WorldWideScience

Sample records for range front fault

  1. Long Valley caldera and the UCERF depiction of Sierra Nevada range-front faults

    Science.gov (United States)

    Hill, David P.; Montgomery-Brown, Emily K.

    2015-01-01

    Long Valley caldera lies within a left-stepping offset in the north-northwest-striking Sierra Nevada range-front normal faults with the Hilton Creek fault to the south and Hartley Springs fault to the north. Both Uniform California Earthquake Rupture Forecast (UCERF) 2 and its update, UCERF3, depict slip on these major range-front normal faults as extending well into the caldera, with significant normal slip on overlapping, subparallel segments separated by ∼10  km. This depiction is countered by (1) geologic evidence that normal faulting within the caldera consists of a series of graben structures associated with postcaldera magmatism (intrusion and tumescence) and not systematic down-to-the-east displacements consistent with distributed range-front faulting and (2) the lack of kinematic evidence for an evolving, postcaldera relay ramp structure between overlapping strands of the two range-front normal faults. The modifications to the UCERF depiction described here reduce the predicted shaking intensity within the caldera, and they are in accord with the tectonic influence that underlapped offset range-front faults have on seismicity patterns within the caldera associated with ongoing volcanic unrest.

  2. Rock Geochemistry and Mineralogy from Fault Zones and Polymetallic Fault Veins of the Central Front Range, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Bove, Dana J.

    2010-01-01

    During the 2004 to 2008 field seasons, approximately 200 hand samples of fault and polymetallic vein-related rocks were collected for geochemical and mineralogical analyses. The samples were collected by the U.S. Geological Survey as part of the Evolution of Brittle Structures Task under the Central Colorado Assessment Project (CCAP) of the Mineral Resources Program (http://minerals.cr.usgs.gov/projects/colorado_assessment/index.html). The purpose of this work has been to characterize the relation between epithermal, polymetallic mineral deposits, paleostress, and the geological structures that hosted fluid flow and localization of the deposits. The data in this report will be used to document and better understand the processes that control epithermal mineral-deposit formation by attempting to relate the geochemistry of the primary structures that hosted hydrothermal fluid flow to their heat and fluid sources. This includes processes from the scale of the structures themselves to the far field scale, inclusive of the intrusive bodies that have been thought to be the sources for the hydrothermal fluid flow. The data presented in this report are part of a larger assessment effort on public lands. The larger study area spans the region of the southern Rocky Mountains in Colorado from the Wyoming to New Mexico borders and from the eastern boundary of the Front Range to approximately the longitude of Vail and Leadville, Colorado. Although the study area has had an extensive history of geological mapping, the mapping has resulted in a number of hypotheses that are still in their infancy of being tested. For example, the proximity of polymetallic veins to intrusive bodies has been thought to reflect a genetic relation between the two features; however, this idea has not been well tested with geochemical indicators. Recent knowledge regarding the coupled nature of stress, strain, fluid flow, and geochemistry warrant new investigations and approaches to test a variety of

  3. Tertiary Normal Faulting in the Canyon Range, Eastern Sevier Desert.

    Science.gov (United States)

    Wills; Anders

    1999-11-01

    The contact between pre-Mesozoic and Tertiary rocks in the western Canyon Range, west-central Utah, has been interpreted as a large, low-angle normal fault that marks the breakaway zone of the hypothesized, basin-forming Sevier Desert detachment. Recent fieldwork suggests that the contact may in fact be depositional along much or all of its length. Deformational fabric in the supposed footwall likely traces to the Mesozoic Sevier orogeny rather than to Tertiary detachment faulting. Kinematic indicators at the range front are not generally consistent with low-angle normal-fault motion; instead, well-exposed high-angle faults are the dominant range-bounding structures. The Tertiary conglomerates of the western Canyon Range foothills, previously viewed as an evolving syntectonic deposit related to detachment faulting, are here reinterpreted as three distinct units that reflect different periods and tectonic settings. The pattern in these conglomerates, and in fault-offset gravity-slide deposits that mantle the western foothills, is consistent with block faulting and rotation along several generations of high-angle structures. Local seismic-reflection data lend qualitative support to this interpretation, and underscore the need to consider alternative working hypotheses for evolution of the Sevier Desert basin.

  4. Breaks in Pavement and Pipes as Indicators of Range-Front Faulting Resulting from the 1989 Loma Prieta Earthquake near the Southwest Margin of the Santa Clara Valley, California

    Science.gov (United States)

    Schmidt, Kevin M.; Ellen, Stephen D.; Haugerud, Ralph A.; Peterson, David M.; Phelps, Geoffery A.

    1995-01-01

    Damage to pavement and near-surface utility pipes, caused by the October 17, 1989, Loma Prieta earthquake, provide indicators for ground deformation in a 663 km2 area near the southwest margin of the Santa Clara Valley, California. The spatial distribution of 1284 sites of such damage documents the extent and distribution of detectable ground deformation. Damage was concentrated in four zones, three of which are near previously mapped faults. The zone through Los Gatos showed the highest concentration of damage, as well as evidence for pre- and post-earthquake deformation. Damage along the foot of the Santa Cruz Mountains reflected shortening that is consistent with movement along reverse faults in the region and with the hypothesis that tectonic strain is distributed widely across numerous faults in the California Coast Ranges.

  5. 76 FR 63656 - Front Range Resource Advisory Council Meeting Cancellation

    Science.gov (United States)

    2011-10-13

    ...] Front Range Resource Advisory Council Meeting Cancellation AGENCY: Bureau of Land Management, Interior... Front Range Resource Advisory Council meeting scheduled for October 19, 2011 at the BLM Royal Gorge....m. to 4:30 p.m. FOR FURTHER INFORMATION CONTACT: Tina Brown, Front Range RAC Coordinator, BLM...

  6. Desirable forest structures for a restored Front Range

    Science.gov (United States)

    Yvette L. Dickinson; Rob Addington; Greg Aplet; Mike Babler; Mike Battaglia; Peter Brown; Tony Cheng; Casey Cooley; Dick Edwards; Jonas Feinstein; Paula Fornwalt; Hal Gibbs; Megan Matonis; Kristen Pelz; Claudia Regan

    2014-01-01

    As part of the federal Collaborative Forest Landscape Restoration Program administered by the US Forest Service, the Colorado Front Range Collaborative Forest Landscape Restoration Project (FR-CFLRP, a collaborative effort of the Front Range Roundtable1 and the US Forest Service) is required to define desired conditions for lower montane ponderosa pine (Pinus ponderosa...

  7. The Boulder Creek Batholith, Front Range, Colorado

    Science.gov (United States)

    Gable, Dolores J.

    1980-01-01

    The Boulder Creek batholith is the best known of several large Precambrian batholiths of similar rock composition that crop out across central Colorado. The rocks in the batholith belong to the calc-alkaline series and range in composition from granodiorite through quartz diorite (tonalite) to gneissic aplite. Two rock types dominate': the Boulder Creek Granodiorite, the major rock unit, and a more leucocratic and slightly younger unit herein named Twin Spruce Quartz Monzonite. Besides mafic inclusions, which occur mainly in hornblende-bearing phases of the Boulder Creek Granodiorite, there are cogenetic older and younger lenses, dikes, and small plutons of hornblende diorite, hornblendite, gabbro, and pyroxenite. Pyroxenite is not found in the batholith. The Boulder Creek Granodiorite in the batholith represents essentially two contemporaneous magmas, a northern body occurring in the Gold Hill and Boulder quadrangles and a larger southern body exposed in the Blackhawk and the greater parts of the Tungsten and Eldorado Springs quadrangles. The two bodies are chemically and mineralogically distinct. The northern body is richer in CaO and poorer in K2O, is more mafic, and has a larger percentage of plagioclase than the southern body. A crude sequence of rock types occurs from west to east in the batholith accompanied by a change in plagioclase composition from calcic plagioclase on the west to sodic on the east. Ore minerals tend to decrease, and the ratio potassium feldspar:plagioclase increases inward from the western contact of the batholith, indicating that the Boulder Creek batholith is similar to granodiorite batholiths the world over. Emplacement of the Boulder Creek batholith was contemporaneous with plastic deformation and high-grade regional metamorphism that folded the country rock and the batholith contact along west-northwest and north-northwest axes. Also, smaller satellitic granodiorite bodies tend to conform to the trends of foliation and fold axes in

  8. Water chemistry of Rocky Mountain Front Range aquatic ecosystems

    Science.gov (United States)

    Robert C. Musselman; Laura Hudnell; Mark W. Williams; Richard A. Sommerfeld

    1996-01-01

    A study of the water chemistry of Colorado Rocky Mountain Front Range alpine/subalpine lakes and streams in wilderness ecosystems was conducted during the summer of 1995 by the USDA Forest Service Arapaho and Roosevelt National Forests and Rocky Mountain Forest and Range Experiment Station, and the University of Colorado Institute of Alpine and Arctic Research. Data...

  9. Front Range Forest Health Partnership Phase 1 feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Volkin, P

    1998-09-01

    The Front Range Forest Health Partnership is an alliance of individuals, citizen groups, federal, state, private, and nonprofit organizations that formed to promote forest health restoration and reduce fire risks on Colorado's Front Range. The partnership promotes selective thinning to restore forest health and supports economically feasible end uses for wood waste materials. The Phase I study was initiated to determine the environmental and economic feasibility of using wood wastes from forested and urban areas for the production of fuel-grade ethanol.

  10. Quantifying methane emissions and sources in the Colorado Front Range

    Science.gov (United States)

    Hughes, S.; Townsend-Small, A.; Schroeder, J.; Blake, N. J.; Blake, D. R.

    2016-12-01

    Methane is a powerful greenhouse gas and is relatively constant throughout the atmosphere, at 1.8 ppmv. This value, however, is increasing primarily due to anthropogenic sources, including agriculture and natural gas extraction. Here we present atmospheric methane fluxes measured during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in July - August 2014 in the Colorado Front Range on the NCAR C-130. During this campaign 775 advanced whole air samples (AWAS) were collected onboard the aircraft and 248 samples were collected on the ground in order to quantify and evaluate air pollution sources. Methane concentrations were measured continuously aboard the aircraft using cavity ringdown spectroscopy. Major sources of methane in this region are oil and natural gas extraction and distribution, landfills, and cattle feed lots. In order to assess the impact of methane emissions on this area, methane flux was evaluated by comparing upwind and downwind concentrations where significant enhancements were observed downwind. We also present information from other hydrocarbons measured in canisters to attribute methane emissions to urban, agricultural, and oil and gas sources. The state of Colorado recently enacted legislation to reduce emissions of hydrocarbons from oil and gas facilities and our measurements will provide a preliminary estimate of whether these regulations are effective.

  11. Wildfire risk transmission in the Colorado Front Range, USA.

    Science.gov (United States)

    Haas, Jessica R; Calkin, David E; Thompson, Matthew P

    2015-02-01

    Wildfires are a global phenomenon that in some circumstances can result in human casualties, economic loss, and ecosystem service degradation. In this article we spatially identify wildfire risk transmission pathways and locate the areas of highest exposure of human populations to wildland fires under severe, but not uncommon, weather events. We quantify varying levels of exposure in terms of population potentially affected and tie the exposure back to the spatial source of the risk for the Front Range of Colorado, USA. We use probabilistic fire simulation modeling to address where fire ignitions are most likely to cause the highest impact to human communities, and to explore the role that various landowners play in that transmission of risk. Our results indicated that, given an ignition and the right fire weather conditions, large areas along the Front Range in Colorado could be exposed to wildfires with high potential to impact human populations, and that overall private ignitions have the potential to impact more people than federal ignitions. These results can be used to identify high-priority areas for wildfire risk mitigation using various mitigation tools. © 2014 Society for Risk Analysis Published 2014. This article is a U.S. government work and is in the public domain for the USA.

  12. Riparian ecosystem consequences of water redistribution along the Colorado Front Range

    Science.gov (United States)

    John D. Wiener; Kathleen A. Dwire; Susan K. Skagen; Robert R. Crifasi; David Yates

    2008-01-01

    Water has shaped the American West. Nowhere is this more evident than along the Front Range of Colorado. At the west end of the famous Great Plains rainfall gradient, the Front Range extends most of the length of Colorado and is one of the fastest growing metropolitan regions in the nation. Annual precipitation along the Front Range averages about 16 inches, and...

  13. Thermobarometry in a migmatitic terrane, northern Front Range, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Munn, B.J.; Tracy, R.J. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))

    1992-01-01

    Thermobarometric techniques were applied to migmatized rocks from the Cache La Poudre River Canyon. The dominant pelitic assemblage is grt-bt-sil-qz-pl-kfs; stromatic migmatites are abundant. The area was sampled for grt-bearing pelites and amphibolites suitable for grt-bt or grt-hb thermometry and grt-sil-pl-qz or gt-hb-pl-qz barometry. In these texturally complex rocks, garnets exhibit varying degrees of resorption with embayed edges and highly irregular crystal outlines. Garnet compositional maps show complex retrograde zoning with distinct Mn-enriched rims. Analytical points near the rims but inside the retrograde Mn-enriched zone represent compositions as close as possible to those formed at peak conditions, based on the premise that resorption of garnet during retrogression produces rims which are enriched in Mn and Fe. Compositional maps and detailed traverses were used to interpret prograde and retrograde zoning in each garnet to choose points most representative of the peak composition. The authors P-T calculations used these garnet points with matrix bt, hb and pl. Thermobarometeric calculations from outcrops in the eastern part of the canyon yield a peak T of 725 [+-] 50 C and a peak P of 7 [+-] 0.5 kbar. The higher temperature and pressure reported here are consistent with observed phase equilibria and the migmatized nature of the area, and reflect the complicated metamorphic history of the Front Range. Andalusite previously identified in this area is localized in occurrence and retrograde in origin, and is probably related to 1.4 Ga granitic plutonism or to an episode of post-peak deformation; cordierite is typically associated with andalusite in this area (Abbott, 1970). Thus far, neither cordierite nor andalusite has been observed in any of their samples from the Poudre canyon, providing evidence for higher peak P. Therefore, peak metamorphism occurred at about 7 kbar; retrograde metamorphism occurred at lower P during decompression.

  14. Data Structures: Sequence Problems, Range Queries, and Fault Tolerance

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund

    The focus of this dissertation is on algorithms, in particular data structures that give provably ecient solutions for sequence analysis problems, range queries, and fault tolerant computing. The work presented in this dissertation is divided into three parts. In Part I we consider algorithms for...... to assume that the algorithms themselves are in charge for dealing with memory faults. We investigate searching, sorting and counting algorithms and data structures that provably returns sensible information in spite of memory corruptions.......The focus of this dissertation is on algorithms, in particular data structures that give provably ecient solutions for sequence analysis problems, range queries, and fault tolerant computing. The work presented in this dissertation is divided into three parts. In Part I we consider algorithms...... by the constraints. Many variants and similar problems have been proposed leading to several dierent approaches and algorithms. We consider problems where the function is the sum of the elements in the sequence and the constraints only bound the length of the subsequences considered. We give optimal algorithms...

  15. High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation

    Science.gov (United States)

    Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan

    2016-07-01

    Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).

  16. Bearing fault detection in the acoustic emission frequency range

    Science.gov (United States)

    Tavakoli, Massoud S.

    The effectiveness of using bearing fault detection in the acoustic-emission frequency range is demonstrated using a vertical milling machine as the testbed. The experimental testbed is monitored by an accelerometer and an acoustic emission sensor, and the signals are demodulated by rms enveloping and then fast-Fourier-transformed. The analytical computation of the defect characteristic frequency is explained, and the time histories are given of the enveloped signal and its spectrum. The method is shown to be useful for extracting the repetition rate of the repetitive component of the general signal, and the signal generated by the bearing defect is identified in the frequency ranges of mechanical vibration and acoustic emission. The signal in the acoustic-emission frequency range is shown to be helpful for detecting bearing defects because it not affected by repetitive mechanical noise.

  17. The Colorado Front Range Ecosystem Management Research Project: Accomplishments to date

    Science.gov (United States)

    Brian Kent; Wayne D. Shepperd; Deborah J. Shields

    2000-01-01

    This article briefly describes the goals and objectives for the Colorado Front Range Ecosystem Management Project (FREM). Research under this project has addressed both biophysical and human dimensions problems relating to ecosystem management in the Colorado Front Range. Results of completed work are described, and the status of the ongoing demonstration project at...

  18. Beyond Colorado's Front Range - A new look at Laramide basin subsidence, sedimentation, and deformation in north-central Colorado

    Science.gov (United States)

    Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.

    2010-01-01

    This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment

  19. Digital geospatial datasets in support of hydrologic investigations of the Colorado Front Range Infrastructure Resources Project

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey developed this dataset as part of the Colorado Front Range Infrastructure Resources Project (FRIRP). One goal of the FRIRP was to provide...

  20. Potential Areas of Future Oil and Gas Development, Greater Wattenberg Area, Front Range of Colorado (friogdevu)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The potential for oil and gas development in the greater Wattenberg area (GWA), which lies near the Front Range between Denver and Greeley, Colo., in the Denver...

  1. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  2. Disturbance impacts on understory plant communities of the Colorado Front Range

    Science.gov (United States)

    Paula J. Fornwalt

    2009-01-01

    Pinus ponderosa - Pseudotsuga menziesii (ponderosa pine - Douglas-fir) forests of the Colorado Front Range have experienced a range of disturbances since they were settled by European-Americans approximately 150 years ago, including settlement-era logging and domestic grazing, and more recently, wildfire. In this dissertation, I...

  3. Forest biomass and tree planting for fossil fuel offsets in the Colorado Front Range

    Science.gov (United States)

    Mike A. Battaglia; Kellen Nelson; Dan Kashian; Michael G. Ryan

    2010-01-01

    This study estimates the amount of carbon available for removal in fuel reduction and reforestation treatments in montane forests of the Colorado Front Range based on site productivity, pre-treatment basal area, and planting density. Thinning dense stands will yield the greatest offsets for biomass fuel. However, this will also yield the greatest carbon losses, if the...

  4. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun Sub-Himalaya, India

    Science.gov (United States)

    Luirei, Khayingshing; Bhakuni, S. S.; Negi, Sanjay S.

    2017-02-01

    The shape of the frontal part of the Himalaya around the north-eastern corner of the Kumaun Sub-Himalaya, along the Kali River valley, is defined by folded hanging wall rocks of the Himalayan Frontal Thrust (HFT). Two parallel faults (Kalaunia and Tanakpur faults) trace along the axial zone of the folded HFT. Between these faults, the hinge zone of this transverse fold is relatively straight and along these faults, the beds abruptly change their attitudes and their widths are tectonically attenuated across two hinge lines of fold. The area is constituted of various surfaces of coalescing fans and terraces. Fans comprise predominantly of sandstone clasts laid down by the steep-gradient streams originating from the Siwalik range. The alluvial fans are characterised by compound and superimposed fans with high relief, which are generated by the tectonic activities associated with the thrusting along the HFT. The truncated fan along the HFT has formed a 100 m high-escarpment running E-W for ˜5 km. Quaternary terrace deposits suggest two phases of tectonic uplift in the basal part of the hanging wall block of the HFT dipping towards the north. The first phase is represented by tilting of the terrace sediments by ˜30 ∘ towards the NW; while the second phase is evident from deformed structures in the terrace deposit comprising mainly of reverse faults, fault propagation folds, convolute laminations, flower structures and back thrust faults. The second phase produced ˜1.0 m offset of stratification of the terrace along a thrust fault. Tectonic escarpments are recognised across the splay thrust near south of the HFT trace. The south facing hill slopes exhibit numerous landslides along active channels incising the hanging wall rocks of the HFT. The study area shows weak seismicity. The major Moradabad Fault crosses near the study area. This transverse fault may have suppressed the seismicity in the Tanakpur area, and the movement along the Moradabad and Kasganj

  5. Ensemble-based analysis of Front Range severe convection on 6-7 June 2012: Forecast uncertainty and communication of weather information to Front Range decision-makers

    Science.gov (United States)

    Vincente, Vanessa

    The variation of topography in Colorado not only adds to the beauty of its landscape, but also tests our ability to predict warm season severe convection. Deficient radar coverage and limited observations make quantitative precipitation forecasting quite a challenge. Past studies have suggested that greater forecast skill of mesoscale convection initiation and precipitation characteristics are achievable considering an ensemble with explicitly predicted convection compared to one that has parameterized convection. The range of uncertainty and probabilities in these forecasts can help forecasters in their precipitation predictions and communication of weather information to emergency managers (EMs). EMs serve an integral role in informing and protecting communities in anticipation of hazardous weather. An example of such an event occurred on the evening of 6 June 2012, where areas to the lee of the Rocky Mountain Front Range were impacted by flash-flood-producing severe convection that included heavy rain and copious amounts of hail. Despite the discrepancy in the timing, location and evolution of convection, the convection-allowing ensemble forecasts generally outperformed those of the convection-parameterized ensemble in representing the mesoscale processes responsible for the 6-7 June severe convective event. Key features sufficiently reproduced by several of the convection-allowing ensemble members resembled the observations: 1) general location of a convergence boundary east of Denver, 2) convective initiation along the boundary, 3) general location of a weak cold front near the Wyoming/Nebraska border, and 4) cold pools and moist upslope characteristics that contributed to the backbuilding of convection. Members from the convection-parameterized ensemble that failed to reproduce these results displaced the convergence boundary, produced a cold front that moved southeast too quickly, and used the cold front for convective initiation. The convection

  6. Late Quaternary slip rates of two active thrust faults at the front of the Andean Precordillera, Mendoza, Argentina

    Science.gov (United States)

    Hetzel, R.; Schmidt, S.; Ramos, V. A.; Mingorance, F.

    2010-12-01

    Several destructive earthquakes occurred in the last several hundred years along the active mountain front of the Andean Precordillera between 30°S and 33°S (Siame et al., 2002). However, slip rates of active reverse faults remain largely unknown and the seismic hazard related to these faults is still poorly constrained. Here we report slip rates for two active thrusts located north of Mendoza, the Penas and Cal thrusts, which offset Late Pleistocene to Holocene terraces and form well preserved fault scarps. At the Penas thrust three terraces (T1, T2 and T3) are displaced vertically by 0.9, 2 and 11 m, respectively. 10Be and 14C age constraints yield a vertical slip rate of ~0.9 mm/a for the Penas thrust fault. Combined with the dip angle of the fault of ~25°, this leads to a horizontal shortening rate of about 2 mm/a. At the Cal thrust the highest terrace, which has a maximum 10Be age of 12 ka, is displaced by ~7.5 m. This translates into a minimum horizontal shortening rate of about 1 mm/a. Comparison with short-term GPS data (Brooks et al., 2003) suggests that both the Penas and Cal thrusts accomodate a significant portion of the present-day E-W shortening rate in the eastern Andes. The vertical surface displacements derived from the smallest scarps is 0.9 m for both thrusts. Hence, given their length (Penas thrust: 40 km, Cal thrust: 31 km), these faults are capable of producing magnitude 7 earthquakes (Wells & Coppersmith, 1994), which is confirmed by a Ms = 7.0 earthquake on the Cal thrust that destroyed the city of Mendoza in 1861. Assuming characteristic earthquakes for both faults suggests average reccurence intervals of 1000 to 1500 years during the Holocene. References Brooks, B.A., Bevis, M., Smalley, R., Kendrick, E., Manceda, R., Lauria, E., Maturana, R., Araujo, M., 2003. Crustal motion in the Southern Andes (26°-36°S): Do the Andes behave like a microplate? Geochemistry Geophysics Geosystems 4, doi: 10.1029/2003GC000505. Siame, L.L., Bellier, O

  7. Structural analysis of the Gachsar sub-zone in central Alborz range; constrain for inversion tectonics followed by the range transverse faulting

    Science.gov (United States)

    Yassaghi, A.; Naeimi, A.

    2010-04-01

    Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic-Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N-S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.

  8. ;Inverted; zircon and apatite (U-Th)/He dates from the Front Range, Colorado: High-damage zircon as a low-temperature (<50 °C) thermochronometer

    Science.gov (United States)

    Johnson, Joshua E.; Flowers, Rebecca M.; Baird, Graham B.; Mahan, Kevin H.

    2017-05-01

    Zircon (U-Th)/He (ZHe) data were acquired for 23 Proterozoic basement samples from an E-W transect through the Colorado Front Range to evaluate whether metamict zircons yield sensible (U-Th)/He data patterns and useful thermal history information. The 112 ZHe dates vary from 147 to 7 Ma, define positive and negative date-eU correlations, and are younger than titanite (U-Th)/He dates that range from 976 to 614 Ma. At moderate to high alpha dose of 1018-1019 α /g, zircons from the range core yield Laramide (52.5 ± 9.6 Ma) dates, whereas those within ∼15 km of the range front yield Miocene (21.6 ± 7.7 Ma) results. The He dates for the high alpha dose zircons are reproducible within each sample suite despite their visibly metamict character. The ∼20 Ma range front ZHe dates are younger than apatite (U-Th)/He (AHe) dates (66.5 ± 9.6 Ma) and published apatite fission-track data (65-45 Ma) for the same and nearby samples. Thermal history simulations can reproduce the first-order range front date-eU patterns and ZHe-AHe date inversion, but the high-damage zircons are more He retentive than predicted by the zircon damage He kinetic model. The ∼20 Ma ZHe dates may be explained by reheating from hydrothermal fluids along range front faults. The results demonstrate the promise of using He data for high-damage zircons to detect low-temperature (<50 °C) events within and below the temperature sensitivity of the AHe system.

  9. Dislocation model for aseismic fault slip in the transverse ranges of Southern California

    Science.gov (United States)

    Cheng, A.; Jackson, D. D.; Matsuura, M.

    1985-01-01

    Geodetic data at a plate boundary can reveal the pattern of subsurface displacements that accompany plate motion. These displacements are modelled as the sum of rigid block motion and the elastic effects of frictional interaction between blocks. The frictional interactions are represented by uniform dislocation on each of several rectangular fault patches. The block velocities and fault parameters are then estimated from geodetic data. Bayesian inversion procedure employs prior estimates based on geological and seismological data. The method is applied to the Transverse Ranges, using prior geological and seismological data and geodetic data from the USGS trilateration networks. Geodetic data imply a displacement rate of about 20 mm/yr across the San Andreas Fault, while the geologic estimates exceed 30 mm/yr. The prior model and the final estimates both imply about 10 mm/yr crustal shortening normal to the trend of the San Andreas Fault. Aseismic fault motion is a major contributor to plate motion. The geodetic data can help to identify faults that are suffering rapid stress accumulation; in the Transverse Ranges those faults are the San Andreas and the Santa Susana.

  10. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range

    Science.gov (United States)

    Robert N. Addington; Gregory H. Aplet; Mike A. Battaglia; Jennifer S. Briggs; Peter M. Brown; Antony S. Cheng; Yvette Dickinson; Jonas A. Feinstein; Kristen A. Pelz; Claudia M. Regan; Jim Thinnes; Rick Truex; Paula J. Fornwalt; Benjamin Gannon; Chad W. Julian; Jeffrey L. Underhill; Brett Wolk

    2018-01-01

    Wildfires have become larger and more severe over the past several decades on Colorado’s Front Range, catalyzing greater investments in forest management intended to mitigate wildfire risks. The complex ecological, social, and political context of the Front Range, however, makes forest management challenging, especially where multiple management goals including forest...

  11. Faults

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  12. Factors controlling streambed coverage of Didymosphenia geminata in two regulated streams in the Colorado Front Range

    OpenAIRE

    Miller, Matthew P; McKnight, Diane M.; Cullis, James D.; Greene, Alicia; Vietti, Kristin; Liptzin, Daniel

    2009-01-01

    Didymosphenia geminata is a stalk-forming freshwater diatom which was historically found primarily in oligotrophic lakes and streams, but has recently become a nuisance species in many lotic systems worldwide. In the last 5–8 years, D. geminata has become established in Boulder Creek and South Boulder Creek, two regulated montane streams in the Front Range of the Colorado Rocky Mountains. Factors that may influence the growth of D. geminata were monitored during the summer of 2006. D. geminat...

  13. New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range

    Science.gov (United States)

    Coe, Jeffrey A.; Kean, Jason W.; Godt, Jonathan W.; Baum, Rex L.; Jones, Eric S.; Gochis, David; Anderson, Gregory S

    2016-01-01

    Rainfall on 9–13 September 2013 triggered at least 1,138 debris flows in a 3430 km2 area of the Colorado Front Range. The historical record reveals that the occurrence of these flows over such a large area in the interior of North America is highly unusual. Rainfall that triggered the debris flows began after ~75 mm of antecedent rain had fallen, a relatively low amount compared to other parts of the United States. Most flows were triggered in response to two intense rainfall periods, one 12.5-hour-long period on 11–12 September, and one 8-hour-long period on 12 September. The maximum 10 min. intensities during these periods were 67 and 39 mm/hr. Ninety-five percent of flows initiated in canyons and on hogbacks at elevations lower than a widespread erosion surface of low slope and relief (25°), predominantly south- and east-facing slopes with upslope contributing areas 3300 m2. Areal concentrations of debris flows revealed that colluvial soils formed on sedimentary rocks were more susceptible to flows than soils on crystalline rocks. This event should serve as an alert to government authorities, emergency responders, and residents in the Front Range and other interior continental areas with steep slopes. Widespread debris flows in these areas occur infrequently but may pose a greater risk than in areas with shorter return periods, because the public is typically unprepared for them.

  14. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    Science.gov (United States)

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  15. The Potential for Long-Term Impacts of Extreme Events in the Front Range of Colorado

    Science.gov (United States)

    Losleben, M. V.; Caine, N.; Flanagan, C.; McKnight, D.; Monson, R.

    2005-12-01

    Extreme climatic events can trigger a cascade of events, or cause a step function change, in environmental systems that changes the balance of one or more environmental systems, such as bio-, geo-, hydro-, or chemical. They occur at all spatial, temporal, and intensity scales, some easily measurable, others more difficult. Moreover, not all extreme events have lasting environmental impacts. Whether they foreset the environmental clock or not is dependent on the particular system sensitivity in the geographic area of interest, as well as the type of event. Obviously, sufficient environmental data are necessary to detect and evaluate the potential of an extreme event to cause long-term change, and data scarcity is often a problem in the mountains of the western US. We look at the available data for five extreme events affecting the Front Range of the Colorado Rocky Mountains, and find a range of effects, suggesting that Front Range systems are more sensitive to drought than excessive moisture, and to events of longer duration. The events are defined by the surface climatic parameters of snow, rain, or temperature, and characterized by their synoptic atmospheric circulation pattern. Factors assessing the environmental impact include net ecosystem carbon dioxide exchange, alpine lake algal populations and hydrologic residence times, rock glacier temperatures, snowpack, and reservoir storage. The events are the April 15-16, 1921 record U.S. 24-hour snowfall at Silver Lake, CO, the 1981-86 upper elevation cold period in central Colorado and southern Wyoming, an anomalously high April and May 1995 snowfall, the 2002 drought, and the March 17-19, 2003 anomalously high snowfall in the South Platte and Arkansas River basins of Colorado.

  16. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  17. Vertical Profiles of Ammonia in the Colorado Front Range: Impacts of Source Region and Meteorology

    Science.gov (United States)

    Tevlin, A.; Kaushik, A.; Noone, D. C.; Ortega, J. V.; Smith, J. N.; Brophy, P.; Kirkland, J.; Link, M. F.; Farmer, D. K.; Wolfe, D. E.; Dube, W. P.; McDuffie, E. E.; Brown, S. S.; Zaragoza, J.; Fischer, E. V.; Murphy, J. G.

    2014-12-01

    Atmospheric ammonia plays an important role in aerosol particle formation and growth, as well as in nitrogen deposition to sensitive ecosystems. However, significant uncertainties are associated with the distribution and strength of emission sources, and many of the processes that control its atmospheric fate are not fully understood. The high density of agricultural and urban sources located in close proximity to more pristine mountainous areas to the west make the Colorado Front Range a unique area for studying atmospheric ammonia. The meteorology of the region, where heavy monsoon rains can be followed by rapid evaporation, can also impact surface-atmosphere partitioning of ammonia. As part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ), vertical profiles of ammonia were measured throughout the boundary layer aboard a moveable platform on the 300 m Boulder Atmospheric Observatory (BAO) tower. Changes in ammonia concentration and its vertical structure were driven not only by changes in wind direction and estimated source region, but also by fluctuations in surface and atmosphere water content. For example, large increases in atmospheric ammonia mixing ratios were observed following rain events. This may be explained by surface-atmosphere exchange of wet-deposited ammonia associated with rapid evaporation following the event, and likely impacts particle formation. This may also play a role in transport from ammonia-rich agricultural areas towards the mountainous regions to the west during periods of upslope flow. The vertical ammonia concentration gradients observed throughout the structured early morning boundary layer also provide insight into the possible causes of early morning spikes in ammonia - a phenomenon that has been well-documented in many other locations. A box model was used to assess the relative importance of surface emissions due to the evaporation of morning dew versus entrainment of ammonia-rich air from above the

  18. The occurrence of alpine permafrost in the Front Range of Colorado

    Science.gov (United States)

    Janke, Jason R.

    2005-04-01

    Permafrost distribution, or ground that remains frozen for at least 2 years, has been modeled using a combination of Geographic Information System (GIS) techniques, Digital Elevation Model (DEM) variables, and land cover in alpine regions of the world. In the Front Range, however, no such empirical models have been developed, and field data are restricted in spatial extent, but rock glaciers are in abundance. Here, I present a probabilistic logistic regression model that is based on topoclimatic information (elevation and aspect) for rock glaciers derived from U.S. Geological Survey (USGS) 10-m DEMs. Classes of land cover, obtained from an Enhanced Thematic Mapper Plus (ETM+) image classification, were assigned weights and were then multiplied by the regression results to refine estimates. The effectiveness of the model was evaluated by comparing mean probability scores with rock glacier activity categories, Mean Annual Air Temperature (MAAT) from climatic stations on Niwot Ridge, and Bottom Temperature of winter Snow (BTS) measurements, while a Monte Carlo simulation was used to detect uncertainty associated with the original DEM. Permafrost scores >50% covered about 8.9% (242 km 2) of the study area (2722 km 2) with the highest scores clustered around Longs and Rowe Peaks. Permafrost locations showed a strong correlation with rock glacier activity classes, the -1.0 °C MAAT isotherm, and BTS measurements less than -3.0 °C. The uncertainty analysis revealed that slight global differences exist between the original and error prone DEM; however, local variations in aspect caused the most uncertainty. These results indicate that the model accurately represents regional distribution of permafrost. Therefore, topoclimatic information from rock glaciers and land cover, when combined with an uncertainty analysis, can effectively be used to map the occurrence of Front Range permafrost, providing an imperative tool for cartographers, planners, and geocryologists.

  19. Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range

    Science.gov (United States)

    Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.

    2003-01-01

    Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.

  20. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA

    National Research Council Canada - National Science Library

    Justin H Dingle; Eric C Apel; Teresa L Campos; Alan J Hills; Rebecca S Hornbrook; Denise D Montzka; John B Nowak; Joseph R Roscioli

    2016-01-01

      Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ...

  1. Kinematic Analysis of Fault-Slip Data in the Central Range of Papua, Indonesia

    Directory of Open Access Journals (Sweden)

    Benyamin Sapiie

    2016-01-01

    Full Text Available DOI:10.17014/ijog.3.1.1-16Most of the Cenozoic tectonic evolution in New Guinea is a result of obliquely convergent motion that ledto an arc-continent collision between the Australian and Pacific Plates. The Gunung Bijih (Ertsberg Mining District(GBMD is located in the Central Range of Papua, in the western half of the island of New Guinea. This study presentsthe results of detailed structural mapping concentrated on analyzing fault-slip data along a 15-km traverse of theHeavy Equipment Access Trail (HEAT and the Grasberg mine access road, providing new information concerning thedeformation in the GBMD and the Cenozoic structural evolution of the Central Range. Structural analysis indicatesthat two distinct stages of deformation have occurred since ~12 Ma. The first stage generated a series of en-echelonNW-trending (π-fold axis = 300° folds and a few reverse faults. The second stage resulted in a significant left-lateralstrike-slip faulting sub-parallel to the regional strike of upturned bedding. Kinematic analysis reveals that the areasbetween the major strike-slip faults form structural domains that are remarkably uniform in character. The changein deformation styles from contractional to a strike-slip offset is explained as a result from a change in the relativeplate motion between the Pacific and Australian Plates at ~4 Ma. From ~4 - 2 Ma, transform motion along an ~ 270°trend caused a left-lateral strike-slip offset, and reactivated portions of pre-existing reverse faults. This action had aprofound effect on magma emplacement and hydrothermal activity.

  2. CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications

    CERN Document Server

    Aznar, Francisco; Calvo Lopez, Belén

    2013-01-01

    This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints.  These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip.  The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length.  This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...

  3. Gene expression under thermal stress varies across a geographical range expansion front.

    Science.gov (United States)

    Lancaster, Lesley T; Dudaniec, Rachael Y; Chauhan, Pallavi; Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt

    2016-03-01

    Many ectothermic species are currently expanding their distributions polewards due to anthropogenic global warming. Molecular genetic mechanisms facilitating range expansion under these conditions are largely unknown, but understanding these could help mitigate expanding pests and disease vectors, or help explain why some species fail to track changing climates. Here, using RNA-seq data, we examine genomewide changes in gene expression under heat and cold stress in the range-expanding damselfly Ischnura elegans in northern Europe. We find that both the number of genes involved and levels of gene expression under heat stress have become attenuated during the expansion, consistent with a previously reported release from selection on heat tolerances as species move polewards. Genes upregulated under cold stress differed between core and edge populations, corroborating previously reported rapid adaptation to cooler climates at the expansion front. Expression of sixty-nine genes exhibited a region x treatment effect; these were primarily upregulated in response to heat stress in core populations but in response to cold stress at the range edge, suggesting that some cellular responses originally adapted to heat stress may switch to cold-stress functionality upon encountering novel thermal selection regimes during range expansion. Transcriptional responses to thermal stress involving heat-shock and neural function genes were largely geographically conserved, while retrotransposon, regulatory, muscle function and defence gene expression patterns were more variable. Flexible mechanisms of cold-stress response and the ability of some genes to shift their function between heat and cold stress might be key mechanisms facilitating rapid poleward expansion in insects. © 2016 John Wiley & Sons Ltd.

  4. Integrating soils and geomorphology in mountains - An example from the Front Range of Colorado

    Science.gov (United States)

    Birkeland, P.W.; Shroba, R.R.; Burns, S.F.; Price, A.B.; Tonkin, P.J.

    2003-01-01

    Soil distribution in high mountains reflects the impact of several soil-forming factors. Soil geomorphologists use key pedological properties to estimate ages of Quaternary deposits of various depositional environments, estimate long-term stability and instability of landscapes, and make inferences on past climatic change. Once the influence of the soil-forming factors is known, soils can be used to help interpret some aspects of landscape evolution that otherwise might go undetected. The Front Range of Colorado rises from the plains of the Colorado Piedmont at about 1700 m past a widespread, dissected Tertiary erosion surface between 2300 and 2800 m up to an alpine Continental Divide at 3600 to over 4000 m. Pleistocene valley glaciers reached the western edge of the erosion surface. Parent rocks are broadly uniform (granitic and gneissic). Climate varies from 46 cm mean annual precipitation (MAP) and 11 ??C mean annual temperature (MAT) in the plains to 102 cm and -4 ??C, respectively, near the range crest. Vegetation follows climate with grassland in the plains, forest in the mountains, and tundra above 3450 m. Soils reflect the bioclimatic transect from plains to divide: A/Bw or Bt/Bk or K (grassland) to A/E/Bw or Bt/C (forest) to A/Bw/C (tundra). Corresponding soil pH values decrease from 8 to less than 5 with increasing elevation. The pedogenic clay minerals dominant in each major vegetation zone are: smectite (grassland), vermiculite (forest), and 1.0-1.8 nm mixed-layer clays (tundra). Within the lower forested zone, the topographic factor (aspect) results in more leached, colder soils, with relatively thin O horizons, well-expressed E horizons and Bt horizons (Alfisols) on N-facing slopes, whereas soils with thicker A horizons, less developed or no E horizons, and Bw or Bt horizons (Mollisols) are more common on S-facing slopes. The topographic factor in the tundra results in soil patterns as a consequence of wind-redistributed snow and the amount of time it

  5. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    Science.gov (United States)

    Godt, Jonathan W.; Coe, Jeffrey A.

    2007-02-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43 mm of rain in 4 h, 35 mm of which fell in the first 2 h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30°) in catchments with small contributing areas (material along their paths.

  6. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    Science.gov (United States)

    Ebel, Brian A.

    2012-01-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can “homogenize” soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  7. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes

    Science.gov (United States)

    Garner, Emily; Wallace, Joshua S.; Argoty, Gustavo Arango; Wilkinson, Caitlin; Fahrenfeld, Nicole; Heath, Lenwood S.; Zhang, Liqing; Arabi, Mazdak; Aga, Diana S.; Pruden, Amy

    2016-12-01

    Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.

  8. A high dynamic range programmable CMOS front-end filter with a tuning range from 1850 to 2400 MHz

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais; Lee, Thomas H.; Bruun, Erik

    2005-01-01

    This paper presents a highly programmable front-end filter and amplifier intended to replace SAW filters and low noise amplifiers (LNA) in multi-mode direct conversion radio receivers. The filter has a 42 MHz bandwidth, is tunable from 1850 to 2400 MHz, achieves a 5.8 dB NF, -25 dBm in-band 1-d...

  9. Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood

    Science.gov (United States)

    Yochum, Steven E.; Sholtes, Joel S.; Scott, Julian A.; Bledsoe, Brian P.

    2017-09-01

    The Colorado Front Range flood of September 2013 induced a diverse range of geomorphic changes along numerous stream corridors, providing an opportunity to assess responses to a large flood in a semiarid landscape. We defined six classes of geomorphic change related to peak unit stream power and valley confinement for 531 stream reaches over 226 km, spanning a gradient of channel scales and slope. Geomorphic change was generally driven by erosion of channel margins in confined reaches and by a combination of deposition and erosion in unconfined reaches. The magnitude of geomorphic change typically increased with unit stream power (ω), with greater responses observed in unconfined channels. Cumulative logit modeling indicated that total stream power or unit stream power, unit stream power gradient, and valley confinement are significant predictors of geomorphic response for this flood event. Based on this dataset, thresholds for geomorphic adjustment were defined. For channel slopes 230 W/m2 (16 lb/ft-s; at least 10% of the investigated sites experienced substantial channel widening) and a credible potential for avulsions, braiding, and loss of adjacent road embankments associated with ω > 480 W/m2 (33 lb/ft-s; at least 10% of the investigated sites experienced such geomorphic change). Infrequent to numerous eroded banks were very likely with ω > 700 W/m2 (48 lb/ft-s), with substantial channel widening or major geomorphic change shifting from credible to likely. Importantly, in reaches where there were large reductions in ω as the valley form shifted from confined to relatively unconfined, large amounts of deposition-induced, reach-scale geomorphic change occurred in some locations at relatively low ω. Additionally, alluvial channels with slopes > 3% had greater resistance to geomorphic change, likely caused by armoring by larger bed material and increased flow resistance from enhanced bedforms. Finally, we describe how these results can potentially be used by

  10. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    Science.gov (United States)

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity

  11. WATER SPOTTERS: Water, energy, isotopes and experiential learning in the Colorado Front Range

    Science.gov (United States)

    Noone, D. C.; Berkelhammer, M. B.; Raudzens Bailey, A.; Buhr, S. M.; Smith, L. K.

    2011-12-01

    Providing students with tangible examples of the two-way interaction between human society and the climate system is a pressing challenge. Water is at the core of many issues in environmental change from local to global scales. In climate research, there are significant uncertainties in the role water plays in the climate system. "Water" can also act as a central theme that provides opportunities for science education at all levels. WATER SPOTTERS takes advantage of the prominent agricultural landscape of the region, which is a poignant example of how society influences the climate through irrigation, evaporation/transpiration and run-off and whose productivity is influenced by the climate system. Both natural grasslands and alpine ecosystems in the surrounding regions serve as examples of the native landscape. The centerpiece of this project is a 300m tower that is fully implemented with gas sampling lines and micrometeorological equipment to study the energy and water budgets of the region. Middle Schools that surround this site, many of which exist in visual contact with the tall tower, are provided with meteorological stations, which provide rainfall rates, temperature, humidity and radiation data. In coordination with the St Vrain Valley School District MESA (Math Engineering Science Achievement) program, students collect rain water samples that are analyzed and used as a core component of the research goals. The students use the weather stations as a way to directly explore their local climatology and provide data that is needed in research. We present an overview of the curriculum goals and associated physical infrastructure designed for middle school students in the Colorado Front Range to explore their local water cycle using water isotopes. The fixed infrastructure at the schools and tall tower are supplemented by mobile instruments such as an automated precipitation collector and snowflake photography system, which both fulfill science needs and provide

  12. PACE3 a large dynamic range analog memory front-end ASIC assembly for the charge readout of silicon sensors

    CERN Document Server

    Aspell, P; Bialas, W; Bloch, P; Dupanloup, M; Go A; Kloukinas, K; Manthos, N; Moraes, D; Morrissey, Q; Peisert, Anna; Reynaud, S; Sidiropoulos, G; Tcheremoukhine, A; Vichoudis, P

    2006-01-01

    This paper describes the architecture of PACE3 and the key design parameters for a large dynamic range front-end amplification and low noise analog memory. Measured results from PACE3 are presented characterizing the chip's performance in terms of gain, pulse shaping characteristics, noise, power consumption and radiation tolerance with respect to total ionizing dose and robustness to single event upsets (SEU).

  13. 75 FR 9893 - Adequacy Determination for the Denver Metro Area and North Front Range 8-Hour Ozone Attainment...

    Science.gov (United States)

    2010-03-04

    ... North Front Range Metropolitan Planning Organization (NFR MPO), the Colorado Department of... budgets for future transportation conformity determinations once this finding becomes effective. DATES: This finding is effective March 19, 2010. FOR FURTHER INFORMATION CONTACT: Tim Russ, Air Program (8P-AR...

  14. Spatial variations in focused exhumation along a continental-scale strike-slip fault: The Denali fault of the eastern Alaska Range

    Science.gov (United States)

    Benowitz, J.A.; Layer, P.W.; Armstrong, P.; Perry, S.E.; Haeussler, P.J.; Fitzgerald, P.G.; VanLaningham, S.

    2011-01-01

    40Ar/39Ar, apatite fission-track, and apatite (U-Th)/He thermochronological techniques were used to determine the Neogene exhumation history of the topographically asymmetric eastern Alaska Range. Exhumation cooling ages range from ~33 Ma to ~18 Ma for 40Ar/39Ar biotite, ~18 Ma to ~6 Ma for K-feldspar minimum closure ages, and ~15 Ma to ~1 Ma for apatite fission-track ages, and apatite (U-Th)/He cooling ages range from ~4 Ma to ~1 Ma. There has been at least ~11 km of exhumation adjacent to the north side of Denali fault during the Neogene inferred from biotite 40Ar/39Ar thermochronology. Variations in exhumation history along and across the strike of the fault are influenced by both far-field effects and local structural irregularities. We infer deformation and rapid exhumation have been occurring in the eastern Alaska Range since at least ~22 Ma most likely related to the continued collision of the Yakutat microplate with the North American plate. The Nenana Mountain region is the late Pleistocene to Holocene (~past 1 Ma) primary locus of tectonically driven exhumation in the eastern Alaska Range, possibly related to variations in fault geometry. During the Pliocene, a marked increase in climatic instability and related global cooling is temporally correlated with an increase in exhumation rates in the eastern Alaska Range north of the Denali fault system.

  15. Detachment Faulting in the Western Basin and Range: New Geometric, Thermal, and Temporal Constraints From the Bare Mountain Region in Southwestern Nevada

    Science.gov (United States)

    Ferrill, D. A.; Stamatakos, J. A.; Morris, A. P.; Donelick, R. A.; Blythe, A. E.

    2001-12-01

    Zircon and apatite fission-track cooling ages for 50 samples taken from Bare Mountain and surrounding areas of southern Nevada, analyzed in conjunction with structural and paleomagnetic data and calcite deformation geothermometry data, provide new constraints on the timing and distribution of detachment faulting in the western Basin and Range. Our results show that: (i) Bare Mountain was tilted to the east or northeast, probably during Middle Miocene extension, prior to development of the Bullfrog Hills detachment system. (ii) Bare Mountain cooled through the fission-track closure temperature for fluorine-rich apatite (115-125 C) more or less as a unit at 8 to 17 Ma. (iii) Northwest Bare Mountain cooled through the zircon closure temperature (250 C) at 8 to 17 Ma, whereas the rest of the mountain cooled through this temperature between the Late Paleozoic and the Eocene. The combination of tilting at Bare Mountain and the apatite and zircon fission-track cooling ages indicates the presence of a west-dipping breakaway fault at Bare Mountain at around 15 Ma. New apatite fission-track cooling ages from Yucca Flat, Frenchman Flat, Mount Sterling, the Striped Hills, the Resting Springs Range, and the Funeral Mountains, when combined with published apatite ages, constrain the regional position of a west-dipping breakaway fault and exhumed footwall. The current position of the trailing edge of the hanging wall of this system is the Death Valley - Furnace Creek fault system. Migration rates of the cooling front in the footwall of this system range from 4.0 mm/yr at the latitude of Bare Mountain to 7.3 mm/yr at the latitude of central Death Valley. * Work performed at the CNWRA for the U.S. NRC under contract number NRC-02-97-009. This is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.

  16. Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range

    Science.gov (United States)

    Baier, Bianca C.; Brune, William H.; Miller, David O.; Blake, Donald; Long, Russell; Wisthaler, Armin; Cantrell, Christopher; Fried, Alan; Heikes, Brian; Brown, Steven; McDuffie, Erin; Flocke, Frank; Apel, Eric; Kaser, Lisa; Weinheimer, Andrew

    2017-09-01

    Chemical models must correctly calculate the ozone formation rate, P(O3), to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3) calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3) is high. One way to test mechanisms is to compare modeled P(O3) to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS) directly measured net P(O3) in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3) was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3) was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO) levels were high and was similar to modeled P(O3) for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3) behavior. Modeled and measured P(O3) and peroxy radical (HO2 and RO2) discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3) discrepancy, such a source has not been identified and does not fully explain the peroxy radical model-data mismatch. If the MOPS accurately depicts atmospheric P(O3), then these results would imply that P(O3) in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3) regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone regulations

  17. Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range

    Directory of Open Access Journals (Sweden)

    B. C. Baier

    2017-09-01

    Full Text Available Chemical models must correctly calculate the ozone formation rate, P(O3, to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3 calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3 is high. One way to test mechanisms is to compare modeled P(O3 to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS directly measured net P(O3 in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3 was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3 was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO levels were high and was similar to modeled P(O3 for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3 behavior. Modeled and measured P(O3 and peroxy radical (HO2 and RO2 discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3 discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3, then these results would imply that P(O3 in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3 regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone

  18. Sources and Seasonality of Volatile Organic Compounds in the Northern Front Range Metropolitan Area

    Science.gov (United States)

    Abeleira, A.; Pollack, I. B.; Sive, B. C.; Zaragoza, J.; Lindaas, J.; Fischer, E. V.; Farmer, D.

    2016-12-01

    The Northern Front Range Metropolitan Area (NFRMA) of Colorado, with a growing population of over 3 million, was deemed an ozone (O3) nonattainment area (NAA) in 2008 despite continued work on NOx reductions. Ground-level O3 is produced from photochemical catalytic cycles initiated by the OH oxidation of volatile organic compounds (VOCs), and propagated through reactions involving peroxy (HO2+RO2) and NOx (NO + NO2) radicals. We measured a suite of speciated VOCs during two 8-week deployments (March-May 2015, July-September 2015) at the Boulder Atmospheric Observatory in Erie, CO. The spring deployment overlapped with the NOAA SONGNEX (Shale Oil and Natural Gas Nexus) campaign. The BAO site lies at an urban-rural interface in the NFRMA with multiple urban centers surrounding the site, a major interstate highway within 2 miles, local suburban development in Erie, agricultural operations in the surrounding counties, and recent rapid expansion of oil and gas development in adjacent Weld County. VOCs were measured hourly with a custom-built online gas chromatography system along with measurements of O3, NOx, PAN, CO, and CH4. VOC measurements included C2-C8 hydrocarbons (NMHCs), C1-C5 alkyl nitrates, C1-C2 halocarbons, and several oxygenated species (OVOCs: methyl ethyl ketone, acetone, acetaldehyde). Using Positive Matrix Factorization (PMF) we have identified four distinct VOC sources in the spring and five in the summer: 1) Oil and Natural Gas (ONG, e.g. C2 - C5 alkanes), 2) Traffic (e.g. ethyne & aromatics), 3) Background species (e.g. long-lived halogenated species), 4) Secondary production (e.g. C3-C5 alkyl nitrates & OVOCs), and for summer 5) Biogenic (e.g. isoprene). Using the source factors generated from the PMF analysis we calculated the VOC reactivity (VOCr) of each source. For both seasons, the ONG factor dominates VOCr in the mornings. In spring afternoons, a combination of background species and secondary products make up a large percentage of VOCr as

  19. The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier Thrust Fault region of the intracontinental strike-slip Denali Fault system

    Science.gov (United States)

    Riccio, Steven J.; Fitzgerald, Paul G.; Benowitz, Jeff A.; Roeske, Sarah M.

    2014-11-01

    Horizontal-slip along restraining bends of strike-slip faults is often partitioned into a vertical component via splay faults. The active Susitna Glacier Thrust Fault (SGTF), as shown by its initiation of the 2002 M7.9 Denali Fault earthquake, lies south of, and intersects the dextral strike-slip Denali Fault. Geochronology and thermochronology data from samples across the SGTF constrain the region's tectonic history and the role of thrusting in the formation of the eastern Alaska Range south of the Denali fault. U-Pb zircon ages indicate intrusion of plutons in the footwall (~57 Ma) and hanging wall (~98 Ma). These U-Pb zircon ages correlate to those from the Ruby Batholith/Kluane Terrane ~400 km east along the Denali Fault, supporting geologic correlations and hence constraints on long-term slip rates. 40Ar/39Ar mica and K-feldspar data from footwall and hanging wall samples (~54 to ~46 Ma) reflect cooling following magmatism and/or regional Eocene metamorphism related to ridge subduction. Combined with apatite fission track data (ages 43-28 Ma) and thermal models, both sides of the SGTF acted as a coherent block during the Eocene and early Oligocene. Contrasting apatite (U-Th)/He ages across the Susitna Glacier (~25 Ma footwall, ~15 Ma hanging wall) suggest initiation of faulting during the middle Miocene. Episodic cooling and exhumation is related to thrusting on known or hypothesized faults that progressively activate due to varying partition of strain along the Denali Fault associated with changing kinematics and plate interaction (Yakutat microplate collision, flat-slab subduction and relative plate motion change) at the southern Alaskan plate margin.

  20. Merging long range transportation planning with public health: a case study from Utah's Wasatch Front.

    Science.gov (United States)

    Burbidge, Shaunna K

    2010-01-01

    US transportation systems have been identified as a problem for public health, as they often encourage automobile transportation and discourage physical activity. This paper provides a case study examination of the Public Health Component of the Wasatch Front Regional Council's Regional Transportation Plan. This plan provides an example of what transportation planners at Utah's largest metropolitan planning organization (MPO) are doing to encourage physical activity through transportation. Existing active living research was used to guide recommendations using a process that included a comprehensive literature review and a review of existing state programs, advisory group and stakeholder meetings, and policy recommendations based on existing local conditions. Stakeholders from a diversity of background and interests came together with one common goal: to improve public health. Based on this collaborative process, nine policy approaches were specifically recommended for approval and integration in the Wasatch Front Regional Transportation Plan. By using current research as a guide and integrating a variety of interests, the Wasatch Front Regional Council is setting a new standard for a collaborative multi-modal focus in transportation planning, which can be replicated nationwide.

  1. Quantifying the Contribution of Thermally Driven Recirculation to a High-Ozone Event Along the Colorado Front Range Using Lidar

    Science.gov (United States)

    Sullivan, John T.; McGee, Thomas J.; Langford, Andrew O.; Alvarez, Raul J., II; Senff, Christoph; Reddy, Patrick J.; Thompson, Anne M.; Twigg, Laurence W.; Sumnicht, Grant K.; Lee, Pius; hide

    2016-01-01

    A high-ozone (O3) pollution episode was observed on 22 July 2014 during the concurrent Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) and Front Range Air Pollution and Photochemistry Experiment (FRAPPE) campaigns in northern Colorado. Surface O3 monitors at three regulatory sites exceeded the Environmental Protection Agency (EPA) 2008 National Ambient Air Quality Standard (NAAQS) daily maximum 8h average (MDA8) of 75ppbv. To further characterize the polluted air mass and assess transport throughout the event, measurements are presented from O3 and wind profilers, O3-sondes, aircraft, and surface-monitoring sites. Observations indicate that thermally driven upslope flow was established throughout the Colorado Front Range during the pollution episode. As the thermally driven flow persisted throughout the day, O3 concentrations increased and affected high-elevation Rocky Mountain sites. These observations, coupled with modeling analyses, demonstrate a westerly return flow of polluted air aloft, indicating that the mountain-plains solenoid circulation was established and impacted surface conditions within the Front Range.

  2. Evaluation of thrusting and folding of the Deadman Creek Thrust Fault, Sangre de Cristo range, Saguache County, Colorado

    Science.gov (United States)

    Weigel, Jacob F., II

    The Deadman Creek Thrust Fault was mapped in a structural window on the west side of the Sangre de Cristo Range. The study area, located in southern Colorado, is a two square mile area halfway between the town of Crestone and the Great Sand Dunes National Park. The Deadman Creek Thrust Fault is the center of this study because it delineates the fold structure in the structural window. The fault is a northeast-directed low-angle thrust folded by subsequent additional compression. This study was directed at understanding the motion of the Deadman Creek Thrust Fault as affected by subsequent folding, and the driving mechanism behind the folding of the Pole Creek Anticline as part of a broader study of Laramide thrust faulting in the range. This study aids in the interpretation of the geologic structure of the San Luis Valley, which is being studied by staff of the United States Geological Survey (USGS), to understand Rio Grande Rift basin evolution by focusing on rift and pre-rift tectonic activity. It also provides a geologic interpretation for the Saguache County Forest Service, Great Sand Dunes National Park, and its visitors. The Sangre de Cristo Mountain Range has undergone tectonic events in the Proterozoic, Pennsylvanian (Ancestral Rocky Mountains), Cretaceous-Tertiary (Laramide Orogeny) and mid-Tertiary (Rio Grande Rift). During the Laramide Orogeny the Deadman Creek Thrust Fault emplaced Proterozoic gneiss over Paleozoic sedimentary rocks and Proterozoic granodiorite in the area. Continued deformation resulted in folding of the fault to form the Pole Creek Anticline. The direction of motion of both the fault and fold is northeastward. A self-consistent net of cross-sections and stereonet plots generated from existing and new field data show that the anticline is an overturned isoclinal fold in Pole Creek Canyon, which shows an increasing inter-limb angle and a more vertical axial surface northwestward toward Deadman Creek Canyon. Southwest-directed apparent

  3. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite

    Science.gov (United States)

    Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.

    2014-01-01

    While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.

  4. Toward Realization of 2.4 GHz Balunless Narrowband Receiver Front-End for Short Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    Munir M. El-Desouki

    2015-05-01

    Full Text Available The demand for radio frequency (RF transceivers operating at 2.4 GHz band has attracted considerable research interest due to the advancement in short range wireless technologies. The performance of RF transceivers depends heavily on the transmitter and receiver front-ends. The receiver front-end is comprised of a low-noise amplifier (LNA and a downconversion mixer. There are very few designs that focus on connecting the single-ended output LNA to a double-balanced mixer without the use of on-chip transformer, also known as a balun. The objective of designing such a receiver front-end is to achieve high integration and low power consumption. To meet these requirements, we present the design of fully-integrated 2.4 GHz receiver front-end, consisting of a narrow-band LNA and a double balanced mixer without using a balun. Here, the single-ended RF output signal of the LNA is translated into differential signal using an NMOS-PMOS (n-channel metal-oxide-semiconductor, p-channel metal-oxide-semiconductor transistor differential pair instead of the conventional NMOS-NMOS transistor configuration, for the RF amplification stage of the double-balanced mixer. The proposed receiver circuit fabricated using TSMC 0.18 µm CMOS technology operates at 2.4 GHz and produces an output signal at 300 MHz. The fabricated receiver achieves a gain of 16.3 dB and consumes only 6.74 mW operating at 1.5 V, while utilizing 2.08 mm2 of chip area. Measurement results demonstrate the effectiveness and suitability of the proposed receiver for short-range wireless applications, such as in wireless sensor network (WSN.

  5. Toward Realization of 2.4 GHz Balunless Narrowband Receiver Front-End for Short Range Wireless Applications.

    Science.gov (United States)

    El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed S; Deen, M Jamal

    2015-05-07

    The demand for radio frequency (RF) transceivers operating at 2.4 GHz band has attracted considerable research interest due to the advancement in short range wireless technologies. The performance of RF transceivers depends heavily on the transmitter and receiver front-ends. The receiver front-end is comprised of a low-noise amplifier (LNA) and a downconversion mixer. There are very few designs that focus on connecting the single-ended output LNA to a double-balanced mixer without the use of on-chip transformer, also known as a balun. The objective of designing such a receiver front-end is to achieve high integration and low power consumption. To meet these requirements, we present the design of fully-integrated 2.4 GHz receiver front-end, consisting of a narrow-band LNA and a double balanced mixer without using a balun. Here, the single-ended RF output signal of the LNA is translated into differential signal using an NMOS-PMOS (n-channel metal-oxide-semiconductor, p-channel metal-oxide-semiconductor) transistor differential pair instead of the conventional NMOS-NMOS transistor configuration, for the RF amplification stage of the double-balanced mixer. The proposed receiver circuit fabricated using TSMC 0.18 µm CMOS technology operates at 2.4 GHz and produces an output signal at 300 MHz. The fabricated receiver achieves a gain of 16.3 dB and consumes only 6.74 mW operating at 1.5 V, while utilizing 2.08 mm2 of chip area. Measurement results demonstrate the effectiveness and suitability of the proposed receiver for short-range wireless applications, such as in wireless sensor network (WSN).

  6. Complex fragmentation and silicification structures in fault zones: quartz mineralization and repeated fragmentation along the Fountain Range Fault (Mt. Isa Inlier, Australia)

    Science.gov (United States)

    Seybold, Lina; Blenkinsop, Tom; Heuss, Soraya; Ord, Alison; Kruhl, Jörn H.

    2015-04-01

    In large-scale fault zones fracture networks are commonly generated by high volumes of pressurized fluids, followed by quartz precipitation. In this way large amounts of quartz are formed as microcrystalline masses and as complex vein systems, with partly highly different textures, as a result of different formation processes. Based on field and microstructural data and the quantification of vein patterns, the spatial and temporal connection between fragmentation, quartz crystallization and fluid and material flow along the Fountain Range Fault at Fountain Springs was investigated. Dextral strike-slip led to up to 25 km horizontal displacement along the fault. Due to various fragmentation and quartz formation processes, a ca. 100 m high, 80 - 100 m wide and km-long quartz ridge with numerous vein systems and variable microfabrics was formed. Locally, lenses of highly altered metamorphic wall-rocks occur in the quartz zone. Where exposed, the contact to wall rocks is sharp. Millimetre- to decimetre-thick quartz veins penetrate the wall-rocks only within metre distance from the contact. Several clearly distinguishable fine-grained reddish, brownish to dark and pigment-rich quartz masses form up to 50 m wide and up to several 100 m long steep lenses that build the major part of the silicified fault zone. A chronology can be established. Some of these lenses are oriented slightly oblique to the general trend of the quartz zone, in agreement with the supposed dextral strike slip along the fault. Numerous generations of typically µm-cm thick quartz veins transect the microcrystalline quartz masses and, locally, form anisotropic networks. In the quartz masses, angular fragments often composed of quartz with, again, internal fragmentation structures, indicate earlier fracturing and silicification events. Within the veins, quartz forms geodes, locally filled with fine-grained reddish quartz and palisade structures with feathery textures and fluid-inclusion zoning

  7. First paleoseismological assessment of active deformation along the eastern front of the southern Alps (NE Italy, Friuli). Insights on the 1511 earthquake causative fault.

    Science.gov (United States)

    Falcucci, Emanuela; Eliana Poli, Maria; Galadini, Fabrizio; Paiero, Giovanni; Scardia, Giancarlo; Zanferrari, Adriano

    2014-05-01

    The study area belongs to the Julian Prealps that represent the easternmost portion of the Plio-Quaternary front of the eastern Southalpine Chain (ESC), a south-verging polyphase fold and thrust belt, in evolution from the Middle Miocene to the Present. Here, the WSW-ENE trending, SW- verging thrusts of the ESC join the NW-SE trending, right-lateral strike slip Idrija fault system, which develops along the Italian-Slovenian boundary. The area is characterized by medium/high seismicity testified by both large historical and instrumental earthquakes. The DBMI11 (Locati et al., 2011) records the 1348 Carinzia earthquake (Mw= 7.02), the 1511 Idrija earthquake (Mw=6.98), and the 1976 Friuli earthquakes on May (Mw=6.46) and September (Mw=5.98) We studied a segment of the Susans-Tricesimo thrust system, namely the Colle Villano (CV) thrust, identified by means of geological and geophysical investigations (Galadini et al., 2005). New geological and geomorphological analyses allowed identifying the surficial geomorphic evidence of recent blind thrusting along the structure, represented by gentle scarps and surface warping. In order to characterise the Late Pleistocene-Holocene activity of this blind thrust, paleoseismological investigations were performed along one of CV thrust-related fault scarps. We dug three trenches ~1 km to the north of the Magredis village. The analysis of the trench walls allowed identifying deformation events induced by the fault activity. Two subsequent episodes of deformation are distinguished by localised warping (few metres in wave length) of the sedimentary sequences exposed by the excavations and secondary extrados faulting. One event occurred between 544-646 AD (radiocarbon cal. age, 2σ) and 526-624 AD the other - probably the last one - occurred close to 1485-1604 AD. The last displacement event is consistent with the aforementioned 1511 earthquake both in terms of chronology of the deformation and location of the causative fault. This

  8. Low-angle normal faults in the south-central Brooks Range fold and thrust belt, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, R.R.; Oldow, J.S.

    1988-05-01

    A north-south structural transect through the south-central Brooks Range, Alaska, exposes three lithologically distinct, fault-bounded packages of rock, all regionally metamorphosed during the Late Jurassic to Early Cretaceous contractional deformation that formed much of the Brooks Range fold and thrust belt. These are, from south to north and structurally highest to lowest, (1) the prehnite-pumpellyite facies ophiolitic rocks of the Angayucham terrane, (2) the low-grade metasedimentary rocks of the Rosie Creek allochthon, and (3) pumpellyite-actinolite to glaucophane-epidote facies metamorphic rocks of the schist belt. The presence of rocks metamorphosed and deformed at shallow levels of the fold and thrust belt (the Angayucham terrane and Rosie Creek allochthon) lying structurally above rocks representing the deepest exposed levels of the fold and thrust belt (the schist belt) indicates that the imbricate stack is disrupted by south-dipping, low-angle normal faults along the southern margin of the Brooks Range. The authors propose that normal faults developed in response to the uplift of the schist belt and the overlying metasedimentary and ophiolitic allochthons by north-directed thrusting in the late Early Cretaceous. Thrusting resulting in the oversteepening of the imbricate stack, causing compensatory normal faulting along the southern flank of the ramp structure. Normal faults may have provided at least local structural control of the locus of Albian and younger sedimentation in the Koyukuk basin. 34 references.

  9. Reactive nitrogen in Rocky Mountain National Park during the Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ)

    Science.gov (United States)

    Prenni, A. J.; Benedict, K. B.; Evanoski-Cole, A. R.; Zhou, Y.; Sullivan, A.; Day, D.; Sive, B. C.; Zondlo, M. A.; Schichtel, B. A.; Vimont, J.; Collett, J. L., Jr.

    2014-12-01

    The Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) took place in July-August 2014. This collaborative study was aimed at characterizing those processes which control air quality along Colorado's Front Range. Although the study was largely focused on ozone, an additional goal of the study included characterizing contributions from Front Range sources and long-range transport to total reactive nitrogen in Rocky Mountain National Park (ROMO). Import of reactive nitrogen into ROMO and other pristine, high elevation areas has the potential to negatively impact terrestrial and aquatic ecosystems. We present measurements of reactive nitrogen species measured within ROMO during FRAPPÉ, and compare these data to measurements made in the surrounding areas. At our monitoring site in ROMO, co-located with IMPROVE and CASTNet monitoring, measurements of NO, NO2, NOx, NOy, NH3, and total reactive nitrogen (TNx) were made at high time resolution. Additional measurements of NH3, HNO3 and PM2.5 ions were made at hourly resolution using a MARGA and also at 24-hour time resolution using URG denuder-filter pack sampling. Precipitation samples also were collected to quantify wet deposition of ammonium, nitrate, and organic nitrogen. Finally, measurements of organic gases were made using online gas chromatography and proton transfer reaction-mass spectrometry. Preliminary results for ammonia show both a diel pattern, with concentrations increasing each morning, and a strong dependence on wind direction, implicating the importance of transport. Higher concentrations of NOx and NOy also were observed in the daytime, but in general these patterns differed from that of ammonia. Several upslope events were observed during the measurement period during which NOx, NH3, 2-propylnitrate, 2-butylnitrate, ethane, butane, and pentane were observed to increase in concentration along with ozone.

  10. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  11. Western frontal fault of the Canyon Range: is it the breakaway zone of the Sevier Desert detachment?

    Science.gov (United States)

    Otton, J.K.

    1995-01-01

    Geologic evidence developed from surface exposures demonstrates that the western frontal fault of the Canyon Range is a major structure representing the eastern Breakaway zone of the Sevier Desert detachment. Maximum upper plate displacement for the entire Sevier Desert detachment cannot be determined from these breakaway-zone exposures. -from Author

  12. Spatial/temporal patterns of Quaternary faulting in the southern limb of the Yellowstone-Snake River Plain seismic parabola, northeastern Basin and Range margin

    Energy Technology Data Exchange (ETDEWEB)

    McCalpin, J.P. (GEO-HAZ Consultants, Estes Park, CO (United States))

    1993-04-01

    During the period 1986--1991, 11 backhoe trenches were excavated across six Quaternary faults on the northeastern margin of the Basin and Range province. These faults comprise the southern limb of a parabola of Quaternary faults and historic moderate-magnitude earthquakes which is roughly symmetrical about the Snake River Plain, and heads at the Yellowstone hot spot. Fifteen Holocene paleoseismic events have been bracketed by radiocarbon or thermoluminescence ages. On the six central faults, the latest rupture event occurred in a relatively short time interval between 3 ka and 6 ka. The period between 6 ka and the end of the latest glaciation (ca. 15 ka) was a period of relative tectonic quiescence on the central faults, but not on the two end faults with higher slip rates (Wasatch and Teton faults). Southward-younging of events in the 3--6 ka period may indicate that temporally-clustered faulting was initiated at the Yellowstone hot spot. Faults at the same latitude, such as the Star Valley-Grey's River pair of faults, or the East Cache-Bear Lake-Rock Creek system of faults, show nearly identical timing of latest rupture events within the pairs or systems. Faults at common latitudes probably sole into the same master decollement, and thus are linked mechanically like dominoes. The timing of latest ruptures indicates that faulting on the westernmost fault preceded faulting on successively more eastern faults by a few hundred years. This timing suggests that slip on the westernmost faults mechanically unloaded the system, causing tectonic instabilities farther east.

  13. Slip rates of active thrusts at the front of the Precordillera revealed by exposure dating and fault scarp profiles, Mendoza, Argentina

    Science.gov (United States)

    Schmidt, Silke; Hetzel, Ralf; Kuhlmann, Jan; Mingorance, Francisco; Ramos, Victor

    2010-05-01

    Although large historical earthquakes occurred in the Andean back-arc region between 28° and 34°S, the slip rates of active reverse faults remain unknown; hence the seismic hazard related to these faults is poorly constrained. Here we report long-term slip rates for two faults - the Peñas and the Cal thrust - which define the front of the Andean Precordillera north of Mendoza. Both thrusts displace several Late Pleistocene to Holocene river terraces and form well-preserved fault scarps. At the Peñas thrust three terraces (T1, T2, and T3) are displaced vertically by ~0.9, ~1.9 and ~11 m, respectively. 10Be exposure dating constrains the age of T2 and T3 as 2.9 ± 0.8 ka and 11.1 ± 1.7 ka, which yields an uplift rate of 0.9 ± 0.1 mm/a. The horizontal shortening rate of the Peñas thrust - calculated by using the age of T3 and the dip angle of 25° - is 1.9 ± 0.2 mm/a. At the Cal thrust a fault scarp has displaced a terrace with a maximum age of 12 ka by 7 m. As the Cal thrust dips ~25°, this yields a shortening rate of ≥ 1.3 mm/a. Our results demonstrate that the two thrusts accomodate about half of the present-day shortening rate in the back-arc region of the Andes, which is constrained as 4.5 ± 1.7 mm/a (Brooks et al., 2003). Using the compilation of Well & Coppersmith (1994), the 50-km-long Peñas and the 31-km-long Cal thrusts are capable of producing earthquakes with a magnitude of Mw 6.7 to 7.0. This is supported by a magnitude Ms ~ 7.0 earthquake on the Cal fault, which devastated Mendoza in 1861 and killed two thirds of its population. Earthquakes of this magnitude have presumably generated the smallest fault scarps (~0.9 m vertical offset) present at both thrusts. The higher scarps are interpreted to record multiple offsets generated during several Holocene earthquakes. References Brooks, B.A., Bevis, M., Smalley, R., Kendrick, E., Manceda, R., Lauria, E., Maturana, R. & Araujo, M. (2003): Crustal motion in the Southern Andes (26° - 36°S): Do

  14. Fault-related dolomitization in the Orpesa Ranges (Iberian Chain, E Spain): reactive transport simulations and field data constraints

    Science.gov (United States)

    Gomez-Rivas, E.; Martin-Martin, J. D.; Corbella, M.; Teixell, A.

    2009-04-01

    The relationships between hydrothermal fluid circulation and fracturing that lead to mineral dissolution and/or precipitation in carbonate rocks have direct impacts on the evolution and final distribution of hydrocarbon reservoir permeability. Understanding the coupling between these processes is important for predicting permeability and improving hydrocarbon recovery. We present a case study of dolomitization processes in Cretaceous limestone from the Orpesa Ranges (Iberian Chain, E Spain). Extending over part of the Maestrat Cretaceous Basin, the Orpesa area is deformed by extensional faults. These faults accommodated thick sequences of shallow marine limestone, mainly during Aptian times. The syn-rift carbonates are partially dolomitized due to the circulation and mixing of hydrothermal fluids along normal faults and bedding. Both Aptian and later Neogene extensional faults must have served as conduits for the circulation of fluids. MVT deposits of Paleocene age are well documented in the Maestrat basin and may also be related to dolomitization. Samples of host rocks and vein fillings have been collected along strike and analyzed in different fault sections to characterize fluid and rock composition, track flow pathways and map the relationships of fluid flow with respect to the main normal faults in the area. Using field and geochemical data from the Orpesa Ranges carbonates, we have developed reactive-transport models to study the influence of different parameters in the dolomitization of carbonates related to the circulation and mixing of hydrothermal fluids at the outcrop scale. We present results from models that were run with constant and non-constant permeability. The main parameters analyzed include: initial porosity and permeability of layers and fractures, composition of fluids, groundwater and brines flux, composition of layers, reactive surface of minerals, differences in vertical and horizontal permeability, and presence or absence of stratigraphic

  15. Fuel and stand characteristics in p. pine infested with mountain pine beetle, Ips beetle, and southwestern dwarf mistletoe in Colorado's Northern Front Range

    Science.gov (United States)

    Jennifer G. Klutsch; Russell D. Beam; William R. Jacobi; Jose F. Negron

    2008-01-01

    In the ponderosa pine forests of the northern Front Range of Colorado, downed woody debris amounts, fuel arrangement, and stand characteristics were assessed in areas infested with southwestern dwarf mistletoe (Arceuthobium vaginatum subsp. cryptopodum), mountain pine beetle (Dendroctonus ponderosae) and

  16. 2.5 Gbit/s Optical Receiver Front-End Circuit with High Sensitivity and Wide Dynamic Range

    Science.gov (United States)

    Zhu, Tiezhu; Mo, Taishan; Ye, Tianchun

    2017-12-01

    An optical receiver front-end circuit is designed for passive optical network and fabricated in a 0.18 um CMOS technology. The whole circuit consists of a transimpedance amplifier (TIA), a single-ended to differential amplifier and an output driver. The TIA employs a cascode stage as the input stage and auxiliary amplifier to reduce the miller effect. Current injecting technique is employed to enlarge the input transistor's transconductance, optimize the noise performance and overcome the lack of voltage headroom. To achieve a wide dynamic range, an automatic gain control circuit with self-adaptive function is proposed. Experiment results show an optical sensitivity of -28 dBm for a bit error rate of 10-10 at 2.5 Gbit/s and a maxim input optical power of 2 dBm using an external photodiode. The chip occupies an area of 1×0.9 mm2 and consumes around 30 mW from single 1.8 V supply. The front-end circuit can be used in various optical receivers.

  17. The Relative Importance of HNO3 and RONO2 as NOX Sinks in the Colorado Front Range

    Science.gov (United States)

    Sparks, T.; Ebben, C. J.; Wooldridge, P. J.; Cohen, R. C.

    2016-12-01

    NOX (NO + NO2) is a regulated pollutant, primarily emitted from combustion processes, that contributes to the formation of ground level ozone. The lifetime of NOX in the atmosphere, and therefore its contribution to ozone production, is controlled by the loss of NOX to various sinks, primarily HNO3 and RONO2. As NOX concentrations in urban areas decrease due to regulation, the relative importance of these NOX sinks shifts from HNO3 being the dominant sink to RONO2 becoming more significant. Using measurements from the DISCOVER-AQ and FRAPPE campaigns from the summer of 2014, we examine the relative importance of HNO3 and RONO2 as NOX sinks and their relation to NOX concentration in the Colorado Front Range.

  18. Climate Drives Episodic Conifer Establishment after Fire in Dry Ponderosa Pine Forests of the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    Monica T. Rother

    2017-05-01

    Full Text Available In recent years, warming climate and increased fire activity have raised concern about post-fire recovery of western U.S. forests. We assessed relationships between climate variability and tree establishment after fire in dry ponderosa pine forests of the Colorado Front Range. We harvested and aged over 400 post-fire juvenile ponderosa pine (Pinus ponderosa and Douglas-fir (Pseudotsuga menziesii trees using an improved tree-ring based approach that yielded annually-resolved dates and then assessed relationships between climate variability and pulses of tree establishment. We found that tree establishment was largely concentrated in years of above-average moisture availability in the growing season, including higher amounts of precipitation and more positive values of the Palmer Drought Severity Index. Under continued climate change, drier conditions associated with warming temperatures may limit forest recovery after fire, which could result in lower stand densities or shifts to non-forested vegetation in some areas.

  19. Links between N deposition and nitrate export from a high-elevation watershed in the Colorado Front Range

    Science.gov (United States)

    Mast, M. Alisa; Clow, David W.; Baron, Jill S.; Wetherbee, Gregory A.

    2014-01-01

    Long-term patterns of stream nitrate export and atmospheric N deposition were evaluated over three decades in Loch Vale, a high-elevation watershed in the Colorado Front Range. Stream nitrate concentrations increased in the early 1990s, peaked in the mid-2000s, and have since declined by over 40%, coincident with trends in nitrogen oxide emissions over the past decade. Similarities in the timing and magnitude of N deposition provide evidence that stream chemistry is responding to changes in atmospheric deposition. The response to deposition was complicated by a drought in the early 2000s that enhanced N export for several years. Other possible explanations, including forest disturbance, snow depth, or permafrost melting, could not explain patterns in N export. Our results show that stream chemistry responds rapidly to changes in N deposition in high-elevation watersheds, similar to the response observed to changes in sulfur deposition.

  20. Imaging X-ray detector front-end with high dynamic range: IDeF-X HD

    Science.gov (United States)

    Gevin, O.; Lemaire, O.; Lugiez, F.; Michalowska, A.; Baron, P.; Limousin, O.; Delagnes, E.

    2012-12-01

    Presented circuit, IDeF-X HD (Imaging Detector Front-end) is a member of the IDeF-X ASICs family for space applications. It has been optimized for a half millimeter pitch CdTe or CdZnTe pixelated detector arranged in 16×16 array. It is aimed to operate in the hard X-ray range from few keV up to 250 keV or more. The ASIC has been realized in AMS 0.35 μm CMOS process. The IDeF-X HD is a 32 channel analog front-end with self-triggering capability. The architecture of the analog channel includes a chain of charge sensitive amplifier with continuous reset system and non-stationary noise suppressor, adjustable gain stage, pole-zero cancellation stage, adjustable shaping time low pass filter, baseline holder and peak detector with discriminator. The power consumption of the IDeF-X HD is 800 μW per channel. With the in-channel variable gain stage the nominal 250 keV dynamic range of the ASIC can be extended up to 1 MeV anticipating future applications using thick sensors. Measuring the noise performance without a detector at the input with minimized leakage current (programmable) at the input, we achieved ENC of 33 electrons rms at 10.7 μs peak time. Measurements with CdTe detector show good energy resolution FWHM of 1.1 keV at 60 keV and 4.3 keV at 662 keV with detection threshold below 4 keV. In addition, an absolute temperature sensor has been integrated with resolution of 1.5 °C.

  1. The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

    Science.gov (United States)

    Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.

    2017-06-01

    Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

  2. Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record

    Science.gov (United States)

    McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.

    2012-01-01

    Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution

  3. Elevation-dependent temperature trends in the Rocky Mountain Front Range: changes over a 56- and 20-year record.

    Directory of Open Access Journals (Sweden)

    Chris R McGuire

    Full Text Available Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953-2008 and a shorter 20-year (1989-2008 record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data

  4. Localization of intraplate deformation through fluid-assisted faulting in the lower-crust: The Flinders Ranges, South Australia

    Science.gov (United States)

    Balfour, N. J.; Cummins, P. R.; Pilia, S.; Love, D.

    2015-08-01

    In this paper we present a hypothesis for localized, intraplate deformation in the continental crust of south-central Australia that involves fluid-assisted reactivation of faults in the mid- to lower crust. Using data from a temporary seismometer deployment in the Flinders Ranges, we show that earthquakes, relocated in a 3D velocity model, cluster in elongated low vp/vs anomalies that extend to depths exceeding 20 km, and are aligned with the axis of the Flinders Ranges. In the northern Flinders Ranges these low vp/vs anomalies can be interpreted as fractured Neoproterozoic to Cambrian sediments that separate two cratonic blocks, the Gawler Craton to the west and the Curnamona Province in the east. Previous studies of Helium isotopes in springs to the north of the area provide evidence of mantle-derived fluids that may influence faulting at depth. Our focal mechanism and stress inversion results show a regionally compressive stress field that provides no evidence for stress concentration. We also argue that mechanisms for localized faulting such as thermal weakening and isostatic rebound also fail to account for the occurrence of earthquakes at mid- to lower crustal depth in this area of high heat flow and that the focused seismicity can only be explained by high pore fluid pressure in the lower crust.

  5. Spatial Variability in Ozone and CO2 Flux during the Front Range Air Pollution and Photochemistry Experiment

    Science.gov (United States)

    Almand-Hunter, B.; Piedrahita, R.; Kaushik, A.; Noone, D. C.; Walker, J. T.; Hannigan, M.

    2014-12-01

    Air quality problems persist in the Northern Front-Range Metropolitan Area (NFRMA) of Colorado despite efforts to reduce emissions, and summertime ozone concentrations frequently exceed the NAAQS. Atmospheric modeling in the NFRMA is challenging due to the complex topography of the area, as well as diversity of pollutant sources (urban NOx and VOCs, power plants, oil and gas, agricultural emissions, biogenic emissions, and wildfires). An improved understanding of the local atmospheric chemistry will enable researchers to advance atmospheric models, which will subsequently be used to develop and test more effective air quality management strategies. The Front Range Air Pollution and Photochemistry Experiment (FRAPPE) investigates this problem through detailed examination of atmospheric chemistry in the NFRMA. Our project specifically explores the spatial variability in ozone (O3) concentration and dry deposition within the FRAPPE study area. One source of uncertainty in atmospheric models is O3 flux, which varies spatially due to local meteorology and variation in ambient concentration and deposition velocity. Model grid cells typically range in size from 10-100 km and 100-500 km, for regional and global models, respectively, and accurate representations of an entire grid cell cannot always be achieved. Large spatial variability within a model grid cell can lead to poor estimates of trace-gas flux and concentration. Our research addresses this issue by measuring spatial variability in O3 flux using low-cost dry-deposition flux chambers. We are measuring O3 and CO2 flux with 5 low-cost flux chambers and one eddy-covariance tower. The eddy-covariance tower is located at the Boulder Atmospheric Observatory in Erie, CO. All 5 chambers are within a 8.3 x 6 km square, with one chamber collocated with the eddy-covariance tower, and the other 4 chambers at distances of 0.33, 1.14, 3.22, and 7.55 km from the tower. The largest distance between any two chambers is 8.5 km. All

  6. Fault Estimation

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...

  7. Health evaluation of free-ranging and captive blue-fronted Amazon parrots (Amazona aestiva) in the Gran chaco, Bolivia.

    Science.gov (United States)

    Deem, Sharon L; Noss, Andrew J; Cuéllar, Rosa Leny; Karesh, William B

    2005-12-01

    Bolivia has a total of 47 species of Psittacidae, seven of which have been identified in our study site, the semiarid Gran Chaco of the Isoso. One species, the blue-fronted parrot (Amazona aestiva), is frequently captured by local Isoseño Guaraní Indians for exploitation on the national and international market. These birds are often temporarily housed in small villages under unhygienic conditions with poultry and other domestic species. On occasion, these parrots escape back to the wild. Additionally, many of these birds are kept as pets or are used to lure wild. parrots within slingshot range for subsequent capture. In this study, we evaluated the health status, including the level of exposure to selected infectious agents, in the wild-caught captive birds and free-ranging birds. Physical examinations were performed, and blood was collected, from 54 live birds (20 captive and 34 free-ranging). Feces were collected from 15 birds (seven captive and eight free-ranging). Necropsies were also performed on four recently dead wild-caught birds. On serologic testing, no birds were found to have antibodies to avian influenza virus, Chlamydophila psittaci, infectious bronchitis virus, infectious bursal disease virus, infectious laryngotracheitis virus, Marek's disease virus, paramyxovirus-1, paramyxovirus-2, paramyxovirus-3, polyomavirus, eastern equine encephalitis virus, western equine encephalitis virus, or Venezuelan equine encephalitis virus. Positive antibody titers were found for psittacine herpesvirus (8/44, 18.2%), Aspergillus spp. (3/51, 5.9%), and Salmonella pullorum (33/49, 67.3%). All three of the birds that tested antibody positive for Aspergillus spp. were captive, whereas six of the eight and 15 of the 33 birds that tested positive for psittacine herpesvirus and S. pullorum, respectively, were wild.

  8. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  9. Source characterization of volatile organic compounds in the Colorado Northern Front Range Metropolitan Area during spring and summer 2015

    Science.gov (United States)

    Abeleira, A.; Pollack, I. B.; Sive, B.; Zhou, Y.; Fischer, E. V.; Farmer, D. K.

    2017-03-01

    Hourly measurements of 46 volatile organic compounds (VOCs) from the Boulder Atmospheric Observatory in Erie, CO, were collected over 16 weeks in spring and summer 2015. Average VOC reactivity (1.2 s-1 in spring and 2.4 s-1 in summer) was lower than most other U.S. urban sites. Positive matrix factorization analysis identified five VOC factors in the spring, corresponding to sources from (1) long-lived oil and natural gas (ONG-long lived), (2) short-lived oil and natural gas (ONG-short lived), (3) traffic, (4) background, and (5) secondary chemical production. In the summer, an additional biogenic factor was dominated by isoprene. While ONG-related VOCs were the single largest contributor (40-60%) to the calculated VOC reactivity with hydroxyl radicals (OH) throughout the morning in both spring and summer, the biogenic factor substantially enhanced afternoon and evening (2-10 P.M. local time) VOC reactivity (average of 21%; maxima of 49% of VOC reactivity) during summertime. These results contrast with a previous summer 2012 campaign which showed that biogenics contributed only 8% of VOC reactivity on average. The interannual differences suggest that the role of biogenic VOCs in the Colorado Northern Front Range Metropolitan Area (NFRMA) varies with environmental conditions such as drought stress. Overall, the NFRMA was more strongly influenced by ONG sources of VOCs than other urban and suburban regions in the U.S.

  10. The influence of vegetation cover on debris-flow density during an extreme rainfall in the northern Colorado Front Range

    Science.gov (United States)

    Rengers, Francis; McGuire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.

    2016-01-01

    We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.

  11. Cervical range of motion, cervical and shoulder strength in senior versus age-grade Rugby Union International front-row forwards.

    Science.gov (United States)

    Davies, Mark; Moore, Isabel S; Moran, Patrick; Mathema, Prabhat; Ranson, Craig A

    2016-05-01

    To provide normative values for cervical range of motion (CROM), isometric cervical and shoulder strength for; International Senior professional, and International Age-grade Rugby Union front-row forwards. Cross-sectional population study. All international level front-row players within a Rugby Union Tier 1 Nation. Nineteen Senior and 21 Age-grade front-row forwards underwent CROM, cervical and shoulder strength testing. CROM was measured using the CROM device and the Gatherer System was used to measure multi-directional isometric cervical and shoulder strength. The Age-grade players had significantly lower; cervical strength (26-57% deficits), cervical flexion to extension strength ratios (0.5 vs. 0.6), and shoulder strength (2-36% deficits) than the Senior players. However, there were no differences between front-row positions within each age group. Additionally, there were no differences between age groups or front-row positions in the CROM measurements. Senior Rugby Union front-row forwards have greater cervical and shoulder strength than Age-grade players, with the biggest differences being in cervical strength, highlighting the need for age specific normative values. Importantly, Age-grade players should be evaluated to ensure they have developed sufficient cervical strength prior to entering professional level Rugby Union. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Localization of Intraplate Deformation through Fluid-Assisted Fault Reactivation in the Lower-Crust: The Flinders Ranges, South Australia

    Science.gov (United States)

    Balfour, N.; Cummins, P. R.; Pilia, S.; Love, D.

    2014-12-01

    Within the stable continental region of Australia, the Flinders Ranges stands out as experiencing concentrated and prolonged seismic activity. Previous studies have shown that strain rates inferred from seismicity of 10-16 —10-15 s-1 are similar to neotectonic slip rates inferred for range-bounding faults. It is also an area of relatively pronounced topography up to 1700 m and high heat flow averaging 90 mW/m2. For these reasons the Flinders Ranges have been the subject of many studies trying to understand why deformation of the Australian continent appears to be localized there, with explanations including erosion-driven isostatic rebound, lithospheric flexure, stress concentration due to change in lithospheric strength, and thermal weakening. We present a hypothesis for localized, intraplate deformation in the continental crust of south-central Australia that involves fluid-assisted reactivation of faults in the mid- to lower crust. This study utilizes data from a temporary seismometer deployment in the Flinders Ranges from 2003—2005. We show that earthquakes in the region extend to depths of 20 km and are clustered in elongated low Vp/Vs anomalies. These anomalies suggest a highly fractured or deformed zone that is aligned with the axis of the Flinders Ranges and extends to the lower crust. We argue that the compressive earthquake focal mechanisms are consistent with the regional stress field, that there is no evidence for stress concentration, and that the occurrence of earthquakes at mid- to lower crustal depth in an area of high heat flow can only be explained by high pore fluid pressure in the lower crust. These data reveal important constraints on structure, rheology, and stress that are crucial for understanding intraplate deformation in the Flinders Ranges, with possible implications for high-seismicity zones in stable continental regions elsewhere.

  13. Douglas-fir tussock moth- and Douglas-fir beetle-caused mortality in a ponderosa pine/Douglas-fir forest in the Colorado Front Range, USA

    Science.gov (United States)

    Jose F. Negron; Ann M. Lynch; Willis C. Schaupp; Vladimir Bocharnikov

    2014-01-01

    An outbreak of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough, occurred in the South Platte River drainage on the Pike-San Isabel National Forest in the Colorado Front Range attacking Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco. Stocking levels, species composition, and tree size in heavily and lightly defoliated stands were similar. Douglas-fir...

  14. Structural and Geomorphic Controls in Altitudinal Treeline: a Case Study in the Front Ranges of the Canadian Rocky Mountains

    Science.gov (United States)

    Macias Fauria, M.; Johnson, E. A.

    2009-12-01

    Altitudinal treelines occur on mountain slopes. The geological history of mountain systems sets both the distribution of slope angles, aspects and lengths, and the physical characteristics of the bedrock and regolith on which trees have to establish and grow. We show that altitudinal treeline is largely controlled at an ecosystem level by structural and slope (i.e. gravitational) geomorphic processes operating at a range of temporal and spatial scales, which have direct influence on the hydrological properties of the substrate (affecting the trees’ water and energy budget), as well as on substrate stability, both of which affect recruitment and growth of trees. The study was conducted over a relatively large area of > 200 km2 in the Front Ranges of the Canadian Rocky Mountains, selected to contain the regional diversity of slopes and substrates, which is the result of hundreds of millions of years of sea deposition, subsequent mountain building, and deep erosion by glaciations. Very high-resolution remote sensing data (LiDAR), aerial orthophotos taken at several times since the late 1940s, and ground truthing were employed to classify the terrain into process-based geomorphic units. High resolution, landscape-scale treeline studies are able avoid potential biases in site selection (i.e. selection of sites that are not representative of the overall regional treeline), and consequently capture the coupling between trees and the environment at an ecosystem (regional) level. Moreover, explicitly accounting for slope and substrate-related processes occurring in the studied mountain region is paramount in order to understand the dynamics of trees at their altitudinal distribution limit. Presence of trees in each unit was found to be controlled by a set of parameters relevant to both hydrological and slope processes, such as contributing area, slope angle, regolith transmissivity, and aspect. Our results show no treeline advance over the last 60 years in the region, as

  15. Testing of ground fault relay response during the energisation of megawatt range electric boilers in thermal power plants

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Davidsen, Troels

    2015-01-01

    Large controllable loads may support power systems with an increased penetration of fluctuating renewable energy, by providing a rapid response to a change in the power production. Megawatt range electric boilers are an example of such controllable loads, capable of change rapidly, with the advan......Large controllable loads may support power systems with an increased penetration of fluctuating renewable energy, by providing a rapid response to a change in the power production. Megawatt range electric boilers are an example of such controllable loads, capable of change rapidly...... for the testing of two ground fault protection relays, in order to assure that they are not triggered by the energisation of the boiler. The test is performed via an OMICRON CMC 256 with Advanced TransPlay SW, which generates the signals that would be present at the secondary of the instrumentation transformers......, resulting in a realistic simulation environment. The test of different cases demonstrates that the relays will not present unwanted triggering....

  16. Multi-Temporal Independent Component Analysis and Landsat 8 for Delineating Maximum Extent of the 2013 Colorado Front Range Flood

    Directory of Open Access Journals (Sweden)

    Stephen M. Chignell

    2015-07-01

    Full Text Available Maximum flood extent—a key data need for disaster response and mitigation—is rarely quantified due to storm-related cloud cover and the low temporal resolution of optical sensors. While change detection approaches can circumvent these issues through the identification of inundated land and soil from post-flood imagery, their accuracy can suffer in the narrow and complex channels of increasingly developed and heterogeneous floodplains. This study explored the utility of the Operational Land Imager (OLI and Independent Component Analysis (ICA for addressing these challenges in the unprecedented 2013 Flood along the Colorado Front Range, USA. Pre- and post-flood images were composited and transformed with an ICA to identify change classes. Flooded pixels were extracted using image segmentation, and the resulting flood layer was refined with cloud and irrigated agricultural masks derived from the ICA. Visual assessment against aerial orthophotography showed close agreement with high water marks and scoured riverbanks, and a pixel-to-pixel validation with WorldView-2 imagery captured near peak flow yielded an overall accuracy of 87% and Kappa of 0.73. Additional tests showed a twofold increase in flood class accuracy over the commonly used modified normalized water index. The approach was able to simultaneously distinguish flood-related water and soil moisture from pre-existing water bodies and other spectrally similar classes within the narrow and braided channels of the study site. This was accomplished without the use of post-processing smoothing operations, enabling the important preservation of nuanced inundation patterns. Although flooding beneath moderate and sparse riparian vegetation canopy was captured, dense vegetation cover and paved regions of the floodplain were main sources of omission error, and commission errors occurred primarily in pixels of mixed land use and along the flood edge. Nevertheless, the unsupervised nature of ICA

  17. Carbon monoxide degassing from seismic fault zones in the Basin and Range province, west of Beijing, China

    Science.gov (United States)

    Sun, Yutao; Zhou, Xiaocheng; Zheng, Guodong; Li, Jing; Shi, Hongyu; Guo, Zhengfu; Du, Jianguo

    2017-11-01

    Degassing of carbon monoxide (CO), which plays a significant role in the contribution of deep carbon to the atmosphere, commonly occurs within active fault zones. CO degassing from soil to the atmosphere in the Basin and Range province, west of Beijing (BRPB), China, was investigated by in-situ field measurements in the active fault zones. The measured concentrations of CO in soil gas in the BRPB ranged from 0.29 × 10-6 to 1.1 × 10-6 with a mean value of 0.6 × 10-6, which is approximately twice as large as that in the atmosphere. Net fluxes of CO degassing ranged from -48.6 mg m-2 d-1 to 12.03 mg m-2 d-1. The diffusion of CO from soil to the atmosphere in the BRPB was estimated to be at least 7.6 × 103 ton/a, which is comparable to the corresponding result of about 1.2 × 104 ton/a for CO2. CO concentrations were spatially heterogeneous with clearly higher concentrations along the NE-SW trending in the BRPB. These elevated values of CO concentrations were also coincident with the region with low-velocity and high conductivity in deep mantle, and high Poisson's ratio in the crust, thereby suggesting that CO degassing from the soil might be linked to upwelling of the asthenospheric mantle. Other sources of CO in the soil gas are suggested to be dominated by chemical reactions between deep fluids and carbonate minerals (e.g., dolomite, limestone, and siderite) in country rocks. Biogenic processes may also contribute to the CO in soil gas. The spatial distribution patterns of CO concentrations are coincident with the stress field, suggesting that the concentrations of CO could be a potential indicator for crustal stress field and, hence is potential useful for earthquake monitoring in the BRPB.

  18. Uplift and tilting of the Shackleton Range in East Antarctica driven by glacial erosion and normal faulting

    Science.gov (United States)

    Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Forsberg, Rene; Ross, Neil; Watts, Anthony B.; Corr, Hugh F. J.; Jordan, Tom A.

    2017-03-01

    Unravelling the long-term evolution of the subglacial landscape of Antarctica is vital for understanding past ice sheet dynamics and stability, particularly in marine-based sectors of the ice sheet. Here we model the evolution of the bedrock topography beneath the Recovery catchment, a sector of the East Antarctic Ice Sheet characterized by fast-flowing ice streams that occupy overdeepened subglacial troughs. We use 3-D flexural models to quantify the effect of erosional unloading and mechanical unloading associated with motion on border faults in driving isostatic bedrock uplift of the Shackleton Range and Theron Mountains, which are flanked by the Recovery, Slessor, and Bailey ice streams. Inverse spectral (free-air admittance) and forward modeling of topography and gravity anomaly data allow us to constrain the effective elastic thickness of the lithosphere (Te) in the Shackleton Range region to 20 km. Our models indicate that glacial erosion, and the associated isostatic rebound, has driven 40-50% of total peak uplift in the Shackleton Range and Theron Mountains. A further 40-50% can be attributed to motion on normal fault systems of inferred Jurassic and Cretaceous age. Our results indicate that the flexural effects of glacial erosion play a key role in mountain uplift along the East Antarctic margin, augmenting previous findings in the Transantarctic Mountains. The results suggest that at 34 Ma, the mountains were lower and the bounding valley floors were close to sea level, which implies that the early ice sheet in this region may have been relatively stable.

  19. Basin geometry and cumulative offsets in the Eastern Transverse Ranges, southern California: Implications for transrotational deformation along the San Andreas fault system

    Science.gov (United States)

    Langenheim, V.E.; Powell, R.E.

    2009-01-01

    The Eastern Transverse Ranges, adjacent to and southeast of the big left bend of the San Andreas fault, southern California, form a crustal block that has rotated clockwise in response to dextral shear within the San Andreas system. Previous studies have indicated a discrepancy between the measured magnitudes of left slip on through-going east-striking fault zones of the Eastern Transverse Ranges and those predicted by simple geometric models using paleomagnetically determined clockwise rotations of basalts distributed along the faults. To assess the magnitude and source of this discrepancy, we apply new gravity and magnetic data in combination with geologic data to better constrain cumulative fault offsets and to define basin structure for the block between the Pinto Mountain and Chiriaco fault zones. Estimates of offset from using the length of pull-apart basins developed within left-stepping strands of the sinistral faults are consistent with those derived by matching offset magnetic anomalies and bedrock patterns, indicating a cumulative offset of at most ???40 km. The upper limit of displacements constrained by the geophysical and geologic data overlaps with the lower limit of those predicted at the 95% confidence level by models of conservative slip located on margins of rigid rotating blocks and the clockwise rotation of the paleomagnetic vectors. Any discrepancy is likely resolved by internal deformation within the blocks, such as intense deformation adjacent to the San Andreas fault (that can account for the absence of basins there as predicted by rigid-block models) and linkage via subsidiary faults between the main faults. ?? 2009 Geological Society of America.

  20. Faulting and Mud Volcano Eruptions Inside of the Coastal Range During the 2003 Mw = 6.8 Chengkung Earthquake in Eastern Taiwan

    Directory of Open Access Journals (Sweden)

    Guo-Jang Jiang

    2011-01-01

    Full Text Available Field investigations following the 2003 Mw = 6.8 Chengkung earthquake in eastern Taiwan revealed some interesting observations of surface geological processes closely related to the co-seismic deformation. We discovered that the Tama Fault, which is about 15 km east of the causative Chihshang Fault, underwent shortening of about 15.5 mm locally in 2001 - 2006, particularly during the 2003 earthquake. This shows that ESE-WNW compression affects the upper crust of the Coastal Range and produces significant shortening in addition to that of the major Chihshang Fault. On the hanging wall of the Chihshang Fault, we also found vigorous activities of the two major mud volcanoes during the main shock, lasting several days. To the north, the Luoshan Mud Volcano, a large mud basin, erupted noisily with water and gases during the earthquake. To the south, in the Leikunghuo Mud Volcano, two sets of fractures, one aligned with the N16¢XE right-lateral fault and the other with the N80¢XE left-lateral fault, occurred during the earthquake. This conjugate system revealed a strike-slip stress regime with NE-SW compression and NW-SE extension. We interpret it to be the result of local stress permutation rather than regional tectonic stress. We conclude that deformation did occur inside of the Coastal Range, especially during the co-seismic event. Therefore, a better understanding of the internal deformation of the Coastal Range is an important target for future studies, particularly across three mapped faults: the Yungfeng, Tuluanshan and Tama faults. We also want to draw attention to the stress analysis in the mud volcanoes area, where the local stress perturbation plays an important role.

  1. Kinematics of long lived faults in intraplate settings: case study of the Río Grío Fault (Iberian Range).

    Science.gov (United States)

    Marcén, Marcos; Román-Berdiel, Teresa; Casas, Antonio; Calvín-Ballester, Pablo; Oliva-Urcia, Belen; García-Lasanta, Cristina

    2015-04-01

    This study is based on the comparison of structural analysis and AMS data of Río Grío Fault, associated with the Datos Fault System, in the Iberian Chain (Northeastern Iberian Plate, Spain). The Río Grío Fault, with NW-SE strike, has a tectonic evolution of probably Mesozoic extension and Tertiary transpressive dextral movement, and it is characterized by the presence of a well-developed cataclastic zone 200m width. The structure of the core is characterized by elongated along strike and narrow lenses separated by subvertical fault planes with well-developed fault breccias and gouges. The lenses usually conserve intact stratification, and it may be recognized several lithologies, including Ordovician quartzites, slates and clay, and red-colored Permo-triassic clay and sandstones. The internal structure of these lenses shows folds, brechified zones, and localized foliation in clay lenses. Cinematic indicators (striations, S/C structures…) show strong reverse dip-slip and dextral strike-slip components, indicating strain partitioning between the different lenses, and it is interpreted as the result of the reactivation of previous normal faults, like a strike-slip shear, during the NNE-SSW to NE-SW Cenozoic compression of the NE Iberian Plate. Samples of AMS study were collected from two areas (SG and RG) of the fault zone, separated by 4.5km along strike. Samples provide a magnetic susceptibility highly dependent on lithology, between ±5*10-5 [SI] in the white fault gouge and ±20*10-5 [SI] in red-colored clay. The low susceptibility in several sites results in high imprecise AMS measurements. AMS results for the first area (SG), obtained in red and black colored clays, show the same magnetic fabric in all sites. K-min axis of the magnetic ellipsoid corresponds to the pole of the fault planes measured in the outcrop, and the magnetic lineation is nearly horizontal, probably related to strike-slip movements. In the second area (RG), the AMS shows a grater

  2. What do fault patterns reveal about the latest phase of extension within the Northern Snake Range metamorphic core complex, Nevada, USA?

    Science.gov (United States)

    Ismat, Zeshan; Riley, Paul; Lerback, Jory

    2016-08-01

    The Northern Snake Range is a classic example of a metamorphic core complex, Basin-and-Range province, United States. It is composed of a plastically deformed footwall and a brittlely deformed hanging wall, separated by the Northern Snake Range low-angle detachment (NSRD). Brittle deformation, however, is not confined to the hanging wall. This paper focuses on exposures in Cove Canyon, located on the SE flank of the Northern Snake Range, where penetrative, homogeneous faults are well exposed throughout the hanging wall, footwall and NSRD, and overprint early plastic deformation. These late-stage fault sets assisted Eocene-Miocene extension. Detailed analysis of the faults reveals the following: (1) The shortening direction defined by faults is similar to the shortening direction defined by the stretching lineation in the footwall mylonites, indicating that the extensional kinematic history remained unchanged as the rocks were uplifted into the elastico-frictional regime. (2) After ∼17 Ma, extension may have continued entirely within elastic-frictional regime via cataclastic flow. (3) This latest deformation phase may have been accommodated by a single, continuous event. (3) Faults within NSRD boudins indicate that deformation within the detachment zone was non-coaxial during the latest phase of extension.

  3. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA

    Science.gov (United States)

    Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew

    2016-09-01

    Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.

  4. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ 2014 summertime field campaign, Colorado, USA

    Directory of Open Access Journals (Sweden)

    J. H. Dingle

    2016-09-01

    Full Text Available Summertime aerosol optical extinction (βext was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ campaign during July–August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex was deployed to measure βext (at average relative humidity of 20 ± 7 % of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext ∕ ΔCO were higher in aged urban air masses compared to fresh air masses by  ∼  50 %. The resulting increase in Δβext ∕ ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs. In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G, and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE values for different air mass types ranged from 1.51 to 2.27 m2 g−1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11–12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.

  5. The Relative Roles of RONO2 and HNO3 as Sinks of NOX in the Denver Metropolitan Region and Colorado's Front Range

    Science.gov (United States)

    Sparks, T.; Ebben, C. J.; Wooldridge, P. J.; Cohen, R. C.

    2015-12-01

    Measurements of HNO3, total RONO2, NOX, and other relevant species, acquired during the DISCOVER-AQ and FRAPPE field campaigns in the Northern Front Range of Colorado during July-August 2014, are used to assess our understanding of the relative roles of RONO2 and HNO3 formation as sinks of NOX. Although HNO3 production was dominant in the region, RONO2 production was often of order 1/3 of the NOX sink. As NOX emissions decrease, our results indicate RONO2­ chemistry will be increasingly important to descriptions of the chemistry in the region.

  6. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    Energy Technology Data Exchange (ETDEWEB)

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Wernicke, B.P. [California Inst. of Tech., Pasadena, CA (United States). Div. of Geological and Planetary Sciences

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

  7. Delta: a charge sensitive front-end amplifier with switched gain for low noise, large dynamic range silicon detector readout

    CERN Document Server

    Aspell, P; Bloch, P; Jarron, P; Löfstedt, B; Reynaud, S; Tabbers, P

    2001-01-01

    The design and results of a radiation hard switched gain charge amplifier optimised for a large dynamic range and large input capacitance are described. The peaking time is 25 ns, dynamic ranges are 0.1 - 50 minimum ionizing particles (MIPs) (high gain) and 1 - 400 MIPs (low gain), signal to noise (S/N) > 10 for Cin < 56pF and radiation tolerance to10 Mrads(Si) and 4x10**13 n/cm**2.

  8. Neogene contraction between the San Andreas fault and the Santa Clara Valley, San Francisco Bay region, California

    Science.gov (United States)

    McLaughlin, R.J.; Langenheim, V.E.; Schmidt, K.M.; Jachens, R.C.; Stanley, R.G.; Jayko, A.S.; McDougall, K.A.; Tinsley, J.C.; Valin, Z.C.

    1999-01-01

    In the southern San Francisco Bay region of California, oblique dextral reverse faults that verge northeastward from the San Andreas fault experienced triggered slip during the 1989 M7.1 Loma Prieta earthquake. The role of these range-front thrusts in the evolution of the San Andreas fault system and the future seismic hazard that they may pose to the urban Santa Clara Valley are poorly understood. Based on recent geologic mapping and geophysical investigations, we propose that the range-front thrust system evolved in conjunction with development of the San Andreas fault system. In the early Miocene, the region was dominated by a system of northwestwardly propagating, basin-bounding, transtensional faults. Beginning as early as middle Miocene time, however, the transtensional faulting was superseded by transpressional NE-stepping thrust and reverse faults of the range-front thrust system. Age constraints on the thrust faults indicate that the locus of contraction has focused on the Monte Vista, Shannon, and Berrocal faults since about 4.8 Ma. Fault slip and fold reconstructions suggest that crustal shortening between the San Andreas fault and the Santa Clara Valley within this time frame is ~21%, amounting to as much as 3.2 km at a rate of 0.6 mm/yr. Rates probably have not remained constant; average rates appear to have been much lower in the past few 100 ka. The distribution of coseismic surface contraction during the Loma Prieta earthquake, active seismicity, late Pleistocene to Holocene fluvial terrace warping, and geodetic data further suggest that the active range-front thrust system includes blind thrusts. Critical unresolved issues include information on the near-surface locations of buried thrusts, the timing of recent thrust earthquake events, and their recurrence in relation to earthquakes on the San Andreas fault.

  9. Watershed management problems and opportunities for the Colorado Front Range ponderosa pine zone: The status of our knowledge

    Science.gov (United States)

    Howard L. Gary

    1975-01-01

    The east flank of the Continental Divide consists largely of open timber stands and grasslands. Soils erode easily after abuse. Precipitation ranges from 15 to 20 inches, about two-thirds from high-intensity storms from April to September. Guidelines are provided for maintaining satisfactorv watershed conditions. The 3- to 5-inch water yields are comparatively small in...

  10. The timing of fault motion in Death Valley from Illite Age Analysis of fault gouge

    Science.gov (United States)

    Lynch, E. A.; Haines, S. H.; Van der Pluijm, B.

    2014-12-01

    We constrained the timing of fluid circulation and associated fault motion in the Death Valley region of the US Basin and Range Province from Illite Age Analysis (IAA) of fault gouge at seven Low-Angle Normal Fault (LANF) exposures in the Black Mountains and Panamint Mountains, and in two nearby areas. 40Ar/39Ar ages of neoformed, illitic clay minerals in these fault zones range from 2.8 Ma to 18.6 Ma, preserving asynchronous fault motion across the region that corresponds to an evolving history of crustal block movements during Neogene extensional deformation. From north to south, along the western side of the Panamint Range, the Mosaic Canyon fault yields an authigenic illite age of 16.9±2.9 Ma, the Emigrant fault has ages of less than 10-12 Ma at Tucki Mountain and Wildrose Canyon, and an age of 3.6±0.17 Ma was obtained for the Panamint Front Range LANF at South Park Canyon. Across Death Valley, along the western side of the Black Mountains, Ar ages of clay minerals are 3.2±3.9 Ma, 12.2±0.13 Ma and 2.8±0.45 Ma for the Amargosa Detachment, the Gregory Peak Fault and the Mormon Point Turtleback detachment, respectively. Complementary analysis of the δH composition of neoformed clays shows a primarily meteoric source for the mineralizing fluids in these LANF zones. The ages fall into two geologic timespans, reflecting activity pulses in the Middle Miocene and in the Upper Pliocene. Activity on both of the range front LANFs does not appear to be localized on any single portion of these fault systems. Middle Miocene fault rock ages of neoformed clays were also obtained in the Ruby Mountains (10.5±1.2 Ma) to the north of the Death Valley region and to the south in the Whipple Mountains (14.3±0.19 Ma). The presence of similar, bracketed times of activity indicate that LANFs in the Death Valley region were tectonically linked, while isotopic signatures indicate that faulting pulses involved surface fluid penetration.

  11. Stability analysis of a horizontal coalbed methane well in the Rocky Mountain Front Ranges of southeast British Columbia, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Gentzis, Thomas [Petron Resources, L.P., Suite 400, 3000 Internet Boulevard, Frisco, TX 75034 (United States)

    2009-01-31

    This study describes a wellbore stability analysis undertaken for a horizontal coalbed methane well in the Mist Mountain Formation, SE British Columbia, Canada. Three triaxial compression tests, with ultrasonic velocities, were conducted on 38-mm-diameter core plugs taken from a large, fresh block of Seam 7. Due to the small size of the tested samples, the laboratory-derived strength values were reduced to reflect the in-situ stress conditions considered relevant for a 156-mm-diameter horizontal well. The vertical stress gradient was calculated by integrating a bulk density log from an offset well. Horizontal maximum and minimum stresses were estimated from regional stress data, whereas formation pressure was estimated on the basis of a local hydrological study. The 2D elastoplastic STABView trademark numerical modeling code was used to forecast horizontal wellbore stability. The sensitivity of the predicted yielded zone size was examined for varying linear and non-linear rock strength criteria, horizontal in-situ stresses, bottom-hole pressures, formation pressure, drilling depth, and wall-coating efficiency. Stability analysis was performed at bottom-hole pressures ranging from overbalanced to underbalanced in order to simulate the conditions expected during drilling and production. The effects of weak bedding planes and varying well trajectories were also investigated. When drilling at 650 m depth under underbalanced to slightly overbalanced conditions, a high probability of getting the drill pipe stuck was predicted. STABView trademark showed that, if the 38-mm-diameter core plug strengths were used directly for forecasting purposes, the predicted yielded zone would be almost 20% overgauge when drilling at balanced conditions. When peak cohesion of coal was reduced by 50% to reflect the conditions expected along weak intervals of a horizontal wellbore, the predicted enlarged borehole was almost 85% overgauge under the same drilling conditions. The most unstable

  12. Active faults and related Late Quaternary deformation along the Northwestern Himalayan Frontal Zone, India

    Directory of Open Access Journals (Sweden)

    T. Nakata

    2003-06-01

    Full Text Available Numerous newly-identified traces of active faults in the Himalayan foothill zone along the HFF around Chandigarh, in Pinjore Dun, along the piedmont zone of the Lower Siwalik hill front and within the Lower Tertiary hill range reveal the pattern of thrust and strike-slip faulting, striking parallel to the principal structural trend (NNW-SSE of the orogenic belt. The active Chandigarh Fault, Pinjore Garden Fault and Barsar thrust have vertically dislocated, warped and backtilted fluvial and alluvial-fan surfaces made up of Late Pleistocene-Holocene sediments. West- and southwest-facing fault scarplets with heights ranging from 12 to 50 m along these faults suggest continued tectonic movement through Late Pleistocene to recent times. Gentle warping and backtilting of the terraces on the hanging wall sides of the faults indicate fault-bend folding. These active faults are the manifestation of north-dipping imbricated thrust faults branching out from the major fault systems like the Main Boundary Fault (MBF and Himalayan Frontal Fault (HFF, probably merging down northward into a décollement. The Taksal Fault, striking NNW-SSE, shows prominent right-lateral movement marked by lateral offset of streams and younger Quaternary terraces and occupies a narrow deep linear valley along the fault trace. Right stepping along this fault has resulted in formation of a small pull-apart basin. Fault scarplets facing ENE and WSW are the manifestation of dip-slip movement. This fault is an example of slip-partitioning between the strike-slip and thrust faults, suggesting ongoing oblique convergence of the Indian plate and northward migration of a tectonic sliver. Slip rate along the Taksal Fault has been calculated as 2.8 mm/yr. Preliminary trench investigation at the base of the Chandigarh Fault Scarp has revealed total displacement of 3.5 m along a low angle thrust fault with variable dip of 20° to 46° due northeast, possibly the result of one

  13. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska

    Science.gov (United States)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.

    2011-12-01

    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low

  14. Measuring Relative Motions Across a Fault Using Seafloor Transponders Installed at Close Range to each Other Based on Differential GPS/Acoustic Technique

    Science.gov (United States)

    Kido, M.; Ashi, J.; Tsuji, T.; Tomita, F.

    2016-12-01

    Seafloor geodesy based on acoustic ranging technique is getting popular means to reveal crustal deformation beneath the ocean. GPS/acoustic technique can be applied to monitoring regional deformation or absolute position, while direct-path acoustic ranging can be applied to detecting localized strain or relative motion in a short distance ( 1-10 km). However the latter observation sometimes fails to keep the clearance of an acoustic path between the seafloor transponders because of topographic obstacle or of downward bending nature of the path due to vertical gradient of sound speed in deep-ocean. Especially at steep fault scarp, it is almost impossible to keep direct path between the top and bottom of the fault scarp. Even in such a situation, acoustic path to the sea surface might be always clear. Then we propose a new approach to monitor the relative motion of across a fault scarp using "differential" GPS/acoustic measurement, which account only for traveltime differences among the transponders. The advantages of this method are that: (1) uncertainty in sound speed in shallow water is almost canceled; (2) possible GPS error is also canceled; (3) picking error in traveltime detection is almost canceled; (4) only a pair of transponders can fully describe relative 3-dimensional motion. On the other hand the disadvantages are that: (5) data is not continuous but only campaign; (6) most advantages are only effective only for very short baseline (< 100-300 m). Our target being applied this method is a steep fault scarp near the Japan trench, which is expected as a surface expression of back thrust, in where time scale of fault activity is still controversial especially after the Tohoku earthquake. We have carefully installed three transponders across this scarp using a NSS system, which can remotely navigate instrument near the seafloor from a mother vessel based on video camera image. Baseline lengths among the transponders are 200-300 m at 3500 m depth. Initial

  15. The Point Sal–Point Piedras Blancas correlation and the problem of slip on the San Gregorio–Hosgri fault, central California Coast Ranges

    Science.gov (United States)

    Colgan, Joseph P.; Stanley, Richard G.

    2016-01-01

    Existing models for large-magnitude, right-lateral slip on the San Gregorio–Hosgri fault system imply much more deformation of the onshore block in the Santa Maria basin than is supported by geologic data. This problem is resolved by a model in which dextral slip on this fault system increases gradually from 0–10 km near Point Arguello to ∼150 km at Cape San Martin, but such a model requires abandoning the cross-fault tie between Point Sal and Point Piedras Blancas, which requires 90–100 km of right-lateral slip on the southern Hosgri fault. We collected stratigraphic and detrital zircon data from Miocene clastic rocks overlying Jurassic basement at both localities to determine if either section contained unique characteristics that could establish how far apart they were in the early Miocene. Our data indicate that these basins formed in the early Miocene during a period of widespread transtensional basin formation in the central Coast Ranges, and they filled with sediment derived from nearby pre-Cenozoic basement rocks. Although detrital zircon data do not indicate a unique source component in either section, they establish the maximum depositional age of the previously undated Point Piedras Blancas section to be 18 Ma. We also show that detrital zircon trace-element data can be used to discriminate between zircons of oceanic crust and arc affinity of the same age, a potentially useful tool in future studies of the California Coast Ranges. Overall, we find no characteristics in the stratigraphy and provenance of the Point Sal and Point Piedras Blancas sections that are sufficiently unique to prove whether they were far apart or close together in the early Miocene, making them of questionable utility as piercing points.

  16. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Daniel [Univ. of Texas, Austin, TX (United States)

    2017-02-17

    Geothermal plays in extensional and transtensional tectonic environments have long been a major target in the exploration of geothermal resources and the Dixie Valley area has served as a classic natural laboratory for this type of geothermal plays. In recent years, the interactions between normal faults and strike-slip faults, acting either as strain relay zones have attracted significant interest in geothermal exploration as they commonly result in fault-controlled dilational corners with enhanced fracture permeability and thus have the potential to host blind geothermal prospects. Structural ambiguity, complications in fault linkage, etc. often make the selection for geothermal exploration drilling targets complicated and risky. Though simplistic, the three main ingredients of a viable utility-grade geothermal resource are heat, fluids, and permeability. Our new geological mapping and fault kinematic analysis derived a structural model suggest a two-stage structural evolution with (a) middle Miocene N -S trending normal faults (faults cutting across the modern range), - and tiling Olio-Miocene volcanic and sedimentary sequences (similar in style to East Range and S Stillwater Range). NE-trending range-front normal faulting initiated during the Pliocene and are both truncating N-S trending normal faults and reactivating some former normal faults in a right-lateral fashion. Thus the two main fundamental differences to previous structural models are (1) N-S trending faults are pre-existing middle Miocene normal faults and (2) these faults are reactivated in a right-later fashion (NOT left-lateral) and kinematically linked to the younger NE-trending range-bounding normal faults (Pliocene in age). More importantly, this study provides the first constraints on transient fluid flow through the novel application of apatite (U-Th)/He (AHe) and 4He/3He thermochronometry in the geothermally active Dixie Valley area in Nevada.

  17. Surface-exposure ages of Front Range moraines that may have formed during the Younger Dryas, 8.2 cal ka, and Little Ice Age events

    Science.gov (United States)

    Benson, L.; Madole, R.; Kubik, P.; McDonald, R.

    2007-01-01

    Surface-exposure (10Be) ages have been obtained on boulders from three post-Pinedale end-moraine complexes in the Front Range, Colorado. Boulder rounding appears related to the cirque-to-moraine transport distance at each site with subrounded boulders being typical of the 2-km-long Chicago Lakes Glacier, subangular boulders being typical of the 1-km-long Butler Gulch Glacier, and angular boulders being typical of the few-hundred-m-long Isabelle Glacier. Surface-exposure ages of angular boulders from the Isabelle Glacier moraine, which formed during the Little Ice Age (LIA) according to previous lichenometric dating, indicate cosmogenic inheritance values ranging from 0 to ???3.0 10Be ka.11Surface-exposure ages in this paper are labeled 10Be; radiocarbon ages are labeled 14C ka, calendar and calibrated radiocarbon ages are labeled cal ka, and layer-based ice-core ages are labeled ka. 14C ages, calibrated 14C ages, and ice core ages are given relative to AD 1950, whereas 10Be ages are given relative to the sampling date. Radiocarbon ages were calibrated using CALIB 5.01 and the INTCAL04 data base Stuiver et al. (2005). Ages estimated using CALIB 5.01 are shown in terms of their 1-sigma range. Subangular boulders from the Butler Gulch end moraine yielded surface-exposure ages ranging from 5 to 10.2 10Be ka. We suggest that this moraine was deposited during the 8.2 cal ka event, which has been associated with outburst floods from Lake Agassiz and Lake Ojibway, and that the large age range associated with the Butler Gulch end moraine is caused by cosmogenic shielding of and(or) spalling from boulders that have ages in the younger part of the range and by cosmogenic inheritance in boulders that have ages in the older part of the range. The surface-exposure ages of eight of nine subrounded boulders from the Chicago Lakes area fall within the 13.0-11.7 10Be ka age range, and appear to have been deposited during the Younger Dryas interval. The general lack of inheritance in

  18. VOC Measurements in the Northern Colorado Front Range Metropolitan Area: Investigating the Impact of Oil and Natural Gas Emissions on O3 Production

    Science.gov (United States)

    Abeleira, A.; Farmer, D.; Fischer, E. V.; Pollack, I. B.; Zaragoza, J.

    2015-12-01

    Authors: Ilana Pollock1,2, Jake Zaragoza2, Emily V. Fischer2, Delphine K. Farmer11. Department of Chemistry, Colorado State University, Fort Collins, CO 2. Department of Atmospheric Science, Colorado State University, Fort Collins, CO During summer months, the Northern Front Range Metropolitan Area (NFRMA) of Colorado consistently violates the 75 ppbv 8-hour EPA National Ambient Air Quality Standard (NAAQS) for ambient ozone (O3), despite continued reduction in anthropogenic emissions. The region has been deemed an O3 non-attainment zone since 2008. Ground-level O3 is produced from photochemical catalytic cycles involving OH radicals, volatile organic compounds (VOCs), and NOx (NO + NO2). VOC emissions in the NFRMA are dominated by anthropogenic sources and influenced by biogenic and agricultural sources, while NOx emissions are mainly from automobile exhaust. A growing concern in the region is the role of oil and natural gas (ONG) on VOC concentrations and the potential for O3 production. Increases in local VOC emissions will likely cause subsequent increase in local O3 concentrations as PO3 increases in a region that is already affected by high O3episodes. As a part of the SONGNEX 2015 (Shale Oil and Natural Gas Nexus) campaign, we measured a broad suite of speciated VOCs during two 8-week deployments (March-May 2015, July-September 2015) at the Boulder Atmospheric Observatory in Erie, CO. VOC measurements were made with a custom-online multichannel gas chromatography system (50+ compounds hourly), along with measurements of O3, SO2, NOx, NOy, PAN, CO, CO2, and CH4. We use these data to investigate the role of different VOC sources, and ONG in particular, in contributing to VOC reactivity and thus instantaneous O3 production. Preliminary analysis of the Spring VOC data indicates that VOC reactivity is dominated by light alkanes typical of ONG emissions - specifically propane, consistent with previous winter-time studies. We will use the observed temperature

  19. Investigation of the influence of transport from oil and natural gas regions on elevated ozone levels in the northern Colorado front range.

    Science.gov (United States)

    Evans, Jason M; Helmig, Detlev

    2017-02-01

    The Northern Colorado Front Range (NCFR) has been in exceedance of the ozone National Ambient Air Quality Standard (NAAQS) since 2004, which has led to much debate over the sources of ozone precursors to the region, as this area is home to both the Denver, CO, metropolitan area and the Denver-Julesburg Basin, which has experienced rapid growth of oil and natural gas (O&NG) operations and associated emissions. Several recent studies have reported elevated levels of atmospheric volatile organic compounds (VOCs) as a result of O&NG emissions and the potential for significant ozone production from these emissions, despite implementation of stricter O&NG VOC emissions regulations in 2008. Approximately 88% of 1-hr elevated ozone events (>75 ppbv) occur during June-August, indicating that elevated ozone levels are driven by regional photochemistry. Analyses of surface ozone and wind observations from two sites, namely, South Boulder and the Boulder Atmospheric Observatory, both near Boulder, CO, show a preponderance of elevated ozone events associated with east-to-west airflow from regions with O&NG operations in the N-ESE, and a relatively minor contribution of transport from the Denver Metropolitan area to the SE-S. Transport from upwind areas associated with abundant O&NG operations accounts for on the order of 65% (mean for both sites) of 1-hr averaged elevated ozone levels, while the Denver urban corridor accounts for 9%. These correlations contribute to mounting evidence that air transport from areas with O&NG operation has a significant impact on ozone and air quality in the NCFR. This article builds on several previous pieces of research that implied significant contributions from oil and natural gas emissions on ozone production in the Northern Colorado Front Range. By correlating increased ozone events with transport analyses we show that there is a high abundance of transport events with elevated ozone originating from the Denver-Julesburg oil and natural gas

  20. Fronts, fish, and predators

    Science.gov (United States)

    Belkin, Igor M.; Hunt, George L.; Hazen, Elliott L.; Zamon, Jeannette E.; Schick, Robert S.; Prieto, Rui; Brodziak, Jon; Teo, Steven L. H.; Thorne, Lesley; Bailey, Helen; Itoh, Sachihiko; Munk, Peter; Musyl, Michael K.; Willis, Jay K.; Zhang, Wuchang

    2014-09-01

    Ocean fronts play a key role in marine ecosystems. Fronts shape oceanic landscapes and affect every trophic level across a wide range of spatio-temporal scales, from meters to thousands of kilometers, and from days to millions of years. At some fronts, there is an elevated rate of primary production, whereas at others, plankton is aggregated by advection and by the behavior of organisms moving against gradients in temperature, salinity, light irradiance, hydrostatic pressure and other physico-chemical and biological factors. Lower trophic level organisms - phytoplankton and zooplankton - that are aggregated in sufficient densities, attract organisms from higher trophic levels, from planktivorous schooling fish to squid, large piscivorous fish, seabirds and marine mammals. Many species have critical portions of their life stages or behaviors closely associated with fronts, including spawning, feeding, ontogenetic development, migrations, and other activities cued to frontal dynamics. At different life stages, an individual species or population might be linked to different fronts. The nature and strength of associations between fronts and biota depend on numerous factors such as the physical nature and spatio-temporal scales of the front and the species and their life stages in question. In other words, fronts support many different niches and micro/macro-habitats over a wide range of spatial and temporal scales.

  1. Douglas-Fir Tussock Moth- and Douglas-Fir Beetle-Caused Mortality in a Ponderosa Pine/Douglas-Fir Forest in the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    José F. Negrón

    2014-12-01

    Full Text Available An outbreak of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough, occurred in the South Platte River drainage on the Pike-San Isabel National Forest in the Colorado Front Range attacking Douglas-fir, Pseudotsuga menziesii (Mirb. Franco. Stocking levels, species composition, and tree size in heavily and lightly defoliated stands were similar. Douglas-fir tussock moth defoliation resulted in significant Douglas-fir mortality in the heavily defoliated stands, leading to a change in dominance to ponderosa pine, Pinus ponderosa Lawson. Douglas-fir beetle, Dendroctonus pseudotsuqae Hopkins, populations increased following the defoliation event but caused less mortality, and did not differ between heavily and lightly defoliated stands. Douglas-fir tussock moth-related mortality was greatest in trees less than 15 cm dbh (diameter at 1.4 m above the ground that grew in suppressed and intermediate canopy positions. Douglas-fir beetle-related mortality was greatest in trees larger than 15 cm dbh that grew in the dominant and co-dominant crown positions. Although both insects utilize Douglas-fir as its primary host, stand response to infestation is different. The extensive outbreak of the Douglas-fir tussock moth followed by Douglas-fir beetle activity may be associated with a legacy of increased host type growing in overstocked conditions as a result of fire exclusion.

  2. Design and evaluation of wide-range and low-power analog front-end enabling body-implanted devices to monitor charge injection properties

    Science.gov (United States)

    Ito, Keita; Uno, Shoma; Goto, Tatsuya; Takezawa, Yoshiki; Harashima, Takuya; Morikawa, Takumi; Nishino, Satoru; Kino, Hisashi; Kiyoyama, Koji; Tanaka, Tetsu

    2017-04-01

    For safe electrical stimulation with body-implanted devices, the degradation of stimulus electrodes must be considered because it causes the unexpected electrolysis of water and the destruction of tissues. To monitor the charge injection property (CIP) of stimulus electrodes while these devices are implanted, we have proposed a charge injection monitoring system (CIMS). CIMS can safely read out voltages produced by a biphasic current pulse to a stimulus electrode and CIP is calculated from waveforms of the acquired voltages. In this paper, we describe a wide-range and low-power analog front-end (AFE) for CIMS that has variable gain-frequency characteristics and low-power analog-to-digital (A/D) conversion to adjust to the degradation of stimulus electrodes. The designed AFE was fabricated with 0.18 µm CMOS technology and achieved a valuable gain of 20-60 dB, an upper cutoff frequency of 0.2-10 kHz, and low-power interleaving A/D conversion. In addition, we successfully measured the CIP of stimulus electrodes for body-implanted devices using CIMS.

  3. Surface ozone in the Colorado northern Front Range and the influence of oil and gas development during FRAPPE/DISCOVER-AQ in summer 2014

    Directory of Open Access Journals (Sweden)

    L. C. Cheadle

    2017-11-01

    Full Text Available High mixing ratios of ozone (O3 in the northern Front Range (NFR of Colorado are not limited to the urban Denver area but were also observed in rural areas where oil and gas activity is the primary source of O3 precursors. On individual days, oil and gas O3 precursors can contribute in excess of 30 ppb to O3 growth and can lead to exceedances of the EPA O3 National Ambient Air Quality Standard. Data used in this study were gathered from continuous surface O3 monitors for June–August 2013–2015 as well as additional flask measurements and mobile laboratories that were part of the FRAPPE/DISCOVER-AQ field campaign of July–August 2014. Overall observed O3 levels during the summer of 2014 were lower than in 2013, likely due to cooler and damper weather than an average summer. This study determined the median hourly surface O3 mixing ratio in the NFR on summer days with limited photochemical production to be approximately 45–55 ppb. Mobile laboratory and flask data collected on three days provide representative case studies of different O3 formation environments in and around Greeley, Colorado. Observations of several gases (including methane, ethane, CO, nitrous oxide along with O3 are used to identify sources of O3 precursor emissions. A July 23 survey demonstrated low O3 (45–60 ppb while August 3 and August 13 surveys recorded O3 levels of 75–80 ppb or more. August 3 exemplifies influence of moderate urban and high oil and gas O3 precursor emissions. August 13 demonstrates high oil and gas emissions, low agricultural emissions, and CO measurements that were well correlated with ethane from oil and gas, suggesting an oil and gas related activity as a NOx and O3 precursor source. Low isoprene levels indicated that they were not a significant contributor to O3 precursors measured during the case studies.

  4. Gopher eskers, mounds, and stonelines: Evidence of the annual to centennial impacts of gophers in the montane meadows of Colorado's Front Range

    Science.gov (United States)

    Winchell, E. W.; Lombardi, E. M.; Marquez, J. A.; Doak, D. F.; Anderson, R. S.

    2014-12-01

    Within the critical zone on montane hillslopes of Colorado's Front Range, qualitative observations suggest that gophers not only dominate the modern meadow geomorphic rates, but are involved in a geomorphic-ecological feedback system that governs meadow migration on decadal-millennial time scales. Our observations suggest that gopher intensity and location is pertinent to forest/meadow (FM) dynamics. Field mapping of gopher activity as the snow melts in the spring revealed that subnivean tubes ("eskers") are tightly clustered at the FM boundary while mounds generated over the remainder of the summer are concentrated strictly in the meadows. This suggests that gophers spend the winter months at the FM interface and spend the warmer seasons within the meadows. We hypothesize that variations in snow depth drive this spatial-temporal pattern of gopher activity; deeper snow near the FM boundary provides greater insulation, as near-surface ground temperatures in the wind-scoured meadow centers are colder. This motivates our initiation of monitoring and modeling of near-surface temperature across a FM pair. Numerical modeling supports qualitative observations that the following geomorphic-ecological processes are active: seedling establishment and damage, gopher tunneling and resulting mound generation, mound material transport driven by ungulate trampling, vegetative lock-down of mound material, and resulting changes in the soil depth of the landscape. This year's observations suggest that we must add to this mix the annual cycle of the gopher activity. Finally, probing and soil pits within the meadows reveal that on longer timescales gopher activity leads to the development of a well-mixed upper soil layer that is sharply bounded below by high concentrations of large stones ("stone lines") within the glacial till substrate of the hillslopes. The mean diameter of mound surface grains is half that of clasts comprising the stone lines. This motivates documentation of soil

  5. Assessing the role of large wood entrained in the 2013 Colorado Front Range flood in ongoing channel response and reservoir management

    Science.gov (United States)

    Bennett, Georgina; Rathburn, Sara; Ryan, Sandra; Wohl, Ellen; Blair, Aaron

    2016-04-01

    Considerable quantities of large wood (LW) may be entrained during floods with long lasting impacts on channel morphology, sediment and LW export, and downstream reservoir management. Here we present an analysis of LW entrained by an extensive flood in Colorado, USA. Over a 5 day period commencing 9th September 2013, up to 450 mm of rain, or ~1000% of the monthly average, fell in catchments spanning a 100-km-wide swath of the Colorado Front Range resulting in major flooding. Catchment response was dramatic, with reports of 100s - 1000s of years of erosion, destruction of infrastructure and homes, and sediment and LW loading within reservoirs. One heavily impacted catchment is the North St Vrain, draining 250km2 of the South Platte drainage basin. In addition to widespread channel enlargement, remote imagery reveals hundreds of landslides that delivered sediment and LW to the channel and ultimately to Ralph Price Reservoir, which provides municipal water to Longmont. The City of Longmont facilitated the removal of ~1050 m3 of wood deposited at the reservoir inlet by the flood but the potential for continued movement of large wood in the catchment presents an on-going concern for reservoir management. In collaboration with the City of Longmont, our objectives are (1) to quantify the volume of wood entrained by the flood and still stored along the channel, (2) characterize the size and distribution of LW deposits and (3) determine their role in ongoing catchment flood response and recovery. We utilize freely available pre and post flood NAIP 4-band imagery to calculate a normalized differential vegetation index (NDVI) difference map with which we calculate the area of vegetation entrained by the flood. We combine this with field assessments and a map of vegetation type automatically classified from optical satellite imagery to estimate the total flood-entrained volume of wood. Preliminary testing of 'stream selfies' - structure from motion imaging of LW deposits using

  6. Fluid circulation and diagenesis of carbonated and sandstone reservoirs in the fronts and fore-lands of folded chains: the Salt Range case - Poswar (Pakistan); Circulation des fluides et diagenese des reservoirs carbonates et greseux dans les fronts de chaines plissees et leur avant pays: le cas du Salt Range - Poswar (Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Benchilla, L.

    2003-05-01

    The Salt Range-Poswar Province is located in the western foothills of the Himalayas, in northern Pakistan. It extends over 170 km from the Main Boundary Thrust (MBT) in the north to the Salt Range in the south. The Salt Range itself is dominantly an ENE-trending structure, but it comprises also a NNW-trending lateral ramp which connects to the west with the Surghar Range. The Salt Range constitutes the frontal part of a detached allochthonous thrust sheet. The sedimentary cover is indeed entirely detached from its substratum along Infracambrian salt horizons. Palaeozoic to Eocene platform series are well exposed in the hanging wall, whereas Neogene molasse has been extensively under-thrust in the footwall of this large over-thrust. The North Potwar Basin is bordered by the Khari-Murat Ridge and coeval back-thrusts in the south, by the northern flank of the Soan syncline in the southeast, and by the MBT in the north. In addition to Neogene outcrops, it also comprises a number of surface anticlines and thrust fronts along which the Eocene platform carbonates are exposed. The Datta Formation is the main Jurassic oil reservoir in the Potwar Basin. It is a fluvio-deltaic deposit which comprises large porous and permeable channels associated to many-calcareous interbeds. The formations crop out well in both the Nammal and Chichali Gorges. The oil field of Toot, located in the western part of the basin, is producing from this reservoir. The petrographic observations show that diagenesis occurred mainly early and was controlled by the fluvio-deltaic environment. (author)

  7. Paleoseismologic evidence for large-magnitude (Mw 7.5-8.0) earthquakes on the Ventura blind thrust fault: Implications for multifault ruptures in the Transverse Ranges of southern California

    Science.gov (United States)

    McAuliffe, Lee J.; Dolan, James F.; Rhodes, Edward J.; Hubbard, Judith; Shaw, John H.; Pratt, Thomas L.

    2015-01-01

    Detailed analysis of continuously cored boreholes and cone penetrometer tests (CPTs), high-resolution seismic-reflection data, and luminescence and 14C dates from Holocene strata folded above the tip of the Ventura blind thrust fault constrain the ages and displacements of the two (or more) most recent earthquakes. These two earthquakes, which are identified by a prominent surface fold scarp and a stratigraphic sequence that thickens across an older buried fold scarp, occurred before the 235-yr-long historic era and after 805 ± 75 yr ago (most recent folding event[s]) and between 4065 and 4665 yr ago (previous folding event[s]). Minimum uplift in these two scarp-forming events was ∼6 m for the most recent earthquake(s) and ∼5.2 m for the previous event(s). Large uplifts such as these typically occur in large-magnitude earthquakes in the range of Mw7.5–8.0. Any such events along the Ventura fault would likely involve rupture of other Transverse Ranges faults to the east and west and/or rupture downward onto the deep, low-angle décollements that underlie these faults. The proximity of this large reverse-fault system to major population centers, including the greater Los Angeles region, and the potential for tsunami generation during ruptures extending offshore along the western parts of the system highlight the importance of understanding the complex behavior of these faults for probabilistic seismic hazard assessment.

  8. Front cover

    Directory of Open Access Journals (Sweden)

    Prof.Dr. Hasan KÜÇÜKBAY

    2017-06-01

    Full Text Available This is the front cover of JOTCSA 4(2, which contains numerous fruitful information. Kindly read the contents and if you need to ask questions, contact the managing editor (Dr. Akkurt at jotcsa@turchemsoc.org or the chief editor (Prof. Dr. Küçükbay. Let us see each other in the next issue...

  9. Main Frontal thrust deformation and topographic growth of the Mohand Range, northwest Himalaya

    Science.gov (United States)

    Srivastava, Vinee; Mukul, Malay; Barnes, Jason B.

    2016-12-01

    The Main Frontal thrust (MFT) uplifts the Himalayan topographic front. Deciphering MFT deformation kinematics is crucial for understanding how the orogen accommodates continuing continental collision and assessing associated hazards. Here, we (a) detail newly discovered fault-zone exposures along the MFT at the Mohand Range front in northwestern India and (b) apply contemporary fault zone theory to show that the MFT is an emergent fault with a well-developed fault zone overlain by uplifted Quaternary gravels over a horizontal length of ∼700 m. Northward from the front, the fault zone grades from a central, gouge-dominated core to a hanging-wall, rock-dominated damage zone. We observed incohesive, non-foliated breccia, fault gouge, and brittle deformation microstructures within the fractured country rocks (Middle Siwaliks) and outcrop scale, non-plunging folds in the proximal hanging wall. We interpret these observations to suggest that (1) elastico-frictional (brittle) deformation processes operated in the fault zone at near surface (∼1-5 km depth) conditions and (2) the folds formed first at the propagating MFT fault tip, then were subsequently dismembered by the fault itself. Thus, we interpret the Mohand Range as a fault-propagation fold driven by an emergent MFT in contrast to the consensus view that it is a fault-bend fold. A fault-propagation fold model is more consistent with these new observations, the modern range-scale topography, and existing erosion estimates. To further evaluate our proposed structural model, we used a Boundary Element Method-based dislocation model to simulate topographic growth from excess slip at a propagating fault tip. Results show that the frontal topography could have evolved by slip along a (a) near-surface fault plane consistent with the present-day MFT location, or (b) blind MFT at ∼3 km depth farther north near the drainage divide. Comparing modelled vs. measured high resolution (∼16 cm) topographic profiles for each

  10. Love waves in coal seams disturbed by faults

    Energy Technology Data Exchange (ETDEWEB)

    Kwasnicka, B. (Akademia Gorniczo-Hutnicza, Cracow (Poland))

    1988-01-01

    Describes application of Love waves to exploration of rock body structures lying in front of working faces, in order to obtain early information on disturbances present in a deposit structure, especially on faults. Models of a vertical fault, a fault with a throw as high as the seam thickness or with an inclined throw of half the seam thickness were constructed. Theoretical seismograms and amplitude spectra are presented and discussed. Observation times were 25-40 ms. Maxima in amplitude spectra were within the frequency range of 150-300 Hz. Investigation of amplitude distribution using models allows the actual amplitude distribution to be foreseen which in turn facilitates wave identification when microtectonics of coal seams is investigated. 6 refs.

  11. Evidence for distributed clockwise rotation of the crust in the northwestern United States from fault geometries and focal mechanisms

    Science.gov (United States)

    Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.

    2017-05-01

    Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.

  12. Modelling earthquake ruptures with dynamic off-fault damage

    Science.gov (United States)

    Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban

    2017-04-01

    Earthquake rupture modelling has been developed for producing scenario earthquakes. This includes understanding the source mechanisms and estimating far-field ground motion with given a priori constraints like fault geometry, constitutive law of the medium and friction law operating on the fault. It is necessary to consider all of the above complexities of a fault systems to conduct realistic earthquake rupture modelling. In addition to the complexity of the fault geometry in nature, coseismic off-fault damage, which is observed by a variety of geological and seismological methods, plays a considerable role on the resultant ground motion and its spectrum compared to a model with simple planer fault surrounded by purely elastic media. Ideally all of these complexities should be considered in earthquake modelling. State of the art techniques developed so far, however, cannot treat all of them simultaneously due to a variety of computational restrictions. Therefore, we adopt the combined finite-discrete element method (FDEM), which can effectively deal with pre-existing complex fault geometry such as fault branches and kinks and can describe coseismic off-fault damage generated during the dynamic rupture. The advantage of FDEM is that it can handle a wide range of length scales, from metric to kilometric scale, corresponding to the off-fault damage and complex fault geometry respectively. We used the FDEM-based software tool called HOSSedu (Hybrid Optimization Software Suite - Educational Version) for the earthquake rupture modelling, which was developed by Los Alamos National Laboratory. We firstly conducted the cross-validation of this new methodology against other conventional numerical schemes such as the finite difference method (FDM), the spectral element method (SEM) and the boundary integral equation method (BIEM), to evaluate the accuracy with various element sizes and artificial viscous damping values. We demonstrate the capability of the FDEM tool for

  13. Faults Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  14. Late Quaternary Activity and Seismogenic Potential of the Gonave Microplate: Plantain Garden Strike-Slip Fault Zone of Eastern Jamaica

    Science.gov (United States)

    Mann, P.; Prentice, C.; King, W.; Demets, C.; Wiggins-Grandison, M.; Benford, B.

    2008-12-01

    At the longitude of Jamaica, Caribbean (Carib)-North America (Noam) plate motion of 19 ± 2 mm/a is carried by two parallel, left-lateral strike-slip faults, the Oriente fault zone, immediately south of Cuba, and the Enriquillo-Plantain Garden fault zone (EPGFZ), which lies 100-150 km further south. It has been postulated that the lithosphere between these faults constitutes an independent Gonave microplate that has formed in response to the ongoing collision between the leading edge of Carib in Hispaniola and the Bahama carbonate platform. GPS measurements in Jamaica and Hispanola is supportive of the microplate hypothesis and indicates that roughly half of Carib-Noam plate motion (8-14 mm/a) is carried by the EPGFZ of southern Hispaniola and eastern Jamaica. This study applies geomorphic and paleoseismic methods as a direct test of the activity and amount of microplate motion carried on the Plantain Garden fault segment of eastern Hispaniola and how this motion is distributed across a large restraining bend that has formed the island of Jamaica since the late Miocene. The EPFZ curves gently to the northeast and forming a steep mountain front to the Blue Mountains restraining bend with elevations up to 2200 m. Geomorphic fault-related features along the mountain front fault zone include left-laterally deflected rivers and streams, but no small scale features indicative of Holocene activity. River and stream deflections range from 0.1 to 0.5 km. We identified and trenched the most active trace of the mountain front fault at the Morant River where the fault is characterized by a 1.5-m-wide sub-vertical fault zone juxtaposing sheared alluvium and fault Cretaceous basement rocks This section is overlain by a 6-m-thick fluvial terrace. Trenching in the unfaulted terrace immediately overlying the fault trace revealed radiocarbon and OSL ages ranging from 20 to 21 ka that are consistent with a prominent unfaulted alluvial fan along the projection of this fault 1.5 km to

  15. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  16. Mountain building, strike-slip faulting, and landscape evolution in the Marlborough Fault System, NZ: Insights from new low-temperature thermochronology and modeling

    Science.gov (United States)

    Duvall, A. R.; Collett, C.; Flowers, R. M.; Tucker, G. E.; Upton, P.

    2016-12-01

    The 150 km wide Marlborough Fault System (MFS) and adjacent dextral-reverse Alpine Fault accommodate oblique convergence of the Australian and Pacific plates in a broad transform boundary that extends for much of the South Island New Zealand. Understanding the deformation history of the Marlborough region offers the opportunity to study topographic evolution in a strike-slip setting and a fuller picture of the evolving New Zealand plate boundary as the MFS lies at the transition from oceanic Pacific plate subduction to oblique continental collision. Here we present low-temperature thermochronology from the MFS to place new limits on the timing and style of mountain building. We sampled a range of elevations spanning 2 km within and adjacent to the Kaikoura Mountains, which stand high as topographic anomalies above active strike-slip faults. Young apatite (U-Th)/He ages ( 2-5 Ma) on both sides of range-bounding faults are consistent with regional distributed deformation since the Pliocene initiation of strike-slip faulting. However, large differences in both zircon helium and apatite fission track ages, from Paleogene/Neogene ages within hanging walls to unreset >100 Ma ages in footwalls, indicate an early phase of fault-related vertical exhumation. Thermal modeling using the QTQt program reveals two phases of exhumation within the Kaikoura Ranges: rapid cooling at 15-12 Ma localized to hanging wall rocks and regional rapid cooling reflected in all samples starting at 4-5 Ma. These results and landscape evolution models suggest that, despite the presence of active mountain front faults, much of the topographic relief in this region may predate the onset of strike-slip faulting and that portions of the Marlborough Faults are re-activated thrusts that coincide with the early development of the transpressive plate boundary. Regional exhumation after 5 Ma likely reflects increased proximity to the migrating Pacific plate subduction zone and the buoyant Chatham Rise.

  17. Recency of Faulting and Neotechtonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range

    Energy Technology Data Exchange (ETDEWEB)

    Steven Wesnousky; S. John Caskey; John W. Bell

    2003-02-20

    We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The approach developed here during our pilot study provides an inexpensive approach to (1) better define the best locations to site geothermal wells within known geothermal fields and (2) to define the location of yet discovered geothermal fields which are not manifest at the surface by active geothermal springs. More specifically, our investigation shows that induced stress concentrations at the endpoints of normal fault ruptures appear to promote favorable conditions for hydrothermal activity in two ways. We conclude that an understanding of the spatial distribution of active faults and the past history of earthquakes on those faults be incorporated as a standard tool in geothermal exploration and in the siting of future boreholes in existing geothermal fields.

  18. Delta a charge sensitive front-end amplifier with switched gain for low-noise, large dynamic range silicon detector readout

    CERN Document Server

    Aspell, P; Bloch, P; Jarron, Pierre; Löfstedt, B; Reynaud, S; Tabbers, P

    2001-01-01

    The design and results of a radiation hard switched gain charge amplifier optimised for a large dynamic range and large input capacitance are described. The peaking time is 25 ns, dynamic ranges are 0.1-50 minimum ionising particles (MIPs) (high gain) and 1-400 MIPs (low gain), signal to noise (S/N)>10 for C/sub m/<56 pF and radiation tolerance to 10 Mrads(Si) and 4*10/sup 13/ n cm/sup -2/. (5 refs).

  19. Normal Fault Growth on Mars

    Science.gov (United States)

    Morris, A. P.; Wyrick, D. Y.; Ferrill, D. A.

    2008-12-01

    Displacement versus length relationships of faults on Earth and Mars have been used to describe and interpret the evolution of faults and fault systems, infer differences in the relative strengths of strata, and evaluate variations in fault-system response to differences in gravity from planet to planet. In this presentation, we focus on maximum throw versus trace length (Dmax/L) of continuously mappable faults and Dmax/L of individual fault segments. Fault analyses on Mars have the advantage of a planetary surface devoid of vegetation and largely unaffected by weathering and erosion. Areas on the flanks of Alba Patera, Mars, were chosen because they are well imaged by all generations of data coverage, contain fault systems that have a range of developmental characteristics, and formed in a relatively simple tectonic setting dominated by extension. Footwall and hanging wall cutoff traces of more than 300 faults were interpreted using Viking imagery and ArcGIS software. Throw was obtained by calculating the elevation difference between adjacent footwall and hanging wall points using Mars Orbiter Laser Altimeter data. Throw versus along-strike trace length plots were constructed for each interpreted fault. Single fault segments are defined as having one well-defined displacement maximum bounded by two near-zero displacement minima. Segments within a multi-segment fault were identified by counting displacement maxima along the fault trace. The number of segments incorporated into multi-segment faults is positively correlated with the fault trace length. In a plot of Dmax versus L, whole faults are distributed approximately along a locus of Dmax = K × Ln, where K = 5 × 10-4 to 5 × 10-2 and n = 1. This is in agreement with previous studies of faults on Mars. Single fault segments form a distinct population whose distribution is described approximately by the same equation but where K = 1.7 × 10-3. Dmax/L ratios for multi-segment faults represent an apparently self

  20. Finding faults

    Energy Technology Data Exchange (ETDEWEB)

    Barber, J.; Duke, J. [Surpac Minex Group (Australia)

    2005-04-01

    The Surpac Minex Group has been building a geologic model to represent the coal seam structure at the Carbones del Cerrejon LLC mine in north eastern Colombia which is bonded by major reserve and normal faults. This is being achieved through a new software faulting tool. The tool combines existing Minex modelling with new fault interpretation tools. New software that permits 3-D photogrammetry and seismic data can also be incorporated. 6 figs.

  1. The 2011 Hawthorne, Nevada, Earthquake Sequence; Shallow Normal Faulting

    Science.gov (United States)

    Smith, K. D.; Johnson, C.; Davies, J. A.; Agbaje, T.; Knezevic Antonijevic, S.; Kent, G.

    2011-12-01

    An energetic sequence of shallow earthquakes that began in early March 2011 in western Nevada, near the community of Hawthorne, has slowly decreased in intensity through mid-2011. To date about 1300 reviewed earthquake locations have been compiled; we have computed moment tensors for the larger earthquakes and have developed a set of high-precision locations for all reviewed events. The sequence to date has included over 50 earthquakes ML 3 and larger with the largest at Mw 4.6. Three 6-channel portable stations configured with broadband sensors and accelerometers were installed by April 20. Data from the portable instruments is telemetered through NSL's microwave backbone to Reno where it is integrated with regional network data for real-time notifications, ShakeMaps, and routine event analysis. The data is provided in real-time to NEIC, CISN and the IRIS DMC. The sequence is located in a remote area about 15-20 km southwest of Hawthorne in the footwall block of the Wassuk Range fault system. An initial concern was that the sequence might be associated with volcanic processes due to the proximity of late Quaternary volcanic flows; there have been no volcanic signatures observed in near source seismograms. An additional concern, as the sequence has proceeded, was a clear progression eastward toward the Wassuk Range front fault. The east dipping range bounding fault is capable of M 7+ events, and poses a significant hazard to the community of Hawthorne and local military facilities. The Hawthorne Army Depot is an ordinance storage facility and the nation's storage site for surplus mercury. The sequence is within what has been termed the 'Mina Deflection' of the Central Walker Lane Belt. Faulting along the Whiskey Flat section of the Wassuk front fault would be primarily down-to-the-east, with an E-W extension direction; moment tensors for the 2011 earthquake show a range of extension directions from E-W to NW-SE, suggesting a possible dextral component to the Wassuk

  2. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  3. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  4. Landforms along transverse faults parallel to axial zone of folded ...

    Indian Academy of Sciences (India)

    -4. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun. Sub-Himalaya, India. Khayingshing Luirei∗. , S S Bhakuni and Sanjay S Negi. Wadia Institute of Himalayan Geology, Dehradun, India.

  5. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy.

    Science.gov (United States)

    Brooks, Benjamin A; Minson, Sarah E; Glennie, Craig L; Nevitt, Johanna M; Dawson, Tim; Rubin, Ron; Ericksen, Todd L; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-07-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth's surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  6. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy

    Science.gov (United States)

    Brooks, Benjamin A.; Minson, Sarah E.; Glennie, Craig L.; Nevitt, Johanna; Dawson, Timothy E.; Rubin, Ron S.; Ericksen, Todd; Lockner, David A.; Hudnut, Kenneth W.; Langenheim, Victoria; Lutz, Andrew; Murray, Jessica R.; Schwartz, David P.; Zaccone, Dana

    2017-01-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  7. Fault estimation - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...

  8. Stability of stacking faults in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Dranova, Z.I.; Ksenofontov, V.A.; Kul' ko, V.B.; Mikhailovskii, I.M.

    1979-12-01

    The atomic configuration of planar lattice defects in tungsten was investigated by field-ion microscopy and thermal etching. Stable stacking faults were observed throughout the investigated temperature range 78--1700/sup 0/K. These faults were studied by field-ion microscopy and mathematical modeling methods. It was found that the existence of stacking faults in bcc crystals was not associated with the action of strong omnidirectional tensile stresses. The crystallographic characteristics of the faults were determined.

  9. Landforms along transverse faults parallel to axial zone of folded ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun Sub-Himalaya, India. Khayingshing ... Keywords. Himalayan Frontal Thrust; outer Kumaun Himalaya; transverse structure; folded mountain front.

  10. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  11. Non-tectonic exposure Rates along Bedrock Fault Scarps in an active Mountain Belt of the central Apennines

    Science.gov (United States)

    Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto

    2017-04-01

    The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface

  12. Central Asia Active Fault Database

    Science.gov (United States)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  13. Front matter: Volume 10385

    Science.gov (United States)

    Assoufid, Lahsen; Ohashi, Haruhiko; Asundi, Anand K.

    2017-09-01

    This PDF file contains the front matter associated with SPIE Proceedings Volume 10385, including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.

  14. Comparison of upwards splaying and upwards merging segmented normal faults

    Science.gov (United States)

    Freitag, U. A.; Sanderson, D. J.; Lonergan, L.; Bevan, T. G.

    2017-07-01

    A common model for normal fault growth involves a single fault at depth splaying upwards into a series of en-echelon segments. This model is applied to faults as well as a range of extension fractures, including veins, joints and igneous dykes. Examples of splaying growth fault systems in the Columbus Basin, offshore Trinidad, are presented. They include the commonly described upwards splaying type, but also one fault zone with an upward change from disconnected overlapping synthetic faults to a continuous fault. One fault zone with high-displacement fault segments is separated by a relay ramp at depth, becomes breached higher up, developing into a continuous fault at its upper part, where displacements are least. This example suggests that whilst kinematic linkage typically precedes geometric linkage in the evolution of relay ramps, low-displacement parts of a fault system may be geometrically linked whereas higher displacement areas are only kinematically linked.

  15. How Evapotranspiration And Deep Percolation Impact The Precipitation-Runoff Response, Aquifer Recharge, And Linked Nutrient-Water Cycling At The Subalpine Como Creek Drainage In The Colorado Front Range

    Science.gov (United States)

    Zeliff, M. M.; Williams, M. W.; Cowie, R. M.; Burns, S.

    2011-12-01

    Here we evaluate how evapotranspiration (ET) and deep percolation (DP) impact the precipitation-runoff response, aquifer recharge, and linked nutrient-water cycling at the 664-ha sub-alpine Como Creek drainage in the Colorado Front Range. ET is measured continuously using eddy covariance, soil moisture (SM) is measured using 2-m vertical sensor arrays, groundwater (GW) by a series of piezometers, and precipitation (P) is measured daily along with snow-water equivalent (SWE). From 2004 to 2009, annual P averaged 813 mm and ET averaged 590 mm, with ET thus representing 72.5% of annual P. Using multiple linear regression analysis, discharge (Q) was found to be modeled reasonably well with the independent variables of ET (p ground water system and subsequent precipitation does little to contribute to streamflow for the current year, but serves to offset ET, which may explain the decrease in Q with increasing P. Newly installed piezometers (12, at depths ranging from 5 to 30 m) provide evidence that this portion of the basin is largely a loosing reach during snowmelt, with GW in the piezometers increasing 5-7 m. After peak snowmelt however, the reach starts gaining again with piezometer levels dropping. Time series plots reveal a strong relationship between SWE and Q with larger SWE often resulting in larger Q. Thus, surface-groundwater interactions are tightly coupled during snowmelt, with snowmelt first replenishing the subsurface water deficit before contributing to discharge. The deepest two piezometers (18 and 29 m) were not showing any significant water level declines by early August 2011, suggesting that water loss to DP is a potential important component of the water balance in the Como Creek catchment. Wet precipitation chemistry from the National Atmospheric Deposition Program monitors in the basin show that atmospheric deposition of inorganic nitrogen has increased several-fold in the last 25 years. However, in contrast to higher-elevation catchments, which

  16. The history of late holocene surface-faulting earthquakes on the central segments of the Wasatch fault zone, Utah

    Science.gov (United States)

    Duross, Christopher; Personius, Stephen; Olig, Susan S; Crone, Anthony J.; Hylland, Michael D.; Lund, William R; Schwartz, David P.

    2017-01-01

    The Wasatch fault (WFZ)—Utah’s longest and most active normal fault—forms a prominent eastern boundary to the Basin and Range Province in northern Utah. To provide paleoseismic data for a Wasatch Front regional earthquake forecast, we synthesized paleoseismic data to define the timing and displacements of late Holocene surface-faulting earthquakes on the central five segments of the WFZ. Our analysis yields revised histories of large (M ~7) surface-faulting earthquakes on the segments, as well as estimates of earthquake recurrence and vertical slip rate. We constrain the timing of four to six earthquakes on each of the central segments, which together yields a history of at least 24 surface-faulting earthquakes since ~6 ka. Using earthquake data for each segment, inter-event recurrence intervals range from about 0.6 to 2.5 kyr, and have a mean of 1.2 kyr. Mean recurrence, based on closed seismic intervals, is ~1.1–1.3 kyr per segment, and when combined with mean vertical displacements per segment of 1.7–2.6 m, yield mean vertical slip rates of 1.3–2.0 mm/yr per segment. These data refine the late Holocene behavior of the central WFZ; however, a significant source of uncertainty is whether structural complexities that define the segments of the WFZ act as hard barriers to ruptures propagating along the fault. Thus, we evaluate fault rupture models including both single-segment and multi-segment ruptures, and define 3–17-km-wide spatial uncertainties in the segment boundaries. These alternative rupture models and segment-boundary zones honor the WFZ paleoseismic data, take into account the spatial and temporal limitations of paleoseismic data, and allow for complex ruptures such as partial-segment and spillover ruptures. Our data and analyses improve our understanding of the complexities in normal-faulting earthquake behavior and provide geological inputs for regional earthquake-probability and seismic hazard assessments.

  17. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.

    2002-01-01

    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  18. Mechanical analysis of fault activation in southern Longmen Shan fold-and- thrust belt

    Science.gov (United States)

    Zhang, Zhen; Zhang, Huai; Wang, Liangshu; Shi, Yaolin; Leroy, Yves M.

    2017-04-01

    A mixed fault activation mode with obvious hinterland rupture in the southern Longmen Shan, the eastern margin of Tibetan Plateau, is revealed by recent 2008 Mw7.9 Wenchuan and 2013 Mw6.6 Lushan earthquakes together with GPS measurements. How to systematically understand the coexistence and competition mechanisms of fault activation, especially the principal-subordinate relationship on deformation absorption, in essence, involves mechanical onset analysis of this fold- and-thrust belt. However, due to the two-décollement- level thrust system with active 'flat-ramp- flat' geometry décollement, the predication of fault activation in the LMS has beyond the scope of Critical Coulomb wedge theory, not to mention the synchronous listric-type splay fault rupturing in the Beichuan fault (BCF) and Pengguan fault (PGF). For that purpose, we adopted maximum strength theorem, the kinematic approach of limit analysis, to deal with mechanical analysis of fault activation. Four end-member failure modes, or collapse mechanisms (CMs) in classical limit analysis, are proposed corresponding to the rupture of BCF, PGF, Range Frontal Blind Fault (RFBF) and the rupture of the flat-ramp- flat décollement into Sichuan Basin via RFBF. By selecting the available CMs via finite element limit analysis, the listric geometry of BCF and PGF is demonstrated to the dominant factor in trapping deformation in the hinterland. To activate the high-angle Beichuan splay fault, low cohesion and low friction angle on the BCF are combined effects on the rupturing of BCF. The change in cohesion and friction on BCF eventually forms the transition state between high angle BCF and low-angle PGF. Besides, due to the existence of low frictional upper décollement layer in Sichuan Basin (the Triassic evaporate layer), small amount of deformation is attracted into the Sichuan Basin forming small-scale thrusting folding. Moreover, favorable deformation migration toward Sichuan Basin is jointly influenced by

  19. Negative Ion Density Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  20. ESR dating of the fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2004-01-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs, grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Ulzin nuclear reactor. ESR signals of quartz grains separated from fault rocks collected from the E-W trend fault are saturated. This indicates that the last movement of these faults had occurred before the quaternary period. ESR dates from the NW trend faults range from 300ka to 700ka. On the other hand, ESR date of the NS trend fault is about 50ka. Results of this research suggest that long-term cyclic fault activity near the Ulzin nuclear reactor continued into the pleistocene.

  1. Diagnosing Intermittent and Persistent Faults using Static Bayesian Networks

    Science.gov (United States)

    Megshoel, Ole Jakob

    2010-01-01

    Both intermittent and persistent faults may occur in a wide range of systems. We present in this paper the introduction of intermittent fault handling techniques into ProDiagnose, an algorithm that previously only handled persistent faults. We discuss novel algorithmic techniques as well as how our static Bayesian networks help diagnose, in an integrated manner, a range of intermittent and persistent faults. Through experiments with data from the ADAPT electrical power system test bed, generated as part of the Second International Diagnostic Competition (DXC-10), we show that this novel variant of ProDiagnose diagnoses intermittent faults accurately and quickly, while maintaining strong performance on persistent faults.

  2. Earthquake probabilities for the Wassatch front region in Utah, Idaho, and Wyoming

    Science.gov (United States)

    Wong, Ivan G.; Lund, William R.; Duross, Christopher; Thomas, Patricia; Arabasz, Walter; Crone, Anthony J.; Hylland, Michael D.; Luco, Nicolas; Olig, Susan S.; Pechmann, James; Personius, Stephen; Petersen, Mark D.; Schwartz, David P.; Smith, Robert B.; Rowman, Steve

    2016-01-01

    In a letter to The Salt Lake Daily Tribune in September 1883, U.S. Geological Survey (USGS) geologist G.K. Gilbert warned local residents about the implications of observable fault scarps along the western base of the Wasatch Range. The scarps were evidence that large surface-rupturing earthquakes had occurred in the past and more would likely occur in the future. The main actor in this drama is the 350-km-long Wasatch fault zone (WFZ), which extends from central Utah to southernmost Idaho. The modern Wasatch Front urban corridor, which follows the valleys on the WFZ’s hanging wall between Brigham City and Nephi, is home to nearly 80% of Utah’s population of 3 million. Adding to this circumstance of “lots of eggs in one basket,” more than 75% of Utah’s economy is concentrated along the Wasatch Front in Utah’s four largest counties, literally astride the five central and most active segments of the WFZ.

  3. Interpretation of a 3D Seismic-Reflection Volume in the Basin and Range, Hawthorne, Nevada

    Science.gov (United States)

    Louie, J. N.; Kell, A. M.; Pullammanappallil, S.; Oldow, J. S.; Sabin, A.; Lazaro, M.

    2009-12-01

    A collaborative effort by the Great Basin Center for Geothermal Energy at the University of Nevada, Reno, and Optim Inc. of Reno has interpreted a 3d seismic data set recorded by the U.S. Navy Geothermal Programs Office (GPO) at the Hawthorne Army Depot, Nevada. The 3d survey incorporated about 20 NNW-striking lines covering an area of approximately 3 by 10 km. The survey covered an alluvial area below the eastern flank of the Wassuk Range. In the reflection volume the most prominent events are interpreted to be the base of Quaternary alluvium, the Quaternary Wassuk Range-front normal fault zone, and sequences of intercalated Tertiary volcanic flows and sediments. Such a data set is rare in the Basin and Range. Our interpretation reveals structural and stratigraphic details that form a basis for rapid development of the geothermal-energy resources underlying the Depot. We interpret a map of the time-elevation of the Wassuk Range fault and its associated splays and basin-ward step faults. The range-front fault is the deepest, and its isochron map provides essentially a map of "economic basement" under the prospect area. There are three faults that are the most readily picked through vertical sections. The fault reflections show an uncertainty in the time-depth that we can interpret for them of 50 to 200 ms, due to the over-migrated appearance of the processing contractor’s prestack time-migrated data set. Proper assessment of velocities for mitigating the migration artifacts through prestack depth migration is not possible from this data set alone, as the offsets are not long enough for sufficiently deep velocity tomography. The three faults we interpreted appear as gradients in potential-field maps. In addition, the southern boundary of a major Tertiary graben may be seen within the volume as the northward termination of the strong reflections from older Tertiary volcanics. Using a transparent volume view across the survey gives a view of the volcanics in full

  4. Fault zone fabric and fault weakness

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C.

    2009-01-01

    Geological and geophysical evidence suggests that some crustal faults are weak1–6 compared to laboratory measurements of frictional strength7. Explanations for fault weakness include the presence of weak minerals4, high fluid pressures within the fault core8,9 and dynamic processes such as

  5. Implications of fault constitutive properties for earthquake prediction

    Science.gov (United States)

    Dieterich, J.H.; Kilgore, B.

    1996-01-01

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance D(c), apparent fracture energy at a rupture front, time- dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of D, apply to faults in nature. However, scaling of D(c) is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  6. Neotectonics and structure of the Himalayan deformation front in the Kashmir Himalaya, India: Implication in defining what controls a blind thrust front in an active fold-thrust belt

    Science.gov (United States)

    Gavillot, Y. G.; Meigs, A.; Yule, J. D.; Rittenour, T. M.; Malik, M. O. A.

    2014-12-01

    Active tectonics of a deformation front constrains the kinematic evolution and structural interaction between the fold-thrust belt and most-recently accreted foreland basin. In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline (SMA), and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the SMA hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and three yield OSL ages of 53 ka, 33 ka, and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Muree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggest that rock uplift rates across the SMA range between 2.0-1.8 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rate across the SMA ranges between 4.4-3.8 mm/yr since ~53 ka. Of that rate, ~1 mm/yr is likely absorbed by minor faulting in the near field of the fold axis. Given that Himalaya-India convergence is ~18.8-11 mm/yr, internal faults north of the deformation front, such as the Riasi thrust absorbs more of the Himalayan shortening than does the HFT in Kashmir. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled by pre-existing basin architecture in Kashmir, in which the thick succession

  7. Diagnostics Tools Identify Faults Prior to Failure

    Science.gov (United States)

    2013-01-01

    Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.

  8. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models

    Science.gov (United States)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-04-01

    The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared

  9. Light-Front QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-11-30

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.

  10. Soils and geomorphic evolution of bedrock facets on a tectonically active mountain front, western Sangre de Cristo Mountains, New Mexico

    Science.gov (United States)

    Menges, Christopher M.

    1990-09-01

    Soil profiles, colluvial stratigraphy, and detailed hillslope morphology are key elements used for geomorphic interpretations of the form and long-term evolution of triangular facets on a 1200 m high, tectonically active mountain front. The facets are developed on Precambrian gneisses and Tertiary volcanic and plutonic rocks along a complexly segmented, active normal-fault zone in the Rio Grande rift of northern New Mexico. The detailed morphologies of 20- to 350 m high facets are defined by statistical and time-series analyses of 40 field transects that were keyed to observations of colluvium, bedrock, microtopography, and vegetation. The undissected parts of most facets are transport-limited hillslopes mantled with varying thicknesses (0.1 to > 1 m thick) of sand and gravel colluvium between generally sparse (≤10-30%) bedrock outcrops. Facet soils range from (a) thin (≤ 0.2 m) weakly developed soils with cumulic silty A or transitional A/B epipedons above Cox horizons in bedrock or colluvium, to (b) deep (≥0.5-1 m) moderately to strongly developed profiles containing thick cambic (Bw) and/or argillic (Bt) horizons that commonly extend into highly weathered saprolitic bedrock. The presence of strongly weathered profiles and thick colluvium suggests that rates of colluvial transport and hillslope erosion are less than or equal to rates of soil development over at least a large part of the Holocene. The catenary variation of soils and colluvium on selected facet transects indicate that the degree of soil development generally increases and the thickness of colluvium decreases upslope on most facets. This overall pattern is commonly disrupted on large facet hillslopes by irregular secondary soil variations linked to intermediate-scale (20-60 + m long) concave slope elements. These features are interpreted to reflect discontinuous transport and erosion of colluvium down-slope below bedrock outcrops. The degree of weathering in subsurface bedrock commonly

  11. Influence of fault asymmetric dislocation on the gravity changes

    Directory of Open Access Journals (Sweden)

    Duan Hurong

    2014-08-01

    Full Text Available A fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth’s crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, energy release associated with rapid movement on active faults is the cause of most earthquakes. The relationship between unevenness dislocation and gravity changes was studied on the theoretical thought of differential fault. Simulated observation values were adopted to deduce the gravity changes with the model of asymmetric fault and the model of Okada, respectively. The characteristic of unevennes fault momentum distribution is from two end points to middle by 0 according to a certain continuous functional increase. However, the fault momentum distribution in the fault length range is a constant when the Okada model is adopted. Numerical simulation experiments for the activities of the strike-slip fault, dip-slip fault and extension fault were carried out, respectively, to find that both the gravity contours and the gravity variation values are consistent when either of the two models is adopted. The apparent difference lies in that the values at the end points are 17. 97% for the strike-slip fault, 25. 58% for the dip-slip fault, and 24. 73% for the extension fault.

  12. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  13. Influence of host lithofacies on fault rock variation in carbonate fault zones: A case study from the Island of Malta

    Science.gov (United States)

    Michie, E. A. H.

    2015-07-01

    Relatively few studies have examined fault rock microstructures in carbonates. Understanding fault core production helps predict the hydraulic behaviour of faults and the potential for reservoir compartmentalisation. Normal faults on Malta, ranging from fracture networks that develop into breccias. Alternatively, this lithofacies is commonly recrystallised. In contrast, in the coarse-grained, heterogeneous grain-dominated carbonates the development of faulting is characterised by localised deformation, creating protocataclasite and cataclasite fault rocks. Cementation also occurs within some grain-dominated carbonates close to and on slip surfaces. Fault rock variation is a function of displacement as well as juxtaposed lithofacies. An increase in fault rock variability is observed at higher displacements, potentially creating a more transmissible fault, which opposes what may be expected in siliciclastic and crystalline faults. Significant heterogeneity in the fault rock types formed is likely to create variable permeability along fault-strike, potentially allowing across-fault fluid flow. However, areas with homogeneous fault rocks may generate barriers to fluid flow.

  14. The relationship between normal and strike-slip faults in Valley of Fire State Park, Nevada, and its implications for stress rotation and partitioning of deformation in the east-central Basin and Range

    Science.gov (United States)

    Aydin, Atilla; de Joussineau, Ghislain

    2014-06-01

    This study expands on our earlier studies of the evolution of fracturing and faulting in the Jurassic aeolian Aztec Sandstone exposed over a large area in the Valley of Fire State Park, southeastern Nevada. Based on a nearly three-dimensional data set collected from 200-m-high cliff-face exposures with stair-case morphology composed of steep and flat parts, we find that a series of inclined, relatively low-angle normal faults and their splay fractures are precursors of the strike-slip fault network that we previously documented. We discuss the significance of this finding in terms of the tectonics of the broader area, stress rotation, partitioning of deformation, and the development of fracture clusters with compartmentalization of the structures as a function of spatial, depositional and deformational domains.

  15. The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-Value

    Science.gov (United States)

    King, Geoffrey

    1983-09-01

    Plate tectonics has provided a method of visualizing the geometry of the deformation of the Earth’s lithosphere on a large scale. The description is so concise that for many purposes it provides an explanation of geological processes that overshadows the need to understand the driving processes. The mechanics of the zones between the plates are less well understood, particularly in continental regions where large areas are subject to deformation. Both continuous and discontinuous models have been tried but both have obvious drawbacks. In this paper concepts of geometrical self-similarity are adapted to provide a description of the multiscale faulting that must occur in such environments. The fractal geometry of Mandelbrot is applied to the problem of continental triple junctions and it is shown that certain arrays of faults can “stabilize” a junction where three faults meet. The conditions required to do this indicate that earthquakes of different sizes must occur in certain proportions. For simple assumptions and conditions of triaxial deformation the proportion is that which is observed globally for earthquakes. Thus, the b-value of unity found empirically by Gutenberg and Richter and others can be regarded as a consequence of three-dimensional self-similar fault geometry. The geometric description can be used to understand the way in which fault systems evolve. Earthquakes initiate and terminate in regions where fault systems bend, because the bends become zones subject to multiscale faulting. Movement on many faults in these regions distributes the stress concentration of a propagating rupture front and terminates motion. The multiple faults create offsets in the next fault to move. These offsets are the asperities that must break before a new earthquake occurs. The self-similar fault geometry requires that a substantial proportion of the deformation in a fault system occur on minor faults and not on the main faults. The proportion of the deformation

  16. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  17. Iowa Bedrock Faults

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  18. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos

    2004-01-01

    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  19. Software fault tolerance

    OpenAIRE

    Kazinov, Tofik Hasanaga; Mostafa, Jalilian Shahrukh

    2009-01-01

    Because of our present inability to produce errorfree software, software fault tolerance is and will contiune to be an important consideration in software system. The root cause of software design errors in the complexity of the systems. This paper surveys various software fault tolerance techniquest and methodologies. They are two gpoups: Single version and Multi version software fault tolerance techniques. It is expected that software fault tolerance research will benefit from this research...

  20. Dynamics of curved fronts

    CERN Document Server

    Pelce, Pierre

    1989-01-01

    In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.

  1. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out that there...

  2. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2002-01-01

    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  3. Constraining deformation history and recent activity along the Tuz Gölü fault zone, Central Anatolia, Turkey

    Science.gov (United States)

    Krystopowicz, N. J.; Schoenbohm, L. M.; Cosca, M. A.

    2013-12-01

    The 200 km long, dextral, transtensive Tuz Gölü fault zone is a prominent northwest-striking feature in Central Anatolia. It is one of the most significant structures in Central Anatolia in that it lies within the transition zone between the Western Anatolian Extensional Province and the Eastern Anatolian Contractional Province; its study therefore offers valuable insight into how Central Anatolia is affected by lateral extrusion related to collision in the east, and gravitational pull forces associated with subduction in the west. Proposals for the initiation of the Tuz Gölü fault zone range from Cretaceous to Neogene times, and the amount of recent activity along this fault system remains poorly constrained. Furthermore, potential basinward migration of deformation into the Tuz Gölü basin poses the question as to whether or not this fault system is active in the Holocene. Previous work suggests that migration of deformation towards the basin interior may be related to lithospheric-scale processes such as plateau development, microplate extrusion, or the onset of crustal thinning associated with slab-tear propagation in subducting African lithosphere. In this study, we use a combination of paleostress and morpho-tectonic analysis to further delineate the segmentation and present activity of the Tuz Gölü fault zone. Paleostress analysis offers insight into the deformation history of the region as well as the modern-day stress regime. We conducted a morphometric analysis of over 300 drainage basins along the range-front, which reveal variations that characterize the unique development of numerous fault strands in the region. Statistical analysis of hypsometric curves, systematic variation in basin morphology and orientation, as well as changes in mountain-front sinuosity reveal fault segmentation. Additionally, field mapping and Ar-Ar dating of offset lava flows from the Hasan Dag Volcano quantitatively constrain slip-rates in the southeastern portion of the

  4. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    Science.gov (United States)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  5. Mineral replacement front propagation in deformed rocks

    Science.gov (United States)

    Beaudoin, Nicolas; Koehn, Daniel; Kelka, Ulrich

    2015-04-01

    Fluid migrations are a major agent of contaminant transport leading to mineral replacement in rocks, impacting their properties as porosity, permeability, and rheology. Understanding the physical and chemical mechanisms that govern mineralogical replacement during and after deformation is required to better understand complex interplays between fluid and rocks that are involved in faulting, seismic cycle, and resource distribution in the upper crust. Dolomitization process related to hydrothermal fluid flow is one of the most studied and debated replacement processes in earth sciences. Dolomitization of limestone is of economic importance as well, as it stands as unconventional oil reservoirs and is systematically observed in Mississippian-Valley Type ore deposit. Despite recent breakthrough about dolomitization processes at large-scale, the small-scale propagation of the reaction front remains unclear. It is poorly documented in the occurrence of stylolites and fractures in the medium while pressure-solution and fracture network development are the most efficient deformation accomodation mechanism in limestone from early compaction to layer-parallel shortening. Thus, the impact of such network on geometry of replaced bodies and on replacement front propagation deserves specific attention. This contribution illustrates the role of fracture and stylolites on the propagation of a reaction front. In a 2 dimensional numerical model we simulate the dolomitization front propagation in a heterogeneous porous medium. The propagation of the reaction front is governed by the competition between advection and diffusion processes, and takes into account reaction rates, disorder in the location of the potential replacement seeds, and permeability heterogeneities. We add stylolites and fractures that can act as barriers or drains to fluid flow according to their orientation and mineralogical content, which can or cannot react with the contaminant. The patterns produced from

  6. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  7. Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations

    Science.gov (United States)

    Bizzarri, A.; Dunham, Eric M.; Spudich, P.

    2010-01-01

    We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation

  8. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step....

  9. On Front Slope Stability of Berm Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    2013-01-01

    The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height......, relative berm width, method of armour stone placement, and hydraulic parameters. The formulae should cover the structure range from statically stable berm breakwaters to conventional double layer armoured breakwaters....

  10. Stationary flow near fronts

    Directory of Open Access Journals (Sweden)

    Reinhold Steinacker

    2016-12-01

    Full Text Available In 1906, the Austrian scientist Max Margules published a paper on temperature stratification in resting and non-accelerated moving air. The paper derives conditions for stationary slopes of air mass boundaries and was an important forerunner of frontal theories. Its formulation of relations between changes in density and geostrophic wind across the front is basically a discrete version of the thermal wind balance equation. The paper was highly influential and is still being cited to the present day. This paper accompanies an English translation of Margules’ seminal paper. We conclude here our “Classic Papers” series of the Meteorologische Zeitschrift.

  11. Climate change and Greenland White-fronted Geese Anser albifrons flavirostris: shifts in distribution and advancement in spring departure times at Wexford versus elsewhere in the winter range

    DEFF Research Database (Denmark)

    Fox, Anthony David; Merne, Oscar J; Walsh, Alyn J.

    2012-01-01

    in migration timing. The more rapid advancement of spring migration at Wexford compared to elsewhere in the range and the retention of wintering geese there in contrast to declining trends amongst the population as a whole suggest that local management of the food resource at Wexford may be responsible...

  12. Kinematic Evolution of the Western Pyrenees Thrust Front From Paleomagnetic Analysis on its Foreland Basin.

    Science.gov (United States)

    Almar, Y.; Beamud, E.; Muñoz, J. A.; Garcés, M.; Murelaga, X.

    2007-12-01

    The Pyrenees is a collisional orogen formed during the Alpine orogeny. Its southwestern frontal thrust was originated as a result of the Cenozoic inversion of preexisting extensional faults. The emplacement of the frontal thrust in the Western Pyrenees generated a foreland basin, which locally accumulated more than 4,500 meters of Tertiary sediments. The kinematic evolution of the Western Pyrenees thrust front is poorly constrained due to the scarcity of reliable age constraints within the Tertiary sediments. However, the good exposure conditions of syntectonic continental deposits in its foreland basin makes it an excellent scenario to carry out paleomagnetic and structural studies in order to unravel the kinematic history, geometry and evolution of the thrust front. A magnetostratigraphic composite section along the continental basin infill was sampled covering up to 3,000 m of succession. Correlation of the local magnetostratigraphy with the GPTS was helped by a new mammal fossil locality found in continental sediments and attributed to the Agenian local biozone Y (MN2D). The cronostratigraphy of the tectosedimentary units, ranging from lower Oligocene (Cr12r) to lower Miocene, provides further constraints on the timing of two main tectosedimentary events recorded as major unconformities within the basin infill. From this study, sedimentation rates have been also obtained. The analysis of several paleomagnetic sites revealed that no vertical axes rotations occurred in the Tertiary sediments regardless superimposed folding with oblique axes could be observed, and the proximity of adjacent structures as the Estella diapir and the Pamplona fault. Finally, the analysis of the anisotropy of magnetic susceptibility together with collected sedimentary data suggests that magnetic fabrics record both, a depositional and tectonic fabric.

  13. Magnetic fabric of brittle fault rocks

    Science.gov (United States)

    Pomella, Hannah

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia and gouge, fault rocks with clast-in-matrix textures. A noteworthy property of both gouge and breccia is the often observed presence of a fabric that is defined by the preferred orientation of clasts and grains in the matrix. In the very fine-grained gouge and in the matrix of the breccia the fabric is not visible in the field or in thin sections but can probably be detected by AMS analyses. For the present study different kinds of brittle fault rocks have been sampled on two faults with known tectonic settings, in order to allow for a structural interpretation of the measured AMS signal. The measurements were carried out with an AGICO MFK1-FA Kappabridge and a CS4 furnace apparatus at the Institute of Geology, University of Innsbruck. Fault gouge was sampled on the Naif fault located in the Southern Alps, E of Meran, South Tyrol, Italy. Along this fault the Permian Granodiorite overthrusts the Southalpine basement and its Permomesozoic cover. The Neoalpine thrust fault is characterised by a wide cataclastic zone and an up to 1 m thick fault gouge. The gouge was sampled using paleomagnetic sample boxes. Heating experiments indicate that the magnetic fabric is dominated by paramagnetic minerals (>95%). The samples provide a magnetic susceptibility in the range of +10*E-5 [SI]. The K-min axis of the magnetic ellipsoid corresponds approximately to the pol of the fault plane measured in the field. However the whole magnetic ellipsoid shows a variation in the inclination compared to the structural data. Fine-grained ultracataclasites were sampled on the Assergi fault, located in the Abruzzi Apennines, NE of L'Aquila, Italy. This normal fault was active in historical time and crosscuts limestones as well as talus deposits. An up to 20 cm thick

  14. How Faults Shape the Earth.

    Science.gov (United States)

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  15. Convection induced by thermal gradients on thin reaction fronts

    Science.gov (United States)

    Ruelas Paredes, David R. A.; Vasquez, Desiderio A.

    2017-09-01

    We present a thin front model for the propagation of chemical reaction fronts in liquids inside a Hele-Shaw cell or porous media. In this model we take into account density gradients due to thermal and compositional changes across a thin interface. The front separating reacted from unreacted fluids evolves following an eikonal relation between the normal speed and the curvature. We carry out a linear stability analysis of convectionless flat fronts confined in a two-dimensional rectangular domain. We find that all fronts are stable to perturbations of short wavelength, but they become unstable for some wavelengths depending on the values of compositional and thermal gradients. If the effects of these gradients oppose each other, we observe a range of wavelengths that make the flat front unstable. Numerical solutions of the nonlinear model show curved fronts of steady shape with convection propagating faster than flat fronts. Exothermic fronts increase the temperature of the fluid as they propagate through the domain. This increment in temperature decreases with increasing speed.

  16. Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California

    Science.gov (United States)

    Brenneman, M. J.; Bykerk-Kauffman, A.

    2012-12-01

    The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial

  17. Secondary Normal Faulting Near the Terminus of a Strike-Slip Fault Segment in the Lake Mead Fault System, SE Nevada

    Science.gov (United States)

    Marshall, S. T.; Kattenhorn, S. A.

    2003-12-01

    The 95 km long Lake Mead Fault System (LMFS), located about 50 km east of Las Vegas and about 100 km west of the relatively undeformed Colorado Plateau, consists of a group of NE/SW-trending Miocene left-lateral strike-slip faults with a total offset of 65-110 km. Previous work suggests that the LMFS acted as a transform zone to accommodate differential extension between the southern Basin and Range to the north and the metamorphic core complexes of the Colorado River extensional corridor to the south. Studies of individual faults of the LMFS have shown that strike-slip faulting was the dominant mode of deformation while normal faulting, pull-apart basins, and push up structures formed as localized secondary structures related to strike-slip faults. This study focuses on the portion of the LMFS west of the Overton Arm of Lake Mead, which consists of the Bitter Spring Valley Fault (BSVF) and the Hamblin Bay Fault (HBF). Both faults have estimated offsets of 20-60 km, but past mapping efforts have been inconsistent with respect to the BSVF trace locations and degree of fault complexity. In order to demonstrate that the apparent complexity of the BSVF is the result of segmentation and secondary normal faults associated with individual segments, we focused field mapping efforts on an apparent segment of the BSVF near Pinto Ridge, located southwest of the Echo Hills and about 5 km NW of the more prominent HBF. We have identified nine normal faults that initiate near the SW tip of a segment of the BSVF and die out to the south before reaching the HBF. The offset on all these faults is a maximum at their northern intersection with the BSVF, then steadily decreases to zero away from the BSVF. These normal faults range from 0.6 km-2.25 km in length and have variable fault trace patterns. The normal fault originating closest to the SW tip of the BSVF segment curves with increasing distance away towards parallelism with the BSVF. The eight other normal faults are all oriented

  18. Earthquake Hazard and Segmented Fault Evolution, Hat Creek Fault, Northern California

    Science.gov (United States)

    Blakeslee, M. W.; Kattenhorn, S. A.

    2010-12-01

    indicates that surface rupture undergoes a 4.5 km right-step from the Active scarp west to the Rim, perhaps due to the fault responding to localized volcanic activity at Cinder Butte. The newly mapped segment ruptured repeatedly along the pre-existing Rim, creating a cumulative throw of up to 150 m. The addition of this segment increases the seismic risk in this area. Previous studies suggest that a surface breaking rupture along the Hat Creek fault could produce an earthquake magnitude of at least M 6.0. However, with the increase in rupture length, the fault system has the potential to produce at least a M 6.5. Finally, we consider the importance of deformation within segment overlap zones (relay ramps), which contribute to the distribution of fault throw, and can create inaccurate anomalies in throw profiles if not properly accounted for. Relay ramps tilt either toward the front fault segment or toward the back fault segment. We measure the change in elevation across relay ramps perpendicular to the fault strike to quantify the ramp contribution to fault throw, then incorporate this data into throw profiles to eliminate anomalous peaks or lows where segments overlap. More accurate throw profiles lead to better slip rate estimates for the fault system.

  19. Late Pleistocene dip-slip faulting along the Dunajec Fault, West Carpathians: Insights from alluvial sediments

    Science.gov (United States)

    Olszak, Janusz

    2017-10-01

    This paper presents vertical movement along the Dunajec Fault during the Late Pleistocene and suggests Quaternary tectonic reactivation of diagonal strike-slip faults and their transformation into dip-slip faults in the West Carpathians. Optically stimulated luminescence (OSL) dating of Pleistocene alluvial sediments of the Dunajec and the Ochotnica rivers was employed to determine the time range of deposition of these sediments. Vertical and spatial distribution of the obtained OSL ages imply that the alluvial sediments were affected by the Dunajec Fault, which appears to have acted as a scissor fault during the Late Pleistocene. The results contribute to the discussion on the recent evolution of the Carpathians, and may support the concept of extensional collapse of the orogen.

  20. Uncovering dynamic fault trees

    NARCIS (Netherlands)

    Junges, Sebastian; Guck, Dennis; Katoen, Joost P.; Stoelinga, Mariëlle Ida Antoinette

    Fault tree analysis is a widespread industry standard for assessing system reliability. Standard (static) fault trees model the failure behaviour of systems in dependence of their component failures. To overcome their limited expressive power, common dependability patterns, such as spare management,

  1. Ground Motions Due to Earthquakes on Creeping Faults

    Science.gov (United States)

    Harris, R.; Abrahamson, N. A.

    2014-12-01

    We investigate the peak ground motions from the largest well-recorded earthquakes on creeping strike-slip faults in active-tectonic continental regions. Our goal is to evaluate if the strong ground motions from earthquakes on creeping faults are smaller than the strong ground motions from earthquakes on locked faults. Smaller ground motions might be expected from earthquakes on creeping faults if the fault sections that strongly radiate energy are surrounded by patches of fault that predominantly absorb energy. For our study we used the ground motion data available in the PEER NGA-West2 database, and the ground motion prediction equations that were developed from the PEER NGA-West2 dataset. We analyzed data for the eleven largest well-recorded creeping-fault earthquakes, that ranged in magnitude from M5.0-6.5. Our findings are that these earthquakes produced peak ground motions that are statistically indistinguishable from the peak ground motions produced by similar-magnitude earthquakes on locked faults. These findings may be implemented in earthquake hazard estimates for moderate-size earthquakes in creeping-fault regions. Further investigation is necessary to determine if this result will also apply to larger earthquakes on creeping faults. Please also see: Harris, R.A., and N.A. Abrahamson (2014), Strong ground motions generated by earthquakes on creeping faults, Geophysical Research Letters, vol. 41, doi:10.1002/2014GL060228.

  2. QUENCH FRONT PROPAGATION IN THE ANNULAR CHANNEL

    Directory of Open Access Journals (Sweden)

    Jan Stepanek

    2016-12-01

    Full Text Available Understanding the quench front propagation during bottom core reflooding is crucial for the effective cooling during the LOCA accident. The results presented in this paper were obtained on an experimental loop with an annular test section. The test section consists of a vertical electrically heated stainless steel tube with outer diameter 9 mm and length of 1.7 m. The heated tube is placed inside a glass tube with the inner diameter 14.5 mm. Water mass flux during the reflooding is in the range from 100 kg.m−2.s−1 up to 140 kg.m−2.s−1 and the initial wall temperature of the stainless steel tube is in the range from 250 °C up to 800 °C. The presented results show the influence of the initial conditions on the quench front propagation and the complexity of the phenomenon.

  3. Displacement Processes in Stable Drainage Fronts

    Science.gov (United States)

    Breen, S. J.; Pride, S. R.; Manga, M.

    2016-12-01

    Drainage fronts are stabilized at large bond number, when a low density nonwetting fluid displaces a high density wetting fluid from above. This is an ideal flow scenario for studying the correspondence between pore scale processes and continuum models because the front is a persistent macroscale feature that is propagated by discrete, multiplepore scale displacements. We present new observations of stable air/water drainage in thin, threedimensional, poured bead packs at varying capillary number. With backlighting and a high speed camera, we observe short range front velocities that are an order of magnitude larger than bulk pore velocity, consistent with previous studies in ordered 2D structures. We also quantify displacement lengths and front width. For comparison to continuum simulations, we measure saturation by light transmission continuously over a series of 1 cm length voxels. We focus on the critical nonwetting saturation (CNS, or "emergence point") at which voxels are percolated by air and continuum air permeability becomes nonzero. We find that mean CNS is capillary number dependent even at large bond number, with larger CNS at lower capillary number. Continuum simulations with an equivalent discretization demonstrate that CNS is a significant source of uncertainty for predictions of the time and saturation profile at chamber-length air breakthrough.

  4. Provenance of alluvial fan deposits to constrain the mid-term offsets along a strike-slip active fault: the Elsinore fault in the Coyote Mountains, Imperial Valley, California.

    Science.gov (United States)

    Masana, Eulalia; Stepancikova, Petra; Rockwell, Thomas

    2013-04-01

    The lateral variation in rates along a fault and its constancy along time is a matter of discussion. To give light to this discussion, short, mid and long term offset distribution along a fault is needed. Many studies analyze the short-term offset distribution along a strike-slip fault that can be obtained by the analysis of offset features imprinted in the morphology of the near-fault area. We present an example on how to obtain the mid- to long-term offset values based on the composition of alluvial fans that are offset by the fault. The study area is on the southern tip of the Elsinore fault, which controls the mountain front of the Coyote Mountains (California). The Elsinore-Laguna Salada fault is part of the San Andreas fault (SAF) system, extending 250 km from the Los Angeles Basin southeastward into the Gulf of California, in Mexico. The slip-rate on the southern Elsinore fault is believed to be moderate based on recent InSAR observations, although a recent study near Fossil Canyon (southern Coyote Mountains) suggests a rate in the range of 1-2 mm/yr. For this study we processed the airborne LiDAR dataset (EarthScope Southern & Eastern California, SoCal) to map short to mid-term alluvial offsets. We reprocessed the point clouds to produce DEMs with 0.5m and 0.25m grids and we varied the insolation angles to illuminate the various fault strands and the offset features. We identified numerous offset features, such as rills, channel bars, channel walls, alluvial fans, beheaded channels and small erosional basins that varied in displacement from 1 to 350 m. For the mid- to long-term offsets of the alluvial fans we benefited from the diverse petrological composition of their sources. Moreover, we recognized that older alluvium, which is offset by greater amounts, is in some cases buried beneath younger alluvial fan deposits and separated by buried soils. To determine the source canyon of various alluvial elements, we quantified the clast assemblage of each source

  5. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S.A.

    failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis......This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... that carried the control system designer through the steps necessary to consider fault handling in an early design phase. It was shown how an existing control loop with interface to the plant wide control system could be extended with three additional modules to obtain fault tolerance: Fault detection...

  6. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  7. Active learning of Pareto fronts.

    Science.gov (United States)

    Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto

    2014-03-01

    This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.

  8. Snowplow Injection Front Effects

    Science.gov (United States)

    Moore, T. E.; Chandler, M. O.; Buzulukova, N.; Collinson, G. A.; Kepko, E. L.; Garcia-Sage, K. S.; Henderson, M. G.; Sitnov, M. I.

    2013-01-01

    As the Polar spacecraft apogee precessed through the magnetic equator in 2001, Polar encountered numerous substorm events in the region between geosynchronous orbit and 10 RE geocentric distance; most of them in the plasma sheet boundary layers. Of these, a small number was recorded near the neutral sheet in the evening sector. Polar/Thermal Ion Dynamics Experiment provides a unique perspective on the lowest-energy ion plasma, showing that these events exhibited a damped wavelike character, initiated by a burst of radially outward flow transverse to the local magnetic field at approximately 80 km/s. They then exhibit strongly damped cycles of inward/outward flow with a period of several minutes. After one or two cycles, they culminated in a hot plasma electron and ion injection, quite similar to those observed at geosynchronous orbit. Cold plasmaspheric plasmas comprise the outward flow cycles, while the inward flow cycles contain counterstreaming field-parallel polar wind-like flows. The observed wavelike structure, preceding the arrival of an earthward moving substorm injection front, suggests an outward displacement driven by the inward motion at local times closer to midnight, that is, a "snowplow" effect. The damped in/out flows are consistent with interchange oscillations driven by the arrival at the observed local time by an injection originating at greater radius and local time.

  9. Fronts in Large Marine Ecosystems

    Science.gov (United States)

    Belkin, Igor M.; Cornillon, Peter C.; Sherman, Kenneth

    2009-04-01

    Oceanic fronts shape marine ecosystems; therefore front mapping and characterization are among the most important aspects of physical oceanography. Here we report on the first global remote sensing survey of fronts in the Large Marine Ecosystems (LME). This survey is based on a unique frontal data archive assembled at the University of Rhode Island. Thermal fronts were automatically derived with the edge detection algorithm of Cayula and Cornillon (1992, 1995, 1996) from 12 years of twice-daily, global, 9-km resolution satellite sea surface temperature (SST) fields to produce synoptic (nearly instantaneous) frontal maps, and to compute the long-term mean frequency of occurrence of SST fronts and their gradients. These synoptic and long-term maps were used to identify major quasi-stationary fronts and to derive provisional frontal distribution maps for all LMEs. Since SST fronts are typically collocated with fronts in other water properties such as salinity, density and chlorophyll, digital frontal paths from SST frontal maps can be used in studies of physical-biological correlations at fronts. Frontal patterns in several exemplary LMEs are described and compared, including those for: the East and West Bering Sea LMEs, Sea of Okhotsk LME, East China Sea LME, Yellow Sea LME, North Sea LME, East and West Greenland Shelf LMEs, Newfoundland-Labrador Shelf LME, Northeast and Southeast US Continental Shelf LMEs, Gulf of Mexico LME, and Patagonian Shelf LME. Seasonal evolution of frontal patterns in major upwelling zones reveals an order-of-magnitude growth of frontal scales from summer to winter. A classification of LMEs with regard to the origin and physics of their respective dominant fronts is presented. The proposed classification lends itself to comparative studies of frontal ecosystems.

  10. Analysis of the growth of strike-slip faults using effective medium theory

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, A.; Berryman, J.G.

    2009-10-15

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  11. Slip Rates and Scarp Profiles, Using Terrestrial LiDAR to Quantify Deformation on the Aberdeen Fault, South-Eastern California

    Science.gov (United States)

    Gold, P.; Cowgill, E.

    2008-12-01

    High resolution topographic measurements form the basis for slip-rate studies along active fault systems. However, meter-scale features such as fault scarps or offset terrace risers are insufficiently resolved on available remotely-sensed digital elevation models (e.g., 10 m NED), rendering it necessary to make field- based topographic measurements. Terrestrial or tripod mounted LiDAR (T-LiDAR) is a recent technology that has proved useful for making these types of high resolution measurements. In this study we used T-LiDAR to constrain the morphology of a series of fault scarps offsetting an alluvial fan and the flank of a cinder cone along the Aberdeen fault in the eastern Owens Valley. This site lies on the western edge of the Eastern California Shear Zone (ECSZ), a region defined by northwest striking right lateral faulting in south eastern California and western Nevada that accommodates 20-25% of Pacific-North American relative plate motion. The Aberdeen fault is one of a series of northeast striking normal faults that are thought to transfer slip from west to east within the ECSZ. With the T-LiDAR unit, we collected a ~17 million point data set covering an area of ~350 x 150 m from which we generated a 20cm DEM. These data allowed us to study and measure in great detail the series of fault scarps that offset the flank of the cinder cone and the alluvial fan. Located at the northeast end of the Aberdeen fault, this series of scarps exhibits a ~70° change in azimuth moving east along strike as the fault curves into the range front. Using a hillshade image created from the 20cm DEM, we selected three points from one continuous scarp that offsets the fan and the cinder cone from which we calculated a fault dip of 39°. The high resolution of the hillshade DEM also proved critical in interpreting slip history on this section of the Aberdeen fault by showing definitive evidence for two faulting events. Using a series of scarp profiles derived from the T-LiDAR data

  12. Late Quaternary faulting in the Sevier Desert driven by magmatism

    OpenAIRE

    Stahl, T.; Niemi, N. A.

    2017-01-01

    Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleis...

  13. Active folding of fluvial terraces across a `blind' Himalayan deformation front in the Kashmir Himalaya, northwest India.

    Science.gov (United States)

    Gavillot, Y. G.; Meigs, A.; Rittenour, T. M.; Malik, M. O. A.

    2016-12-01

    In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline, and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the Suruin-Mastargh anticline hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and four yield multiple optically stimulated luminescence (OSL) and depth profiles terrigenous cosmogenic nuclides (TCN) ages between 53 ka and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Murree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggests rock uplift rates across the Suruin-Mastargh anticline range between 1.8-2.5 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rates across the Suruin-Mastargh anticline range between 3.8-5.4 mm/yr since 53 ka. Geodetic data indicate that an 11-12 mm/yr arc-normal shortening rate characterizes the interseismic strain accumulation across the plate boundary due to India-Tibet convergence. These data combined with rates of other active internal faults in the Kashmir Himalaya indicate that the Riasi fault accounts for the remainder 60% of the convergence not taken up by the Suruin-Mastargh anticline. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled

  14. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  15. Fault-tolerant design

    CERN Document Server

    Dubrova, Elena

    2013-01-01

    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  16. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...

  17. Structural Architecture of the Western Transverse Ranges and Potential for Large Earthquakes

    Science.gov (United States)

    Levy, Y.; Rockwell, T. K.; Driscoll, N. W.; Shaw, J. H.; Kent, G. M.; Ucarkus, G.

    2015-12-01

    Understanding the subsurface structure of the Western Transverse Ranges (WTR) is critical to assess the seismic potential of large thrust faults comprising this fold-and-thrust belt. Several models have been advanced over the years, building on new data and understandings of thrust belt architecture, but none of these efforts have incorporated the full range of data, including style and rates of late Quaternary deformation in conjunction with surface geology, sub-surface well data and offshore seismic data. In our models, we suggest that the nearly continuous backbone with continuous stratigraphy of the Santa Ynez Mountains is explained by a large anticlinorium over a deep structural ramp, and that the current thrust front is defined by the southward-vergent Pitas Point-Ventura fault. The Ventura Avenue anticline and trend is an actively deforming fault propagation fold over the partially blind Pitas Point-Ventura fault. Details of how this fault is resolved to the surface are not well constrained, but any deformation model must account for the several back-thrusts that ride in the hanging wall of the thrust sheet, as well as the localized subsidence in Carpenteria and offshore Santa Barbara. Our preliminary starting model is a modification of a recently published model that invokes ramp-flat structure, with a deep ramp under the Santa Ynez Mountains, a shallower "flat" with considerable complexity in the hanging wall and a frontal ramp comprising the San Cayetano and Pitas Point thrusts. With the inferred deep ramp under the Santa Ynez Range, this model implies that large earthquakes may extend the entire length of the anticlinorium from Point Conception to eastern Ventura Basin, suggesting that the potential for a large earthquake is significantly higher then previously assumed.

  18. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc

    2012-01-01

    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  19. Depth to Coal Mining in the Colorado Front Range (frimndpthu)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file is a digital polygon representation of the depth to (overburden above) abandoned underground coal mines in the Boulder-Weld coal field, Denver Basin,...

  20. Wildfire risk transmission in the Colorado Front Range, USA

    Science.gov (United States)

    Jessica R. Haas; David E. Calkin; Matthew P. Thompson

    2014-01-01

    Wildfires are a global phenomenon that in some circumstances can result in human casualties, economic loss, and ecosystem service degradation. In this article we spatially identify wildfire risk transmission pathways and locate the areas of highest exposure of human populations to wildland fires under severe, but not uncommon, weather events. We quantify varying levels...

  1. USGS Interactive Map of the Colorado Front Range Infrastructure Resources

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Infrastructure, such as roads, airports, water and energy transmission and distribution facilities, sewage treatment plants, and many other facilities, is vital to...

  2. How segmented is your fault? Deciphering fault relationships from low resolution data

    Science.gov (United States)

    Bramham, Emma; Paton, Douglas; Wright, Tim

    2017-04-01

    Current understanding of the maximum displacement/length (Dmax/L) relationship of faults results from the consolidation of numerous published studies. Many of these studies attempt to constrain the power law exponent, n, where Dmax ∝ Ln, and provide rationale to the spread in results in the cumulative published data. Variations in n across studies are widely acknowledged as being due to differences in rock type, tectonic environment and limitations on fault size range and sample size, both of which can be affected by the acquisition resolution. The extent of the contribution of data resolution to the spread in Dmax/L results is not currently constrained. This study examines the effect of varying data resolution on the length-displacement relationship to determine this contribution. We have created a 0.5 m resolution digital elevation model (DEM) of the Krafla fissure swarm, NE Iceland, using airborne LiDAR and measured the displacement/length profiles of 775 faults, with lengths ranging from 10s to 1000s of metres. The LiDAR data was additionally downsampled to create 10 m and 30 m resolution DEMs from which we measured the displacement/length profiles of 90 and 40 faults respectively. Additionally we selected three major fault systems, measured as single faults at 30 m resolution, measuring all the component faults observed at 10 m and 0.5 m resolution. We suggest that the variation in resolution can account for a substantial amount of the spread observed in the published dataset. Additionally we propose that it is possible to establish whether a measured fault is likely to be a single fault, without segmentation, regardless of the resolution it has been measured at, based on its location within the distribution of the published Dmax/L dataset.

  3. Relationship between displacement and gravity change of Uemachi faults and surrounding faults of Osaka basin, Southwest Japan

    Science.gov (United States)

    Inoue, N.; Kitada, N.; Kusumoto, S.; Itoh, Y.; Takemura, K.

    2011-12-01

    The Osaka basin surrounded by the Rokko and Ikoma Ranges is one of the typical Quaternary sedimentary basins in Japan. The Osaka basin has been filled by the Pleistocene Osaka group and the later sediments. Several large cities and metropolitan areas, such as Osaka and Kobe are located in the Osaka basin. The basin is surrounded by E-W trending strike slip faults and N-S trending reverse faults. The N-S trending 42-km-long Uemachi faults traverse in the central part of the Osaka city. The Uemachi faults have been investigated for countermeasures against earthquake disaster. It is important to reveal the detailed fault parameters, such as length, dip and recurrence interval, so on for strong ground motion simulation and disaster prevention. For strong ground motion simulation, the fault model of the Uemachi faults consist of the two parts, the north and south parts, because of the no basement displacement in the central part of the faults. The Ministry of Education, Culture, Sports, Science and Technology started the project to survey of the Uemachi faults. The Disaster Prevention Institute of Kyoto University is carried out various surveys from 2009 to 2012 for 3 years. The result of the last year revealed the higher fault activity of the branch fault than main faults in the central part (see poster of "Subsurface Flexure of Uemachi Fault, Japan" by Kitada et al., in this meeting). Kusumoto et al. (2001) reported that surrounding faults enable to form the similar basement relief without the Uemachi faults model based on a dislocation model. We performed various parameter studies for dislocation model and gravity changes based on simplified faults model, which were designed based on the distribution of the real faults. The model was consisted 7 faults including the Uemachi faults. The dislocation and gravity change were calculated based on the Okada et al. (1985) and Okubo et al. (1993) respectively. The results show the similar basement displacement pattern to the

  4. Quaternary Fault Lines

    Data.gov (United States)

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  5. "Front" hotshet izvinitsja / Aleksandr Ikonnikov

    Index Scriptorium Estoniae

    Ikonnikov, Aleksandr

    2003-01-01

    Põhiliselt vene rahvusest noori ühendava liikumise "Front" esindajad kavatsevad kohtuda USA suursaadikuga Eestis ja vabandada kevadel suursaatkonna ees vägivallatsemisega lõppenud meeleavalduse pärast

  6. Fault lubrication during earthquakes.

    Science.gov (United States)

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved.

  7. Multi-link faults localization and restoration based on fuzzy fault set for dynamic optical networks.

    Science.gov (United States)

    Zhao, Yongli; Li, Xin; Li, Huadong; Wang, Xinbo; Zhang, Jie; Huang, Shanguo

    2013-01-28

    Based on a distributed method of bit-error-rate (BER) monitoring, a novel multi-link faults restoration algorithm is proposed for dynamic optical networks. The concept of fuzzy fault set (FFS) is first introduced for multi-link faults localization, which includes all possible optical equipment or fiber links with a membership describing the possibility of faults. Such a set is characterized by a membership function which assigns each object a grade of membership ranging from zero to one. OSPF protocol extension is designed for the BER information flooding in the network. The BER information can be correlated to link faults through FFS. Based on the BER information and FFS, multi-link faults localization mechanism and restoration algorithm are implemented and experimentally demonstrated on a GMPLS enabled optical network testbed with 40 wavelengths in each fiber link. Experimental results show that the novel localization mechanism has better performance compared with the extended limited perimeter vector matching (LVM) protocol and the restoration algorithm can improve the restoration success rate under multi-link faults scenario.

  8. Assemblage of strike-slip faults and tectonic extension and ...

    Indian Academy of Sciences (India)

    12

    Am. 436. Bull. 116(5-6):698-717. 437. Cao X Z, Li S Z, Liu X, Suo Y H, Zhao S J, Xu L Q, Dai L M, Wang P C and Yu S. 438. 2013 The intraplate morphotectonic inversion along the Eastern Taihang. 439 mountain fault zone, North China and its mechanism; Earth Sci. Front. 440. 20(4):88-10 (in Chinese with English abstract).

  9. Kinetics of a plasma streamer ionization front

    Science.gov (United States)

    Taccogna, Francesco; Pellegrini, Fabrizio

    2018-02-01

    A streamer is a non-linear and non-local gas breakdown mode. Its large-scale coherent structures, such as the ionization front, are the final results of a hierarchical cascade starting from the single particle dynamics. Therefore, this phenomenon covers, by definition, different space and time scales. In this study, we have reproduced the ionization front formation and development by means of a particle-based numerical methodology. The physical system investigated concerns of a high-voltage ns-pulsed surface dielectric barrier discharge. Different reduced electric field regimes ranging from 50 to 500 Td have been considered for two gases: pure atomic Ar and molecular N2. Results have shown the detailed structure of the negative streamer: the leading edge, the head, the interior and the tail. Its dynamical evolution and the front propagation velocity have been calculated for the different cases. Finally, the deviation of the electron energy distribution function from equilibrium behavior has been pointed out as a result of a fast and very localized phenomenon.

  10. Fault Management Guiding Principles

    Science.gov (United States)

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan

    2011-01-01

    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  11. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  12. Inferring earthquake mechanics from exhumed faults (Invited)

    Science.gov (United States)

    di Toro, G.; Griffith, A.; Nielsen, S. B.; Smith, S. A.; Niemeijer, A. R.; Bistacchi, A.; Mittempergher, S.

    2009-12-01

    Destructive earthquakes nucleate at 7-15 km depth; therefore monitoring active faults at the Earth's surface or interpretation of seismic waves yields limited information regarding earthquake mechanics. A complementary approach involves the integration of field studies of fossil seismic sources now exhumed at the Earth's surface with laboratory friction experiments that reproduce deformation conditions typical of seismic slip. Microstructural and geochemical comparison of the natural and experimental fault rock materials can be used to constrain boundary conditions for theoretical earthquake models. Here we will discuss the preliminary results of a project that takes such an integrated approach. In particular, rock friction experiments, including experiments in a cutting-edge high-velocity-rock-friction apparatus recently installed in Italy, suggest coseismic fault lubrication at seismogenic depths for a variety of host lithologies and tectonic settings. This result is consistent with estimates from field observations and theoretical analysis of rock friction at seismic slip rates. Moreover, experimental and natural fault products have strikingly similar microstructural and geochemical features, suggesting that experiments reproduce natural deformation processes. High velocity friction experiments were performed on smooth surfaces and under low normal stress, so direct extrapolation to seismogenic depths should be performed with caution. For instance, the presence of bumps along natural faults might impede the smooth sliding observed in the experiments. To resolve this scaling issue we measured the fault surface roughness of natural seismogenic faults exposed in large glacially polished outcrops over a range of scales (from 102 to 10-5 m) using (1) terrestrial laser-scanning (LIDAR), (2) orthorectified mosaics of high-resolution digital photographs and, (3) scans of thin sections from cores of the slipping zones. LIDAR scans and photomosaics were georeferenced in 3

  13. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman

    2011-01-01

    a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been......In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... decreasing. And, even though drivers still accounts for a large part of the kernel code and contains the most faults, its fault rate is now below that of other directories, such as arch (HAL) and fs (file systems). These results can guide further development and research efforts. To enable others...

  14. Fault Detection for Industrial Processes

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    2012-01-01

    Full Text Available A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.

  15. What is Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Frei, C. W.; Kraus, K.

    2000-01-01

    availability and reduce the risk of safety hazards. Its aim is to prevent that simple faults develop into serious failure. Fault-tolerant control merges several disciplines to achieve this goal, including on-line fault diagnosis, automatic condition assessment and calculation of remedial actions when a fault......Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to the plant, to personnel or the environment. Fault-tolerant control is the synonym for a set of recent techniques that were developed to increase plant...

  16. Antarctic Ice-Shelf Front Dynamics from ICESat

    Science.gov (United States)

    Robbins, John W.; Zwally, H. Jay; Saba, Jack L.; Yi, Donghui

    2012-01-01

    Time variable elevation profiles from ICESat Laser Altimetry over the period 2003-2009 provide a means to quantitatively detect and track topographic features on polar ice surfaces. The results of this study provide a measure of the horizontal motion of ice-shelf fronts. We examine the time histories of elevation profiles crossing the ice fronts of the Ross, Ronne, Filchner, Riiser-Larson and Fimbul shelves. This provides a basis for estimating dynamics in two dimensions, i.e. in elevation and horizontally in the along-track direction. Ice front velocities, corrected for ground-track intersection angle, range from nearly static to 1.1 km/yr. In many examples, a decrease in elevation up to 1 m/yr near the shelf frontis also detectable. Examples of tabular calving along shelf fronts are seen in some elevation profiles and are confirmed by corresponding MODIS imagery.

  17. Determining on-fault earthquake magnitude distributions from integer programming

    Science.gov (United States)

    Geist, Eric L.; Parsons, Tom

    2018-02-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.

  18. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...... the challenge model and the requirements for challenge participants. In addition, it motivates many of the faults by citing publications that give field data from wind turbine control tests....

  19. Constraining fault growth rates and fault evolution in New Zealand

    OpenAIRE

    Lamarche, G.; Bull, J. M.; Barnes, P.M.; Taylor, S.K.; Horgan, H.

    2000-01-01

    Understanding how faults propagate, grow and interact in fault systems is important because they are primarily responsible for the distribution of strain in the upper crust. They localise deformation and stress release, often producing surface displacements that control sedimentation and fluid flow either by acting as conduits or barriers. Identifying fault spatial distribution, quantifying activity, evaluating linkage mechanism, and estimating fault growth rates are key components in seismic...

  20. A proposed test area for the spaceborne geodynamic ranging system

    Science.gov (United States)

    Lowman, P. D., Jr.

    1978-01-01

    Precise geodetic measurements are proposed in which an orbiting laser obtains intersite distance between retroreflectors 25 to 100 km apart on the ground. The recommended area is a rectangle 200 by 400 km in southern California and adjacent Nevada, trending northeast. It includes the entire width of the San Andreas fault zone, the Garlock fault, the thrust faults of the Transverse Ranges, and the active strike-slip faults of the Mojave Desert.

  1. Front dynamics in turbulent media

    CERN Document Server

    Martí, A C; Sancho, J M

    1997-01-01

    A study of a stable front propagating in a turbulent medium is presented. The front is generated through a reaction-diffusion equation, and the turbulent medium is statistically modeled using a Langevin equation. Numerical simulations indicate the presence of two different dynamical regimes. These regimes appear when the turbulent flow either wrinkles a still rather sharp propagating interfase or broadens it. Specific dependences of the propagating velocities on stirring intensities appropriate to each case are found and fitted when possible according to theoretically predicted laws. Different turbulent spectra are considered.

  2. Synthetic seismicity for the San Andreas fault

    Directory of Open Access Journals (Sweden)

    S. N. Ward

    1994-06-01

    Full Text Available Because historical catalogs generally span only a few repetition intervals of major earthquakes, they do not provide much constraint on how regularly earthquakes recur. In order to obtain better recurrence statistics and long-term probability estimates for events M ? 6 on the San Andreas fault, we apply a seismicity model to this fault. The model is based on the concept of fault segmentation and the physics of static dislocations which allow for stress transfer between segments. Constraints are provided by geological and seismological observations of segment lengths, characteristic magnitudes and long-term slip rates. Segment parameters slightly modified from the Working Group on California Earthquake Probabilities allow us to reproduce observed seismicity over four orders of magnitude. The model yields quite irregular earthquake recurrence patterns. Only the largest events (M ? 7.5 are quasi-periodic; small events cluster. Both the average recurrence time and the aperiodicity are also a function of position along the fault. The model results are consistent with paleoseismic data for the San Andreas fault as well as a global set of historical and paleoseismic recurrence data. Thus irregular earthquake recurrence resulting from segment interaction is consistent with a large range of observations.

  3. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  4. Fault Tolerant Computer Architecture

    CERN Document Server

    Sorin, Daniel

    2009-01-01

    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  5. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR) ...

  6. Fault diagnosis of induction motors

    CERN Document Server

    Faiz, Jawad; Joksimović, Gojko

    2017-01-01

    This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

  7. Fault management and systems knowledge

    Science.gov (United States)

    2016-12-01

    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  8. Improving Multiple Fault Diagnosability using Possible Conflicts

    Data.gov (United States)

    National Aeronautics and Space Administration — Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can...

  9. Topological defects govern crack front motion and facet formation on broken surfaces

    Science.gov (United States)

    Kolvin, Itamar; Cohen, Gil; Fineberg, Jay

    2018-02-01

    Cracks develop intricate patterns on the surfaces that they create. As faceted fracture surfaces are commonly formed by slow tensile cracks in both crystalline and amorphous materials, facet formation and structure cannot reflect microscopic order. Although fracture mechanics predict that slow crack fronts should be straight and form mirror-like surfaces, facet-forming fronts propagate simultaneously within different planes separated by steps. Here we show that these steps are topological defects of crack fronts and that crack front separation into disconnected overlapping segments provides the condition for step stability. Real-time imaging of propagating crack fronts combined with surface measurements shows that crack dynamics are governed by localized steps that drift at a constant angle to the local front propagation direction while their increased dissipation couples to long-ranged elasticity to determine front shapes. We study how three-dimensional topology couples to two-dimensional fracture dynamics to provide a fundamental picture of how patterned surfaces are generated.

  10. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are deal...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  11. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    Science.gov (United States)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  12. The engine fuel system fault analysis

    Science.gov (United States)

    Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei

    2017-05-01

    For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.

  13. The Morelia-Acambay Fault System

    Science.gov (United States)

    Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.

    2013-05-01

    The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be

  14. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    Science.gov (United States)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  15. ATLAS LAr Phase upgrade of the Front End Electronics

    CERN Document Server

    Newcomer, Mitchel; The ATLAS collaboration

    2016-01-01

    The Phase II upgrade of the ATLAS Liquid Argon detector includes a 17 bit dynamic range front end amplifier with a two or three gain multi‐pole shaper employing CR‐(RC)n shaping. Each gain stage of the shaper will be followed by a 40Msps, 14b dynamic range, 12‐13b ENOB digitizer, serializer and fiber optic driver. A study is underway to see if a single technology (65nm or 130nm CMOS) will be suitable for all blocks up to the optical Link, enabling consideration of the development a Front End System On a Chip (FESOC).

  16. Formal fault tree semantics

    OpenAIRE

    Schellhorn, Gerhard

    2002-01-01

    Formal fault tree semantics / G. Schellhorn, A. Thums, and W. Reif. - In: IDPT : Proceedings of the Sixth World Conference on Integrated Design and Process Technology : June 23 - 27, 2003, Pasadena, California / SDPS, Society for Design & Process Science. - 2002. - 1CD-ROM

  17. Diagnosing Intermittent Faults

    NARCIS (Netherlands)

    Van Gemund, A.J.C.; Abreu, R.F.; Zoeteweij, P.

    2008-01-01

    In this working report we outline how to determine the intermittency parameters gj from the activity matrix A (context: DX’08 paper Abreu, Zoeteweij, Van Gemund). We start with the single fault (SF) case and show that averaging over the error vector e is the exact way. We also show that in this way

  18. Network Power Fault Detection

    OpenAIRE

    Siviero, Claudio

    2013-01-01

    Network power fault detection. At least one first network device is instructed to temporarily disconnect from a power supply path of a network, and at least one characteristic of the power supply path of the network is measured at a second network device connected to the network while the at least one first network device is temporarily disconnected from the network

  19. Detecting Faults from Encoded Information

    NARCIS (Netherlands)

    Persis, Claudio De

    2003-01-01

    The problem of fault detection for linear continuous-time systems via encoded information is considered. The encoded information is received at a remote location by the monitoring deiice and assessed to infer the occurrence of the fault. A class of faults is considered which allows to use a simple

  20. Fault-Related Sanctuaries

    Science.gov (United States)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  1. The fluid budget of a continental plate boundary fault: Quantification from the Alpine Fault, New Zealand

    Science.gov (United States)

    Menzies, Catriona D.; Teagle, Damon A. H.; Niedermann, Samuel; Cox, Simon C.; Craw, Dave; Zimmer, Martin; Cooper, Matthew J.; Erzinger, Jörg

    2016-07-01

    Fluids play a key role in modifying the chemical and physical properties of fault zones, which may prime them for repeated rupture by the generation of high pore fluid pressures and precipitation of commonly weak, secondary minerals. Fluid flow paths, sources and fluxes, and the permeability evolution of fault zones throughout their seismic cycles remain poorly constrained, despite their importance to understanding fault zone behaviour. Here we use geochemical tracers of fluid-rock exchange to determine budgets for meteoric, metamorphic and mantle fluids on a major compressional tectonic plate boundary. The Alpine Fault marks the transpressional Pacific-Australian plate boundary through South Island, New Zealand and appears to fail in regular (329 ± 68 yrs) large earthquakes (Mw ∼ 8) with the most recent event in 1717 AD. Significant convergent motion has formed the Southern Alps and elevated geothermal gradients in the hangingwall, which drive crustal fluid flow. Along the Alpine Fault the Alpine Schist of the Pacific Plate is thrust over radiogenic metasedimentary rocks on the Australian plate. The absence of highly radiogenic (87Sr/86Sr > 0.7200) strontium isotope ratios of hangingwall hot springs and hydrothermal minerals formed at a range of depths in the Alpine Fault damage zone indicates that the fluid flow is restricted to the hangingwall by a cross-fault fluid flow barrier throughout the seismogenic crust. Helium isotope ratios measured in hot springs near to the Alpine Fault (0.15-0.81 RA) indicate the fault is a crustal-scale feature that acts as a conduit for fluids from the mantle. Rock-exchanged oxygen, but meteoric water-like hydrogen isotope signatures of hydrothermal veins indicate that partially rock-exchanged meteoric fluids dominate down to the top of the brittle to ductile transition zone at ∼6 km. Geochemical tracer transport modelling suggests only ∼0.02 to 0.05% of total rainfall west of the Main Divide penetrates to depth, yet this

  2. Development of Hydrologic Characterization Technology of Fault Zones

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  3. Biomechanics of front and back squat exercises

    Energy Technology Data Exchange (ETDEWEB)

    Braidot, A A [Laboratorio de Biomecanica FI-UNER. Ruta 11 Km 10 Oro Verde Entre Rios (Argentina); Brusa, M H [Laboratorio de Biomecanica FI-UNER. Ruta 11 Km 10 Oro Verde Entre Rios (Argentina); Lestussi, F E [Laboratorio de Biomecanica FI-UNER. Ruta 11 Km 10 Oro Verde Entre Rios (Argentina); Parera, G P [Licenciatura en KinesiologIa y FisiatrIa Universidad Abierta Interamericana. Sede Regional Rosario (Argentina)

    2007-11-15

    Squat constitutes one of the most popular exercises to strengthen the muscles of the lower limbs. It is considered one of the most widely spread exercises for muscle sport training and is part of the competition movements comprised within olympic weight-lifting. In physical rehabilitation, squats are used for muscular recovery after different injuries of the lower limbs, especially the knee. In previous anterior cruciate ligament injuries, the mini-squats are generally used, in a knee flexion motion range from 0 deg. to 50 deg. because in this range the shear forces, the tibiofemoral and patellofemoral compression forces decrease related to greater flexion angles. The aim of this work is to make a comparative bidimensional study of the kinematic and dynamic variables of the excecution of the parallel squat exercise with the front and back bar. It is observed in the knee a better development of energy with the front bar, allowing a better muscular exercise with the same load. The mean power absorbed by the hip with the back bar is considerably greater, associated to the speed of the gesture.

  4. Biomechanics of front and back squat exercises

    Science.gov (United States)

    Braidot, A. A.; Brusa, M. H.; Lestussi, F. E.; Parera, G. P.

    2007-11-01

    Squat constitutes one of the most popular exercises to strengthen the muscles of the lower limbs. It is considered one of the most widely spread exercises for muscle sport training and is part of the competition movements comprised within olympic weight-lifting. In physical rehabilitation, squats are used for muscular recovery after different injuries of the lower limbs, especially the knee. In previous anterior cruciate ligament injuries, the mini-squats are generally used, in a knee flexion motion range from 0° to 50° because in this range the shear forces, the tibiofemoral and patellofemoral compression forces decrease related to greater flexion angles. The aim of this work is to make a comparative bidimensional study of the kinematic and dynamic variables of the excecution of the parallel squat exercise with the front and back bar. It is observed in the knee a better development of energy with the front bar, allowing a better muscular exercise with the same load. The mean power absorbed by the hip with the back bar is considerably greater, associated to the speed of the gesture.

  5. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes

    NARCIS (Netherlands)

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio

    2015-01-01

    Rupture fronts can cause fault displacement, reaching speeds up to several ms-1 within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in

  6. Fluid flow and permeabilities in basement fault zones

    Science.gov (United States)

    Hollinsworth, Allan; Koehn, Daniel

    2017-04-01

    Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault

  7. Analysis of a New Marlborough Fault System Lidar Dataset: The Wairau and Hope faults, South Island, New Zealand

    Science.gov (United States)

    Grenader, J.; Dolan, J. F.; Rhodes, E. J.; Van Dissen, R. J.; Langridge, R.; Zinke, R. W.; McGuire, C. P.; Nicol, A.

    2014-12-01

    Newly acquired lidar digital topographic data acquired early 2014 from the four major faults of the Marlborough Fault System in northern South Island New Zealand allow measurement of fault offsets ~1 m to 100s of meters in unprecedented detail. The lidar dataset, acquired for us by the US National Center for Airborne Laser Mapping (NCALM) and New Zealand Aerial Mapping (NZAM), comprises 254 km of fault-parallel imagery in 1.2-to-1.5-km-wide swaths. These high-resolution data have an average shot density of ≥12 shots/m2, and encompass the central Wairau, central and eastern Awatere, western and eastern Clarence, and eastern Hope fault segments. In this study, we focus on detailed measurements of small (3-25 m) and large (10s-100s of meters) geomorphic offsets at multiple sites along the central Wairau and eastern Hope faults. In addition to showing compilations of these offset observations, we present examples of the lidar data at several key study sites where offsets at multiple scales are discernable. The precise fault offsets we measure at these sites, combined with post-IR IRSL (225°C) single-grain K-feldspar dating of fluvial terrace sediments, will provide the basis for determining incremental slip rates on these faults at a range of latest Pleistocene to late Holocene timescales. This project is part of a broader effort to generate incremental slip rates and paleoearthquake ages from all four of the main faults that comprise the Marlborough Fault System with the goal of further understanding how mechanically complementary faults work together to accommodate relative plate motions.

  8. Fault linkage and continental breakup

    Science.gov (United States)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  9. Firing up the front line.

    Science.gov (United States)

    Katzenbach, J R; Santamaria, J A

    1999-01-01

    For many organizations, achieving competitive advantage means eliciting superior performance from employees on the front line--the burger flippers, hotel room cleaners, and baggage handlers whose work has an enormous effect on customers. That's no easy task. Front line workers are paid low wages, have scant hope of advancement, and--not surprisingly--often care little about the company's performance. But then how do some companies succeed in engaging the emotional energy of rank-and-file workers? A team of researchers at McKinsey & Company and the Conference Board recently explored that question and discovered that one highly effective route is demonstrated by the U.S. Marine Corps. The Marines' approach to motivation follows the "mission, values, and pride" path, which researchers say is practical and relevant for the business world. More specifically, the authors say the Marines follow five practices: they over-invest in cultivating core value; prepare every person to lead, including front line supervisors; learn when to create teams and when to create single-leader work groups; attend to all employees, not just the top half; and encourage self-discipline as a way of building pride. The authors admit there are critical differences between the Marines and most businesses. But using vivid examples from companies such as KFC and Marriott International, the authors illustrate how the Marines' approach can be translated for corporate use. Sometimes, the authors maintain, minor changes in a company's standard operating procedure can have a powerful effect on front line pride and can result in substantial payoffs in company performance.

  10. Fault structure, frictional properties and mixed-mode fault slip behavior

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Smith, S.A.F.; Marone, C.

    2011-01-01

    Recent high-resolution GPS and seismological data reveal that tectonic faults exhibit complex, multi-modeslipbehavior including earthquakes, creep events, slow and silent earthquakes, low-frequency events and earthquake afterslip. The physical processes responsible for this range of behavior and the

  11. Comparison of control strategies for Doubly fed induction generator under recurring grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2014-01-01

    The new grid codes demand the wind turbine systems to ride through recurring grid faults. Many control strategies have been proposed for the Doubly Fed Induction Generator under single grid fault, but their performance under recurring grid faults have not been studied yet. In this paper, five...... different control strategies for DFIG to ride through single grid faults are presented, and their performance under recurring grid faults are analyzed. The controllable range, stator time constant and torque fluctuations of the DFIG with different control strategies are compared. The results are verified...

  12. Absolute age determination of quaternary fault and formation

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Kwang Sik; Choi, Man Sik [Korea Basic Science Institute, Taejon (Korea, Republic of)] (and others)

    2003-03-15

    Rb-Sr and K-Ar dating results for the fault rocks suggest the occurrence of recurrent fault activity around 80-95 Ma, 70 Ma, 50 Ma, 30 Ma and 23 Ma along the Yangsan fault zone. The apparent K-Ar ages tend to be older than Rb-Sr ages, probably indicating the effect of excess radiogenic Ar, which will be furthur investigated by Ar-Ar method. The OSL SAR protocol using 220 .deg. C cut-heat yields reproducible and stratigraphically consistent OSL ages ranging from 71 ka to 48 ka for beach deposits of the marine terrace No 2. The apparent OSL ages for the marine terrace No 3 range from 92 ka to 61 ka. These ages constrain the minimum age of the platform considering the underestimation effect resulted from deposition underwater. Therefore we regard the formation age of the terrace No 3 as MIS(Marine Isotopic Stage) 5c or 5e. Rb-Sr and K-Ar dating results for the fault rocks suggest the occurrence of recurrent fault activity around 40 Ma, 30 Ma and 23 Ma along the Ulsan fault zone. Relatively young (< 10 Ma) fault activities are recognized in the Oesa, Janghangri and Wonwonsa sites.

  13. Neotectonic fault structures in the Lake Thun area (Switzerland)

    Science.gov (United States)

    Fabbri, Stefano C.; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Merz, Kaspar; Anselmetti, Flavio S.

    2016-04-01

    Strong historic earthquakes (i.e. intensities I0 ≥ V) in Switzerland are well documented by the earthquake catalogue of Switzerland ECOS-09 (e.g. Frutigen, 1729 AD, Mw=5.2, I0=VI). Many of these strong events can be recognized paleoseismically by large subaquatic, earthquake-triggered mass movements that occur frequently in Swiss Lakes. Some of these represent the occasional occurrence of even stronger earthquakes (i.e. Mw ˜6.5) in the Alpine region (Strasser et al., 2013), which are expected to produce noticeable surface ruptures. However, convincing evidence for Quaternary displacements with offset surface expressions have scarcely been found (e.g., Wiemer et al., 2009). Applying a multi-disciplinary approach, this study presents potential candidates for such faults in the larger Lake Thun area at the edge of the Alps. The overdeepened basin of Lake Thun is situated at the northern Alpine front, which extends orthogonally to the general strike direction of the Alpine nappe front. The northern shoreline is predominantly shaped by the front of the Subalpine Molasse, which is in strong contrast to the south western shore built by the structurally higher units of the Middle and Lower Penninic nappes. This pattern with obvious differences of both lake sides suggests a major fault along the lake axis and high tectonic activity during nappe emplacement, i.e. from Eocene times throughout the Late Miocene. The area is dominated today by a strike-slip stress regime with a slight normal faulting component (Kastrup et al., 2004). As part of a multi-disciplinary study, attempting to find potential neotectonically active fault structures in the Lake Thun area, a 2D ground penetrating radar (GPR) survey was conducted. The aim of the GPR survey was to link observations from a multichannel reflection seismic survey and a multibeam bathymetric survey carried out in Lake Thun with findings in a nearby gravel quarry revealing suspicious deformation features such as rotated gravel

  14. AIRS Storm Front Approaching California (animation)

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for the AIRS Storm Front Approaching California Animation NASA's Atmospheric Infrared Sounder instrument is able to peel back cloud cover to reveal 3-D structure of a storm's water vapor content, information that can be used to improve weather forecast models. In this animation the initial visible cloud image series shows a front moving toward the West Coast of the United States as a low pressure area moves into the Pacific Northwest. The 'Pineapple Express,' a stream of moisture that originates in the tropics South of Hawaii and usually crosses Mexico to enter New Mexico and Texas, has shifted Westward and is also visible moving into Baja California. The area preceding the front appears to be relatively clear in the visible images. As the view shifts from the visible to the infrared wavelengths which highlight water vapor, we see both cloud areas contain heavy burdens of moisture. The area which appears clear in the visible images is seen to contain water vapor near the coastline as well. The viewpoint then rotates so that we can see the vertical cross section of the fronts. The variability of the vertical extent of water vapor and the amount is now clearly visible. The storm moving in from the Gulf of Alaska is more heavily laden with water vapor than that moving in from the Southwest. The moisture is concentrated in the lower atmosphere. The colors indicate the amount of water vapor present. Blue areas denote low water vapor content; green areas are medium water vapor content; red areas signify high water vapor content. The vertical grid for the final frame ranges from 250 millibar pressure at the top to 1000 millibar pressure at the bottom. The top is about 10 km (6.2 miles) above the surface of the Earth. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments

  15. Morphotectonics of the Padul-Nigüelas Fault Zone, southern Spain

    Directory of Open Access Journals (Sweden)

    Jochen Hürtgen

    2014-02-01

    Full Text Available The Padul-Nigüelas Fault Zone (PNFZ is situated at the south-western mountain front of the Sierra Nevada (southern Spain in the Internal Zone of the Betic Cordilleras and belongs to a NW-SE trending system of normal faults dipping SW. The PNFZ constitutes a major tectonic and lithological boundary in the Betics, and separates the metamorphic units of the Alpujárride Complex from Upper Tertiary to Quaternary deposits. Due to recent seismicity and several morphological and geological indicators, such as preserved fault scarps, triangular facets, deeply incised valleys and faults in the colluvial wedges, the PNFZ is suspected to be a tectonically active feature of the south-eastern Granada Basin. We performed morphotectonic GIS analyses based on digital elevation models (DEM, cell size: 10 m to obtain tectonic activity classes for each outcropping segment of the PNFZ. We have determined the following geomorphic indices: mountain front sinuosity, stream-length gradient index, concavity index and valley floor width to height ratio. The results show a differentiation in the states of activity along the fault zone strike. The western and eastern segments of the PNFZ indicate a higher tectonic activity compared to the center of the fault zone. We discuss and critically examine the comparability and reproducibility of geomorphic analyses, concluding that careful interpretation is necessary, if no ground-truthing can be performed.

  16. Microstrip-Transmission-Line Shock-Front Sensor

    Science.gov (United States)

    Leiweke, Robert J.; Smith, William C.

    1993-01-01

    Microstrip-transmission-line sensor measures velocities of low-overpressure shock fronts and offers dynamic range needed for measurements both far from and near explosions. Fabricated easily, relatively inexpensive, and repaired in field. In addition, basic geometry modified easily, as needed.

  17. Real-time fault diagnosis and fault-tolerant control

    OpenAIRE

    Gao, Zhiwei; Ding, Steven X.; Cecati, Carlo

    2015-01-01

    This "Special Section on Real-Time Fault Diagnosis and Fault-Tolerant Control" of the IEEE Transactions on Industrial Electronics is motivated to provide a forum for academic and industrial communities to report recent theoretic/application results in real-time monitoring, diagnosis, and fault-tolerant design, and exchange the ideas about the emerging research direction in this field. Twenty-three papers were eventually selected through a strict peer-reviewed procedure, which represent the mo...

  18. Direct Observation of Depth Variation in Fault Zone Structure Through and Below the Seismogenic Crust: Preliminary Results From the SEMP Fault System in Austria

    Science.gov (United States)

    Frost, E. K.; Dolan, J.; Sammis, C.; Hacker, B.; Ratschbacher, L.

    2004-12-01

    One of the most exciting and important frontiers in earthquake science is the linkage between the internal structure and the mechanical behavior of fault zones. In particular, little is known about how fault-zone structure varies as a function of depth, from near-surface conditions down through the seismogenic crust and into the ductile lower crust. Such understanding is vital if we are to understand the mechanical instabilities that control the nucleation and propagation of seismic ruptures. This imperative has led us to the Oligo-Miocene Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault zone in Austria. The SEMP system is an extremely rare example of a major strike-slip fault that has been exhumed differentially such that it exposes a continuum of structural levels along strike. This exhumed fault system thus provides a unique opportunity to systematically examine depth-dependent changes in fault-zone geometry and structure along a single fault. Our ongoing field studies focus on structural transects across the SEMP fault zone at exhumation levels ranging from the near-surface at the eastern end of the fault (Vienna pull-apart basin), within the seismogenic crust (central Austria), and down into the ductile lower crust exposed in the Tauern window of western Austria. In addition to detailed field mapping of structural fabrics, fluid-rock interactions, relative timing relationships, and variations in fault geometry, we are also conducting detailed analyses of fault-zone rocks designed to explore deformation at a wide range of scales using petrographic microscopy, cathodoluminescence microscopy, fluid-inclusion studies, scanning-electron microscopy, and transmission/analytical-electron microscopy. Preliminary results from one of our first detailed study sites, at Gesäuse in central Austria, reveal strikingly asymmetric damage across the fault. The limestones exposed south of the fault are fractured, but relatively coherent to within a few meters of the main fault

  19. Fault-patch stress-transfer efficiency in presence of sub-patch geometric complexity

    KAUST Repository

    Zielke, Olaf

    2015-04-01

    It is well known that faults are not planar surfaces. Instead they exhibit self-similar or self-affine properties that span a wide range of spatial (sub-micrometer to tens-of-kilometer). This geometric fault roughness has a distinct impact on amount and distribution of stresses/strains induced in the medium and on other portions of the fault. However, when numerically simulated (for example in multi-cycle EQ rupture simulations or Coulomb failure stress calculations) this roughness is largely ignored: individual fault patches --the incremental elements that build the fault surface in the respective computer models-- are planar and fault roughness at this and lower spatial scales is not considered. As a result, the fault-patch stress-transfer efficiency may be systematically too large in those numerical simulations with respect to the "actual" efficiency level. Here, we investigate the effect of sub-patch geometric complexity on fault-patch stress-transfer efficiency. For that, we sub-divide a fault patch (e.g., 1x1km) into a large number of sub-patches (e.g., 20x20m) and determine amount of induced stresses at selected positions around that patch for different levels and realizations of fault roughness. For each fault roughness level, we compute mean and standard deviation of the induced stresses, enabling us to compute the coefficient of variation. We normalize those values with stresses from the corresponding single (planar) fault patch, providing scaling factors and their variability for stress transfer efficiency. Given a certain fault roughness that is assumed for a fault, this work provides the means to implement the sub-patch fault roughness into investigations based on fault-patch interaction schemes.

  20. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan

    2017-05-31

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  1. Anatomy of a Mountain Range.

    Science.gov (United States)

    Chew, Berkeley

    1993-01-01

    Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…

  2. Oblique strike-slip faulting of the Cascadia submarine forearc: The Daisy Bank fault zone off central Oregon

    Science.gov (United States)

    Goldfinger, Chris; Kulm, LaVerne D.; Yeats, Robert S.; Hummon, Cheryl; Huftile, Gary J.; Niem, Alan R.; McNeill, Lisa C.

    The Cascadia submarine forearc off Oregon and Washington is deformed by numerous active WNW-trending, left-lateral strike-slip faults. The kinematics of this set of sub-parallel left-lateral faults suggests clockwise block rotation of the forearc driven by oblique subduction. One major left-lateral strike-slip fault, the 94 km-long Daisy Bank fault, located off central Oregon, was studied in detail using high-resolution AMS 150 kHz and SeaMARC-lA sidescan sonar, swath bathymetry, multichannel seismic reflection profiles and a submersible. The Daisy Bank fault zone cuts the sediments and basaltic basement of the subducting Juan de Fuca plate, and the overriding North American plate, extending from the abyssal plain to the upper slope-outer shelf region. The Daisy Bank fault, a near-vertical left-lateral fault striking 292°, is a wide structural zone with multiple scarps observed in high-resolution sidescan images. From a submersible, we observe that these scarps offset late Pleistocene gray clay and overlying olive green Holocene mud, dating fault activity as post-12 ka on the upper slope. Vertical separation along individual fault scarps ranges from a few centimeters to 130 meters. Using a retrodeformation technique with multichannel reflection records, we calculate a net slip of 2.2±0.5 km. Fault movement commenced at about 380±50 ka near the western fault tip, based upon an analysis of growth strata and correlation with deep-sea drill hole biostratigraphy. We calculate a slip rate of 5.7±2.0 mm/yr. for the Daisy Bank fault at its western end on the Juan de Fuca plate. The motion of the set of oblique faults, including the Daisy Bank fault, may accommodate a significant portion of the oblique component of plate motion along the central Cascadia margin. We propose a block rotation model by which the seawardmost part of the forearc rotates clockwise and translates northward.

  3. Direct observation of fault zone structure and mechanics in three-dimensions: A study of the SEMP fault system, Austria

    Science.gov (United States)

    Frost, Erik Karl

    Outcrops of the Salzach-Ennstal-Mariazell-Puchberg (SEMP) fault system exhumed from depths of ˜4--17 km allow for the direct observation of fault zone structures throughout the crust, and provide insights into the way this fault, and perhaps others, distributes strain in three dimensions. At Gstatterboden, exhumed from ˜4--8 km, grain size distributions and small fault data reveal the presence of a 10-m-wide high-strain core towards which strain localized during fault evolution. Brittle fracture was accommodated via constrained comminution, which only occurs in strain-weakening rheologies and favors localization. Exposures of the SEMP at Lichtensteinklamm and Kitzlochklamm, exhumed from ˜12 km depth, bracket the brittle ductile transition. At these outcrops, the SEMP is characterized by a ˜70-m-wide, cataclastic fault core that has been altered to clays that transitions downward into a wide, ductile shear zone that has accommodated only minor amounts of strain, placing the majority of displacement on the razor-sharp fault contact. Deformation mechanisms transition from cataclasis and minor amounts of dislocation creep in calcite, to dislocation creep in quartz and calcite occurring against a background of fault-normal solution mass transfer. The ductile/ductile-brittle Rinderkarsee shear zone, exhumed from ˜17 km, marks the SEMP's continuation into the Tauern Window and is composed of three distinct shear zones. The southern, 100-m-wide shear zone has accommodated the most strain, and shows evidence for creep-accommodated grain boundary sliding in feldspar and quartz, while incipient shear zones contain ductile quartz and brittle-feldspars that undergo dislocation creep as fluids alter Kspar to muscovite, which localizes strain along felspar grain boundaries, encouraging ductility. These findings are compared to results from other faults exhumed from similar depth ranges, highlighting fundamental fault zone structures and characteristics.

  4. Wide-band low-noise distributed front-end for multi-gigabit CPFSK receivers

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Ebskamp, F; Pedersen, Rune Johan Skullerud

    1994-01-01

    In this paper a distributed optical front-end amplifier for a coherent optical CPFSK receiver is presented. The measured average input noise current density is 20 pA/√(Hz) in a 3-13 GHz bandwidth. This is the lowest value reported for a distributed optical front-end in this frequency range...

  5. Experimental and numerical investigation on the motorcycle front frame flexibility and its effect on stability

    Science.gov (United States)

    Cossalter, V.; Doria, A.; Massaro, M.; Taraborrelli, L.

    2015-08-01

    It is well known that front fork flexibility may have a significant effect on motorcycle stability. This work addresses the problem of developing lumped element models of the front fork from experimental results. The front forks of an enduro motorcycle and of a super sport motorcycle are characterized performing static, dynamic and modal tests by means of specific testing equipment. The concept of wheel twisting axis is proposed to characterize static and dynamic deformability of the front fork. Modal analysis results show the presence of two important modes of vibration of the front assembly in the low frequency range: the lateral mode and the longitudinal mode. Different lumped models are discussed and a new model that takes into account information obtained from static and dynamic tests is proposed. Simulations are carried out by means of a multibody code and show the effect of the front assembly deformability on the weave and wobble vibration modes.

  6. Unraveling the deformational history of faults from AMS

    Science.gov (United States)

    Calvín, Pablo; Casas-Sainz, Antonio; Román-Berdiel, Teresa; Oliva-Urcía, Belén; García-Lasanta, Cristina; Pocoví, Andrés; Gil-Imaz, Andrés; Pueyo-Anchuela, Oscar; Izquierdo-Llavall, Esther; Osácar, Cinta; José Villalaín, Juan; Corrado, Sveva; Invernizzi, Chiara; Aldega, Luca; Caricchi, Chiara; Antolín-Tomás, Borja

    2014-05-01

    related to vertical movements in some sites as well as horizontal movements in other, suggesting strain partitioning of the dextral, transpressional movement and compressional jogs in areas with strike changes along the fault. Temperature versus susceptibility curves (from 40 to 700ºC) were carried out to determine the magnetic carriers of the bulk susceptibility and to ensure the reliability of the AMS results. In the Daroca Fault the paramagnetic behavior dominates and hematite is seldom evidenced as the main ferromagnetic carrier. In the Datos Fault the main magnetic carriers are hematite, magnetite and pyrrotite. In the Cameros-Demanda Thrust the main magnetic carrier is magnetite.Temperature dependent clay minerals and vitrinite reflectance data suggest that deformation for the Daroca Fault occurred at shallow crustal levels consistent with early diagenetic conditions in contrast to that observed for the Cameros-Demanda Thrust where deeper conditions are indicated by long-range ordered mixed layer I-S. Relatively shallow conditions for Daroca Fault are confirmed also by fluid inclusion petrography from syn-kinematic veins where immiscible liquid and vapor phases are entrapped. More complex is the interpretation of the Datos Fault where two populations of mixed layer I-S and widespread decrepitated fluid inclusions are present.

  7. Final Technical Report: PV Fault Detection Tool.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  8. Seismological Studies for Tensile Faults

    Directory of Open Access Journals (Sweden)

    Gwo-Bin Ou

    2008-01-01

    Full Text Available A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake. However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson¡¦s ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three degrees of freedom, strike, dip, and slip.

  9. SEISMOLOGY: Watching the Hayward Fault.

    Science.gov (United States)

    Simpson, R W

    2000-08-18

    The Hayward fault, located on the east side of the San Francisco Bay, represents a natural laboratory for seismologists, because it does not sleep silently between major earthquakes. In his Perspective, Simpson discusses the study by Bürgmann et al., who have used powerful new techniques to study the fault. The results indicate that major earthquakes cannot originate in the northern part of the fault. However, surface-rupturing earthquakes have occurred in the area, suggesting that they originated to the north or south of the segment studied by Bürgmann et al. Fundamental questions remain regarding the mechanism by which plate tectonic stresses are transferred to the Hayward fault.

  10. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  11. Physical fault tolerance of nanoelectronics.

    Science.gov (United States)

    Szkopek, Thomas; Roychowdhury, Vwani P; Antoniadis, Dimitri A; Damoulakis, John N

    2011-04-29

    The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.

  12. An Overview of Transmission Line Protection by Artificial Neural Network: Fault Detection, Fault Classification, Fault Location, and Fault Direction Discrimination

    Directory of Open Access Journals (Sweden)

    Anamika Yadav

    2014-01-01

    Full Text Available Contemporary power systems are associated with serious issues of faults on high voltage transmission lines. Instant isolation of fault is necessary to maintain the system stability. Protective relay utilizes current and voltage signals to detect, classify, and locate the fault in transmission line. A trip signal will be sent by the relay to a circuit breaker with the purpose of disconnecting the faulted line from the rest of the system in case of a disturbance for maintaining the stability of the remaining healthy system. This paper focuses on the studies of fault detection, fault classification, fault location, fault phase selection, and fault direction discrimination by using artificial neural networks approach. Artificial neural networks are valuable for power system applications as they can be trained with offline data. Efforts have been made in this study to incorporate and review approximately all important techniques and philosophies of transmission line protection reported in the literature till June 2014. This comprehensive and exhaustive survey will reduce the difficulty of new researchers to evaluate different ANN based techniques with a set of references of all concerned contributions.

  13. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    Science.gov (United States)

    Cox, S. L.; Miller, P. I.; Embling, C. B.; Scales, K. L.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.; Votier, S. C.

    2016-09-01

    Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems.

  14. Fault Tolerant Distributive Processing

    Science.gov (United States)

    Quesnell, Harris

    1982-12-01

    A fault tolerant design used to enhanced the survivability of a distributive processing system is described. Based on physical limitations, mission duration and maintenance support, the approach has emphasized functional redundancy in place of the traditional hardware or software level redundancy. A top down architecture within the system's hierarchy allows sharing of common resources. Various techniques used to enhance the survivability of the hardware at the equipment, module and component level were analyzed. The intent of the on going work is to demonstrate the ability of a distributive processing system to maintain itself for a long period of time.

  15. Perspective View, Garlock Fault

    Science.gov (United States)

    2000-01-01

    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed

  16. Late Quaternary faulting in the Sevier Desert driven by magmatism

    Science.gov (United States)

    Stahl, T.; Niemi, N. A.

    2017-01-01

    Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr−1 with a c. 0.5 mm yr−1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr−1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting. PMID:28290529

  17. Late Quaternary faulting in the Sevier Desert driven by magmatism.

    Science.gov (United States)

    Stahl, T; Niemi, N A

    2017-03-14

    Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr-1 with a c. 0.5 mm yr-1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr-1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting.

  18. Late Quaternary faulting in the Sevier Desert driven by magmatism

    Science.gov (United States)

    Stahl, T.; Niemi, N. A.

    2017-03-01

    Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr-1 with a c. 0.5 mm yr-1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr-1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting.

  19. Fault structure, damage and acoustic emission characteristics

    Science.gov (United States)

    Dresen, G. H.; Göbel, T.; Stanchits, S.; Kwiatek, G.; Charalampidou, E. M.

    2011-12-01

    We investigate the evolution of faulting-related damage and acoustic emission activity in experiments performed on granite, quartzite and sandstone samples with 40-50 mm diameter and 100-125 mm length. Experiments were performed in a servo-controlled MTS loading frame in triaxial compression at confining pressures ranging from 20-140 MPa. We performed a series of fracture and stick-slip sliding experiments on prefractured samples. Acoustic emissions (AE) and ultrasonic velocities were monitored using up to 14 P-wave sensors glued to the cylindrical surface of the rock. Full waveforms were stored in a 16 channel transient recording system (Daxbox, PRÖKEL, Germany). Full moment tensor analysis and polarity of AE first motions were used to discriminate source types associated with tensile, shear and pore-collapse cracking. To monitor strain, two pairs of orthogonally oriented strain-gages were glued onto the specimen surface. Fracture nucleation and growth occurred from a nucleation patch mostly located at the specimen surface or at the tip of prefabricated notches inside the specimens. Irrespective of the rock type, fracture propagation is associated with formation of a damage zone surrounding the fracture surface as revealed by distribution of cracks and AE hypocenters displaying a logarithmic decay in microcrack damage with distance normal to the fault trace. The width of the damage zone varies along the fault. After fracturing, faults were locked by increasing confining pressure. Subsequent sliding was mostly induced by driving the piston at a constant displacement rate producing large single events or multiple stick-slips. With increasing sliding distance a corrugated and rough fault surface formed displaying displacement-parallel lineations. Microstructural analysis of fault surfaces and cross-sections revealed formation of multiple secondary shears progressively merging into an anastomosing 3D-network controlling damage evolution and AE activity in the fault

  20. Fault Monitooring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2009-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to line breakage...... and risky abortion of an oil-loading operation. With signicant drift forces from waves, non-Gaussian elements dominate in residuals and fault diagnosis need be designed using dedicated change detection for the type of distribution encountered. In addition to dedicated diagnosis, an optimal position...... algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Detection properties and fault-tolerant control are demonstrated by high delity simulations...

  1. Structure and flow properties of syn-rift border faults: The interplay between fault damage and fault-related chemical alteration (Dombjerg Fault, Wollaston Forland, NE Greenland)

    Science.gov (United States)

    Kristensen, Thomas B.; Rotevatn, Atle; Peacock, David C. P.; Henstra, Gijs A.; Midtkandal, Ivar; Grundvåg, Sten-Andreas

    2016-11-01

    Structurally controlled, syn-rift, clastic depocentres are of economic interest as hydrocarbon reservoirs; understanding the structure of their bounding faults is of great relevance, e.g. in the assessment of fault-controlled hydrocarbon retention potential. Here we investigate the structure of the Dombjerg Fault Zone (Wollaston Forland, NE Greenland), a syn-rift border fault that juxtaposes syn-rift deep-water hanging-wall clastics against a footwall of crystalline basement. A series of discrete fault strands characterize the central fault zone, where discrete slip surfaces, fault rock assemblages and extreme fracturing are common. A chemical alteration zone (CAZ) of fault-related calcite cementation envelops the fault and places strong controls on the style of deformation, particularly in the hanging-wall. The hanging-wall damage zone includes faults, joints, veins and, outside the CAZ, disaggregation deformation bands. Footwall deformation includes faults, joints and veins. Our observations suggest that the CAZ formed during early-stage fault slip and imparted a mechanical control on later fault-related deformation. This study thus gives new insights to the structure of an exposed basin-bounding fault and highlights a spatiotemporal interplay between fault damage and chemical alteration, the latter of which is often underreported in fault studies. To better elucidate the structure, evolution and flow properties of faults (outcrop or subsurface), both fault damage and fault-related chemical alteration must be considered.

  2. Front Propagation in Stochastic Neural Fields

    KAUST Repository

    Bressloff, Paul C.

    2012-01-01

    We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein-Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive. © 2012 Society for Industrial and Applied Mathematics.

  3. Behavior of Repeating Earthquake Sequences in Central California and the Implications for Subsurface Fault Creep

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, D C; Nadeau, R; Burgmann, R

    2007-07-09

    Repeating earthquakes (REs) are sequences of events that have nearly identical waveforms and are interpreted to represent fault asperities driven to failure by loading from aseismic creep on the surrounding fault surface at depth. We investigate the occurrence of these REs along faults in central California to determine which faults exhibit creep and the spatio-temporal distribution of this creep. At the juncture of the San Andreas and southern Calaveras-Paicines faults, both faults as well as a smaller secondary fault, the Quien Sabe fault, are observed to produce REs over the observation period of March 1984-May 2005. REs in this area reflect a heterogeneous creep distribution along the fault plane with significant variations in time. Cumulative slip over the observation period at individual sequence locations is determined to range from 5.5-58.2 cm on the San Andreas fault, 4.8-14.1 cm on the southern Calaveras-Paicines fault, and 4.9-24.8 cm on the Quien Sabe fault. Creep at depth appears to mimic the behaviors seen of creep on the surface in that evidence of steady slip, triggered slip, and episodic slip phenomena are also observed in the RE sequences. For comparison, we investigate the occurrence of REs west of the San Andreas fault within the southern Coast Range. Events within these RE sequences only occurred minutes to weeks apart from each other and then did not repeat again over the observation period, suggesting that REs in this area are not produced by steady aseismic creep of the surrounding fault surface.

  4. Fault Management Design Strategies

    Science.gov (United States)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  5. Analysis of high-resolution lidar digital topographic data along the Marlborough Fault System: The Awatere and Clarence faults, South Island, New Zealand

    Science.gov (United States)

    Zinke, R. W.; Dolan, J. F.; Rhodes, E. J.; Van Dissen, R. J.; Langridge, R.; Grenader, J.; McGuire, C. P.; Nicol, A.

    2014-12-01

    We analyze newly acquired lidar high-resolution digital topographic data to measure offset geomorphic markers along the Awatere and Clarence faults in the Marlborough Fault System, northern South Island, New Zealand. With an average shot density of ≥ 12 shots/m2, these lidar data, which were acquired for us by the US National Center for Airborne Laser Mapping (NCALM) and New Zealand Aerial Mapping, offer a uniquely detailed view of the topography along ~90 km of the Awatere fault and ~160 km of the Clarence fault, allowing us to measure geomorphic offsets ranging in size from ~1 m to 100s of meters. In this specific study, we examine offset river terraces at the well-known Saxton River site on the Awatere fault, and at Tophouse Road on the Clarence fault. By constraining the ages of those river terraces using post-IR IRSL (225 °C) single-grain K-feldspar dating protocols, we determine latest Pleistocene to late-Holocene slip histories of the Awatere and Clarence faults at those locations. This project is part of a broader effort to generate incremental slip rates and paleoearthquake ages from the four main faults that comprise the Marlborough Fault System with the goal of further understanding how mechanically complementary faults work together to accommodate relative plate motions.

  6. The San Andreas Fault 'Supersite' (Invited)

    Science.gov (United States)

    Hudnut, K. W.

    2013-12-01

    An expanded and permanent Supersite has been proposed to the Committee on Earth Observation Satellites (CEOS) for the San Andreas Fault system, based upon the successful initial Group on Earth Observations (GEO) Geohazard Supersite for the Los Angeles region from 2009-2013. As justification for the comprehensive San Andreas Supersite, consider the earthquake history of California, in particular the devastating M 7.8 San Francisco earthquake of 1906, which occurred along the San Andreas Fault, as did an earthquake of similar magnitude in 1857 in southern California. Los Angeles was only a small town then, but now the risk exposure has increased for both of California's megacities. Between the San Francisco and Los Angeles urban areas lies a section of the San Andreas Fault known to creep continually, so it has relatively less earthquake hazard. It used to be thought of as capable of stopping earthquakes entering it from either direction. Transitional behavior at either end of the creeping section is known to display a full range of seismic to aseismic slip events and accompanying seismicity and strain transient events. Because the occurrence of creep events is well documented by instrumental networks such as CISN and PBO, the San Andreas Supersite can be expected to be especially effective. A good baseline level of geodetic data regarding past events and strain accumulation and release exists. Many prior publications regarding the occurrence of geophysical phenomena along the San Andreas Fault system mean that in order to make novel contributions, state-of-the-art science will be required within this Supersite region. In more recent years, the 1989 Loma Prieta earthquake struck adjacent to the San Andreas Fault and caused the most damage along the western side of the San Francisco Bay Area. More recently, the concern has focused on the potential for future events along the Hayward Fault along the eastern side of San Francisco Bay. In Southern California, earthquakes

  7. Fault tolerance in "multiprocessor systems

    Indian Academy of Sciences (India)

    puter architecture; [multiprocessor systems; reconfiguration; system- level diagnosis; VLSI processor arrays. 1. Introduction. Fault-tolerant computing can be defined as the ability to execute specified algorithms correctly inspite of the presence of faults. The complexity of supersystems and the increasing use of such computer ...

  8. The evolution of faults formed by shearing across joint zones in sandstone

    Science.gov (United States)

    Myers, Rodrick; Aydin, Atilla

    2004-05-01

    The evolution of strike-slip and normal faults formed by slip along joint zones is documented by detailed field studies in the Jurassic Aztec Sandstone in the Valley of Fire State Park, Nevada, USA. Zones of closely spaced planar sub-parallel joints arranged en échelon are sheared, forming faults. Fracturing occurs as a result of shearing, forming new joints. Later shearing along these joints leads to successively formed small faults and newer joints. This process is repeated through many generations of fracturing with increasing fault slip producing a hierarchical array of structures. Strain localization produced by shearing of joint zones at irregularities in joint traces, fracture intersections, and in the span between adjacent sheared joints results in progressive fragmentation of the weakened sandstone, which leads to the formation of gouge along the fault zone. The length and continuity of the gouge and associated slip surfaces is related to the slip magnitude and fault geometry with slip ranging from several millimeters to about 150 m. Distributed damage in a zone surrounding the gouge core is related to the original joint zone configuration (step sense, individual sheared joint overlaps and separation), shear sense, and slip magnitude. Our evolutionary model of fault development helps to explain some outstanding issues concerning complexities in faulting such as, the variability in development of fault rock and fault related fractures, and the failure processes in faults.

  9. The San Andreas Fault and a Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    be filled in mostly by sedimentary and erosional material deposited from above. Comparisons between faults on Europa and Earth may generate ideas useful in the study of terrestrial faulting. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. The tidal tension opens the fault; subsequent tidal stress causes it to move lengthwise in one direction. Then the tidal forces close the fault up again. This prevents the area from moving back to its original position. If it moves forward with the next daily tidal cycle, the result is a steady accumulation of these lengthwise offset motions. Unlike Europa, here on Earth, large strike-slip faults such as the San Andreas are set in motion not by tidal pull, but by plate tectonic forces from the planet's mantle. North is to the top of the picture. The Earth picture (left) shows a LandSat Thematic Mapper image acquired in the infrared (1.55 to 1.75 micrometers) by LandSat5 on Friday, October 20th 1989 at 10:21 am. The original resolution was 28.5 meters per picture element. The Europa picture (right)is centered at 66 degrees south latitude and 195 degrees west longitude. The highest resolution frames, obtained at 40 meters per picture element with a spacecraft range of less than 4200 kilometers (2600 miles), are set in the context of lower resolution regional frames obtained at 200 meters per picture element and a range of 22,000 kilometers (13,600 miles). The images were taken on September 26, 1998 by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL HTTP://www.j

  10. Front propagation and rejuvenation in flipping processes

    Energy Technology Data Exchange (ETDEWEB)

    Ben-naim, Eli [Los Alamos National Laboratory; Krapivsky, P I [BOSTON UNIV; Antal, T [HARVARD UNIV; Ben - Avrahm, D [HARVARD UNIV

    2008-01-01

    We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess {Delta}{sub k} increases logarithmically, {Delta}{sub k} {approx_equal}ln k, with the distance k from the front. Third, the front exhibits ageing -- young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations.

  11. Reaction front formation in contaminant plumes.

    Science.gov (United States)

    Cribbin, Laura B; Winstanley, Henry F; Mitchell, Sarah L; Fowler, Andrew C; Sander, Graham C

    2014-12-15

    The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake

    KAUST Repository

    Calais, Éric

    2010-10-24

    On 12 January 2010, a Mw7.0 earthquake struck the Port-au-Prince region of Haiti. The disaster killed more than 200,000 people and caused an estimated $8 billion in damages, about 100% of the country?s gross domestic product. The earthquake was initially thought to have ruptured the Enriquillog-Plantain Garden fault of the southern peninsula of Haiti, which is one of two main strike-slip faults inferred to accommodate the 2cmyr -1 relative motion between the Caribbean and North American plates. Here we use global positioning system and radar interferometry measurements of ground motion to show that the earthquake involved a combination of horizontal and contractional slip, causing transpressional motion. This result is consistent with the long-term pattern of strain accumulation in Hispaniola. The unexpected contractional deformation caused by the earthquake and by the pattern of strain accumulation indicates present activity on faults other than the Enriquillog-Plantain Garden fault. We show that the earthquake instead ruptured an unmapped north-dipping fault, called the Léogâne fault. The Léogâne fault lies subparallel tog-but is different fromg-the Enriquillog-Plantain Garden fault. We suggest that the 2010 earthquake may have activated the southernmost front of the Haitian fold-and-thrust belt as it abuts against the Enriquillog-Plantain Garden fault. As the Enriquillog-Plantain Garden fault did not release any significant accumulated elastic strain, it remains a significant seismic threat for Haiti and for Port-au-Prince in particular. © 2010 Macmillan Publishers Limited. All rights reserved.

  13. Support vector machine based fault classification and location of a long transmission line

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2016-09-01

    Full Text Available This paper investigates support vector machine based fault type and distance estimation scheme in a long transmission line. The planned technique uses post fault single cycle current waveform and pre-processing of the samples is done by wavelet packet transform. Energy and entropy are obtained from the decomposed coefficients and feature matrix is prepared. Then the redundant features from the matrix are taken out by the forward feature selection method and normalized. Test and train data are developed by taking into consideration variables of a simulation situation like fault type, resistance path, inception angle, and distance. In this paper 10 different types of short circuit fault are analyzed. The test data are examined by support vector machine whose parameters are optimized by particle swarm optimization method. The anticipated method is checked on a 400 kV, 300 km long transmission line with voltage source at both the ends. Two cases were examined with the proposed method. The first one is fault very near to both the source end (front and rear and the second one is support vector machine with and without optimized parameter. Simulation result indicates that the anticipated method for fault classification gives high accuracy (99.21% and least fault distance estimation error (0.29%.

  14. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng

    2015-01-01

    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  15. Lock-exchange experiments with an autocatalytic reaction front

    Science.gov (United States)

    Malham, I. Bou; Jarrige, N.; Martin, J.; Rakotomalala, N.; Talon, L.; Salin, D.

    2010-12-01

    A viscous lock-exchange gravity current corresponds to the reciprocal exchange of two fluids of different densities in a horizontal channel. The resulting front between the two fluids spreads as the square root of time, with a diffusion coefficient reflecting the buoyancy, viscosity, and geometrical configuration of the current. On the other hand, an autocatalytic reaction front between a reactant and a product may propagate as a solitary wave, namely, at a constant velocity and with a stationary concentration profile, resulting from the balance between molecular diffusion and chemical reaction. In most systems, the fluid left behind the front has a different density leading to a lock-exchange configuration. We revisit, with a chemical reaction, the classical situation of lock-exchange. We present an experimental analysis of buoyancy effects on the shape and the velocity of the iodate arsenous acid autocatalytic reaction fronts, propagating in horizontal rectangular channels and for a wide range of aspect ratios (1/3 to 20) and cylindrical tubes. We do observe stationary-shaped fronts, spanning the height of the cell and propagating along the cell axis. Our data support the contention that the front velocity and its extension are linked to each other and that their variations scale with a single variable involving the diffusion coefficient of the lock-exchange in the absence of chemical reaction. This analysis is supported by results obtained with lattice Bathnagar-Gross-Krook (BGK) simulations Jarrige et al. [Phys. Rev. E 81, 06631 (2010)], in other geometries (like in 2D simulations by Rongy et al. [J. Chem. Phys. 127, 114710 (2007)] and experiments in cylindrical tubes by Pojman et al. [J. Phys. Chem. 95, 1299 (1991)]), and for another chemical reaction Schuszter et al. [Phys. Rev. E 79, 016216 (2009)].

  16. Muon front end for the neutrino factory

    Directory of Open Access Journals (Sweden)

    C. T. Rogers

    2013-04-01

    Full Text Available In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  17. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2015-09-01

    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  18. Constraining fault growth rates and fault evolution in New Zealand

    Science.gov (United States)

    Lamarche, Geoffroy; Bull, Jonathan M.; Barnes, Phil M.; Taylor, Susanna K.; Horgan, Huw

    2000-10-01

    Understanding how faults propagate, grow, and interact in fault systems is important because they are primarily responsible for distributing strain in the upper crust. They localize deformation and stress release, often producing surface displacements that control sedimentation and fluid flow, either by acting as conduits or barriers. Identifying fault spatial distribution, quantifying activity, evaluating linkage mechanisms, and estimating fault growth rates are key components in seismic risk evaluation. Scientists from the National Institute of Water and Atmospheric Research (NIWA), New Zealand, and the Southampton Oceanography Centre, United Kingdom, are working on a collaborative project that aims to improve understanding of faulting processes in the Earth's crust.The program comprises two research cruises to survey the Whakatane Graben, New Zealand, which is a zone of intense seismicity active extensional faulting, and rapid subsidence within the back-arc region of the Pacific-Australia plate boundary zone (Figure 1). Few places in the world offer the same opportunity to study the mechanisms by which major crustal faults have grown from small- to large-scale structures capable of generating moderate to large-magnitude earthquakes.

  19. From detachment to transtensional faulting: A model for the Lake Mead extensional domain based on new ages and correlation of subbasins

    Science.gov (United States)

    Beard, L.; Umhoefer, P. J.; Martin, K. L.; Blythe, N.

    2007-12-01

    New studies of selected basins in the Miocene extensional belt of the northern Lake Mead domain suggest a new model for the early extensional history of the region (lower Horse Spring Formation and correlative strata). Critical data are from (i) Longwell Ridges area west of Overton Arm and within the Lake Mead fault system, (ii) Salt Spring Wash basin in the hanging wall of the South Virgin-White Hills detachment (SVWHD) fault, and (iii) previously studied subbasins of the south Virgin Mountains in the Gold Butte step-over region. The basins and faulting patterns suggest two stages of basin development related to two distinct faulting episodes, an early period of detachment faulting followed by a switch to faulting mainly along the Lake Mead transtensional fault system while detachment faulting waned. Apatite fission track ages suggest the footwall block of the SVWHD was cooling at 18-17 Ma, but the only evidence for basin deposition at that time is in the Gold Butte step-over where slow rates of sedimentation and facies patterns make faulting on the north side of the Gold Butte block ambiguous. The first basin stage was ca. 16.5 to 15.5 Ma, during which there was slow to moderate faulting and subsidence in a basin along the SVWHD and north of Gold Butte block in the Gold Butte step-over basin; the step- over basin had complex fluvial and lacustrine facies and was synchronous with landslides and debris flows in front of the SVWHD. At ca. 15.5-14.5 Ma, there was a [dramatic] increase in sedimentation rate related to formation of the Gold Butte fault, a change from lacustrine to widespread fluvial, playa, and local landslide facies in the step-over basin, and the peak of exhumation and faulting rates on the SVWHD. The simple step-over basin broke up into numerous subbasins [at[ as initial faults of the Lake Mead fault system formed. From 14.5 to 14.0 Ma, there was completion of a major change from dominantly detachment faulting to dominantly transtensional faulting

  20. Chiral symmetry in light-front QCD

    Science.gov (United States)

    Wu, Menh-Hsiu; Zhang, Wei-Min

    2004-04-01

    The definition of chiral transformations in light-front field theory is very different from the conventional form in equal-time formalism. We study the consistency of chiral transformations and chiral symmetry in light-front QCD and derive a complete new light-front axial-vector current for QCD. The breaking of chiral symmetry in light-front QCD is only associated with helicity flip interaction between quarks and gluons. Remarkably, the new axial-vector current does not contain the pion pole part so that the associate chiral charge smoothly describes pion transitions for various hadronic processes.

  1. Chiral Symmetry in Light-front QCD

    OpenAIRE

    Wu, Meng-Hsiu; Zhang, Wei-Min

    2003-01-01

    The definition of chiral transformations in light-front field theory is very different from the conventional form in equal-time formalism. We study the consistency of chiral transformations and chiral symmetry in light-front QCD and derive a complete new light-front axial-vector current for QCD. The breaking of chiral symmetry in light-front QCD is only associated with helicity flip interaction between quarks and gluons. Remarkably, the new axial-vector current does not contain the pion pole ...

  2. Front blind spot crashes in Hong Kong.

    Science.gov (United States)

    Cheng, Yuk Ki; Wong, Koon Hung; Tao, Chi Hang; Tam, Cheok Ning; Tam, Yiu Yan; Tsang, Cheuk Nam

    2016-09-01

    In 2012-2014, our laboratory had investigated a total of 9 suspected front blind spot crashes, in which the medium and heavy goods vehicles pulled away from rest and rolled over the pedestrians, who were crossing immediately in front of the vehicles. The drivers alleged that they did not see any pedestrians through the windscreens or the front blind spot mirrors. Forensic assessment of the goods vehicles revealed the existence of front blind spot zones in 3 out of these 9 accident vehicles, which were attributed to the poor mirror adjustments or even the absence of a front blind spot mirror altogether. In view of this, a small survey was devised involving 20 randomly selected volunteers and their goods vehicles and 5 out of these vehicles had blind spots at the front. Additionally, a short questionnaire was conducted on these 20 professional lorry drivers and it was shown that most of them were not aware of the hazards of blind spots immediately in front of their vehicles, and many did not use the front blind spot mirrors properly. A simple procedure for quick measurements of the coverage of front blind spot mirrors using a coloured plastic mat with dimensional grids was also introduced and described in this paper. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Active fault traces along Bhuj Fault and Katrol Hill Fault, and ...

    Indian Academy of Sciences (India)

    observed on the left bank of a stream cutting the terrace. Faulting is well revealed by 10–30 cm thick gouge. Lack of any corroborating evidence show- ing displacement of Quaternary deposits makes it difficult to decipher the active nature of the fault. However, the probability cannot be ruled- out. In the outlet of the small ...

  4. Dynamics of Earthquake Faults

    CERN Document Server

    Carlson, J M; Shaw, B E

    1993-01-01

    We present an overview of our ongoing studies of the rich dynamical behavior of the uniform, deterministic Burridge--Knopoff model of an earthquake fault. We discuss the behavior of the model in the context of current questions in seismology. Some of the topics considered include: (1) basic properties of the model, such as the magnitude vs. frequency distribution and the distinction between small and large events; (2) dynamics of individual events, including dynamical selection of rupture propagation speeds; (3) generalizations of the model to more realistic, higher dimensional models; (4) studies of predictability, in which artificial catalogs generated by the model are used to test and determine the limitations of pattern recognition algorithms used in seismology.

  5. Absolute age determination of quaternary faults

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)

    2000-03-15

    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  6. Traveling interface modulations and anisotropic front propagation in ammonia oxidation over Rh(110)

    Energy Technology Data Exchange (ETDEWEB)

    Rafti, Matías [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Fac. Cs. Exactas, Universidad Nacional de La Plata, 64 y Diag. 113 (1900), La Plata (Argentina); Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover (Germany); Borkenhagen, Benjamin; Lilienkamp, Gerhard [Institut für Energieforschung und Physikalische Technologien, Technische Universität Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany); Lovis, Florian; Smolinsky, Tim; Imbihl, Ronald, E-mail: imbihl@pci.uni-hannvover.de [Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover (Germany)

    2015-11-14

    The bistable NH{sub 3} + O{sub 2} reaction over a Rh(110) surface was explored in the pressure range 10{sup −6}–10{sup −3} mbar and in the temperature range 300–900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.

  7. Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Adamovič, Jiří; Málek, Jiří; Prouza, V.

    2014-01-01

    Roč. 59, č. 3 (2014), s. 183-208 ISSN 1802-6222 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : fault architecture * fault plane geometry * drag structures * thrust fault * sandstone * Lusatian Fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.405, year: 2014

  8. Deep Fault Drilling Project—Alpine Fault, New Zealand

    Directory of Open Access Journals (Sweden)

    Rupert Sutherland

    2009-09-01

    Full Text Available The Alpine Fault, South Island, New Zealand, constitutes a globally significant natural laboratory for research into how active plate-bounding continental faults work and, in particular, how rocks exposed at the surface today relate to deep-seated processes of tectonic deformation, seismogenesis, and mineralization. The along-strike homogeneity of the hanging wall, rapid rate of dextral-reverse slip on an inclined fault plane, and relatively shallow depths to mechanical and chemical transitions make the Alpine Fault and the broader South Island plate boundary an important international site for multi-disciplinary research and a realistic target for an ambitious long-term program of scientific drilling investigations.

  9. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2011-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line...... breakage and a high-risk abortion of an oil-loading operation. With significant drift forces from waves, non-Gaussian elements dominate forces and the residuals designed for fault diagnosis. Hypothesis testing need be designed using dedicated change detection for the type of distribution encountered....... In addition to dedicated diagnosis, an optimal position algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Furthermore, even in the case of line breakage, this optimal position strategy could be utilised to avoid breakage of a second mooring line...

  10. Method of locating ground faults

    Science.gov (United States)

    Patterson, Richard L. (Inventor); Rose, Allen H. (Inventor); Cull, Ronald C. (Inventor)

    1994-01-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  11. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf

    2015-01-01

    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault\\'s rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault\\'s offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of

  12. The Front-End System For MARE In Milano

    Science.gov (United States)

    Arnaboldi, Claudio; Pessina, Gianluigi

    2009-12-01

    The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.

  13. The light-front vacuum and dynamics

    OpenAIRE

    Polyzou, W. N.

    2004-01-01

    I give a quantum theoretical description of kinematically invariant vacuua on the algebra of free fields restricted to a light front and discuss the relation between the light-front Hamiltonian, P-, the vacuum, and Poincare invariance. This provides a quantum theoretical description of zero modes.

  14. Propulsive force in front crawl swimming

    NARCIS (Netherlands)

    Berger, M.A.M.; de Groot, G.; Hollander, A.P.

    1999-01-01

    To evaluate the propulsive forces in front crawl arm swimming, derived from a three-dimensional kinematic analysis, these values were compared with mean drag forces. The propulsive forces during front crawl swimming using the arms only were calculated using three-dimensional kinematic analysis

  15. Through the EU's Back and Front Doors

    DEFF Research Database (Denmark)

    Adler-Nissen, Rebecca

    2015-01-01

    Through the EU's front- and backdoors: The selective Danish and Norwegian approaches in the Area of Freedom, Security and Justice Rebecca Adler-Nissen......Through the EU's front- and backdoors: The selective Danish and Norwegian approaches in the Area of Freedom, Security and Justice Rebecca Adler-Nissen...

  16. Coping on the Front-line

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum; Lønsmann, Dorte

    This article investigates how front-line employees respond to English language policies implemented by the management of three multinational corporations (MNCs) headquartered in Scandinavia. Based on interview and document data the article examines the ways in which front-line employees cross lan...

  17. Light front quantum chromodynamics: Towards phenomenology

    Indian Academy of Sciences (India)

    We briefly review the application of light front QCD to inclusive deep inelastic scattering. Keywords. Light front dynamics .... longitudinal gluon structure function and to a new sum rule. К. dmFД/m = 4M¾/Q¾. , which ... For the transversely polarized structure function g¾, if the twist three contributions are ignored, one gets an ...

  18. Thermal Fronts Atlas of Canadian Coastal Waters

    NARCIS (Netherlands)

    Cyr, F.; Larouche, P.

    2015-01-01

    Oceanic fronts are often associated with enhanced biological activity. Depending on their generation mechanism, they are often linked to specific geographical areas. Here we use 25 years of high-resolution satellite sea surface temperature (SST) daily images to generate maps of SST fronts over

  19. End-Users, Front Ends and Librarians.

    Science.gov (United States)

    Bourne, Donna E.

    1989-01-01

    The increase in end-user searching, the advantages and limitations of front ends, and the role of the librarian in end-user searching are discussed. It is argued that librarians need to recognize that front ends can be of benefit to themselves and patrons, and to assume the role of advisors and educators for end-users. (37 references) (CLB)

  20. Turbulence spectra measured during fire front passage

    Science.gov (United States)

    Daisuke Seto; Craig B. Clements; Warren E. Heilman

    2013-01-01

    Four field experiments were conducted over various fuel and terrain to investigate turbulence generation during the passage of wildland fire fronts. Our results indicate an increase in horizontal mean winds and friction velocity, horizontal and vertical velocity variances as well as a decreased degree of anisotropy in TKE during fire front passage (FFP) due to fire-...

  1. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  2. Fault Features Extraction and Identification based Rolling Bearing Fault Diagnosis

    Science.gov (United States)

    Qin, B.; SUN, G. D.; ZHANG, L. Y.; WANG, J. G.; HU, J.

    2017-05-01

    For the fault classification model based on extreme learning machine (ELM), the diagnosis accuracy and stability of rolling bearing is greatly influenced by a critical parameter, which is the number of nodes in hidden layer of ELM. An adaptive adjustment strategy is proposed based on vibrational mode decomposition, permutation entropy, and nuclear kernel extreme learning machine to determine the tunable parameter. First, the vibration signals are measured and then decomposed into different fault feature models based on variation mode decomposition. Then, fault feature of each model is formed to a high dimensional feature vector set based on permutation entropy. Second, the ELM output function is expressed by the inner product of Gauss kernel function to adaptively determine the number of hidden layer nodes. Finally, the high dimension feature vector set is used as the input to establish the kernel ELM rolling bearing fault classification model, and the classification and identification of different fault states of rolling bearings are carried out. In comparison with the fault classification methods based on support vector machine and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability.

  3. Taxonomy of Greater White-fronted Geese (Aves: Anatidae)

    Science.gov (United States)

    Banks, Richard C.

    2011-01-01

    Five subspecies of the Greater White-fronted Goose, Anser albifrons (Scopoli, 1769), have been named, all on the basis of wintering birds, and up to six subspecies have been recognized. There has been confusion over the application of some names, particularly in North America, because of lack of knowledge of the breeding ranges and type localities, and incorrect taxonomic decisions. There is one clinally varying subspecies in Eurasia, one that breeds in Greenland, and three in North America, one newly named herein.

  4. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    Science.gov (United States)

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  5. Active faulting on the Wallula fault within the Olympic-Wallowa Lineament (OWL), eastern Washington State

    Science.gov (United States)

    Sherrod, B. L.; Lasher, J. P.; Barnett, E. A.

    2013-12-01

    Several studies over the last 40 years focused on a segment of the Wallula fault exposed in a quarry at Finley, Washington. The Wallula fault is important because it is part of the Olympic-Wallowa lineament (OWL), a ~500-km-long topographic and structural lineament extending from Vancouver Island, British Columbia to Walla Walla, Washington that accommodates Basin and Range extension. The origin and nature of the OWL is of interest because it contains potentially active faults that are within 50 km of high-level nuclear waste facilities at the Hanford Site. Mapping in the 1970's and 1980's suggested the Wallula fault did not offset Holocene and late Pleistocene deposits and is therefore inactive. New exposures of the Finley quarry wall studied here suggest otherwise. We map three main packages of rocks and sediments in a ~10 m high quarry exposure. The oldest rocks are very fine grained basalts of the Columbia River Basalt Group (~13.5 Ma). The next youngest deposits include a thin layer of vesicular basalt, white volcaniclastic deposits, colluvium containing clasts of vesicular basalt, and indurated paleosols. A distinct angular unconformity separates these vesicular basalt-bearing units from overlying late Pleistocene flood deposits, two colluvium layers containing angular clasts of basalt, and Holocene tephra-bearing loess. A tephra within the loess likely correlates to nearby outcrops of Mazama ash. We recognize three styles of faults: 1) a near vertical master reverse or oblique fault juxtaposing very fine grained basalt against late Tertiary-Holocene deposits, and marked by a thick (~40 cm) vertical seam of carbonate cemented breccia; 2) subvertical faults that flatten upwards and displace late Tertiary(?) to Quaternary(?) soils, colluvium, and volcaniclastic deposits; and 3) flexural slip faults along bedding planes in folded deposits in the footwall. We infer at least two Holocene earthquakes from the quarry exposure. The first Holocene earthquake deformed

  6. Coherent structures for front propagation in fluids

    Science.gov (United States)

    Mitchell, Kevin; Mahoney, John

    2014-03-01

    Our goal is to characterize the nature of reacting flows by identifying important ``coherent'' structures. We follow the recent work by Haller, Beron-Vera, and Farazmand which formalized the notion of lagrangian coherent structures (LCSs) in fluid flows. In this theory, LCSs were derived from the Cauchy-Green strain tensor. We adapt this perspective to analogously define coherent structures in reacting flows. By this we mean a fluid flow with a reaction front propagating through it such that the propagation does not affect the underlying flow. A reaction front might be chemical (Belousov-Zhabotinsky, flame front, etc.) or some other type of front (electromagnetic, acoustic, etc.). While the recently developed theory of burning invariant manifolds (BIMs) describes barriers to front propagation in time-periodic flows, this current work provides an important complement by extending to the aperiodic setting. Funded by NSF Grant CMMI-1201236.

  7. Microscopic Mechanisms for Propagating Deformation Fronts

    Science.gov (United States)

    Franklin, Scott

    2001-03-01

    Alloys often deform through the propagation of slowly moving ( cm/s) fronts separating strained and unstrained regions. Theories for these Portevin-Le Chatelier (PLC) fronts are mostly on the macroscopic level, dealing with strains instead of dislocation populations. In these models diffusion, a possible mechanism for propagation, fails to produce front behavior consistent with experiments. Previous work* used a nonlocal strain-rate to successfully reproduce many different aspects of experimentally observed fronts. Ananthakrishna has proposed a set of equations that describe the evolution of different dislocation populations. These equations reproduce the temporal behavior of the PLC effect, serrated stress-strain curves accompanying smooth loading. It is natural to ask whether diffusive or other spatial coupling terms added to this model result in fronts. I will discuss simulations of these equations with added spatial terms and attempt to compare the results with experiments. *S. Franklin, F. Mertens, and M. Marder, Phys. Rev. E V. 62 (2000)

  8. Ultra-wideband wireless receiver front-end for high-speed indoor applications

    Directory of Open Access Journals (Sweden)

    Zhe-Yang Huang

    2014-12-01

    Full Text Available Low-noise, ultra-wideband (UWB wireless receiver front-end circuits were presented in this study. A two-stage common-source low-noise amplifier with wideband input impedance matching network, an active-balun and a double-balanced down-conversion mixer were adopted in the UWB wireless receiver front-end. The proposed wireless receiver front-end circuits were implemented in 0.18 μm radio-frequency-CMOS process. The maximum down-conversion power gain of the front-end is 25.8 dB; minimum single-sideband noise figure of the front-end is 4.9 dB over complete UWB band ranging from 3.1 to 10.6 GHz. Power consumption including buffers is 39.2 mW.

  9. Active fault diagnosis by temporary destabilization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  10. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  11. Active Fault Diagnosis by Temporary Destabilization

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  12. Fault Detection for Diesel Engine Actuator

    DEFF Research Database (Denmark)

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.

    1994-01-01

    Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur.......Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur....

  13. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada

    Science.gov (United States)

    Bender, Adrian M.; Haeussler, Peter J.

    2017-05-04

    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  14. The effectiveness of undergraduate teaching of the identification of radiographic film faults.

    Science.gov (United States)

    Rushton, V E; Hirschmann, P N; Bearn, D R

    2005-11-01

    To see if there were any differences in the ability of final year dental students at two UK dental schools, who were within 4 months of graduation, to identify radiographic film faults. The two groups of undergraduates were shown 11 dental radiographs using a slide format. The 11 radiographs included 8 films with film faults, 2 films without technical or processing errors and a film with minimal faults. Each student was asked to assess each film for the presence/absence of film fault(s), to detail how to correct the fault (if appropriate) and to give a subjective quality rating of each film. The range of marks obtained by both groups of students was low. All students found the identification of panoramic film faults more challenging than faults associated with intraoral films. 15% of students from University B scored more than half the possible marks compared with 2% from University A. Both groups of students had the necessary knowledge of how to correct faults once identified. However, the marked difference in competency in identifying faults between the two groups of students has implications for the future teaching and development of the radiology curriculum.

  15. Study on Fault Diagnosis of Rolling Bearing Based on Time-Frequency Generalized Dimension

    Directory of Open Access Journals (Sweden)

    Yu Yuan

    2015-01-01

    Full Text Available The condition monitoring technology and fault diagnosis technology of mechanical equipment played an important role in the modern engineering. Rolling bearing is the most common component of mechanical equipment which sustains and transfers the load. Therefore, fault diagnosis of rolling bearings has great significance. Fractal theory provides an effective method to describe the complexity and irregularity of the vibration signals of rolling bearings. In this paper a novel multifractal fault diagnosis approach based on time-frequency domain signals was proposed. The method and numerical algorithm of Multi-fractal analysis in time-frequency domain were provided. According to grid type J and order parameter q in algorithm, the value range of J and the cut-off condition of q were optimized based on the effect on the dimension calculation. Simulation experiments demonstrated that the effective signal identification could be complete by multifractal method in time-frequency domain, which is related to the factors such as signal energy and distribution. And the further fault diagnosis experiments of bearings showed that the multifractal method in time-frequency domain can complete the fault diagnosis, such as the fault judgment and fault types. And the fault detection can be done in the early stage of fault. Therefore, the multifractal method in time-frequency domain used in fault diagnosis of bearing is a practicable method.

  16. Near-Surface Fault Structures of the Seulimuem Segment Based on Electrical Resistivity Model

    Science.gov (United States)

    Ismail, Nazli; Yanis, Muhammad; Idris, Syafrizal; Abdullah, Faisal; Hanafiah, Bukhari

    2017-05-01

    The Great Sumatran Fault (GSF) system is arc-parallel strike-slip fault system along the volcanic front related to the oblique subduction of the oceanic Indo-Australian plate. Large earthquakes along the southern GSF since 1892 have been reported, but the Seulimuem segment at the northernmost Sumatran has not produced large earthquakes in the past 100 years. The 200-km-long segment is considered to be a seismic gap. Detailed geological study of the fault and thus its surface trace locations, late Quaternary slip rate, and rupture history are urgently needed for earthquake disaster mitigation in the future. However, finding a suitable area for paleoseismic trenching is an obstacle when the fault traces are not clearly shown on the surface. We have conducted geoelectrical measurement in Lamtamot area of Aceh Besar District in order to locate the fault line for paleoseismic excavation. Apparent resistivity data were collected along 40 m profile parallel to the planned trenching site. The 2D electrical resistivity model provided evidence of some resistivity anomalies by high lateral contrast. This anomaly almost coincides with the topographic scarp which is modified by agriculture on the surface at the northern part of Lamtamot. The steep dipping electrical contrast may correspond to a fault. However, the model does not resolve well evidences from minor faults that can be related to the presence of surface ruptures. A near fault paleoseismic investigation requires trenching across the fault in order to detect and analyze the geological record of the past large earthquakes along the Seulimuem segment.

  17. Fault Tolerant External Memory Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas

    2009-01-01

    bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where......Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...

  18. Static Decoupling in fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    1998-01-01

    An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...

  19. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel

    2016-01-01

    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  20. Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems

    Science.gov (United States)

    Matrau, Rémi; Klinger, Yann; Van der Woerd, Jérôme; Liu-Zeng, Jing; Li, Zhanfei; Xu, Xiwei

    2017-04-01

    Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems Matrau Rémi, Klinger Yann, Van der Woerd Jérôme, Liu-Zeng Jing, Li Zhanfei, Xu Xiwei The Haiyuan fault in Gansu Province, China, is a major left-lateral strike-slip fault forming the northeastern boundary of the Tibetan plateau and accommodating part of the deformation from the India-Asia collision. Geomorphic and geodetic studies of the Haiyuan fault show slip rates ranging from 4 mm/yr to 19 mm/yr from east to west along 500 km of the fault. Such discrepancy could be explained by the complex geometry of the fault system, leading to slip distribution on multiple branches. Combining displacement measurements of alluvial terraces from high-resolution Pléiades images and 10Be - 26Al cosmogenic radionuclides (CRN) dating, we bracket the late Quaternary slip rate along the Hasi Shan fault segment (37°00' N, 104°25' E). At our calibration site, terrace riser offsets for 5 terraces ranging from 6 m to 227 m and CRN ages ranging from 6.5±0.6 kyr to 41±4 kyr - yield geological left-lateral slip rates from 2.0 mm/yr to 4.4 mm/yr. We measured consistent terrace riser offset values along the entire 25 km-long segment, which suggests that some external forcing controls the regional river-terrace emplacement, regardless of each specific catchment. Hence, we extend our slip rate determination to the entire Hasi Shan fault segment to be 4.0±1.0 mm/yr since the last 40 kyr. This rate is consistent with other long-term rates of 4 mm/yr to 5 mm/yr east and west of Hasi Shan - as well as geodetic rates of 4 mm/yr to 6 mm/yr west of Hasi Shan. However, Holocene terraces and moraines offsets have suggested higher rates of 15 to 20 mm/yr further west. Such disparate rates may be explained by slip distribution on multiple branches. In particular, the Zhongwei fault splay in the central part of the Haiyuan fault, with a slip rate of 4-5 mm/yr could

  1. A Spectrum Detection Approach for Bearing Fault Signal Based on Spectral Kurtosis

    Directory of Open Access Journals (Sweden)

    Yunfeng Li

    2017-01-01

    Full Text Available According to the similarity between Morlet wavelet and fault signal and the sensitive characteristics of spectral kurtosis for the impact signal, a new wavelet spectrum detection approach based on spectral kurtosis for bearing fault signal is proposed. This method decreased the band-pass filter range and reduced the wavelet window width significantly. As a consequence, the bearing fault signal was detected adaptively, and time-frequency characteristics of the fault signal can be extracted accurately. The validity of this method was verified by the identifications of simulated shock signal and test bearing fault signal. The method provides a new understanding of wavelet spectrum detection based on spectral kurtosis for rolling element bearing fault signal.

  2. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet

    Science.gov (United States)

    Gold, R.D.; Cowgill, E.; Arrowsmith, J.R.; Chen, X.; Sharp, W.D.; Cooper, K.M.; Wang, X.-F.

    2011-01-01

    The active, left-lateral Altyn Tagh fault defines the northwestern margin of the Tibetan Plateau in western China. To clarify late Quaternary temporal and spatial variations in slip rate along the central portion of this fault system (85??-90??E), we have more than doubled the number of dated offset markers along the central Altyn Tagh fault. In particular, we determined offset-age relations for seven left-laterally faulted terrace risers at three sites (Kelutelage, Yukuang, and Keke Qiapu) spanning a 140-km-long fault reach by integrating surficial geologic mapping, topographic surveys (total station and tripod-light detection and ranging [T-LiDAR]), and geochronology (radiocarbon dating of organic samples, 230Th/U dating of pedogenic carbonate coatings on buried clasts, and terrestrial cosmogenic radionuclide exposure age dating applied to quartz-rich gravels). At Kelutelage, which is the westernmost site (37.72??N, 86.67??E), two faulted terrace risers are offset 58 ?? 3 m and 48 ?? 4 m, and formed at 6.2-6.1 ka and 5.9-3.7 ka, respectively. At the Yukuang site (38.00??N, 87.87??E), four faulted terrace risers are offset 92 ?? 12 m, 68 ?? 6 m, 55 ?? 13 m, and 59 ?? 9 m and formed at 24.2-9.5 ka, 6.4-5.0 ka, 5.1-3.9 ka, and 24.2-6.4 ka, respectively. At the easternmost site, Keke Qiapu (38.08??N, 88.12??E), a faulted terrace riser is offset 33 ?? 6 m and has an age of 17.1-2.2 ka. The displacement-age relationships derived from these markers can be satisfied by an approximately uniform slip rate of 8-12 mm/yr. However, additional analysis is required to test how much temporal variability in slip rate is permitted by this data set. ?? 2011 Geological Society of America.

  3. Fault Tolerance for Industrial Actuators in Absence of Accurate Models and Hardware Redundancy

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios; Blanke, Mogens; Niemann, Hans Henrik

    2015-01-01

    to describe the system over a frequency range. Two methods based on the Kalman Filter and Statistical Change Detection techniques are proposed for detecting degradation faults and component failures, respectively. Finally, a reference correction setup is used to compensate for degradation faults....

  4. Multiple Generations of Faulting: A Kinematic Analysis of the Lagarfljót Region, Northeast Iceland

    Science.gov (United States)

    Runnals, K.; Karson, J. A.; Fiorentino, A. J., II

    2014-12-01

    The North American/Eurasian plate boundary in Iceland is structurally diverse with oblique rifts, volcanic fissure swarms, and transform zones. Lagarfljót is a lake located in the Tertiary flood basalts of East Iceland that range in age from ~7 to 3 Ma. The lake is approximately 50 km E of the actively spreading, NS-trending, Northern Rift Zone (NVZ), and occupies a northeast-trending depression in an area of strong NS lineaments. A flexure zone runs N-S across the southern part of the lake, and predates an angular unconformity in the regional lava pile. Exposures in cliffs along the lakeshore and stream cuts above unveil a series of dikes and faults that can be correlated with the lineaments, and indicate a complicated tectonic history. Fault zones are characterized by fault breccia, cataclasite and gouge with well-developed slickenlines and clear shear-sense indicators. Fault gouge in individual shear zones ranges from centimeters to meters in thickness. Cross cutting relationships define the relative ages of 2 families of structures, with both post-dating the flexure. The older generation of faults are NS-striking, dextral, strike-slip faults. These are cut by NE-striking, normal faults. The normal faults are almost exclusively located along or near the margins of large dikes or swarms of dikes ranging from 1 - 5 m wide. Displacements along individual normal faults range from centimeters up to 8 m. Some faults cut the lavas above the unconformity and locally rotated structures suggest that limited tilting of the lava pile occurred during faulting. These findings may be related to larger scale processes of propagation and relocation of the NVZ.

  5. Strain partitioning and stress perturbation around stepovers and bends of strike-slip faults: Numerical results

    Science.gov (United States)

    Wang, Hui; Liu, Mian; Ye, Jiyang; Cao, Jianling; Jing, Yan

    2017-11-01

    Stepovers and bends along strike-slip faults are where push-up ranges and pull-apart basins are formed. They are also commonly where fault ruptures terminate. Field study and analogue models suggest that the configuration of faults plays a key role in crustal deformation around bends and stepovers, but the related mechanics of stress perturbation, strain partitioning, and fault evolution remains poorly understood. Here we present results of systematical mechanical models of stress changes and strain partitioning around simple stepovers and bends, using three-dimensional viscoelasto-plastic finite element code. Our model predicts elevated deviatoric stress around all stepovers and bends, with higher stresses around the restraining ones. Narrow stepovers localize strain between the fault gaps to form connecting faults, whereas wide stepovers localize strain on the tips of fault segments so the stepovers may evolve into subparallel faults. We explored how various configurations of stepovers and bends change the stress field and strain distribution, and show that these results can help explain some key differences between the pull-apart basins in the Dead Sea Trough and Death Valley, and the push-up ranges along the San Andreas Fault.

  6. Delineation of Urban Active Faults Using Multi-scale Gravity Analysis in Shenzhen, South China

    Science.gov (United States)

    Xu, C.; Liu, X.

    2015-12-01

    In fact, many cities in the world are established on the active faults. As the rapid urban development, thousands of large facilities, such as ultrahigh buildings, supersized bridges, railway, and so on, are built near or on the faults, which may change the balance of faults and induce urban earthquake. Therefore, it is significant to delineate effectively the faults for urban planning construction and social sustainable development. Due to dense buildings in urban area, the ordinary approaches to identify active faults, like geological survey, artificial seismic exploration and electromagnetic exploration, are not convenient to be carried out. Gravity, reflecting the mass distribution of the Earth's interior, provides a more efficient and convenient method to delineate urban faults. The present study is an attempt to propose a novel gravity method, multi-scale gravity analysis, for identifying urban active faults and determining their stability. Firstly, the gravity anomalies are decomposed by wavelet multi-scale analysis. Secondly, based on the decomposed gravity anomalies, the crust is layered and the multilayer horizontal tectonic stress is inverted. Lastly, the decomposed anomalies and the inverted horizontal tectonic stress are used to infer the distribution and stability of main active faults. For validating our method, a case study on active faults in Shenzhen City is processed. The results show that the distribution of decomposed gravity anomalies and multilayer horizontal tectonic stress are controlled significantly by the strike of the main faults and can be used to infer depths of the faults. The main faults in Shenzhen may range from 4km to 20km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  7. Digital front-end module (DFEM) series; Digital front end module (DFEM) series

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The digital front-end module (DFEM) is a module in which the processes ranging from the reception of digitally modulated radiofrequencies to the output of digital IF (Intermediate Frequency) signals or data streams are integrated. Beginning with a module for the MCNS (Multimedia Cable Network System) cable modem which was the first module in this business field approved by the Cable Labs, U.S., Toshiba has developed a series of DFEMs for various digital media for satellites, ground waves, and CATV (Cable Television) systems. The series is characterized by (1) the serialization of DFEMs compatible with various digital modulation techniques such as 8 PSK (Phase Shift Keying), OFDM (Orthogonal Frequency Division Multiplexing), and 256 QAM (Quadrature Amplitude Modulation), (2) easy connection with digital circuits thanks to the high shielding effect, and (3) the achievement of smaller size, higher performance, and lower power consumption. (translated by NEDO)

  8. Io in Front of Jupiter

    Science.gov (United States)

    2000-01-01

    Jupiter's four largest satellites, including Io, the golden ornament in front of Jupiter in this image from NASA's Cassini spacecraft, have fascinated Earthlings ever since Galileo Galilei discovered them in 1610 in one of his first astronomical uses of the telescope.Images from Cassini that will be released over the next several days capture each of the four Galilean satellites in their orbits around the giant planet.This true-color composite frame, made from narrow angle images taken on Dec. 12, 2000, captures Io and its shadow in transit against the disk of Jupiter. The distance of the spacecraft from Jupiter was 19.5 million kilometers (12.1 million miles). The image scale is 117 kilometers (73 miles) per pixel.The entire body of Io, about the size of Earth's Moon, is periodically flexed as it speeds around Jupiter and feels, as a result of its non-circular orbit, the periodically changing gravitational pull of the planet. The heat arising in Io's interior from this continual flexure makes it the most volcanically active body in the solar system, with more than 100 active volcanoes. The white and reddish colors on its surface are due to the presence of different sulfurous materials. The black areas are silicate rocks.Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  9. Fault Trends and the Evolution of the Pacific-North America Transform in Southern California

    Science.gov (United States)

    Legg, M. R.; Kamerling, M. J.

    2004-12-01

    The Pacific-North America (PAC-NOAM) transform boundary evolved during the past 30 Ma, lengthening more than 1000 km and spanning a zone exceeding 200-km across southern California. The relative plate motion vector has been estimated using seafloor magnetic anomaly patterns. Orientations of major transform fault segments within this boundary provide direct evidence of the relative motion at the time these faults formed, where the faults preserve their original orientations. Avoiding areas of known vertical-axis block rotations, we find at least three major fault trends that document past and present tectonic kinematics. A northwest trend of 330 degrees is related to subduction trends in the forearc region that defined the late Mesozoic and early Tertiary coastline and has subsequently controlled the orientation of oblique rifting during the Neogene initiation and growth of the PAC-NOAM transform. This trend is manifest in the San Diego Trough and adjacent coastal rifts and associated fault zones including the Coronado Bank and Newport-Inglewood. The middle Miocene transform orientation appears to be 300-310 degrees, which imparted extensional character to faults reactivated with older subduction trends. Major faults inferred to represent Neogene transform fault segments with this trend include the Whittier, Palos Verdes Hills, Santa Cruz-Catalina Ridge, Catalina Escarpment, and possibly the Mojave segment of the San Andreas fault. In late Miocene time, the plate motion vector rotated clockwise eventually achieving its modern orientation of about 320 degrees. Active faulting showing pure strike-slip character on the San Clemente - San Isidro fault zone and the Imperial Fault show this trend, as do transform faults in the northern Gulf of California. An intermediate trend is apparent in some areas along the San Clemente fault zone in the Borderland, and along the Elsinore and San Jacinto fault zones, which transect the Peninsular Ranges. The intermediate trends may

  10. Left-Lateral Strike-Slip Faulting in the East Alborz, NE Iran

    Science.gov (United States)

    Hollingsworth, J.; Walker, R.; Jackson, J.; Bolourchi, M. J.; Eshraghi, S. A.

    2006-12-01

    The East Alborz mountains of NE Iran are actively deforming as a result of Arabia-Eurasia collision. We combine observations of the geomorphology made using high resolution satellite, topographic and field data, with historical and recent seismicity to map major active faults in this poorly studied region. Deformation on the north side of the range occurs by range-normal shortening on the Khazar thrust fault, which separates Central Iran from the South Caspian. South of the range, deformation involves both left-lateral slip on the previously undocumented Shahrud fault system, which comprises several range-bounding fault segments, and shortening on (probably minor) thrust faults. Faulting south of the range is responsible for major historical earthquakes at Damghan (856AD) and Shahrud (1890). Deformation accommodated across the East Alborz is estimated from the difference in GPS velocities north and south of the range. South of the Alborz, northward GPS velocities across Central Iran decrease eastwards and the strike of the deforming belt changes to become more sub-parallel to the direction of South Caspian- Iran relative motion. This reduces the shortening component across the East Alborz, resulting in lower elevations between 54--57°E. West of 55.5°E, the more arc-normal shortening is achieved by partitioning of deformation onto the Khazar thrust (~1 mm/yr) and the Astaneh and Firuzkuh strike-slip faults (~3 mm/yr). East of 55.5°E, the Khazar fault ends and East Alborz deformation is accommodated primarily on the left-lateral Shahrud fault system, which may slip up to 3~mm/yr. Due to the long gap in seismicity along the eastern Shahrud fault system, the city of Jajarm (15,000 pop.) is considered at high risk from future earthquakes.

  11. Blocking-resistant communication through domain fronting

    Directory of Open Access Journals (Sweden)

    Fifield David

    2015-06-01

    Full Text Available We describe “domain fronting,” a versatile censorship circumvention technique that hides the remote endpoint of a communication. Domain fronting works at the application layer, using HTTPS, to communicate with a forbidden host while appearing to communicate with some other host, permitted by the censor. The key idea is the use of different domain names at different layers of communication. One domain appears on the “outside” of an HTTPS request—in the DNS request and TLS Server Name Indication—while another domain appears on the “inside”—in the HTTP Host header, invisible to the censor under HTTPS encryption. A censor, unable to distinguish fronted and nonfronted traffic to a domain, must choose between allowing circumvention traffic and blocking the domain entirely, which results in expensive collateral damage. Domain fronting is easy to deploy and use and does not require special cooperation by network intermediaries. We identify a number of hard-to-block web services, such as content delivery networks, that support domain-fronted connections and are useful for censorship circumvention. Domain fronting, in various forms, is now a circumvention workhorse. We describe several months of deployment experience in the Tor, Lantern, and Psiphon circumvention systems, whose domain-fronting transports now connect thousands of users daily and transfer many terabytes per month.

  12. A Low Velocity Zone along the Chaochou Fault in Southern Taiwan: Seismic Image Revealed by a Linear Seismic Array

    Directory of Open Access Journals (Sweden)

    Hsin-Chieh Pu

    2010-01-01

    Full Text Available The Chaochou fault is one of the major boundary faults in southern Taiwan where strong convergence has taken place between the Eurasian and Philippine Sea plates. The surface fault trace between the Pingtung plain and the Central Range follows a nearly N-S direction and stretches to 80 km in length. In order to examine the subsurface structures along the Chaochou fault, a linear seismic array with 14 short-period stations was deployed across the fault to record seismic data between August and December 2001. Detailed examination of seismic data generated by 10 local earthquakes and recorded by the linear array has shown that the incidence angles of the first P-waves recorded by several seismic stations at the fault zone were significantly larger than those located farther away from the fault zone. This difference might reflect the lateral variation of velocity structures across the Chaochou fault. Further examination of ray-paths of seismic wave propagation indicates that a low-velocity zone along the Chaochou fault is needed to explain the significant change in incidence angles across the fault zone. Although we do not have adequate information to calculate the exact geometry of the fault zone well, the variation in incidence angles across the fault can be explained by the existence of a low-velocity zone that is about 3 km in width on the surface and extends downward to a depth of 5 km. The low-velocity zone along the Chaochou fault might imply that the fault system consists of several splay faults on the hanging wall in the Central Range.

  13. San Andreas Fault in the Carrizo Plain

    Science.gov (United States)

    2000-01-01

    The 1,200-kilometer (800-mile)San Andreas is the longest fault in California and one of the longest in North America. This perspective view of a portion of the fault was generated using data from the Shuttle Radar Topography Mission (SRTM), which flew on NASA's Space Shuttle last February, and an enhanced, true-color Landsat satellite image. The view shown looks southeast along the San Andreas where it cuts along the base of the mountains in the Temblor Range near Bakersfield. The fault is the distinctively linear feature to the right of the mountains. To the left of the range is a portion of the agriculturally rich San Joaquin Valley. In the background is the snow-capped peak of Mt. Pinos at an elevation of 2,692 meters (8,831 feet). The complex topography in the area is some of the most spectacular along the course of the fault. To the right of the fault is the famous Carrizo Plain. Dry conditions on the plain have helped preserve the surface trace of the fault, which is scrutinized by both amateur and professional geologists. In 1857, one of the largest earthquakes ever recorded in the United States occurred just north of the Carrizo Plain. With an estimated magnitude of 8.0, the quake severely shook buildings in Los Angeles, caused significant surface rupture along a 350-kilometer (220-mile) segment of the fault, and was felt as far away as Las Vegas, Nev. This portion of the San Andreas is an important area of study for seismologists. For visualization purposes, topographic heights displayed in this image are exaggerated two times.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60

  14. Ultrashort-pulse wave-front autocorrelation.

    Science.gov (United States)

    Grunwald, R; Neumann, U; Griebner, U; Reimann, K; Steinmeyer, G; Kebbel, V

    2003-12-01

    Combined spatially resolved collinear autocorrelation and Shack-Hartmann wave-front sensing of femtosecond laser pulses is demonstrated for the first time to our knowledge. The beam is divided into multiple nondiffracting subbeams by thin-film micro-optical arrays. With hybrid refractive-reflective silica/silver microaxicons, wave-front autocorrelation is performed in oblique-angle reflection. Simultaneous two-dimensional detection of local temporal structure and wave-front tilt of propagating few-cycle wave packets is demonstrated.

  15. Pressure transient method for front tracking

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.M.; Bodvarsson, G.S.

    1983-08-01

    A pressure transient technique for tracking the advance of cold water fronts during water flooding and goethermal injection operations has been developed. The technique is based on the concept that the steady state pressure buildup in the reservoir region inside the front can be calculated by a fluid skin factor. By analyzing successive pressure falloff tests, the advance of the front in the reservoir can be monitored. The validity of the methods is demonstrated by application to three numerically simulated data sets, a nonisothermal step-rate injection test, a series of pressure falloffs in a multilayered reservoir, and a series of pressure falloff tests in a water flooded oil reservoir.

  16. Frontón en Lezkairu

    OpenAIRE

    Legarra Arizaleta, Xabier

    2010-01-01

    El objetivo del proyecto es el diseño, cálculo y presupuestado de un frontón cubierto de 36 metros de longitud, con sus correspondientes gradas, instalaciones y aparcamientos en el nuevo barrio pamplonés de Lezkairu. El frontón propuesto está destinado a un uso público debido a la gran demanda que nace en relación a la pelota, y sus diferentes modalidades así como la carencia de más infraestructuras de este tipo. Cabe destacar que las características y medidas del frontón lo ...

  17. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  18. Imaging Slow Slip Fronts in Cascadia With High-Precision Tremor Locations

    Science.gov (United States)

    Rubin, A. M.; Armbruster, J. G.

    2012-12-01

    We use the method of Armbruster and Kim [AGU 2010] to obtain tremor locations using 4-second windows, focusing on a few spots beneath southern Vancouver Island activated by slow slip events from 2003 to 2005. The method compares horizontal-component waveforms (not envelopes) at 3 stations separated by 10-20 km. From local earthquakes "caught" by the detector it appears that the coherent signal consists of the direct S arrival but not the S coda. Using 150-s windows, Armbruster and Kim found "wispy" sources of tremor that in some regions were reproducible between the 2003, 2004, and 2005 events to within 1 km. In time, their tremor locations trace out quasi-linear trajectories on the fault surface that migrate tens of times faster than the main front, as has been reported elsewhere [e.g., Ghosh et al., 2010; Vidale et al., AGU 2011]. By moving to 4-s windows, we find that these long-time-window locations very often represent the spatial "average" of secondary fronts behind the main front. These secondary fronts tend to (a) start within about 1 km of the main tremor front and propagate back along strike, akin to the "rapid tremor reversals" of Houston et al. [2011] but on a smaller scale (5 km rather than 50); (b) less commonly do the reverse, ending at the main front; or (c) propagate up- or down-dip at or within 1-2 kilometers of the main front. Rare events propagate in other directions. The fronts that move along strike can be as narrow as 1 km in the propagation direction but can exceed 5 km in the orthogonal direction. Those that propagate along dip are typically also narrow (~ 1 km) in the strike direction; if they are even narrower in the propagation direction this is below our resolution. Characteristic propagation speeds are 10 km/hr along strike and several times faster along dip. For those along-dip migrations that occur at the main front, the larger propagation speed is plausibly an "apparent" velocity as the main front intersects an along-dip alignment

  19. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    Science.gov (United States)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    In dynamic rupture models, high stress concentrations at rupture fronts have to to be accommodated by off-fault inelastic processes such as plastic deformation. As presented in (Roten et al., 2014), incorporating plastic yielding can significantly reduce earlier predictions of ground motions in the Los Angeles Basin. Further, an inelastic response of materials surrounding a fault potentially has a strong impact on surface displacement and is therefore a key aspect in understanding the triggering of tsunamis through floor uplifting. We present an implementation of off-fault-plasticity and its verification for the software package SeisSol, an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method. The software recently reached multi-petaflop/s performance on some of the largest supercomputers worldwide and was a Gordon Bell prize finalist application in 2014 (Heinecke et al., 2014). For the nonelastic calculations we impose a Drucker-Prager yield criterion in shear stress with a viscous regularization following (Andrews, 2005). It permits the smooth relaxation of high stress concentrations induced in the dynamic rupture process. We verify the implementation by comparison to the SCEC/USGS Spontaneous Rupture Code Verification Benchmarks. The results of test problem TPV13 with a 60-degree dipping normal fault show that SeisSol is in good accordance with other codes. Additionally we aim to explore the numerical characteristics of the off-fault plasticity implementation by performing convergence tests for the 2D code. The ADER-DG method is especially suited for complex geometries by using unstructured tetrahedral meshes. Local adaptation of the mesh resolution enables a fine sampling of the cohesive zone on the fault while simultaneously satisfying the dispersion requirements of wave propagation away from the fault. In this context we will investigate the influence of off-fault-plasticity on geometrically complex fault zone structures like subduction

  20. Role of weighting in the dynamics of front propagation

    Energy Technology Data Exchange (ETDEWEB)

    Zekri, Nouredine, E-mail: zekri@univ-usto.dz [Université des Sciences et de la Technologie d' Oran Mohamed Boudiaf, Département de Physique, LEPM, BP 1505 El Mnaouer, Oran (Algeria); Khelloufi, Khadidja; Zekri, Lotfi [Université des Sciences et de la Technologie d' Oran Mohamed Boudiaf, Département de Physique, LEPM, BP 1505 El Mnaouer, Oran (Algeria); Porterie, Bernard; Kaiss, Ahmed; Clerc, Jean-Pierre [Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13453, Marseille (France)

    2012-07-30

    Non-equilibrium front propagation in a two-dimensional network modelling wildfire propagation was studied. The model includes deterministic long-range interactions due to radiation and a time weighting procedure. Three weight-dependent propagation regimes were found: dynamical, static, and non-propagative. The dynamical regime shows saturation for small weight values and a percolation transition area depending on the weight and size of the interaction domain. From the scaling interface exponents, the model seems to belong to the dynamical percolation universality class. In the limit of static regime it belongs to the random deposition class. -- Highlights: ► Percolation model used includes the weighting procedure and long-range interactions (an interaction domain). The interaction strength is chosen to decrease inversely with the square distance. ► There is a weight threshold R{sub c} above which the front cannot propagate. ► At R{sub c} the percolation is static (usual percolation), and below this threshold it becomes dynamic. ► A generalized dependence of the percolation threshold on both the interaction size n{sub y} and the weight parameter R is proposed. ► A further study of the front dynamic scaling is added to this version and dynamic exponents determined.

  1. Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator

    OpenAIRE

    Liwei Shi; Zhou Bo

    2015-01-01

    This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG) system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experi...

  2. Impact of wind erosion on detecting active tectonics from geomorphic indexes in extremely arid areas: a case study from the Hero Range, Qaidam Basin, NW China

    Science.gov (United States)

    Wu, Lei; Xiao, Ancheng; Yang, Shufeng

    2014-11-01

    Geomorphologic analysis has been used widely to detect active tectonics in regions where fluvial incision is the major erosional process. In this paper, however, we assess the feasibility of utilizing these frequently-used geomorphic indexes (e.g., hypsometric curves, longitudinal channel profiles, normalized stream length-gradient (SLK) index) to determine active tectonics in extremely arid areas where wind erosion also plays an important role. The case study is developed on the Hero Range in the western Qaidam Basin, one of the driest regions on Earth with severe wind erosion since late Pliocene. The result shows that in the west and south sectors, as well as the western part of the east sector, of the Hero Range where fluvial incision prevails, these geomorphic indexes are good indicators of active faulting and consistent with the geological result based on study of fault traces, scarps, faulted Holocene fans and historical seismicity within the past four decades. In contrast, along the northeastern margin (the NE and the SE parts of the east sector) of the range where wind erosion is also important, the results from the geomorphic indexes show quite active tectonics, contrary with the geological evidence favoring weakly active tectonics. Moreover, the positive SLK anomaly lies oblique to the fault trace and the anticline axis but parallel to the wind direction. To reconcile the contradiction, we propose that wind erosion caused by northwestern winds has a tendency to make geomorphic indexes exhibit anomalous values that indicate higher activities, by way of (1) lowering the base-level to generate knickpoints on the longitudinal channel profiles and therefore positive SLK anomalies, and (2) lateral erosion of the mountain front making the hypsometric curves and even the longitudinal channel profiles more convex, and producing obvious slope breaks.

  3. Transverse tectonic structural elements across Himalayan mountain front, eastern Arunachal Himalaya, India: Implication of superposed landform development on analysis of neotectonics

    Science.gov (United States)

    Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro

    2017-04-01

    Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the

  4. Front-end electronics for the CMS preshower detector

    CERN Document Server

    Go, A; Barney, D; Bloch, P; Peisert, Anna; Löfstedt, B; Reynaud, S; Borkar, S; Lalwani, S

    2002-01-01

    The front-end readout system PACE2 for the CMS preshower detector consists of two chips: Delta is a 32 channel preamplifier and shaper that provides low noise, charge to voltage readout for large capacitive silicon sensors over a large dynamic range (up to 400 MIPs); PACE-AM contains a 32-channel wide, 160-cell deep, analog memory with a 32 to 1 multiplexer for serial readout. These chips are designed in .8 mu m BiCMOS DMILL radiation tolerant technology. The performance in terms of dynamic range, linearity, noise, peaking time and memory uniformity are presented. (4 refs).

  5. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets.

    Science.gov (United States)

    Pfeiffer, Carl; Grbic, Anthony

    2013-05-10

    Huygens' principle is a well-known concept in electromagnetics that dates back to 1690. Here, it is applied to develop designer surfaces that provide extreme control of electromagnetic wave fronts across electrically thin layers. These reflectionless surfaces, referred to as metamaterial Huygens' surfaces, provide new beam shaping, steering, and focusing capabilities. The metamaterial Huygens' surfaces are realized with two-dimensional arrays of polarizable particles that provide both electric and magnetic polarization currents to generate prescribed wave fronts. A straightforward design methodology is demonstrated and applied to develop a beam-refracting surface and a Gaussian-to-Bessel beam transformer. Metamaterial Huygens' surfaces could find a wide range of applications over the entire electromagnetic spectrum including single-surface lenses, polarization controlling devices, stealth technologies, and perfect absorbers.

  6. Flexible Frequency Discrimination Subsystems for Reconfigurable Radio Front Ends

    Directory of Open Access Journals (Sweden)

    Carey-Smith Bruce E.

    2005-01-01

    Full Text Available The required flexibility of the software-defined radio front end may currently be met with better overall performance by employing tunable narrowband circuits rather than pursuing a truly wideband approach. A key component of narrowband transceivers is appropriate filtering to reduce spurious spectral content in the transmitter and limit out-of-band interference in the receiver. In this paper, recent advances in flexible, frequency-selective, circuit components applicable to reconfigurable SDR front ends are reviewed. The paper contains discussion regarding the filtering requirements in the SDR context and the use of intelligent, adaptive control to provide environment-aware frequency discrimination. Wide tuning-range frequency-selective circuit elements are surveyed including bandpass and bandstop filters and narrowband tunable antennas. The suitability of these elements to the mobile wireless SDR environment is discussed.

  7. Front dynamics in fractional-order epidemic models.

    Science.gov (United States)

    Hanert, Emmanuel; Schumacher, Eva; Deleersnijder, Eric

    2011-06-21

    A number of recent studies suggest that human and animal mobility patterns exhibit scale-free, Lévy-flight dynamics. However, current reaction-diffusion epidemics models do not account for the superdiffusive spread of modern epidemics due to Lévy flights. We have developed a SIR model to simulate the spatial spread of a hypothetical epidemic driven by long-range displacements in the infective and susceptible populations. The model has been obtained by replacing the second-order diffusion operator by a fractional-order operator. Theoretical developments and numerical simulations show that fractional-order diffusion leads to an exponential acceleration of the epidemic's front and a power-law decay of the front's leading tail. Our results indicate the potential of fractional-order reaction-diffusion models to represent modern epidemics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A digital Front-End and Readout MIcrosystem for calorimetry at LHC

    CERN Multimedia

    2002-01-01

    % RD-16 A Digital Front-End and Readout Microsystem for Calorimetry at LHC \\\\ \\\\Front-end signal processing for calorimetric detectors is essential in order to achieve adequate selectivity in the trigger function of an LHC experiment, with data identification and compaction before readout being required in the harsh, high rate environment of a high luminosity hadron machine. Other crucial considerations are the extremely wide dynamic range and bandwidth requirements, as well as the volume of data to be transferred to following stages of the trigger and readout system. These requirements are best met by an early digitalization of the detector information, followed by integrated digital signal processing and buffering functions covering the trigger latencies.\\\\ \\\\The FERMI (Front-End Readout MIcrosystem) is a digital implementation of the front-end and readout electronic chain for calorimeters. It is based on dynamic range compression, high speed A to D converters, a fully programmable pipeline/digital filter c...

  9. Fault detection and isolation for complex system

    Science.gov (United States)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  10. LBNL delivers front end of SNS

    CERN Document Server

    Keller, R

    2002-01-01

    After four years of construction, the linear accelerator injector that will form the front end of the US SNS has been commissioned at LBNL. Fulfilling all its major design requirements and performing reliably, the system was shipped by July.

  11. Managing Controversies in the Fuzzy Front End

    DEFF Research Database (Denmark)

    Christiansen, John K.; Gasparin, Marta

    2016-01-01

    This research investigates the controversies that emerge in the fuzzy front end (FFE) and how they are closed so the innovation process can move on. The fuzzy front has been characterized in the literature as a very critical phase, but controversies in the FFE have not been studied before....... The analysis investigates the microprocesses around the controversies that emerge during the fuzzy front end of four products. Five different types of controversies are identified: profit, production, design, brand and customers/market. Each controversy represents a threat, but also an opportunity to search...... demonstrates how the fuzzy front requires managers to deal with controversies that emerge from many different places and involve both human and non-human actors. Closing the controversies requires managers to take account of the situation, identify the problem that needs to be addressed, and initiate a search...

  12. Perturbative High Harmonic Wave Front Control.

    Science.gov (United States)

    Li, Zhengyan; Brown, Graham; Ko, Dong Hyuk; Kong, Fanqi; Arissian, Ladan; Corkum, P B

    2017-01-20

    We pattern the wave front of a high harmonic beam by intersecting the intense driving laser pulse that generates the high harmonic with a weak control pulse. To illustrate the potential of wave-front control, we imprint a Fresnel zone plate pattern on a harmonic beam, causing the harmonics to focus and defocus. The quality of the focus that we achieve is measured using the spectral wave-front optical reconstruction by diffraction method. We will show that it is possible to enhance the peak intensity by orders of magnitude without a physical optical element in the path of the extreme ultraviolet (XUV) beam. Through perturbative wave-front control, XUV beams can be created with a flexibility approaching what technology allows for visible and infrared light.

  13. Light front distribution of the chiral condensate

    National Research Council Canada - National Science Library

    Chang, Lei; Roberts, Craig D; Schmidt, Sebastian M

    2013-01-01

    The pseudoscalar projection of the pionE1/4s Poincare-covariant Bethe-Salpeter amplitude onto the light-front may be understood to provide the probability distribution of the chiral condensate within the pion...

  14. Reaction-diffusion fronts under stochastic advection

    CERN Document Server

    Martí, A C; Sancho, J M

    1997-01-01

    We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.

  15. Where's the Hayward Fault? A Green Guide to the Fault

    Science.gov (United States)

    Stoffer, Philip W.

    2008-01-01

    This report describes self-guided field trips to one of North America?s most dangerous earthquake faults?the Hayward Fault. Locations were chosen because of their easy access using mass transit and/or their significance relating to the natural and cultural history of the East Bay landscape. This field-trip guidebook was compiled to help commemorate the 140th anniversary of an estimated M 7.0 earthquake that occurred on the Hayward Fault at approximately 7:50 AM, October 21st, 1868. Although many reports and on-line resources have been compiled about the science and engineering associated with earthquakes on the Hayward Fault, this report has been prepared to serve as an outdoor guide to the fault for the interested public and for educators. The first chapter is a general overview of the geologic setting of the fault. This is followed by ten chapters of field trips to selected areas along the fault, or in the vicinity, where landscape, geologic, and man-made features that have relevance to understanding the nature of the fault and its earthquake history can be found. A glossary is provided to define and illustrate scientific term used throughout this guide. A ?green? theme helps conserve resources and promotes use of public transportation, where possible. Although access to all locations described in this guide is possible by car, alternative suggestions are provided. To help conserve paper, this guidebook is available on-line only; however, select pages or chapters (field trips) within this guide can be printed separately to take along on an excursion. The discussions in this paper highlight transportation alternatives to visit selected field trip locations. In some cases, combinations, such as a ride on BART and a bus, can be used instead of automobile transportation. For other locales, bicycles can be an alternative means of transportation. Transportation descriptions on selected pages are intended to help guide fieldtrip planners or participants choose trip

  16. Fault Recoverability Analysis via Cross-Gramian

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    2016-01-01

    with feedback control. Fault recoverability provides important and useful information which could be used in analysis and design. However, computing fault recoverability is numerically expensive. In this paper, a new approach for computation of fault recoverability for bilinear systems is proposed......Engineering systems are vulnerable to different kinds of faults. Faults may compromise safety, cause sub-optimal operation and decline in performance if not preventing the whole system from functioning. Fault tolerant control (FTC) methods ensure that the system performance maintains within...

  17. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...... for additive faults, parametric faults, and for system structural changes. The modeling for each of these fault classes is described. The method allows to design for passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful...

  18. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam

    2010-01-01

    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...

  19. Fault structure, stress, or pressure control of the seismicity in shale? Insights from a controlled experiment of fluid-induced fault reactivation

    Science.gov (United States)

    De Barros, Louis; Daniel, Guillaume; Guglielmi, Yves; Rivet, Diane; Caron, Hervé; Payre, Xavier; Bergery, Guillaume; Henry, Pierre; Castilla, Raymi; Dick, Pierre; Barbieri, Ernesto; Gourlay, Maxime

    2016-06-01

    Clay formations are present in reservoirs and earthquake faults, but questions remain on their mechanical behavior, as they can vary from ductile (aseismic) to brittle (seismic). An experiment, at a scale of 10 m, aims to reactivate a natural fault by fluid pressure in shale materials. The injection area was surrounded by a dense monitoring network comprising pressure, deformation, and seismicity sensors, in a well-characterized geological setting. Thirty-two microseismic events were recorded during several injection phases in five different locations within the fault zone. Their computed magnitude ranged between -4.3 and -3.7. Their spatiotemporal distribution, compared with the measured displacement at the injection points, shows that most of the deformation induced by the injection is aseismic. Whether the seismicity is controlled by the fault architecture, mineralogy of fracture filling, fluid, and/or stress state is then discussed. The fault damage zone architecture and mineralogy are of crucial importance, as seismic slip mainly localizes on the sealed-with-calcite fractures which predominate in the fault damage zone. As no seismicity is observed in the close vicinity of the injection areas, the presence of fluid seems to prevent seismic slips. The fault core acts as an impermeable hydraulic barrier that favors fluid confinement and pressurization. Therefore, the seismic behavior seems to be strongly sensitive to the structural heterogeneity (including permeability) of the fault zone, which leads to a heterogeneous stress response to the pressurized volume.

  20. Fault2SHA- A European Working group to link faults and Probabilistic Seismic Hazard Assessment communities in Europe

    Science.gov (United States)

    Scotti, Oona; Peruzza, Laura

    2016-04-01

    The key questions we ask are: What is the best strategy to fill in the gap in knowledge and know-how in Europe when considering faults in seismic hazard assessments? Are field geologists providing the relevant information for seismic hazard assessment? Are seismic hazard analysts interpreting field data appropriately? Is the full range of uncertainties associated with the characterization of faults correctly understood and propagated in the computations? How can fault-modellers contribute to a better representation of the long-term behaviour of fault-networks in seismic hazard studies? Providing answers to these questions is fundamental, in order to reduce the consequences of future earthquakes and improve the reliability of seismic hazard assessments. An informal working group was thus created at a meeting in Paris in November 2014, partly financed by the Institute of Radioprotection and Nuclear Safety, with the aim to motivate exchanges between field geologists, fault modellers and seismic hazard practitioners. A variety of approaches were presented at the meeting and a clear gap emerged between some field geologists, that are not necessarily familiar with probabilistic seismic hazard assessment methods and needs and practitioners that do not necessarily propagate the "full" uncertainty associated with the characterization of faults. The group thus decided to meet again a year later in Chieti (Italy), to share concepts and ideas through a specific exercise on a test case study. Some solutions emerged but many problems of seismic source characterizations with people working in the field as well as with people tackling models of interacting faults remained. Now, in Wien, we want to open the group and launch a call for the European community at large to contribute to the discussion. The 2016 EGU session Fault2SHA is motivated by such an urgency to increase the number of round tables on this topic and debate on the peculiarities of using faults in seismic hazard

  1. Soil gas radon concentration across faults near Caracas, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, L. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Caracas (Venezuela); Flores, N.; Urbani, F. [Universidad Central de Venezuela, Dept. de Geologia, Caracas (Venezuela); Carreno, R. [Sociedad Venezolana de Espeleologia, Apdo. 47334, Caracas 1041A (Venezuela)

    2001-09-01

    SSNTD were used across tectonic features of different degree of activity and lithology in four localities north of Caracas, Venezuela. The homemade dosimeters with LR115 film were buried 20-30 cm in the ground. This cheap and low- tech method proved very useful to understand the tectonic features involved, measuring higher Radon concentration above traces of active faults while in old and sealed faults the results only show the effect of the surrounding lithology. Radon concentration range is 4.3 - 27.2 kB/m{sup 3}. (Author)

  2. Resistivity Structures of the Chelungpu Fault in the Taichung Area, Taiwan

    Directory of Open Access Journals (Sweden)

    Ping-Hu Cheng

    2006-01-01

    Full Text Available We conducted magnetotelluric prospecting in the Taichung area to investigate subsurface resistivity structures of the Chelungpu fault and the resistivity of rock formations. The results indicate that the Chelungpu fault is a complex fault system consisting of two major fault zones, several fracture zones, and back thrust. The two major fault zones, the basal and the Chi-Chi fault zone are about 800 m apart on the ground and converge to a narrow band at a depth of 3000 m. The fault zones are not smooth, composed of ramps and platforms with an average eastward dipping angle of 35° - 37° within the depth of 3000 m. In the shallower region, the basal fault zone has developed along the boundary of the Toukoshan Formation (resistivity: 200 - 400 Ω-m at the footwall and the Neogene formations on the hanging wall, where the Cholan Formation, the Chinshiu Shale, and the Kueichulai Formation have respective resistivity mainly in the ranges: 40 - 100, 8 - 60, and 50 - 150 Ω-m. While the Chi-Chi fault zone has developed along the weak layers of the Cholan Formation where resistivity is lower than the unsheared block.

  3. Thrust geometries in unconsolidated Quaternary sediments around the Eupchon fault, SE Korea

    Science.gov (United States)

    Park, J. Y.; Kim, Y.-S.; Kim, J. H.; Shin, H. C.

    2003-04-01

    It had been considered that Korean Peninsula is located in a relatively stable continental platform. Over ten Quaternary faults have recently been discovered, however, in the south-eastern part of the Korean Peninsula. The Eupchon Fault was discovered at the construction site of a primary school, close to a nuclear power plant. In order to understand the characteristics of the Eupchon fault, we carried out two trench surveys near the first finding site. The orientations of trench sites are 150o and 170o, the widths are 1.3 m and 1.5 m, and the maximum depths are 2.8 m and 5.5 m, respectively. The trenches are in Quaternary unconsolidated marine terrace sediments, which have horizontal bedding planes, are well sorted, and range from pebbles to muds The fault system includes one main reverse fault (N20o E/40o SE) with about 4m displacement and a series of branches. Structures in the fault system include synthetic and antithetic faults, hanging wall anticlines, drag folds, back thrusts, pop-up structures, flat-ramp geometries and duplexes, i.e. very similar to thrust systems in consolidated rocks. In the upper part of the fault system, several tip damage zone patterns are observed, indicating that the fault system terminates in the upper part of the section. Pebbles along the main fault plane show preferred orientation of long axes indicating the fault trace. The orientation of the slickenside striea is E-W, indicating the movement direction. The unconformity between the Quaternary deposits and the underlying Tertiary andesites and Cretaceous sedimentary rocks is displaced in a reverse sense. A normal displacement was reported lower in the section, indicating the fault had a normal displacement and was reverse reactivated during the Quaternary.

  4. Performance assessments for radioactive waste repositories; the rate of movement of faults

    Science.gov (United States)

    Trask, Newell J.

    1982-01-01

    Performance assessments of mined repositories for radioactive waste require estimates of the likelihood of fault movements and earthquakes that may affect the repository and its surrounding ground water flow system. Some previous assessments have attempted to estimate the rate of formation of new faults; some have relied heavily on historic seismicity or the time of latest movement on faults. More appropriate emphasis is on the identification of faults that have been active or may have been active under the present teconic regime in a broad region and on estimates of the long-term rate of movement of such faults. Faults that have moved under the current stress field, even at low rates, are likely to move again during the time the wastes will remain toxic. A continuum exists for the present rate of movement of faults which ranges from 10 mm per year for obviously active faults along the western margin of the North American plate to as low as 10 -4 mm per year for recently documented faults in the Atlantic Coast province. On the basis of regional consistency in movement rates and constraints imposed by geomorphology, I derive upper bounds for the rates of occurrence of fault offsets for various crustal stress provinces in the conterminous United States. These upper bounds are not meant to substitute for detailed studies of specific faults and seismicity at specific sites. They can help to reduce the considerable uncertainty that attaches to all estimates of future tectonic activity. The principal uncertainty in their estimation is the manner in which total slip across faults is distributed among discrete events especially in regions in which the rate of movement is very low.

  5. Insights in Fault Flow Behaviour from Onshore Nigeria Petroleum System Modelling

    Directory of Open Access Journals (Sweden)

    Woillez Marie-Noëlle

    2017-09-01

    Full Text Available Faults are complex geological features acting either as permeability barrier, baffle or drain to fluid flow in sedimentary basins. Their role can be crucial for over-pressure building and hydrocarbon migration, therefore they have to be properly integrated in basin modelling. The ArcTem basin simulator included in the TemisFlow software has been specifically designed to improve the modelling of faulted geological settings and to get a numerical representation of fault zones closer to the geological description. Here we present new developments in the simulator to compute fault properties through time as a function of available geological parameters, for single-phase 2D simulations. We have used this new prototype to model pressure evolution on a siliciclastic 2D section located onshore in the Niger Delta. The section is crossed by several normal growth faults which subdivide the basin into several sedimentary units and appear to be lateral limits of strong over-pressured zones. Faults are also thought to play a crucial role in hydrocarbons migration from the deep source rocks to shallow reservoirs. We automatically compute the Shale Gouge Ratio (SGR along the fault planes through time, as well as the fault displacement velocity. The fault core permeability is then computed as a function of the SGR, including threshold values to account for shale smear formation. Longitudinal fault fluid flow is enhanced during periods of high fault slip velocity. The method allows us to simulate both along-fault drainages during the basin history as well as overpressure building at present-day. The simulated pressures are at first order within the range of observed pressures we had at our disposal.

  6. Fault-tolerant Supervisory Control

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    of this work has been to develop and employ concepts and methods that are suitable for use in different automation processes, with applicability in various industrial fields. The requirements for high productivity and quality has resulted in employing additional instrumentation and use of more sophisticated...... control algorithms. The drawback is, however, that these control systems have become more vulnerable to even simple faults in instrumentation. On the other hand, due to cost-optimality requirements, an extensive use of hardware redundancy has been prohibited. Nevertheless, the dependency and availability...... could be increased through enhancing control systems' ability to on-line perform fault detection and reconfiguration when a fault occurs and before a safety system shuts-down the entire process. The main contributions of this research effort are development and experimentation with methodologies...

  7. Obtaining the size distribution of fault gouges with polydisperse bearings.

    Science.gov (United States)

    Lind, Pedro G; Baram, Reza M; Herrmann, Hans J

    2008-02-01

    We generalize a recent study of random space-filling bearings to a more realistic situation, where the spacing offset varies randomly during the space-filling procedure, and show that it reproduces well the size distributions observed in recent studies of real fault gouges. In particular, we show that the fractal dimensions of random polydisperse bearings sweep predominantly the low range of values in the spectrum of fractal dimensions observed along real faults, which strengthen the evidence that polydisperse bearings may explain the occurrence of seismic gaps in nature. In addition, the influence of different distributions on the offset is studied and we find that a uniform distribution is the best choice for reproducing the size distribution of fault gouges.

  8. Knowledge-driven board-level functional fault diagnosis

    CERN Document Server

    Ye, Fangming; Chakrabarty, Krishnendu; Gu, Xinli

    2017-01-01

    This book provides a comprehensive set of characterization, prediction, optimization, evaluation, and evolution techniques for a diagnosis system for fault isolation in large electronic systems. Readers with a background in electronics design or system engineering can use this book as a reference to derive insightful knowledge from data analysis and use this knowledge as guidance for designing reasoning-based diagnosis systems. Moreover, readers with a background in statistics or data analytics can use this book as a practical case study for adapting data mining and machine learning techniques to electronic system design and diagnosis. This book identifies the key challenges in reasoning-based, board-level diagnosis system design and presents the solutions and corresponding results that have emerged from leading-edge research in this domain. It covers topics ranging from highly accurate fault isolation, adaptive fault isolation, diagnosis-system robustness assessment, to system performance analysis and evalua...

  9. Effect of fluid viscosity on fault frictional behavior

    Science.gov (United States)

    Cornelio, Chiara; Violay, Marie; Spagnuolo, Elena; Di Toro, Giulio

    2017-04-01

    Fluids play an important role in fault zone and in earthquakes generation. Fluid pressure reduces the normal effective stress, lowering the frictional strength of the fault, potentially triggering earthquake ruptures. Fluid injection induced earthquakes, such as in geothermal reservoir, are direct evidence of the effect of fluid pressure on the fault strength. However, the frictional fault strength may also vary due to the chemical and physical characteristics of the fluid as discussed here. Here we performed two series of experiments on precut samples of Westerly granite to investigate the role of fluid viscosity on fault frictional behavior. In the first series, we performed 20 rotary shear experiments with the machine SHIVA (INGV, Rome) on cylindrical (50 mm external diameter), at slip rate (V) ranging from 10 μ m/s to 1 m/s effective normal stress (P) of 10 MPa and pore pressure varying from 0 ( i.e., dry conditions) to 2 MPa. Three different fluid viscosities were tested using pure distilled water (η=1 mPa\\cdot s), 40{%}water/60{%}glycerol (η =10.5 mPa\\cdot s) and 15{%}water/85{%}glycerol (η=109 mPa\\cdot s) mixtures (all reported viscosities at 20 rC). In agreement with theoretical argumentations (Stribeck curve) we distinguished three lubrication regimes. At low product of slip-rate per fluid viscosity (S= η\\cdot V/P

  10. From coseismic offsets to fault-block mountains

    Science.gov (United States)

    Thompson, George A.; Parsons, Tom

    2017-09-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (˜100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  11. From coseismic offsets to fault-block mountains

    Science.gov (United States)

    Thompson, George A.; Parsons, Thomas E.

    2017-01-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  12. Fault slip and earthquake recurrence along strike-slip faults - Contributions of high-resolution geomorphic data

    Science.gov (United States)

    Zielke, Olaf; Klinger, Yann; Arrowsmith, J. Ramon

    2015-01-01

    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault's rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault's offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of the

  13. Rupture propagation speed during earthquake faulting reproduced by large-scale biaxial friction experiments

    Science.gov (United States)

    Mizoguchi, K.; Fukuyama, E.; Yamashita, F.; Takizawa, S.; Kawakata, H.

    2013-12-01

    Earthquakes are generated by unstable frictional slip along pre-existing faults. Both laboratory experiments and numerical simulations have shown that the rupture process involves an initial quasi-static phase, a subsequent accelerating phase and a main dynamic rupture phase. During the main phase, the rupture front propagates at either subshear or supershear velocity, which affects the seismic wave radiation pattern. An examination on what controls the speed is crucial for improvement of earthquake hazard mitigation. Thus We conducted stick-slip experiments on meter-scale Indian gabbro rocks to observe the rupture process of the unstable periodic slip events and to measure the rupture speed along the fault. The simulated fault plane is 1.5m in length and 0.1m in width and ground by #200-300. The fault is applied at a constant normal stress of 6.7MPa and sheared parallel to the longitudinal direction of the fault at a slip rate of 0.1mm/s and up to a displacement of 40cm. The long, narrow fault geometry leads to in-plane shear rupture (mode II). in which the rupture front propagates in the direction of slip, which mimics large strike-slip earthquake faulting. Compressional-(Vp) and shear-(Vs) wave velocities of the rock sample are calculated to be 6.92km/s and 3.62km/s, respectively, based on the elastic properties (Young's modulus, 103GPa; Poisson's ratio, 0.331; Shear modulus, 38GPa). 32 biaxial strain gauges for shear strain and 16 single-axis strain gauges for normal strain were attached along the longitudinal direction of the fault at intervals of 5cm and 10cm, respectively. The local strain data were recorded at a sampling rate of 1MHz within 16 bit resolution. Load calls attached outside the fault plane measured the whole normal and shear forces applied on the fault plane, which was recorded by the same recording system. We have confirmed that the rupture process of unstable slip events consistsing of 1) an initial quasi-static phase where the slipped area

  14. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  15. Characterization of earthquake fault by borehole experiments; Koseinai sokutei ni yoru jishin danso no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Miyazaki, T.; Nishizawa, O.; Kuwahara, Y.; Kiguchi, T. [Geological Survey of Japan, Tsukuba (Japan)

    1996-05-01

    A borehole was excavated to penetrate the Nojima fault at the Hirabayashi area, to investigate the underground structures of the fault by observation of the cores and well logging. The borehole was excavated from 74.6m east of the fault surface. Soil is of granodiorite from the surface, and fault clay at a depth in a range from 624.1 to 625.1m. Observation of the cores, collected almost continuously, indicates that the fault fracture zone expands in a depth range from 557 to 713.05m. The well logging experiments are natural potential, resistivity, density, gamma ray, neutron, borehole diameter, microresistivity and temperature. They are also for DSI- and FMI-observation, after expansion of the borehole. The well logging results indicate that resistivity, density and elastic wave velocity decrease as distance from fault clay increases, which well corresponds to the soil conditions. The BHTV and FMI analyses clearly detect the fault clay demarcations, and show that elastic wave velocity and BHTV results differ at above and below the fault. 3 refs., 3 figs.

  16. Relations between shallow cataclastic faulting and cementation in porous sandstones: First insight from a groundwater environmental context

    Science.gov (United States)

    Philit, Sven; Soliva, Roger; Labaume, Pierre; Gout, Claude; Wibberley, Christopher

    2015-12-01

    The interplay between fault zone cataclasis and cementation is important since both processes can drastically reduce the permeability of faults in porous sandstones. Yet the prediction of fault cementation in high-porosity sandstone reservoirs remains elusive. Nevertheless, this process has rarely been investigated in shallowly buried faults (<2 km; T°<80 °C) where its sealing capacity could be acquired early in the geological history of a reservoir. In this paper, the macro- and microscopic analysis of a fault zone in the porous Cenomanian quartz arenite sands of Provence (France) shows that silica diagenesis occurs in the most intensely-deformed cataclastic parts of the fault zone. This fault zone shows 19-48% of its total thickness occupied by low-porosity quartz-cemented cataclastic shear bands whose porosities range from 0 - ca. 5%. The analysis of the weathering profile around the fault zone reveals the presence of groundwater silcretes in the form of tabular, tightly silicified concretions cross-cut by the fault. Detailed transmitted light, cold-cathodoluminescence and scanning electron microscopy analyses of the silica cements (from the fault and the silcrete) reveal that all the silica cements originate from groundwater diagenetic processes. This study therefore shows that silica cementation can occur specifically in fault zones and as groundwater silcrete in the shallow context of a groundwater system, generated at the vicinity of an erosional unconformity.

  17. QCD and Light-Front Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  18. Pareto fronts in clinical practice for pinnacle.

    Science.gov (United States)

    Janssen, Tomas; van Kesteren, Zdenko; Franssen, Gijs; Damen, Eugène; van Vliet, Corine

    2013-03-01

    Our aim was to develop a framework to objectively perform treatment planning studies using Pareto fronts. The Pareto front represents all optimal possible tradeoffs among several conflicting criteria and is an ideal tool with which to study the possibilities of a given treatment technique. The framework should require minimal user interaction and should resemble and be applicable to daily clinical practice. To generate the Pareto fronts, we used the native scripting language of Pinnacle(3) (Philips Healthcare, Andover, MA). The framework generates thousands of plans automatically from which the Pareto front is generated. As an example, the framework is applied to compare intensity modulated radiation therapy (IMRT) with volumetric modulated arc therapy (VMAT) for prostate cancer patients. For each patient and each technique, 3000 plans are generated, resulting in a total of 60,000 plans. The comparison is based on 5-dimensional Pareto fronts. Generating 3000 plans for 10 patients in parallel requires on average 96 h for IMRT and 483 hours for VMAT. Using VMAT, compared to IMRT, the maximum dose of the boost PTV was reduced by 0.4 Gy (P=.074), the mean dose in the anal sphincter by 1.6 Gy (P=.055), the conformity index of the 95% isodose (CI(95%)) by 0.02 (P=.005), and the rectal wall V(65 Gy) by 1.1% (P=.008). We showed the feasibility of automatically generating Pareto fronts with Pinnacle(3). Pareto fronts provide a valuable tool for performing objective comparative treatment planning studies. We compared VMAT with IMRT in prostate patients and found VMAT had a dosimetric advantage over IMRT. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Biomechanics of competitive front crawl swimming.

    Science.gov (United States)

    Toussaint, H M; Beek, P J

    1992-01-01

    Essential performance-determining factors in front crawl swimming can be analysed within a biomechanical framework, in reference to the physiological basis of performance. These factors include: active drag forces, effective propulsive forces, propelling efficiency and power output. The success of a swimmer is determined by the ability to generate propulsive force, while reducing the resistance to forward motion. Although for a given competitive stroke a range of optimal stroking styles may be expected across a sample of swimmers, a common element of technique related to a high performance level is the use of complex sculling motions of the hands to generate especially lift forces. By changing the orientation of the hand the propulsive force acting on the hand is aimed successfully in the direction of motion. Furthermore, the swimming velocity (v) is related to drag (A), power input (Pi, the rate of energy liberation via the aerobic/anaerobic metabolism), the gross efficiency (eg), propelling efficiency (ep), and power output (Po) according to: [formula; see text] Based on the research available at present it is concluded that: (a) drag in groups of elite swimmers homogeneous with respect to swimming technique is determined by anthropometric dimensions; (b) total mechanical power output (Po) is important since improvement in performance is related to increased Po. Furthermore, it shows dramatic changes with training and possibly reflects the size of the 'swimming engine'; (c) propelling efficiency seems to be important since it is much higher in elite swimmers (61%) than in triathletes (44%); and (d) distance per stroke gives a fairly good indication of propelling efficiency and may be used to evaluate individual progress in technical ability.

  20. Late Quaternary Deformation Along the Wairarapa Fault, North Island, New Zealand

    Science.gov (United States)

    Schermer, E. R.; Little, T. A.

    2006-12-01

    The Wairarapa fault, one of the largest active faults in the hanging wall of the Hikurangi subduction margin, New Zealand, averaged 16m dextral slip during the M >8.1 1855 earthquake. Previous workers inferred that uplift of 2.7m at the coast, observed by a surveyor in 1855, occurred on the southern continuation of the Wairarapa fault, the Wharekauhau (WH) thrust. New mapping, stratigraphic, and paloseismologic results from the WH thrust suggest the pattern of surface rupture in 1855 and earlier earthquakes was significantly different than previously inferred, requiring a more complex model for seismic hazard and tectonic evolution of the region. Detailed mapping indicates that the coastal segment of the WH thrust did not rupture the surface in 1855. The thrust, a major range-bounding fault, emplaces Mesozoic graywacke over ~80-100 ka last- interglacial marine, and lacustrine rocks, and in part coeval to younger alluvial gravels. Fault activity is indicated by facies and thickness changes. This older sequence is tilted and overlapped unconformably by a silt layer and much less deformed alluvial fan gravels that range in age from >22ka to ages record a period of fault inactivity from 14 - 9 ka (calib yrs BP). The abandoned, overlapping fan surface is slightly deformed across the fault (15 m of folding- related throw). We infer that the thrust has propagated eastward in the subsurface, uplifting the abandoned WH fault, an inference that is supported by the pattern of Holocene incision. The only recent faulting consists of subvertical en echelon segments that have undergone minor dip-slip and dextral slip. A trench excavated across the fault scarp in late Holocene gravels suggests that the only fault along the trace of the WH thrust that broke within 3 m of the surface in 1855 was a minor strike-slip fault splay. New14C ages are consistent with the most recent event occurring in 1855 and suggest one earlier event. The range-bounding trace of the WH thrust appears to

  1. Solar Dynamic Power System Fault Diagnosis

    Science.gov (United States)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  2. Finite Fault Database (ANSS ComCat)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A Finite Fault is a modeled representation of the spatial extent, amplitude and duration of fault rupture (slip) of an earthquake, and is generated via the inversion...

  3. Quantifying Fault Networks on Alba Patera, Mars

    Science.gov (United States)

    Wyrick, D. Y.; Ferrill, D. A.; Morris, A. P.; Sims, D. W.; Franklin, N. M.

    2005-03-01

    Newly developed terrestrial approaches were applied to martian fault networks to quantify the extent and degree of fault network connectivity. These techniques will provide key constraints for martian hydrological models.

  4. Light-Front Holography and the Light-Front Schrodinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2012-08-15

    One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

  5. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan

    Science.gov (United States)

    Abe, S.

    2010-12-01

    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  6. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    Science.gov (United States)

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  7. Examining the links between Slow Slip Events, crustal faults and subduction interface in Central Mexico

    Science.gov (United States)

    Bigot, A.; Manighetti, I.; Vergnolle, M.; Campillo, M.

    2012-12-01

    We have analyzed the tectonic structures, active and more ancient, that dissect the upper plate, the subducting plate and the trench in Central Mexico, and examined the links between these structures, the historical and instrumental seismicity, and the SSEs and tremors (as described in Radiguet et al., 2012). We show that the tectonic architecture of the upper plate controls the location of the SSEs and of a large part of the instrumental seismicity. The large historical subduction ruptures do not extend further below than ≈ 30 km depth. The broken areas are underlined by a zone of dense instrumental seismicity that extends confined between the broken patches and a vertical WSW-trending fault that cuts across the upper plate down to the interface, with its trace halfway between Acapulco and Chilpancingo (AC fault). This fault shows no morphological evidence of recent activity. Another similar, parallel WNW-trending fault exists north of Chilpancingo (NC fault). Though it shows no morphological evidence of recent activity, it is underlined by a dense instrumental seismicity confined in the range 40-70 km of depth, whose focal mechanisms are all extensional. No instrumental seismicity is recorded between the two faults. By contrast, the slip zones of the 2002, 2006 and 2010 major SSEs appear confined exactly in between the two vertical fault planes, while the major zone of reported tremors extend immediately north of the NC fault plane. The occurrence of each SSE induces a slight increase in the density of instrumental seismicity related to the NC fault, and a marked increase in the density of instrumental seismicity recorded south of the AC fault. In details, the seismicity increases at the northern tips of the NE-trending faults that dissect the trench and hence also likely the down-going oceanic plate below. Simple static Coulomb stress transfer models confirm that each SSE likely increased the static stresses by ≈ 0.1 bars on both the shallower portion of the

  8. Using noble gases to investigate mountain-front recharge

    Science.gov (United States)

    Manning, A.H.; Solomon, D.K.

    2003-01-01

    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  9. Seismic hazard in low slip rate crustal faults, estimating the characteristic event and the most hazardous zone: study case San Ramón Fault, in southern Andes

    Science.gov (United States)

    Estay, Nicolás P.; Yáñez, Gonzalo; Carretier, Sebastien; Lira, Elias; Maringue, José

    2016-11-01

    Crustal faults located close to cities may induce catastrophic damages. When recurrence times are in the range of 1000-10 000 or higher, actions to mitigate the effects of the associated earthquake are hampered by the lack of a full seismic record, and in many cases, also of geological evidences. In order to characterize the fault behavior and its effects, we propose three different already-developed time-integration methodologies to define the most likely scenarios of rupture, and then to quantify the hazard with an empirical equation of peak ground acceleration (PGA). We consider the following methodologies: (1) stream gradient and (2) sinuosity indexes to estimate fault-related topographic effects, and (3) gravity profiles across the fault to identify the fault scarp in the basement. We chose the San Ramón Fault on which to apply these methodologies. It is a ˜ 30 km N-S trending fault with a low slip rate (0.1-0.5 mm yr-1) and an approximated recurrence of 9000 years. It is located in the foothills of the Andes near the large city of Santiago, the capital of Chile (> 6 000 000 inhabitants). Along the fault trace we define four segments, with a mean length of ˜ 10 km, which probably become active independently. We tested the present-day seismic activity by deploying a local seismological network for 1 year, finding five events that are spatially related to the fault. In addition, fault geometry along the most evident scarp was imaged in terms of its electrical resistivity response by a high resolution TEM (transient electromagnetic) profile. Seismic event distribution and TEM imaging allowed the constraint of the fault dip angle (˜ 65°) and its capacity to break into the surface. Using the empirical equation of Chiou and Youngs (2014) for crustal faults and considering the characteristic seismic event (thrust high-angle fault, ˜ 10 km, Mw = 6.2-6.7), we estimate the acceleration distribution in Santiago and the hazardous zones. City domains that are under

  10. Touhuanping Fault, an active wrench fault within fold-and-thrust belt in northwestern Taiwan, documented by spatial analysis of fluvial terraces

    Science.gov (United States)

    Ota, Yoko; Lin, Yu-Nung Nina; Chen, Yue-Gau; Matsuta, Nobuhisa; Watanuki, Takuya; Chen, Ya-Wen

    2009-09-01

    This study aims at the recent activity and development of an active wrench fault, the Touhuanping Fault in northwestern Taiwan. Northwestern Taiwan has been proposed in a current situation between the mature to waning collision in terms of tectonic evolution. The main drainage in this area, the Chungkang River, flows close to the trace of the fault mentioned above. We examined various types of deformation of fluvial terraces along the Chungkang River as a key to understanding the nature and rate of the late Quaternary tectonics. The E-W trending Touhuanping Fault has long been mapped as a geological boundary fault, but its recent activity was suspected. Field survey revealed that its late Quaternary activity is recorded in the offset fluvial terraces. Our result shows dextral slip and vertical offset with upthrown side on the south, and activated at least twice since the emergence of terrace 4 (older terrace 3 with OSL date of ca. 80 ka). Total amount of offset recorded in the Touhuanping terrace sequence is 15 m for dextral and 10 m for vertical offset. Estimated recurrence time of earthquake rupture may be a few tens of thousand years. Uplift on the upthrown side of the Touhuanping Fault also resulted in the formation of drowned valleys which were graded to terrace 4. Other deformation features, such as back-tilting, westward warping, and a range-facing straight scarp, were also identified. A second-order anticline roughly parallel to the Touhuanping Fault is suggested to be the origin of the northward tilting on terrace 3; it could have resulted from a flower structure on the Touhuanping Fault at shallow depth. This may demonstrate that the buried segment of the Touhuanping Fault has also been active since 80 ka. In the northern study area, the westward warping at terrace 2 probably represents late Quaternary activity of another NE-SW trending Hsincheng Fault.

  11. Fault Detection for Nonlinear Systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.

    1998-01-01

    The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based...

  12. Fault Tolerance Using Group Communication

    NARCIS (Netherlands)

    Kaashoek, M.F.; Tanenbaum, A.S.

    We propose group communication as an efficient mechanism to support fault tolerance. Our approach is based on an efficient reliable broadcast protocol that requires on average only two messages per broadcast. To illustrate our approach we will describe how the task bag model can be made

  13. Tsunamis and splay fault dynamics

    Science.gov (United States)

    Wendt, J.; Oglesby, D.D.; Geist, E.L.

    2009-01-01

    The geometry of a fault system can have significant effects on tsunami generation, but most tsunami models to date have not investigated the dynamic processes that determine which path rupture will take in a complex fault system. To gain insight into this problem, we use the 3D finite element method to model the dynamics of a plate boundary/splay fault system. We use the resulting ground deformation as a time-dependent boundary condition for a 2D shallow-water hydrodynamic tsunami calculation. We find that if me stress distribution is homogeneous, rupture remains on the plate boundary thrust. When a barrier is introduced along the strike of the plate boundary thrust, rupture propagates to the splay faults, and produces a significantly larger tsunami man in the homogeneous case. The results have implications for the dynamics of megathrust earthquakes, and also suggest mat dynamic earthquake modeling may be a useful tool in tsunami researcn. Copyright 2009 by the American Geophysical Union.

  14. Fault detection using (PI) observers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.; Shafai, B.

    The fault detection and isolation (FDI) problem in connection with Proportional Integral (PI) Observers is considered in this paper. A compact formulation of the FDI design problem using PI observers is given. An analysis of the FDI design problem is derived with respectt to the time domain...... properties. A method for design of PI observers applied to FDI is given....

  15. Actuator Fault Detection and Diagnosis for Quadrotors

    NARCIS (Netherlands)

    Lu, P.; Van Kampen, E.J.; Yu, B.

    2014-01-01

    This paper presents a method for fault detection and diagnosis of actuator loss of effectiveness for a quadrotor helicopter. This paper not only considers the detection of the actuator loss of effectiveness faults, but also addresses the diagnosis of the faults. The detection and estimation of the

  16. High temperature superconducting fault current limiter

    Science.gov (United States)

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  17. Engine gearbox fault diagnosis using empirical mode ...

    Indian Academy of Sciences (India)

    Kiran Vernekar

    A LabVIEW software Virtual Instrument (VI) program was developed to ... study. Artificial faults were generated at different locations of the bearing and they are bearing outer race, inner race, inner and outer race together fault and rolling element (ball) fault. ... validation information of original signal were decom- posed using ...

  18. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F

    2003-01-01

    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  19. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...

  20. The minimum scale of grooving on faults

    NARCIS (Netherlands)

    Candela, T.; Brodsky, E.E.

    2016-01-01

    At the field scale, nearly all fault surfaces contain grooves generated as one side of the fault slips past the other. Grooves are so common that they are one of the key indicators of principal slip surfaces. Here, we show that at sufficiently small scales, grooves do not exist on fault surfaces. A

  1. Fundamental problems in fault detection and identification

    DEFF Research Database (Denmark)

    Saberi, A.; Stoorvogel, A. A.; Sannuti, P.

    2000-01-01

    A number of different fundamental problems in fault detection and fault identification are formulated in this paper. The fundamental problems include exact, almost, generic and class-wise fault detection and identification. Necessary and sufficient conditions for the solvability of the fundamental...

  2. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  3. Analytical and numerical modeling of front propagation and interaction of fronts in nonlinear thermoviscous

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2008-01-01

    , the model equation considered here is capable to describe waves propagating in opposite directions. Owing to the Hamiltonian structure of the proposed model equation, the front solution is in agreement with the classical Rankine Hugoniot relations. The exact front solution propagates at supersonic speed...

  4. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  5. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    Science.gov (United States)

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.

  6. Transition Fault and the Yakutat-Pacific-North American Triple Junction

    Science.gov (United States)

    Gulick, S. P.; Christeson, G. L.; Norton, I. O.; Pavlis, T. L.; Reece, R.; van Avendonk, H.; Worthington, L. L.

    2011-12-01

    In the Gulf of Alaska the Pacific Plate, Yakutat Terrane, and North American Plate interact in a complexly deformed zone on the continental slope near Kayak Island. This zone can be viewed as a fault-trench-trench (FTT) triple junction that can only be stable if the two trench segments are aligned. In this case the trench segments are: the deformation front along which the Pacific Plate subducts beneath North America (the Aleutian Trench) and the deformation front along which the Yakutat Terrane subducts at a more westerly direction (when compared to the Pacific subduction) beneath North America (the Pamplona Zone). These two deformation fronts are, to a first order, locally aligned. The complex member of the system is the Transition Fault which is a long-lived strike-slip fault separating the 15-30 km thick Yakutat oceanic plateau crust from the 5-7 km thick Pacific Plate crust, which is itself deforming along the north-south trending Gulf of Alaska Shear Zone (GASZ). A series of seismic reflection profiles crossing the Transition Fault allow us to examine the evolution of deformation as a function of proximity to the triple junction. East of the triple junction and the GASZ, the Transition Fault is a single near vertical strike-slip zone. Moving west to the area where the GASZ interacts with the Transition Fault, three seismic profiles show that the Fault bifurcates into a southern transpressional strand with a few 100 meters of seafloor relief and a northern strike-slip dominated strand. West of the GASZ and within the region proximal to the triple junction, two seismic lines show that the Transition Fault is expressed as a southern transpressional structure with significant amounts shortening (seafloor expression increased to ~1.8 km) and a northern dominantly strike-slip fault with minor transpression. Mapping the top of basement shows that the southern arm lies within and deforms the Pacific oceanic crust with the top of ocean crust reflection to the north

  7. Fault Diagnosis in HVAC Chillers

    Science.gov (United States)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  8. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  9. Illuminating Northern California’s Active Faults

    Science.gov (United States)

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramon; Furlong, Kevin P.; Philips, David A.

    2009-01-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google EarthTM and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2)

  10. Optimal back-to-front airplane boarding.

    Science.gov (United States)

    Bachmat, Eitan; Khachaturov, Vassilii; Kuperman, Ran

    2013-06-01

    The problem of finding an optimal back-to-front airplane boarding policy is explored, using a mathematical model that is related to the 1+1 polynuclear growth model with concave boundary conditions and to causal sets in gravity. We study all airplane configurations and boarding group sizes. Optimal boarding policies for various airplane configurations are presented. Detailed calculations are provided along with simulations that support the main conclusions of the theory. We show that the effectiveness of back-to-front policies undergoes a phase transition when passing from lightly congested airplanes to heavily congested airplanes. The phase transition also affects the nature of the optimal or near-optimal policies. Under what we consider to be realistic conditions, optimal back-to-front policies lead to a modest 8-12% improvement in boarding time over random (no policy) boarding, using two boarding groups. Having more than two groups is not effective.

  11. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  12. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps)

    Science.gov (United States)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo

    2014-05-01

    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  13. Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching

    Science.gov (United States)

    Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus

    2017-08-01

    The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.

  14. A Framework For Evaluating Comprehensive Fault Resilience Mechanisms In Numerical Programs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Peng, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronevetsky, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-09

    As HPC systems approach Exascale, their circuit feature will shrink, while their overall size will grow, all at a fixed power limit. These trends imply that soft faults in electronic circuits will become an increasingly significant problem for applications that run on these systems, causing them to occasionally crash or worse, silently return incorrect results. This is motivating extensive work on application resilience to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithm-specific error detection and resilience techniques. Effective use of such techniques requires a detailed understanding of (1) which vulnerable parts of the application are most worth protecting (2) the performance and resilience impact of fault resilience mechanisms on the application. This paper presents FaultTelescope, a tool that combines these two and generates actionable insights by presenting in an intuitive way application vulnerabilities and impact of fault resilience mechanisms on applications.

  15. Inverse S-Transform Based Decision Tree for Power System Faults Identification

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2011-04-01

    Full Text Available In this paper a decision tree based identification of power system faults has been proposed. The key input values to the decision tree are the performance indices calculated from the maximum values of unfiltered inverse Stockwell transform (MUNIST technique. A wide range of techniques including Stockwell transform (ST have been used for the identification of power system faults. However, the signatures produced by these techniques are not unique and sometimes lead to misinterpretation of faults. Consequently, a decision tree based on the inverse Stockwell transform method is proposed in the present paper to automatically identify both the symmetrical and unsymmetrical power system faults. The method is able to determine both sudden and gradual changes in the signal caused by different power system faults. The technique is very accurate and produces unique signatures compared to the existing techniques. The results obtained show the efficacy of the proposed technique.

  16. Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Kuo-Nan Yu

    2014-01-01

    Full Text Available At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.

  17. Thermal diagnostics front-end electronics for LISA Pathfinder.

    Science.gov (United States)

    Sanjuán, J; Lobo, A; Nofrarias, M; Ramos-Castro, J; Riu, P J

    2007-10-01

    Precision temperature measurements are required in the LTP, the LISA technology package, for various diagnostics objectives. In this article, we describe in detail the front-end electronics design and the associated temperature sensors to achieve the LTP requirements: noise equivalent temperature of 10 microK Hz(-12) in the frequency range from 1 to 30 mHz at room temperature. We designed an ac Wheatstone bridge and a subsequent digital demodulation to minimize 1/f noise. We show experimental results where the required sensitivity in the measurement bandwidth is fulfilled.

  18. Faulted Tell and ancient road by the Dead Sea Transform in southern Turkey

    Science.gov (United States)

    Altunel, E.; Meghraoui, M.; Akyuz, S.; Karabacak, V.; Bertrand, S.; Yalciner, C.; Ferry, M.; Munschy, M.

    2006-12-01

    We investigate the northern end of the Dead Sea Transform Fault (DSTF) in the Amik Basin using paleoseismology, archeoseismology and geophysical prospecting. The DSFZ is one of the major continental faults where large historical earthquakes occurred, some of them were associated with surface ruptures. The Amik Basin has a large number of archaeological sites where some ancient man-made structures are located on the fault zone. The fault appears as a prominent scarp located immediately south of the basin and offsets large and small streams showing a range of 650 +-10 m to 14 +-0.5 m of left-lateral displacement. Aerial photographs and field observations indicate that the fault also affects Holocene lacustrine deposits of the basin and form a North-South trending morphological scarp. Archeological sites are largely spread in the area and the fault crosses the approximately 6500 BC old Sicantarla Tell and related walls. A total left-lateral offset of 40 +-5 m measured from the detailed morphology of the Tell and 43 +-1.5 m from a magnetic survey illustrates the cumulative left-lateral movement along the fault and provide with an average 5 mm/yr slip rate for the late Holocene. Field studies also showed that an ancient road with nearby Hittites inscriptions (around 2000 BC) is left-laterally offset by 25 +-2 m along the DSTF and provide with an average 6.2 mm/yr slip rate. In addition, paleoseismic trenching at three locations between the Tell and the southern fault trace expose the fault zone and successive most recent faulting events including the AD 1408 large earthquake. The faulted archeological sites and geomorphology offer the possibility to document successive coseismic ruptures and constitute a real archive of large earthquakes along the DSTF.

  19. Evolution of dilatant fracture networks in a normal fault — Evidence from 4D model experiments

    Science.gov (United States)

    Holland, Marc; van Gent, Heijn; Bazalgette, Loïc; Yassir, Najwa; Hoogerduijn Strating, Eilard H.; Urai, Janos L.

    2011-04-01

    Dilatant fractures in normal fault zones are widely recognized as major pathways of fluid flow in the upper crust where the ratio of rock strength and effective stress is suitable for their formation, but the structure of these fracture networks in 3D, their connectivity and their temporal evolution is poorly known. Here we build on 2D studies of scaled models of fracture networks in dilatant normal fault zones, using a series of X-ray computer tomographic scans of a physical model. We show how the dilatant fracture network evolves in 3D, as a complex self-organizing system with self-similar geometry. We processed the CT-scan data using a threshold filter to identify the open fracture volume, to allow visual and quantitative analysis of the evolving fracture system in 3D. Dilatant jogs initiated along the evolving fault plane coalesce into a self-similar percolating volume (Fd = 1.91). The fracture volume increases non-linearly with progressive displacement as the velocity of the fault blocks diverges from the master fault orientation and we infer that the normal stress on the fault decreases correspondingly. This process continues until the system triggers the formation of antithetic faults, with a corresponding increase in normal stress on the master fault and a decrease in the rate of fracture volume creation. We infer that although parameters like the width of the fractures are not scaled with the same ratio as length and stress, the processes and evolution of fracture geometries in our model are robust and apply to a wide range of normal fault zones in nature. Since our physical model does not involve chemical processes such as cementation or fault healing, the experiment suggests that fault systems can show a non-linear change of fracture network properties caused by a geometric evolution only.

  20. Fault creep and strain partitioning in Trinidad-Tobago: Geodetic measurements, models, and origin of creep

    Science.gov (United States)

    Geirsson, Halldór; Weber, John; La Femina, Peter; Latchman, Joan L.; Robertson, Richard; Higgins, Machel; Miller, Keith; Churches, Chris; Shaw, Kenton

    2017-04-01

    We studied active faults in Trinidad and Tobago in the Caribbean-South American (CA-SA) transform plate boundary zone using episodic GPS (eGPS) data from 19 sites and continuous GPS (cGPS) data from 8 sites, then modeling these data using a series of simple screw dislocation models. Our best-fit model for interseismic fault slip requires: 12-15 mm/yr of right-lateral movement and very shallow locking (0.2 ± 0.2 km; essentially creep) across the Central Range Fault (CRF); 3.4 +0.3/-0.2 mm/yr across the Soldado Fault in south Trinidad, and 3.5 +0.3/-0.2 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The upper-crustal faults in Trinidad show very little seismicity (1954-current from local network) and do not appear to have generated significant historic earthquakes. However, paleoseismic studies indicate that the CRF ruptured between 2710 and 500 yr. B.P. and thus it was recently capable of storing elastic strain. Together, these data suggest spatial and/or temporal fault segmentation on the CRF. The CRF marks a physical boundary between rocks associated with thermogenically generated petroleum and overpressured fluids in south and central Trinidad, from rocks containing only biogenic gas to the north, and a long string of active mud volcanoes align with the trace of the Soldado Fault along Trinidad's south coast. Fluid (oil and gas) overpressure may thus cause the CRF fault creep that we observe and the lack of seismicity, as an alternative or addition to weak mineral phases on the fault.

  1. Slip deficit and location of seismic gaps along the Dead Sea Fault

    Science.gov (United States)

    Meghraoui, Mustapha; Toussaint, Renaud; Ferry, Matthieu; Nguema-Edzang, Parfait

    2015-04-01

    The Dead Sea Fault (DSF), a ~ 1000-km-long North-South trending transform fault presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short-term slip rates along the Dead Sea fault. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these long-term estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. Indeed, recent GPS results showing 3 +-0.5 mm/yr velocity rate of the northern DSF appear to be in contradiction with the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern with the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this contribution, we present the calculated seismic slip deficit along the fault segments and discuss the identification of seismic gaps and the implication for the seismic hazard assessment.

  2. Tectonic geomorphology and paleoseismology of strike-slip faults in Jamaica: Implications for distribution of strain and seismic hazard along the southern edge of the Gonave microplate

    Science.gov (United States)

    Koehler, R. D.; Mann, P.; Brown, L. A.

    2009-12-01

    The east-west, left lateral strike-slip fault system forming the southern edge of the Gonave microplate crosses the110-km-long and 70-km-wide island of Jamaica. GPS measurements in the northeastern Caribbean are supportive of the microplate interpretation and indicate that ~ half of the Caribbean-North America left-lateral plate motion (8-14 mm/yr) is carried by the Plantain Garden (PGFZ) and associated faults in Jamaica. We performed Neotectonic mapping of the Plantain Garden fault along the southern rangefront of the Blue Mountains and conducted a paleoseismic study of the fault at Morant River. Between Holland Bay and Morant River, the fault is characterized by a steep, faceted, linear mountain front, prominent linear valleys and depressions, shutter ridges, and springs. At the eastern end of the island, the PGFZ is characterized by a left-stepping fault geometry that includes a major, active hot spring. The river cut exposure at Morant River exposes a 1.5-m-wide, sub-vertical fault zone juxtaposing sheared alluvium and faulted Cretaceous basement rocks. This section is overlain by an, unfaulted 3-m-thick fluvial terrace inset into a late Pleistocene terrace that is culturally modified. Upward fault terminations indicate the occurrence of three paleoearthquakes that occurred prior to deposition of the flat lying inset terrace around 341-628 cal yr BP. At this time, our radiocarbon results suggest that we can rule out the PGFZ as the source of the 1907 Kingston earthquake 102 years ago, as well as, the 1692 event that destroyed Port Royal 317 years ago and produced a major landslide at Yallahs. Pending OSL ages will constrain the age of the penultimate and most recent ruptures. Gently to steeply dipping rocks as young as Pliocene exposed in roadcuts within the low coastal hills south of and parallel to the Plantain Garden fault may indicate active folding and blind thrust faulting. These structures are poorly characterized and may accommodate an unknown amount of

  3. TopN-Pareto Front Search

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-21

    The JMP Add-In TopN-PFS provides an automated tool for finding layered Pareto front to identify the top N solutions from an enumerated list of candidates subject to optimizing multiple criteria. The approach constructs the N layers of Pareto fronts, and then provides a suite of graphical tools to explore the alternatives based on different prioritizations of the criteria. The tool is designed to provide a set of alternatives from which the decision-maker can select the best option for their study goals.

  4. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  5. RF front-end world class designs

    CERN Document Server

    Love, Janine

    2009-01-01

    All the design and development inspiration and direction a harware engineer needs in one blockbuster book! Janine Love site editor for RF Design Line,columnist, and author has selected the very best RF design material from the Newnes portfolio and has compiled it into this volume. The result is a book covering the gamut of RF front end design from antenna and filter design fundamentals to optimized layout techniques with a strong pragmatic emphasis. In addition to specific design techniques and practices, this book also discusses various approaches to solving RF front end design problems and h

  6. Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms

    Science.gov (United States)

    Gangsar, Purushottam; Tiwari, Rajiv

    2017-09-01

    This paper presents an investigation of vibration and current monitoring for effective fault prediction in induction motor (IM) by using multiclass support vector machine (MSVM) algorithms. Failures of IM may occur due to propagation of a mechanical or electrical fault. Hence, for timely detection of these faults, the vibration as well as current signals was acquired after multiple experiments of varying speeds and external torques from an experimental test rig. Here, total ten different fault conditions that frequently encountered in IM (four mechanical fault, five electrical fault conditions and one no defect condition) have been considered. In the case of stator winding fault, and phase unbalance and single phasing fault, different level of severity were also considered for the prediction. In this study, the identification has been performed of the mechanical and electrical faults, individually and collectively. Fault predictions have been performed using vibration signal alone, current signal alone and vibration-current signal concurrently. The one-versus-one MSVM has been trained at various operating conditions of IM using the radial basis function (RBF) kernel and tested for same conditions, which gives the result in the form of percentage fault prediction. The prediction performance is investigated for the wide range of RBF kernel parameter, i.e. gamma, and selected the best result for one optimal value of gamma for each case. Fault predictions has been performed and investigated for the wide range of operational speeds of the IM as well as external torques on the IM.

  7. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  8. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    NARCIS (Netherlands)

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.

    2009-01-01

    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone

  9. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  10. Pulverization Texturein Fault Damage Zones: A result of Implosion Damage or Dynamic Compressive Stresses?

    Science.gov (United States)

    Rockwell, T. K.; Girty, G.; Whearty, J.; Mitchell, T. M.

    2015-12-01

    Micro-brecciation, or pulverization, is recognized as a fundamental component of the architecture and damage products of many large faults, although the precise mechanisms to produce this damage are debated, with both compressive and tensile mechanisms proposed. We characterized several sites along the San Jacinto fault, southern California, where the total depth of exhumation for the life history of the fault can be determined, to study the confining stresses required for pulverization. In basement rock near Anza, where exhumation is less than 100 m, granitic dikes injected into schist of the Burnt Valley Complex are pulverized out to several meters from the fault core, whereas the schist is brecciated at the macro-scale and contains narrow centimeter-thick seams of black cataclasite. Similar relationships are observed in Horse Canyon, which is exhumed about 400 m below a regional Tertiary erosion surface, where granitic dikes emplaced into schist are pulverized out to distances of several tens of meters from the fault core. These observations imply that very low confining stress is required for micro-brecciation in granitic rock. Unconsolidated sandstones (alluvial fan deposits) along the SJF in Rock House Canyon are undeformed where the deposits are exhumed by about 70 m, but show incipient pulverization (high-density, sub-grain cracking) at 120 m depth of exhumation. Cracks oriented perpendicular to the fault formed in individual quartz and feldspar grains out to a few meters from the fault core. These observations suggest that the confining stress required for onset of pulverization in unconsolidated deposits is on the order of 2-2.5 MPa. As the tensile strength of quartz is an order of magnitude higher than these confining stresses, the most likely mechanism that is producing this damage is dynamic compressive stresses during passage of the rupture front.

  11. Coulomb stress changes imparted by simulated M>7 earthquakes to major fault surfaces in Southern California

    Science.gov (United States)

    Rollins, J. C.; Ely, G. P.; Jordan, T. H.

    2011-12-01

    To study static stress interactions between faults in southern California and identify cases where one large earthquake could trigger another, we select fourteen M>7 events simulated by the SCEC/CME CyberShake project and calculate the Coulomb stress changes those events impart to major fault surfaces in the UCERF2 fault model for the region. CyberShake simulates between 6 and 32 slip distributions for each event at a slip sampling resolution of 1 km, and we calculate stress changes on fault surfaces at the same resolution, a level of detail which is unprecedented in studies of stress transfer and which allows us to study the way that variabilities in slip on the source can affect imparted stress changes. We find that earthquakes rupturing the southern San Andreas fault generally decrease Coulomb stress on right-lateral faults in the Los Angeles basin, while M>7 events on the San Jacinto, Elsinore, Newport-Inglewood and Palos Verdes faults generally decrease stress on parallel right-lateral faults but increase Coulomb stress on the Mojave or San Bernardino sections of the San Andreas. Stress interactions between strike-slip and thrust faults and between the San Andreas and Garlock faults depend on the rupture area of the source. Coulomb stress changes imparted by simulated SAF events to locations on the San Jacinto and Garlock faults within ~8 km of the San Andreas appear to be influenced more by the nearby distribution of high and low slip on the San Andreas than by the overall slip distribution across the entire rupture. Using a simplified model, we calculate that an area of no slip surrounded by high slip on a rupture imparts strong Coulomb stress increases ≤7 km to either side of the source fault, possibly explaining the apparent ~8-km range of influence of local slip on the San Andreas. Additionally, we devise a method for evaluating uncertainty values in Coulomb stress changes caused by uncertainties in the strike, dip and rake of the receiver fault. These

  12. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  13. A Quaternary fault database for central Asia

    Science.gov (United States)

    Mohadjer, Solmaz; Ehlers, Todd Alan; Bendick, Rebecca; Stübner, Konstanze; Strube, Timo

    2016-02-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via http://www.geo.uni-tuebingen.de/faults/. This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  14. Tool for Viewing Faults Under Terrain

    Science.gov (United States)

    Siegel, Herbert, L.; Li, P. Peggy

    2005-01-01

    Multi Surface Light Table (MSLT) is an interactive software tool that was developed in support of the QuakeSim project, which has created an earthquake- fault database and a set of earthquake- simulation software tools. MSLT visualizes the three-dimensional geometries of faults embedded below the terrain and animates time-varying simulations of stress and slip. The fault segments, represented as rectangular surfaces at dip angles, are organized into collections, that is, faults. An interface built into MSLT queries and retrieves fault definitions from the QuakeSim fault database. MSLT also reads time-varying output from one of the QuakeSim simulation tools, called "Virtual California." Stress intensity is represented by variations in color. Slips are represented by directional indicators on the fault segments. The magnitudes of the slips are represented by the duration of the directional indicators in time. The interactive controls in MSLT provide a virtual track-ball, pan and zoom, translucency adjustment, simulation playback, and simulation movie capture. In addition, geographical information on the fault segments and faults is displayed on text windows. Because of the extensive viewing controls, faults can be seen in relation to one another, and to the terrain. These relations can be realized in simulations. Correlated slips in parallel faults are visible in the playback of Virtual California simulations.

  15. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    Science.gov (United States)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  16. The 2015 M w 6.0 Mt. Kinabalu earthquake: an infrequent fault rupture within the Crocker fault system of East Malaysia

    Science.gov (United States)

    Wang, Yu; Wei, Shengji; Wang, Xin; Lindsey, Eric O.; Tongkul, Felix; Tapponnier, Paul; Bradley, Kyle; Chan, Chung-Han; Hill, Emma M.; Sieh, Kerry

    2017-12-01

    The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicity. Our seismological, space geodetic, geomorphological, and field investigations show that the earthquake resulted from rupture of a northwest-dipping normal fault that did not reach the surface. Its unilateral rupture was almost directly beneath 4000-m-high Mt. Kinabalu and triggered widespread slope failures on steep mountainous slopes, which included rockfalls that killed 18 hikers. Our seismological and morphotectonic analyses suggest that the rupture occurred on a normal fault that splays upwards off of the previously identified normal Marakau fault. Our mapping of tectonic landforms reveals that these faults are part of a 200-km-long system of normal faults that traverse the eastern side of the Crocker Range, parallel to Sabah's northwestern coastline. Although the tectonic reason for this active normal fault system remains unclear, the lengths of the longest fault segments suggest that they are capable of generating magnitude 7 earthquakes. Such large earthquakes must occur very rarely, though, given the hitherto undetectable geodetic rates of active tectonic deformation across the region.

  17. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2010-01-01

    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...

  18. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...... the applicability of the presented methods. The theoretical results are illustrated by two running examples which are used throughout the book. The book addresses engineering students, engineers in industry and researchers who wish to get a survey over the variety of approaches to process diagnosis and fault...... that can be used to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Four case studies on pilot processes show...

  19. Phenomena of insulin peak fronting in size exclusion chromatography and strategies to reduce fronting.

    Science.gov (United States)

    Yu, Chi-Ming; Mun, Sungyong; Wang, Nien-Hwa Linda

    2008-05-23

    Insulin peak fronting in size exclusion chromatography (SEC) results in more than 10% yield loss in the production of insulin. The goal of this study is to understand the mechanisms of peak fronting and to develop strategies to reduce fronting and increase insulin yield. Chromatography experiments ruled out pressure surge, viscous fingering, and adsorption as the cause for peak fronting. Theoretical analysis based on a general rate model indicated that reversible dimerization is the major cause for peak fronting and reducing the dimerization equilibrium constant is the most effective method for reducing fronting. Two strategies were developed and tested to reduce the degree of dimer formation. The first strategy was to use 0.1N acetic acid as the presaturant and eluent. The second strategy was to use 0.8 or 2.8N acetic acid in 20vol.% denatured ethanol as the mobile phase. The experimental results showed that both strategies can reduce insulin peak fronting in SEC, maintain desired product purity, and increase insulin yield to higher than 98%.

  20. On Multiple Questions and Multiple WH Fronting.

    Science.gov (United States)

    Rudin, Catherine

    An analysis of languages with multiple fronting of WH words (who, what, whom, etc.) looks in detail at Polish, Serbo-Croatian, Czech, Bulgarian (Slavic languages), and Romanian (a Romance language). In spite of their superficial similarity, the Slavic and East European languages that normally put all WH words at the beginning of clauses fall into…

  1. "All Quiet on the Western Front."

    Science.gov (United States)

    Soderquist, Alisa

    Based on Erich Maria Remarque's novel "All Quiet on the Western Front" and other war literature, this lesson plan presents activities designed to help students understand that works of art about war can call up strong emotions in readers; and that the writing process can be applied to writing poems. The main activity of the lesson involves…

  2. Light-Front Dynamics in Hadron Physics

    NARCIS (Netherlands)

    Ji, C.R.; Bakker, B.L.G.; Choi, H.M.

    2013-01-01

    Light-front dynamics(LFD) plays an important role in the analyses of relativistic few-body systems. As evidenced from the recent studies of generalized parton distributions (GPDs) in hadron physics, a natural framework for a detailed study of hadron structures is LFD due to its direct application in

  3. Teaching Front Handsprings from a Developmental Approach

    Science.gov (United States)

    Stork, Steve

    2006-01-01

    The front handspring is an important gymnastics skill that serves as a transition from beginner-level rolling and static balances to more advanced tumbling. It is, therefore, a skill highly desired by beginners. Early learning requires a great deal of effort during which students experience many failed attempts. Unless they are highly motivated,…

  4. Discretionary Power on the Front-line

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum; Lønsmann, Dorte

    and document data, our findings show that employees face a number of different language boundaries in their everyday work, and that ad hoc and informal solutions in many cases are vital for successful cross-language communication. We introduce the concept of ‘discretionary power’ to explain how and why front...

  5. Front-end conceptual platform modeling

    DEFF Research Database (Denmark)

    Guðlaugsson, Tómas Vignir; Ravn, Poul Martin; Mortensen, Niels Henrik

    2014-01-01

    Platform thinking has been the subject of investigation and deployment in many projects in both academia and industry. Most contributions involve the restructuring of product programs, and only a few support front-end development of a new platform in parallel with technology development. This con......Platform thinking has been the subject of investigation and deployment in many projects in both academia and industry. Most contributions involve the restructuring of product programs, and only a few support front-end development of a new platform in parallel with technology development....... This contribution deals with the development of product platforms in front-end projects and introduces a modeling tool: the Conceptual Product Platform model. State of the art within platform modeling forms the base of a modeling formalism for a Conceptual Product Platform model. The modeling formalism is explored...... through an example and applied in a case in which the Conceptual Product Platform model has supported the front-end development of a platform for an electro-active polymer technology. The case describes the contents of the model and how its application supported the development work in the project...

  6. Front-end electronics for imaging detectors

    CERN Document Server

    Geronimo, G D; Radeka, V; Yu, B

    2001-01-01

    Front-end electronics for imaging detectors with large numbers of pixels (10 sup 5 -10 sup 7) is reviewed. The noise limits as a function of detector capacitance and power dissipation are presented for CMOS technology. Active matrix flat panel imagers (AMFPIs) are discussed and their potential noise performance is illustrated.

  7. The thin-skinned style of the South Atlas Front in Central Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Bracene, R.; Bellahcene, A.; Bekkouche, D [Sonatrach Exploration (Algeria); Mercier, E.; Frizon de Lamotte, D. [Universite de Cergy-Pntoise, Cedex (France). Departement des Sciences de la Terre

    1998-12-31

    Seismic lines cutting through the southern front of the Sahara Atlas show that the front is not superimposed on a major basement fault. Folded Cretaceous rocks can be observed on these lines to overlie a decollement surface climbing from Triassic to Early Cretaceous, below which flat-lying sediments can be recognized. The structural style is thus interpreted to be thin skinned and the folds underlining the front as ramp-related features. The development of duplexes in the core of some anticlines explains the apparent thickening of Cretaceous and/or Jurassic strata revealed by boreholes. This thickening was previously interpreted to be related to now-inverted extensional half-grabens, a model which cannot now be supported. This new interpretation allows a reassessment of other parts of the Sahara Atlas system, the large-scale structural model for which is that of large half-graben system that has undergone inversion because of shortening between the High Plateau massif and the Sahara Platform. (author)

  8. New insights on Southern Coyote Creek Fault and Superstition Hills Fault

    Science.gov (United States)

    van Zandt, A. J.; Mellors, R. J.; Rockwell, T. K.; Burgess, M. K.; O'Hare, M.

    2007-12-01

    Recent field work has confirmed an extension of the southern Coyote Creek (CCF) branch of the San Jacinto fault in the western Salton trough. The fault marks the western edge of an area of subsidence caused by groundwater extraction, and field measurements suggest that recent strike-slip motion has occurred on this fault as well. We attempt to determine whether this fault connects at depth with the Superstition Hills fault (SHF) to the southeast by modeling observed surface deformation between the two faults measured by InSAR. Stacked ERS (descending) InSAR data from 1992 to 2000 is initially modeled using a finite fault in an elastic half-space. Observed deformation along the SHF and Elmore Ranch fault is modeled assuming shallow (< 5 km) creep. We test various models to explain surface deformation between the two faults.

  9. QCD and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  10. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DEFF Research Database (Denmark)

    Brodsky, S. J.; de Teramond, G. F.

    2012-01-01

    -classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions...... the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate zeta which measures the separation of the constituents within a hadron at equal light-front time and determines...

  11. Coseismic paleomagnetic signal in fault pseudotachylytes?

    Science.gov (United States)

    Ferre, E.; Geissman, J. W.; Zechmeister, M. S.

    2012-04-01

    The 59 Ma-old fault-related pseudotachylytes of the Peninsular Ranges of California have been investigated from the microstructural and magnetic point of view. These veins have a 30-fold increase in magnetic susceptibility compared to their tonalitic host-rock. The increase results from the breakdown of mafic silicates during frictional melting and subsequent formation of abundant fine grained magnetite grains. Upon rapid cooling of the pseudotachylyte melt in the Earth's magnetic field the rocks acquire a strong thermoremanent magnetization. In addition to this dominant process some samples exhibit a "lightning-induced" remanent magnetization acquired during seismic slip in the presence of a high magnetic field. This unusual remanence component is anomalous in direction and tends to be at high angle to the pseudotachylyte vein plane. We propose that the coseismic lightning-induced magnetization is caused by electrical currents possibly similar to those responsible for earthquake lightnings.

  12. Afterslip, tremor, and the Denali fault earthquake

    Science.gov (United States)

    Gomberg, Joan; Prejean, Stephanie; Ruppert, Natalia

    2012-01-01

    We tested the hypothesis that afterslip should be accompanied by tremor using observations of seismic and aseismic deformation surrounding the 2002 M 7.9 Denali fault, Alaska, earthquake (DFE). Afterslip happens more frequently than spontaneous slow slip and has been observed in a wider range of tectonic environments, and thus the existence or absence of tremor accompanying afterslip may provide new clues about tremor generation. We also searched for precursory tremor, as a proxy for posited accelerating slip leading to rupture. Our search yielded no tremor during the five days prior to the DFE or in several intervals in the three months after. This negative result and an array of other observations all may be explained by rupture penetrating below the presumed locked zone into the frictional transition zone. While not unique, such an explanation corroborates previous models of megathrust and transform earthquake ruptures that extend well into the transition zone.

  13. Controller modification applied for active fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad

    2014-01-01

    with the result that the detection and isolation time can be long. In this paper it will be shown, that this problem can be handled by using a modification of the feedback controller. By applying the YJBK-parameterization (after Youla, Jabr, Bongiorno and Kucera) for the controller, it is possible to modify...... the feedback controller with a minor effect on the external output in the fault free case. Further, in the faulty case, the signature of the auxiliary input can be optimized. This is obtained by using a band-pass filter for the YJBK parameter that is only effective in a small frequency range where...... the frequency for the auxiliary input is selected. This gives that it is possible to apply an auxiliary input with a reduced amplitude. An example is included to show the results....

  14. Geodetic Control Points - Range Monument Master Positions in Florida

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This coverage indicates a inventory of Florida's Range Monuments fronting on the Atlantic Ocean, Straits of Florida, Gulf of Mexico, and the roughly seventy coastal...

  15. Fault analysis as part of urban geothermal exploration in the German Molasse Basin around Munich

    Science.gov (United States)

    Ziesch, Jennifer; Tanner, David C.; Hanstein, Sabine; Buness, Hermann; Krawczyk, Charlotte M.; Thomas, Rüdiger

    2017-04-01

    Faults play an essential role in geothermal exploration. The prediction of potential fluid pathways in urban Munich has been started with the interpretation of a 3-D seismic survey (170 km2) that was acquired during the winter of 2015/2016 in Munich (Germany) within the Bavarian Molasse Basin. As a part of the research project GeoParaMoL*, we focus on the structural interpretation and retro-deformation analysis to detect sub-seismic structures within the reservoir and overburden. We explore the hydrothermal Malm carbonate reservoir (at a depth of 3 km) as a source of deep geothermal energy and the overburden of Tertiary Molasse sediments. The stratigraphic horizons, Top Aquitan, Top Chatt, Top Bausteinschichten, Top Lithothamnien limestone (Top Eocene), Top and Base Malm (Upper Jurassic), together with the detailed interpretation of the faults in the study area are used to construct a 3-D geological model. The study area is characterised by synthetic normal faults that strike parallel to the alpine front. Most major faults were active from Upper Jurassic up to the Miocene. The Munich Fault, which belongs to the Markt-Schwabener Lineament, has a maximum vertical offset of 350 metres in the central part, and contrary to previous interpretation based on 2-D seismic, this fault dies out in the eastern part of the area. The south-eastern part of the study area is dominated by a very complex fault system. Three faults that were previously detected in a smaller 3-D seismic survey at Unterhaching, to the south of the study area, with strike directions of 25°, 45° and 70° (Lüschen et al. 2014), were followed in to the new 3-D seismic survey interpretation. Particularly noticeable are relay ramps and horst/graben structures. The fault with a strike of 25° ends in three big sinkholes with a maximum vertical offset of 60 metres. We interpret this special structure as fault tip horsetail-structure, which caused a large amount of sub-seismic deformation. Consequently, this

  16. www.fallasdechile.cl, the First Online Repository for Neotectonic Faults in the Chilean Andes

    Science.gov (United States)

    Aron, F.; Salas, V.; Bugueño, C. J.; Hernández, C.; Leiva, L.; Santibanez, I.; Cembrano, J. M.

    2016-12-01

    We introduce the site www.fallasdechile.cl, created and maintained by undergraduate students and researchers at the Catholic University of Chile. Though the web page seeks to inform and educate the general public about potentially seismogenic faults of the country, layers of increasing content complexity allow students, researchers and educators to consult the site as a scientific tool as well. This is the first comprehensive, open access database on Chilean geologic faults; we envision that it may grow organically with contributions from peer scientists, resembling the SCEC community fault model for southern California. Our website aims at filling a gap between science and society providing users the opportunity to get involved by self-driven learning through interactive education modules. The main page highlights recent developments and open questions in Chilean earthquake science. Front pages show first level information of general concepts in earthquake topics such as tectonic settings, definition of geologic faults, and space-time constraints of faults. Users can navigate interactive modules to explore, with real data, different earthquake scenarios and compute values of seismic moment and magnitude. A second level covers Chilean/Andean faults classified according to their geographic location containing at least one of the following parameters: mapped trace, 3D geometry, sense of slip, recurrence times and date of last event. Fault traces are displayed on an interactive map using a Google Maps API. The material is compiled and curated in an effort to present, up to our knowledge, accurate and up to date information. If interested, the user can navigate to a third layer containing more advanced technical details including primary sources of the data, a brief structural description, published scientific articles, and links to other online content complementing our site. Also, geographically referenced fault traces with attributes (kml, shapefiles) and fault 3D

  17. Image processing of 2D resistivity data for imaging faults

    Science.gov (United States)

    Nguyen, F.; Garambois, S.; Jongmans, D.; Pirard, E.; Loke, M. H.

    2005-07-01

    A methodology to locate automatically limits or boundaries between different geological bodies in 2D electrical tomography is proposed, using a crest line extraction process in gradient images. This method is applied on several synthetic models and on field data set acq