takeo and Olsen et al who found that energy release rates for Kobe and Landers were in the order of a MJ/m2, implying that Gc necessarily scales with earthquake size, because if this was a material property, small earthquakes would never occur. Using both simple analytical and numerical models developed by Addia-Bedia and Aochi and Madariaga, we examine the consequence of these observations for the scaling of high frequency waves with fault size. We demonstrate using some classical results by Kostrov, Husseiny and Freund that high frequency energy flow measures energy release rate and is generated when ruptures change velocity (both direction and speed) at fault kinks or jogs. Our results explain why super shear ruptures are

  12. The effects of transistor source-to-gate bridging faults in complex CMOS gates

    Science.gov (United States)

    Visweswaran, G. S.; Ali, Akhtar-Uz-Zaman M.; Lala, Parag K.; Hartmann, Carlos R. P.

    1991-06-01

    A study of the effect of gate-to-source bridging faults in the pull-up section of a complex CMOS gate is presented. The manifestation of these faults depends on the resistance value of the connection causing the bridging. It is shown that such faults manifest themselves either as stuck-at or stuck-open faults and can be detected by tests for stuck-at and stuck-open faults generated for the equivalent logic current. It is observed that for transistor channel lengths larger than 1 microns there exists a range of values of the bridging resistance for which the fault behaves as a pseudo-stuck-open fault.

  13. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    Science.gov (United States)

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  14. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  15. Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation

    International Nuclear Information System (INIS)

    Long, E J; Hargrave, G K; Jarvis, S; Justham, T; Halliwell, N

    2006-01-01

    Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths

  16. Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Long, E J; Hargrave, G K; Jarvis, S; Justham, T; Halliwell, N [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2006-07-15

    Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths.

  17. Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation

    Science.gov (United States)

    Long, E. J.; Hargrave, G. K.; Jarvis, S.; Justham, T.; Halliwell, N.

    2006-07-01

    Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths.

  18. Improved protection system for phase faults on marine vessels based on ratio between negative sequence and positive sequence of the fault current

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Hong, Qiteng; Booth, Campbell

    2018-01-01

    algorithm is implemented in a programmable digital relay embedded in a hardware-in-the-loop (HIL) test set-up that emulates a typical maritime feeder using a real-time digital simulator. The HIL set-up allows testing of the new protection method under a wide range of faults and network conditions......This study presents a new method to protect the radial feeders on marine vessels. The proposed protection method is effective against phase–phase (PP) faults and is based on evaluation of the ratio between the negative sequence and positive sequence of the fault currents. It is shown...... that the magnitude of the introduced ratio increases significantly during the PP fault, hence indicating the fault presence in an electric network. Here, the theoretical background of the new method of protection is firstly discussed, based on which the new protection algorithm is described afterwards. The proposed...

  19. Charcoal and Total Carbon in Soils from Foothills Shrublands to Subalpine Forests in the Colorado Front Range

    Directory of Open Access Journals (Sweden)

    Robert Sanford

    2012-10-01

    Full Text Available Temperate conifer forests in the Colorado Front Range are fire-adapted ecosystems where wildland fires leave a legacy in the form of char and charcoal. Long-term soil charcoal C (CC pools result from the combined effects of wildland fires, aboveground biomass characteristics and soil transfer mechanisms. We measured CC pools in surface soils (0–10 cm at mid-slope positions on east facing aspects in five continuous foothills shrubland and conifer forest types. We found a significant statistical effect of vegetation type on CC pools along this ecological gradient, but not a linear pattern increasing with elevation gain. There is a weak bimodal pattern of CC gain with elevation between foothills shrublands (1.2 mg CC ha−1 and the lower montane, ponderosa pine (1.5 mg CC ha−1 and Douglas-fir (1.5 mg CC ha−1 forest types prior to a mid-elevation decline in upper montane lodgepole pine forests (1.2 mg CC ha−1 before increasing again in the spruce/subalpine fir forests (1.5 mg CC ha−1. We propose that CC forms and accumulates via unique ecological conditions such as fire regime. The range of soil CC amounts and ratios of CC to total SOC are comparable to but lower than other regional estimates.

  20. Traveling interface modulations and anisotropic front propagation in ammonia oxidation over Rh(110)

    Energy Technology Data Exchange (ETDEWEB)

    Rafti, Matías [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Fac. Cs. Exactas, Universidad Nacional de La Plata, 64 y Diag. 113 (1900), La Plata (Argentina); Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover (Germany); Borkenhagen, Benjamin; Lilienkamp, Gerhard [Institut für Energieforschung und Physikalische Technologien, Technische Universität Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany); Lovis, Florian; Smolinsky, Tim; Imbihl, Ronald, E-mail: imbihl@pci.uni-hannvover.de [Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover (Germany)

    2015-11-14

    The bistable NH{sub 3} + O{sub 2} reaction over a Rh(110) surface was explored in the pressure range 10{sup −6}–10{sup −3} mbar and in the temperature range 300–900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.

  1. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan

    2017-05-31

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  2. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan; Hanafy, Sherif; Guo, Bowen; Kosmicki, Maximillian Sunflower

    2017-01-01

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  3. Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Adamovič, Jiří; Málek, Jiří; Prouza, V.

    2014-01-01

    Roč. 59, č. 3 (2014), s. 183-208 ISSN 1802-6222 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : fault architecture * fault plane geometry * drag structures * thrust fault * sandstone * Lusatian Fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.405, year: 2014

  4. Kinematics and Seismotectonics of the Montello Thrust Fault (Southeastern Alps, Italy) Revealed by Local GPS and Seismic Networks

    Science.gov (United States)

    Serpelloni, E.; Anderlini, L.; Cavaliere, A.; Danesi, S.; Pondrelli, S.; Salimbeni, S.; Danecek, P.; Massa, M.; Lovati, S.

    2014-12-01

    The southern Alps fold-and-thrust belt (FTB) in northern Italy is a tectonically active area accommodating large part of the ~N-S Adria-Eurasia plate convergence, that in the southeastern Alps ranges from 1.5 to 2.5 mm/yr, as constrained by a geodetically defined rotation pole. Because of the high seismic hazard of northeastern Italy, the area is well monitored at a regional scale by seismic and GPS networks. However, more localized seismotectonic and kinematic features, at the scale of the fault segments, are not yet resolved, limiting our knowledge about the seismic potential of the different fault segments belonging to the southeastern Alps FTB. Here we present the results obtained from the analysis of data collected during local seismic and geodetic experiments conducted installing denser geophysical networks across the Montello-Bassano-Belluno system, a segment of the FTB that is presently characterized by a lower sismicity rate with respect to the surrounding domains. The Montello anticline, which is the southernmost tectonic features of the southeastern Alps FTB (located ~15 km south of the mountain front), is a nice example of growing anticline associated with a blind thrust fault. However, how the Adria-Alps convergence is partitioned across the FTB and the seismic potential of the Montello thrust (the area has been struck by a Mw~6.5 in 1695 but the causative fault is still largely debated) remained still unresolved. The new, denser, GPS data show that this area is undergoing among the highest geodetic deformation rates of the entire south Alpine chain, with a steep velocity gradient across the Montello anticline. The earthquakes recorded during the experiment, precisely relocated with double difference methods, and the new earthquake focal mechanisms well correlate with available information about sub-surface geological structures and highlight the seismotectonic activity of the Montello thrust fault. We model the GPS velocities using elastic

  5. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  6. Fault Length Vs Fault Displacement Evaluation In The Case Of Cerro Prieto Pull-Apart Basin (Baja California, Mexico) Subsidence

    Science.gov (United States)

    Glowacka, E.; Sarychikhina, O.; Nava Pichardo, F. A.; Farfan, F.; Garcia Arthur, M. A.; Orozco, L.; Brassea, J.

    2013-05-01

    The Cerro Prieto pull-apart basin is located in the southern part of San Andreas Fault system, and is characterized by high seismicity, recent volcanism, tectonic deformation and hydrothermal activity (Lomnitz et al, 1970; Elders et al., 1984; Suárez-Vidal et al., 2008). Since the Cerro Prieto geothermal field production started, in 1973, significant subsidence increase was observed (Glowacka and Nava, 1996, Glowacka et al., 1999), and a relation between fluid extraction rate and subsidence rate has been suggested (op. cit.). Analysis of existing deformation data (Glowacka et al., 1999, 2005, Sarychikhina 2011) points to the fact that, although the extraction changes influence the subsidence rate, the tectonic faults control the spatial extent of the observed subsidence. Tectonic faults act as water barriers in the direction perpendicular to the fault, and/or separate regions with different compaction, and as effect the significant part of the subsidence is released as vertical displacement on the ground surface along fault rupture. These faults ruptures cause damages to roads and irrigation canals and water leakage. Since 1996, a network of geotechnical instruments has operated in the Mexicali Valley, for continuous recording of deformation phenomena. To date, the network (REDECVAM: Mexicali Valley Crustal Strain Measurement Array) includes two crackmeters and eight tiltmeters installed on, or very close to, the main faults; all instruments have sampling intervals in the 1 to 20 minutes range. Additionally, there are benchmarks for measuring vertical fault displacements for which readings are recorded every 3 months. Since the crackmeter measures vertical displacement on the fault at one place only, the question appears: can we use the crackmeter data to evaluate how long is the lenth of the fractured fault, and how quickly it grows, so we can know where we can expect fractures in the canals or roads? We used the Wells and Coppersmith (1994) relations between

  7. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    Science.gov (United States)

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  8. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    Science.gov (United States)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  9. Linear discriminant analysis for welding fault detection

    International Nuclear Information System (INIS)

    Li, X.; Simpson, S.W.

    2010-01-01

    This work presents a new method for real time welding fault detection in industry based on Linear Discriminant Analysis (LDA). A set of parameters was calculated from one second blocks of electrical data recorded during welding and based on control data from reference welds under good conditions, as well as faulty welds. Optimised linear combinations of the parameters were determined with LDA and tested with independent data. Short arc welds in overlap joints were studied with various power sources, shielding gases, wire diameters, and process geometries. Out-of-position faults were investigated. Application of LDA fault detection to a broad range of welding procedures was investigated using a similarity measure based on Principal Component Analysis. The measure determines which reference data are most similar to a given industrial procedure and the appropriate LDA weights are then employed. Overall, results show that Linear Discriminant Analysis gives an effective and consistent performance in real-time welding fault detection.

  10. Geologic map and cross sections of the Embudo Fault Zone in the Southern Taos Valley, Taos County, New Mexico

    Science.gov (United States)

    Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte

    2016-01-01

    Quaternary reactivation of the old and deeply buried Picuris-Pecos faults. If so, then the Los Cordovas structures may extend southward under the Picuris piedmont, where they form growth faults as they merge downward into the Picuris-Pecos bedrock faults. The exceptionally high density of cross-cutting faults in the study area has severely disrupted the stratigraphy of the Picuris formation and the Santa Fe Group. The Picuris formation exists at the surface in the Miranda and Rio Grande del Rancho grabens, and locally along the top of the Picuris piedmont. In the subsurface, it deepens rapidly from the mountain front into the rift basin. In a similar manner, the Tesuque and Chamita Formations are shallowly exposed close to the mountain front, but are down dropped into the basin along the Embudo faults. The Ojo Caliente Sandstone Member of the Tesuque Formation appears to be thickest in the northwestern study area, and thins toward the south and the east. In the study area, the Lama formation thins westward and southward. The Servilleta Basalt is generally thickest to the north and northwest, thins under the Picuris piedmont, and terminates along a major, linear, buried strand of the Embudo fault zone, demonstrating that the Servilleta flows were spatially and temporally related to Embudo fault activity.

  11. Interim reliability-evaluation program: analysis of the Browns Ferry, Unit 1, nuclear plant. Appendix B - system descriptions and fault trees

    International Nuclear Information System (INIS)

    Mays, S.E.; Poloski, J.P.; Sullivan, W.H.; Trainer, J.E.; Bertucio, R.C.; Leahy, T.J.

    1982-07-01

    This report describes a risk study of the Browns Ferry, Unit 1, nuclear plant. The study is one of four such studies sponsored by the NRC Office of Research, Division of Risk Assessment, as part of its Interim Reliability Evaluation Program (IREP), Phase II. This report is contained in four volumes: a main report and three appendixes. Appendix B provides a description of Browns Ferry, Unit 1, plant systems and the failure evaluation of those systems as they apply to accidents at Browns Ferry. Information is presented concerning front-line system fault analysis; support system fault analysis; human error models and probabilities; and generic control circuit analyses

  12. Robust Mpc for Actuator–Fault Tolerance Using Set–Based Passive Fault Detection and Active Fault Isolation

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-03-01

    Full Text Available In this paper, a fault-tolerant control (FTC scheme is proposed for actuator faults, which is built upon tube-based model predictive control (MPC as well as set-based fault detection and isolation (FDI. In the class of MPC techniques, tubebased MPC can effectively deal with system constraints and uncertainties with relatively low computational complexity compared with other robust MPC techniques such as min-max MPC. Set-based FDI, generally considering the worst case of uncertainties, can robustly detect and isolate actuator faults. In the proposed FTC scheme, fault detection (FD is passive by using invariant sets, while fault isolation (FI is active by means of MPC and tubes. The active FI method proposed in this paper is implemented by making use of the constraint-handling ability of MPC to manipulate the bounds of inputs.

  13. Preliminary paleoseismic observations along the western Denali fault, Alaska

    Science.gov (United States)

    Koehler, R. D.; Schwartz, D. P.; Rood, D. H.; Reger, R.; Wolken, G. J.

    2013-12-01

    The Denali fault in south-central Alaska, from Mt. McKinley to the Denali-Totschunda fault branch point, accommodates ~9-12 mm/yr of the right-lateral component of oblique convergence between the Pacific/Yakutat and North American plates. The eastern 226 km of this fault reach was part of the source of the 2002 M7.9 Denali fault earthquake. West of the 2002 rupture there is evidence of two large earthquakes on the Denali fault during the past ~550-700 years but the paleoearthquake chronology prior to this time is largely unknown. To better constrain fault rupture parameters for the western Denali fault and contribute to improved seismic hazard assessment, we performed helicopter and ground reconnaissance along the southern flank of the Alaska Range between the Nenana Glacier and Pyramid Peak, a distance of ~35 km, and conducted a site-specific paleoseismic study. We present a Quaternary geologic strip map along the western Denali fault and our preliminary paleoseismic results, which include a differential-GPS survey of a displaced debris flow fan, cosmogenic 10Be surface exposure ages for boulders on this fan, and an interpretation of a trench across the main trace of the fault at the same site. Between the Nenana Glacier and Pyramid Peak, the Denali fault is characterized by prominent tectonic geomorphic features that include linear side-hill troughs, mole tracks, anastamosing composite scarps, and open left-stepping fissures. Measurements of offset rills and gullies indicate that slip during the most recent earthquake was between ~3 and 5 meters, similar to the average displacement in the 2002 earthquake. At our trench site, ~ 25 km east of the Parks Highway, a steep debris fan is displaced along a series of well-defined left-stepping linear fault traces. Multi-event displacements of debris-flow and snow-avalanche channels incised into the fan range from 8 to 43 m, the latter of which serves as a minimum cumulative fan offset estimate. The trench, excavated into

  14. Hypothesis for the mechanics and seismic behaviour of low-angle normal faults: the example of the Altotiberina fault Northern Apennines

    Directory of Open Access Journals (Sweden)

    C. Collettini

    2002-06-01

    Full Text Available Widespread mapping of low-angle normal faults in areas of former continental extension continues to prompt debate as to whether such structures may be seismically active at very low dips (? <30 °in the upper continental crust.The Northern Apennines provide an example where an active low-angle normal fault (Altotiberina fault, ATFcan be studied.A set of commercial seismic reflection profiles plus deep boreholes have been used to constrain the geometry of the fault at depth.These data have been integrated with a microseismic survey showing that part of the microseismicity (M <3.0is consistent with the geometry of the ATF as imaged by depth converted seismic reflection profiles.Frictional fault mechanics under Byerlee ?s friction coefficient and vertical ? 1 (constrained from the inversion of the focal mechanismsdefines the peculiar condition for reactivation of the ATF:small values of differential stress,? 1 ?? 3 <28 MPa,relatively high value of tensile strength of the fault surrounding rocks (T ~10 MPaand tensile fluid overpressure P f >? 3 (i.e.? v >0.93.The short-lived attainment of P f >? 3 along small fault portions,in an area characterised by large amounts of CO2,account for the microseismic activity located along the ATF,which occurs on rupture surfaces in the range of 10 ??10 ? 3 km 2..

  15. Off-fault heterogeneities promote supershear transition of dynamic mode II cracks

    Science.gov (United States)

    Albertini, Gabriele; Kammer, David S.

    2017-08-01

    The transition from sub-Rayleigh to supershear propagation of mode II cracks is a fundamental problem of fracture mechanics. It has extensively been studied in homogeneous uniform setups. When the applied shear load exceeds a critical value, transition occurs through the Burridge-Andrews mechanism at a well-defined crack length. However, velocity structures in geophysical conditions can be complex and affect the transition. Damage induced by previous earthquakes causes low-velocity zones surrounding mature faults and inclusions with contrasting material properties can be present at seismogenic depth. We relax the assumption of homogeneous media and investigate dynamic shear fracture in heterogeneous media using two-dimensional finite element simulations and a linear slip-weakening law. We analyze the role of heterogeneities in the elastic media, while keeping the frictional interface properties uniform. We show that supershear transition is possible due to the sole presence of favorable off-fault heterogeneities. Subcritical shear loads, for which propagation would remain permanently sub-Rayleigh in an equivalent homogeneous setup, will transition to supershear as a result of reflected waves. P wave reflected as S waves, followed by further reflections, affect the amplitude of the shear stress peak in front of the propagating crack, leading to supershear transition. A wave reflection model allows to uniquely describe the effect of off-fault inclusions on the shear stress peak. A competing mechanism of modified released potential energy affects transition and becomes predominant with decreasing distance between fault and inclusions. For inclusions at far distances, the wave reflection is the predominant mechanism.

  16. Determining on-fault earthquake magnitude distributions from integer programming

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  17. Synthetic seismicity for the San Andreas fault

    Directory of Open Access Journals (Sweden)

    S. N. Ward

    1994-06-01

    Full Text Available Because historical catalogs generally span only a few repetition intervals of major earthquakes, they do not provide much constraint on how regularly earthquakes recur. In order to obtain better recurrence statistics and long-term probability estimates for events M ? 6 on the San Andreas fault, we apply a seismicity model to this fault. The model is based on the concept of fault segmentation and the physics of static dislocations which allow for stress transfer between segments. Constraints are provided by geological and seismological observations of segment lengths, characteristic magnitudes and long-term slip rates. Segment parameters slightly modified from the Working Group on California Earthquake Probabilities allow us to reproduce observed seismicity over four orders of magnitude. The model yields quite irregular earthquake recurrence patterns. Only the largest events (M ? 7.5 are quasi-periodic; small events cluster. Both the average recurrence time and the aperiodicity are also a function of position along the fault. The model results are consistent with paleoseismic data for the San Andreas fault as well as a global set of historical and paleoseismic recurrence data. Thus irregular earthquake recurrence resulting from segment interaction is consistent with a large range of observations.

  18. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity

    Science.gov (United States)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.

    2017-12-01

    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor

  19. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments

    Science.gov (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.

    2017-12-01

    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  20. Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin

    DEFF Research Database (Denmark)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie

    2017-01-01

    remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive......The Western Kunlun mountain range is a slowly converging intra-continental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range...... a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised...

  1. Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments

    Science.gov (United States)

    Prele, D.

    2015-08-01

    As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.

  2. Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments

    International Nuclear Information System (INIS)

    Prele, D.

    2015-01-01

    As we have seen for digital camera market and a sensor resolution increasing to 'megapixels', all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, 'simple' and 'efficient' techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described

  3. PIV tracer behavior on propagating shock fronts

    International Nuclear Information System (INIS)

    Glazyrin, Fyodor N; Mursenkova, Irina V; Znamenskaya, Irina A

    2016-01-01

    The present work was aimed at the quantitative particle image velocimetry (PIV) measurement of a velocity field near the front of a propagating shock wave and the study of the dynamics of liquid tracers crossing the shock front. For this goal, a shock tube with a rectangular cross-section (48  ×  24 mm) was used. The flat shock wave with Mach numbers M  =  1.4–2.0 propagating inside the tube channel was studied as well as an expanding shock wave propagating outside the channel with M  =  1.2–1.8 at its main axis. The PIV imaging of the shock fronts was carried out with an aerosol of dioctyl sebacate (DEHS) as tracer particles. The pressures of the gas in front of the shock waves studied ranged from 0.013 Mpa to 0.1 MPa in the series of experiments. The processed PIV data, compared to the 1D normal shock theory, yielded consistent values of wake velocity immediately behind the plain shock wave. Special attention was paid to the blurring of the velocity jump on the shock front due to the inertial particle lag and peculiarities of the PIV technique. A numerical algorithm was developed for analysis and correction of the PIV data on the shock fronts, based on equations of particle-flow interaction. By application of this algorithm, the effective particle diameter of the DEHS aerosol tracers was estimated as 1.03  ±  0.12 μm. A number of different formulations for particle drag were tested with this algorithm, with varying success. The results show consistency with previously reported experimental data obtained for cases of stationary shock waves. (paper)

  4. Comparison of control strategies for Doubly fed induction generator under recurring grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2014-01-01

    The new grid codes demand the wind turbine systems to ride through recurring grid faults. Many control strategies have been proposed for the Doubly Fed Induction Generator under single grid fault, but their performance under recurring grid faults have not been studied yet. In this paper, five...... different control strategies for DFIG to ride through single grid faults are presented, and their performance under recurring grid faults are analyzed. The controllable range, stator time constant and torque fluctuations of the DFIG with different control strategies are compared. The results are verified...

  5. Characterization of earthquake fault by borehole experiments; Koseinai sokutei ni yoru jishin danso no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H; Miyazaki, T; Nishizawa, O; Kuwahara, Y; Kiguchi, T [Geological Survey of Japan, Tsukuba (Japan)

    1996-05-01

    A borehole was excavated to penetrate the Nojima fault at the Hirabayashi area, to investigate the underground structures of the fault by observation of the cores and well logging. The borehole was excavated from 74.6m east of the fault surface. Soil is of granodiorite from the surface, and fault clay at a depth in a range from 624.1 to 625.1m. Observation of the cores, collected almost continuously, indicates that the fault fracture zone expands in a depth range from 557 to 713.05m. The well logging experiments are natural potential, resistivity, density, gamma ray, neutron, borehole diameter, microresistivity and temperature. They are also for DSI- and FMI-observation, after expansion of the borehole. The well logging results indicate that resistivity, density and elastic wave velocity decrease as distance from fault clay increases, which well corresponds to the soil conditions. The BHTV and FMI analyses clearly detect the fault clay demarcations, and show that elastic wave velocity and BHTV results differ at above and below the fault. 3 refs., 3 figs.

  6. Fault-Tolerant Approach for Modular Multilevel Converters under Submodule Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Tian, Yanjun; Zhu, Rongwu

    2016-01-01

    The modular multilevel converter (MMC) is attractive for medium- or high-power applications because of the advantages of its high modularity, availability, and high power quality. The fault-tolerant operation is one of the important issues for the MMC. This paper proposed a fault-tolerant approach...... for the MMC under submodule (SM) faults. The characteristic of the MMC with arms containing different number of healthy SMs under faults is analyzed. Based on the characteristic, the proposed approach can effectively keep the MMC operation as normal under SM faults. It can effectively improve the MMC...

  7. Fault detection and reliability, knowledge based and other approaches

    International Nuclear Information System (INIS)

    Singh, M.G.; Hindi, K.S.; Tzafestas, S.G.

    1987-01-01

    These proceedings are split up into four major parts in order to reflect the most significant aspects of reliability and fault detection as viewed at present. The first part deals with knowledge-based systems and comprises eleven contributions from leading experts in the field. The emphasis here is primarily on the use of artificial intelligence, expert systems and other knowledge-based systems for fault detection and reliability. The second part is devoted to fault detection of technological systems and comprises thirteen contributions dealing with applications of fault detection techniques to various technological systems such as gas networks, electric power systems, nuclear reactors and assembly cells. The third part of the proceedings, which consists of seven contributions, treats robust, fault tolerant and intelligent controllers and covers methodological issues as well as several applications ranging from nuclear power plants to industrial robots to steel grinding. The fourth part treats fault tolerant digital techniques and comprises five contributions. Two papers, one on reactor noise analysis, the other on reactor control system design, are indexed separately. (author)

  8. Dependence of frictional strength on compositional variations of Hayward fault rock gouges

    Science.gov (United States)

    Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.

    2010-01-01

    The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.

  9. Design of a New Switching Power Supply for the ATLAS TileCal Front-End Electronics

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2012-01-01

    We present the design of an upgraded switching power supply for the front-end electronics of the ATLAS Hadron Tile Calorimeter. The new design features significant improvement in noise, improved fault detection, and improved reliability, while retaining the compact size, water-cooling, output control, and monitoring features. We discuss the steps taken to improve the design. We present the results from extensive radiation testing to qualify the design, including SEU sensitivity. We also present our reliability analysis. Production of 2400 new bricks for the detector is in progress, and we present preliminary results from the production checkout.

  10. Implications of Preliminary Gravity and Magnetic Surveys to the Understanding of the Bartlett Springs Fault Zone, Northern California Coast Ranges

    Science.gov (United States)

    Langenheim, V. E.; Jachens, R. C.; Morin, R. L.; McCabe, C. M.; Page, W. D.

    2007-12-01

    We use new gravity and magnetic data in the Lake Pillsbury region to help understand the geometry and character of the Bartlett Springs fault zone, one of the three main strands of the San Andreas system north of the San Francisco Bay area. We collected 153 new gravity stations in the Lake Pillsbury region that complement the sparse regional dataset and are used to estimate the thickness of Quaternary deposits in the inferred Gravelly Valley (Lake Pillsbury) pull-apart basin. We also collected 38 line-km of ground magnetic data on roads and 65 line-km by boat on the lake to supplement regional aeromagnetic surveys and to map concealed fault strands beneath the lake. The new gravity data show a significant northwest-striking gravity gradient at the base of which lies the Bartlett Springs fault zone. Superposed on this major east-facing gravity gradient is a 5 mGal low centered on Lake Pillsbury and Gravelly Valley. Inversion of the gravity field for basin thickness assuming a density contrast of 400 kg/m3 indicates the deepest part of the basin is about 400 m and located in the northern part of the valley, although the inversion lacks gravity stations within the lake. The basin is about 3 km wide and 5 km long and basin edges coincide with strands of the Bartlett Springs fault zone. Our gravity data suggest that Potter Valley, which lies between the Maacama and Bartlett Springs faults, is also as much as 400 m deep in the southern part of the valley, although additional data west of the valley would better isolate the gravity low. Geomorphologic characteristics of the valley suggest that this structure has been quiescent during the late Quaternary. Ground magnetic data are very noisy but the data in conjunction with 9.6 km-spaced NURE aeromagnetic lines suggest that regional analog aeromagnetic data flown in 1962 may suffer from location errors. The regional and NURE data show a northwest-striking magnetic high that extends across Lake Pillsbury. The northeast edge

  11. Fault diagnosis of nuclear-powered equipment based on HMM and SVM

    International Nuclear Information System (INIS)

    Yue Xia; Zhang Chunliang; Zhu Houyao; Quan Yanming

    2012-01-01

    For the complexity and the small fault samples of nuclear-powered equipment, a hybrid HMM/SVM method was introduced in fault diagnosis. The hybrid method has two steps: first, HMM is utilized for primary diagnosis, in which the range of possible failure is reduced and the state trends can be observed; then faults can be recognized taking the advantage of the generalization ability of SVM. Experiments on the main pump failure simulator show that the HMM/SVM system has a high recognition rate and can be used in the fault diagnosis of nuclear-powered equipment. (authors)

  12. Climate Drives Episodic Conifer Establishment after Fire in Dry Ponderosa Pine Forests of the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    Monica T. Rother

    2017-05-01

    Full Text Available In recent years, warming climate and increased fire activity have raised concern about post-fire recovery of western U.S. forests. We assessed relationships between climate variability and tree establishment after fire in dry ponderosa pine forests of the Colorado Front Range. We harvested and aged over 400 post-fire juvenile ponderosa pine (Pinus ponderosa and Douglas-fir (Pseudotsuga menziesii trees using an improved tree-ring based approach that yielded annually-resolved dates and then assessed relationships between climate variability and pulses of tree establishment. We found that tree establishment was largely concentrated in years of above-average moisture availability in the growing season, including higher amounts of precipitation and more positive values of the Palmer Drought Severity Index. Under continued climate change, drier conditions associated with warming temperatures may limit forest recovery after fire, which could result in lower stand densities or shifts to non-forested vegetation in some areas.

  13. A 500μW 5Mbps ULP super-regenerative RF front-end

    NARCIS (Netherlands)

    Vidojkovic, M.; Rampu, S.; Imamura, K.; Harpe, P.; Dolmans, G.; Groot, H. de

    2010-01-01

    This paper presents an ultra low power super-regenerative RF front-end for wireless body area network (WBAN) applications. The RF front-end operates in the 2.36-2.4 GHz medical BAN and 2.4-2.485 GHz ISM bands, and consumes 500 μW. It supports OOK modulation at high data rates ranging from 1-5 Mbps.

  14. Alteration of fault rocks by CO2-bearing fluids with implications for sequestration

    Science.gov (United States)

    Luetkemeyer, P. B.; Kirschner, D. L.; Solum, J. G.; Naruk, S.

    2011-12-01

    Carbonates and sulfates commonly occur as primary (diagenetic) pore cements and secondary fluid-mobilized veins within fault zones. Stable isotope analyses of calcite, formation fluid, and fault zone fluids can help elucidate the carbon sources and the extent of fluid-rock interaction within a particular reservoir. Introduction of CO2 bearing fluids into a reservoir/fault system can profoundly affect the overall fluid chemistry of the reservoir/fault system and may lead to the enhancement or degradation of porosity within the fault zone. The extent of precipitation and/or dissolution of minerals within a fault zone can ultimately influence the sealing properties of a fault. The Colorado Plateau contains a number of large carbon dioxide reservoirs some of which leak and some of which do not. Several normal faults within the Paradox Basin (SE Utah) dissect the Green River anticline giving rise to a series of footwall reservoirs with fault-dependent columns. Numerous CO2-charged springs and geysers are associated with these faults. This study seeks to identify regional sources and subsurface migration of CO2 to these reservoirs and the effect(s) faults have on trap performance. Data provided in this study include mineralogical, elemental, and stable isotope data for fault rocks, host rocks, and carbonate veins that come from two localities along one fault that locally sealed CO2. This fault is just tens of meters away from another normal fault that has leaked CO2-charged waters to the land surface for thousands of years. These analyses have been used to determine the source of carbon isotopes from sedimentary derived carbon and deeply sourced CO2. XRF and XRD data taken from several transects across the normal faults are consistent with mechanical mixing and fluid-assisted mass transfer processes within the fault zone. δ13C range from -6% to +10% (PDB); δ18O values range from +15% to +24% (VSMOW). Geochemical modeling software is used to model the alteration

  15. General motors front wheel drive 2-mode hybrid transmission

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, James [General Motors Corp., Pontiac, MI (United States). New Transmission Products Group.; Holmes, Alan G. [General Motors Corp., Pontiac, MI (United States). Powertrain Hybrid Architecture

    2009-07-01

    General Motors now expands the application of two-mode hybrid technology to front wheel drive vehicles with the development of a hybrid electric transmission packaged into essentially the same space as a conventional automatic transmission for front wheel drive. This was accomplished using a space-efficient arrangement based on two planetary gear sets and electric motor-generators with large internal diameters. A combination of damper and hydraulically-controlled clutch allow comfortable shutdown and restarting of large-displacement engines in front wheel drive vehicles. The hybrid system delivers electric low-speed urban driving, two continuously variable ranges of transmission speed ratios, four fixed transmission speed ratios, electric acceleration boosting, and regenerative braking. In the first vehicle application, the two-mode hybrid helps to reduce vehicle fuel consumption by approximately one-third. (orig.)

  16. Wide-band low-noise distributed front-end for multi-gigabit CPFSK receivers

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Ebskamp, F; Pedersen, Rune Johan Skullerud

    1994-01-01

    In this paper a distributed optical front-end amplifier for a coherent optical CPFSK receiver is presented. The measured average input noise current density is 20 pA/√(Hz) in a 3-13 GHz bandwidth. This is the lowest value reported for a distributed optical front-end in this frequency range....... The front-end is tested in a system set-up at a bit rate of 2.5 Gbit/s and a receiver sensitivity of -41.5 dBm is achieved at a 10-9 bit error rate...

  17. Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator

    Directory of Open Access Journals (Sweden)

    Liwei Shi

    2015-01-01

    Full Text Available This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experiments were done to gather the energy characteristics with a voltage sensor. The signal is analyzed with 5-layer wavelet packets, and the energy eigenvalue of each frequency band is obtained. Meanwhile, the energy-eigenvalue tolerance was introduced to improve the diagnostic accuracy. With the wavelet packet fault diagnosis, the fault tolerant four-phase DFBLSG can detect the usual open-circuit fault and operate in the fault tolerant mode if there is a fault. The results indicate that the fault analysis techniques in this paper are accurate and effective.

  18. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone

    Science.gov (United States)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.

    2017-12-01

    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger

  19. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse

  20. Back to the Future: Building resilience in Colorado Front Range forests using research findings and a new guide for restoration of ponderosa and dry-mixed conifer landscapes

    Science.gov (United States)

    Sue Miller; Rob Addington; Greg Aplet; Mike Battaglia; Tony Cheng; Jonas Feinstein; Jeff Underhill

    2018-01-01

    Historically, the ponderosa and dry mixed-conifer forests of the Colorado Front Range were more open and grassy, and trees of all size classes were found in a grouped arrangement with sizable openings between the clumps. As a legacy of fire suppression, today’s forests are denser, with smaller trees. Proactive restoration of this forest type will help to reduce fuel...

  1. Geophysical Characterization of the Hilton Creek Fault System

    Science.gov (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  2. Fault displacement along the Naruto-South fault, the Median Tectonic Line active fault system in the eastern part of Shikoku, southwestern Japan

    OpenAIRE

    高田, 圭太; 中田, 高; 後藤, 秀昭; 岡田, 篤正; 原口, 強; 松木, 宏彰

    1998-01-01

    The Naruto-South fault is situated of about 1000m south of the Naruto fault, the Median Tectonic Line active fault system in the eastern part of Shikoku. We investigated fault topography and subsurface geology of this fault by interpretation of large scale aerial photographs, collecting borehole data and Geo-Slicer survey. The results obtained are as follows; 1) The Naruto-South fault runs on the Yoshino River deltaic plain at least 2.5 km long with fault scarplet. the Naruto-South fault is o...

  3. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  4. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    International Nuclear Information System (INIS)

    Sraj, I.; Vohra, M.; Alawieh, L.; Weihs, T.P.; Knio, O.M.

    2013-01-01

    Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011) to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  5. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    Directory of Open Access Journals (Sweden)

    Ihab Sraj

    2013-01-01

    Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  6. Fault structure, properties and activity of the Makran Accretionary Prism and implications for seismogenic potential

    Science.gov (United States)

    Smith, G. L.; McNeill, L. C.; Henstock, T.; Bull, J. M.

    2011-12-01

    The Makran subduction zone is the widest accretionary prism in the world (~400km), generated by convergence between the Arabian and Eurasian tectonic plates. It represents a global end-member, with a 7km thick incoming sediment section. Accretionary prisms have traditionally been thought to be aseismic due to the presence of unconsolidated sediment and elevated basal pore pressures. The seismogenic potential of the Makran subduction zone is unclear, despite a Mw 8.1 earthquake in 1945 that may have been located on the plate boundary beneath the prism. In this study, a series of imbricate landward dipping (seaward verging) thrust faults have been interpreted across the submarine prism (outer 70 km) using over 6000km of industry multichannel seismic data and bathymetric data. A strong BSR (bottom simulating reflector) is present throughout the prism (excluding the far east). An unreflective décollement is interpreted from the geometry of the prism thrusts. Two major sedimentary units are identified in the input section, the lower of which contains the extension of the unreflective décollement surface. Between 60%-100% of the input section is currently being accreted. The geometry of piggy-back basin stratigraphy shows that the majority of thrusts, including those over 50km from the trench, are recently active. Landward thrusts show evidence for reactivation after periods of quiescence. Negative polarity fault plane reflectors are common in the frontal thrusts and in the eastern prism, where they may be related to increased fault activity and fluid expulsion, and are rarer in older landward thrusts. Significant NE-SW trending basement structures (The Murray Ridge and Little Murray Ridge) on the Arabian plate intersect the deformation front and affect sediment input to the subduction zone. Prism taper and structure are apparently primarily controlled by sediment supply and the secondary influence of subducting basement ridges. The thick, likely distal, sediment

  7. Resistivity Structures of the Chelungpu Fault in the Taichung Area, Taiwan

    Directory of Open Access Journals (Sweden)

    Ping-Hu Cheng

    2006-01-01

    Full Text Available We conducted magnetotelluric prospecting in the Taichung area to investigate subsurface resistivity structures of the Chelungpu fault and the resistivity of rock formations. The results indicate that the Chelungpu fault is a complex fault system consisting of two major fault zones, several fracture zones, and back thrust. The two major fault zones, the basal and the Chi-Chi fault zone are about 800 m apart on the ground and converge to a narrow band at a depth of 3000 m. The fault zones are not smooth, composed of ramps and platforms with an average eastward dipping angle of 35° - 37° within the depth of 3000 m. In the shallower region, the basal fault zone has developed along the boundary of the Toukoshan Formation (resistivity: 200 - 400 Ω-m at the footwall and the Neogene formations on the hanging wall, where the Cholan Formation, the Chinshiu Shale, and the Kueichulai Formation have respective resistivity mainly in the ranges: 40 - 100, 8 - 60, and 50 - 150 Ω-m. While the Chi-Chi fault zone has developed along the weak layers of the Cholan Formation where resistivity is lower than the unsheared block.

  8. Stafford fault system: 120 million year fault movement history of northern Virginia

    Science.gov (United States)

    Powars, David S.; Catchings, Rufus D.; Horton, J. Wright; Schindler, J. Stephen; Pavich, Milan J.

    2015-01-01

    The Stafford fault system, located in the mid-Atlantic coastal plain of the eastern United States, provides the most complete record of fault movement during the past ~120 m.y. across the Virginia, Washington, District of Columbia (D.C.), and Maryland region, including displacement of Pleistocene terrace gravels. The Stafford fault system is close to and aligned with the Piedmont Spotsylvania and Long Branch fault zones. The dominant southwest-northeast trend of strong shaking from the 23 August 2011, moment magnitude Mw 5.8 Mineral, Virginia, earthquake is consistent with the connectivity of these faults, as seismic energy appears to have traveled along the documented and proposed extensions of the Stafford fault system into the Washington, D.C., area. Some other faults documented in the nearby coastal plain are clearly rooted in crystalline basement faults, especially along terrane boundaries. These coastal plain faults are commonly assumed to have undergone relatively uniform movement through time, with average slip rates from 0.3 to 1.5 m/m.y. However, there were higher rates during the Paleocene–early Eocene and the Pliocene (4.4–27.4 m/m.y), suggesting that slip occurred primarily during large earthquakes. Further investigation of the Stafford fault system is needed to understand potential earthquake hazards for the Virginia, Maryland, and Washington, D.C., area. The combined Stafford fault system and aligned Piedmont faults are ~180 km long, so if the combined fault system ruptured in a single event, it would result in a significantly larger magnitude earthquake than the Mineral earthquake. Many structures most strongly affected during the Mineral earthquake are along or near the Stafford fault system and its proposed northeastward extension.

  9. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.

    2002-01-01

    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  10. Fiber fault location utilizing traffic signal in optical network.

    Science.gov (United States)

    Zhao, Tong; Wang, Anbang; Wang, Yuncai; Zhang, Mingjiang; Chang, Xiaoming; Xiong, Lijuan; Hao, Yi

    2013-10-07

    We propose and experimentally demonstrate a method for fault location in optical communication network. This method utilizes the traffic signal transmitted across the network as probe signal, and then locates the fault by correlation technique. Compared with conventional techniques, our method has a simple structure and low operation expenditure, because no additional device is used, such as light source, modulator and signal generator. The correlation detection in this method overcomes the tradeoff between spatial resolution and measurement range in pulse ranging technique. Moreover, signal extraction process can improve the location result considerably. Experimental results show that we achieve a spatial resolution of 8 cm and detection range of over 23 km with -8-dBm mean launched power in optical network based on synchronous digital hierarchy protocols.

  11. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  12. Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

    Science.gov (United States)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Smith, Steven A. F.; Mills, Steven

    2018-04-01

    Three datasets are used to quantify fracture density, orientation, and fill in the foliated hanging wall of the Alpine Fault: (1) X-ray computed tomography (CT) images of drill core collected within 25 m of its principal slip zones (PSZs) during the first phase of the Deep Fault Drilling Project that were reoriented with respect to borehole televiewer images, (2) field measurements from creek sections up to 500 m from the PSZs, and (3) CT images of oriented drill core collected during the Amethyst Hydro Project at distances of ˜ 0.7-2 km from the PSZs. Results show that within 160 m of the PSZs in foliated cataclasites and ultramylonites, gouge-filled fractures exhibit a wide range of orientations. At these distances, fractures are interpreted to have formed at relatively high confining pressures and/or in rocks that had a weak mechanical anisotropy. Conversely, at distances greater than 160 m from the PSZs, fractures are typically open and subparallel to the mylonitic or schistose foliation, implying that fracturing occurred at low confining pressures and/or in rocks that were mechanically anisotropic. Fracture density is similar across the ˜ 500 m width of the field transects. By combining our datasets with measurements of permeability and seismic velocity around the Alpine Fault, we further develop the hierarchical model for hanging-wall damage structure that was proposed by Townend et al. (2017). The wider zone of foliation-parallel fractures represents an outer damage zone that forms at shallow depths. The distinct inner damage zone. This zone is interpreted to extend towards the base of the seismogenic crust given that its width is comparable to (1) the Alpine Fault low-velocity zone detected by fault zone guided waves and (2) damage zones reported from other exhumed large-displacement faults. In summary, a narrow zone of fracturing at the base of the Alpine Fault's hanging-wall seismogenic crust is anticipated to widen at shallow depths, which is

  13. Real-time fault diagnosis and fault-tolerant control

    OpenAIRE

    Gao, Zhiwei; Ding, Steven X.; Cecati, Carlo

    2015-01-01

    This "Special Section on Real-Time Fault Diagnosis and Fault-Tolerant Control" of the IEEE Transactions on Industrial Electronics is motivated to provide a forum for academic and industrial communities to report recent theoretic/application results in real-time monitoring, diagnosis, and fault-tolerant design, and exchange the ideas about the emerging research direction in this field. Twenty-three papers were eventually selected through a strict peer-reviewed procedure, which represent the mo...

  14. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada

    Science.gov (United States)

    Bender, Adrian M.; Haeussler, Peter J.

    2017-05-04

    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  15. From coseismic offsets to fault-block mountains

    Science.gov (United States)

    Thompson, George A.; Parsons, Tom

    2017-09-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (˜100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  16. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    Science.gov (United States)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  17. Analysis of the growth of strike-slip faults using effective medium theory

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, A.; Berryman, J.G.

    2009-10-15

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  18. Superimposed extension and shortening in the southern Salinas Basin and La Panza Range, California: A guide to Neogene deformation in the Salinian block of the central California Coast Ranges

    Science.gov (United States)

    Colgan, Joseph P.; McPhee, Darcy K.; McDougall, Kristin; Hourigan, Jeremy K.

    2013-01-01

    We synthesized data from geologic maps, wells, seismic-reflection profiles, potential-field interpretations, and low-temperature thermochronology to refine our understanding of late Cenozoic extension and shortening in the Salinian block of the central California Coast Ranges. Data from the La Panza Range and southern Salinas Basin document early to middle Miocene extension, followed by Pliocene and younger shortening after a period of little deformation in the late Miocene. Extension took place on high-angle normal faults that accommodated ∼2% strain at the scale of the ∼50-km-wide Salinian block (oriented perpendicular to the San Andreas fault). Shortening was accommodated by new reverse faults, reactivation of older normal faults, and strike-slip faulting that resulted in a map-view change in the width of the Salinian block. The overall magnitude of shortening was ∼10% strain, roughly 4–5 times greater than the amount of extension. The timing and magnitude of deformation in our study area are comparable to that documented in other Salinian block basins, and we suggest that the entire block deformed in a similar manner over a similar time span. The timing and relative magnitude of extension and shortening may be understood in the context of central Coast Range tectonic boundary conditions linked to rotation of the western Transverse Ranges at the south end of the Salinian block. Older models for Coast Range shortening based on balanced fault-bend fold-style cross sections are a poor approximation of Salinian block deformation, and may lead to mechanically improbable fault geometries that overestimate the amount of shortening.

  19. Resurvey of site stability quadrilaterals, Otay Mountain and Quincy, California. [San Andreas fault experiment

    Science.gov (United States)

    Scholz, C. H.

    1977-01-01

    Trilateration quadrilaterals established across two faults near the San Andreas Fault Experiment laser/satellite ranging sites were resurveyed after four years. No evidence of significant tectonic motion was found.

  20. Fluid flow and permeabilities in basement fault zones

    Science.gov (United States)

    Hollinsworth, Allan; Koehn, Daniel

    2017-04-01

    Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault

  1. Biomechanics of front and back squat exercises

    Science.gov (United States)

    Braidot, A. A.; Brusa, M. H.; Lestussi, F. E.; Parera, G. P.

    2007-11-01

    Squat constitutes one of the most popular exercises to strengthen the muscles of the lower limbs. It is considered one of the most widely spread exercises for muscle sport training and is part of the competition movements comprised within olympic weight-lifting. In physical rehabilitation, squats are used for muscular recovery after different injuries of the lower limbs, especially the knee. In previous anterior cruciate ligament injuries, the mini-squats are generally used, in a knee flexion motion range from 0° to 50° because in this range the shear forces, the tibiofemoral and patellofemoral compression forces decrease related to greater flexion angles. The aim of this work is to make a comparative bidimensional study of the kinematic and dynamic variables of the excecution of the parallel squat exercise with the front and back bar. It is observed in the knee a better development of energy with the front bar, allowing a better muscular exercise with the same load. The mean power absorbed by the hip with the back bar is considerably greater, associated to the speed of the gesture.

  2. Biomechanics of front and back squat exercises

    International Nuclear Information System (INIS)

    Braidot, A A; Brusa, M H; Lestussi, F E; Parera, G P

    2007-01-01

    Squat constitutes one of the most popular exercises to strengthen the muscles of the lower limbs. It is considered one of the most widely spread exercises for muscle sport training and is part of the competition movements comprised within olympic weight-lifting. In physical rehabilitation, squats are used for muscular recovery after different injuries of the lower limbs, especially the knee. In previous anterior cruciate ligament injuries, the mini-squats are generally used, in a knee flexion motion range from 0 deg. to 50 deg. because in this range the shear forces, the tibiofemoral and patellofemoral compression forces decrease related to greater flexion angles. The aim of this work is to make a comparative bidimensional study of the kinematic and dynamic variables of the excecution of the parallel squat exercise with the front and back bar. It is observed in the knee a better development of energy with the front bar, allowing a better muscular exercise with the same load. The mean power absorbed by the hip with the back bar is considerably greater, associated to the speed of the gesture

  3. Biomechanics of front and back squat exercises

    Energy Technology Data Exchange (ETDEWEB)

    Braidot, A A [Laboratorio de Biomecanica FI-UNER. Ruta 11 Km 10 Oro Verde Entre Rios (Argentina); Brusa, M H [Laboratorio de Biomecanica FI-UNER. Ruta 11 Km 10 Oro Verde Entre Rios (Argentina); Lestussi, F E [Laboratorio de Biomecanica FI-UNER. Ruta 11 Km 10 Oro Verde Entre Rios (Argentina); Parera, G P [Licenciatura en KinesiologIa y FisiatrIa Universidad Abierta Interamericana. Sede Regional Rosario (Argentina)

    2007-11-15

    Squat constitutes one of the most popular exercises to strengthen the muscles of the lower limbs. It is considered one of the most widely spread exercises for muscle sport training and is part of the competition movements comprised within olympic weight-lifting. In physical rehabilitation, squats are used for muscular recovery after different injuries of the lower limbs, especially the knee. In previous anterior cruciate ligament injuries, the mini-squats are generally used, in a knee flexion motion range from 0 deg. to 50 deg. because in this range the shear forces, the tibiofemoral and patellofemoral compression forces decrease related to greater flexion angles. The aim of this work is to make a comparative bidimensional study of the kinematic and dynamic variables of the excecution of the parallel squat exercise with the front and back bar. It is observed in the knee a better development of energy with the front bar, allowing a better muscular exercise with the same load. The mean power absorbed by the hip with the back bar is considerably greater, associated to the speed of the gesture.

  4. Testing of ground fault relay response during the energisation of megawatt range electric boilers in thermal power plants

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Davidsen, Troels

    2015-01-01

    , with the advantage that the warmed water can be reused in a thermal power plant or at regional heating, thus, minimising the overall losses. However, one problem was raised by those purchasing the boilers, mainly the possibility of an unwanted triggering of the protections relays, especially ground fault protection...... for the testing of two ground fault protection relays, in order to assure that they are not triggered by the energisation of the boiler. The test is performed via an OMICRON CMC 256 with Advanced TransPlay SW, which generates the signals that would be present at the secondary of the instrumentation transformers......, during the energisation of a boiler. A special case for concern was the presence of an electric arc between the electrodes of the boiler and the water in the boiler during approximately 2s at the energisation, which can in theory be seen as a ground fault by the relay. The voltage and current transient...

  5. Radiometric dating of brittle fault rocks; illite polytype age analysis and application to the Spanish Pyrenees.

    Science.gov (United States)

    van der Pluijm, B. A.; Haines, S. H.

    2008-12-01

    A variety of approaches have been available to indirectly date the timing of deformation and motion on faults, but few approaches for direct, radiometric dating of shallow crustal fault rocks were available until recently. The growing recognition of clay neomineralization at low temperatures in many fault rocks, particularly the 1Md illite polytype, allows the successful application of Ar dating to these K-bearing phases. In this presentation we will discuss our recent illite age analysis approach (sampling, treatments, analytical methods), and present new results from fault dating along the Spanish Pyrenean orogenic front as an example. X-ray quantification of polytype ratios in three or more size fractions is used to define a mixing line between (1Md illite) authigenic and (2M illite) detrital end-member phases that constrain the fault age and host rock provenance/cooling age for each fault. The common problem of recoil in clays is addressed by encapsulating samples before irradiation. Nine fault gouge ages in the south-central and south-eastern Pyrenees support several contractional pulses in the Pyrenean orogen: 1) Late Cretaceous thrusting (Boixols), 2) Latest Paleocene-Early Eocene deformation (Nogueres Zone and Freser antiformal stack), 3) Middle-Late Eocene deformation (Ripoll syncline, Vallfogona, Gavernie, Abocador and L'Escala thrusts), and 4) Middle Oligocene thrusting in the central portion of the Axial Zone (Llavorsi-Senet). The late Paleocene-Early Eocene and Middle-Late Eocene events may or may not be one single phase, due to slightly overlapping error estimates. The outboard thrusts give Hercynian ages for the detrital component of the fault rock, while the inboard thrusts, which juxtapose metamorphic units, give Cretaceous ages for the non-authigenic component, reflecting the cooling age of the adjacent wallrocks. Based on our latest work, the illite polytype dating method complements previously developed illite-smectite dating (van der Pluijm et

  6. Are turtleback fault surfaces common structural elements of highly extended terranes?

    Science.gov (United States)

    Çemen, Ibrahim; Tekeli, Okan; Seyitoğlu, Gűrol; Isik, Veysel

    2005-12-01

    The Death Valley region of the U.S.A. contains three topographic surfaces resembling the carapace of a turtle. These three surfaces are well exposed along the Black Mountain front and are named the Badwater, Copper Canyon, and Mormon Point Turtlebacks. It is widely accepted that the turtlebacks are also detachment surfaces that separate brittlely deformed Cenozoic volcanic and sedimentary rocks of the hanging wall from the strongly mylonitic, ductilely deformed pre-Cenozoic rocks of the footwall. We have found a turtleback-like detachment surface along the southern margin of the Alasehir (Gediz) Graben in western Anatolia, Turkey. This surface qualifies as a turtleback fault surface because it (a) is overall convex-upward and (b) separates brittlely deformed hanging wall Cenozoic sedimentary rocks from the ductilely to brittlely deformed, strongly mylonitic pre-Cenozoic footwall rocks. The surface, named here Horzum Turtleback, contains striations that overprint mylonitic stretching lineations indicating top to the NE sense of shear. This suggests that the northeasterly directed Cenozoic extension in the region resulted in a ductile deformation at depth and as the crust isostatically adjusted to the removal of the rocks in the hanging wall of the detachment fault, the ductilely deformed mylonitic rocks of the footwall were brought to shallower depths where they were brittlely deformed. The turtleback surfaces have been considered unique to the Death Valley region, although detachment surfaces, rollover folds, and other extensional structures have been well observed in other extended terranes of the world. The presence of a turtleback fault surface in western Anatolia, Turkey, suggests that the turtleback faults may be common structural features of highly extended terranes.

  7. Did the Malaysian Main Range record a weak hot Mega Shear?

    Science.gov (United States)

    Sautter, Benjamin; Pubellier, Manuel

    2015-04-01

    The Main Range of Peninsular Malaysia is a batholith that extends over more than 500km from Malacca in the South to the Thailand border in the North. It results from the subduction/accretion history of the western margin of Sunda Plate by Late Triassic times. We present a structural analysis based on geomorphology, field observations and geochronological data. While most of the basement fabrics are characterized by N-S structures such as granitic plutons, sutures, and folds, a prominent oblique deformation occurred by the End of the Mesozoics synchronous with a widespread thermal anomaly (eg Tioman, Stong, Gunung Jerai, Khanom, Krabi plutons). Morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), allow us to highlight 2 major groups of penetrative faults in the Central Range Batholith: early NW-SE (5km spaced faults some of which are identified as thrust faults) cross-cut and offset by NNE-SSW dextral normal faults. The regularly spaced NW-SE faults bend toward the flanks of the Batholith and tend to parallel both the Bentong Raub Suture Zone to the East and the strike slip Bok Bak Fault to the West, thus giving the overall fault network the aspect of a large C/S band. Hence, a ductile/brittle behavior can be proposed for the sigmoid faults in the core of the Batholith, whereas the NNE faults are clearly brittle, more linear and are found on the smaller outlying plutons. Radiogenic crystallization ages are homogenous at 190±20Ma (U-Pb Zircon, Tc>1000°C and K-Ar Muscovite, Tc350°C) whereas Zircon fission tracks(Tc=250°C) show specific spatial zoning of the data distribution with ages at 100±10Ma for the outlying plutons and ages at 70±10Ma for the Main Range. We propose a structural mechanism according to which the Main Range would be the ductile core of a Mega-Shear Zone exhumed via transpressive tectonics by the end of Mesozoic Times. A first stage between 100 and 70Ma (Upper Cretaceous) of dextral transpression affected

  8. Fault tree technique: advances in probabilistic and logical analysis

    International Nuclear Information System (INIS)

    Clarotti, C.A.; Amendola, A.; Contini, S.; Squellati, G.

    1982-01-01

    Fault tree reliability analysis is used for assessing the risk associated to systems of increasing complexity (phased mission systems, systems with multistate components, systems with non-monotonic structure functions). Much care must be taken to make sure that fault tree technique is not used beyond its correct validity range. To this end a critical review of mathematical foundations of reliability fault tree analysis is carried out. Limitations are enlightened and potential solutions to open problems are suggested. Moreover an overview is given on the most recent developments in the implementation of an integrated software (SALP-MP, SALP-NOT, SALP-CAFT Codes) for the analysis of a wide class of systems

  9. Geochemistry of Natural Redox Fronts

    International Nuclear Information System (INIS)

    Hofmann, B.A.

    1999-05-01

    Redox fronts are important geochemical boundaries which need to be considered in safety assessment of deep repositories for radioactive waste. In most cases, selected host-rock formations will be reducing due to the presence of ferrous minerals, sulphides, etc. During construction and operation of the repository, air will be introduced into the formation. After repository closure, oxidising conditions may persist locally until all oxygen is consumed. In the case of high-level waste, radiolysis of water may provide an additional source of oxidants. Oxidising conditions within a repository are thus possible and potentially have a strong influence on the mobility of many elements. The rate of movement of redox fronts, the boundary between oxidising and reducing environments, and their influence on migrating radionuclides are thus important factors influencing repository performance. The present report is a review of elemental behaviour at natural redox fronts, based on published information and work of the author. Redox fronts are geochemically and geometrically variable manifestations of a global interface between generally oxidising geochemical milieux in contact with the atmosphere and generally reducing milieux in contact with rocks containing ferrous iron, sulphide and/or organic carbon. A classification of redox fronts based on a subdivision into continental near-surface, marine near-surface, and deep environments is proposed. The global redox interface is often located close to the surface of rocks and sediments and, sometimes, within bodies of water. Temperature conditions are close to ambient. A deeper penetration of the global redox front to depths of several kilometres is found in basins containing oxidised sediments (red beds) and in some hydrothermal circulation systems. Temperatures at such deep redox fronts may reach 200 o C. Both near-surface and deep redox fronts are sites of formation of economic deposits of redox-sensitive elements, particularly of

  10. Deformed Fluvial Terraces of Little Rock Creek Capture Off-Fault Strain Adjacent to the Mojave Section of the San Andreas Fault

    Science.gov (United States)

    Moulin, A.; Scharer, K. M.; Cowgill, E.

    2017-12-01

    Examining discrepancies between geodetic and geomorphic slip-rates along major strike-slip faults is essential for understanding both fault behavior and seismic hazard. Recent work on major strike-slip faults has highlighted off-fault deformation and its potential impact on fault slip rates. However, the extent of off-fault deformation along the San Andreas Fault (SAF) remains largely uncharacterized. Along the Mojave section of the SAF, Little Rock Creek drains from south to north across the fault and has cut into alluvial terraces abandoned between 15 and 30 ka1. The surfaces offer a rare opportunity to both characterize how right-lateral slip has accumulated along the SAF over hundreds of seismic cycles, and investigate potential off-fault deformation along secondary structures, where strain accumulates at slower rates. Here we use both field observations and DEM analysis of B4 lidar data to map alluvial and tectonic features, including 9 terrace treads that stand up to 80 m above the modern channel. We interpret the abandonment and preservation of the fluvial terraces to result from episodic capture of Little Rock Creek through gaps in a shutter ridge north of the fault, followed by progressive right deflection of the river course during dextral slip along the SAF. Piercing lines defined by fluvial terrace risers suggest that the amount of right slip since riser formation ranges from 400m for the 15-ka-riser to 1200m for the 30-ka-riser. Where they are best-preserved NE of the SAF, terraces are also cut by NE-facing scarps that trend parallel to the SAF in a zone extending up to 2km from the main fault. Exposures indicate these are fault scarps, with both reverse and normal stratigraphic separation. Geomorphic mapping reveals deflections of both channel and terrace risers (up to 20m) along some of those faults suggesting they could have accommodated a component of right-lateral slip. We estimated the maximum total amount of strike-slip motion recorded by the

  11. Climate change and Greenland White-fronted Geese Anser albifrons flavirostris: shifts in distribution and advancement in spring departure times at Wexford versus elsewhere in the winter range

    DEFF Research Database (Denmark)

    Fox, Anthony David; Merne, Oscar J; Walsh, Alyn J.

    2012-01-01

    Count data have shown that numbers of Greenland White-fronted Geese Anser albifrons flavirostris wintering at their numerically most important site (Wexford Slobs in south east Ireland) have remained more or less constant over 30 years, in contrast to recent declines at their second most important...... site (Islay further north in south west Scotland), and declines in the population as a whole. There was no evidence to suggest a northwards shift in wintering geese as might be predicted under global climate change. Although Greenland White-fronted Geese now depart from Wexford in spring on average 22...... in migration timing. The more rapid advancement of spring migration at Wexford compared to elsewhere in the range and the retention of wintering geese there in contrast to declining trends amongst the population as a whole suggest that local management of the food resource at Wexford may be responsible...

  12. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    Science.gov (United States)

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  13. The Morelia-Acambay Fault System

    Science.gov (United States)

    Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.

    2013-05-01

    The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be

  14. Effect of fault roughness on aftershock distribution and post co-seismic strain accumulation.

    Science.gov (United States)

    Aslam, K.; Daub, E. G.

    2017-12-01

    We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.

  15. Characterizing the structural maturity of fault zones using high-resolution earthquake locations.

    Science.gov (United States)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2017-12-01

    We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.

  16. Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.

    2018-03-01

    Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in

  17. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps)

    Science.gov (United States)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo

    2014-05-01

    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  18. An Updated Front-End Data Link Design for the Phase-2 Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Silverstein, Samuel; The ATLAS collaboration

    2017-01-01

    We present a new design for the advanced Link Daughter Board (DB) for the front-end electronics upgrade of the ATLAS hadronic Tile Calorimeter. The DB provides control, configuration and continuous ADC readout for the front-end, as well as bi-directional multi-GB/s optical links to the off-detector readout system. The DB will operate in high luminosity LHC conditions with limited detector access, so the design is fault tolerant with a high level of redundancy to avoid single-point failure modes. The DB is divided longitudinally, with an FPGA serving the ADC channels on its respective side. The new design is based on the new Xilinx Kintex Ultrascale+ FPGA family, which provides improved high-speed link timing performance as well as better signal compatibility with the CERN-developed GBTx link and timing distribution ASICs. Two GBTx ASICs each provide redundant phase-adjusted, LHC synchronous clocks, parallel control buses and remote JTAG configuration access to both FPGAs on the DB.

  19. An updated front-end data link design for the Phase-2 upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Silverstein, Samuel; The ATLAS collaboration

    2017-01-01

    We present a new design of the advanced Link Daughter Board (DB) for the front-end electronics upgrade of the ATLAS Tile Calorimeter (TileCal) for Phase-II. The new TileCal front-end comprises 1024 “mini-drawers” (MD) installed in 256 calorimeter modules. Each MD serves up to 12 PMT channels, with ADCs and calibration provided by one “main board” (MB) per MD. The DB is connected to the MB through a dense, high-speed FMC connector, and provides bi-directional multi-Gb/s optlcal links to the off-detector electronics for timing, control, and continuous high-speed readout of the ADC channels on the MB. The DB is designed for redundancy and fault-tolerance, and previous versions have already been successfully tested at CERN and elsewhere. The new revision includes Kintex Ultrascale+ FPGAs for improved link timing and radiation tolerance, an expanded role for the rad-tolerant GBTx ASICs, and a simpler design requiring fewer components and optical links.

  20. Front Propagation in Stochastic Neural Fields

    KAUST Repository

    Bressloff, Paul C.

    2012-01-01

    We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein-Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive. © 2012 Society for Industrial and Applied Mathematics.

  1. Design of fault simulator

    Energy Technology Data Exchange (ETDEWEB)

    Gabbar, Hossam A. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Ontario, L1H 7K4 (Canada)], E-mail: hossam.gabbar@uoit.ca; Sayed, Hanaa E.; Osunleke, Ajiboye S. [Okayama University, Graduate School of Natural Science and Technology, Division of Industrial Innovation Sciences Department of Intelligent Systems Engineering, Okayama 700-8530 (Japan); Masanobu, Hara [AspenTech Japan Co., Ltd., Kojimachi Crystal City 10F, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan)

    2009-08-15

    Fault simulator is proposed to understand and evaluate all possible fault propagation scenarios, which is an essential part of safety design and operation design and support of chemical/production processes. Process models are constructed and integrated with fault models, which are formulated in qualitative manner using fault semantic networks (FSN). Trend analysis techniques are used to map real time and simulation quantitative data into qualitative fault models for better decision support and tuning of FSN. The design of the proposed fault simulator is described and applied on experimental plant (G-Plant) to diagnose several fault scenarios. The proposed fault simulator will enable industrial plants to specify and validate safety requirements as part of safety system design as well as to support recovery and shutdown operation and disaster management.

  2. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997)

    Science.gov (United States)

    Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.

    1998-11-01

    A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.

  3. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  4. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA

    Science.gov (United States)

    Madole, Richard F.

    2012-09-01

    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450-1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.

  5. Light-Front QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-11-30

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.

  6. Design of a New Switching Power Supply for the ATLAS TileCAL Front-End Electronics

    CERN Document Server

    Drake, G; The ATLAS collaboration

    2012-01-01

    We present the design of an upgraded switching power supply for the front-end electronics of the ATLAS hadron tile calorimeter (TileCAL) at the LHC. The new design features significant improvement in noise, improved fault detection, and improved reliability, while retaining the compact size, water-cooling, output control, and monitoring features in this 300 KHz design. We discuss the steps taken to improve the design. We present the results from extensive radiation testing to qualify the design, including SEU sensitivity. We also present our reliability analysis. Production of 2400 new bricks for the detector is currently in progress, and we present preliminary results from the production checkout.

  7. A Review Of Fault Tolerant Scheduling In Multicore Systems

    Directory of Open Access Journals (Sweden)

    Shefali Malhotra

    2015-05-01

    Full Text Available Abstract In this paper we have discussed about various fault tolerant task scheduling algorithm for multi core system based on hardware and software. Hardware based algorithm which is blend of Triple Modulo Redundancy and Double Modulo Redundancy in which Agricultural Vulnerability Factor is considered while deciding the scheduling other than EDF and LLF scheduling algorithms. In most of the real time system the dominant part is shared memory.Low overhead software based fault tolerance approach can be implemented at user-space level so that it does not require any changes at application level. Here redundant multi-threaded processes are used. Using those processes we can detect soft errors and recover from them. This method gives low overhead fast error detection and recovery mechanism. The overhead incurred by this method ranges from 0 to 18 for selected benchmarks. Hybrid Scheduling Method is another scheduling approach for real time systems. Dynamic fault tolerant scheduling gives high feasibility rate whereas task criticality is used to select the type of fault recovery method in order to tolerate the maximum number of faults.

  8. Eigenvector of gravity gradient tensor for estimating fault dips considering fault type

    Science.gov (United States)

    Kusumoto, Shigekazu

    2017-12-01

    The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.

  9. Seismic hazard of the Enriquillog-Plantain Garden fault in Haiti inferred from palaeoseismology

    Science.gov (United States)

    Prentice, C.S.; Mann, P.; Crone, A.J.; Gold, R.D.; Hudnut, K.W.; Briggs, R.W.; Koehler, R.D.; Jean, P.

    2010-01-01

    The Enriquillog-Plantain Garden fault zone is recognized as one of the primary plate-bounding fault systems in Haiti. The strike-slip fault runs adjacent to the city of Port-au-Prince and was initially thought to be the source of the 12 January 2010, M w 7.0 earthquake. Haiti experienced significant earthquakes in 1751 and 1770 (refsA, 3, 4, 5), but the role of the Enriquillog-Plantain Garden fault zone in these earthquakes is poorly known. We use satellite imagery, aerial photography, light detection and ranging (LIDAR) and field investigations to document Quaternary activity on the Enriquillog-Plantain Garden fault. We report late Quaternary, left-lateral offsets of up to 160m, and a set of small offsets ranging from 1.3 to 3.3m that we associate with one of the eighteenth century earthquakes. The size of the small offsets implies that the historical earthquake was larger than M w 7.0, but probably smaller than M w 7.6. We found no significant surface rupture associated with the 2010 earthquake. The lack of surface rupture, coupled with other seismologic, geologic and geodetic observations, suggests that little, if any, accumulated strain was released on the Enriquillog-Plantain Garden fault in the 2010 earthquake. These results confirm that the Enriquillog-Plantain Garden fault remains a significant seismic hazard. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  10. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2015-09-01

    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  11. Post-modelling of images from a laser-induced wavy boiling front

    Energy Technology Data Exchange (ETDEWEB)

    Matti, R.S., E-mail: ramiz.matti@ltu.se [Luleå University of Technology, Department of Engineering Sciences and Mathematics, SE-971 87 Luleå (Sweden); University of Mosul, College of Engineering, Department of Mechanical Engineering, Mosul (Iraq); Kaplan, A.F.H. [Luleå University of Technology, Department of Engineering Sciences and Mathematics, SE-971 87 Luleå (Sweden)

    2015-12-01

    Highlights: • New method: post-modelling of high speed images from a laser-induced front. • From the images a wavy cavity and its absorption distribution is calculated. • Histograms enable additional statistical analysis and understanding. • Despite the complex topology the absorptivity is bound to 35–43%. • The new method visualizes valuable complementary information. - Abstract: Processes like laser keyhole welding, remote fusion laser cutting or laser drilling are governed by a highly dynamic wavy boiling front that was recently recorded by ultra-high speed imaging. A new approach has now been established by post-modelling of the high speed images. Based on the image greyscale and on a cavity model the three-dimensional front topology is reconstructed. As a second step the Fresnel absorptivity modulation across the wavy front is calculated, combined with the local projection of the laser beam. Frequency polygons enable additional analysis of the statistical variations of the properties across the front. Trends like shadow formation and time dependency can be studied, locally and for the whole front. Despite strong topology modulation in space and time, for lasers with 1 μm wavelength and steel the absorptivity is bounded to a narrow range of 35–43%, owing to its Fresnel characteristics.

  12. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet

    Science.gov (United States)

    Gold, R.D.; Cowgill, E.; Arrowsmith, J.R.; Chen, X.; Sharp, W.D.; Cooper, K.M.; Wang, X.-F.

    2011-01-01

    The active, left-lateral Altyn Tagh fault defines the northwestern margin of the Tibetan Plateau in western China. To clarify late Quaternary temporal and spatial variations in slip rate along the central portion of this fault system (85??-90??E), we have more than doubled the number of dated offset markers along the central Altyn Tagh fault. In particular, we determined offset-age relations for seven left-laterally faulted terrace risers at three sites (Kelutelage, Yukuang, and Keke Qiapu) spanning a 140-km-long fault reach by integrating surficial geologic mapping, topographic surveys (total station and tripod-light detection and ranging [T-LiDAR]), and geochronology (radiocarbon dating of organic samples, 230Th/U dating of pedogenic carbonate coatings on buried clasts, and terrestrial cosmogenic radionuclide exposure age dating applied to quartz-rich gravels). At Kelutelage, which is the westernmost site (37.72??N, 86.67??E), two faulted terrace risers are offset 58 ?? 3 m and 48 ?? 4 m, and formed at 6.2-6.1 ka and 5.9-3.7 ka, respectively. At the Yukuang site (38.00??N, 87.87??E), four faulted terrace risers are offset 92 ?? 12 m, 68 ?? 6 m, 55 ?? 13 m, and 59 ?? 9 m and formed at 24.2-9.5 ka, 6.4-5.0 ka, 5.1-3.9 ka, and 24.2-6.4 ka, respectively. At the easternmost site, Keke Qiapu (38.08??N, 88.12??E), a faulted terrace riser is offset 33 ?? 6 m and has an age of 17.1-2.2 ka. The displacement-age relationships derived from these markers can be satisfied by an approximately uniform slip rate of 8-12 mm/yr. However, additional analysis is required to test how much temporal variability in slip rate is permitted by this data set. ?? 2011 Geological Society of America.

  13. High Compressive Stresses Near the Surface of the Sierra Nevada, California

    Science.gov (United States)

    Martel, S. J.; Logan, J. M.; Stock, G. M.

    2012-12-01

    Observations and stress measurements in granitic rocks of the Sierra Nevada, California reveal strong compressive stresses parallel to the surface of the range at shallow depths. New overcoring measurements show high compressive stresses at three locations along an east-west transect through Yosemite National Park. At the westernmost site (west end of Tenaya Lake), the mean compressive stress is 1.9. At the middle site (north shore of Tenaya Lake) the mean compressive stress is 6.8 MPa. At the easternmost site (south side of Lembert Dome) the mean compressive stress is 3.0 MPa. The trend of the most compressive stress at these sites is within ~30° of the strike of the local topographic surface. Previously published hydraulic fracturing measurements by others elsewhere in the Sierra Nevada indicate surface-parallel compressive stresses of several MPa within several tens of meters of the surface, with the stress magnitudes generally diminishing to the west. Both the new and the previously published compressive stress magnitudes are consistent with the presence of sheeting joints (i.e., "exfoliation joints") in the Sierra Nevada, which require lateral compressive stresses of several MPa to form. These fractures are widespread: they are distributed in granitic rocks from the north end of the range to its southern tip and across the width of the range. Uplift along the normal faults of the eastern escarpment, recently measured by others at ~1-2 mm/yr, probably contributes to these stresses substantially. Geodetic surveys reveal that normal faulting flexes a range concave upwards in response to fault slip, and this flexure is predicted by elastic dislocation models. The topographic relief of the eastern escarpment of the Sierra Nevada is 2-4 km, and since alluvial fill generally buries the bedrock east of the faults, the offset of granitic rocks is at least that much. Compressive stresses of several MPa are predicted by elastic dislocation models of the range front

  14. Permeability and seismic velocity and their anisotropy across the Alpine Fault, New Zealand: An insight from laboratory measurements on core from the Deep Fault Drilling Project phase 1 (DFDP-1)

    Science.gov (United States)

    Allen, M. J.; Tatham, D.; Faulkner, D. R.; Mariani, E.; Boulton, C.

    2017-08-01

    The Alpine Fault, a transpressional plate boundary between the Australian and Pacific plates, is known to rupture quasiperiodically with large magnitude earthquakes (Mw 8). The hydraulic and elastic properties of fault zones are thought to vary over the seismic cycle, influencing the nature and style of earthquake rupture and associated processes. We present a suite of laboratory permeability and P (Vp) and S (Vs) wave velocity measurements performed on fault lithologies recovered during the first phase of the Deep Fault Drilling Project (DFDP-1), which sampled principal slip zone (PSZ) gouges, cataclasites, and fractured ultramylonites, with all recovered lithologies overprinted by abundant secondary mineralization, recording enhanced fluid-rock interaction. Core material was tested in three orthogonal directions, orientated relative to the down-core axis and, when present, foliation. Measurements were conducted with pore pressure (H2O) held at 5 MPa over an effective pressure (Peff) range of 5-105 MPa. Permeabilities and seismic velocities decrease with proximity to the PSZ with permeabilities ranging from 10-17 to 10-21 m2 and Vp and Vs ranging from 4400 to 5900 m/s in the ultramylonites/cataclasites and 3900 to 4200 m/s at the PSZ. In comparison with intact country rock protoliths, the highly variable cataclastic structures and secondary phyllosilicates and carbonates have resulted in an overall reduction in permeability and seismic wave velocity, as well as a reduction in anisotropy within the fault core. These results concur with other similar studies on other mature, tectonic faults in their interseismic period.

  15. Model-Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools

    CERN Document Server

    Ding, Steven X

    2013-01-01

    Guaranteeing a high system performance over a wide operating range is an important issue surrounding the design of automatic control systems with successively increasing complexity. As a key technology in the search for a solution, advanced fault detection and identification (FDI) is receiving considerable attention. This book introduces basic model-based FDI schemes, advanced analysis and design algorithms, and mathematical and control-theoretic tools. This second edition of Model-Based Fault Diagnosis Techniques contains: ·         new material on fault isolation and identification, and fault detection in feedback control loops; ·         extended and revised treatment of systematic threshold determination for systems with both deterministic unknown inputs and stochastic noises; addition of the continuously-stirred tank heater as a representative process-industrial benchmark; and ·         enhanced discussion of residual evaluation in stochastic processes. Model-based Fault Diagno...

  16. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan

    Science.gov (United States)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.

    2017-12-01

    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface

  17. Process plant alarm diagnosis using synthesised fault tree knowledge

    International Nuclear Information System (INIS)

    Trenchard, A.J.

    1990-01-01

    The development of computer based tools, to assist process plant operators in their task of fault/alarm diagnosis, has received much attention over the last twenty five years. More recently, with the emergence of Artificial Intelligence (AI) technology, the research activity in this subject area has heightened. As a result, there are a great variety of fault diagnosis methodologies, using many different approaches to represent the fault propagation behaviour of process plant. These range in complexity from steady state quantitative models to more abstract definitions of the relationships between process alarms. Unfortunately, very few of the techniques have been tried and tested on process plant and even fewer have been judged to be commercial successes. One of the outstanding problems still remains the time and effort required to understand and model the fault propagation behaviour of each considered process. This thesis describes the development of an experimental knowledge based system (KBS) to diagnose process plant faults, as indicated by process variable alarms. In an attempt to minimise the modelling effort, the KBS has been designed to infer diagnoses using a fault tree representation of the process behaviour, generated using an existing fault tree synthesis package (FAULTFINDER). The process is described to FAULTFINDER as a configuration of unit models, derived from a standard model library or by tailoring existing models. The resultant alarm diagnosis methodology appears to work well for hard (non-rectifying) faults, but is likely to be less robust when attempting to diagnose intermittent faults and transient behaviour. The synthesised fault trees were found to contain the bulk of the information required for the diagnostic task, however, this needed to be augmented with extra information in certain circumstances. (author)

  18. An Active Fault-Tolerant Control Method Ofunmanned Underwater Vehicles with Continuous and Uncertain Faults

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2008-11-01

    Full Text Available This paper introduces a novel thruster fault diagnosis and accommodation system for open-frame underwater vehicles with abrupt faults. The proposed system consists of two subsystems: a fault diagnosis subsystem and a fault accommodation sub-system. In the fault diagnosis subsystem a ICMAC(Improved Credit Assignment Cerebellar Model Articulation Controllers neural network is used to realize the on-line fault identification and the weighting matrix computation. The fault accommodation subsystem uses a control algorithm based on weighted pseudo-inverse to find the solution of the control allocation problem. To illustrate the proposed method effective, simulation example, under multi-uncertain abrupt faults, is given in the paper.

  19. Front propagation in flipping processes

    International Nuclear Information System (INIS)

    Antal, T; Ben-Avraham, D; Ben-Naim, E; Krapivsky, P L

    2008-01-01

    We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess Δ k increases logarithmically, Δ k ≅ ln k, with the distance k from the front. Third, the front exhibits ageing-young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations

  20. Knowledge-driven board-level functional fault diagnosis

    CERN Document Server

    Ye, Fangming; Chakrabarty, Krishnendu; Gu, Xinli

    2017-01-01

    This book provides a comprehensive set of characterization, prediction, optimization, evaluation, and evolution techniques for a diagnosis system for fault isolation in large electronic systems. Readers with a background in electronics design or system engineering can use this book as a reference to derive insightful knowledge from data analysis and use this knowledge as guidance for designing reasoning-based diagnosis systems. Moreover, readers with a background in statistics or data analytics can use this book as a practical case study for adapting data mining and machine learning techniques to electronic system design and diagnosis. This book identifies the key challenges in reasoning-based, board-level diagnosis system design and presents the solutions and corresponding results that have emerged from leading-edge research in this domain. It covers topics ranging from highly accurate fault isolation, adaptive fault isolation, diagnosis-system robustness assessment, to system performance analysis and evalua...

  1. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems. These ...

  2. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  3. Fault-patch stress-transfer efficiency in presence of sub-patch geometric complexity

    KAUST Repository

    Zielke, Olaf

    2015-04-01

    It is well known that faults are not planar surfaces. Instead they exhibit self-similar or self-affine properties that span a wide range of spatial (sub-micrometer to tens-of-kilometer). This geometric fault roughness has a distinct impact on amount and distribution of stresses/strains induced in the medium and on other portions of the fault. However, when numerically simulated (for example in multi-cycle EQ rupture simulations or Coulomb failure stress calculations) this roughness is largely ignored: individual fault patches --the incremental elements that build the fault surface in the respective computer models-- are planar and fault roughness at this and lower spatial scales is not considered. As a result, the fault-patch stress-transfer efficiency may be systematically too large in those numerical simulations with respect to the "actual" efficiency level. Here, we investigate the effect of sub-patch geometric complexity on fault-patch stress-transfer efficiency. For that, we sub-divide a fault patch (e.g., 1x1km) into a large number of sub-patches (e.g., 20x20m) and determine amount of induced stresses at selected positions around that patch for different levels and realizations of fault roughness. For each fault roughness level, we compute mean and standard deviation of the induced stresses, enabling us to compute the coefficient of variation. We normalize those values with stresses from the corresponding single (planar) fault patch, providing scaling factors and their variability for stress transfer efficiency. Given a certain fault roughness that is assumed for a fault, this work provides the means to implement the sub-patch fault roughness into investigations based on fault-patch interaction schemes.

  4. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  5. An Upgraded Front-End Switching Power Supply Design For the ATLAS TileCAL Detector of the LHC

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2011-01-01

    We present the design of an upgraded switching power supply brick for the front-end electronics of the ATLAS hadron tile calorimeter (TileCAL) at the LHC. The new design features significant improvement in noise, improved fault detection, and generally a more robust design, while retaining the compact size, water-cooling, output control, and monitoring features in this 300 KHz design. We discuss the improvements to the design, and the radiation testing that we have done to qualify the design. We also present our plans for the production of 2400 new bricks for installation on the detector in 2013.

  6. An Upgraded Front-End Switching Power Supply Design for the ATLAS TileCAL Detector of the LHC

    CERN Document Server

    Drake, G; The ATLAS collaboration; De Lurgio, P; Henriques, A; Minashvili, I; Nemecek, S; Price, L; Proudfoot, J; Stanek, R

    2011-01-01

    We present the design of an upgraded switching power supply brick for the front-end electronics of the ATLAS hadron tile calorimeter (TileCAL) at the LHC. The new design features significant improvement in noise, improved fault detection, and generally a more robust design, while retaining the compact size, water-cooling, output control, and monitoring features in this 300 KHz design. We discuss the improvements to the design, and the radiation testing that we have done to qualify the design. We also present our plans for the production of 2400 new bricks for installation on the detector in 2013.

  7. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  8. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  9. Fault-tolerant Control of Unmanned Underwater Vehicles with Continuous Faults: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2010-02-01

    Full Text Available A novel thruster fault diagnosis and accommodation method for open-frame underwater vehicles is presented in the paper. The proposed system consists of two units: a fault diagnosis unit and a fault accommodation unit. In the fault diagnosis unit an ICMAC (Improved Credit Assignment Cerebellar Model Articulation Controllers neural network information fusion model is used to realize the fault identification of the thruster. The fault accommodation unit is based on direct calculations of moment and the result of fault identification is used to find the solution of the control allocation problem. The approach resolves the continuous faulty identification of the UV. Results from the experiment are provided to illustrate the performance of the proposed method in uncertain continuous faulty situation.

  10. Fault-tolerant Control of Unmanned Underwater Vehicles with Continuous Faults: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2009-12-01

    Full Text Available A novel thruster fault diagnosis and accommodation method for open-frame underwater vehicles is presented in the paper. The proposed system consists of two units: a fault diagnosis unit and a fault accommodation unit. In the fault diagnosis unit an ICMAC (Improved Credit Assignment Cerebellar Model Articulation Controllers neural network information fusion model is used to realize the fault identification of the thruster. The fault accommodation unit is based on direct calculations of moment and the result of fault identification is used to find the solution of the control allocation problem. The approach resolves the continuous faulty identification of the UV. Results from the experiment are provided to illustrate the performance of the proposed method in uncertain continuous faulty situation.

  11. Faults Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  12. Active learning of Pareto fronts.

    Science.gov (United States)

    Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto

    2014-03-01

    This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.

  13. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 1: Kinematics of Basin-Range intraplate extension

    Science.gov (United States)

    Eddington, P. K.; Smith, R. B.; Renggli, C.

    1986-01-01

    Strain rates assessed from brittle fracture and total brittle-ductile deformation measured from geodetic data were compared to estimates of paleo-strain from Quaternary geology for the intraplate Great Basin part of the Basin-Range, western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced from the past few million years to the present. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions for sub-regions of homogeneous strain. Contemporary deformation in the Great Basin occurs principally along the active seismic zones. The integrated opening rate across the entire Great Basin is accommodated by E-E extension at 8 to 10 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum lithospheric extension correspond to belts of thin crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through mechanism of extension such as a stress relaxation, allowing bouyant uplift and ascension of magmas.

  14. A Framework For Evaluating Comprehensive Fault Resilience Mechanisms In Numerical Programs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Peng, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronevetsky, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-09

    As HPC systems approach Exascale, their circuit feature will shrink, while their overall size will grow, all at a fixed power limit. These trends imply that soft faults in electronic circuits will become an increasingly significant problem for applications that run on these systems, causing them to occasionally crash or worse, silently return incorrect results. This is motivating extensive work on application resilience to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithm-specific error detection and resilience techniques. Effective use of such techniques requires a detailed understanding of (1) which vulnerable parts of the application are most worth protecting (2) the performance and resilience impact of fault resilience mechanisms on the application. This paper presents FaultTelescope, a tool that combines these two and generates actionable insights by presenting in an intuitive way application vulnerabilities and impact of fault resilience mechanisms on applications.

  15. A Design Method for Fault Reconfiguration and Fault-Tolerant Control of a Servo Motor

    Directory of Open Access Journals (Sweden)

    Jing He

    2013-01-01

    Full Text Available A design scheme that integrates fault reconfiguration and fault-tolerant position control is proposed for a nonlinear servo system with friction. Analysis of the non-linear friction torque and fault in the system is used to guide design of a sliding mode position controller. A sliding mode observer is designed to achieve fault reconfiguration based on the equivalence principle. Thus, active fault-tolerant position control of the system can be realized. A real-time simulation experiment is performed on a hardware-in-loop simulation platform. The results show that the system reconfigures well for both incipient and abrupt faults. Under the fault-tolerant control mechanism, the output signal for the system position can rapidly track given values without being influenced by faults.

  16. Systematic front distortion and presence of consecutive fronts in a precipitation system

    NARCIS (Netherlands)

    Volford, A.; Izsak, F.; Ripszam, M.; Lagzi, I.

    2006-01-01

    A new simple reaction-diffusion system is presented focusing on pattern formation phenomena as consecutive precipitation fronts and distortion of the precipitation front.The chemical system investigated here is based on the amphoteric property of aluminum hydroxide and exhibits two unique phenomena.

  17. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  18. Fault Features Extraction and Identification based Rolling Bearing Fault Diagnosis

    International Nuclear Information System (INIS)

    Qin, B; Sun, G D; Zhang L Y; Wang J G; HU, J

    2017-01-01

    For the fault classification model based on extreme learning machine (ELM), the diagnosis accuracy and stability of rolling bearing is greatly influenced by a critical parameter, which is the number of nodes in hidden layer of ELM. An adaptive adjustment strategy is proposed based on vibrational mode decomposition, permutation entropy, and nuclear kernel extreme learning machine to determine the tunable parameter. First, the vibration signals are measured and then decomposed into different fault feature models based on variation mode decomposition. Then, fault feature of each model is formed to a high dimensional feature vector set based on permutation entropy. Second, the ELM output function is expressed by the inner product of Gauss kernel function to adaptively determine the number of hidden layer nodes. Finally, the high dimension feature vector set is used as the input to establish the kernel ELM rolling bearing fault classification model, and the classification and identification of different fault states of rolling bearings are carried out. In comparison with the fault classification methods based on support vector machine and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability. (paper)

  19. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  20. Insights in Fault Flow Behaviour from Onshore Nigeria Petroleum System Modelling

    Directory of Open Access Journals (Sweden)

    Woillez Marie-Noëlle

    2017-09-01

    Full Text Available Faults are complex geological features acting either as permeability barrier, baffle or drain to fluid flow in sedimentary basins. Their role can be crucial for over-pressure building and hydrocarbon migration, therefore they have to be properly integrated in basin modelling. The ArcTem basin simulator included in the TemisFlow software has been specifically designed to improve the modelling of faulted geological settings and to get a numerical representation of fault zones closer to the geological description. Here we present new developments in the simulator to compute fault properties through time as a function of available geological parameters, for single-phase 2D simulations. We have used this new prototype to model pressure evolution on a siliciclastic 2D section located onshore in the Niger Delta. The section is crossed by several normal growth faults which subdivide the basin into several sedimentary units and appear to be lateral limits of strong over-pressured zones. Faults are also thought to play a crucial role in hydrocarbons migration from the deep source rocks to shallow reservoirs. We automatically compute the Shale Gouge Ratio (SGR along the fault planes through time, as well as the fault displacement velocity. The fault core permeability is then computed as a function of the SGR, including threshold values to account for shale smear formation. Longitudinal fault fluid flow is enhanced during periods of high fault slip velocity. The method allows us to simulate both along-fault drainages during the basin history as well as overpressure building at present-day. The simulated pressures are at first order within the range of observed pressures we had at our disposal.

  1. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  2. Relationships between moment magnitude and fault parameters: theoretical and semi-empirical relationships

    Science.gov (United States)

    Wang, Haiyun; Tao, Xiaxin

    2003-12-01

    Fault parameters are important in earthquake hazard analysis. In this paper, theoretical relationships between moment magnitude and fault parameters including subsurface rupture length, downdip rupture width, rupture area, and average slip over the fault surface are deduced based on seismological theory. These theoretical relationships are further simplified by applying similarity conditions and an unique form is established. Then, combining the simplified theoretical relationships between moment magnitude and fault parameters with seismic source data selected in this study, a practical semi-empirical relationship is established. The seismic source data selected is also to used to derive empirical relationships between moment magnitude and fault parameters by the ordinary least square regression method. Comparisons between semi-empirical relationships and empirical relationships show that the former depict distribution trends of data better than the latter. It is also observed that downdip rupture widths of strike slip faults are saturated when moment magnitude is more than 7.0, but downdip rupture widths of dip slip faults are not saturated in the moment magnitude ranges of this study.

  3. FRONT-END ASIC FOR A SILICON COMPTON TELESCOPE.

    Energy Technology Data Exchange (ETDEWEB)

    DE GERONIMO,G.; FRIED, J.; FROST, E.; PHLIPS, B.; VERNON, E.; WULF, E.A.

    2007-10-27

    We describe a front-end application specific integrated circuit (ASIC) developed for a silicon Compton telescope. Composed of 32 channels, it reads out signals in both polarities from each side of a Silicon strip sensor, 2 mm thick 27 cm long, characterized by a strip capacitance of 30 pF. Each front-end channel provides low-noise charge amplification, shaping with a stabilized baseline, discrimination, and peak detection with an analog memory. The channels can process events simultaneously, and the read out is sparsified. The charge amplifier makes uses a dual-cascode configuration and dual-polarity adaptive reset, The low-hysteresis discriminator and the multi-phase peak detector process signals with a dynamic range in excess of four hundred. An equivalent noise charge (ENC) below 200 electrons was measured at 30 pF, with a slope of about 4.5 electrons/pF at a peaking time of 4 {micro}s. With a total dissipated power of 5 mW the channel covers an energy range up to 3.2 MeV.

  4. Circumpolar variation in morphological characteristics of Greater White-fronted Geese Anser albifrons

    Science.gov (United States)

    Ely, Craig R.; Fox, A.D.; Alisauskas, R.T.; Andreev, A.; Bromley, R.G.; Degtyarev, Andrei G.; Ebbinge, B.; Gurtovaya, E.N.; Kerbes, R.; Kondratyev, Alexander V.; Kostin, I.; Krechmar, A.V.; Litvin, K.E.; Miyabayashi, Y.; Moou, J.H.; Oates, R.M.; Orthmeyer, D.L.; Sabano, Yutaka; Simpson, S.G.; Solovieva, D.V.; Spindler, Michael A.; Syroechkovsky, Y.V.; Takekawa, John Y.; Walsh, A.

    2005-01-01

    Capsule: Greater White-fronted Geese show significant variation in body size from sampling locations throughout their circumpolar breeding range. Aims: To determine the degree of geographical variation in body size of Greater White-fronted Geese and identify factors contributing to any apparent patterns in variation. Methods: Structural measures of >3000 geese from 16 breeding areas throughout the Holarctic breeding range of the species were compared statistically. Results: Palearctic forms varied clinally, and increased in size from the smallest forms on the Kanin and Taimyr peninsulas in western Eurasia to the largest forms breeding in the Anadyr Lowlands of eastern Chukotka. Clinal variation was less apparent in the Nearctic, as both the smallest form in the Nearctic and the largest form overall (the Tule Goose) were from different breeding areas in Alaska. The Tule Goose was 25% larger than the smallest form. Birds from Greenland (A. a. flavirostris) were the second largest, although only slightly larger than geese from several North American populations. Body size was not correlated with breeding latitude but was positively correlated with temperature on the breeding grounds, breeding habitat, and migration distance. Body mass of Greater White-fronted Geese from all populations remained relatively constant during the period of wing moult. Morphological distinctness of eastern and western Palearctic forms concurs with earlier findings of complete range disjunction. Conclusions: Patterns of morphological variation in Greater White-fronted Geese across the Holarctic can be generally attributed to adaptation to variable breeding environments, migration requirements, and phylo-geographical histories. 

  5. InP DHBT MMICs for millimeter-wave front-ends

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Hadziabdic, Dzenan; Krozer, Viktor

    2009-01-01

    In this paper, we show advanced MMIC's using InP DHBT technology. In particular, we demonstrate front-end circuits covering a broad frequency range from Q-band to E-band. Realizations of power amplifiers, quadrature VCOs, and sub-harmonic mixers, are presented and experimental results are discussed....

  6. Methods and problems of determination of paleoearthquake magnitudes from fault source parameters

    International Nuclear Information System (INIS)

    Chang, C. J.; Choi, W. H.; Yeon, K. H.; Park, D. H.; Im, C. B.

    2004-01-01

    It has been debated that some of the Quaternary faults which were discovered near the nuclear power plant site whether are capable or not, SE Korea peninsula, thereby, it was necessary to estimate the maximum earthquake potential from the fault source parameters. In this study, we reviewed and analyzed the methods of evaluation of the maximum earthquake potential and also evaluated the maximum credible earthquake from the fault source parameters to the exclusion for the factor of faulting time. We obtained the paleomagnitude range of M 6.82∼7.21 and mean of M 6.98 from a certain fault with 1.5 m displacement of the Quaternary faults have been surveyed along the coast line of the East Sea. And, we also obtained the mean values of M 5.36, M 7.47 and M 6.46 from the other fault which is the fault surface length of 1.5 km, displacement of 4 m and the rate of seismic moment-release, respectively. We consider that a cause of the different paleomagnitudes is due to including the factors of over- and under-estimation in estimating the earthquake potential, and also may not fully identify the detailed geometry and dynamics of the faults

  7. Homogeneity of small-scale earthquake faulting, stress, and fault strength

    Science.gov (United States)

    Hardebeck, J.L.

    2006-01-01

    Small-scale faulting at seismogenic depths in the crust appears to be more homogeneous than previously thought. I study three new high-quality focal-mechanism datasets of small (M angular difference between their focal mechanisms. Closely spaced earthquakes (interhypocentral distance faults of many orientations may or may not be present, only similarly oriented fault planes produce earthquakes contemporaneously. On these short length scales, the crustal stress orientation and fault strength (coefficient of friction) are inferred to be homogeneous as well, to produce such similar earthquakes. Over larger length scales (???2-50 km), focal mechanisms become more diverse with increasing interhypocentral distance (differing on average by 40-70??). Mechanism variability on ???2- to 50 km length scales can be explained by ralatively small variations (???30%) in stress or fault strength. It is possible that most of this small apparent heterogeneity in stress of strength comes from measurement error in the focal mechanisms, as negligibble variation in stress or fault strength (<10%) is needed if each earthquake is assigned the optimally oriented focal mechanism within the 1-sigma confidence region. This local homogeneity in stress orientation and fault strength is encouraging, implying it may be possible to measure these parameters with enough precision to be useful in studying and modeling large earthquakes.

  8. Vipava fault (Slovenia

    Directory of Open Access Journals (Sweden)

    Ladislav Placer

    2008-06-01

    Full Text Available During mapping of the already accomplished Razdrto – Senožeče section of motorway and geologic surveying of construction operations of the trunk road between Razdrto and Vipava in northwestern part of External Dinarides on the southwestern slope of Mt. Nanos, called Rebrnice, a steep NW-SE striking fault was recognized, situated between the Predjama and the Ra{a faults. The fault was named Vipava fault after the Vipava town. An analysis of subrecent gravitational slips at Rebrnice indicates that they were probably associated with the activity of this fault. Unpublished results of a repeated levelling line along the regional road passing across the Vipava fault zone suggest its possible present activity. It would be meaningful to verify this by appropriate geodetic measurements, and to study the actual gravitational slips at Rebrnice. The association between tectonics and gravitational slips in this and in similar extreme cases in the areas of Alps and Dinarides points at the need of complex studying of geologic proceses.

  9. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

    International Nuclear Information System (INIS)

    Reheis, M.C.; Noller, J.S.

    1991-01-01

    Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs

  10. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun

    1994-02-01

    In this work, the Fuzzy Signed Digraph(FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators

  11. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Seong, Poong Hyun

    1994-01-01

    In this work, the Fuzzy Signed Digraph (FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators. (Author)

  12. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel

    2016-01-01

    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  13. Optimal design of superconducting fault detector for superconductor triggered fault current limiters

    International Nuclear Information System (INIS)

    Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.; Sim, J.; Park, K.B.; Lee, B.W.

    2008-01-01

    We have designed and tested a superconducting fault detector (SFD) for a 22.9 kV superconductor triggered fault current limiters (STFCLs) using Au/YBCO thin films. The SFD is to detect a fault and commutate the current from the primary path to the secondary path of the STFCL. First, quench characteristics of the Au/YBCO thin films were investigated for various faults having different fault duration. The rated voltage of the Au/YBCO thin films was determined from the results, considering the stability of the Au/YBCO elements. Second, the recovery time to superconductivity after quench was measured in each fault case. In addition, the dependence of the recovery characteristics on numbers and dimension of Au/YBCO elements were investigated. Based on the results, a SFD was designed, fabricated and tested. The SFD successfully detected a fault current and carried out the line commutation. Its recovery time was confirmed to be less than 0.5 s, satisfying the reclosing scheme in the Korea Electric Power Corporation (KEPCO)'s power grid

  14. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    Science.gov (United States)

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE

    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin

    2014-01-01

    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A ‘fault

  16. Post-Neogene tectonism along the Aravalli Range, Rajasthan, India

    Science.gov (United States)

    Sen, Deepawati; Sen, Saurindranath

    1983-03-01

    The Aravalli Range runs southwest from Delhi for a distance of about 700 km. Its western margin is well defined, but the eastern margin is diffuse. Five geomorphic provinces are recognized in the study area: the western piedmont plains; the ridge and valley province which in the Central Aravallis occurs at two different heights separated by a fault scarp; the plateau province demarcated from the former by a fault scarp, confined to the Southern Aravallis, and occurring for a short stretch at two heights across another fault scarp; the BGC rolling plains east of the Range; and the BGC uplands south of the above. The scarps coincide with Precambrian faults. A series of rapids and water-falls, together with deeply entrenched river courses across the scarps and the youthful aspects of the escarpments with no projecting spurs, or straight river courses along their feet, all point unmistakably to a recent or post-Neogene vertical uplift along pre-existing faults. Presence of knickpoints at a constant distance from the Range in all west-flowing rivers, the ubiquitous terraces, and river courses entrenched within their own flood-plain deposits of thick gritty to conglomeratic sand, are indicative of a constant disturbance with a gradual rise of the Range east of the knickpoint, wherefrom the coarse materials were carried by the fast west-flowing streams. There is a differential uplift across the plateau scarp together with a right-lateral offset. This epeirogenic tectonism is ascribed to the collision of the Eurasian and the subducting Indian plates and to a locking of their continental crusts. By early Pleistocene, with the MBT gradually dying off, continued plate movement caused a flexural bending of the plate by a moment generated at the back, and a possible delinking of the continental crust along the zone of subduction. The felexural bending ripped open the Precambrian regional faults. The differential uplift and the difference in the distances of the nodes on two

  17. Fault-tolerant computing systems

    International Nuclear Information System (INIS)

    Dal Cin, M.; Hohl, W.

    1991-01-01

    Tests, Diagnosis and Fault Treatment were chosen as the guiding themes of the conference. However, the scope of the conference included reliability, availability, safety and security issues in software and hardware systems as well. The sessions were organized for the conference which was completed by an industrial presentation: Keynote Address, Reconfiguration and Recover, System Level Diagnosis, Voting and Agreement, Testing, Fault-Tolerant Circuits, Array Testing, Modelling, Applied Fault Tolerance, Fault-Tolerant Arrays and Systems, Interconnection Networks, Fault-Tolerant Software. One paper has been indexed separately in the database. (orig./HP)

  18. Ancestral Rocky Mountian Tectonics: A Sedimentary Record of Ancestral Front Range and Uncompahgre Exhumation

    Science.gov (United States)

    Smith, T. M.; Saylor, J. E.; Lapen, T. J.

    2015-12-01

    The Ancestral Rocky Mountains (ARM) encompass multiple crustal provinces with characteristic crystallization ages across the central and western US. Two driving mechanisms have been proposed to explain ARM deformation. (1) Ouachita-Marathon collision SE of the ARM uplifts has been linked to an E-to-W sequence of uplift and is consistent with proposed disruption of a larger Paradox-Central Colorado Trough Basin by exhumation of the Uncompahgre Uplift. Initial exhumation of the Amarillo-Wichita Uplift to the east would provide a unique ~530 Ma signal absent from source areas to the SW, and result in initial exhumation of the Ancestral Front Range. (2) Alternatively, deformation due to flat slab subduction along a hypothesized plate boundary to the SW suggests a SW-to-NE younging of exhumation. This hypothesis suggests a SW-derived Grenville signature, and would trigger uplift of the Uncompahgre first. We analyzed depositional environments, sediment dispersal patterns, and sediment and basement zircon U-Pb and (U-Th)/He ages in 3 locations in the Paradox Basin and Central Colorado Trough (CCT). The Paradox Basin exhibits an up-section transition in fluvial style that suggests a decrease in overbank stability and increased lateral migration. Similarly, the CCT records a long-term progradation of depositional environments from marginal marine to fluvial, indicating that sediment supply in both basins outpaced accommodation. Preliminary provenance results indicate little to no input from the Amarillo-Wichita uplift in either basin despite uniformly westward sediment dispersal systems in both basins. Results also show that the Uncompahgre Uplift was the source for sediment throughout Paradox Basin deposition. These observations are inconsistent with the predictions of scenario 1 above. Rather, they suggest either a synchronous response to tectonic stress across the ARM provinces or an SW-to-NE pattern of deformation.

  19. Active Fault-Tolerant Control for Wind Turbine with Simultaneous Actuator and Sensor Faults

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The purpose of this paper is to show a novel fault-tolerant tracking control (FTC strategy with robust fault estimation and compensating for simultaneous actuator sensor faults. Based on the framework of fault-tolerant control, developing an FTC design method for wind turbines is a challenge and, thus, they can tolerate simultaneous pitch actuator and pitch sensor faults having bounded first time derivatives. The paper’s key contribution is proposing a descriptor sliding mode method, in which for establishing a novel augmented descriptor system, with which we can estimate the state of system and reconstruct fault by designing descriptor sliding mode observer, the paper introduces an auxiliary descriptor state vector composed by a system state vector, actuator fault vector, and sensor fault vector. By the optimized method of LMI, the conditions for stability that estimated error dynamics are set up to promote the determination of the parameters designed. With this estimation, and designing a fault-tolerant controller, the system’s stability can be maintained. The effectiveness of the design strategy is verified by implementing the controller in the National Renewable Energy Laboratory’s 5-MW nonlinear, high-fidelity wind turbine model (FAST and simulating it in MATLAB/Simulink.

  20. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters

    Science.gov (United States)

    Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen

    2016-12-01

    This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.

  1. Dynamic testing for radiation induced failures in a standard CMOS submicron technology pixel front-end

    International Nuclear Information System (INIS)

    Venuto, D. de; Corsi, F.; Ohletz, M.J.

    1999-01-01

    A testing method for the detection of performance degradation induced by high-dose irradiation in high-energy experiments has been developed. The method used is based on a fault signature generation defined on the basis of the state-space analysis for linear circuits. By sampling the response of the circuit under test (CUT) to a single rectangular pulse, a set of parameters α are evaluated which are functions of the circuit singularities and constitute a signature for the CUT. Amplitude perturbations of these parameters engendered by element drift failure indicate a possible faulty condition. The effects of radiation induced faults in the analogue CMOS front-end of a silicon pixel detector employed in high energy physics experiments has been investigated. The results show that, even for the 800 krad dose, the test devised is able to detect the degradation of the amplifier performances. The results show also that hardened devices do not necessarily produce high circuit immunity to radiation and the proposed test method provides a mean to detect these performance deviations and to monitor them during the operating life of the chip. (A.C.)

  2. Planar microlens with front-face angle: design, fabrication, and characterization

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-07-08

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500  μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  3. Planar microlens with front-face angle: design, fabrication, and characterization

    Science.gov (United States)

    Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee

    2016-07-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  4. Planar microlens with front-face angle: design, fabrication, and characterization

    KAUST Repository

    Hafiz, Md Abdullah Al; Michael, Aron; Kwok, Chee-Yee

    2016-01-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500  μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  5. Fault diagnosis of power transformer based on fault-tree analysis (FTA)

    Science.gov (United States)

    Wang, Yongliang; Li, Xiaoqiang; Ma, Jianwei; Li, SuoYu

    2017-05-01

    Power transformers is an important equipment in power plants and substations, power distribution transmission link is made an important hub of power systems. Its performance directly affects the quality and health of the power system reliability and stability. This paper summarizes the five parts according to the fault type power transformers, then from the time dimension divided into three stages of power transformer fault, use DGA routine analysis and infrared diagnostics criterion set power transformer running state, finally, according to the needs of power transformer fault diagnosis, by the general to the section by stepwise refinement of dendritic tree constructed power transformer fault

  6. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  7. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    Science.gov (United States)

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.

    Science.gov (United States)

    Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L

    2002-09-01

    We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.

  9. Cyclical Fault Permeability in the Lower Seismogenic Zone: Geological Evidence

    Science.gov (United States)

    Sibson, R. H.

    2005-12-01

    Syntectonic hydrothermal veining is widespread in ancient fault zones exhibiting mixed brittle-ductile behavior that are exhumed from subgreenschist to greenschist environments. The hydrothermal material (predominantly quartz ± carbonate) commonly occurs as fault-veins developed along principal slip surfaces, with textures recording intermittent deposition, sometimes in the form of repeated episodes of brecciation and recementation. Systematic sets of extension veins with histories of incremental dilation often occur in adjacent wallrocks. Conspicuous for their size and continuity among these fault-hosted vein systems are mesozonal Au-quartz lodes, which are most widespread in Archean granite-greenstone belts but also occur throughout the geological record. Most of these lode gold deposits developed at pressures of 1-5 kbar and temperatures of 200-450°C within the lower continental seismogenic zone. A notable characteristic is their vertical continuity: many `ribbon-texture' fault veins with thicknesses of the order of a meter extend over depth ranges approaching 2 km. The largest lodes are usually hosted by reverse or reverse- oblique fault zones with low finite displacement. Associated flat-lying extension veins in the wallrock may taper away from the shear zones over tens or hundreds of meters, and demonstrate repeated attainment of the ~lithostatic fluid overpressures needed for hydraulic extension fracturing. Where hosted by extensional-transtensional fault systems, lode systems tend to be less well developed. Mesozonal vein systems are inferred to be the product of extreme fault-valve behavior, whereby episodic accumulation of pore-fluid pressure to near-lithostatic values over the interseismic period leads to fault rupture, followed by postseismic discharge of substantial fluid volumes along the freshly permeable rupture zone inducing hydrothermal precipitation that seals the fracture permeability. Aqueous mineralizing fluids were generally low

  10. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    Science.gov (United States)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  11. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    Science.gov (United States)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a

  12. Influence of fault steps on rupture termination of strike-slip earthquake faults

    Science.gov (United States)

    Li, Zhengfang; Zhou, Bengang

    2018-03-01

    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  13. Significant strain accumulation between the deformation front and landward out-of-sequence thrusts in accretionary wedge of SW Taiwan revealed by cGPS and SAR interferometry

    Science.gov (United States)

    Tsai, M. C.

    2017-12-01

    High strain accumulation across the fold-and-thrust belt in Southwestern Taiwan are revealed by the Continuous GPS (cGPS) and SAR interferometry. This high strain is generally accommodated by the major active structures in fold-and-thrust belt of western Foothills in SW Taiwan connected to the accretionary wedge in the incipient are-continent collision zone. The active structures across the high strain accumulation include the deformation front around the Tainan Tableland, the Hochiali, Hsiaokangshan, Fangshan and Chishan faults. Among these active structures, the deformation pattern revealed from cGPS and SAR interferometry suggest that the Fangshan transfer fault may be a left-lateral fault zone with thrust component accommodating the westward differential motion of thrust sheets on both side of the fault. In addition, the Chishan fault connected to the splay fault bordering the lower-slope and upper-slope of the accretionary wedge which could be the major seismogenic fault and an out-of-sequence thrust fault in SW Taiwan. The big earthquakes resulted from the reactivation of out-of-sequence thrusts have been observed along the Nankai accretionary wedge, thus the assessment of the major seismogenic structures by strain accumulation between the frontal décollement and out-of-sequence thrusts is a crucial topic. According to the background seismicity, the low seismicity and mid-crust to mantle events are observed inland and the lower- and upper- slope domain offshore SW Taiwan, which rheologically implies the upper crust of the accretionary wedge is more or less aseimic. This result may suggest that the excess fluid pressure from the accretionary wedge not only has significantly weakened the prism materials as well as major fault zone, but also makes the accretionary wedge landward extension, which is why the low seismicity is observed in SW Taiwan area. Key words: Continuous GPS, SAR interferometry, strain rate, out-of-sequence thrust.

  14. Bouguer gravity and crustal structure of the Dead Sea transform fault and adjacent mountain belts in Lebanon

    Science.gov (United States)

    Kamal; Khawlie, Mohamad; Haddad, Fuad; Barazangi, Muawia; Seber, Dogan; Chaimov, Thomas

    1993-08-01

    The northern extension of the Dead Sea transform fault in southern Lebanon bifurcates into several faults that cross Lebanon from south to north. The main strand, the Yammouneh fault, marks the boundary between the Levantine (eastern Mediterranean) and Arabian plates and separates the western mountain range (Mount Lebanon) from the eastern mountain range (Anti-Lebanon). Bouguer gravity contours in Lebanon approximately follow topographic contours; i.e., positive Bouguer anomalies are associated with the Mount Lebanon and Anti-Lebanon ranges. This suggests that the region is not in simple isostatic compensation. Gravity observations based on 2.5-dimensional modeling and other available geological and geophysical information have produced the following interpretations. (1) The crust of Lebanon thins from ˜35 km beneath the Anti-Lebanon range, near the Syrian border, to ˜27 km beneath the Lebanese coast. No crustal roots exist beneath the Lebanese ranges. (2) The depth to basement is ˜3.5-6 km below sea level under the ranges and is ˜8-10 km beneath the Bekaa depression. (3) The Yammouneh fault bifurcates northward into two branches; one passes beneath the Yammouneh Lake through the eastern part of Mount Lebanon and another bisects the northern part of the Bekaa Valley (i.e., Mid-Bekaa fault). The Lebanese mountain ranges and the Bekaa depression were formed as a result of transtension and later transpression associated with the relative motion of a few crustal blocks in response to the northward movement of the Arabian plate relative to the Levantine plate.

  15. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    Science.gov (United States)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  16. Study of fault diagnosis software design for complex system based on fault tree

    International Nuclear Information System (INIS)

    Yuan Run; Li Yazhou; Wang Jianye; Hu Liqin; Wang Jiaqun; Wu Yican

    2012-01-01

    Complex systems always have high-level reliability and safety requirements, and same does their diagnosis work. As a great deal of fault tree models have been acquired during the design and operation phases, a fault diagnosis method which combines fault tree analysis with knowledge-based technology has been proposed. The prototype of fault diagnosis software has been realized and applied to mobile LIDAR system. (authors)

  17. Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review

    Science.gov (United States)

    Cemen, I.

    2017-12-01

    The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions

  18. Seabirds and fronts: a brief overview

    OpenAIRE

    Schneider, David C.

    1990-01-01

    Oceanographic fronts are the sites of enhanced physical and biological activity, including locally concentrated feeding by marine birds. Two general hypotheses relating marine birds to fronts have been developed. The first is that enhanced primary production at fronts increases prey supply through increased animal growth, reproduction, or immigration. The second is that prey patches develop at fronts either through behavioural responses of prey to thermal or salinity gradients, or through int...

  19. Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus

    Science.gov (United States)

    Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.

    2012-12-01

    Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.

  20. Illite authigenesis during faulting and fluid flow - a microstructural study of fault rocks

    Science.gov (United States)

    Scheiber, Thomas; Viola, Giulio; van der Lelij, Roelant; Margreth, Annina

    2017-04-01

    Authigenic illite can form synkinematically during slip events along brittle faults. In addition it can also crystallize as a result of fluid flow and associated mineral alteration processes in hydrothermal environments. K-Ar dating of illite-bearing fault rocks has recently become a common tool to constrain the timing of fault activity. However, to fully interpret the derived age spectra in terms of deformation ages, a careful investigation of the fault deformation history and architecture at the outcrop-scale, ideally followed by a detailed mineralogical analysis of the illite-forming processes at the micro-scale, are indispensable. Here we integrate this methodological approach by presenting microstructural observations from the host rock immediately adjacent to dated fault gouges from two sites located in the Rolvsnes granodiorite (Bømlo, western Norway). This granodiorite experienced multiple episodes of brittle faulting and fluid-induced alteration, starting in the Mid Ordovician (Scheiber et al., 2016). Fault gouges are predominantly associated with normal faults accommodating mainly E-W extension. K-Ar dating of illites separated from representative fault gouges constrains deformation and alteration due to fluid ingress from the Permian to the Cretaceous, with a cluster of ages for the finest (middle Jurassic. At site one, high-resolution thin section structural mapping reveals a complex deformation history characterized by several coexisting types of calcite veins and seven different generations of cataclasite, two of which contain a significant amount of authigenic and undoubtedly deformation-related illite. At site two, fluid ingress along and adjoining the fault core induced pervasive alteration of the host granodiorite. Quartz is crosscut by calcite veinlets whereas plagioclase, K-feldspar and biotite are almost completely replaced by the main alteration products kaolin, quartz and illite. Illite-bearing micro-domains were physically separated by

  1. Perspective View, San Andreas Fault

    Science.gov (United States)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour

  2. Detection of Inter-turn Faults in Five-Phase Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    SAAVEDRA, H.

    2014-11-01

    Full Text Available Five-phase permanent magnet synchronous motors (PMSMs have inherent fault-tolerant capabilities. This paper analyzes the detection of inter-turn short circuit faults in five-phase PMSMs in their early stage, i.e. with only one turn in short circuit by means of the analysis of the stator currents and the zero-sequence voltage component (ZSVC spectra. For this purpose, a parametric model of five-phase PMSMs which accounts for the effects of inter-turn short circuits is developed to determine the most suitable harmonic frequencies to be analyzed to detect such faults. The amplitudes of these fault harmonic are analyzed in detail by means of finite-elements method (FEM simulations, which corroborate the predictions of the parametric model. A low-speed five-phase PMSM for in-wheel applications is studied and modeled. This paper shows that the ZSVC-based method provides better sensitivity to diagnose inter-turn faults in the analyzed low-speed application. Results presented under a wide speed range and different load levels show that it is feasible to diagnose such faults in their early stage, thus allowing applying a post-fault strategy to minimize their effects while ensuring a safe operation.

  3. The effect of lateral variations of friction on crustal faulting

    Directory of Open Access Journals (Sweden)

    M. Cocco

    1994-06-01

    Full Text Available We propose that lateral variations in fault friction control the heterogeneity of slip observed in large earthquakes, We model these variations using a rate and state-dependent friction law, where we differentiate velocity-weakening into strong and weak-seismic fields, and velocity-strengthening into compliant and viscous fields. The strong-seismic field comprises the seismic slip concentrations, or asperities. The two «intermediate» frictional fields, weak-seismic and compliant, modulate both the tectonic loading and the dynamic rupture process. During the interseismic period, the compliant and viscous regions slip aseismically while the strong-seismic regions remain locked, evolving into stress concentrations that fail only in main shocks. The weak-seismic regions contain most of the interseismic activity and aftershocks, but also «creep seismically», that is, most of the weak-seismic area slips aseismically, actuating the seismicity on the remaining area. This «mixed» frictional behavior can be obtained from a sufficiently heterogenous distribution for the critical slip distance. The interseismic slip provides an inherent rupture resistance: dynamic rupture fronts decelerate as they penetrate into these unloaded compliant or creeping weak-seismic areas, diffusing into broad areas of accelerated afterslip. Aftershocks occur in both the weak-seismic and compliant areas around the fault, but most of the stress is diffused through aseismic slip. Rapid afterslip on these peripheral areas can also produce aftershocks within the main shock rupture area, by reloading weak fault areas that slipped in the main shock and then healed. We test this frictional model by comparing the interevent seismicity and aftershocks to the coseismic slip distribution for the 1966 Parkfield, 1979 Coyote Lake, and 1984 Morgan Hill earthquakes.

  4. Fault-tolerant architecture: Evaluation methodology

    International Nuclear Information System (INIS)

    Battle, R.E.; Kisner, R.A.

    1992-08-01

    The design and reliability of four fault-tolerant architectures that may be used in nuclear power plant control systems were evaluated. Two architectures are variations of triple-modular-redundant (TMR) systems, and two are variations of dual redundant systems. The evaluation includes a review of methods of implementing fault-tolerant control, the importance of automatic recovery from failures, methods of self-testing diagnostics, block diagrams of typical fault-tolerant controllers, review of fault-tolerant controllers operating in nuclear power plants, and fault tree reliability analyses of fault-tolerant systems

  5. Hydrodynamic instabilities in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A R; Portugues, R F

    2004-01-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved

  6. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  7. Geodetic measurement of deformation east of the San Andreas Fault in Central California

    Science.gov (United States)

    Sauber, Jeanne; Solomon, Sean C.; Lisowski, Michael

    1988-01-01

    The shear strain rates in the Diablo Range of California have been calculated, and the slip rate along the Calaveras and Paicines faults in Central California have been estimated, on the basis of triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas Fault. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E, leading to an average shear strain value that corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. It is inferred that the measured strain is due to compression across the fold of this area. The hypothesized uniform, fault-normal compression within the Coast Ranges is not supported by these results.

  8. Soil gas radon concentration across faults near Caracas, Venezuela

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Flores, N.; Urbani, F.; Carreno, R.

    2001-01-01

    SSNTD were used across tectonic features of different degree of activity and lithology in four localities north of Caracas, Venezuela. The homemade dosimeters with LR115 film were buried 20-30 cm in the ground. This cheap and low- tech method proved very useful to understand the tectonic features involved, measuring higher Radon concentration above traces of active faults while in old and sealed faults the results only show the effect of the surrounding lithology. Radon concentration range is 4.3 - 27.2 kB/m 3 . (Author)

  9. HOT Faults", Fault Organization, and the Occurrence of the Largest Earthquakes

    Science.gov (United States)

    Carlson, J. M.; Hillers, G.; Archuleta, R. J.

    2006-12-01

    We apply the concept of "Highly Optimized Tolerance" (HOT) for the investigation of spatio-temporal seismicity evolution, in particular mechanisms associated with largest earthquakes. HOT provides a framework for investigating both qualitative and quantitative features of complex feedback systems that are far from equilibrium and punctuated by rare, catastrophic events. In HOT, robustness trade-offs lead to complexity and power laws in systems that are coupled to evolving environments. HOT was originally inspired by biology and engineering, where systems are internally very highly structured, through biological evolution or deliberate design, and perform in an optimum manner despite fluctuations in their surroundings. Though faults and fault systems are not designed in ways comparable to biological and engineered structures, feedback processes are responsible in a conceptually comparable way for the development, evolution and maintenance of younger fault structures and primary slip surfaces of mature faults, respectively. Hence, in geophysical applications the "optimization" approach is perhaps more aptly replaced by "organization", reflecting the distinction between HOT and random, disorganized configurations, and highlighting the importance of structured interdependencies that evolve via feedback among and between different spatial and temporal scales. Expressed in the terminology of the HOT concept, mature faults represent a configuration optimally organized for the release of strain energy; whereas immature, more heterogeneous fault networks represent intermittent, suboptimal systems that are regularized towards structural simplicity and the ability to generate large earthquakes more easily. We discuss fault structure and associated seismic response pattern within the HOT concept, and outline fundamental differences between this novel interpretation to more orthodox viewpoints like the criticality concept. The discussion is flanked by numerical simulations of a

  10. Magnetic properties of cores from the Wenchuan Earthquake Fault Scientific Drilling Hole-2 (WFSD-2), China

    Science.gov (United States)

    Zhang, L., Jr.; Sun, Z.; Li, H.; Cao, Y.; Ye, X.; Wang, L.; Zhao, Y.; Han, S.

    2015-12-01

    During an earthquake, seismic slip and frictional heating may cause the physical and chemical alterations of magnetic minerals within the fault zone. Rock magnetism provides a method for understanding earthquake dynamics. The Wenchuan earthquake Fault Scientific Drilling Project (WFSD) started right after 2008 Mw7.9 Wenchuan earthquake, to investigate the earthquake faulting mechanism. Hole 2 (WFSD-2) is located in the Pengguan Complex in the Bajiaomiao village (Dujiangyan, Sichuan), and reached the Yingxiu-Beichuan fault (YBF). We measured the surface magnetic susceptibility of the cores in WFSD-2 from 500 m to 1530 m with an interval of 1 cm. Rocks at 500-599.31 m-depth and 1211.49-1530 m-depth are from the Neoproterozoic Pengguang Complex while the section from 599.31 m to 1211.49 m is composed of Late Triassic sediments. The magnetic susceptibility values of the first part of the Pengguan Complex range from 1 to 25 × 10-6 SI, while the second part ranges from 10 to 200 × 10-6 SI, which indicate that the two parts are not from the same rock units. The Late Triassic sedimentary rocks have a low magnetic susceptibility values, ranging from -5 to 20 × 10-6 SI. Most fault zones coincide with the high value of magnetic susceptibility in the WFSD-2 cores. Fault rocks, mainly fault breccia, cataclasite, gouge and pseudotachylite within the WFSD-2 cores, and mostly display a significantly higher magnetic susceptibility than host rocks (5:1 to 20:1). In particular, in the YBF zone of the WFSD-2 cores (from 600 to 960 m), dozens of stages with high values of magnetic susceptibility have been observed. The multi-layered fault rocks with high magnetic susceptibility values might indicate that the YBF is a long-term active fault. The magnetic susceptibility values change with different types of fault rocks. The gouge and pseudotachylite have higher values of magnetic susceptibility than other fault rocks. Other primary rock magnetism analyses were then performed to

  11. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    Science.gov (United States)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock

  12. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  13. Crystallite size effects in stacking faulted nickel hydroxide and its electrochemical behaviour

    International Nuclear Information System (INIS)

    Ramesh, T.N.

    2009-01-01

    β-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH) 2 . Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC). This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide

  14. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    Science.gov (United States)

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.

    2003-01-01

    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  15. New evidence on the state of stress of the san andreas fault system.

    Science.gov (United States)

    Zoback, M D; Zoback, M L; Mount, V S; Suppe, J; Eaton, J P; Healy, J H; Oppenheimer, D; Reasenberg, P; Jones, L; Raleigh, C B; Wong, I G; Scotti, O; Wentworth, C

    1987-11-20

    Contemporary in situ tectonic stress indicators along the San Andreas fault system in central California show northeast-directed horizontal compression that is nearly perpendicular to the strike of the fault. Such compression explains recent uplift of the Coast Ranges and the numerous active reverse faults and folds that trend nearly parallel to the San Andreas and that are otherwise unexplainable in terms of strike-slip deformation. Fault-normal crustal compression in central California is proposed to result from the extremely low shear strength of the San Andreas and the slightly convergent relative motion between the Pacific and North American plates. Preliminary in situ stress data from the Cajon Pass scientific drill hole (located 3.6 kilometers northeast of the San Andreas in southern California near San Bernardino, California) are also consistent with a weak fault, as they show no right-lateral shear stress at approximately 2-kilometer depth on planes parallel to the San Andreas fault.

  16. Resistivity structure of Sumatran Fault (Aceh segment) derived from 1-D magnetotelluric modeling

    Science.gov (United States)

    Nurhasan, Sutarno, D.; Bachtiar, H.; Sugiyanto, D.; Ogawa, Y.; Kimata, F.; Fitriani, D.

    2012-06-01

    Sumatran Fault Zone is the most active fault in Indonesia as a result of strike-slip component of Indo-Australian oblique convergence. With the length of 1900 km, Sumatran fault was divided into 20 segments starting from the southernmost Sumatra Island having small slip rate and increasing to the north end of Sumatra Island. There are several geophysical methods to analyze fault structure depending on physical parameter used in these methods, such as seismology, geodesy and electromagnetic. Magnetotelluric method which is one of geophysical methods has been widely used in mapping and sounding resistivity distribution because it does not only has the ability for detecting contras resistivity but also has a penetration range up to hundreds of kilometers. Magnetotelluric survey was carried out in Aceh region with the 12 total sites crossing Sumatran Fault on Aceh and Seulimeum segments. Two components of electric and magnetic fields were recorded during 10 hours in average with the frequency range from 320 Hz to 0,01 Hz. Analysis of the pseudosection of phase and apparent resistivity exhibit vertical low phase flanked on the west and east by high phase describing the existence of resistivity contras in this region. Having rotated the data to N45°E direction, interpretation of the result has been performed using three different methods of 1D MT modeling i.e. Bostick inversion, 1D MT inversion of TM data, and 1D MT inversion of the impedance determinant. By comparison, we concluded that the use of TM data only and the impedance determinant in 1D inversion yield the more reliable resistivity structure of the fault compare to other methods. Based on this result, it has been shown clearly that Sumatra Fault is characterized by vertical contras resistivity indicating the existence of Aceh and Seulimeum faults which has a good agreement with the geological data.

  17. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior

    Science.gov (United States)

    Barnhart, W. D.; Briggs, R.

    2015-12-01

    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  18. Study on Fault Diagnosis of Rolling Bearing Based on Time-Frequency Generalized Dimension

    Directory of Open Access Journals (Sweden)

    Yu Yuan

    2015-01-01

    Full Text Available The condition monitoring technology and fault diagnosis technology of mechanical equipment played an important role in the modern engineering. Rolling bearing is the most common component of mechanical equipment which sustains and transfers the load. Therefore, fault diagnosis of rolling bearings has great significance. Fractal theory provides an effective method to describe the complexity and irregularity of the vibration signals of rolling bearings. In this paper a novel multifractal fault diagnosis approach based on time-frequency domain signals was proposed. The method and numerical algorithm of Multi-fractal analysis in time-frequency domain were provided. According to grid type J and order parameter q in algorithm, the value range of J and the cut-off condition of q were optimized based on the effect on the dimension calculation. Simulation experiments demonstrated that the effective signal identification could be complete by multifractal method in time-frequency domain, which is related to the factors such as signal energy and distribution. And the further fault diagnosis experiments of bearings showed that the multifractal method in time-frequency domain can complete the fault diagnosis, such as the fault judgment and fault types. And the fault detection can be done in the early stage of fault. Therefore, the multifractal method in time-frequency domain used in fault diagnosis of bearing is a practicable method.

  19. Impact of Front Range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park

    Directory of Open Access Journals (Sweden)

    Katherine B. Benedict

    2018-05-01

    Full Text Available Human influenced atmospheric reactive nitrogen (RN is impacting ecosystems in Rocky Mountain National Park (ROMO. Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ. Measurements included peroxyacetyl nitrate (PAN, C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4 as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30 was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate. All three species are challenging to measure routinely, especially at high time resolution.

  20. Fault strength in Marmara region inferred from the geometry of the principle stress axes and fault orientations: A case study for the Prince's Islands fault segment

    Science.gov (United States)

    Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan

    2015-04-01

    The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.

  1. The Seismotectonics of the Po Plain (Northern Italy): Tectonic Diversity in a Blind Faulting Domain

    Science.gov (United States)

    Vannoli, Paola; Burrato, Pierfrancesco; Valensise, Gianluca

    2015-05-01

    We present a systematic and updated overview of a seismotectonic model for the Po Plain (northern Italy). This flat and apparently quiet tectonic domain is, in fact, rather active as it comprises the shortened foreland and foredeep of both the Southern Alps and the Northern Apennines. Assessing its seismic hazard is crucial due to the concentration of population, industrial activities, and critical infrastructures, but it is also complicated because (a) the region is geologically very diverse, and (b) nearly all potential seismogenic faults are buried beneath a thick blanket of Pliocene-Pleistocene sediments, and thus can be investigated only indirectly. Identifying and parameterizing the potential seismogenic faults of the Po Plain requires proper consideration of their depth, geometry, kinematics, earthquake potential and location with respect to the two confronting orogens. To this end, we subdivided them into four main, homogeneous groups. Over the past 15 years we developed new strategies for coping with this diversity, resorting to different data and modeling approaches as required by each individual fault group. The most significant faults occur beneath the thrust fronts of the Ferrara-Romagna and Emilia arcs, which correspond to the most advanced and buried portions of the Northern Apennines and were the locus of the destructive May 2012 earthquake sequence. The largest known Po Plain earthquake, however, occurred on an elusive reactivated fault cutting the Alpine foreland south of Verona. Significant earthquakes are expected to be generated also by a set of transverse structures segmenting the thrust system, and by the deeper ramps of the Apennines thrusts. The new dataset is intended to be included in the next version of the Database of Individual Seismogenic Sources (DISS; http://diss.rm.ingv.it/diss/, version 3.2.0, developed and maintained by INGV) to improve completeness of potential sources for seismic hazard assessment.

  2. Distribution network fault section identification and fault location using artificial neural network

    DEFF Research Database (Denmark)

    Dashtdar, Masoud; Dashti, Rahman; Shaker, Hamid Reza

    2018-01-01

    In this paper, a method for fault location in power distribution network is presented. The proposed method uses artificial neural network. In order to train the neural network, a series of specific characteristic are extracted from the recorded fault signals in relay. These characteristics...... components of the sequences as well as three-phase signals could be obtained using statistics to extract the hidden features inside them and present them separately to train the neural network. Also, since the obtained inputs for the training of the neural network strongly depend on the fault angle, fault...... resistance, and fault location, the training data should be selected such that these differences are properly presented so that the neural network does not face any issues for identification. Therefore, selecting the signal processing function, data spectrum and subsequently, statistical parameters...

  3. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    Science.gov (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  4. Fault Detection for Industrial Processes

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    2012-01-01

    Full Text Available A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.

  5. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    NARCIS (Netherlands)

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.

    2009-01-01

    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone

  6. Optimal Configuration of Fault-Tolerance Parameters for Distributed Server Access

    DEFF Research Database (Denmark)

    Daidone, Alessandro; Renier, Thibault; Bondavalli, Andrea

    2013-01-01

    Server replication is a common fault-tolerance strategy to improve transaction dependability for services in communications networks. In distributed architectures, fault-diagnosis and recovery are implemented via the interaction of the server replicas with the clients and other entities...... model using stochastic activity networks (SAN) for the evaluation of performance and dependability metrics of a generic transaction-based service implemented on a distributed replication architecture. The composite SAN model can be easily adapted to a wide range of client-server applications deployed...

  7. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.

    Science.gov (United States)

    Ding, Bo; Fang, Huajing

    2017-05-01

    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    Science.gov (United States)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven

    2010-01-01

    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  9. Direct fault dating trials at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Maddock, R.H.; Hailwood, E.A.

    1993-10-01

    Over seventy rock samples were collected from fault and fracture zones in the Aespoe Hard Rock Laboratory tunnel for a study of direct fault dating techniques. Following microstructural and mineralogical analysis, isotopic, palaeomagnetic and electron spin resonance (ESR) methods were employed in an attempt to determine the age of the most recent movements on the sampled faults. The larger fracture zones contain faultrock assemblages and microstructures which are consistent with a prolonged and polyphase movement history, although the cumulative displacements involved formation of fault gouge cemented by authigenic 'illite'. Dating studies were targeted particularly at the gouge but also at older fault rock and vein phases. ESR dating of quartz graines, separated from gouge from fracture zones NE-4 and NE-3, strongly indicates that the ESR signals have not been reset by fault movements for a minimum time period of several hundred thousand to one million years. Palaeomagnetic dating of gouge from fracture zone NE-4 shows that a stable component of magnetisation overlaps both Precambrian and Permo-Triassic parts of the apparent polar wander curve. The younger age of magnetisation is preferred on geological grounds and by comparison with the isotopic dating results. The magnetisation may correspond to a diagenetic event following fault movement. Palaeomagnetic ages determined on countryrock and epidote vein samples are largely consistent with independent age constraints. K-Ar dating of clay fractions (<2 to <0.05μm) separated from gouge from four faults, including fracture zones NE-4 and NE-3, gave model ages in the range 706-301Ma. Accounting for the effects of contamination by potassium-bearing porphyroclasts, it is likely that authigenic 'illite' was formed at least 250 million years ago, after the most recent significant fault movements. 100 refs., 60 figs., 26 tabs

  10. San Andreas Fault in the Carrizo Plain

    Science.gov (United States)

    2000-01-01

    The 1,200-kilometer (800-mile)San Andreas is the longest fault in California and one of the longest in North America. This perspective view of a portion of the fault was generated using data from the Shuttle Radar Topography Mission (SRTM), which flew on NASA's Space Shuttle last February, and an enhanced, true-color Landsat satellite image. The view shown looks southeast along the San Andreas where it cuts along the base of the mountains in the Temblor Range near Bakersfield. The fault is the distinctively linear feature to the right of the mountains. To the left of the range is a portion of the agriculturally rich San Joaquin Valley. In the background is the snow-capped peak of Mt. Pinos at an elevation of 2,692 meters (8,831 feet). The complex topography in the area is some of the most spectacular along the course of the fault. To the right of the fault is the famous Carrizo Plain. Dry conditions on the plain have helped preserve the surface trace of the fault, which is scrutinized by both amateur and professional geologists. In 1857, one of the largest earthquakes ever recorded in the United States occurred just north of the Carrizo Plain. With an estimated magnitude of 8.0, the quake severely shook buildings in Los Angeles, caused significant surface rupture along a 350-kilometer (220-mile) segment of the fault, and was felt as far away as Las Vegas, Nev. This portion of the San Andreas is an important area of study for seismologists. For visualization purposes, topographic heights displayed in this image are exaggerated two times.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60

  11. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States)

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  12. Absolute age determination of quaternary faults

    International Nuclear Information System (INIS)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik

    2000-03-01

    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results

  13. Absolute age determination of quaternary faults

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)

    2000-03-15

    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  14. Geophysical Imaging of Fault Structures Over the Qadimah Fault, Saudi Arabia

    KAUST Repository

    AlTawash, Feras

    2011-06-01

    The purpose of this study is to use geophysical imaging methods to identify the conjectured location of the ‘Qadimah fault’ near the ‘King Abdullah Economic City’, Saudi Arabia. Towards this goal, 2-D resistivity and seismic surveys were conducted at two different locations, site 1 and site 2, along the proposed trace of the ‘Qadimah fault’. Three processing techniques were used to validate the fault (i) 2-D travel time tomography, (ii) resistivity imaging, and (iii) reflection trim stacking. The refraction traveltime tomograms at site 1 and site 2 both show low-velocity zones (LVZ’s) next to the conjectured fault trace. These LVZ’s are interpreted as colluvial wedges that are often observed on the downthrown side of normal faults. The resistivity tomograms are consistent with this interpretation in that there is a significant change in resistivity values along the conjectured fault trace. Processing the reflection data did not clearly reveal the existence of a fault, and is partly due to the sub-optimal design of the reflection experiment. Overall, the results of this study strongly, but not definitively, suggest the existence of the Qadimah fault in the ‘King Abdullah Economic City’ region of Saudi Arabia.

  15. The distribution of deformation in parallel fault-related folds with migrating axial surfaces: comparison between fault-propagation and fault-bend folding

    Science.gov (United States)

    Salvini, Francesco; Storti, Fabrizio

    2001-01-01

    In fault-related folds that form by axial surface migration, rocks undergo deformation as they pass through axial surfaces. The distribution and intensity of deformation in these structures has been impacted by the history of axial surface migration. Upon fold initiation, unique dip panels develop, each with a characteristic deformation intensity, depending on their history. During fold growth, rocks that pass through axial surfaces are transported between dip panels and accumulate additional deformation. By tracking the pattern of axial surface migration in model folds, we predict the distribution of relative deformation intensity in simple-step, parallel fault-bend and fault-propagation anticlines. In both cases the deformation is partitioned into unique domains we call deformation panels. For a given rheology of the folded multilayer, deformation intensity will be homogeneously distributed in each deformation panel. Fold limbs are always deformed. The flat crests of fault-propagation anticlines are always undeformed. Two asymmetric deformation panels develop in fault-propagation folds above ramp angles exceeding 29°. For lower ramp angles, an additional, more intensely-deformed panel develops at the transition between the crest and the forelimb. Deformation in the flat crests of fault-bend anticlines occurs when fault displacement exceeds the length of the footwall ramp, but is never found immediately hinterland of the crest to forelimb transition. In environments dominated by brittle deformation, our models may serve as a first-order approximation of the distribution of fractures in fault-related folds.

  16. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  17. Fault Current Distribution and Pole Earth Potential Rise (EPR) Under Substation Fault

    Science.gov (United States)

    Nnassereddine, M.; Rizk, J.; Hellany, A.; Nagrial, M.

    2013-09-01

    New high-voltage (HV) substations are fed by transmission lines. The position of these lines necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault at the substation could result in an unsafe condition. This article discusses EPR based on substation fault. The pole EPR assessment under substation fault is assessed with and without mutual impedance consideration. Split factor determination with and without the mutual impedance of the line is also discussed. Furthermore, a simplified formula to compute the pole grid current under substation fault is included. Also, it includes the introduction of the n factor which determines the number of poles that required earthing assessments under substation fault. A case study is shown.

  18. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    Science.gov (United States)

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  19. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2002-01-01

    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  20. Deformation associated with continental normal faults

    Science.gov (United States)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  1. Characterization of leaky faults

    International Nuclear Information System (INIS)

    Shan, Chao.

    1990-05-01

    Leaky faults provide a flow path for fluids to move underground. It is very important to characterize such faults in various engineering projects. The purpose of this work is to develop mathematical solutions for this characterization. The flow of water in an aquifer system and the flow of air in the unsaturated fault-rock system were studied. If the leaky fault cuts through two aquifers, characterization of the fault can be achieved by pumping water from one of the aquifers, which are assumed to be horizontal and of uniform thickness. Analytical solutions have been developed for two cases of either a negligibly small or a significantly large drawdown in the unpumped aquifer. Some practical methods for using these solutions are presented. 45 refs., 72 figs., 11 tabs

  2. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan

    International Nuclear Information System (INIS)

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C.

    2004-01-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis

  3. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  4. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    Science.gov (United States)

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  5. The morphology of strike-slip faults - Examples from the San Andreas Fault, California

    Science.gov (United States)

    Bilham, Roger; King, Geoffrey

    1989-01-01

    The dilatational strains associated with vertical faults embedded in a horizontal plate are examined in the framework of fault kinematics and simple displacement boundary conditions. Using boundary element methods, a sequence of examples of dilatational strain fields associated with commonly occurring strike-slip fault zone features (bends, offsets, finite rupture lengths, and nonuniform slip distributions) is derived. The combinations of these strain fields are then used to examine the Parkfield region of the San Andreas fault system in central California.

  6. Fluid circulation and diagenesis of carbonated and sandstone reservoirs in the fronts and fore-lands of folded chains: the Salt Range case - Poswar (Pakistan); Circulation des fluides et diagenese des reservoirs carbonates et greseux dans les fronts de chaines plissees et leur avant pays: le cas du Salt Range - Poswar (Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Benchilla, L.

    2003-05-01

    The Salt Range-Poswar Province is located in the western foothills of the Himalayas, in northern Pakistan. It extends over 170 km from the Main Boundary Thrust (MBT) in the north to the Salt Range in the south. The Salt Range itself is dominantly an ENE-trending structure, but it comprises also a NNW-trending lateral ramp which connects to the west with the Surghar Range. The Salt Range constitutes the frontal part of a detached allochthonous thrust sheet. The sedimentary cover is indeed entirely detached from its substratum along Infracambrian salt horizons. Palaeozoic to Eocene platform series are well exposed in the hanging wall, whereas Neogene molasse has been extensively under-thrust in the footwall of this large over-thrust. The North Potwar Basin is bordered by the Khari-Murat Ridge and coeval back-thrusts in the south, by the northern flank of the Soan syncline in the southeast, and by the MBT in the north. In addition to Neogene outcrops, it also comprises a number of surface anticlines and thrust fronts along which the Eocene platform carbonates are exposed. The Datta Formation is the main Jurassic oil reservoir in the Potwar Basin. It is a fluvio-deltaic deposit which comprises large porous and permeable channels associated to many-calcareous interbeds. The formations crop out well in both the Nammal and Chichali Gorges. The oil field of Toot, located in the western part of the basin, is producing from this reservoir. The petrographic observations show that diagenesis occurred mainly early and was controlled by the fluvio-deltaic environment. (author)

  7. Iowa Bedrock Faults

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  8. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then, the es...

  9. FSN-based fault modelling for fault detection and troubleshooting in CANDU stations

    Energy Technology Data Exchange (ETDEWEB)

    Nasimi, E., E-mail: elnara.nasimi@brucepower.com [Bruce Power LLP., Tiverton, Ontario(Canada); Gabbar, H.A. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2013-07-01

    An accurate fault modeling and troubleshooting methodology is required to aid in making risk-informed decisions related to design and operational activities of current and future generation of CANDU designs. This paper presents fault modeling approach using Fault Semantic Network (FSN) methodology with risk estimation. Its application is demonstrated using a case study of Bruce B zone-control level oscillations. (author)

  10. Measurement and analysis of the re-wetting front velocity during quench cooling of hot horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    Highlights: • Two phase flow & re-wetting front velocity were studied for quench of hot tubes. • The velocity decreased as temperature difference between tube and coolant decreased. • Increasing surface curvature was found to decrease the re-wetting front velocity. • Increasing tube thermal conductivity decreased the velocity. • Correlations were developed to predict the front velocity. - Abstract: When a liquid is put into contact with a hot dry surface, there exists a maximum temperature called the re-wetting temperature below which the liquid is in actual contact with the surface. Re-wetting occurs after destabilization of a vapor film that exists between the hot surface and the liquid. If re-wetting is established at a location on the hot surface, a wet patch appears at that location and starts to spread to cover and cool the entire surface. The outer edge of the wet patch is called the re-wetting front and can proceed only if the surface ahead of it cools down to the re-wetting temperature. Study of re-wetting heat transfer is very important in nuclear reactor safety for limiting the extent of core damage during the early stages of severe accidents after loss of coolant accidents LOCA and is essential for predicting the rate at which the coolant cools an overheated core. One of the important parameters in re-wetting cooling is the velocity at which the re-wetting front moves on the surface. In this study, experimental tests were carried out to investigate the re-wetting front velocity on hot horizontal cylindrical tubes being cooled by a vertical rectangular water multi-jet system. Effects of initial surface temperature in the range 400–740 °C, water subcooling in the range 15–80 °C and jet velocity in the range 0.17–1.43 m/s on the re-wetting front velocity were investigated. The two-phase flow behavior was observed by using a high-speed camera. The re-wetting front velocity was found to increase by increasing water subcooling, decreasing

  11. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    Science.gov (United States)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time

  12. The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

    2004-07-01

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

  13. Limiting characteristics of the superconducting fault current limiter applied to the neutral line of conventional transformer

    International Nuclear Information System (INIS)

    Im, I.G.; Choi, H.S.; Jung, B.I.

    2013-01-01

    Highlights: •Fault current limiter was used a high-speed interrupter. •High-speed interrupter was operated to bypass to the current limiter line. •The size of the fault current was limited to about 80% after the fault occurred. •The fault current was limited quickly within a half-cycle after the fault occurred. -- Abstract: The increased electricity demands influenced by the recent industrial development make the electric power distribution system more comprehensive, and the risks are high to cause failures to steady state electric line due to the extended range of fault at the time of fault occurrence. Also, the high performance and the high precision electric appliances that sensitive to switching surge and fault current expose vulnerability of reduced life span and increased fault occurrence ratio. Therefore, this thesis analyzed the fault limiting characteristics by the fault types by applying the superconducting fault current limiter to the neutral line of the transformer in order to reduce the fault currents that flow such high performance appliances. A current transformer (CT) that detects the fault current in the simulated power distribution system, a switching control system that is self-developed and a transformer are used in constructing a circuit. When a fault occurs, the initial fault current is restricted by the superconducting fault current limiter and simultaneously detours the fault current by operating the SCR contact of the switching control system through the detection by CT. This thesis analyzed the limiting characteristics of the superconducting fault current limiter that are applied to the neutral line of the transformer by the fault types

  14. Limiting characteristics of the superconducting fault current limiter applied to the neutral line of conventional transformer

    Energy Technology Data Exchange (ETDEWEB)

    Im, I.G., E-mail: asiligo@gmail.com; Choi, H.S., E-mail: hyosang@chosun.ac.kr; Jung, B.I.

    2013-11-15

    Highlights: •Fault current limiter was used a high-speed interrupter. •High-speed interrupter was operated to bypass to the current limiter line. •The size of the fault current was limited to about 80% after the fault occurred. •The fault current was limited quickly within a half-cycle after the fault occurred. -- Abstract: The increased electricity demands influenced by the recent industrial development make the electric power distribution system more comprehensive, and the risks are high to cause failures to steady state electric line due to the extended range of fault at the time of fault occurrence. Also, the high performance and the high precision electric appliances that sensitive to switching surge and fault current expose vulnerability of reduced life span and increased fault occurrence ratio. Therefore, this thesis analyzed the fault limiting characteristics by the fault types by applying the superconducting fault current limiter to the neutral line of the transformer in order to reduce the fault currents that flow such high performance appliances. A current transformer (CT) that detects the fault current in the simulated power distribution system, a switching control system that is self-developed and a transformer are used in constructing a circuit. When a fault occurs, the initial fault current is restricted by the superconducting fault current limiter and simultaneously detours the fault current by operating the SCR contact of the switching control system through the detection by CT. This thesis analyzed the limiting characteristics of the superconducting fault current limiter that are applied to the neutral line of the transformer by the fault types.

  15. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit.

  16. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    International Nuclear Information System (INIS)

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin

  17. Characterization of the San Andreas Fault near Parkfield, California by fault-zone trapped waves

    Science.gov (United States)

    Li, Y.; Vidale, J.; Cochran, E.

    2003-04-01

    In October, 2002, coordinated by the Pre-EarthScope/SAFOD, we conducted an extensive seismic experiment at the San Andreas fault (SAF), Parkfield to record fault-zone trapped waves generated by explosions and microearthquakes using dense linear seismic arrays of 52 PASSCAL 3-channel REFTEKs deployed across and along the fault zone. We detonated 3 explosions within and out of the fault zone during the experiment, and also recorded other 13 shots of PASO experiment of UWM/RPI (Thurber and Roecker) detonated around the SAFOD drilling site at the same time. We observed prominent fault-zone trapped waves with large amplitudes and long duration following S waves at stations close to the main fault trace for sources located within and close to the fault zone. Dominant frequencies of trapped waves are 2-3 Hz for near-surface explosions and 4-5 Hz for microearthquakes. Fault-zone trapped waves are relatively weak on the north strand of SAF for same sources. In contrast, seismograms registered for both the stations and shots far away from the fault zone show a brief S wave and lack of trapped waves. These observations are consistent with previous findings of fault-zone trapped waves at the SAF [Li et al., 1990; 1997], indicating the existence of a well-developed low-velocity waveguide along the main fault strand (principal slip plan) of the SAF. The data from denser arrays and 3-D finite-difference simulations of fault-zone trapped waves allowed us to delineate the internal structure, segmentation and physical properties of the SAF with higher resolution. The trapped-wave inferred waveguide on the SAF Parkfield segment is ~150 m wide at surface and tapers to ~100 m at seismogenic depth, in which Q is 20-50 and S velocities are reduced by 30-40% from wall-rock velocities, with the greater velocity reduction at the shallow depth and to southeast of the 1966 M6 epicenter. We interpret this low-velocity waveguide on the SAF main strand as being the remnant of damage zone caused

  18. QCD and Light-Front Dynamics

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2011-01-01

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its β-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  19. QCD and Light-Front Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  20. What major faults look like, and why this matters for lithospheric dynamics

    Science.gov (United States)

    Fagereng, Ake

    2016-04-01

    Earthquakes involve seconds to minutes of frictional sliding on a discontinuity, likely of sub-cm thickness, within a damage zone. Earthquakes are separated by an interseismic period of hundreds to thousands of years, during which a number of healing and weakening processes occur within the fault zone. The next earthquake occurs as shear stress exceeds frictional resistance, on the same or a different discontinuity as the previous event, embedded within the fault damage zone. After incremental damage and healing in multiple earthquake cycles, the fault zone rock assemblage evolves to a structure and composition distinctly different from the host rock(s). This presentation presents field geology evidence from a range of settings, to discuss the interplay between the earthquake cycle, long-term deformation, and lithospheric rheology. Classic fault zone models are based on continental transforms, which generally form discrete faults in the upper crust, and wide, anastomosing shear zones in the lower crust. In oceanic crust, transforms are considered frictionally weak, and appear to exploit dyke margins and joint surfaces, but also locally cross-cut these structures in anastomosing networks. In the oceanic lower crust and upper mantle, serpentinisation significantly alters fault structure. In old continental crust, previous deformation events leave a heterogeneous geology affecting active faulting. For example, the amagmatic, southern East African Rift has long been thought to exploit weak Proterozoic 'mobile belts'. However, detailed look at the Bilila-Mtakataka border fault in Malawi indicates that this fault locally exploits weak foliation in existing deformed zones, but also locally forms a new set of anastomosing fault surfaces cross-cutting existing weak foliation. In exhumed lower crust, the Antarctic Maud Belt provides an example of multiple phases of plastic deformation, where the second event is only visible in localised shear zones, likely inherited from the

  1. 22 CFR 17.3 - Fault.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the individual...

  2. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao

    2016-01-01

    of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...

  3. Network Fault Diagnosis Using DSM

    Institute of Scientific and Technical Information of China (English)

    Jiang Hao; Yan Pu-liu; Chen Xiao; Wu Jing

    2004-01-01

    Difference similitude matrix (DSM) is effective in reducing information system with its higher reduction rate and higher validity. We use DSM method to analyze the fault data of computer networks and obtain the fault diagnosis rules. Through discretizing the relative value of fault data, we get the information system of the fault data. DSM method reduces the information system and gets the diagnosis rules. The simulation with the actual scenario shows that the fault diagnosis based on DSM can obtain few and effective rules.

  4. Fluctuation charge effects in ionization fronts

    International Nuclear Information System (INIS)

    Arrayas, Manuel; Trueba, Jose L; Baltanas, J P

    2008-01-01

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster

  5. Fluctuation charge effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-05-21

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.

  6. Propagating gene expression fronts in a one-dimensional coupled system of artificial cells

    Science.gov (United States)

    Tayar, Alexandra M.; Karzbrun, Eyal; Noireaux, Vincent; Bar-Ziv, Roy H.

    2015-12-01

    Living systems employ front propagation and spatiotemporal patterns encoded in biochemical reactions for communication, self-organization and computation. Emulating such dynamics in minimal systems is important for understanding physical principles in living cells and in vitro. Here, we report a one-dimensional array of DNA compartments in a silicon chip as a coupled system of artificial cells, offering the means to implement reaction-diffusion dynamics by integrated genetic circuits and chip geometry. Using a bistable circuit we programmed a front of protein synthesis propagating in the array as a cascade of signal amplification and short-range diffusion. The front velocity is maximal at a saddle-node bifurcation from a bistable regime with travelling fronts to a monostable regime that is spatially homogeneous. Near the bifurcation the system exhibits large variability between compartments, providing a possible mechanism for population diversity. This demonstrates that on-chip integrated gene circuits are dynamical systems driving spatiotemporal patterns, cellular variability and symmetry breaking.

  7. Fault tolerant control with torque limitation based on fault mode for ten-phase permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Guo Hong

    2015-10-01

    Full Text Available This paper proposes a novel fault tolerant control with torque limitation based on the fault mode for the ten-phase permanent magnet synchronous motor (PMSM under various open-circuit and short-circuit fault conditions, which includes the optimal torque control and the torque limitation control based on the fault mode. The optimal torque control is adopted to guarantee the ripple-free electromagnetic torque operation for the ten-phase motor system under the post-fault condition. Furthermore, we systematically analyze the load capacity of the ten-phase motor system under different fault modes. And a torque limitation control approach based on the fault mode is proposed, which was not available earlier. This approach is able to ensure the safety operation of the faulted motor system in long operating time without causing the overheat fault. The simulation result confirms that the proposed fault tolerant control for the ten-phase motor system is able to guarantee the ripple-free electromagnetic torque and the safety operation in long operating time under the normal and fault conditions.

  8. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DEFF Research Database (Denmark)

    Brodsky, S. J.; de Teramond, G. F.

    2012-01-01

    Light-front holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations, it provides important physical insights into the non-perturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic...... projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions Psi(n)/H(x(i), k(perpendicular to i), lambda(i)) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark...

  9. Front-end electronics for the CMS preshower detector

    CERN Document Server

    Go, A; Barney, D; Bloch, P; Peisert, Anna; Löfstedt, B; Reynaud, S; Borkar, S; Lalwani, S

    2002-01-01

    The front-end readout system PACE2 for the CMS preshower detector consists of two chips: Delta is a 32 channel preamplifier and shaper that provides low noise, charge to voltage readout for large capacitive silicon sensors over a large dynamic range (up to 400 MIPs); PACE-AM contains a 32-channel wide, 160-cell deep, analog memory with a 32 to 1 multiplexer for serial readout. These chips are designed in .8 mu m BiCMOS DMILL radiation tolerant technology. The performance in terms of dynamic range, linearity, noise, peaking time and memory uniformity are presented. (4 refs).

  10. Novel Perspectives from Light-Front QCD, Super-Conformal Algebra, and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.

  11. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  12. How is tectonic slip partitioned from the Alpine Fault to the Marlborough Fault System? : results from the Hope Fault

    International Nuclear Information System (INIS)

    Langridge, R.M.

    2004-01-01

    This report contains data from research undertaken by the author on the Hope Fault from 2000-2004. This report provides an opportunity to include data that was additional to or newer than work that was published in other places. New results from studies along the Hurunui section of the Hope Fault, additional to that published in Langridge and Berryman (2005) are presented here. This data includes tabulated data of fault location and description measurements, a graphical representation of this data in diagrammatic form along the length of the fault and new radiocarbon dates from the current EQC funded project. The new data show that the Hurunui section of the Hope Fault has the capability to yield further data on fault slip rate, earthquake displacements, and paleoseismicity. New results from studies at the Greenburn Stream paleoseismic site additional to that published in Langridge et al. (2003) are presented here. This includes a new log of the deepened west wall of Trench 2, a log of the west wall of Trench 1, and new radiocarbon dates from the second phase of dating undertaken at the Greenburn Stream site. The new data show that this site has the capability to yield further data on the paleoseismicity of the Conway segment of the Hope Fault. Through a detailed analysis of all three logged walls at the site and the new radiocarbon dates, it may, in combination with data from the nearby Clarence Reserve site of Pope (1994), be possible to develop a good record of the last 5 events on the Conway segment. (author). 12 refs., 12 figs

  13. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    the applicability of the presented methods. The theoretical results are illustrated by two running examples which are used throughout the book. The book addresses engineering students, engineers in industry and researchers who wish to get a survey over the variety of approaches to process diagnosis and fault......The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...

  14. Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD)

    Science.gov (United States)

    Moore, Diane E.; Rymer, Michael J.

    2012-05-01

    Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.

  15. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao

    2016-10-01

    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  16. 31 CFR 29.522 - Fault.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at fault...

  17. Wilshire fault: Earthquakes in Hollywood?

    Science.gov (United States)

    Hummon, Cheryl; Schneider, Craig L.; Yeats, Robert S.; Dolan, James F.; Sieh, Kerry E.; Huftile, Gary J.

    1994-04-01

    The Wilshire fault is a potentially seismogenic, blind thrust fault inferred to underlie and cause the Wilshire arch, a Quaternary fold in the Hollywood area, just west of downtown Los Angeles, California. Two inverse models, based on the Wilshire arch, allow us to estimate the location and slip rate of the Wilshire fault, which may be illuminated by a zone of microearthquakes. A fault-bend fold model indicates a reverse-slip rate of 1.5-1.9 mm/yr, whereas a three-dimensional elastic-dislocation model indicates a right-reverse slip rate of 2.6-3.2 mm/yr. The Wilshire fault is a previously unrecognized seismic hazard directly beneath Hollywood and Beverly Hills, distinct from the faults under the nearby Santa Monica Mountains.

  18. Can footwall unloading explain late Cenozoic uplift of the Sierra Nevada crest?

    Science.gov (United States)

    Thompson, G.A.; Parsons, T.

    2009-01-01

    Globally, normal-fault displacement bends and warps rift flanks upwards, as adjoining basins drop downwards. Perhaps the most evident manifestations are the flanks of the East African Rift, which cuts across the otherwise minimally deformed continent. Flank uplift was explained by Vening Meinesz (1950, Institut Royal Colonial Belge, Bulletin des Seances, v. 21, p. 539-552), who recognized that isostasy should cause uplift of a normal-faulted footwall and subsidence of its hanging wall. Uplift occurs because slip on a dipping normal fault creates a broader root of less-dense material beneath the footwall, and a narrowed one beneath the hanging wall. In this paper, we investigate the potential influence of this process on the latest stages of Sierra Nevada uplift. Through theoretical calculations and 3D finite element modelling, we find that cumulative slip of about 4km on range-front faults would have produced about 1.3km peak isostatic uplift at the ridge crest. Numerical models suggest that the zone of uplift is narrow, with the width controlled by bending resistance of the seismogenic crust. We conclude that footwall unloading cannot account for the entire elevation of the Sierran crest above sea level, but if range-front faulting initiated in an already elevated plateau like the adjacent Basin and Range Province, then a hybrid model of pre-existing regional uplift and localized footwall unloading can account for the older and newer uplift phases suggested by the geologic record.

  19. Timing of initiation and fault rates of the Yushu-Xianshuihe-Xiaojiang fault system around the eastern Himalayan syntaxis.

    Science.gov (United States)

    Hervé Leloup, Philippe; Replumaz, Anne; Chevalier, Marie-Luce; Zhang, Yuan-Ze; Paquette, Jean-Louis; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Pan, Jiawei; Metois, Marianne; Li, Haibing

    2017-04-01

    In eastern Tibet, the left-lateral strike-slip Yushu-Xianshuihe-Xiaojiang fault system (YXX-FS) is 1400 km long, veering from N100° to N175° broadly following a small circle whose pole is located in the eastern Himalayan syntaxis. Several competing models are proposed to explain the geological evolution of eastern Tibet, and in particular of the YXX-FS: fault following slip-lines in a plastic media, book-shelf fault in a large right-lateral shear zone, or fault bounding a lower channel flow veering around the syntaxis. In this contribution we document the timing of onset of the YXX-FS, its propagation through time, its rate at various time-scales; and discuss how these relate to the deformation models. The YXX-FS comprises four segments from east (Tibetan Plateau) to west (Yunnan): Yushu-Ganzi, Xianshuihe, Anninghe, and Zemuhe-Xiaojiang. It is one of the most tectonically active intra-continental fault system in China along which more than 20 M>6.5 earthquakes occurred since 1700. Slip-rates of 3.5 to 30 mm/yr along the YXX-FS have been suggested by matching geological offsets of 60-100 km with initiation ages of 2 to 17 Ma. Late Quaternary rates deduced from morphological offsets, InSAR, paleoseismology and GPS also show a large range: between 3 and 20 mm/yr. The timing of initiation of the Yushu-Ganzi segment has been constrained at 12.6±1 Ma and its total offset to 76 - 90 km (Wang et al., 2009) yielding a rate of 6.6+0.8-0.7 mm/yr. By measuring the offsets of moraine crests and fan edges across the fault using LiDAR and kinematic GPS, and dating their surfaces using 10Be, we determined slip-rates of 7+1.1-1.0 mm/yr, 3 - 11.2 mm/yr and 8.5+0.8-0.7 mm/yr at three different sites. This suggests a constant rate of 6-8 mm/yr along the fault segment since 13Ma. The timing of initiation of the Xianshuihe segment was thought to be prior to 12.8±1.4 Ma (Roger et al., 1995), but new field studies and geochronological ages suggest that the fault initiated later. Using

  20. Beam front accelerators

    International Nuclear Information System (INIS)

    Reiser, M.

    1982-01-01

    An intense relativistic electron beam cannot propagate in a metal drift tube when the current exceeds the space charge limit. Very high charge density and electric field gradients (10 2 to 10 3 MV/m) develop at the beam front and the electrons are reflected. When a neutral gas or a plasma is present, collective acceleration of positive ions occur, and the resulting charge neutralization enables the beam to propagate. Experimental results, theoretical understanding, and schemes to achieve high ion energies by external control of the beam front velocity will be reviewed

  1. Flexible Frequency Discrimination Subsystems for Reconfigurable Radio Front Ends

    Directory of Open Access Journals (Sweden)

    Carey-Smith Bruce E

    2005-01-01

    Full Text Available The required flexibility of the software-defined radio front end may currently be met with better overall performance by employing tunable narrowband circuits rather than pursuing a truly wideband approach. A key component of narrowband transceivers is appropriate filtering to reduce spurious spectral content in the transmitter and limit out-of-band interference in the receiver. In this paper, recent advances in flexible, frequency-selective, circuit components applicable to reconfigurable SDR front ends are reviewed. The paper contains discussion regarding the filtering requirements in the SDR context and the use of intelligent, adaptive control to provide environment-aware frequency discrimination. Wide tuning-range frequency-selective circuit elements are surveyed including bandpass and bandstop filters and narrowband tunable antennas. The suitability of these elements to the mobile wireless SDR environment is discussed.

  2. Remote triggering of fault-strength changes on the San Andreas fault at Parkfield.

    Science.gov (United States)

    Taira, Taka'aki; Silver, Paul G; Niu, Fenglin; Nadeau, Robert M

    2009-10-01

    Fault strength is a fundamental property of seismogenic zones, and its temporal changes can increase or decrease the likelihood of failure and the ultimate triggering of seismic events. Although changes in fault strength have been suggested to explain various phenomena, such as the remote triggering of seismicity, there has been no means of actually monitoring this important property in situ. Here we argue that approximately 20 years of observation (1987-2008) of the Parkfield area at the San Andreas fault have revealed a means of monitoring fault strength. We have identified two occasions where long-term changes in fault strength have been most probably induced remotely by large seismic events, namely the 2004 magnitude (M) 9.1 Sumatra-Andaman earthquake and the earlier 1992 M = 7.3 Landers earthquake. In both cases, the change possessed two manifestations: temporal variations in the properties of seismic scatterers-probably reflecting the stress-induced migration of fluids-and systematic temporal variations in the characteristics of repeating-earthquake sequences that are most consistent with changes in fault strength. In the case of the 1992 Landers earthquake, a period of reduced strength probably triggered the 1993 Parkfield aseismic transient as well as the accompanying cluster of four M > 4 earthquakes at Parkfield. The fault-strength changes produced by the distant 2004 Sumatra-Andaman earthquake are especially important, as they suggest that the very largest earthquakes may have a global influence on the strength of the Earth's fault systems. As such a perturbation would bring many fault zones closer to failure, it should lead to temporal clustering of global seismicity. This hypothesis seems to be supported by the unusually high number of M >or= 8 earthquakes occurring in the few years following the 2004 Sumatra-Andaman earthquake.

  3. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  4. Development of direct dating methods of fault gouges: Deep drilling into Nojima Fault, Japan

    Science.gov (United States)

    Miyawaki, M.; Uchida, J. I.; Satsukawa, T.

    2017-12-01

    It is crucial to develop a direct dating method of fault gouges for the assessment of recent fault activity in terms of site evaluation for nuclear power plants. This method would be useful in regions without Late Pleistocene overlying sediments. In order to estimate the age of the latest fault slip event, it is necessary to use fault gouges which have experienced high frictional heating sufficient for age resetting. It is said that frictional heating is higher in deeper depths, because frictional heating generated by fault movement is determined depending on the shear stress. Therefore, we should determine the reliable depth of age resetting, as it is likely that fault gouges from the ground surface have been dated to be older than the actual age of the latest fault movement due to incomplete resetting. In this project, we target the Nojima fault which triggered the 1995 Kobe earthquake in Japan. Samples are collected from various depths (300-1,500m) by trenching and drilling to investigate age resetting conditions and depth using several methods including electron spin resonance (ESR) and optical stimulated luminescence (OSL), which are applicable to ages later than the Late Pleistocene. The preliminary results by the ESR method show approx. 1.1 Ma1) at the ground surface and 0.15-0.28 Ma2) at 388 m depth, respectively. These results indicate that samples from deeper depths preserve a younger age. In contrast, the OSL method dated approx. 2,200 yr1) at the ground surface. Although further consideration is still needed as there is a large margin of error, this result indicates that the age resetting depth of OSL is relatively shallow due to the high thermosensitivity of OSL compare to ESR. In the future, we plan to carry out further investigation for dating fault gouges from various depths up to approx. 1,500 m to verify the use of these direct dating methods.1) Kyoto University, 2017. FY27 Commissioned for the disaster presentation on nuclear facilities (Drilling

  5. Energy conversion at dipolarization fronts

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  6. Blocking-resistant communication through domain fronting

    Directory of Open Access Journals (Sweden)

    Fifield David

    2015-06-01

    Full Text Available We describe “domain fronting,” a versatile censorship circumvention technique that hides the remote endpoint of a communication. Domain fronting works at the application layer, using HTTPS, to communicate with a forbidden host while appearing to communicate with some other host, permitted by the censor. The key idea is the use of different domain names at different layers of communication. One domain appears on the “outside” of an HTTPS request—in the DNS request and TLS Server Name Indication—while another domain appears on the “inside”—in the HTTP Host header, invisible to the censor under HTTPS encryption. A censor, unable to distinguish fronted and nonfronted traffic to a domain, must choose between allowing circumvention traffic and blocking the domain entirely, which results in expensive collateral damage. Domain fronting is easy to deploy and use and does not require special cooperation by network intermediaries. We identify a number of hard-to-block web services, such as content delivery networks, that support domain-fronted connections and are useful for censorship circumvention. Domain fronting, in various forms, is now a circumvention workhorse. We describe several months of deployment experience in the Tor, Lantern, and Psiphon circumvention systems, whose domain-fronting transports now connect thousands of users daily and transfer many terabytes per month.

  7. Clustering and fault tolerance for target tracking using wireless sensor networks

    International Nuclear Information System (INIS)

    Bhatti, S.; Khanzada, S.; Memon, S.

    2012-01-01

    Over the last few years, the deployment of WSNs (Wireless Sensor Networks) has been fostered in diverse applications. WSN has great potential for a variety of domains ranging from scientific experiments to commercial applications. Due to the deployment of WSNs in dynamic and unpredictable environments. They have potential to cope with variety of faults. This paper proposes an energy-aware fault-tolerant clustering protocol for target tracking applications termed as the FITf (Fault Tolerant Target Tracking) protocol The identification of RNs (Redundant Nodes) makes SN (Sensor Node) fault tolerance plausible and the clustering endorsed recovery of sensors supervised by a faulty CH (Cluster Head). The FfTT protocol intends two steps of reducing energy consumption: first, by identifying RNs in the network; secondly, by restricting the numbers of SNs sending data to the CH. Simulations validate the scalability and low power consumption of the FITf protocol in comparison with LEACH protocol. (author)

  8. Geomorphic and Structural Evidence for Rolling Hinge Style Deformation in the Footwall of an Active Low Angle Normal Fault, Mai'iu Fault, Woodlark Rift, SE Papua New Guinea

    Science.gov (United States)

    Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.

    2016-12-01

    While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge

  9. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  10. Seismic tomography investigation of the Down Ampney fault research site

    International Nuclear Information System (INIS)

    Jackson, P.D.; Greenwood, P.G.; Raines, M.G.; Rainsbury, M.P.

    1991-01-01

    High resolution tomographic cross-hole seismic surveys have been designed and undertaken for fault characterisation in mudrocks at a higher resolution than is currently used in site investigations. Compressional waves were generated at a frequency of 1.04 kHz and a wavelength of 1.6 m in the formation, and were used to tomographically image a normally faulted clay sequence (Oxford Clay and Kellaways Beds) overlying limestone. The fault plane and lithologies are clearly visible in the tomograms, a 10% difference in velocity between the Oxford Clay and Kellaways Beds, being particularly prominent. A zone of 5% lower ''tomographic - velocity'' was observed to correspond with the fault zone within the Oxford Clay (as predicted from the geological logging of the core) which indicates substantial alteration that could be fluid affected. Geological constraints were found to be a crucial imput to the tomographic inversion, and examples show erroneous results that can arise. Seismic attenuation was very low (reflection observed from 80 m depth) and larger ranges could have been used to investigate larger scale geological structures. (author)

  11. Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas

    2012-01-01

    In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition f...... is illustrated on a numerical example and a two degree of freedom helicopter....

  12. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  13. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  14. Integrated system fault diagnostics utilising digraph and fault tree-based approaches

    International Nuclear Information System (INIS)

    Bartlett, L.M.; Hurdle, E.E.; Kelly, E.M.

    2009-01-01

    With the growing intolerance to failures within systems, the issue of fault diagnosis has become ever prevalent. Information concerning these possible failures can help to minimise the disruption to the functionality of the system by allowing quick rectification. Traditional approaches to fault diagnosis within engineering systems have focused on sequential testing procedures and real-time mechanisms. Both methods have been predominantly limited to single fault causes. Latest approaches also consider the issue of multiple faults in reflection to the characteristics of modern day systems designed for high reliability. In addition, a diagnostic capability is required in real time and for changeable system functionality. This paper focuses on two approaches which have been developed to cater for the demands of diagnosis within current engineering systems, namely application of the fault tree analysis technique and the method of digraphs. Both use a comparative approach to consider differences between actual system behaviour and that expected. The procedural guidelines are discussed for each method, with an experimental aircraft fuel system used to test and demonstrate the features of the techniques. The effectiveness of the approaches is compared and their future potential highlighted

  15. Research of fault activity in Japan

    International Nuclear Information System (INIS)

    Nohara, T.; Nakatsuka, N.; Takeda, S.

    2004-01-01

    Six hundreds and eighty earthquakes causing significant damage have been recorded since the 7. century in Japan. It is important to recognize faults that will or are expected to be active in future in order to help reduce earthquake damage, estimate earthquake damage insurance and siting of nuclear facilities. Such faults are called 'active faults' in Japan, the definition of which is a fault that has moved intermittently for at least several hundred thousand years and is expected to continue to do so in future. Scientific research of active faults has been ongoing since the 1930's. Many results indicated that major earthquakes and fault movements in shallow crustal regions in Japan occurred repeatedly at existing active fault zones during the past. After the 1995 Southern Hyogo Prefecture Earthquake, 98 active fault zones were selected for fundamental survey, with the purpose of efficiently conducting an active fault survey in 'Plans for Fundamental Seismic Survey and Observation' by the headquarters for earthquake research promotion, which was attached to the Prime Minister's office of Japan. Forty two administrative divisions for earthquake disaster prevention have investigated the distribution and history of fault activity of 80 active fault zones. Although earthquake prediction is difficult, the behaviour of major active faults in Japan is being recognised. Japan Nuclear Cycle Development Institute (JNC) submitted a report titled 'H12: Project to Establish the. Scientific and Technical Basis for HLW Disposal in Japan' to the Atomic Energy Commission (AEC) of Japan for official review W. The Guidelines, which were defined by AEC, require the H12 Project to confirm the basic technical feasibility of safe HLW disposal in Japan. In this report the important issues relating to fault activity were described that are to understand the characteristics of current fault movements and the spatial extent and magnitude of the effects caused by these movements, and to

  16. Fault tolerant system based on IDDQ testing

    Science.gov (United States)

    Guibane, Badi; Hamdi, Belgacem; Mtibaa, Abdellatif; Bensalem, Brahim

    2018-06-01

    Offline test is essential to ensure good manufacturing quality. However, for permanent or transient faults that occur during the use of the integrated circuit in an application, an online integrated test is needed as well. This procedure should ensure the detection and possibly the correction or the masking of these faults. This requirement of self-correction is sometimes necessary, especially in critical applications that require high security such as automotive, space or biomedical applications. We propose a fault-tolerant design for analogue and mixed-signal design complementary metal oxide (CMOS) circuits based on the quiescent current supply (IDDQ) testing. A defect can cause an increase in current consumption. IDDQ testing technique is based on the measurement of power supply current to distinguish between functional and failed circuits. The technique has been an effective testing method for detecting physical defects such as gate-oxide shorts, floating gates (open) and bridging defects in CMOS integrated circuits. An architecture called BICS (Built In Current Sensor) is used for monitoring the supply current (IDDQ) of the connected integrated circuit. If the measured current is not within the normal range, a defect is signalled and the system switches connection from the defective to a functional integrated circuit. The fault-tolerant technique is composed essentially by a double mirror built-in current sensor, allowing the detection of abnormal current consumption and blocks allowing the connection to redundant circuits, if a defect occurs. Spices simulations are performed to valid the proposed design.

  17. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are deal...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  18. SITE-94. Estimated rates of redox-front migration in granitic rocks

    International Nuclear Information System (INIS)

    Arthur, R.C.

    1996-10-01

    Analytical models for the rate of migration of oxidizing groundwaters are derived based on the stationary-state approximation to coupled fluid flow and water-rock interaction, and are constrained by molar concentrations of ferrous silicate, oxide, and sulfide minerals in the granites and associated fractures comprising the host rock beneath Aespoe. Model results indicate that small amounts of ferrous minerals in Aespoe granites and fractures will retard the downward migration of oxidizing conditions that could be generated by infiltration of glacial meltwaters during periods of glacial maxima and retreat. Calculated front velocities are retarded relative to Darcy fluxes observed in conductive fracture zones at Aespoe (0.3 to 3 m/y) by factors ranging from 10 -3 to 10 -4 . Corresponding times for the front to migrate 500 m vary from 5,100 to 4,400,000 years. Retardation efficiency depends on mineralogy and decreases in the order: fractures > altered granites > unaltered granite. The most conductive structures in these rocks are therefore the most efficient in limiting the rate of front migration. Periods of recharge during glaciation are comparable to times required for an oxidizing front to migrate to repository levels. This suggests an oxidizing front could reach repository depths during a single glacial-interglacial event. The persistence of oxidizing conditions could be relatively short lived, however, because reversal of flow conditions driven by the advance and retreat of ice sheets could cause reducing conditions to be restored. 27 refs

  19. New insight into the 1556 M8 Huaxian earthquake in China

    Science.gov (United States)

    Ma, J.

    2017-12-01

    The disastrous 1556 M8 Huaxian earthquake in China took away 0.8Ma lives then as well as attracted scientists' attention. Although the Huashan front fault and Weinan plateform-front fault at the south margin of Weihe basin was responsible for this earthquake, we know less about the fault behaviors. There's evidence that the modern riverbank offset and older geomorphic scarps in Chishui river site on Weinan plateau-front fault from the Pleiades DEM. Here, we did a 3D trench excavation model using SfM work, drilling profiles and geomorphological measurement there to revive the site for multiearthquakes. It turns out two events occurred on the normal fault with pretty high offsets 9.4m and 7.8-8.0m respectively, the later one resulted from Huaxian earthquake. And we estimate that the fault slip rate approximately 1.48-1.75 mm/a. Thus, we find that the older earthquake also produced a similar fault offsets to the 1556 earthquake showing as characteristics earthquake. The paleoseismic study demonstrates that the Weinan pateform-front fault plays a role in boundary faults of Weihe basin, which can contribute to the basin evolution of regions of active faulting.

  20. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang

    2009-01-01

    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...